
INSTRUCTIONS FOR USE

PLC Automation
Automation Builder, AC500
Automation Builder 2.5.0, AC500 V2, AC500-eCo V2, AC500-XC V2

—
 Table of contents

1 PLC Automation with V2 CPUs.. 9
1.1 About this document.. 9

1.1.1 Documentation structure.. 9
1.1.2 Your tasks - documentation from the user's point of view.. 10
1.1.3 Older revisions of this document.. 12
1.1.4 Use the "magic button" to display your current position in the table of contents...................... 12

1.2 Getting started... 12
1.2.1 Safety notice.. 13
1.2.2 Cyber security.. 14
1.2.2.1 Defense in depth... 14
1.2.2.2 Secure operation... 16
1.2.2.3 Hardening.. 18
1.2.2.4 Open Ports and Services.. 19
1.2.3 Automation Builder update notification.. 19
1.2.4 Managing your licenses... 20
1.2.4.1 Identifying the installed license... 20
1.2.4.2 Selecting the license used on Automation Builder startup.. 20
1.2.4.3 Checking licenses with CodeMeter control center.. 22
1.2.4.4 Setting dedicated network servers in search list... 23
1.2.4.5 Restarting license check with a dongle bound license.. 25
1.2.4.6 Removing trial license to remove expiring message... 26
1.2.4.7 Network licenses... 27
1.2.4.8 License borrowing manager.. 32
1.2.4.9 Transfering an Automation Builder license... 34
1.2.4.10 Generating license information file for support... 46
1.2.5 Set-up communication parameters in Windows... 47
1.2.6 Further information... 49
1.2.7 Create log files for support... 50
1.2.8 Menues, views, windows.. 51
1.2.8.1 Start page and menus... 52
1.2.8.2 'All Messages' window.. 58
1.2.9 Device repository... 58
1.2.10 Creating and configuring projects.. 61
1.2.11 Handling of AC500 projects.. 61
1.2.12 Connection of devices.. 62
1.2.12.1 Configuring devices... 62
1.2.12.2 Symbolic names for variables, inputs and outputs.. 63
1.2.12.3 Update of AC500 devices... 64
1.2.12.4 Comparing objects.. 64
1.2.13 Connection of serial interfaces... 64
1.2.13.1 Programming of applications... 65
1.2.14 I/O mapping.. 65
1.2.15 Data transfer and CODESYS programming... 65
1.2.15.1 Creating configuration data... 65
1.2.15.2 Launching programming system CODESYS V2.3.9.x.. 66
1.2.15.3 Source download/upload in Automation Builder... 66
1.2.16 AC500 PLC configuration... 67
1.2.17 Converting an AC500 V2 project to an AC500 V3 project... 67

Table of contents

2022/01/203ADR010582, 3, en_US2

1.2.18 Example projects.. 67
1.2.18.1 Example projects for AC500 V2.. 67
1.2.18.2 Example projects for AC500-eCo V2.. 121

1.3 Automation Builder installation manager... 138
1.3.1 Installing customer specific package.. 139
1.3.2 Adding or removing installed software packages... 140
1.3.3 Automation Builder update notification.. 141
1.3.4 Checking for updates... 144
1.3.5 Uninstalling Automation Builder... 144

1.4 Programming with CODESYS... 145
1.4.1 Development system.. 145
1.4.1.1 Overview... 145
1.4.1.2 The individual components... 198
1.4.1.3 Editors... 293
1.4.1.4 The 'Resources' tab.. 357
1.4.1.5 Principle of a gateway system... 402
1.4.1.6 IEC operators and additional, norm-extending functions.. 407
1.4.1.7 Operands.. 435
1.4.1.8 Data types... 443
1.4.1.9 Utilities... 457
1.4.1.10 Compiler errors and warnings... 478
1.4.2 Libraries... 532
1.4.2.1 Standard.library... 532
1.4.2.2 UTIL.library.. 547
1.4.2.3 AnalyzationNew.library.. 560
1.4.2.4 Protocol- and system libraries... 561
1.4.3 Visualization... 636
1.4.3.1 Overview... 636
1.4.3.2 Create a new visualization.. 637
1.4.3.3 Inserting visualization elements.. 638
1.4.3.4 Positioning visualization elements.. 643
1.4.3.5 Configuring visualization elements.. 647
1.4.3.6 Configuring visualization objects... 699
1.4.3.7 Images in visualization.. 705
1.4.3.8 Language switching.. 706
1.4.3.9 Visualization in online mode.. 715
1.4.3.10 Visualizations in libraries... 717
1.4.3.11 System variables... 717
1.4.3.12 Possible key combinations for the particular visualization variants.................................. 718
1.4.4 HMI... 720
1.4.4.1 Overview... 720
1.4.4.2 Installation, start and operation... 721
1.4.5 Web visualization... 721
1.4.5.1 Overview... 721
1.4.5.2 Preconditions.. 722
1.4.5.3 Editing the WebVisu.htm file... 723
1.4.5.4 Status check, auto-reload, file error_ini.xml.. 727
1.4.5.5 Preparing a web visualization... 727
1.4.5.6 Configuration and start of the web server... 728
1.4.5.7 Calling a web visualization via internet... 730
1.4.5.8 Restrictions and special features.. 731

Table of contents

2022/01/20 3ADR010582, 3, en_US 3

1.4.6 License manager.. 733
1.4.6.1 Overview... 733
1.4.6.2 Creating a licensed library... 734

1.5 Libraries and solutions.. 735
1.5.1 Information on libraries... 735
1.5.2 Reference to CODESYS (V2).. 735
1.5.3 Error messages of the AC500 V2 function block libraries.. 735
1.5.3.1 0000hex...0FFFhex - telegram error... 735
1.5.3.2 1000hex...1FFFhex - device error... 736
1.5.3.3 2000hex...2FFFhex - interface error... 738
1.5.3.4 3000hex...3FFFhex - protocol error.. 740
1.5.3.5 4000hex...4FFFhex - block input error.. 743
1.5.3.6 5000hex...5FFFhex - request error... 743
1.5.3.7 6000hex...6FFFhex - communication module errors.. 744
1.5.3.8 7000hex...7FFFhex - product libraries.. 752
1.5.4 Standard function block libraries AC500.. 756
1.5.4.1 ARCNET library... 756
1.5.4.2 Extended ARCNET library.. 777
1.5.4.3 ASCII communication library... 783
1.5.4.4 CAA_File library.. 789
1.5.4.5 Camswitch library.. 852
1.5.4.6 Extended camswitch library.. 862
1.5.4.7 CANopen library.. 912
1.5.4.8 CD522 library.. 972
1.5.4.9 Counter library... 1037
1.5.4.10 CS31 library.. 1067
1.5.4.11 DC541 library... 1103
1.5.4.12 Diagnosis library.. 1166
1.5.4.13 Ethernet library.. 1193
1.5.4.14 EtherCAT library.. 1295
1.5.4.15 Extended EtherCAT library.. 1317
1.5.4.16 External System library... 1340
1.5.4.17 FlexConf library... 1346
1.5.4.18 IEC60870 library... 1351
1.5.4.19 Internal system library... 1500
1.5.4.20 Extended internal system library... 1626
1.5.4.21 JSON library.. 1642
1.5.4.22 Modbus library... 1697
1.5.4.23 Extended Modbus library.. 1707
1.5.4.24 MQTT client library.. 1710
1.5.4.25 Onboard IO library... 1733
1.5.4.26 PROFIBUS DP library... 1750
1.5.4.27 PROFINET IO library.. 1794
1.5.4.28 Extended PROFINET IO library.. 1841
1.5.4.29 Profinet_Ext2 library.. 1895
1.5.4.30 RCOM/RCOM+ library.. 1903
1.5.4.31 RTC library.. 1934
1.5.4.32 Series90 AC500 library... 1946
1.5.4.33 Glossary.. 1980
1.5.5 AC500 HA High Availability System... 1982
1.5.5.1 AC500 HA-CS31 based on serial communication.. 1982

Table of contents

2022/01/203ADR010582, 3, en_US4

1.5.5.2 AC500 HA-Modbus TCP... 2088
1.5.5.3 Examples.. 2192
1.5.6 ACS / DCS drives libraries... 2192
1.5.6.1 System technology.. 2192
1.5.6.2 ACS drives base library... 2204
1.5.6.3 ACS / DCS Drives communication via Modbus RTU library... 2288
1.5.6.4 ACS / DCS drives communication via Modbus TCP library.. 2359
1.5.6.5 ACS / DCS drives communication via Modbus TCP ext library.. 2384
1.5.6.6 ACS / DCS Drives communication via PROFIBUS... 2410
1.5.6.7 ACS / DCS Drives read / write parameter via PROFINET library..................................... 2451
1.5.6.8 DCS drives library... 2467
1.5.6.9 Examples.. 2493
1.5.7 BACnet B-ASC library.. 2493
1.5.7.1 System technology.. 2493
1.5.7.2 Function blocks... 2495
1.5.7.3 Structures and enumerations.. 2517
1.5.7.4 Hardware... 2518
1.5.7.5 Examples.. 2518
1.5.8 FM502-CMS library.. 2519
1.5.8.1 System technology.. 2519
1.5.8.2 CMS-IO library for modul handling.. 2523
1.5.8.3 WAV file library for data handling.. 2554
1.5.8.4 Examples.. 2570
1.5.9 Motion control library.. 2571
1.5.9.1 Preconditions for the use of the libraries... 2571
1.5.9.2 Overview... 2573
1.5.9.3 PLCopen... 2587
1.5.9.4 PLC-based motion control... 2615
1.5.9.5 Drive-Based motion control... 2724
1.5.9.6 PLCopen function blocks (Single and multi axis).. 2747
1.5.9.7 PLCopen function blocks (Coordinated motion control).. 2922
1.5.9.8 Glossary.. 3037
1.5.9.9 Examples.. 3039
1.5.10 Process control object (PCO) library.. 3039
1.5.10.1 PCO library - System technology.. 3039
1.5.10.2 PCO library - function block description (V2).. 3062
1.5.11 Solar library.. 3168
1.5.11.1 Preconditions for the use of the Solar_AC500 library... 3168
1.5.11.2 SOLAR_AC500 library.. 3169
1.5.11.3 Solar_NREL library.. 3262
1.5.11.4 Examples... 3268
1.5.12 Temperature control library.. 3268
1.5.12.1 System technology.. 3268
1.5.12.2 Function blocks... 3310
1.5.12.3 Structures and enumerator... 3343
1.5.12.4 Visualization.. 3360
1.5.12.5 Examples.. 3380
1.5.13 Water library... 3380
1.5.13.1 Pumping library... 3380
1.5.13.2 Datalogging library.. 3494
1.5.14 Pumping library 2... 3537

Table of contents

2022/01/20 3ADR010582, 3, en_US 5

1.5.14.1 System technology.. 3537
1.5.14.2 Function block description... 3560
1.5.14.3 Structures.. 3696
1.5.14.4 Visualization.. 3697

1.6 PLC integration (hardware)... 3697
1.6.1 PLC introduction... 3697
1.6.1.1 Safety instructions... 3697
1.6.1.2 Cyber security... 3702
1.6.1.3 License and third party information... 3708
1.6.1.4 Regulations... 3709
1.6.1.5 Definitions: PLC system start-up... 3709
1.6.1.6 Definitions: RCOM... 3711
1.6.1.7 Device lists.. 3712
1.6.1.8 PLC system description.. 3731
1.6.1.9 AC500-S.. 3741
1.6.1.10 AC500-eCo starter kit.. 3741
1.6.1.11 Converting an AC500 V2 project to an AC500 V3 project... 3785
1.6.2 Device specifications.. 3785
1.6.2.1 Status LEDs, display and control elements.. 3785
1.6.2.2 Terminal bases (AC500 standard)... 3786
1.6.2.3 Processor modules... 3803
1.6.2.4 Communication modules (AC500 standard)... 4038
1.6.2.5 Terminal units (AC500 standard)... 4095
1.6.2.6 I/O modules... 4124
1.6.2.7 Function modules.. 4617
1.6.2.8 Communication interface modules (S500).. 4681
1.6.2.9 Accessories... 5095
1.6.3 System assembly, construction and connection.. 5213
1.6.3.1 Introduction... 5213
1.6.3.2 Regulations... 5213
1.6.3.3 Safety instructions... 5214
1.6.3.4 Overall information (valid for complete AC500 product family)... 5218
1.6.3.5 AC500-eCo... 5233
1.6.3.6 AC500 (Standard)... 5313
1.6.3.7 AC500-XC... 5389
1.6.3.8 AC500-S.. 5393
1.6.4 System technology for AC500 V2 products... 5394
1.6.4.1 System technology of CPU and overall system.. 5395
1.6.4.2 System technology of the AC500 communication modules.. 5506
1.6.4.3 System technology of the communication interface modules... 5651
1.6.4.4 System technology of the AC500 function modules... 5685
1.6.4.5 System technology for AC31 adapter I/O modules... 5756
1.6.5 Configuration in Automation Builder for AC500 V2 products... 5757
1.6.5.1 General settings.. 5757
1.6.5.2 PLC devices and components... 5811
1.6.5.3 Protocols and special servers... 6120
1.6.5.4 Data transfer and programming.. 6196
1.6.5.5 Server installation.. 6271
1.6.5.6 Converting an AC500 V2 project to an AC500 V3 project.. 6330
1.6.6 Storage devices for AC500 V2 products.. 6331
1.6.6.1 Introduction of AC500 storage devices for AC500 Products... 6331

Table of contents

2022/01/203ADR010582, 3, en_US6

1.6.6.2 Memory card in AC500 V2.. 6339
1.6.6.3 Data storage in flash memory for AC500 V2 products.. 6364
1.6.6.4 Flash disk for AC500 V2 products... 6364

1.7 Diagnosis and debugging for AC500 V2 products.. 6365
1.7.1 The diagnosis system.. 6365
1.7.1.1 Access to diagnosis data.. 6365
1.7.1.2 Diagnosis in CPU display.. 6365
1.7.1.3 Diagnosis in Automation Builder... 6367
1.7.1.4 Diagnosis in IEC application... 6369
1.7.1.5 Structure of error numbers.. 6369
1.7.1.6 Diagnosis history file... 6373
1.7.2 Online diagnosis in Automation Builder... 6374
1.7.2.1 Short description and overview... 6374
1.7.2.2 Entering/leaving the online mode.. 6375
1.7.2.3 Project tree in online mode... 6375
1.7.2.4 Error messages, warnings and notes (dialogs)... 6376
1.7.2.5 CPU diagnosis views.. 6378
1.7.2.6 Live values in views with I/O components... 6391
1.7.2.7 Communication module and fieldbus diagnosis.. 6392
1.7.3 Diagnosis messages.. 6429
1.7.3.1 Possible error combinations.. 6429
1.7.3.2 CPU diagnosis.. 6437
1.7.3.3 S500 I/O modules diagnosis... 6472
1.7.3.4 Communication modules diagnosis.. 6489
1.7.3.5 Error messages of the AC500 V2 function block libraries... 6529

1.8 Engineering interfaces and tools... 6550
1.8.1 Export and import interfaces.. 6550
1.8.1.1 Exporting and importing ECAD data (PBF)... 6550
1.8.1.2 Exporting and importing I/O mapping (CSV)... 6554
1.8.1.3 Exporting and importing device list (CSV)... 6556
1.8.2 Virtual commissioning technology.. 6560
1.8.2.1 Virtual mode.. 6560
1.8.2.2 Virtual system testing.. 6560
1.8.2.3 Simulation... 6561
1.8.2.4 Protocol switch.. 6563
1.8.2.5 Virtual AC500 V2 extensions.. 6564
1.8.3 System model.. 6567
1.8.3.1 Creating a system model.. 6567
1.8.3.2 Generating system model... 6570
1.8.3.3 Example.. 6573
1.8.4 Drive composer pro integration.. 6574
1.8.5 Professional Version Control.. 6578
1.8.5.1 Getting Started.. 6579
1.8.5.2 Version control.. 6579
1.8.5.3 Using an SVN Repository... 6579
1.8.5.4 Using Working Copies... 6581
1.8.5.5 Reference, User Interface... 6582
1.8.6 Subversion... 6619
1.8.6.1 Project Version Control with Subversion... 6619
1.8.6.2 SVN Support Examples.. 6622
1.8.7 Python.. 6624

Table of contents

2022/01/20 3ADR010582, 3, en_US 7

1.8.7.1 Python script support.. 6624
1.8.7.2 Working with script objects.. 6625
1.8.7.3 Python script editor... 6627

1.9 Human machine interface... 6628
1.9.1 Panel Builder interface... 6628
1.9.1.1 Adding desired AC500 PLC to the project.. 6628
1.9.1.2 Creating a Panel Builder project... 6630
1.9.1.3 Configuring Panel Builder... 6633
1.9.2 SCADA Integration... 6635
1.9.2.1 Creating Workspace and Project.. 6636
1.9.2.2 Loading existing Workspace and Project.. 6637
1.9.2.3 Checking the Gateway Settings in a Zenon Project.. 6638
1.9.2.4 Generating a Symbol File.. 6638
1.9.2.5 Updating Standard Data Types... 6639
1.9.2.6 Creating Data Types... 6639
1.9.2.7 Importing Data Types in zenon Editor... 6640

1.10 Contact ABB.. 6640
2 Index... 6642

Table of contents

2022/01/203ADR010582, 3, en_US8

—
1 PLC Automation with V2 CPUs
1.1 About this document
1.1.1 Documentation structure

Ä Chapter 1.1.4 “Use the "magic button" to display your current position in the
table of contents” on page 12.

Ä See also chapter " Your tasks - documentation from the user's point of view" on page 10.

Table 1: Guidance for this documentation: Main chapters
 Getting started

Basic information to start with Automation Builder and AC500
PLC, e.g., licensing, GUI explanations, example projects.

Ä Chapter 1.2 “Getting
started” on page 12

 Automation Builder installation manager
Add, remove or modify software packages in Automation
Builder.

Ä Chapter 1.3 “Automation
Builder installation manager”
on page 138

 Programming with CODESYS
Information about IEC programming in Automation Builder,
including description of CODESYS libraries.

Ä Chapter 1.4 “Programming
with CODESYS” on page 145

 Libraries and solutions
ABB libraries. Overview and description of integrated standard
libraries and solution libraries available as library packages.
Explanation of the concept of solution libraries ("system tech-
nology"). Description of the library elements, like function
blocks and functions.

Ä AC500 V3 library descrip-
tions: Chapter 1.5 " Libraries
and solutions" on page 735

 PLC integration (hardware)
Hardware description and specifications. Overview on module
variants, connections, technical data, order data, assembly of
modules. Device configuration in Automation Builder. Explan-
ation of system behavior ("system technology"), interaction
between PLC behavior (firmware), configuration, programming
and use cases.

Ä Chapter 1.6 “PLC integra-
tion (hardware)” on page 3697

 Diagnosis and debugging
Explanation of the diagnosis system in the PLC, the display
of error messages at the CPU and in IEC applications. Online
diagnosis in Automation Builder. List of diagnosis and error
messages.

Ä Chapter 1.7 “Diagnosis
and debugging for AC500 V2
products” on page 6365

 Engineering interfaces and tools
Information on add-on packages, e.g., for security static anal-
ysis or Project Version Control. Mainly for advanced users.

Ä Chapter 1.8 “Engi-
neering interfaces and tools”
on page 6550

 Human machine interface (HMI)
Information on HMI with Automation Builder. Configuration of
HMI devices in Automation Builder.

Ä Chapter 1.9
“Human machine interface”
on page 6628

 Contact ABB
Contact information about our sales and support teams.

Ä Chapter 1.10 “Contact
ABB” on page 6640

PLC Automation with V2 CPUs

About this document > Documentation structure

2022/01/20 3ADR010582, 3, en_US 9

1.1.2 Your tasks - documentation from the user's point of view
All information about AC500, AC500-XC and AC500-eCo is available in this manual.
All information about AC500-S and AC500-S-XC is available online in the safety user manual.

Ä Chapter 1.1.4 “Use the "magic button" to display your current position in the
table of contents” on page 12.

Ä See also chapter " Documentation structure" on page 9.

PLC system description Ä Chapter 1.6.1.8 “PLC system description”
on page 3731

Hardware descriptions Ä Chapter 1.6.2 “Device specifications”
on page 3785

Comparison of product features For AC500 V2 available via product catalog
(online)

Assembly of modules Ä Chapter 1.6.3 “System assembly, construc-
tion and connection” on page 5213

Connection of modules In the device specifications, select the desired
product to access the connection for this
device Ä Chapter 1.6.2 “Device specifica-
tions” on page 3785.
“Device specifications è Product group
è Product type è Electrical connection”

Installation instructions AC500 V2 + V3 (online)

Getting started with Automation Builder Ä Chapter 1.2 “Getting started” on page 12

Installation of Automation Builder AC500 V2 + V3 (online)

License management for Automation Builder Ä Chapter 1.2.4 “Managing your licenses”
on page 20

Getting started with example projects Ä Chapter 1.2.18 “Example projects”
on page 67

Firmware update Ä Chapter 1.6.5.1.7 “Firmware identification
and update” on page 5786

Configuration of PLC hardware in Automation
Builder

Ä Chapter 1.6.5 “Configuration in Automation
Builder for AC500 V2 products” on page 5757

Programming with CODESYS Ä Chapter 1.4 “Programming with CODESYS”
on page 145

Function block libraries Libraries by ABB Ä Chapter 1.5 “Libraries and
solutions” on page 735

CODESYS libraries by 3S Ä Chapter 1.4.2
“Libraries” on page 532

System behavior ("system technology"), inter-
action between PLC (firmware), configuration,
programming and use cases.

Ä Chapter 1.6.4 “System technology for
AC500 V2 products” on page 5394

As a mechan-
ical/electrical
designer

As a switchgear
cabinet manu-
facturer

As a program-
ming engineer

PLC Automation with V2 CPUs
About this document > Your tasks - documentation from the user's point of view

2022/01/203ADR010582, 3, en_US10

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
https://share.library.abb.com/api/v4?cid=9AAC177287&dk=Instruction&dk=Manual&dk=Operating%20instruction&dk=Recycling%20instructions&dk=Service%20instruction&q=installation%20instruction
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107045A3040&LanguageCode=en&DocumentPartId=&Action=Launch

Visualization and web visualization: Example
projects

Ä Chapter 1.2.18.1.2 “Example project for
central I/O expansion” on page 70

Visualization and web visualization Ä Chapter 1.4.3 “Visualization” on page 636

Add, remove or modify software packages in
Automation Builder via installation manager

Ä Chapter 1.3 “Automation Builder installation
manager” on page 138

Add-on software packages Ä Chapter 1.8 “Engineering interfaces and
tools” on page 6550

HMI, e.g., interface to control panels and
SCADA systems

Ä Chapter 1.9 “Human machine interface”
on page 6628

Function block libraries Libraries by ABB Ä Chapter 1.5 “Libraries and
solutions” on page 735

CODESYS libraries by 3S Ä Chapter 1.4.2
“Libraries” on page 532

Hardware descriptions Ä Chapter 1.6.2 “Device specifications”
on page 3785

Diagnosis and debugging Ä Chapter 1.7 “Diagnosis and debugging for
AC500 V2 products” on page 6365

Diagnosis and debugging Ä Chapter 1.7 “Diagnosis and debugging for
AC500 V2 products” on page 6365

List of diagnosis and error messages Ä Chapter 1.7.3 “Diagnosis messages”
on page 6429

Contact the PLC support team Ä Chapter 1.10 “Contact ABB” on page 6640

AC500 V3 CPU specifications Ä Chapter 1.6.2.3 “Processor modules”
on page 3803

Comparison of product features For AC500 V2 available via product catalog
(online)

Convert an AC500 V2 project to an AC500 V3
project

Ä Chapter 1.2.17 “Converting an AC500 V2
project to an AC500 V3 project” on page 67

Compatible modules with AC500 CPUs Ä Chapter 1.6.2 “Device specifications”
on page 3785

Documentation for AC500 V3 AC500 V3 (online)

Getting started with engineering suite
Automation Builder

Ä Chapter 1.2 “Getting started” on page 12

PLC system description Ä Chapter 1.6.1.8 “PLC system description”
on page 3731

Hardware descriptions Ä Chapter 1.6.2 “Device specifications”
on page 3785

System technology: System behavior, interac-
tion between PLC behavior (firmware), config-
uration, programming and use cases.

Ä Chapter 1.6.4 “System technology for
AC500 V2 products” on page 5394

As a commis-
sioning engi-
neer

As a service
engineer

As a specialist
for AC500 V2
CPU range, new
to AC500 V3
CPU range

As a specialist
for PLCs, new to
AC500 PLC

PLC Automation with V2 CPUs

About this document > Your tasks - documentation from the user's point of view

2022/01/20 3ADR010582, 3, en_US 11

https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010583&LanguageCode=en&DocumentPartId=&Action=Launch

1.1.3 Older revisions of this document
You can always find all revisions of our documents on our website.
AC500 V2 (online)

Revisions Select any of the revisions
Latest revision Get a link to the always latest revision
This revision Get a direct link to the selected revision

1.1.4 Use the "magic button" to display your current position in the table of contents
Documentation is opened in a PDF reader. PDF readers often provide a button to syn-

chronize with the table of contents. Usually, you can find the "magic button" in the bookmarks
tab. For example, it looks like this: /

Select the "magic button".

ð Your current position will be highlighted in the bookmark tab.

1.2 Getting started
ABB Automation Builder is the integrated software suite for machine builders and system inte-
grators wanting to automate their machines and systems in a productive way. Combining the
tools required for configuring, programming, debugging and maintaining automation projects
from a common intuitive interface, Automation Builder addresses the largest single cost element
of most of today's industrial automation projects: software. ABB Automation Builder covers the
engineering of ABB PLCs, Safety PLCs, control panels, drives, motion and robots.

Before starting Automation Builder configuration read the version specific
information provided in the Automation Builder readme file. It describes new
features and functions as well as workarounds on known problems. The
readme file is stored in the installation directory of Automation Builder, how-
ever can be downloaded as well from ABB website http://new.abb.com/plc/
automationbuilder.

ABB
Automation
Builder - One
holistic suite

Automation
Builder ReadMe

PLC Automation with V2 CPUs
Getting started

2022/01/203ADR010582, 3, en_US12

https://library.abb.com/d/3ADR010582
http://new.abb.com/plc/automationbuilder
http://new.abb.com/plc/automationbuilder

1.2.1 Safety notice
Throughout the documentation we use the following types of safety and information notices
according to ANSI Z535 make you aware of safety considerations or advice on AC500 products
usage.

1 Safety alert symbol indicates the danger.
2 Signal word classifies the danger.
3 Type and source of the risk are mentioned.
4 Possible consequences of the risk are described.
5 Measures to avoid these consequences (enumerations).

DANGER!
DANGER indicates a hazardous situation which, if not avoided, will result in
death or serious injury.
Ensure to take measures to prevent the described impending danger.

WARNING!
WARNING indicates a hazardous situation which, if not avoided, could result in
death or serious injury.
Ensure to take measures to prevent the described dangerous situation.

CAUTION!
CAUTION indicates a hazardous situation which, if not avoided, could result in
minor or moderate injury.
Ensure to take measures to prevent the described dangerous situation.

NOTICE!
NOTICE is used to address practices not related to physical injury but might
lead to property damage for example damage of the product.
Ensure to take measures to prevent the described dangerous situation.

NOTE provides additional information on the product, e.g. advices for configura-
tion or best practice scenarios.

Signal words

PLC Automation with V2 CPUs
Getting started > Safety notice

2022/01/20 3ADR010582, 3, en_US 13

1.2.2 Cyber security
This product is designed to be connected to and to communicate information and data via a
network interface. It is your sole responsibility to provide and continuously ensure a secure con-
nection between the product and your network or any other network (as the case may be). You
shall establish and maintain any appropriate measures (such as but not limited to the installation
of firewalls, application of authentication measures, encryption of data, installation of anti-virus
programs, etc.) to protect the product, the network, its system and the interface against any kind
of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data
or information. ABB Ltd and its affiliates are not liable for damages and/or losses related to such
security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data
or information.

Although ABB provides functionality testing on the products and updates that we release,
you should institute your own testing program for any product updates or other major system
updates (to include but not limited to code changes, configuration file changes, third party
software updates or patches, hardware exchanges, etc.) to ensure that the security measures
that you have implemented have not been compromised and system functionality in your envi-
ronment is as expected. This also applies to the operating system. Security measures (such
as but not limited to the installation of latest patches, installation of firewalls, application of
authentication measures, installation of anti-virus programs, etc.) are in your responsibility. You
have to be aware that operating systems provide a considerable number of open ports that
should be monitored carefully for any threats.
It has to be considered that online connections to any devices are not secured. It is your
responsibility to assure that connections are established to the correct device (and e.g. not to an
unknown device pretending to be a known device type). Furthermore you have to take care that
confidential data exchanged with the PLC is either compiled or encrypted.

Security details for industrial automation is provided in a whitepaper on ABB website.

Whenever possible, use an encrypted communication between AC500 V3 devices and third
party devices, such as HMI devices. This is necessary to protect passwords and other data.

For more information around cyber security please see our FAQ.

1.2.2.1 Defense in depth
The defense in depth approach implements multi-layer IT security measures. Each layer pro-
vides its special security measures. All deployed security mechanisms in the system must be
updated regularly. It is also important to follow the system vendor’s recommendations on how
to configure and use these mechanisms. As a basis, the components must include security
functions such as:
● Virus protection
● Firewall protection
● Strong and regularly changed passwords
● User management
● Using VPN tunnels for connections between networks
Additional security components such as routers and switches with integrated firewalls should
be available. A defined user and rights concept managing access to the controllers and their
networks is mandatory. Finally, the manufacturer of the components should be able to quickly
discover weaknesses and provide patches.

Cyber security
disclaimer

Security related
deployment
guidelines for
industrial
automation
Secure commu-
nication

Frequently
asked questions

PLC Automation with V2 CPUs
Getting started > Cyber security

2022/01/203ADR010582, 3, en_US14

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch
https://share.library.abb.com/api/v4?cid=Root&q=3ADR010764

Only used services/ports should be enabled (e.g. to enable the functionality of
an FTPS server).

References: CODESYS Security Whitepaper

IT resources vary in the extent to which they can be trusted. A common security architecture is
therefore based on a layered approach that uses zones of trust to provide increasing levels of
security according to increasing security needs. Less-trusted zones contain more-trusted zones
and connections between the zones are only possible through secure interconnections such as
firewallsFig. 1. All resources in the same zone must have the same minimum level of trust. The
inner layers, where communication interaction needs to flow freely between nodes, must have
the highest level of trust. This is the approach described in the IEC 62443 series of standards.
Firewalls, gateways, and proxies are used to control network traffic between zones of different
security levels, and to filter out any undesirable or dangerous material. Traffic that is allowed to
pass between zones should be limited to what is absolutely necessary because each type of
service call or information exchange translates into a possible route that an intruder may be able
to exploit. Different types of services represent different risks. Internet access, incoming e-mail
and instant messaging, for example, represent very high risks.

Fig. 1: Security zones

Fig. 1 shows three security zones, but the number of zones does not have to be as many or as
few as three. The use of multiple zones allows access between zones of different trust levels to
be controlled to protect a trusted resource from attack by a less trusted one.
High-security zones should be kept small and independent. They need to be physically pro-
tected, i.e. physical access to computers, network equipment and network cables must be
limited by physical means to authorized persons only. A high-security zone should obviously not
depend on resources in a less secure zone for its security. Therefore, it should form its own
domain that is administered from the inside, and not depend on, e.g., a domain controller in a
less secure network.
Even if a network zone is regarded as trusted, an attack is still possible: by a user or compro-
mised resource that is inside the trusted zone, or by an outside user or resource that succeeds
to penetrate the secure interconnection. Trust therefore depends also upon the types of meas-
ures taken to detect and prevent compromise of resources and violation of the security policy.
References: Security for Industrial Automation and Control Systems

Security zones

PLC Automation with V2 CPUs

Getting started > Cyber security

2022/01/20 3ADR010582, 3, en_US 15

https://customers.codesys.com/fileadmin/data/customers/security/CODESYS-Security-Whitepaper.pdf
https://search.abb.com/library/Download.aspx?DocumentID=3BSE032547&LanguageCode=en&DocumentPartId=&Action=Launch

1.2.2.2 Secure operation
The controller must be located in a protected environment in order to avoid accidental or
intended access to the controller or the application.
A protected environment can be:
● Locked control cabinets without connection from outside
● No direct internet connection
● Use firewalls and VPN to separate different networks
● Separate different production areas with different access controls
To increase security, physical access protection measures such as fences, turnstiles, cameras
or card readers can be added.
Follow these rules for the protected environment:
● Keep the trusted network as small as possible and independent from other networks.
● Protect the cross-communication of controllers and the communication between controllers

and field devices via standard communication protocols (fieldbus systems) using appro-
priate measures.

● Protect such networks from unauthorized physical access.
● Use fieldbus systems only in protected environments. They are not protected by additional

measures, such as encryption. Open physical or data access to fieldbus systems and their
components is a serious security risk.

● Physically protect all equipment, i.e., ensure that physical access to computers, network
equipment and cables, controllers, I/O systems, power supplies, etc., is limited to authorized
persons

● When connecting a trusted network zone to outer networks, make sure that all connections
are through properly configured secure interconnections only, such as a firewall or a system
of firewalls, which is configured for “deny by default”, i.e., blocks everything except traffic
that is explicitly needed to fulfill operational requirements.

● Allow only authorized users to log on to the system, and enforce strong passwords that are
changed regularly.

● Continuously maintain the definitions of authorized users, user groups, and access rights,
to properly reflect the current authorities and responsibilities of all individuals at all times.
Users should not have more privileges than they need to do their job.

● Do not use the system for e-mail, instant messaging, or internet browsing. Use separate
computers and networks for these functions if they are needed.

● Do not allow installation of any unauthorized software in the system.
● Restrict temporary connection of portable computers, USB memory sticks and other remov-

able data carriers. Computers that can be physically accessed by regular users should have
ports for removable data carriers disabled.

● If portable computers need to be connected, e.g., for service or maintenance purposes, they
should be carefully scanned for viruses immediately before connection.

● All CDs, DVDs, USB memory sticks and other removable data carriers, and files with
software or software updates, should also be checked for viruses before being introduced
into the trusted zone.

● Continuously monitor the system for intrusion attempts.
● Define and maintain plans for incident response, including how to recover from potential

disasters.
● Regularly review the organization as well as technical systems and installations with respect

to compliance with security policies, procedures and practices.
A protected local control cabinet could look like in figure 2, page 17. This network is not
connected to any external network. Security is primarily a matter of physically protecting the
automation system and preventing unauthorized users from accessing the system and from
connecting or installing unauthorized hardware and software.

PLC Automation with V2 CPUs
Getting started > Cyber security

2022/01/203ADR010582, 3, en_US16

Fig. 2: Isolated automation system

Servers and workplaces that are not directly involved in the control and monitoring of the
process should preferably be connected to a subnet that is separated from the automation
system network by means of a router/firewall. This makes it possible to better control the
network load and to limit access to certain servers on the automation system network. Note that
servers and workplaces on this subnet are part of the trusted zone and thus need to be subject
to the same security precautions as the nodes on the automation system network.

Fig. 3: Plant information network connected to an automation system

For the purposes of process control security, a general-purpose information system (IS) network
should not be considered a trusted network, not the least since such networks are normally
further connected to the Internet or other external networks. The IS network is therefore a
different lower-security zone, and it should be separated from the automation system by means
of a firewall. The IS and automation system networks should form separate domains.

PLC Automation with V2 CPUs

Getting started > Cyber security

2022/01/20 3ADR010582, 3, en_US 17

Fig. 4: Automation system and IS network

1.2.2.3 Hardening
System hardening means to eliminate as many security risks as possible. Hardening your
system is an important step to protect your personal data and information. This process intends
to eliminate attacks by patching vulnerabilities and turning off inessential services. Hardening a
system involves several steps to form layers of protection.
Commissioning phase
● Protect the hardware from unauthorized access
● Be sure the hardware is based on a secure environment
● Disable unused software and services (network ports)
● Install firewalls
● Disallow file sharing among programs
● Install virus and spyware protection

PLC Automation with V2 CPUs
Getting started > Cyber security

2022/01/203ADR010582, 3, en_US18

● Use containers or virtual machines
● Create strong passwords by applying a strong password policy
● Create and keep backups
● Use encryption when possible
● Disable weak encryption algorithms
● Separate data and programs
● Enable and use disk quotas
● Strong logical access control
● Adjust default settings, especially passwords
Verification phase
● Verification of antivirus - Check antivirus is active and updated
● Verification of the identification - Check that test and unauthorized accounts are removed
● Verification of intrusion detection systems - Check malicious traffic is blocked
● Verification of audit logging - Check audit log is enabled
● You can use the checklist out of the cyber security white paper

Operation phase
● Keep software up-to-date, especially by applying security patches
● Keep antivirus up and running
● Keep antivirus definitions up-to-date
● Delete unused user accounts
● Lock an active session whenever it is unattended, e.g., lock the screen of the PC or of the

control panel (HMI)
Decommissioning phase
● Delete all credentials stored in the device like certificates and user data Ä Chapter 1.6.3.4.6

“Decommissioning” on page 5233.
References: Hardening in Wikipedia (2021)

1.2.2.4 Open Ports and Services
Overview of minimum cyber security requirements for open ports and services settings.

Port Protocol Description
1217 TCP CODESYS Gateway V3

1210 TCP CODESYS Gateway V2

1211 TCP CODESYS Gateway V2

22350 TCP/UDP CodeMeter License Server
(runtime) – license

22352 HTTP CodeMeter License Server
(runtime) – WebAdmin

22353 HTTPS CodeMeter License Server
(runtime) – WebAdmin

11030 HTTP Python editor server

1.2.3 Automation Builder update notification
A notification dialog will be shown if there are any updates available for the currently installed
version on every launch of the Automation Builder.
Ä Chapter 1.3.3 “Automation Builder update notification” on page 141

PLC Automation with V2 CPUs

Getting started > Automation Builder update notification

2022/01/20 3ADR010582, 3, en_US 19

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch
https://en.wikipedia.org/wiki/Hardening_(computing)

1.2.4 Managing your licenses
After installing and licensing the Automation Builder you can manage your licenses in various
ways.

1.2.4.1 Identifying the installed license
Since Automation Builder Version 1.1.1 the title bar or Automation Builder shows a license
information:

Be aware of the following rule for this information:
The info in the menubar is taken in this order from the first found license
● local licenses (on PC)
● on dongle (USB key)
● network licenses (since AB1.2)
So if a local license is only basic and a dongle with premium is inserted:
● the information in the menubar is basic
● the functionality is premium (the highest available)
To check your installed licenses, the CodeMeter Control Center tool can be used Ä Chapter
1.2.4.3 “Checking licenses with CodeMeter control center” on page 22.

1.2.4.2 Selecting the license used on Automation Builder startup
You can select, which license the Automation Builder should use on startup.

To select which license should be used:
1. In the Automation Builder menu select “Tools è Options”.

ð The Options window is opened.

2. In “Startup settings” under “License” select which license should be used.
● Default: The most comprehensive available license will be selected
● Use only local license: Network licenses will never be selected
● Display licenses selection dialog if shared licenses are available: On every Automation

Builder startup, you will be asked to select a license

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US20

3. To apply the setting select “OK”.

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 21

1.2.4.3 Checking licenses with CodeMeter control center
1. Open the CodeMeter Control Center via the “Windows start menu è CodeMeter

è CodeMeter Control Center”.

2. In the CodeMeter Control Center window you can see the different license “tickets” /
“CmContainers” that are installed on your PC.
To see more details, open the CodeMeter WebAdmin by selecting “WebAdmin”

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US22

3. Select “Container è All Container”

ð Here the details of the license containers can be checked.

1.2.4.4 Setting dedicated network servers in search list
In case of a new installation CodeMeter will check for licenses also in the network. If there is
a run-out or wrongly installed license found, the service is closed without any further hint. This
looks like Automation Builder starts and closes after a few moments.
To set the search for licenses to your local machine only follow these steps:
1. Open the CodeMeter Control Center. See Ä Chapter 1.2.4.3 “Checking licenses with

CodeMeter control center” on page 22

2. Open the CodeMeter WebAdmin by selecting “WebAdmin”

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 23

3. Select “Configuration è Basic è Server Search List”

4. Select “add new Server”

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US24

5. Enter "localhost" in the Server's names field
6. Select “Add”

7. Confirm by selecting “Apply”

ð The "localhost" is added to the Server Search List

8. Restart the license check
9. Add more servers to the search list by entering the IP-Adress or name of the license

servers you know.

1.2.4.5 Restarting license check with a dongle bound license
In case of using a dongle bound license it might be necessary to restart the check for license on
the PC, e.g. if the dongle was removed and reinserted.

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 25

1. Open the CodeMeter Control Center. See Ä Chapter 1.2.4.3 “Checking licenses with
CodeMeter control center” on page 22

2. Select “Process è Restart CodeMeter Service”

1.2.4.6 Removing trial license to remove expiring message
If an unlimited license is installed after having a trial license activated, the warning message for
expiring date of the trial license still pops up at the Startup of the Automation Builder.

To avoid this message the trial license can be removed.

CAUTION!
– If you remove a license from your PC it will be permanently lost.
– Be aware that the trial license includes all premium functionalities, which will

not be available any more if your unlimited license is not a premium license,
e.g. standard.

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US26

1. Check for the Trial CmContainer number in CodeMeter WebAdmin InterfaceCheck for the
Trial CmContainer number in CodeMeter WebAdmin Interface

2. Search CmContainer number in CodeMeter Control Center

3. Remove this selected license in CodeMeter Control Center

1.2.4.7 Network licenses
Starting from Automation Builder 1.2.0 network licenses can be used with Automation Builder.
This allows sharing of licenses between team members, easy switchover between several
workstations with a single license and allows centralized administration (ordering, registration,
activation).
The Automation Builder License Manager and CodeMeter need to be used to configure the
Network server.

– In a typical office LAN (Local Area Network) setup on Client side the default
settings of the Automation Builder (and CodeMeter) are sufficient to get the
Network Licenses working.

– If an opened Automation Builder is loosing contact to the network server
(e.g. due to network problems) Automation Builder will prompt the user to
restore the network. After 30 minutes without connection to the network
server Automation Builder will fall back to basic edition. Opened editors for
non-basic features stay open and usable. So your work will not be lost in
case of troubles with the network.

1.2.4.7.1 Setting up a network license
The following setup works in typical environments.

Configuring a network license server
Network license must be registered.

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 27

Automation Builder license must be activated.
1. Launch CodeMeter WebAdmin as described in Ä Chapter 1.2.4 “Managing your licenses”

on page 20

2. Select “Configuration è Server è Server Access”

3. Enable Network Server
Keep the default port settings. These should work in most cases.

4. Select “Apply”

5. For the changes to take effect, restart CodeMeter Control Center see Ä Chapter 1.2.4.5
“Restarting license check with a dongle bound license” on page 25

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US28

NOTICE!
– In case you want to control usage of network licenses please refer to
Ä Chapter 1.2.4.7.3 “View network server license usage” on page 30

– Activation keys for network licenses are valid for one network license
each. This one license can be shared among many people but only one
Automation Builder instance at the same time. If you want to run more than
one Automation Builder instance at the same time you have to activate
more than one network license. This means you have to purchase and enter
more than one activation key (one per license).

Configuring the client side
The default settings of Automation Builder and the CodeMeter (on client side) are sufficient in
most cases to get the network licenses working. In case of problems accessing the network
license, please set the server search list on the client side.

1.2.4.7.2 View network server licenses
On the Network Server side you can find information on existing network licenses and their
current allocation.

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 29

1. Launch CodeMeter WebAdmin. See Ä Chapter 1.2.4.3 “Checking licenses with Code-
Meter control center” on page 22

2. Select “License Monitoring è All Licenses ”

1.2.4.7.3 View network server license usage
1. Launch CodeMeter WebAdmin. See Ä Chapter 1.2.4.3 “Checking licenses with Code-

Meter control center” on page 22

2. Select “License Monitoring è Sessions ”

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US30

1.2.4.7.4 Controlling network server license usage
On the Network Server side you can define settings managing the client access to CodeMeter
License Server on a network.
1. Launch CodeMeter WebAdmin. See Ä Chapter 1.2.4.3 “Checking licenses with Code-

Meter control center” on page 22

2. Select “Configuration è Server è Server Access”

3. Add entries of PCs you want to share licenses with by adding client computers and IP
addresses for accessing CodeMeter License Server on a network.

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 31

1.2.4.8 License borrowing manager
The license borrowing manager allows you, to borrow a network license for offline use and
return it.

The license borrowing manager is not part of the default software distribution,
but will be handed out on request.

The license borrowing manager is only supported by Automation Builder 2.2.3
and later.

1.2.4.8.1 Borrowing a network license
Network access to the license server required.

Opened the license borrowing manager.
1. Select the license you want to borrow.

2. Select “Borrow License”.
3. Select the taget CmContainer.

Alternatively a new CmContainer can be created.
4. Select the end of the borrowing period.

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US32

5. Select “OK”.

ð The license has sucessfully been borrowed.

The list of available licenses has been updated.

1.2.4.8.2 Returning a network license
Network licenses will be returned automatically after the expiration of the maximum borrwoing
period. No licenses server access is required.

Automatical
return of a
license

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 33

Network licenses can be returned anytime manually.

Network access to the license server required.

Opened the license borrowing manager.
1. Select a borrowed license.

2. Select “Return License”

ð The license has sucessfully been returned.

1.2.4.9 Transfering an Automation Builder license
1.2.4.9.1 General

It is possible to transfer normal licenses from a PC to another PC or dongle (DM-Key).
This is not possible for ABB internal or temporary licenses, e.g. the 30 day Trial license.
The process consists of two main steps:
1. Return the actual license from the actual PC
2. Reactivate the license on the new PC

1.2.4.9.2 Getting activation code
For all license transfer processes the activation code is required. It is available from the license
paper from purchasing the license.
For Automation Builder licenses purchased April 2020 or later, the activation code is available
from the activated license:

Manual return of
a network
license

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US34

1. Open CodeMeter Control Center and navigate to the “WebAdmin”.

2. Identify the right product code.
Automation Builder editions consist of multiple product codes. The activation ID is
available from the product code containing the edition name, e.g. “Automation Builder
Standard”.

3. Select product code to access the product code details. Under “License Information” you
can find the activation code.

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 35

1.2.4.9.3 Returning an Automation Builder license
You need the License Activation code of the license you want to return.

1. Go to the following website: http://lc.codemeter.com/32838/depot-return/index.php

The website is also availaible through the Automation Builder menu under
“Help è Return of Automation Builder license”.

2. Insert your Activation code in the field “Ticket”
3. Select “Next”

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US36

http://lc.codemeter.com/32838/depot-return/index.php

4. Select “Re-Host License”

ð If the CmContainer is found, continue with Online licenses transfer Ä Chapter
1.2.4.9.3.1 “Online license transfer” on page 37

ð If the CmContainer is not found, continue with Offline license transfer Ä Chapter
1.2.4.9.3.2 “Offline license transfer” on page 39

Online license transfer
Wait till the CmContainer is found, then select “Deactivate Selected License Now”

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 37

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US38

Offline license transfer
If the CmContainer is not found on this PC, select file-based license transfer workflow.

ð The following dialog opens

The instructions will lead you through the main steps of the offline license transfer:

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 39

1. On the offline PC open the CodeMeter Control Center.
2. Select “License Update”.

ð The CmFAS Assistant opens.

3. Select “Create a license request file”.

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US40

4. Select a location to store the license request file.
5. Transfer the license request file from the offline PC to an online PC.

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 41

6. On the online PC choose the license request file and select “Upload Request And
Continue Now”.

ð The next dialog is opened

7. Select “Download License Update File Now”.

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US42

8. Save the license update file to a location on your computer.
9. Transfer the license upate file from the online PC to the offline PC.
10. On the offline PC open the CmFAS Assistant.
11. Select “Import license update”.

12. Select the license update file, to import the new license to the offline PC

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 43

13. To confirm a succesful license transfer return to the online PC and select “Next”.

ð The last dialog is opened

14. On the offline PC open the CmFAS Assistant.
15. Select “Create receipt”.

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US44

16. Choose a location to save the license receipt file.
17. Transfer the license receipt file from the offline PC to the online PC.

PLC Automation with V2 CPUs

Getting started > Managing your licenses

2022/01/20 3ADR010582, 3, en_US 45

18. On the online PC choose the license receipt file and select “Upload Receipt Now”.

ð After a succesful license transfer you will receive the following message

1.2.4.10 Generating license information file for support
To create a license information file which includes all license information for the support:
1. Select “Windows start menu è CodeMeter è Tools è DmDust”.

ð The explorer window opens and shows the folder where the created log file “CmDust-
Result.log” is stored.

2. Please attach this file to any support request regarding your licenses.

1.2.4.10.1 Log files
Sometimes more detailed log files are needed to analyse a situation.
Then please also zip the following folder and attach it to your support request.
C:\ProgramData\CodeMeter\Logs

PLC Automation with V2 CPUs
Getting started > Managing your licenses

2022/01/203ADR010582, 3, en_US46

This folder includes
● CmActDiagLogyyyy-mm-dd-hhmmss.log
● CodeMeteryyyy-mm-dd-hhmmss.log
To make it easier to distinguish when the files were created, they are named as follows:
● yyyy – year, mm – month, hh – hour; mm – minutes, ss – seconds.

1.2.5 Set-up communication parameters in Windows
To set-up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set-up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.
The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows Control Panel. Click “Network and Internet è Network and Sharing

Center”.
2. Click Change adapter settings.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click Local Area Connection (Ethernet) and select Properties.

Set-up commu-
nication param-
eters

Change the IP
address

PLC Automation with V2 CPUs

Getting started > Set-up communication parameters in Windows

2022/01/20 3ADR010582, 3, en_US 47

4. Double-click Internet Protocol Version 4 (TCP/IPv4).

PLC Automation with V2 CPUs
Getting started > Set-up communication parameters in Windows

2022/01/203ADR010582, 3, en_US48

5. Enter your desired IP address and subnet mask.

1.2.6 Further information
Further information on the installed Automation Builder version such as installed packages or
license terms can be found on the "About" page (help menu).
Safety Version is visible if safety option is installed. Safety Version Information shows the
versions of all safety components.
● Package version information: Further information about all installed package versions is

shown.
● Plug-in version infromation: Further information about all installed plug-in versions is shown.
● Safety version infromation: Further information about all safety component versions is

shown.
● User registration data: Enter or change your registration data.
● License Terms: Information about the license terms.
● Create package for support: Creates a package which can be saved or sent to support
Ä Chapter 1.2.7 “Create log files for support” on page 50.

PLC Automation with V2 CPUs

Getting started > Further information

2022/01/20 3ADR010582, 3, en_US 49

It is possible to either continue working with a project on an older Automation Builder version or
to update a project to the latest Automation Builder version.

1.2.7 Create log files for support
Professional support requires some information about the project and the devices.
To collect this information proceed as follows:

PLC Automation with V2 CPUs
Getting started > Create log files for support

2022/01/203ADR010582, 3, en_US50

1. Click “Help è About” in the main menu of Automation Builder.

2. Click [Create package for support] and wait until a list of log files is displayed.
3. Click [Save package] to store the zipped log files to your disk, or click [Send package] to

send the zipped log files to ABB support.
4. Click [OK].

1.2.8 Menues, views, windows

Ensure the full display of Automation Builder editors by choosing the option
Smaller - 100 % (default) in “Start è Control Panel è Appearance and
Personalization è Display”.

PLC Automation with V2 CPUs

Getting started > Menues, views, windows

2022/01/20 3ADR010582, 3, en_US 51

1.2.8.1 Start page and menus
After start-up of Automation Builder software the start page is displayed.

All items of the Automation Builder user interface are described in the CODESYS documenta-
tion:
● Ä Chapter 1.4.1 “Development system” on page 145

“ File” menu:

PLC Automation with V2 CPUs
Getting started > Menues, views, windows

2022/01/203ADR010582, 3, en_US52

Command Description
New Project Creating a new project with the dialog New

Project.
Ä Chapter 1.6.5.1.1 “Project handling”
on page 5757

Open Project Opening an existing project file.

Close Project Closing a project file while Automation Builder
keeps running. If the current projects keeps
information which have not been saved
before, you will be asked if the changes
should be saved or not.

Save Project Saving the project at the currently defined
location. It is only available if changes have
been done to the project since the last saving.
This is indicated by an * (asterisk) behind the
project name in title bar.

Save Project As Saving the project whereby project name and
location can be defined in a dialog box.

Project Archive Creating a project archive.
Ä Chapter 1.6.5.1.1 “Project handling”
on page 5757

Source upload This command loads the project source code.

Print Printing the content of the tab which is cur-
rently shown in editor window.

Page Setup Opening the Page setup dialog where the
page setup can be configured for printing.

Recent Projects Reopening the most recently worked projects.
The number of projects kept in the list can be
defined.

Exit Closing Automation Builder. If the current proj-
ects keeps information which have not been
saved before, you will be asked if the changes
should be saved or not.

“Edit” menu:

PLC Automation with V2 CPUs

Getting started > Menues, views, windows

2022/01/20 3ADR010582, 3, en_US 53

Command Description
Undo The last action is reversed.

Redo A reversed action is redone.

Find Replace Full text search and text replacement func-
tions.

Input Assistant This command opens the “Input Assistant”
dialog box, guiding you in inserting a program
element valid at the current cursor position.

Next Message This command selects the next message in
the messages view.

Previous Message This command selects the previous message
in the messages view.

“View” menu:

Command Description
POUs This command opens the “POUs” view in the

CODESYS main window. POUs located here
are available in the entire project.

Devices Displaying the device tree on the left side of
Automation Builder.

Messages Displaying the Messages window.

Start Page Displaying the Start Page tab. It shows the
recently used projects, links to useful com-
mands and the ABB PLC Product Website.

Full Screen Effecting that CODESYS frame window is dis-
played in full screen mode. Use [Ctrl] + [Shift]
+ [F12] to toggle back to normal mode.

“Project” menu:

PLC Automation with V2 CPUs
Getting started > Menues, views, windows

2022/01/203ADR010582, 3, en_US54

Command Description
Update project Updates the project

Add Folder This command opens a dialog box for defining
a new folder in the Devices or POUs view.

Edit Object This command opens the object in its editor.

Project Information Opening the "Project Information" dialog
window which shows detailed information of
the currently opened project.

Project Settings This command opens the “Project settings”
dialog box.

Document This command opens the “Document Project”
dialog box, where you can define the project
documentation. This includes the selection of
objects in the open project that you want to
print.

Compare This command opens the “Project compare”
dialog. In this dialog, you define the reference
project to compare with the current project.
You configure the comparison process by
means of options. When the dialog is exited,
the comparison starts and the result is shown
in the view “Project Compare - Differences”.

Import This command opens a dialog box for
importing objects from an XML file.

Export This command opens a dialog box for
exporting objects from a project to an XML
file.

“Tools” menu:

PLC Automation with V2 CPUs

Getting started > Menues, views, windows

2022/01/20 3ADR010582, 3, en_US 55

Command Description
Installation Manager Installation Manager allows installation and

maintenance of Automation Builder packages.

Create Device list CSV Creates an Exel file with a device list.

Install additional license Allows to install an additional license.

IP-Configuration Allows to configure the IP address.

Drive Overview Shows a Drive overview

Drivemanager Upgrade Allows a Drivemanager upgrade

Device Repository Opening the Device Repository. This is a data-
base for all devices which have been installed
on the local system for Automation Builder.
The default settings are defined by the current
profile.

Options Opening the "Options" dialog. This dialog con-
tains sub-dialogs for configuring the appear-
ance and behavior of Automation Builder. The
default settings are defined by the current pro-
file.

“Window” menu:

PLC Automation with V2 CPUs
Getting started > Menues, views, windows

2022/01/203ADR010582, 3, en_US56

Command Description
Next Editor Opening the next editor window

Previous Editor Opening the previous editor window

Close All Editors Closing all opened editor windows and
showing the start page of Automation Builder.

Reset Window Layout This command resets all currently open win-
dows and views to their default positions. You
are prompted for a confirmation before the
command is executed.

New Horizontal Tab Group Adding a horizontal aligned tab view. Editor
windows can be placed on the different views
by drag-and-drop.

New Vertical Tab Group Adding a vertical aligned tab view. Editor win-
dows can be placed on the different views by
drag-and-drop.

Float This command releases a docked view from
its frame in the user interface and repositions
it on the screen as a floating window.

Dock This command returns a floating window,
which was released by the “Float” command,
to the frame of the user interface.

Auto Hide This command shows or hides a view.

Next Pane This command sets the focus on the next
pane.

Previous Pane This command sets the focus on the previous
pane.

Windows Opening the Windows dialog box. This dialog
box provides a list of active editor windows
which can be accessed via button Activate or
closed with button Close window(s). It is pos-
sible to close several windows.

“Help” menu:

PLC Automation with V2 CPUs

Getting started > Menues, views, windows

2022/01/20 3ADR010582, 3, en_US 57

Command Description
Contents Opening the table of contents of Automation

Builder online help

Index Opening the index of Automation Builder
online help

Search Opening the full-text search of Automation
Builder online help

ABB Drives / PLC / Robotics home page Opening the product specific home page

Automation Builder Release Notes Opening the Release Notes of the current
Automation Builder version

Online User Documentation Opening the Automation Builder webhelp

Project examples Opening the directory in which project exam-
ples are stored

About Showing the about dialog with details of ver-
sion

1.2.8.2 'All Messages' window
Errors, warning and success messages are written to the “All messages” window:

1.2.9 Device repository
The Device Repository of Automation Builder manages the pool of devices that can be used in
the PLC configuration.

PLC Automation with V2 CPUs
Getting started > Device repository

2022/01/203ADR010582, 3, en_US58

You install or uninstall devices in the “Device Repository” dialog box. The system installs a
device by reading the device description files, which define the device properties for configura-
bility, programmability, and possible connections to other devices.
You can use the devices provided in the device repository by adding them to the device tree of
your project.

1. Click “Tools è Device Repository”.

ð The “Device Repository” dialog box opens.

[Edit Locations]: Changes the default repository location. The devices can be man-
aged at different locations.
[Install] / [Uninstall]: Installs or uninstalls devices.
[Renew device repository]: Updates the device list, e.g. after uninstallation of a device.
[Details]: Provides technical details on the selected device.

2. Select the install location. “System Repository” is set by default.

The device repository cannot be changed manually, e.g. by copying or deleting
files. Use always the Device Repository dialog to add or remove devices.

Dialog device
repository

Installing
devices

PLC Automation with V2 CPUs

Getting started > Device repository

2022/01/20 3ADR010582, 3, en_US 59

1. Click [Install] and select the appropriate file format.

ð The “Install Device Description” dialog box opens.

2. Select the file path of the device description.
3. Select the file type filter of the required device description.

ð All device descriptions of the selected file type are listed.

4. Select the required device description and click “Open”.

ð Automation Builder adds the device description to the matching category of your
device repository.
If errors occur during installation (for example, missing files that are referenced by the
device description), then Automation Builder displays them in the lower part of the
device repository dialog box.

During the installation the device description files and all additional files refer-
enced by that description will be copied to an internal location. Altering the
original files will have no further effects to an internal location.

The changes take only effect after reinstalling the corresponding device(s).
The version number shown in the information section of the device should be
verified.

Select the device you want to remove and click [Uninstall].
The device is removed from the list.

Uninstalled devices which are used in existing projects are indicated by the
symbol . The device will not be configured properly.

Uninstalling
devices

PLC Automation with V2 CPUs
Getting started > Device repository

2022/01/203ADR010582, 3, en_US60

1.2.10 Creating and configuring projects
● A project contains the objects which are necessary to create a controller program ("applica-

tion"):
– Pure POUs, for example programs, function blocks, functions, and GVLs.
– Objects that are also required to be able to run the application on a PLC. For example,

task configuration, Library Manager, symbol configuration, device configuration, visuali-
zations, and external files.

● In a project, you can program multiple applications and connect multiple controller devices.
● CODESYS manages device-specific and application-specific POUs in the “Devices” view

("device tree") and project-wide POUs in the “POUs” view.
● For the creation of projects, there are templates that already contain certain objects.
● Basic configurations and information for the project are defined in the “Project Settings” and

“Project Information”. For example:
– Compiler settings
– User management
– Author
– Data about the project file
There are settings for the version compatibility of the project in the configuration dialogs in
the “Project Environment”.

● You save a project as a file in the file system. As an option, you can pack it together with
project-relevant files and information into a project archive. It is also possible to save files in
a source code management system such as SVN.

● Each project contains the information about the CODESYS version with which it was cre-
ated. When you open it in another version, CODESYS will notify you about possible or
necessary updates regarding file format, library versions, etc.

● You can compare, import/export projects, and create documentation for them.
● You can protect a project from being changed, or even completely protect it from being read.

By using user management, you can selectively control the access to the project and even
to individual objects in the project.

Handling of AC500 projects such as project creation, export/import, comparison of projects etc.
is described in the sections for AC500 V2 products.
Ä Chapter 1.6.5.1.1 “Project handling” on page 5757

1.2.11 Handling of AC500 projects
Handling of AC500 projects such as project creation, export/import, comparison of projects etc.
is described in the sections for AC500 V2 products.
Ä Chapter 1.6.5.1.1 “Project handling” on page 5757

Copy-and-paste from one project to another project in two different Automation Builder
instances is possible. After copying parts of a project to a higher Automation Builder version
the copied components have to be updated.

It is not possible to downgrade a project to an earlier Automation Builder ver-
sion.

– Import of export files is only allowed in the same profile version.
– Copy-and-paste of configurations must not be used to copy objects to an

earlier version.

What is a
project?

PLC Automation with V2 CPUs

Getting started > Handling of AC500 projects

2022/01/20 3ADR010582, 3, en_US 61

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

Automation Builder supports the creation and the import of project archive files. Archive files
contain all relevant project data including the PLC configuration, the CODESYS project files and
all device descriptions. This allows exchanging Automation Builder projects without taking care
of the target environment General Settings. Ä Chapter 1.6.5.1 “General settings” on page 5757

The 'User Management' provides functions for defining user accounts and configure the access
rights within a project. The rights to access project objects via specified actions are assigned
only to user groups, not to a single user account. So each user must be member of a group
General Settings. Ä Chapter 1.6.5.1 “General settings” on page 5757

1.2.12 Connection of devices
1.2.12.1 Configuring devices

Modify your Automation Builder project by adding device objects. Preset items can be replaced
in the same way.
1. In the device tree, right-click an item node. Select “Add object”.

2. Select the desired object and click [Add object].

Project archive

User and access
rights of a
project

PLC Automation with V2 CPUs
Getting started > Connection of devices

2022/01/203ADR010582, 3, en_US62

3. Double-click the new object in the device tree to configure the device settings. Depending
on the selected item different configuration tabs are available.

1.2.12.2 Symbolic names for variables, inputs and outputs

The IEC naming rules are not checked during input in Automation Builder.

Devices with I/Os provide an I/O Mapping tab in their configuration editor where the available
I/O channels can directly be mapped to a global variable.
The corresponding variable declarations are automatically created in a global variables object in
a subfolder of the Global Variables section in the CODESYS project.
All available I/O channels can easily be assigned to a variable.

The variable is automatically added to the Global Variables in the CODESYS project after
recreating the configuration data Ä Chapter 1.2.15.1 “Creating configuration data” on page 65.

AC500 uses Motorola Byte Order (Big Endian).

The numbers in column Channel correspond to the channel numbers only and
not to the bit position inside the WORD variable.

Only entries with a data type set in column "Type" can be mapped. These
entries can be expanded to show the available I/O channels.

If the project has been imported from a previous Automation Builder version,
all variables should be checked to avoid inconsistencies concerning the I/O
mapping.

The variable is automatically added to the global variables in the CODESYS project after
(re)creating the configuration data:

Input and output
mapping

PLC Automation with V2 CPUs

Getting started > Connection of devices

2022/01/20 3ADR010582, 3, en_US 63

An additional GVL (Global Variables List) can be created and transferred to
CODESYS V2.3. Editing of lists created in CODESYS V2.3 is not possible.

1.2.12.3 Update of AC500 devices
Perform a firmware update to update AC500 V2 devices. Ä Chapter 1.6.5.1.7 “Firmware identifi-
cation and update” on page 5786

1.2.12.4 Comparing objects
To compare similar objects within a project (such as the project configuration) select both
objects. Right-click and select Compare Objects to see the differences.

1.2.13 Connection of serial interfaces
Depending on the device type, the configuration of serial interfaces is different.
AC500 V2 Products: Ä Chapter 1.6.5.2.11 “Serial interfaces COM1 and COM2” on page 6098

PLC Automation with V2 CPUs
Getting started > Connection of serial interfaces

2022/01/203ADR010582, 3, en_US64

1.2.13.1 Programming of applications
To create an application program which can be run on the controller, you fill POUs with decla-
rations and implementation code (source code), establish the link from the controller I/Os to
application variables, and configure the task assignment. After checking and debugging, the
CODESYS compiler creates the application code which can be downloaded to the controller.
The programming of the application POUs is supported by the programming language editors
and other features such as text lists, image pools, alarm configurations, pragmas, refactoring,
and ready-to-use POUs from CODESYS Development System or libraries.
There are features for syntax checking and code analysis, for achieving data persistence, and
for encrypting the application code which is downloaded to the controller.

1.2.14 I/O mapping
For all connected I/O devices perform an I/O Mapping.
Ä Chapter 1.6.5.1.4 “I/O mapping list” on page 5781

1.2.15 Data transfer and CODESYS programming
1.2.15.1 Creating configuration data

If the setup of all devices has been finished, you can create the configuration file.
Right-click on “Application” and select “Create configuration data” from context menu.

ð The generation process starts. The progress is shown in the status bar of Automation
Builder.

Within a Automation Builder version only device versions of this Automation Builder version can
be used. By following the use case described in the chapter Use Cases the system takes care
about this project integrity. Additionally Automation Builder performs an integrity check for the
selected PLC before generating the configuration.
The integrity check can manually be called for the complete project:
1. Select the menu item “Project è Check integrity”.

ð Automation Builder checks the project integrity for the complete project ("Project integ-
rity" checks if all devices in the device tree are installed in the device repository).
If the integrity check was successful a success message is displayed.
If the integrity check was not successful the following message is displayed:

2. Click “Update” button:

ð Automation Builder updates the configuration to the latest version, creates configura-
tion data and starts CODESYS V2.3.

3. Click “Cancel” button:

ð Creates configuration data and Automation Builder does not start CODESYS V2.3.

Check integrity

PLC Automation with V2 CPUs

Getting started > Data transfer and CODESYS programming

2022/01/20 3ADR010582, 3, en_US 65

If the integrity check fails the Message Window displays further details.

In case of inconsistent configuration data update correct your project. Update all
devices and install all 3rd party devices as used in the project.

Following error messages indicating that devices are not installed properly: "The device
XXXXXX was not found in the device repository! Please reinstall this device using the menu
item “Tools è DeviceRepository”.
Install the device. Ä Chapter 1.2.9 “Device repository” on page 58.
"The version of device XXXXXX is not compatible with the current version."
Update to new version.

1.2.15.2 Launching programming system CODESYS V2.3.9.x
In your PLC project, double-click on “Application” to open the CODESYS V2.3.9.x project.

CAUTION!
Risk of damaged Automation Builder projects!
Projects created with Automation Builder are incompatible with CODESYS
V2.3.9.x. Opening these projects directly with CODESYS V2.3.9.x may cause
corrupted projects. Always use Automation Builder to open these projects.

If several instances of CODESYS V2.3.9.x are opened, double-clicking on the
target item brings the corresponding CODESYS V2.3.9.x instance to the front.

The name of the used AC500 CPU is shown in the main node of the device tree.
The names of the devices can be edited by selecting the corresponding entry and clicking the
entry. The name must be unique and cannot be reused in the same project. Automation Builder
automatically appends double entries with an up counting number as an suffix.

The IEC naming rules are not checked during input in Automation Builder.

1.2.15.3 Source download/upload in Automation Builder
The “Source download” downloads and stores the current project as a Zip-file on the PLC’s
memory card.
● Right-click “PLC_AC500_V2 <...>” node and click “Source download”.

The “Source upload” retrieves a previously downloaded project from memory card to a select-
able directory on the Automation Builder PC and optionally opens Automation Builder with this
uploaded project.
● Click “File” in the main menu of Automation Builder and click “Source upload”.

CPU name

Source down-
load

Source upload

PLC Automation with V2 CPUs
Getting started > Data transfer and CODESYS programming

2022/01/203ADR010582, 3, en_US66

Internally both commands are invoking a hidden instance of CODESYS V2.3 which is then
working in batch mode to accomplish the download/upload.
Most of the error messages which could occur during the process are raised by CODESYS V2.3
and will then be displayed in Automation Builder as a result message box (the language of the
message box is the installed language of CODESYS V2.3, the messages are sometimes quite
"basic").

Before using the commands, check the following:

– No CODESYS V2.3 instance started from within Automation Builder on the
same PLC node should be running.

– To perform the download/upload, CODESYS V2.3 must be able to log in/on
to the PLC. Therefore the gateway settings should be correct and saved to
project file. It is recommended to test once the ability of CODESYS V2.3 to
log in/on to the PLC.

– A formatted memory card must be mounted in the PLC’s memory card slot.

1.2.16 AC500 PLC configuration
See Getting Started for AC500 V2 products. Ä Chapter 1.2.18.1.1 “Hardware AC500 V2”
on page 67

See Starter Kit for AC500-eCo products. Ä Chapter 1.6.1.10 “AC500-eCo starter kit”
on page 3741

1.2.17 Converting an AC500 V2 project to an AC500 V3 project
A project that has been configured for an AC500 V2 PLC can be converted to a project for an
AC500 V3 PLC.
Essentially, the conversion is done in Automation Builder, however, some additional actions
have to be executed manually. The complete procedure is described in the application example
Instructions on how to convert a V2 project to a V3 project and differences between V2 and V3.

1.2.18 Example projects
1.2.18.1 Example projects for AC500 V2
1.2.18.1.1 Hardware AC500 V2
Configuration for example projects

The example projects require a small PLC configuration with I/O devices, e.g., as available in
the training case TA515-CASE. https://to.abb/AfO9-ftT

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 67

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch
https://new.abb.com/products/de/1SAP182400R0002

Table 2: Modules for example projects to get started with AC500 V2 PLC
Product name Type First project

Ä Chapter 1.2.18.1.2
“Example project for
central I/O expan-
sion” on page 70

Second project
Ä Chapter
1.2.18.1.3 “Example
project for remote
I/O expansion
with PROFINET”
on page 109

PM585-ETH AC500 V2 CPU x x

TB521-ETH terminal base for CPU x x

DA501 analog/digital mixed
input/output (I/O)
module

x x

TU516-H terminal unit for I/O
module

x x

CM579-PNIO PROFINET communi-
cation module

-- x

CI502-PNIO PROFINET commu-
nication interface
module

-- x

TU508-ETH terminal unit for com-
munication interface
module

-- x

TA524 blind cap for terminal
base

x x

Fig. 5: Training case TA515

In the training case, the control panel CP6607 is included. A control panel is not
needed for the example projects.

For testing the example project some inputs require to be connected as follows:

Connections

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US68

Fig. 6: Wiring of training case

For the example projects, not all input switches and none of the potentiometers
included in training case are necessary.

You will need switch I1 for the example project for central I/O expansion.

You will need switch I5 for the example project for remote I/O expansion.

System assembly, construction and connection

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

You can mount AC500 PLC either to DIN rail or to a metal plate Ä Chapter 1.6.3.6.3 “Mounting
and demounting” on page 5325. Here, we recommend to mount on DIN rail.
1. Snap the terminal base onto DIN rail.
2. Snap the additional terminal units for I/O modules onto DIN rail.
3. Make the sensor/actuator wire connections according to the dedicated electronic module

you want to use. Provide external process power supply as required.
4. If required, make the fieldbus connections according to the dedicated master communica-

tion module you want to use.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 69

5. Plug the appropriate electronic and I/O modules in the correct locations (processor
module, communication modules on terminal base, and eventually also communication
interface modules and I/O modules onto dedicated terminal units).

6. Connect a programming cable (Ethernet cable between ETH port of CPU and PC with
engineering software).

1.2.18.1.2 Example project for central I/O expansion
The following steps show how to set-up an application project and configure the hardware. A
simple logic is used as example to introduce in programming and commissioning of the PLC.
The workflow for creation of a visualization is explained, as well as how to set-up a web server
for visualization.

Preconditions
● Automation Builder is installed and licensed as, at least, basic edition Ä Chapter 1.2.4

“Managing your licenses” on page 20.
● AC500 V2 CPU is assembled and connected to the PC Ä Chapter 1.2.18.1.1 “Hardware

AC500 V2” on page 67.

Create, set-up and save your AC500 V2 project
Create a project

1. Launch Automation Builder either out of the desktop icon or out of the Windows menu.

2. Select “New Project” or go to menu “File è New Project”.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US70

3. Select “Projects”.
4. Select “AC500 project”.
5. Fill in project name.
6. Choose a location to save the project to.
7. Select “OK”.
8. Select “PLC - AC500 V2”.
9. Select the CPU according to your hardware set-up.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 71

10. Select “Add PLC” to add the CPU to your application.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US72

Configure your CPU

1. Double-click “PLC_AC500_V2”.

ð A tab opens in the editor view.

2. Select “CPU-Parameters Parameters”.
3. Under parameter “Check battery”, choose the value “Off” since there is no battery present

inside the CPU module.
4. Keep the default values for all other parameters.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 73

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Configure the I/O module
● The types and order of modules in the Automation Builder project must match the real

hardware configuration.
● The position of the modules in the device tree can be changed by drag and drop.

Add an I/O bus module

1. Right-click “IO_Bus” in the device tree.
2. Select “Add object”.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US74

3. Select “S500 I/O modules”.
4. Select “DA501” module.
5. Select “Add object” to add the module to the I/O bus.

DA501 variable mapping

1. Double-click “DA501” in the device tree.

ð A tab opens in the editor view.

2. Select “DA501 I/O Mapping”

ð Here, you will map variable names (symbols) for the channels you will need in the
program.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 75

The suggested name convention is based on "Hungarian notation". A name prefix is describing
variable type: e.g., "x" = variable of type BOOL, "w" = WORD, "i" = INT (integer) etc. This
increases the code readability and is helpful for program analysis.

Handle the digital input variables

1. Open the list of the digital inputs.
2. Fill in the variable names:

Channel Type Variable
Digital input DI8 BOOL xDI_08_DA501_I1

Handle the digital output variables

1. Open the list of the digital outputs.
2. Fill in the variable names:

Channel Type Variable
Digital output DC16 BOOL xStartDrilling1

Programming and compiling
You write the program code in a separate IEC 61131-3 editor (CODESYS). You can open
CODESYS out of Automation Builder.
Supported programming languages:
● ST (Structured Text)
● IL (Instruction List)
● FBD (Function Block Diagram)
● LD (Ladder Diagram)
● SFC (Sequential Function Chart)
● CFC (Continuous Function Chart)

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US76

Starting the IEC 61131 programm editor CODESYS
To start the IEC 61131 programm editor CODESYS:

Open an AC500 V2 project in Automation Builder

In the Automation Builder device tree double-click “Application”

ð This will start the IEC 61131 programm editor CODESYS

Task configuration
A task is a time unit in the processing of a user program (IEC application), which defines by
parameters the way and the speed the CPU is executing the user program.
For this project you will use only one cycling task.

Open CODESYS editor Ä Chapter 1.2.18.1.2.4.1 “Starting the IEC 61131 programm
editor CODESYS” on page 77

1. In the CODESYS editor menu select the “Resources” tab.

2. Double click “Task configuration”.

ð The Task configuration window opens.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 77

3. Right-click on“Task configuration”.
4. Select “Append Task”.

5. Enter a name.
6. Set “Priority” to 15
7. Set “Type” to “cyclic”.
8. Set “Interval” to “T#10ms”.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US78

9. Activate Watchdog.
10. Set “Time” to “T#20ms”.

Priority type
interval

This is how the CPU prioritizes the task, when more than one task is defined.
Type In the CPU you can run tasks dependent on the demands of the process
Interval For cyclic tasks you can set the cyclical execution time. It is usually set
in milliseconds with IEC time syntax

Watchdog
calls

To keep track of the time it takes to complete the task Calls You can call in one
or more program POUs in one single task

11. Right click the watch icon next to “Term_01_Task”.
12. Select “Append Program Call”.

13. Select “[…]”.

ð The input assistant opens.

14. Select “PLC_PRG (PRG)”.
15. Select “OK”.

ð The task has been appended.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 79

Main program PLC_PRG
In CODESYS menu select tab POUs, there is one call of a POU (program organization unit) i.e.
"PLC_PRG".

In your project the "PLC_PRG" will become a main program containing calls to other programs
(POUs) which you will create one by one.

The PLC_PRG POU has been defined by default in ST (Structured Text) editor. Keep this
setting because of good visibility of the instructions at a glance and good handling for trouble-
shooting.

Boolean logic "NOT"
Application example "driller"

Recognizing of a driller by a photo sensor. "TRUE" input signal from sensor indicates that a
driller is broken. If driller has been found correct, then start drilling.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US80

Table 3: Required behavior
Signal from photo sensor Required signal of motor ON
FALSE TRUE

TRUE FALSE

Table 4: Hardware set-up
Element HW channel Symbol Description
Switch I1 DA501 DI8 xDI_08_DA501_I1 Photo sensor

LED output DC16 DA501 DC16 xStartDrilling1 Motor on

Implementation
Create a new program POU in the project

1. In the CODESYS menu select POUs
2. Select “Add object”

3. Enter “_01_Assignment_NOT”.
4. Set “Type of POU” to “Program”.
5. Set “Language of the POU” to Function Block Diagram “FBD”.
6. Select “OK”.

ð POU has been added.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 81

Assign the hardware DI signals to local variables
1. In the CODESYS device tree double-click POU “_01_Assignement_NOT”.
2. Click inside of the first Network.
3. Select “Assign” from Tools.

4. Select “???” on the left side of the assignment and press [F2].

ð “Input Assistant” opens.

5. Under “Global Variables” open “DA501_Module_Mapping”.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US82

6. Select “xDI_08_DA501_I1”.
7. Select “???” on the right side of the assignment connector.
8. Create a new local variable by typing in “xDrillerBroken1” which will replace the “???”.
9. Press [Enter].

ð “Declare Variable” opens. You see the written variable name and the data type BOOL.
The scope is "VAR". It means it is a local variable within this POU.

10. Select “[OK]” to accept the entries.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 83

11. Right-click on network 1 and select Network (after)

ð You added a network “2” below network 1.

Add assignments and a Boolean NOT to the DO signals
1. Add an assingment from the Tools.
2. Type in or copy & paste "xDrillerBroken1" to the left side of the instruction line.
3. Select “???” on the right side of the instruction line, then press F2.

ð “Input Assistant” opens.

4. Under “Global Variables” open “DA501_Module_Mapping”
5. Select “xStartDrilling1”

6. Select “[OK]” to close the dialog.

7. Right-click the left side of assignment PIN.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US84

8. Select “Negate” to add a negation to the assignment

Call the POU in the PLC_PRG
1. Double-click “PLC_PRG”.
2. Select the first line in “PLC_PRG” and press [F2]

ð “Input Assistant” opens.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 85

3. Open “User defined Program”

4. Select “_01_Assignment_NOT”

5. Select “OK” to close the dialog

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

In the CODESYS editor menu select “Project è Build”

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US86

Save CODESYS project

In the CODESYS editor menu select “File è Save”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Set-up the communication gateway
To set-up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set-up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.
The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows Control Panel. Click “Network and Internet è Network and Sharing

Center”.
2. Click Change adapter settings.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click Local Area Connection (Ethernet) and select Properties.

Set-up commu-
nication param-
eters

Change the IP
address

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 87

4. Double-click Internet Protocol Version 4 (TCP/IPv4).

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US88

5. Enter your desired IP address and subnet mask.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 89

CPU and PC are connected with an Ethernet cable.

1. In the Automation Builder device tree right-click “PLC_AC500_V2”.
2. Select “Communication Settings”.

3. Keep the default value in the IP address of the CPU or type in the current IP address, if
differs.

The standard (default) IP address of the port ETH1 is: 192.168.0.10

The standard (default) IP address of the port ETH2 is: 192.168.1.10

Set-up the com-
munication
gateway

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US90

4. Select “OK” to implement the IP address.

If you need to check the communications settings or if you want to see more information about
the current selected CPU.

After changing the IP Address either double click the Application or right-click and “Create
Configuration Data”

Check commu-
nication set-
tings

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 91

Log-in to CPU and download the program
Logging-in to the CPU will load the project into the AC500 V2 CPU. The first log-in will also load
the hardware set-up.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US92

1. In the Automation Builder menu select “Online è Login [PLC_AC500_V2]”.

ð A pop-up will appear.

2. Select “Yes” to download the application to the AC500V2 CPU.

ð PLC is in "stop" mode.

3. Start the PLC Ä Chapter 1.2.18.1.2.7.1 “Start the program execution” on page 94.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 93

Generally, if the CPU is in RUN mode, i.e. in program execution mode, a
download will always cause the mode change to "stop". In stop mode the CPU
is not controlling the system!

Always, after selecting the "Login" command, read carefully the dialog box
text to ensure that you are aware of the CPU’s behavior after the command
confirmation.

By default, a download generates following actions in the CPU:
● The project is stored in the RAM memory.
● The project is stored in the flash EEPROM, if boot application was created.

Test the program
Start the program execution

You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in "stop" mode.

Open CODESYS Ä Chapter 1.2.18.1.2.8.1 “Starting the IEC 61131 programm editor
CODESYS” on page 97.

In the CODESYS editor menu select “Online è Run”

Alternatively, select the "run" icon in the tool bar.
Alternatively, press [F5].

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US94

Test the function
Operate the switch I1 and in the CODESYS editor observe:
● The online status of inputs and outputs within the POU.

Stop the program execution
You are logged in the CPU.

An executable project is loaded to the CPU.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 95

The CPU is in RUN mode.

In the CODESYS editor menu select “"Online è Stop [PLC_AC500_V2]"”

Alternatively, select the "stop” icon in the tool bar.
Alternatively, press [Shift] + [F8].

Set-up visualization
The visualization allows designing a graphical representation of project variables. In online
mode, the graphical elements can change, for example, their color, size or position according to
the actual variable status.
Visualization for your project is done via CODESYS editor.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US96

Starting the IEC 61131 programm editor CODESYS
To start the IEC 61131 programm editor CODESYS:

Open an AC500 V2 project in Automation Builder

In the Automation Builder device tree double-click “Application”

ð This will start the IEC 61131 programm editor CODESYS

Insert visualization object
1. In the CODESYS menu select “Visualization”

2. Right-click Visualizations.
3. Select “Add object”.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 97

4. Type in “PLC_VISU”

5. Select “OK” to add Visualization

ð The new visualization object is inserted.

The name "PLC_VISU" has been chosen, because it is the default name
for a home screen in a web visualization. If you have more than one visuali-
zation object in your project, it will be useful to choose another name, e.g.
"_01_Assignment_NOT_v" and to choose "PLC_VISU" as a home screen to
access all available visualization screens. The name of a visualization object
can be modified afterwards.

Creating and configuring of visualization
1. In the CODESYS device tree right-click “PLC_VISU”

2. Select “Object Properties”

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US98

3. Enable “Web-Visualization”

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 99

Add a screen title
1. In the CODESYS editor toolbar select “Rectangle”.

2. Now by dragging your mouse anywhere on the Visualization you can create a rectangle.

3. Double-click the shape.
Alternatively right-click and then select “Configure”

ð The “Regular Element Configuration” window opens.

4. Under “Category” select “Text”

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US100

5. Under “Content” type in “Start drilling condition”

6. Under Category select “Colors”.
7. Under “Color” enable “No color inside” and “No frame color” this will help create a cleaner

look later on
8. Select “[OK]” to implement changes.

Further lines and labels
1. In the CODESYS editor toolbox select “Polyline”

2. Create a line by left-clicking and holding the mouse button. Drag the line to your desired
lenght then double-click to end the line.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 101

3. Follow the same procedure to create the other shapes and labels.

Disable Grid and check Settings
1. In the CODESYS editor right-click anywhere on the visualization and select “Settings”.

2. Select “Grid” and unmark “Visible”.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US102

3. Select “Frame” and make sure “WebVisu” is activated.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 103

Lamp element for signal indication
1. In the CODESYS editor tool bar select Ellipse and adapt size, if required.
2. Double-click on the ellipse to open the configuration.

3. Select “Colors” and set two different colors for "Color" and "Alarm color".

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US104

4. Open Variables and left-click “Change color”.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 105

5. Press [F2], this will open the “Input assistant”.

6. In “DA501_Module_Mapping” select “xStartDrilling1”

7. Select “[OK]”

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US106

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

In the CODESYS editor menu select “Project è Build”

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save CODESYS project

In the CODESYS editor menu select “File è Save”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 107

Loading the project to the CPU
Download the project to the CPU Ä as described in Chapter 1.2.18.1.2.6 , on page 92.

Test the program
Operate the switches and observe the visualization screen.

Reset the CPU
In some cases, it could be required to do a CPU reset, e.g., for resetting of counter values,
parameters etc.

Fig. 7: Reset commands in “Online” menu

Reset warm All variables are reset, except R% variables.
Reset cold Causes initialization of all variables, except PERSISTENT variables. By recom-

mended creation of remanent variables always with both properties: PERSISI-
TENT and RETAIN, this command resets all variables, except R% variables.

Reset origin All variables and the application project are reset.

Table 5: Behavior of variables of type VAR (local or global) and variables of type PERSISTENT
RETAIN

VAR VAR PERSISTENT RETAIN
After online command 'Online change' no change no change

After online command 'Download' initialization no change

After online command 'Reset warm' initialization no change

After online command 'Reset cold' initialization no change

After online command 'Reset origin' initialization initialization

After power supply off initialization no change

Reset values
and parameters

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US108

1.2.18.1.3 Example project for remote I/O expansion with PROFINET
This example introduces the configuration of the PLC with remote I/O. The use of I/O channels
in a program and commissioning of the configuration is shown.

Preconditions
● Automation Builder is installed and licensed as, at least, standard edition Ä Chapter 1.2.4

“Managing your licenses” on page 20.
● AC500 V2 CPU is assembled and connected to the PC Ä Chapter 1.2.18.1.1 “Hardware

AC500 V2” on page 67.
● Configuration and programming of this example project will be made in the existing example

project for central I/O expansion Ä Chapter 1.2.18.1.2 “Example project for central I/O
expansion” on page 70.

● CM579-PNIO communication module is inserted in terminal base and connected to the PLC
Ä Chapter 1.2.18.1.1 “Hardware AC500 V2” on page 67.

● CI502-PNIO communication interface module is inserted in terminal unit and connected to
the PLC Ä Chapter 1.2.18.1.1 “Hardware AC500 V2” on page 67.

Set-up PROFINET controller
Add the CM579-PNIO to the device tree

1. In the Automation Builder device tree under “Extension_Bus”, right-click “Slot_1”.
2. Select “Add object”.

3. Select “CM579-PNIO”.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 109

4. Select “Replace object” to add the CM579-PNIO.

Set-up the general behavior

1. Under “Extension_Bus”, double-click “CM579_PNIO” in the device tree.

ð A tab opens in the editor view.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US110

2. Select “CM579-PNIO Parameters”.

3. Select “Information”.

ð This page contains general information about the CM579-PNIO.

4. For the example project, you can keep the default settings.

Set-up the PROFINET IO controller
To edit settings for the controller, you must not be logged-in to the PLC.

1. Under “CM579_PNIO”, double-click “PNIO_Controller” in the device tree.

ð A tab opens in the editor view.

2. Select “PROFINET IO CONTROLLER”

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 111

3. Here, you can set-up the way, IP addresses are distributed out to the industrial bus net-
work. You can even set, what IP-address and DNS name (station name) the PROFINET
controller has.
For the example project, keep the default settings.

Set-up PROFINET device
Hardware preparation

1. Switch off the power supply of your PLC.
2. Use a screw driver to set the CI502 module address to "02" by positioning of the upper

rotary switch to "0" and lower switch to "2". Note, that the numbers have hexadecimal
format.

3. Switch on the power supply.

Add the CI502-PNIO to the device tree
1. Right-click “PNIO_Controller” in the device tree.
2. Select “Add object”.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US112

3. Select “CI502-PNIO-Device”.

4. Select “Add object” to add the device.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 113

Configure the CI502-PNIO device
Configure the CI502-PNIO PROFINET IO device

1. Double-click “CI502_PNIO_Device”.

ð A tab opens in the editor view.

2. Select “PROFINET IO Device”.

Station name Default station name
Parameter Communication time set-up
VLAN Virtual local area network ID
RT Class PROFINET IO RT (real time) type settings
IP Parameter IP-addressing parameters of the node. If modifications are required for “IP

Parameter”, they must be done also for CM579-PNIO and all other devices in
this PROFINET line.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US114

3. Set station name to "ci502-pn-02" according to hardware settings.
For numbers greater than 09 always make sure, that the last two decimal digits of the
node’s “Station Name” in Automation Builder correspond to the position of module’s rotary
switches (hexadecimal values): e.g., "ci502-pn-10" <-> "0A" or "ci502-pn-16" <-> "10".

4. Leave the default settings for “IP Parameter”.
5. Adjust the communication time settings to get a Watchdog (ms) 24:

● “Send clock (ms)”: 4
● “Reduction ratio”: 2
● “Phase”: 1

6. Leave the default settings for “VLAN ID”.
7. Leave the default settings for “RT Class”.

If the node has the same device address (the last two digits of the device name)
as set by means of the rotary switches on the module, all the node parameters
will be loaded automatically upon initialization scan of the CI50x module. This
allows, e.g., the module exchange without an engineering tool.

Create CI502-PNIO I/O mapping to symbols

1. Double-click “CI502_IO”.

2. Select “PNIO Module I/O Mapping”.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 115

3. Fill in the variable names:

Element Hardware channel Symbol
Switch I5 CI502 DI8 xDI_08_CI502_I5

LED output DO8 CI502 DO 8 xDO_08_CI502

Add remote I/O expansion to project
Add a program POU to the project

1. Double click “Application” in the device tree to create the application file.

ð This will open the IEC 61131 programm editor CODESYS (A configuration file will
be created.)(Ä Chapter 1.2.18.2.2.4.1 “Starting the IEC 61131 programm editor
CODESYS” on page 127).

2. In the CODESYS editor device tree right-click “POUs”.
3. Select “Add object”.

4. Enter “_30_PNIO_test”.
5. Select “Program”.
6. Select Function Block Diagram “FBD”.
7. Select “[OK]” to add POU.

Create POU logic
1. In the CODESYS editor device tree double-click “_30_PNIO_test”

2. Select “Assign” from Tools.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US116

3. Select “???” on the left side of the assignment, press [F2].
4. Select “Global Variables”.
5. In “CI502_IO_Module_Mapping” list, select “xDI_08_CI502_I5”.
6. Select “[OK]” to add this variable to the left side of the assignment connector.

7. Select “???” on the right side of the assignment, then press [F2].
8. In “CI502_IO_Module_Mapping” list” , select “xDO_08_CI502”.
9. Select “[OK].”

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 117

Call the POU in PLC_PRG
1. In the CODESYS editor device tree double-click “PLC_PRG”.

2. Select the next free line in “PLC_PRG” and press [F2].

ð “Input Assistant” opens.

3. Select “User defined Program”.
4. Select “_30_PNIO test”.
5. Select “[OK]” to close the dialog.

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US118

In the CODESYS editor menu select “Project è Build”

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save CODESYS project

In the CODESYS editor menu select “File è Save”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Loading the project to the CPU
Download the project to the CPU Ä as described in Chapter 1.2.18.2.2.5 , on page 135.

Test the program
Start the program execution

You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in "stop" mode.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 119

Open CODESYS Ä Chapter 1.2.18.2.2.4.1 “Starting the IEC 61131 programm editor
CODESYS” on page 127.

In the CODESYS editor menu select “Online è Run”

Alternatively, select the "run" icon in the tool bar.
Alternatively, press [F5].

Test the function
Operate the switch I5 and observe:
● The LEDs of the relevant CI502 inputs and outputs.
● The online status of inputs and outputs within the POU.

Reset the CPU
In some cases, it could be required to do a CPU reset, e.g., for resetting of counter values,
parameters etc.

Reset values
and parameters

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US120

Fig. 8: Reset commands in “Online” menu

Reset warm All variables are reset, except R% variables.
Reset cold Causes initialization of all variables, except PERSISTENT variables. By recom-

mended creation of remanent variables always with both properties: PERSISI-
TENT and RETAIN, this command resets all variables, except R% variables.

Reset origin All variables and the application project are reset.

Table 6: Behavior of variables of type VAR (local or global) and variables of type PERSISTENT
RETAIN

VAR VAR PERSISTENT RETAIN
After online command 'Online change' no change no change

After online command 'Download' initialization no change

After online command 'Reset warm' initialization no change

After online command 'Reset cold' initialization no change

After online command 'Reset origin' initialization initialization

After power supply off initialization no change

1.2.18.2 Example projects for AC500-eCo V2
1.2.18.2.1 Hardware AC500-eCo V2

Contents of the AC500-eCo V2 starter kit:
● 1 x AC500-eCo V2 CPU PM554-TP-ETH with 2 terminal blocks plugged on the CPU: 1 x 11

pin, 1 x 9 pin
● 1 x digital input simulator
● 1 x programming cable

System assembly, construction and connection
1. Assemble the CPU.

Enclosed to the CPU, you find the installation instructions. Refer to these installation
instructions for assembling the CPU.

2. Connect the input simulator to the CPU.
Enclosed to the input simulator, you find the installation instructions. Refer to these instal-
lation instructions to connect the input simulator to the CPU.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 121

DANGER!
Risk of death through electric shock.
Before using the CPU refer to the “Regulations Concerning the Setting
up of Installations” for safety instructions. http://search-ext.abb.com/library/
Download.aspx?DocumentID=3ADR025003*&Action=Launch

CAUTION!
Risk of damaging the PLC modules.
The CPU can be damaged by overvoltages and short circuits. Make sure that all
voltage sources (supply and process voltage) are switched off before you begin
with operations on the system.

3. The CPU needs to be powered by 24 V DC. Connect the CPU to the power, by using the
5-pin screw-type terminal block.

CAUTION!
Risk of damaging the CPU and the connected modules.
Voltages > 35 V DC can destroy the CPU and the connected modules.
Make sure that the supply voltage never exceeds 35 V DC.

4. Plug the programming cable into the CPU and your PC.

1.2.18.2.2 Example project
The following steps show how to set-up an application project and configure the hardware. A
simple logic is used as example to introduce in programming and commissioning of the PLC.
The workflow for creation of a visualization is explained, as well as how to set-up a web server
for visualization.

Preconditions
● Automation Builder is installed and licensed as, at least, basic edition Ä Chapter 1.2.4

“Managing your licenses” on page 20.
● AC500 V2 CPU is assembled and connected to the PC Ä Chapter 1.2.18.2.1 “Hardware

AC500-eCo V2” on page 121.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US122

http://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR025003*&Action=Launch
http://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR025003*&Action=Launch

Create, set-up and save your AC500 V2 project
Create a project

1. Launch Automation Builder either out of the desktop icon or out of the Windows menu.

2. Select “New Project” or go to menu “File è New Project”.

3. Select “Projects”.
4. Select “AC500 project”.
5. Fill in project name.
6. Choose a location to save the project to.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 123

7. Select “OK”.
8. Select “PLC - AC500 V2”.
9. Select the CPU according to your hardware set-up.

10. Select “Add PLC” to add the CPU to your application.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US124

Save the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Configure the onboard I/O channels
Onboard I/O variable mapping

1. Double-click “OBIO” in the device tree.

ð A tab opens in the editor view.

2. Select “8DI+6DO I/O Mapping”.

ð Here, you will map variable names (symbols) for the channels you will need in the
program.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 125

Handle the digital input variables

1. Open the list of the digital inputs.
2. Fill in the variable names:

Channel Type Variable
Digital input DI4 BOOL DI04

Digital input DI5 BOOL DI05

Handle the digital output variables

1. Open the list of the digital outputs.
2. Fill in the variable names:

Channel Type Variable
Digital output DO0 / NO0 BOOL DO00

Digital output DO1 / NO1 BOOL DO01

Programming and compiling
You write the program code in a separate IEC 61131-3 editor (CODESYS). You can open
CODESYS out of Automation Builder.
Supported programming languages:
● ST (Structured Text)
● IL (Instruction List)
● FBD (Function Block Diagram)
● LD (Ladder Diagram)
● SFC (Sequential Function Chart)
● CFC (Continuous Function Chart)

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US126

Starting the IEC 61131 programm editor CODESYS
To start the IEC 61131 programm editor CODESYS:

Open an AC500 V2 project in Automation Builder

In the Automation Builder device tree double-click “Application”

ð This will start the IEC 61131 programm editor CODESYS

Change the programming language into FBD
The default programming language is ST.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 127

1. Select “PLC_PRG (PRG)”.

If you made a mistake during the process, you can always undo. In the
CODESYS menu select “Edit è Undo”.

2. Press [DELETE].

ð “PLC_PRG (PRG)” has been removed.

3. Right-click “POUs”.
Select “Add Object”.

4. Under “Language of the POU” select “FBD”.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US128

5. Select “OK”.

ð A newly generated POU opens. The programming language of the POU is FBD.

1 Network (here network number 0001)

Task configuration
A task is a time unit in the processing of a user program (IEC application), which defines by
parameters the way and the speed the CPU is executing the user program.
For this project you will use only one cycling task.

Open CODESYS editor Ä Chapter 1.2.18.2.2.4.1 “Starting the IEC 61131 programm
editor CODESYS” on page 127

1. In the CODESYS editor menu select the “Resources” tab.

2. Double click “Task configuration”.

ð The Task configuration window opens.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 129

3. Right-click on“Task configuration”.
4. Select “Append Task”.

5. Enter a name.
6. Set “Priority” to 15
7. Set “Type” to “cyclic”.
8. Set “Interval” to “T#10ms”.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US130

9. Activate Watchdog.
10. Set “Time” to “T#20ms”.

Priority type
interval

This is how the CPU prioritizes the task, when more than one task is defined.
Type In the CPU you can run tasks dependent on the demands of the process
Interval For cyclic tasks you can set the cyclical execution time. It is usually set
in milliseconds with IEC time syntax

Watchdog
calls

To keep track of the time it takes to complete the task Calls You can call in one
or more program POUs in one single task

11. Right click the watch icon next to “Term_01_Task”.
12. Select “Append Program Call”.

13. Select “[…]”.

ð The input assistant opens.

14. Select “PLC_PRG (PRG)”.
15. Select “OK”.

ð The task has been appended.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 131

Main program PLC_PRG
In CODESYS menu select tab POUs, there is one call of a POU (program organization unit) i.e.
"PLC_PRG".

In your project the "PLC_PRG" will become a main program containing calls to other programs
(POUs) which you will create one by one.

The PLC_PRG POU has been defined by default in ST (Structured Text) editor. Keep this
setting because of good visibility of the instructions at a glance and good handling for trouble-
shooting.

Boolean logic AND
Implementation
Add Boolean "AND"

1. Select the dotted rectangle behind“ ???”. The dotted rectangle represents the cursor
position in this network.

2. In the toolbar select the Box icon.

ð A box with the AND operator will be added to your network.

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US132

When inserting a new box, it always appears as an AND operator. To change
the type of the box click on the AND text and enter another name.

To get an overview of all accepted operators, functions and function blocks click
on the AND text and press [F2].

Assign input and output variables to the AND operator
The “???” on the left side of the AND operator represent your two inputs.
To assign variables to each input:

1. Select “???”.
2. Press [F2].

ð The input assistant opens.

3. Under Global Variables open “OBIO_Module_Mapping”.
4. For each “???” select “DI04” and “DI05”.

The “???” on the right side of the AND operator represent your output.
To assign a variable to the output:

1. Select “???”.
2. Press [F2].

ð The input assistant opens.

3. Under Global Variables open “OBIO_Module_Mapping”.
4. Select “DO00”.

Add another network
To add another network:
1. Right-click on network 0001.
2. Select “Network (after)”.

ð You added a new network after network 0001. The new network number is 0002.

Add assignments and variables
To add an assignments to your network:

From the toolbar select the assign symbol.
Alternatively right-click on the dotted rectangle and select “Assign”.

ð You added another assignment to the network.

To add variables to your assignments:
1. Select “???”.
2. Press [F2].

ð The input assistant opens.

Assign input
variables to the
AND operator

Assign output
variable to the
AND operator

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 133

3. Under Global Variables open “OBIO_Module_Mapping”.
4. For the input select DO00.

For the output select DO01.

Add Boolean NOT
To negate the function:
1. Select the line behind the input. The dotted rectangle represents the cursor postion.
2. Right click on the dotted rectangle and select Negate.

ð You inserted a negation between your assignments.

Compile the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

In the CODESYS editor menu select “Project è Build”

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

Save CODESYS project

In the CODESYS editor menu select “File è Save”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US134

Log-in to CPU and download the program
Logging-in to the CPU will load the project into the AC500 V2 CPU. The first log-in will also load
the hardware set-up.

1. In the Automation Builder menu select “Online è Login [PLC_AC500_V2]”.

ð A pop-up will appear.

2. Select “Yes” to download the application to the AC500V2 CPU.

ð PLC is in "stop" mode.

3. Start the PLC Ä Chapter 1.2.18.2.2.6.1 “Start the program execution” on page 136.

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 135

Generally, if the CPU is in RUN mode, i.e. in program execution mode, a
download will always cause the mode change to "stop". In stop mode the CPU
is not controlling the system!

Always, after selecting the "Login" command, read carefully the dialog box
text to ensure that you are aware of the CPU’s behavior after the command
confirmation.

By default, a download generates following actions in the CPU:
● The project is stored in the RAM memory.
● The project is stored in the flash EEPROM, if boot application was created.

Test the program
Start the program execution

You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in "stop" mode.

Open CODESYS Ä Chapter 1.2.18.2.2.4.1 “Starting the IEC 61131 programm editor
CODESYS” on page 127.

In the CODESYS editor menu select “Online è Run”

Alternatively, select the "run" icon in the tool bar.
Alternatively, press [F5].

PLC Automation with V2 CPUs
Getting started > Example projects

2022/01/203ADR010582, 3, en_US136

Test the function
Operate the switch I1 and observe:
● The LEDs of the relevant onboard I/O inputs and outputs.
● The online status of inputs and outputs within the POU.

Stop the program execution
You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in RUN mode.

In the CODESYS editor menu select “"Online è Stop [PLC_AC500_V2]"”

Alternatively, select the "stop” icon in the tool bar.
Alternatively, press [Shift] + [F8].

PLC Automation with V2 CPUs

Getting started > Example projects

2022/01/20 3ADR010582, 3, en_US 137

Reset the CPU
In some cases, it could be required to do a CPU reset, e.g., for resetting of counter values,
parameters etc.

Fig. 9: Reset commands in “Online” menu

Reset warm All variables are reset, except R% variables.
Reset cold Causes initialization of all variables, except PERSISTENT variables. By recom-

mended creation of remanent variables always with both properties: PERSISI-
TENT and RETAIN, this command resets all variables, except R% variables.

Reset origin All variables and the application project are reset.

Table 7: Behavior of variables of type VAR (local or global) and variables of type PERSISTENT
RETAIN

VAR VAR PERSISTENT RETAIN
After online command 'Online change' no change no change

After online command 'Download' initialization no change

After online command 'Reset warm' initialization no change

After online command 'Reset cold' initialization no change

After online command 'Reset origin' initialization initialization

After power supply off initialization no change

1.3 Automation Builder installation manager
Automation Builder installation manager allows you to install customer specific software pack-
ages, modify the existing installation, update installation information and to uninstall Automation
Builder software packages in a comfortable and flexible way.
You can launch installation manager from the main menu of Automation Builder or from Win-
dows start menu.
1. Open Automation Builder software.

From the Tools menu, select Installation Manager.

Reset values
and parameters

PLC Automation with V2 CPUs
Automation Builder installation manager

2022/01/203ADR010582, 3, en_US138

2. As an alternative, launch installation manager from Windows start menu: “Start menu
è All Programs è ABB è Automation Builder è ABB Automation Builder Installation
Manager”.

ð Installation manager starts.

Options:
● Installed packages: Shows all installed packages of Automation Builder.
● Licenses: Displays the detailed license information of installed Automation Builder

packages in the CodeMeter WebAdmin page. For more information, see http://
localhost:22350/$help/CmUserHelp/us/index.html?controlcenter.htm.

● Uninstall all: Uninstalls the currently installed Automation Builder software.
● Install Package: Installs customer specific software packages.
● Modify: Adds or removes installed software packages.
● Info Export: Exports detailed information of installed packages in a notepad.
● Check for Update: Checks if your installed version of Automation Builder is up to date and

checks for updates.

1.3.1 Installing customer specific package
Installation manager allows you to install customer specific software packages (CABPKG files).
These packages are separately distributed to the customer based on the customer requirement.

PLC Automation with V2 CPUs

Automation Builder installation manager > Installing customer specific package

2022/01/20 3ADR010582, 3, en_US 139

http://localhost:22350/$help/CmUserHelp/us/index.html?controlcenter.htm
http://localhost:22350/$help/CmUserHelp/us/index.html?controlcenter.htm

1. In the installation manager, click Install Package.
2. Select the package to be installed (.cabpkg file) from the file system.

3. Select the components to be installed.
4. Click Install.

ð Data installation starts.

5. Successfully installed components are indicated with .

Errors during data download are indicated with . Errors during download of any package
component aborts the installation. In this case click Show Log and save the log data.
Send the log file to ABB support team.
Click Finish to end the wizard.

1.3.2 Adding or removing installed software packages
1. In the installation manager, click Modify.

ð The selection page opens.

The selected software packages are installed already.
The not selected software packages are not installed.

PLC Automation with V2 CPUs
Automation Builder installation manager > Adding or removing installed software packages

2022/01/203ADR010582, 3, en_US140

2. Select the software packages you want to install.
Unselect the software packages you want to uninstall.

You cannot unselect the main ABB Automation Builder software
package.

If also an older Automation Builder version or Control Builder Plus version shall be
installed for compatibility reasons, select the appropriate options under Install also pre-
vious product versions. This allows to open and edit a corresponding project in the
original version without a previous project upgrade.

3. Click Continue.
The following three cases are possible:
● The selected software package starts downloading and installing.
● The unselected software package will uninstall.
● The unselected software package will uninstall first and then download and install the

selected software package.
4. Successfully downloaded components are indicated with .

Errors during data download are indicated with . Errors during download of any package
component aborts the installation. In this case click Show Log and save the log data.
Send the log file to ABB support team.
Click Finish to end the wizard.

If you modify the type of installed edition, a warning message is displayed.

1.3.3 Automation Builder update notification
An update notification dialog will be shown during Automation Builder startup in case there are
any updates available for the currently installed version.
● Notification on available major, minor, or service release version
● Notification on recommend software updates (Bug fixes, CM FW, V2 FW, LIB updates,

documentation updates, ...), Automation Builder 2.5 and next future versions will show notifi-
cation on updates.

PLC Automation with V2 CPUs

Automation Builder installation manager > Automation Builder update notification

2022/01/20 3ADR010582, 3, en_US 141

Skip of next 30 days
+ Skip:

Close the notification dialog. Notification dialog will not be shown for next
30 days.

Show details: Show details will show the updates details page.
Skip: Close the notification dialog. Next time launch of Automation Builder will

show the notification dialog.

Update notifications will only be shown in the latest installed Automation Builder
version profile.

The “Check for Updates” menu item has been added to the “Help” menu. The user has the
possibility to check for updates manually.

Check for Updates: Will launch the Automation Builder update details window.

The Automation Builder update window provides information about all available updates for the
currently installed Automation Builder version and features. Detailed information is provided via
the description links.

“Help” - “Check
for Updates”
menu item

Automation
Builder update
details window

PLC Automation with V2 CPUs
Automation Builder installation manager > Automation Builder update notification

2022/01/203ADR010582, 3, en_US142

Skip update notification until
further updates are avail-
able:

If this option is selected and the update details page is “Close”, no
notification is displayed at startup until new updates are available.

New versions: New releases of Automation Builder will be shown this section
which will list hotfix version for the currently installed version or
recent major version released, if any.

Recommended updates for
installed version:

Updates for the currently installed options will be shown.

User can only select any one of the new versions and install.

All the installed updates will be shown in the Installation Manager start page in the “Installed
updates” tab.

All the newly installed updates package version information will be updated and shown in the
packages tab.

Installed
updates in the
Installation Man-
ager start page
Installation Man-
ager selection
page

PLC Automation with V2 CPUs

Automation Builder installation manager > Automation Builder update notification

2022/01/20 3ADR010582, 3, en_US 143

1.3.4 Checking for updates
In the installation manager, click “Check for new service release”.

ð If the installed Automation Builder version is up-to-date, the following message will
appear.

If a newer Automation Builder version is available, you will get an option to download
and install the new version.

Create a project archive before updating Automation Builder. Project
archives contain all project data, including data that is not stored with
a *.project file, e.g. device description files for third party devices.

Ä Chapter 1.6.5.1.1.7.1 “Creation of an archive ” on page 5768

1.3.5 Uninstalling Automation Builder
Installation manager offers a comfortable way to uninstall Automation Builder software. This
will uninstall all related packages of Automation Builder platform as well, such as Mint Plug-in,
Automation Builder Extensions, Drive Manager etc.
1. In the installation manager, click “Uninstall all”.

ð A warning message is displayed to uninstall Automation Builder software.

Click Yes to continue.

PLC Automation with V2 CPUs
Automation Builder installation manager > Uninstalling Automation Builder

2022/01/203ADR010582, 3, en_US144

2. If Automation Builder instances are running, a warning message is displayed.
Close running instances of Automation Builder and click Retry to continue uninstallation.
With Abort uninstallation of the current package is stopped. Uninstallation is continued
with the next package. With Ignore, uninstallation is forced. As this can lead to an erro-
neous uninstallation, we recommend you, not to use this option.

3. If installation manager was launched with “Tools è Installation Manager”, the following
message is displayed as Automation Builder is still running:
With Yes Automation Builder software is closed to continue uninstallation procedure.
With No uninstallation of the current package is stopped. Uninstallation is continued with
the next package.

4. For each of the packages being uninstalled, system may prompt to continue uninstallation.
5. Successfully uninstalled components are indicated with .

Errors during uninstallation are indicated with . Errors during uninstallation of any
package component aborts the uninstallation. In this case click Show Log and save the
log data. Send the log file to ABB support team.
Click Finish to end the wizard.

1.4 Programming with CODESYS
1.4.1 Development system
1.4.1.1 Overview
1.4.1.1.1 How is a project structured?

A project is put into a file named after the project Ä Chapter 1.4.1.1.9.1 “Project” on page 151.
The first program organization unit created in a new project will automatically be named
PLC_PRG Ä Chapter 1.4.1.1.9.2 “POU (program organization unit)” on page 151 Ä Chapter
1.4.1.1.9.8 “PLC_PRG” on page 158. The process begins here (in compliance with the main
function in a C program), and other POUs can be accessed from the same point: programs,
function blocks and functions Ä Chapter 1.4.1.1.9.7 “Program” on page 156 Ä Chapter
1.4.1.1.9.4 “Function block” on page 153 Ä Chapter 1.4.1.1.9.3 “Function” on page 151.
Once you have defined a Task Configuration, it is no longer necessary to create a program
named PLC_PRG Ä Chapter 1.4.1.4.8.1 “Overview” on page 390. You will find more about this
in the Task Configuration chapter.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 145

There are different kinds of objects in a project: POUs, data types, display elements (visualiza-
tions) and resources.
The Object organizer contains a list of all the objects in your project Ä Chapter 1.4.1.2.1.3
“Object organizer” on page 199.

1.4.1.1.2 How do I set up my project?
First you should configure your PLC in order to check the accuracy of the addresses used in the
project.
Then you can create the POUs needed to solve your problem.
Now you can program the POUs you need in the desired languages.
Once the programming is complete, you can compile the project and remove errors should there
be any.

1.4.1.1.3 How can I test my project?
Once all errors have been removed, activate the simulation, log in to the simulated PLC and
"load" your project in the PLC Ä Chapter 1.4.1.1.11.8 “Simulation” on page 184. Now you are in
Online mode.
Now open the window with your PLC Configuration and test your project for correct sequence.
To do this, enter input variables manually and observe whether outputs are as expected. You
can also observe the value sequence of the local variables in the POUs. In the 'Watch and
Recipe Manager' you can configure data records whose values you wish to examine.

1.4.1.1.4 Comparing projects
You can compare the currently open project with another project – a reference project. The
differences in contents, properties, or access rights are detected and shown in a comparison
view.
Clicking “Project è Compare” opens the “Project Compare” dialog for you to configure and
run the comparison. Then the result is shown in the comparison view “Project Compare -
Differences” where the objects are aligned in a tree structure. Objects that indicate differences
from the respective reference object are identified by colors and symbols. This is how you
detect whether or not the contents, properties, or access rights are different.
For differences in the contents, you can also open the detailed compare view “Project Compare
- <object name> Differences” in order to zoom into the object. In the detailed compare view,
the contents of the object and reference object are displayed or their source code aligned. The
detected differences are marked. Previously opened views are not closed. In this way, you can
have any number of comparison views open and read them, in addition to the project compare
view.
You can accept the detected differences from the reference project into the current project.
This is possible only from the reference project into the open project. To do this, you activate
differences (for example in the code) that should be accepted in the current project with the
commands , , or in the active comparison view for accepting. These positions are high-
lighted in yellow. Make sure that any other open compare views are inactive (write-protected,
read-only). therefore, you can activate differences to be accepted in exactly one comparison
view only. When exiting the active compare view, if you confirm that the differences that are
activated for acceptance are actually accepted into the current project, then the current project
is modified.
In order to exit the project comparison completely, close the project compare view.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US146

Creating a comparison view
Requirement: You have made changes in your current project and wish, for example, to com-
pare it with the last-saved version. In the meantime, for example, you have added further POUs,
removed a POU, changed single lines of code or the object properties in function blocks.
1. Select the command “Project è Compare”.

ð The “Project Comparison” dialog box opens.

2. Enter the path to the reference project, for example the path to the last-saved version of
your current project.

3. Leave the activation of the comparison option “Ignore Spaces” as it is.
4. Click on “OK”.

ð The comparison view opens. Title: “ Project Comparison – Differences”. The Device
trees of the current project and the reference project are displayed alongside each
other and the changed objects are marked in color.

5. Select an object marked in blue in the tree of the reference project (right). The current
project no longer contains this object.

Click on “Accept Single”

ð The object is added to the tree of the current project (left). The line has a yellow
background. appears in the middle column.

6. Select an object marked in green in the tree of the current project (left). The reference
project does not contain this object.

Click on “Accept Single”

ð The object is removed again from the tree of the current project (left). The line has a
yellow background. appears in the middle column.

7. If changes are detected in the content of an object that is contained in both the current
project and the reference project, this is indicated by red lettering. You can then switch to
the detailed comparison view for the object by double-clicking on the object.

8. Close the comparison view and answer the query whether the changes made are to be
saved with “Yes”.

ð The changes become effective in the project.

Opening the detailed compare view
Requirement: For example, a user modified the code in a POU of the current project. You have
performed the project comparison by clicking “Project è Compare”. The project compare view
shows this POU highlighted in red in the aligned in the project tree.
1. Double-click the line of the aligned POU versions.

ð The compare view switches to the detailed compare view of the POU. The modified
code lines are highlighted in gray and written in red.

2. Click .

ð Code lines with changes (red) are extended by two lines: an line with insert (left,
green) and a line with delete (right, blue).

3. Click again.

ð The code line is marked again as modified.

4. Move the mouse pointer to the code line marked as modified and click “Accept Single”.

ð The code line from the reference project is activated for acceptance into the current
project.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 147

5. Click .

ð The project compare view opens for the entire project. It is write-protected (read-only)
to prevent you from activating differences for acceptance. The link highlighted in
yellow above the tree view also indicates this.

6. Click the link: “Project compare view is read only because there are uncommitted changes
in another view. Click here to switch to the modified view.”

ð The detailed compare view opens again. The unconfirmed changes are highlighted in
yellow.

7. Click in the tab of the view and confirm that the changes should be saved.

ð The detail project view is closed and the POU is overwritten. Now it corresponds to
the POU of the reference project. The project view is active again so that you can
continue working with project compare.

If you do not click the link, but click instead to close the editor of the project
compare view, then you will also confirm the acceptance of changes into the
current project. The detail changes are accepted and then the project compare
is closed completely.

See also
● Ä Chapter 1.6.5.1.1.6 “Comparing projects” on page 5765
● Ä Chapter 1.4.1.1.4.1 “Creating a comparison view” on page 147

1.4.1.1.5 Debugging
In case of a programming error you can set a breakpoint Ä Chapter 1.4.1.1.11.3 “Breakpoint”
on page 182. If the process stops at such a breakpoint, you can examine the values of all
project variables at this point in time. By working through sequentially (single step) you can
check the logical correctness of your program.

1.4.1.1.6 Additional online functions
Further debugging functions:
You can set program variables and inputs and outputs at certain values.
You can use the flow control to check which program lines have been run.
A window log records operations, user actions and internal processes during an online session
in a chronological order Ä Chapter 1.4.1.4.4.2 “'Window' 'Log'” on page 374.
If activated in the target settings the Sampling Trace allows you to trace and display the actual
course of variables over an extended period of time.
Also a target specific function is the PLC Browser which can serve to request certain information
from the PLC.
Once the project has been set up and tested, it can be downloaded to the hardware and tested
as well. The same online functions as you used with the simulation will be available.

1.4.1.1.7 Additional features
The entire project can be documented or exported to a text file at any time.
For communication purposes there is a symbolic interface and a DDE interface. A gateway
server plus OPC server and DDE server are components of the standard installation packet.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US148

A visualization can be processed target specifically to be available as web visualization and/or
target visualization. This allows to run and view the visualization via internet or on a PLC
monitor.

1.4.1.1.8 File types
The following file types can be created:

File extension Example Description Format Path (default)
*.pro project01.pro Project file binary project directory

*.ci project01<number>.c
i

Information on the
last build (compila-
tion) of the project
➝ incremental com-
pile possible; only
created when project
gets saved

number: coded target
ID

binary

project directory *.eci project01<number>.e
ci

external Compile-
Information; Subset
of the ci-file in eci-
format; can be read
via an access-dll

number: coded target
ID

PE project directory *.cic project01<number>.c
ic

target-dependant
information on the
last build (compila-
tion) of the project
-> incremental com-
pile possible; only
created when project
gets saved

number: coded target
ID

binary project directory *.cit project01<number>.c
it

temporary *.ci-file;
created at target
change, transformed
to a ci-file at next
save of the project

number: coded target
ID

binary project directory *.ri

project01<number>.ri information on the
last download, impor-
tant for Online
Change; created at
each download

number: coded target
ID

binary project directory

*.exp project01.exp,
PLC_PRG.exp

export file ('Project'
'Export')

Export format (Text) project directory

*.tlt *.txt project01.tlt project01.txt translation file
(defined in 'Project'
'Translate in another
language')

Text *.sym project01.sym symbol file

Text project directory *.sdb project01.sdb symbol file

binary project directory *.sym_xml project01.sym_xml symbol file

XML project directory *.asd project01.asd save file (temporary,
'Auto save', 'Auto
save before compile')

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 149

File extension Example Description Format Path (default)
binary project directory *.asl lib01.asl save file for a

library opened as
project (temporary,
'Auto save', 'Auto
save before compile')

binary library resp. project
directory

*.bak project01.bak backup file for project
(permanent, 'Create
backup')

binary project directory *.prg *.bin default.prg

project01.prg boot project, file
name depending on
target

binary target system (cre-
ated online)

project directory (cre-
ated offline)

*.chk default.chk project01.chk checksum for boot
projekt code

binary target system (cre-
ated online)

project directory (cre-
ated offline)

*.ini codesys.ini

ini-file for various set-
tings

Text with codesys.exe *.dfr default.dfr

project01.dfr frame file (Printer
setup)

binary with codesys.exe *.asm

code386.asm assembler-Listing of
the created project
code

Text compile directory *.lst

project01.lst assembler-Listing of
the created project
code

Text compile directory

*.bpl project01.bpl debug-files (break-
point-information)

Text compile directory

 *.st PLC_PRG.st debug-files, implicit
ST-code

Text

compile directory *.map project01.map map-file; information
on memory organi-
zation and variable
locations

Text compile directory *.hex *.h86

project01.hex
(Output) resp.
standard.hex (Lib)

.hex for Intel or
Motorola, .h86 for
Intel; compiler output
or input for external
library

Intel or Motorola hex-
files

compile directory resp. library directory

*.trd projectxy0.trd trend logging
(number befor the
dot is counted up, if
file is full and another
must be created)

Text project directory

*.log projectxy.log log file (Log) binary project directory

*.wtc projx_watch1.wtc watch list (Watch-
and Recipe-Man-
ager)

Text user defined direc-
tory

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US150

File extension Example Description Format Path (default)
*.alm alarmlog0.alm alarm log-file user defined direc-

tory resp. download-
directory of the con-
troller

*.zip projectxy.zip project archive file;
zip-file with files
belonging to the
project , 'File' 'Save/
Mail Archive'

 user defined direc-
tory

*.trc project01_tr1.trc trace recording binary with codesys.exe

*.mon project01_tr1.mon trace recording XML with codesys.exe

*.tcf project01_tr1.tcf trace configuration binary with codesys.exe

1.4.1.1.9 Project components
Project

A project contains all of the objects in a PLC program. A project is saved in a file named after
the project. The following objects are included in a project:
POUs (program organization units), data types, visualizations, resources, and libraries.

POU (program organization unit)
Functions, function blocks, and programs are POUs which can be supplemented by actions.
Each POU consists of a declaration part and a body. The body is written in one of the IEC
programming languages which include IL, ST, SFC, FBD, LD or CFC. All IEC standard POUs
are supported. If you want to use these POUs in your project, you must include the library
standard.lib in your project.
POUs can call up other POUs. However, recursions are not allowed.

Function
A function is a POU, which yields exactly one data element (which can consist of several
elements, such as fields or structures) when it is processed, and whose call in textual languages
can occur as an operator in expressions.
When declaring a function do not forget that the function must receive a type. This means, after
the function name, you must enter a colon followed by a type.

A correct function declaration can look like this:
FUNCTION Fct: INT

Example

In addition, a result must be assigned to the function. That means that function name is used as
an output variable.
A function declaration begins with the keyword FUNCTION. Regard the recommendations
on the naming Ä Chapter 1.4.1.3.9.2.1 “Recommendations on the naming of identifiers”
on page 297.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 151

The first both input variables get multiplicated and then divided by the third one. The function
returns the result of this operation:

FUNCTION Fct: INT
VAR_INPUT
PAR1:INT;
PAR2:INT;
PAR3:INT;
END_VAR
LD PAR1
MUL PAR2
DIV PAR3
ST Fct

Example of a
function Fct in
IL, in which
three input var-
iables are
declared:
Declaration
part:

Implementa-
tion part:

In ST a function call can be used as operand in an expression.
In SFC a function call can only take place within actions of a step or a transition.

CODESYS allows using global variables within a function. This intentionally
deviates from the IEC61131-3 standard, which prescribes that return value of
a function only will be modified by the input parameters. Thus the difference
between functions and programs is just, that functions return only one return
value and that their parameters and return values are handled over the stack.

LD 7
Fct 2,4
ST Ergebnis
Ergebnis := Fct(7, 2, 4);

Examples for
calling the
above
described
function Fct:
In IL:

In ST:
In FUP:

NOTICE!
If a local variable in a function is declared as RETAIN, this will be without any
effect. The variable will not be saved in the Retain area!

Calling a func-
tion:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US152

– If you define a function in your project with the name CheckBounds, you can
use it to check for range overflows in arrays Ä Chapter 1.4.1.8.2.1 “ARRAY”
on page 445.

– If you define functions in your project with the names CheckDivByte, Check-
DivWord, CheckDivDWord and CheckDivReal, you can use them to check
the value of the divisor if you use the operator DIV, for example to avoid a
division by 0 Ä Chapter 1.4.1.6.2.4 “DIV” on page 408.

– If you define functions with the names CheckRangeSigned and Check-
RangeUnsigned, then range exceeding of variables declared with sub-
range types can be intercepted Ä Chapter 1.4.1.8.2.7 “Subrange types”
on page 450.

All these check function names are reserved for the described usage.

Function block
A function block is a POU which provides one or more values during the procedure.
As opposed to a function, a function block provides no return value Ä Chapter 1.4.1.1.9.3
“Function” on page 151.
A function block declaration begins with the keyword FUNCTION_BLOCK. Regard the recom-
mendations on the naming Ä Chapter 1.4.1.3.9.2.1 “Recommendations on the naming of identi-
fiers” on page 297.
Reproductions or instances (copies) of a function block can be created Ä Chapter 1.4.1.1.9.5
“Function block instances” on page 153.
The call of a function block is done via a function block instance Ä Chapter 1.4.1.1.9.6 “Calling
a function block” on page 154.

One output (iMulErg) is the product of the two inputs, the other (xVergl) is a comparison for
equality:

FUNCTION_BLOCK FUB
VAR_INPUT
 iPar1:INT;
 iPar2:INT;
END_VAR
VAR_OUTPUT
 iMulErg:INT;
 xVergl:BOOL;
END_VAR
LD iPar1
MUL iPar2
ST iMulErg

LD iPar1
EQ iPar2
ST xVergl

Example in IL
of a function
block with two
input variables
and two output
variables:
Declaration
part:

Implementa-
tion part in IL:

Function block instances
Reproductions or instances (copies) of a function block can be created Ä Chapter 1.4.1.1.9.4
“Function block” on page 153.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 153

Each instance possesses its own identifier (the Instance name), and a data structure which
contains its inputs, outputs, and internal variables. Instances are declared locally or globally as
variables, whereas the name of the function block is indicated as the type of an identifier.
Regard the Recommendations on the naming Ä Chapter 1.4.1.3.9.2.1 “Recommendations on
the naming of identifiers” on page 297.

Example of an instance with the name INSTANCE of the FUB function block:
fubInstance: FUB;

Example

Function blocks are always called through the instances described above.
Only the input and output parameters can be accessed from outside of an function block
instance, not its internal variables.

The function block FB has an input variable in1 of the type INT.

PROGRAM prog

VAR
fbinst1:fb;
END_VAR

LD 17
ST fbinst1.in1
CAL fbinst1

END_PROGRAM

Example for
accessing an
input variable

The declaration parts of function blocks and programs can contain instance declarations
Ä Chapter 1.4.1.1.9.4 “Function block” on page 153. Instance declarations are not permitted
in functions Ä Chapter 1.4.1.1.9.3 “Function” on page 151.
Access to a function block instance is limited to the POU in which it was declared unless it was
declared globally.
The instance name of a function block instance can be used as the input for a function or a
function block.

All values are retained after processing a function block until the next it is pro-
cessed. Therefore, function block calls with the same arguments do not always
return the same output values!

If at least one of the function block variables is a retain variable, the total
instance is stored in the retain area.

Calling a function block
The input and output variables of a function block can be accessed from another POU by set-
ting up an instance of the function block and specifying the desired variable using the following
syntax Ä Chapter 1.4.1.1.9.5 “Function block instances” on page 153:
<Instance name>.<Variable name>

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US154

If you would like to set input and/or output parameters when you call the function block, you
can do this in the text languages IL and ST by assigning values to the parameters after the
instance name of the function block in parentheses (for input parameters this assignment takes
place using ":=" just as with the initialization of variables at the declaration position, for output
parameters "=>" is to be used) Ä Chapter 1.4.1.3.9.11 “Variables declaration” on page 303.
If the instance is inserted via input assistant (<F2>) with option With arguments in the imple-
mentation window of a ST or IL POU, it will be displayed automatically according to this syntax
with all of its parameters. But you not necessarily must assign these parameters.

FBINST is a local variable of type of a function block, which contains the input variable xx
and the output variable yy. When FBINST is inserted in a ST program via input assistant,
the call will be displayed as follows and then can be supplemented with the desired values:
FBINST1(xx:= , yy=>);

Example:

Please regard, that the InOutVariables (VAR_IN_OUT) of a function block are handed over
as pointers. For this reason in a call of a function block no constants can be assigned to
VAR_IN_OUTs and there is no read or write access from outside to them.

Calling a VAR_IN_OUT variable inout1 of function block fubo in a ST module:
VAR
 fuboinst:fubo;
 iVar1:int;
END_VAR
iVar1:=2;
fuboinst(iInOut1:=iVar1);

not allowed in this case: "fuboinst(iInOut1:=2);" or "fuboinst.iInOut1:=2;"

Example

 FUNCTION_BLOCK FUB
 VAR_INPUT
 iPAR1:INT;
 iPAR2:INT;
 END_VAR
 VAR_OUTPUT
 iMELERG:INT;
 xVERGL:BOOL;
 END_VAR
 LD iPar1
 MUL iPar2
 ST iMulErg

 LD iPar1
 EQ iPar2
 ST xVergl

The multiplication result is saved in the variable ERG, and the result of the comparison is
saved in QUAD. An instance of FUB with the name INSTANCE is declared.

Examples for
calling function
block FUB:
Declaration
part:

Implementa-
tion part in
AWL:

 PROGRAM AWLaufruf
 VAR
 xQuad : BOOL;
 fubinstanz : FUB;
 iErg: INT:=0;
 END_VAR

Assigning
parameters at
call:

InOutVariables
at call:

Calling FUB in
IL:
Declaration
part:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 155

 CAL fubinstanz(iPar1:=5;iPar2:=5);
 LD fubinstanz.xVergl
 ST xQuad
 LD fubinstanz.iMulErg
 ST iErg
 PROGRAM STaufruf
 fubinstanz(iPar1:=5;iPar2:=5); bzw. fubinstanz;
 QUAD:=fubinstanz.xVergl;
 ERG:=funbinstanz.iMulErg;

In SFC function block calls can only take place in steps.

Program
A program is a POU which returns several values during operation. Programs are recognized
globally throughout the project. All values are retained from the last time the program was run
until the next.

Programs can be called. A program call in a function is not allowed. There are also no instances
of programs Ä Chapter 1.4.1.1.9.3 “Function” on page 151.
If a POU calls a program, and if thereby values of the program are changed, then these
changes are retained the next time the program is called, even if the program has been called
from within another POU.
This is different from calling a function block. There only the values in the given instance of a
function block are changed.

Implementation
part:

Calling FUB in
ST (declaration
part as shown
above for IL):
Calling FUB in
FBD (declara-
tion part as
shown above
for IL):

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US156

These changes therefore play a role only when the same instance is called.
A program declaration begins with the keyword PROGRAM. Regard the Recommendations
on the naming of identifiers Ä Chapter 1.4.1.3.9.2.1 “Recommendations on the naming of
identifiers” on page 297.
If you would like to set input and/or output parameters when you call the program, you can do
this in the text languages IL and ST by assigning values to the parameters after the program
name in parentheses (for input parameters this assignment takes place using ":=" just as with
the initialization of variables at the declaration position, for output parameters "=>" is to be used)
Ä Chapter 1.4.1.3.9.11 “Variables declaration” on page 303.
If the program is inserted via input assistant (<F2>) with option With arguments in the imple-
mentation window of a ST or IL POU, it will be displayed automatically according to this syntax
with all of its parameters. But you not necessarily must assign these parameters.

CAL PRGexample2

LD PRGexample2.out_var

ST ERG

or with assigning the parameters (input assistant "With arguments",
see above):

CAL PRGexample2(in_var:=33, out_var=>erg)

PRGexample2;

Erg := PRGexample2.out_var;

or with assigning the parameters (input assistant "With arguments",
see above):

PRGexample2(in_var:=33, out_var=>erg);

Examples for
program calls
In IL

In ST

In FBD

CAL PRGexample2
LD PRGexample2.out_var
ST ERG
or with assigning the parameters (input assistant "With arguments",
see above):
CAL PRGexample2(in_var:=33, out_var=>erg)

In IL

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 157

See the program PRGexample shown in the picture at top of this chapter:

LD 0

ST PRGexample.PAR (*Default setting for PAR is 0*)

CAL IL call (*ERG in IL call results in 1*)

CAL ST call (*ERG in ST call results in 2*)

CAL FBD call (*ERG in FBD call results in 3*)

If the variable PAR from the program PRGexample is initialized by a main program with 0, and
then one after the other programs are called with above named program calls, then the ERG
result in the programs will have the values 1, 2, and 3. If one exchanges the sequence of the
calls, then the values of the given result parameters also change in a corresponding fashion.

Example for a
possible call
sequence for
PLC_PRG

PLC_PRG
We have defined and correlated the time sequencing of the phases for both sets of traffic lights
in the block SEQUENCE. Since, however, we see the traffic lights system as a module of a
bus system, e.g. CAN bus, we have to make input and output variables available in the block
PLC_PRG. We want to start-up the traffic lights system over an ON switch and we want to send
each of the six lamps (each traffic light red, green, yellow) the corresponding "signal command"
for each step of the SEQUENCE. We are now declaring appropriate Boolean variables for these
six outputs and one input, before we create the programme in the editor, and are allocating
them, at the same time, to the corresponding IEC addresses.
The next step is declare the variables Light1 and Light2 of the type Phases in the declaration
editor.

These deliver the Boolean value of each of the six lights to the above mentioned six outputs for
each step of the block SEQUENCE. We are not, however, declaring the output variables which
are foreseen within the PLC_PRG block but under Resources for Global Variables instead. The
Boolean input variable IN, which is used to set the variable START in the block SEQUENCE to
TRUE, can be set in the same way. ON is also allocated to an IEC address.
Select the tab Resources and open the list Global Variables.
Make the declaration as follows:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US158

The name of the variable (e.g. IN) is followed, after AT, by a percent sign which begins the
IEC address. I stands for input, Q for output, B (used in the example) stands for byte and the
individual bits of the module are addressed using 0.0 (0.1, 0.2, etc.). We will not do the needed
controller configuration here in the example, because it depends on which target package you
have available on your computer.
We now want to finish off the block PLC_PRG.
For this we go into the editor window. We have selected the Continuous Function Chart editor
and we consequently obtain, under the menu bar, a CFC symbol bar with all of the available
elements.
Click on the right mouse key in the editor window and select the element Box. Click on the
text AND and write "SEQUENCE" instead. This brings up the block SEQUENCE with all of
the already defined input and output variables. Insert two further block elements which you
name PHASES. Phases is a function block and this causes you to obtain three red question
marks over the block which you replace with the already locally declared variables LIGHT1 and
LIGHT2. Now set an element of the type Input, which award the title ON and six elements of
the type Output which you award variable names to, as described, namely L1_green, L1_yellow,
L1_red, L2_green, L2_yellow, L2_red.
All of the elements of the programme are now in place and you can connect the inputs and
outputs, by clicking on the short line at the input/output of an element and dragging this with a
constantly depressed mouse key to the input/output of the desired element.
Your program should finally look like the example shown here.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 159

Action
Actions can be defined and assigned to function blocks and programs Ä Chapter 1.4.1.1.9.4
“Function block” on page 153 Ä Chapter 1.4.1.1.9.7 “Program” on page 156 Ä Chapter
1.4.1.2.4.14 “'Project' 'Add action'” on page 263. The action represents a further implementation
which can be entirely created in another language as the "normal" implementation. Each action
is given a name.
An action works with the data from the function block or programme which it belongs to. The
action uses the same input/output variables and local variables as the "normal" implementation
uses.

In the example given, calling up the function block Counter increases or decreases the output
variable "out", depending on the value of the input variable "in". Calling up the action Reset of
the function block sets the output variable to zero. The same variable "out" is written in both
cases.

An action is called up with <Program_name>.<Action_name> or
<Instance_name>.<Action_name>. Regard the notation in FBD (see example below) ! If it is
required to call up the action within its own block, one just uses the name of the action in
the text editors and in the graphic form the function block call up without instance information
Ä Chapter 1.4.1.1.9.5 “Function block instances” on page 153.

Calling an
action:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US160

PROGRAM PLC_PRG
 VAR
 Inst : Counter;
 END_VAR
CAL Inst.Reset(In := FALSE)
 LD Inst.out
 ST ERG

Inst.Reset(In := FALSE);
 Erg := Inst.out;

Examples for
calls of the
above
described
action from
another POU
Declaration for
all examples:

Call of action
'Reset' in
another POU,
which is pro-
grammed in IL:
Call of action
'Reset' in
another POU,
which is pro-
grammed in
ST:
Call of action
'Reset' in
another POU,
which is pro-
grammed in
FBD:

Actions play an important role in blocks in sequential function charts. The IEC
standard does not recognise actions other than actions of the sequential func-
tion chart (SFC) Ä Chapter 1.4.1.1.10.5.1 “Overview” on page 171.

Resources
You need the resources for configuring and organizing your project and for tracing variable
values:
● Global variables which can be used throughout the project or network
● Library manager for adding libraries to the project Ä Chapter 1.4.1.4.3.1 “Overview”

on page 371
● Log for recording the actions during an online session Ä Chapter 1.4.1.4.4.1 “Overview”

on page 374
● Alarm configuration for the configuration of the alarm handling in the project Ä Chapter

1.4.1.4.2.1 “Overview” on page 363
● PLC configuration for configuring your hardware
● Task configuration for guiding your program through tasks Ä Chapter 1.4.1.4.8.1 “Overview”

on page 390
● Watch and receipt manager for displaying variable values and setting default variable values
Ä Chapter 1.4.1.4.9.1 “Overview” on page 395

● Target settings for selection and if necessary final configuration of the target system
Ä Chapter 1.4.1.4.7.1 “Overview” on page 387

● Workspace as an image of the project options Ä Chapter 1.4.1.2.1.5 “Workspace”
on page 199

Depending on the target system and on the target settings further resources might be available
in your project. Ä Chapter 1.4.1.4 “The 'Resources' tab” on page 357

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 161

Libraries
You can include in your project a series of libraries whose POUs, data types, and global
variables you can use just like user-defined variables. The libraries standard.lib and util.lib
are standard parts of the program and are always at your disposal Ä Chapter 1.4.1.4.3.1
“Overview” on page 371.

Data types
Along with the standard data types the user can define his own data types. Structures, enumer-
ation types and references can be created Ä Chapter 1.4.1.8.1.1 “Data types” on page 443.

Visualization
With visualizations you can display your project variables. You can plot geometric elements
off-line with the help of the visualization. In Online mode, these can then change their form/
color/text output in response to specified variable values.
A visualization can be used as a pure operating interface for a PLC with HMI or as a web
visualization or target visualization running via internet resp. directly on the PLC Ä Chapter
1.4.3.1 “Overview” on page 636.

1.4.1.1.10 Languages
Supported languages

All languages described by the standard IEC-61131 are supported.

Textual languages:
● Instruction list (IL) Ä Chapter 1.4.1.1.10.3.1 “Overview” on page 163
● Structured Text (ST) Ä Chapter 1.4.1.1.10.4.1 “Overview” on page 165

Graphic languages:
● Sequential function chart (SFC) Ä Chapter 1.4.1.1.10.5.1 “Overview” on page 171
● Function Block Diagram (FBD) Ä Chapter 1.4.1.1.10.2 “Function Block Diagram (FBD)”

on page 162
● Ladder Diagram (LD) Ä Chapter 1.4.1.1.10.7.1 “Overview” on page 176

Additionally, there is available the graphic continuous function chart (CFC), based on the Func-
tion Block Diagram Ä Chapter 1.4.1.1.10.6 “The continuous function chart (CFC)” on page 176.

Function Block Diagram (FBD)
The Function Block Diagram is a graphically oriented programming language. It works with a
list of networks whereby each network contains a structure which represents either a logical
or arithmetic expression, the call of a function block, a jump, or a return instruction Ä Chapter
1.4.1.1.9.4 “Function block” on page 153.

Fig. 10: Example of a network in the Function Block Diagram

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US162

See also:
● The graphic editors Ä Chapter 1.4.1.3.11.1 “Overview” on page 314
● The Function Block Diagram Editor Ä Chapter 1.4.1.3.11.7.1 “Overview” on page 317

Instruction list (IL)
Overview

An instruction list (IL) consists of a series of instructions. Each instruction begins in a new
line and contains an operator and, depending on the type of operation, one or more operands
separated by commas.
In front of an instruction there can be an identification mark (label) followed by a colon (:).
A comment must be the last element in a line. Empty lines can be inserted between instructions.

LD 17
ST lint (* Kommentar *)
GE 5
JMPC next
LD idword
EQ istruct.sdword
STN test
next:

Example:

See also:
Modifiers and operators in IL Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL”
on page 163

Modifiers and operators in IL
In the IL language the following operators and modifiers can be used.

Table 8: Modifiers
C with JMP, CAL, RET: The instruction is only then

executed if the result of
the preceding expression is
TRUE.

N with JMPC, CALC, RETC: The instruction is only then
executed if the result of
the preceding expression is
FALSE.

N otherwise: Negation of the operand (not
of the accumulator) Below you
find a table of all operators in
IL with their possible modifiers
and the relevant meaning:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 163

Table 9: Operators in IL
Operator Modifiers Meaning
LD N Make current result equal to

the operand

ST N Save current result at the
position of the operand

S Then put the Boolean operand
exactly at TRUE if the current
result is TRUE

R Then put the Boolean operand
exactly at FALSE if the current
result is TRUE

AND N,(Bitwise AND

OR N,(Bitwise OR

XOR N,(Bitwise exclusive OR

ADD (Addition

SUB (Subtraction

MUL (Multiplication

DIV (Division

GT (>

GE (>=

EQ (=

NE (<>

LE (<=

LT (<

JMP CN Jump to the label

CAL CN Call programor function block
or

RET CN Leave POU and return to
caller.

) Evaluate deferred operation

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US164

LD TRUE (*load TRUE in the accumu-
lator*)

ANDN BOOL1 (*execute AND with the
negated value of the BOOL1
variable*)

JMPC mark (*if the result was TRUE,
then jump to the label
"mark"*)

LDN BOOL2 (*save the negated value of
*)

ST ERG (*BOOL2 in ERG*)

label:

LD BOOL2 (*save the value of *)

ST ERG *BOOL2 in ERG*)

Example of an
IL program
while using
some modi-
fiers:

It is also possible in IL to put parentheses after an operation. The value of the parenthesis is
then considered as an operand.

LD 2

MUL 2

ADD 3

Erg

Here is the value of Erg 7. However, if one puts parentheses:
LD 2

MUL (2

ADD 3

)

ST Erg

The resulting value for Erg is 10, the operation MUL is only then evaluated if you come to ")";
as operand for MUL 5 is then calculated.

Example

Structured Text (ST)
Overview

The Structured Text consists of a series of instructions which, as determined in high level
languages, ("IF..THEN..ELSE") or in loops (WHILE..DO) can be executed.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 165

If value < 7 THEN
 WHILE value < 8 DO
 value:=value+1;
 END_WHILE;
END_IF;

Example

Identifier
An identifier is a sequence of letters, numbers, and underscores that begins with a letter or an
underscore.
The variable identifier may not contain any blank spaces or special characters, may not be
declared more than once and cannot be the same as any of the keywords. Capitalization is not
recognized which means that VAR1, Var1, and var1 are all the same variable. The underscore
character is recognized in identifiers (e.g., "A_BCD" and "AB_CD" are considered two different
identifiers). An identifier may not have more than one underscore character in a row. The first 32
characters are significant.

Expressions
An expression is a construction which returns a value after its evaluation.
Expressions are composed of operators and operands. An operand can be a constant, a
variable, a function call, or another expression.

Valuation of expressions
The evaluation of expression takes place by means of processing the operators according
to certain binding rules. The operator with the strongest binding is processed first, then the
operator with the next strongest binding, etc., until all operators have been processed.
Operators with equal binding strength are processed from left to right.

Table 10: ST operators in the order of their binding strength
Operation Symbol Binding strength
Put in parentheses (expression) Strongest binding

Function call Function name (parameter
list)

Exponentiation EXPT

Negate Building of comple-
ments

- NOT

Multiply Divide Modulo * / MOD

Add Subtract + -

Compare <,>,<=,>=

Equal to Not equal to = <>

Boolean AND AND

Boolean XOR XOR

Boolean OR OR Weakest binding

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US166

Table 11: Instructions in ST
Instruction type Example
Assignment A:=B; CV := CV + 1; C:=SIN(X);

Calling a function block and use of the FB
output

CMD_TMR(IN := %IX5, PT := 300);
A:=CMD_TMR.Q

RETURN RETURN;

IF D:=B*B;
IF D<0.0 THEN
C:=A;
ELSIF D=0.0 THEN
C:=B;
ELSE
C:=D;
END_IF;

CASE CASE INT1 OF 1:
BOOL1 := TRUE; 2:
BOOL2 := TRUE;
ELSE
BOOL1 := FALSE;
BOOL2 := FALSE;
END_CASE;

FOR J:=101;
FOR I:=1 TO 100 BY 2 DO
IF ARR[I] = 70 THEN
J:=I; EXIT;
END_IF;
END_FOR;

WHILE J:=1;
WHILE J<= 100 AND ARR[J] <> 70 DO
J:=J+2;
END_WHILE;

REPEAT J:=-1;
REPEAT
J:=J+2;
UNTIL J= 101 OR ARR[J] = 70
END_REPEAT;

EXIT EXIT;

Empty instruction ;

Assignment operator
On the left side of an assignment there is an operand (variable, address) to which is assigned
the value of the expression on the right side with the assignment operator :=

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 167

Var1 := Var2 * 10;
After completion of this line Var1 has the tenfold value of Var2.

Example:

Calling function blocks in ST
A function block is called in ST by writing the name of the instance of the function block and
then assigning the values of the parameters in parentheses Ä Chapter 1.4.1.1.9.4 “Function
block” on page 153 Ä Chapter 1.4.1.1.9.5 “Function block instances” on page 153. In the
following example a timer is called with assignments for the parameters IN and PT. Then the
result variable Q is assigned to the variable A.
The result variable, as in IL, is addressed with the name of the function block, a following point,
and the name of the variable:
CMD_TMR(IN := %IX5, PT := 300);
A:=CMD_TMR.Q

RETURN instruction
The RETURN instruction can be used to leave a POU, for example depending on a condition.

IF instruction
With the IF instruction you can check a condition and, depending upon this condition, execute
instructions.
Syntax:

IF <Boolean_expression1> THEN
 <IF_instructions>
{ELSIF <Boolean_expression2> THEN
 <ELSIF_instructions1>
.
.
ELSIF <Boolean_expression n> THEN
 <ELSIF_instructions n-1>
ELSE
<ELSE_instructions>}
END_IF;
The part in braces {} is optional.
If the <Boolean_expression1> returns TRUE, then only the <IF_Instructions> are executed and
none of the other instructions.
Otherwise the Boolean expressions, beginning with <Boolean_expression2>, are evaluated one
after the other until one of the expressions returns TRUE. Then only those instructions after this
Boolean expression and before the next ELSE or ELSIF are evaluated.
If none of the Boolean expressions produce TRUE, then only the <ELSE_instructions> are
evaluated.

IF temp<17
THEN heating_on := TRUE;
ELSE heating_on := FALSE;
END_IF;

Here the heating is turned on when the temperature sinks below 17 degrees. Otherwise it
remains off.

Example:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US168

CASE instruction
With the CASE instructions one can combine several conditioned instructions with the same
condition variable in one construct.
Syntax:

CASE <Var1> OF
<Value1>: <Instruction 1>
<Value2>: <Instruction 2>
<Value3, Value4, Value5>: <Instruction 3>
<Value6 .. Value10>: <Instruction 4>

...

<Value n>: <Instruction n>
ELSE <ELSE instruction>
END_CASE;
A CASE instruction is processed according to the following model:
● If the variable in <Var1> has the value <Value i>, then the instruction <Instruction i> is

executed.
● If <Var 1> has none of the indicated values, then the <ELSE Instruction> is executed.
● If the same instruction is to be executed for several values of the variables, then one

can write these values one after the other separated by commas, and thus condition the
common execution.

● If the same instruction is to be executed for a range of values of a variable, one can write
the initial value and the end value separated by two dots one after the other. So you can
condition the common condition.

CASE INT1 OF
1, 5: BOOL1 := TRUE;
 BOOL3 := FALSE;
2: BOOL2 := FALSE;
 BOOL3 := TRUE;
10..20: BOOL1 := TRUE;
 BOOL3:= TRUE;
ELSE
 BOOL1 := NOT BOOL1;
 BOOL2 := BOOL1 OR BOOL2;
END_CASE;

Example:

FOR loop
With the FOR loop one can program repeated processes.
Syntax:

INT_Var :INT;
FOR <INT_Var> := <INIT_VALUE> TO <END_VALUE> {BY <Step size>} DO
 <Instructions>
END_FOR;
The part in braces {} is optional.
The <Instructions> are executed as long as the counter <INT_Var> is not greater than the
<END_VALUE>. This is checked before executing the <Instructions> so that the <instructions>
are never executed if <INIT_VALUE> is greater than <END_VALUE>.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 169

When <Instructions> are executed, <INT_Var> is always increased by <Step size>. The step
size can have any integer value. If it is missing, then it is set to 1. The loop must also end since
<INT_Var> only becomes greater.

FOR Counter:=1 TO 5 BY 1 DO
Var1:=Var1*2;
END_FOR;
Erg:=Var1;

Let us assume that the default setting for Var1 is the value 1. Then it will have the value 32
after the FOR loop.

Example:

<END_VALUE> must not be equal to the limit value of the counter <INT_VAR>.
For example: If the variable Counter is of type SINT and if <END_VALUE> is
127, you will get an endless loop.

WHILE loop
The WHILE loop can be used like the FOR loop with the difference that the break-off condition
can be any Boolean expression. This means you indicate a condition which, when it is fulfilled,
the loop will be executed.
Syntax:
WHILE <Boolean expression>
<Instructions>
END_WHILE;
The <Instructions> are repeatedly executed as long as the <Boolean_expression> returns
TRUE. If the <Boolean_expression> is already FALSE at the first evaluation, then the
<Instructions> are never executed. If <Boolean_expression> never assumes the value FALSE,
then the <Instructions> are repeated endlessly which causes a relative time delay.

The programmer must make sure that no endless loop is caused. He does this
by changing the condition in the instruction part of the loop, for example, by
counting up or down one counter.

WHILE counter<>0 DO
Var1 := Var1*2;
Counter := Counter-1;
END_WHILE

Example:

The WHILE and REPEAT loops are, in a certain sense, more powerful than the FOR loop since
one doesn't need to know the number of cycles before executing the loop. In some cases one
will, therefore, only be able to work with these two loop types. If, however, the number of the
loop cycles is clear, then a FOR loop is preferable since it allows no endless loops.

REPEAT loop
The REPEAT loop is different from the WHILE loop because the break-off condition is checked
only after the loop has been executed. This means that the loop will run through at least once,
regardless of the wording of the break-off condition.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US170

Syntax:
REPEAT
<Instructions>
UNTIL <Boolean expression>
END_REPEAT;
The <Instructions> are carried out until the <Boolean expression> returns TRUE.
If <Boolean expression> is produced already at the first TRUE evaluation, then <Instructions>
are executed only once. If <Boolean_expression> never assumes the value TRUE, then the
<Instructions> are repeated endlessly which causes a relative time delay.

The programmer must make sure that no endless loop is caused. He does this
by changing the condition in the instruction part of the loop, for example by
counting up or down one counter.

REPEAT
Var1 := Var1*2;
Counter := Counter-1;
UNTIL
Counter=0
END_REPEAT;

Example:

EXIT instruction
If the EXIT instruction appears in a FOR, WHILE, or REPEAT loop, then the innermost loop is
ended, regardless of the break-off condition.

Sequential function chart (SFC)
Overview

The sequential function chart (SFC) is a graphically oriented language which makes it possible
to describe the chronological order of different actions within a program. For this the actions are
assigned to step elements and the sequence of processing is controlled by transition elements.

Action
An action can contain a series of instructions in IL or in ST, a lot of networks in FBD or in LD,
or again in Sequential Function Chart (SFC) Ä Chapter 1.4.1.1.10.2 “Function Block Diagram
(FBD)” on page 162 Ä Chapter 1.4.1.1.10.7.1 “Overview” on page 176.
With the simplified steps an action is always connected to a step. In order to edit an action, click
twice with the mouse on the step to which the action belongs. Or select the step and select
the menu command 'Extras' 'Zoom Action/Transition' Ä Chapter 1.4.1.3.11.9.18 “'Extras' 'Zoom
Action/Transition'” on page 333. In addition, one input or output action per step is possible.
Actions of IEC steps hang in the Object Organizer directly under their SFC-POU and are loaded
with a doubleclick or by pressing <Enter> in their editor Ä Chapter 1.4.1.1.10.5.6 “IEC step”
on page 172. New actions can be created with 'Project' 'Add action' Ä Chapter 1.4.1.2.4.14
“'Project' 'Add action'” on page 263. You can assign max. nine actions to one IEC step.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 171

Entry or exit action
Additional to a step action you can add an entry action and an exit action to a step. An entry
action is executed only once, right after the step has become active. An exit action is executed
only once before the step is deactivated.
A step with entry action is indicated by an "E" in the lower left corner, the exit action by an "X" in
the lower right corner.
The entry and exit action can be implemented in any language. In order to edit an entry or exit
action, doubleclick in the corresponding corner in the step with the mouse.
Example of a step with entry and exit action:

Transition / Transition condition
Between the steps there are so-called transitions.
A transition condition must have the value TRUE or FALSE. Thus it can consist of either a
boolean variable, a boolean address or a boolean constant. It can also contain a series of
instructions having a boolean result, either in ST syntax (e.g. (i<= 100) AND b) or in any
language desired Ä Chapter 1.4.1.3.11.9.18 “'Extras' 'Zoom Action/Transition'” on page 333. But
a transition may not contain programs, function blocks or assignments!
In the SFC-Editor a transition condition can be written directly at the transition symbol or an
own editor window can be opened for entering the condition Ä Chapter 1.4.1.3.11.9.18 “'Extras'
'Zoom Action/Transition'” on page 333. Regard that the instructions entered in the editor window
will take precedence!

Besides transitions, inching mode can also be used to skip to the next step.

Active step
After calling the SFC POU, the action (surrounded by a double border) belonging to the initial
step is executed first Ä Chapter 1.4.1.1.10.5.2 “Action” on page 171. A step, whose action is
being executed, is called active. In Online mode active steps are shown in blue.
In a control cycle all actions are executed which belong to active steps. Thereafter the respec-
tive following steps of the active steps become active if the transition conditions of the following
steps are TRUE Ä Chapter 1.4.1.1.10.5.4 “Transition / Transition condition” on page 172. The
currently active steps will be executed in the next cycle.

If the active step contains an output action, this will only be executed during the
next cycle, provided that the transition following is TRUE.

Note the possibility to use implicit variables for scanning the status and
time of steps or actions Ä Chapter 1.4.1.1.10.5.7 “Implicit variables in SFC”
on page 174.

IEC step
Along with the simplified steps the standard IEC steps in SFC are available.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US172

In order to be able to use IEC steps, you must link the special SFC library lecsfc.lib into your
project.
Not more than nine actions can be assigned to an IEC step Ä Chapter 1.4.1.1.10.5.2 “Action”
on page 171. IEC actions are not fixed as input, step or output actions to a certain step as
in the simplified steps, but are stored separately from the steps and can be reused many
times within a POU. For this they must be associated to the single steps with the command
'Extras''Associate action'.
Along with actions, Boolean variables can be assigned to steps.
The activation and deactivation of actions and boolean variables can be controlled using so-
called Qualifier. Time delays are possible. Since an action can still be active, if the next step
has been processed, for example through the qualifier S (Set), one can achieve concurrent
processes.
An associated boolean variable is set or reset with each call of the SFC block. That means, that
at each call the variable gets re-assigned value TRUE resp. FALSE.
The actions associated with an IEC step are shown at the right of the step in a two-part box.
The left field contains the qualifier, possibly with time constant, and the right field contains the
action name respectively boolean variable name.
An example for an IEC step with two actions:

In order to make it easier to follow the processes, all active actions in online mode are shown in
blue like the active steps. After each cycle a check is made to see which actions are active.
Pay attention here also to the restrictions on the use of time-qualifiers in actions that are
repeatedly re-used within the same cycle.

If an action has been inactivated, it will be executed once more. That means,
that each action is executed at least twice (also an action with qualifier P).

In case of a call first the deactivated actions, then the active actions are executed, in alphabet-
ical order each time.
Whether a newly inserted step is an IEC step depends upon whether the menu command
'Extras' 'Use IEC-Steps' has been chosen.
In the Object Organizer the actions hang directly underneath their respective SFC POUs. New
actions can be created with 'Project' 'Add Action' Ä Chapter 1.4.1.2.4.14 “'Project' 'Add action'”
on page 263.
In order to use IEC steps you must include in your project the special SFC library Iecsfc.lib .

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 173

Implicit variables in SFC
In SFC implicitly declared variables ("flags") can be used to scan the status of steps and actions
as well as the time of steps. These flags each are set at the beginning of a cycle. For IEC
steps and IEC actions they are provided by the library iecsfc.lib (structures SFCStepType and
SFCActionType), which is included automatically in a project Ä Chapter 1.4.1.1.10.5.6 “IEC
step” on page 172 Ä Chapter 1.4.1.1.10.5.2 “Action” on page 171.

● For IEC steps: <stepname>.x resp. <stepname>._x: <StepName>.x shows the current
activation status. <StepName>._x shows the activation status for the next cycle. If <Step-
Name>.x=TRUE, the step will be executed in the current cycle. If <StepName>._x=TRUE
and <StepName>.x=FALSE, the step will be executed in the following cycle, i.e. <Step-
Name>._x gets copied to <StepName>.x at the beginning of a cycle.

● For simplified steps: <stepname> resp. _<stepname>: If <StepName>=TRUE, the step will
be executed in the current cycle. If _<StepName>=TRUE, the step will be executed in the
following cycle, i.e. <StepName> gets copied to _<StepName> at the beginning of a cycle.

● For IEC-actions: <actionname>.x gets TRUE as soon as the action gets active (<action-
name>._x is only for internal purposes, not for a status scan).

The following implicit variables give the current time span which has passed since the step had
got active; this is only for steps which have a minimum time configured in the step attributes
Ä Chapter 1.4.1.3.11.9.20 “'Extras' 'Step Attributes'” on page 334.
● For IEC steps: <stepname>.t (<stepname>._t not usable for external purposes)
● For simplified steps: _time<stepname>. BUT: If this implicit variable should be used for scan

purposes, it also must be declared explicitly as a TIME variable; e.g. "_timeStep1 : TIME;"
● For IEC actions: the implicit time variables are not used.
These status flags can be used in each action and transition of the SFC module. But they can
also be accessed from other programs:
Example: boolvar1:=sfc.step1.x;
step1.x in the example is an implicit boolean variable showing the status of IEC step "step1" in
POU "sfc1".

SFC flags
For controlling the operation of SFC POUs flags can be used, which are created implicitly during
running the project. To read this flags you have to define appropriate global or local variables
as inputs or outputs. Example: If in a SFC POU a step is active for a longer time than defined
in the step attributes, then a flag will be set, which is accessible by using a variable "SFCError"
(SFCError gets TRUE in this case).
The following flag variables can be defined:
● SFCEnableLimit: This variable is of the type BOOL. When it has the value TRUE, the

timeouts of the steps will be registered in SFCError. Other timeouts will be ignored.
● SFCInit: When this boolean variable has the value TRUE the sequential function chart is set

back to the Init step. The other SFC flags are reset too (initialization). The Init step remains
active, but is not executed, for as long as the variable has the value TRUE. It is only when
SFCInit is again set to FALSE that the block can be processed normally.

● SFCReset: This variable, of type BOOL, behaves similarly to SFCInit. Unlike the latter,
however, further processing takes place after the initialization of the Init step. Thus for
example the SFCReset flag could be re-set to FALSE in the Init step.

As from compiler version 2.3.7.0 SFCReset also can be used to reset boolean
actions associated to IEC steps, which was not possible before.

Scan of the step
or action status
via boolean vari-
ables:

Time of a step
via TIME varia-
bles:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US174

● SFCQuitError: Provided that the Execution of the SFC diagram is stopped for as long as this
boolean variable has the value TRUE whereby a possible timeout in the variable SFCError
is reset. All previous times in the active steps are reset when the variable again assumes
the value FALSE. It is a pre-condition that the flag SFCError has been defined also, which
registers any timeout in the SFC.

● SFCPause: Execution of the SFC diagram is stopped for as long as this boolean variable
has the value TRUE.

● SFCError: This Boolean variable is TRUE when a timeout has occurred in a SFC diagram.
If another timeout occurs in a program after the first one, it will not be registered unless
the variable SFCError is reset first. It is a pre-condition that SFCError is defined, if you
want to use the other time-controlling flags (SFCErrorStep, SFCErrorPOU, SFCQuitError,
SFCErrorAnalyzation).

● SFCTrans: This boolean variable takes on the value TRUE when a transition is actuated.
● SFCErrorStep: This variable is of the type STRING. If SFCError registers a timeout, in this

variable is stored the name of the step which has caused the timeout. It is a pre-condition
that the flag SFCError has been defined also, which registers any timeout in the SFC.

● SFCErrorPOU: This variable of the type STRING contains the name of the block in which
a timeout has occurred. It is a pre-condition that the flag SFCError has been defined also,
which registers any timeout in the SFC.

● SFCCurrentStep: This variable is of the type STRING. The name of the step is stored in this
variable which is active, independently of the time monitoring. In the case of simultaneous
sequences the step is stored in the branch on the outer right. No further timeout will be
registered if a timeout occurs and the variable SFCError is not reset again.

● SFCErrorAnalyzationTable: This variable of type ARRAY [0..n] OF ExpressionResult pro-
vides the result of an analyzation of a transition expression. For each component of the
expression, which is contributing to a FALSE of the transition and thereby to a timeout of the
preceding step, the following information is written to the structure ExpressionResult: name,
address, comment, current value.
This is possible for maximum 16 components (variables), thus the array range is max.
0..15).
The structure ExpressionResult as well as the implicitly used analyzation modules are
provided with the library AnalyzationNew.lib. The analyzation modules also can be used
explicitly in other POUs, which are not programmed in SFC.
It is a pre-condition for the analyzation of a transition expression, that a timeout is registered
in the preceding step. So a time monitoring must be implemented there and also the
variable SFCError (see above) must be defined in the declaration window.

● SFCTip, SFCTipMode: This variables of type BOOL allow inching mode of the SFC. When
this is switched on by SFCTipMode=TRUE, it is only possible to skip to the next step if
SFCTip is set to TRUE. As long as SFCTipMode is set to FALSE, it is possible to skip even
over transitions.

Regard also the implicit variables usable for scanning the status and time of
steps/ actions Ä Chapter 1.4.1.1.10.5.7 “Implicit variables in SFC” on page 174.

Alternative branch
Two or more branches in SFC can be defined as alternative branches. Each alternative branch
must begin and end with a transition Ä Chapter 1.4.1.2.3.43 “'Project' 'Passwords for user
groups'” on page 250. Alternative branches can contain parallel branches and other alternative
branches Ä Chapter 1.4.1.1.10.5.10 “Parallel branch” on page 176. An alternative branch
begins at a horizontal line (alternative beginning) and ends at a horizontal line (alternative end)
or with a jump Ä Chapter 1.4.1.1.10.5.11 “Jump” on page 176.
If the step which precedes the alternative beginning line is active, then the first transition of each
alternative branch is evaluated from left to right. The first transition from the left whose transition
condition has the value TRUE is opened and the following steps are activated Ä Chapter
1.4.1.1.10.5.5 “Active step” on page 172.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 175

Parallel branch
Two or more branches in SFC can be defined as parallel branches. Each parallel branch must
begin and end with a step. Parallel branches can contain alternative branches or other parallel
branches. A parallel branch begins with a double line (parallel beginning) and ends with a
double line (parallel end) or with a jump. It can be provided with a jump label.
If the parallel beginning line of the previous step is active and the transition condition after this
step has the value TRUE, then the first steps of all parallel branches become active Ä Chapter
1.4.1.2.3.43 “'Project' 'Passwords for user groups'” on page 250 Ä Chapter 1.4.1.1.10.5.5
“Active step” on page 172. These branches are now processed parallel to one another. The step
after the parallel end line becomes active when all previous steps are active and the transition
condition before this step produces the value TRUE.

Jump
A jump is a connection to the step whose name is indicated under the jump symbol. Jumps are
required because it is not allowed to create connections which lead upward or cross each other.

The continuous function chart (CFC)
The continuous function chart bases on the Function Block Diagram language. However it does
not operate with networks, but rather with freely placeable elements. This allows feedback, for
example.

Ladder Diagram (LD)
Overview

The Ladder Diagram is also a graphics oriented programming language which approaches the
structure of an electric circuit.
On the one hand, the Ladder Diagram is suitable for constructing logical switches, on the other
hand one can also create networks as in FBD. Therefore the LD is very useful for controlling the
call of other POUs.
The Ladder Diagram consists of a series of networks. A network is limited on the left and right
sides by a left and right vertical current line. In the middle is a circuit diagram made up of
contacts, coils, and connecting lines.
Each network consists on the left side of a series of contacts which pass on from left to right the
condition "ON" or "OFF" which correspond to the Boolean values TRUE and FALSE. To each
contact belongs a Boolean variable. If this variable is TRUE, then the condition is passed from
left to right along the connecting line. Otherwise the right connection receives the value OFF.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US176

See also:
The Graphic Editors Ä Chapter 1.4.1.3.11.1 “Overview” on page 314

The Ladder Editor Ä Chapter 1.4.1.3.11.8.1 “Overview” on page 323

Contact
Each network in LD consists on the left side of a network of contacts (contacts are represented
by two parallel lines: | |) which from left to right show the condition "On" or "Off".
These conditions correspond to the Boolean values TRUE and FALSE. A Boolean variable
belongs to each contact. If this variable is TRUE, then the condition is passed on by the
connecting line from left to right, otherwise the right connection receives the value "Out".
Contacts can be connected in parallel, then one of the parallel branches must transmit the value
"On" so that the parallel branch transmits the value "On"; or the contacts are connected in
series, then contacts must transmit the condition "On" so that the last contact transmits the "On"
condition. This therefore corresponds to an electric parallel or series circuit.
A contact can also be negated, recognizable by the slash in the contact symbol: |/| Ä Chapter
1.4.1.3.11.8.25 “'Extras' 'Negate' in LD” on page 329. Then the value of the line is transmitted if
the variable is FALSE.

Coil
On the right side of a network in LD there can be any number of so-called coils which are
represented by parentheses:(). They can only be in parallel. A coil transmits the value of the
connections from left to right and copies it in an appropriate Boolean variable. At the entry line
the value ON (corresponds to the Boolean variable TRUE) or the value OFF (corresponding to
FALSE) can be present.
Contacts and coils can also be negated (in the example the contact SWITCH1 and the coil
%QX3.0 is negated). If a coil is negated (recognizable by the slash in the coil symbol: (/)), then
it copies the negated value in the appropriate Boolean variable. If a contact is negated, then it
connects through only if the appropriate Boolean value is FALSE.

Function blocks in the Ladder Diagram
Along with contacts and coils you can also enter function blocks and programs In the net-
work they must have an input and an output with Boolean values and can be used at the
same places as contacts, that is on the left side of the Ladder Diagram network Ä Chapter
1.4.1.1.10.7.2 “Contact” on page 177 Ä Chapter 1.4.1.1.10.7.3 “Coil” on page 177 Ä Chapter
1.4.1.1.9.4 “Function block” on page 153.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 177

Set/Reset coils
Coils can also be defined as set or reset coils. One can recognize a set coil by the "S" in the coil
symbol: (S)) It never writes over the value TRUE in the appropriate Boolean variable. That is, if
the variable was once set at TRUE, then it remains so.
One can recognize a reset coil by the "R" in the coil symbol: (R)) It never writes over the value
FALSE in the appropriate Boolean variable: If the variable has been once set on FALSE, then it
remains so.

LD as FBD
When working with LD it is very possible that you will want to use the result of the contact switch
for controlling other POUs. On the one hand you can use the coils to put the result in a global
variable which can then be used in another place. You can, however, also insert the possible
call directly into your LD network. For this you introduce a POU with EN input.
Such POUs are completely normal operands, functions, programs, or function blocks which
have an additional input which is labeled with EN. The EN input is always of the BOOL type and
its meaning is: The POU with EN input is evaluated when EN has the value TRUE.
An EN POU is wired parallel to the coils, whereby the EN input is connected to the connecting
line between the contacts and the coils. If the ON information is transmitted through this line,
this POU will be evaluated completely normally.
Starting from such an EN POU, you can create networks similar to FBD.

Reserved keywords
The following strings are reserved as keywords, i.e. they cannot be used as identifiers for
variables or POUs:

ABS Ä Chapter 1.4.1.6.10.1 “ABS” on page 430

ACOS Ä Chapter 1.4.1.6.10.10 “ACOS” on page 433

ACTION (only used in the Export Format)
ADD Ä Chapter 1.4.1.6.2.1 “ADD” on page 407

ADR Ä Chapter 1.4.1.6.7.1 “ADR” on page 421

ADRINST Ä Chapter 1.4.1.6.7.2 “ADRINST” on page 421

AND Ä Chapter 1.4.1.6.3.1 “AND” on page 410

ANDN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

ARRAY Ä Chapter 1.4.1.8.2.1 “ARRAY” on page 445

ASIN Ä Chapter 1.4.1.6.10.9 “ASIN” on page 433

AT Ä Chapter 1.4.1.7.4.2 “Address” on page 441

ATAN Ä Chapter 1.4.1.6.10.11 “ATAN” on page 434

BITADR Ä Chapter 1.4.1.6.7.3 “BITADR” on page 421

BOOL Ä Chapter 1.4.1.8.1.2 “BOOL” on page 443

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US178

BY Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

BYTE Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

CAL Ä Chapter 1.4.1.6.8.1 “CAL” on page 422
CALC Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

CALCN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

CASE Ä Chapter 1.4.1.1.10.4.9 “CASE instruction” on page 169

CONSTANT Ä Chapter 1.4.1.3.9.8 “Constants, typed literals” on page 302

COS Ä Chapter 1.4.1.6.10.7 “COS” on page 432
DATE Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444

DINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

DIV Ä Chapter 1.4.1.6.2.4 “DIV” on page 408

DO Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

DT Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444

DWORD Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

ELSE Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

ELSEIF Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

END_ACTION (only used in the Export Format)
END_CASE Ä Chapter 1.4.1.1.10.4.9 “CASE instruction” on page 169

END_FOR Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

END_FUNCTION (only used in the Export Format)
END_FUNCTION_BLOCK (only used in the Export Format)
END_IF Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

END_PROGRAM (only used in the Export Format)
END_REPEAT Ä Chapter 1.4.1.1.10.4.12 “REPEAT loop” on page 170

END_STRUCT Ä Chapter 1.4.1.8.2.5 “Structures” on page 449

END_TYPE Ä Chapter 1.4.1.8.2.4 “Enumeration” on page 448

END_VAR Ä Chapter 1.4.1.3.9.6 “Local variables” on page 301

END_WHILE Ä Chapter 1.4.1.1.10.4.11 “WHILE loop” on page 170

EQ Ä Chapter 1.4.1.6.6.5 “EQ” on page 420

EXIT Ä Chapter 1.4.1.1.10.4.13 “EXIT instruction” on page 171

EXP Ä Chapter 1.4.1.6.10.5 “EXP” on page 431

EXPT Ä Chapter 1.4.1.6.10.12 “EXPT” on page 434

FALSE Ä Chapter 1.4.1.8.1.2 “BOOL” on page 443

FOR Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

FUNCTION Ä Chapter 1.4.1.1.9.3 “Function” on page 151

FUNCTION_BLOCK Ä Chapter 1.4.1.1.9.4 “Function block” on page 153

GE Ä Chapter 1.4.1.6.6.4 “GE” on page 419

GT Ä Chapter 1.4.1.6.6.1 “GT” on page 418

IF Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

INDEXOF Ä Chapter 1.4.1.6.2.7 “INDEXOF” on page 410

INI Ä Chapter 1.4.1.6.11.1 “INI operator” on page 434

INT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 179

JMP Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

JMPC Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

JMPCN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

LD Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

LDN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

LE Ä Chapter 1.4.1.6.6.3 “LE” on page 419

LINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

LN Ä Chapter 1.4.1.6.10.3 “LN” on page 431

LOG Ä Chapter 1.4.1.6.10.4 “LOG” on page 431

LREAL Ä Chapter 1.4.1.8.1.4 “REAL / LREAL” on page 443

LT Ä Chapter 1.4.1.6.6.2 “LT” on page 419

LWORD Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

MAX Ä Chapter 1.4.1.6.5.3 “MAX” on page 416

MIN Ä Chapter 1.4.1.6.5.4 “MIN” on page 417

MOD Ä Chapter 1.4.1.6.2.5 “MOD” on page 409

MOVE Ä Chapter 1.4.1.6.2.6 “MOVE” on page 409

MUL Ä Chapter 1.4.1.6.2.2 “MUL” on page 407

MUX Ä Chapter 1.4.1.6.5.6 “MUX” on page 418

NE Ä Chapter 1.4.1.6.6.6 “NE” on page 420

NOT Ä Chapter 1.4.1.6.3.4 “NOT” on page 412

OF Ä Chapter 1.4.1.8.2.1 “ARRAY” on page 445

OR Ä Chapter 1.4.1.6.3.2 “OR” on page 411

ORN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

PERSISTENT Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302

POINTER Ä Chapter 1.4.1.8.2.3 “Pointer” on page 447

PROGRAM Ä Chapter 1.4.1.1.9.7 “Program” on page 156

R Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

READ_ONLY
READ_WRITE
REAL Ä Chapter 1.4.1.8.1.4 “REAL / LREAL” on page 443

REPEAT Ä Chapter 1.4.1.1.10.4.12 “REPEAT loop” on page 170

RET Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

RETAIN Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302

RETC Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

RETCN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

RETURN Ä Chapter 1.4.1.1.10.4.7 “RETURN instruction” on page 168

ROL Ä Chapter 1.4.1.6.4.3 “ROL” on page 414

ROR Ä Chapter 1.4.1.6.4.4 “ROR” on page 415

S Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

SEL Ä Chapter 1.4.1.6.5.2 “SEL” on page 416

SHL Ä Chapter 1.4.1.6.4.1 “SHL” on page 412

SHR Ä Chapter 1.4.1.6.4.2 “SHR” on page 413

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US180

SIN Ä Chapter 1.4.1.6.10.6 “SIN” on page 432

SINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

SIZEOF Ä Chapter 1.4.1.6.2.8 “SIZEOF” on page 410

SQRT Ä Chapter 1.4.1.6.10.2 “SQRT” on page 430

ST Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

STN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

STRING Ä Chapter 1.4.1.8.1.5 “STRING” on page 444

STRUCT Ä Chapter 1.4.1.8.2.5 “Structures” on page 449

SUB Ä Chapter 1.4.1.6.2.3 “SUB” on page 408

TAN Ä Chapter 1.4.1.6.10.8 “TAN” on page 433

THEN Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

TIME Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444

TO Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

TOD Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444
TRUE Ä Chapter 1.4.1.8.1.2 “BOOL” on page 443

TRUNC Ä Chapter 1.4.1.6.9.9 “TRUNC” on page 429

TYPE Ä Chapter 1.4.1.8.2.4 “Enumeration” on page 448

UDINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

UINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

ULINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

UNTIL Ä Chapter 1.4.1.1.10.4.12 “REPEAT loop” on page 170

USINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

VAR Ä Chapter 1.4.1.3.9.6 “Local variables” on page 301

VAR_ACCESS (only used very specifically, depending on the hardware)
VAR_CONFIG Ä Chapter 1.4.1.4.1.4.1 “Overview” on page 361

VAR_CONSTANT Ä Chapter 1.4.1.3.9.8 “Constants, typed literals” on page 302

VAR_EXTERNAL Ä Chapter 1.4.1.3.9.9 “External variables” on page 303

VAR_GLOBAL Ä Chapter 1.4.1.4.1.3.2 “Several variables lists” on page 359

VAR_IN_OUT Ä Chapter 1.4.1.3.9.5 “Input and output variables” on page 301

VAR_INPUT Ä Chapter 1.4.1.3.9.3 “Input variable” on page 301

VAR_OUTPUT Ä Chapter 1.4.1.3.9.4 “Output variable” on page 301

WHILE Ä Chapter 1.4.1.1.10.4.11 “WHILE loop” on page 170

WORD Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

WSTRING (IEC data type is not supported)
XOR Ä Chapter 1.4.1.6.3.3 “XOR” on page 411

XORN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

Additionally all conversion operators as listed in the 'Edit' 'Input assistant' are handled as
keywords Ä Chapter 1.4.1.2.5.11 “'Edit' 'Input assistant'” on page 276.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 181

1.4.1.1.11 Debugging, online functions
Sampling trace

The sampling trace allows you to trace the value sequence of variables, depending upon the
so-called trigger event. This is the rising edge or falling edge of a previously defined Boolean
variable (trigger variable). The tracing of up to 20 variables is permitted. 500 values can be
traced for each variable.

Debugging
The debugging functions make it easier for you to find errors.
In order to debug, run the command “Project è Options” and in the dialog box that pops up
under the “Build” options select activate option “Debugging”Ä Chapter 1.4.1.2.2.9 “Options for
build” on page 209.

Breakpoint
A breakpoint is a place in the program at which the processing is stopped. Thus it is possible to
look at the values of variables at specific places within the program.
Breakpoints can be set in all editors. In the text editors breakpoints are set at line numbers, in
FBD and LD at network numbers, in CFC at POUs and in SFC at steps. No breakpoints can be
set in function block instances.

WARNING!
Runtime system CODESYS SP 32 bit Full will deactivate the watchdog function
of the concerned task as soon as the execution of the program currently is
stopped at a breakpoint.

Single step
Single step means:
● In IL: Execute the program until the next CAL, LD or JMP command.
● In ST: Execute the next instruction.
● In FBD, LD: Execute the next network.
● In SFC: Continue the action until the next step.
By proceeding step by step you can check the logical correctness of your program.

Single cycle
If Single cycle has been chosen, then the execution is stopped after each cycle.

Change values online
During operations variables can be set once at a certain value or also described again with a
certain value after each cycle Ä write value Ä force value. In online mode one also can change
the variable value by double click on the value. By that boolean variables change from TRUE
to FALSE or the other way round, for each other types of variables one gets the dialog Write
Variable xy, where the actual value of the variable can be edited.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US182

Monitoring
In Online mode, all displayable variables are read from the controller and displayed in real
time. You will find this display in the declarations and program editor; you can also read out
current values of variables in the watch and receipt manager and in a visualization. If variables
from instances of function blocks are to be monitored, the corresponding instance must first be
opened.
In monitoring VAR_IN_OUT variables, the de-referenced value is output.
In monitoring pointers, both the pointer and the de-referenced value are output in the declara-
tion portion. In the program portion, only the pointer is output:
+ --pointervar = '<'pointervalue'>'
POINTERs in the de-referenced value are also displayed accordingly. With a simple click on the
cross or a double-click on the line, the display is either expanded or truncated.

In the implementations, the value of the pointer is displayed. For de-referencing, however, the
de-referenced value is displayed.
Monitoring of ARRAY components: In addition to array components indexed by a constant,
components are also displayed which are indexed by a variable:
anarray[1] = 5
anarray[i] = 1
If the index consists of an expression (e.g. [i+j] or [i+1]), the component can not be displayed.

If the maximum number of variables which can be monitored, has been
reached, for each further variable instead of the current value the string "Too
many monitoring variables" will be displayed.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 183

Simulation
During the simulation the created PLC program is not processed in the PLC. All online functions
are available. That allows you to test the logical correctness of your program without PLC
hardware.

POUs of external libraries do not run in simulation mode.

Log
The log chronologically records user actions, internal processes, state changes and exceptions
during Online mode processing Ä Chapter 1.4.1.1.10.5.4 “Transition / Transition condition”
on page 172. It is used for monitoring and for error tracing Ä Chapter 1.4.1.2.6.1 “Overview”
on page 278.

1.4.1.1.12 We write a little program
Controlling a traffic signal unit

Let us now start to write a small example program. It is for a simple traffic signal unit which is
supposed to control two traffic signals at an intersection. The red/green phases of both traffic
signals alternate and, in order to avoid accidents, we will insert yellow or yellow/red transitional
phases. The latter will be longer than the former.
In the example you will see how time dependent programs can be shown with the language
resources of the IEC1131-3 standard, how one can edit the different languages of the standard,
and how one can easily connect them while becoming familiar with the simulation Ä Chapter
1.4.1.1.11.8 “Simulation” on page 184.

Create POU
Choose “File è New”Ä Chapter 1.4.1.2.3.1 “'File' 'New'” on page 222.
In the dialog box which appears, the first POU has already been given the default name
PLC_PRG. Keep this name, and the type of POU should definitely be a program. Each project
needs a program with this name. In this case we choose as the language of this POU the
Continuous Function Chart Editor (CFC).
Now create three more objects with the command 'Project' 'Object Add' with the menu bar or
with the context menu (press right mouse button in the Object Organizer) Ä Chapter 1.4.1.2.4.6
“'Project' 'Object' ' Add'” on page 258. A program in the language Sequential Function Chart
named SEQUENCE, a function block Ä Chapter 1.4.1.1.9.4 “Function block” on page 153 in
the language Function Block Diagram named TRAFFICSIGNAL, along with a POU WAIT, also
of the type function block, which we want to program as an Instruction List Ä IL Ä Chapter
1.4.1.1.10.5.1 “Overview” on page 171 Ä Chapter 1.4.1.1.10.2 “Function Block Diagram (FBD)”
on page 162.

What does TRAFFICSIGNAL do?
In the POU TRAFFICSIGNAL we will assign the individual trafficsignal phases to the lights, i.e.
we will make sure that the red light is lit red in the red phase and in the yellow/red phase, the
yellow light in the yellow and yellow/red phases, etc.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US184

What does WAIT do?
In WAIT we will program a simple timer which as input will receive the length of the phase in
milliseconds, and as output will produce TRUE as soon as the time period is finished.

What does SEQUENCE do?
In SEQUENCE all is combined so that the right light lights up at the right time for the desired
time period.

What does PLC_PRG do?
In PLC_PRG the input start signal is connected to the traffic lights' sequence and the "color
instructions" for each lamp are provided as outputs.

TRAFFICSIGNAL simulation
Now test your program in simulation mode. Compile ("Project" "Build") and load ("Online"
"Login") it. Start the program by "Online" "Start", then set variable ON to TRUE, e.g. by a
double-click on the entry "ON" in the input box of the CFC editor. This will mark the variable as
prepared to be set to <TRUE>. Then press <Ctrl><F7> or command "Online" "Write values", to
set the value. Now variable START in ABLAUF (which we had set to TRUE manually in the first
extension level of the program) gets this value by variable ON, which is used in PLC_PRG. This
will make run the traffic light cycles. PLC_PRG has changed to a monitoring window. Click twice
on the plus sign in the declaration editor, the variable display drops down, and you can see the
values of the individual variables.

"TRAFFICSIGNAL" declaration
Let us now turn to the POU TRAFFICSIGNAL. In the declaration editor you declare as input
variable (between the keywords VAR_INPUT and END_VAR) a variable named STATUS of
the type INT. STATUS will have four possible conditions, that is one for the TRAFFICSIGNAL
phases green, yellow, yellow/red andred.
Correspondingly our TRAFFICSIGNAL has three outputs, that is RED, YELLOW and GREEN.
You should declare these three variables. Then the declaration part of our TRAFFICSIGNAL will
look like this Ä Chapter 1.4.1.1.9.4 “Function block” on page 153:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 185

"TRAFFICSIGNAL" body
Now we determine the values of the output variables depending on the input STATUS of the
POU. To do this go into the body of the POU. Click on the field to the left beside the first network
(the gray field with the number 0001). You have now selected the first network. Choose the
menu item 'Insert' 'Box' Ä Chapter 1.4.1.3.11.7.7 “'Insert' 'Box' in FBD” on page 319.
In the first network a box is inserted with the operator AND and two inputs:

Click on the text AND, so that it appears selected and change the text into EQ. Select then for
each of the two inputs the three question marks and overwrite them with "STATUS" respectively
"1".

Click now on a place behind the EQ Box. Now the output of the EQ operation is selected.
Choose 'Insert' 'Assign' in FBD Ä Chapter 1.4.1.3.11.7.4 “'Insert' 'Assign'in FBD” on page 318.
Change the three question marks ??? to GREEN. You now have created a network with the
following structure:

STATUS is compared with 1, the result is assigned to GREEN. This network thus switches to
GREEN if the preset state value is 1.
For the other TRAFFICSIGNAL colors we need two more networks. To create the first one
execute command 'Insert' 'Network (after)' and insert an EQ-Box like described above. Then
select the output pin of this box and use again command 'Insert' 'Box'. In the new box replace
"AND" by "OR". Now select the first output pin of the OR-box and use command 'Insert' 'Assign'
to assign it to "YELLOW". Select the second input of the OR-box by a mouse-click on the
horizontal line next to the three question marks, so that it appears marked by a dotted rectangle.
Now use 'Insert' 'Box' to add a further EQ-box like described above. Finally the network should
look like shown in the following:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US186

In order to insert an operator in front of another operator, you must select the place where the
input to which you want to attach the operator feeds into the box.
Then use the command 'Insert' 'Box' Ä Chapter 1.4.1.3.11.7.7 “'Insert' 'Box' in FBD”
on page 319. Otherwise you can set up these networks in the same way as the first network.
Now our first POU has been finished. TRAFFICSIGNAL, according to the input of the value
STATUS, controls whichever light color we wish.

Connecting the standard.lib
For the timer in the POU WAIT we need a POU from the standard library. Therefore,
open the library manager with 'Window' 'Library Manager Ä Chapter 1.4.1.4.3.1 “Overview”
on page 371. Choose 'Insert' 'Additional library' Ä Chapter 1.4.1.4.3.4 “'Insert' 'Additional
Library'” on page 373. The dialog box appears for opening files. From the list of the libraries
choose standard.lib.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 187

"WAIT" declaration
Now let us turn to the POU WAIT. This POU is supposed to become a timer with which we can
determine the length of the time period of each TRAFFICSIGNAL phase. Our POU receives
as input variable a variable TIME of the type TIME, and as output it produces a Boolean value
which we want to call OK and which should be TRUE when the desired time period is finished.
We set this value with FALSE by inserting at the end of the declaration (before the semicolon,
however) " := FALSE ".
For our purposes we need the POU TP, a clock generator. This has two inputs (IN, PT) and two
outputs (Q, ET). TP does the following:
As long as IN is FALSE, ET is 0 and Q is FALSE. As soon as IN provides the value TRUE,
the time is calculated at the output ET in milliseconds. When ET reaches the value PT, then
ET is no longer counted. Meanwhile Q produces TRUE as long as ET is smaller than PT. As
soon as the value PT has been reached, then Q produces FALSE again. See the chapter on the
standard library for short descriptions of all POUs.
In order to use the POU TP in the POU WAIT we must create a local instance from TP. For this
we declare a local variable ZAB (for elapsed time) of the type TP (between the keywords VAR,
END_VAR). The declaration part of WAIT thus looks like this:

"WAIT" body
In order to create the desired timer, the body of the POU must be programmed as follows:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US188

At first it is checked whether Q has already been set at TRUE (as though the counting had
already been executed), in this case we change nothing with the occupation of ZAB, but we call
the function block ZAB without input (in order to check whether the time period is already over)
Ä Chapter 1.4.1.1.9.4 “Function block” on page 153.
Otherwise we set the variable IN in ZAB at FALSE, and therefore at the same time ET at 0 and
Q at FALSE. In this way all variables are set at the desired initial condition. Now we assign the
necessary time from the variable TIME into the variable PT, and call ZAB with IN:=TRUE. In the
function block ZAB the variable ET is now calculated until it reaches the value TIME, then Q is
set at FALSE.
The negated value of Q is saved in OK after each execution of WAIT. As soon as Q is FALSE,
then OK produces TRUE.
The timer is finished at this point. Now it is time to combine our two function blocks WAIT and
SEQUENCE in the main program Ä Chapter 1.4.1.1.12.1.17 “PLC_PRG” on page 194.

"SEQUENCE" first expansion level
First we declare the variables we need. They are: an input variable START of the type BOOL,
two output variables TRAFFICSIGNAL1 and TRAFFICSIGNAL2 of the type INT and one of the
type WAIT (DELAY as delay). The program SEQUENCE now looks like shown here.
Program SEQUENCE, First Expansion Level, Declaration Part:

Create a SFC diagram
The beginning diagram of a POU in SFC always consists of an action "Init" of a following
transition "Trans0" and a jump back to Init Ä Chapter 1.4.1.1.10.5.4 “Transition / Transition
condition” on page 172. We have to expand that.
Before we program the individual action and transitions let us first determine the structure of
the diagrams. We need one step for each trafficsignal phase. Insert it by marking Trans0 and
choosing "Insert" "Step transition (after)". Repeat this procedure three more times.
If you click directly on the name of a transition or a step, then this is marked and you can
change it. Name the first transition after Init "START", and all other transitions "DELAY.OK".
The first transition switches through when START is TRUE and all others switch through when
DELAY in OK produces TRUE, i.e. when the set time period is finished.
The steps (from top to bottom) receive the names Switch1, Green2, Switch2, Green1, whereby
Init of course keeps its Name. "Switch" should include a yellow phase, at Green1 TRAFFIC-
SIGNAL1 will be green, at Green2 TRAFFICSIGNAL2 will be green. Finally change the return
address of Init after Switch1. If you have done everything right, then the diagram should look
like in the following figure:
Program SEQUENCE, First Expansion Level, Instruction Part

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 189

Now we have to finish the programming of the individual steps. If you doubleclick on the field
of a step, then you get a dialog for opening a new action Ä Chapter 1.4.1.1.10.5.2 “Action”
on page 171. In our case we will use IL (Instruction List).

Actions and transition conditions
In the action of the step 'Init' the variables are initialized, the STATUS of TRAFFICSIGNAL1
should be 1 (green) Ä Chapter 1.4.1.1.10.5.2 “Action” on page 171. The state of TRAFFIC-
SIGNAL2 should be 3 (red). The action Init then looks like in the following figure:

Switch1 changes the sate of TRAFFICSIGNAL1 to 2 (yellow), and that of TRAFFICSIGNAL2 to
4 (yellow-red). In addition, a time delay of 2000 milliseconds is set. The action is now as follows:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US190

With Green2 TRAFFICSIGNAL1 is red (STATUS:=3), TRAFFICSIGNAL2 green (STATUS:=1),
and the delay time is 5000 milliseconds.

At Switch2 the STATUS of TRAFFICSIGNAL1 changes to 4 (yellow-red), that of TRAFFIC-
SIGNAL2 to 2 (yellow). A time delay of 2000 milliseconds is now set.

With Green1 TRAFFICSIGNAL1 is green (STATUS:=1), TRAFFICSIGNAL2 is red (STATUS:=3),
and the time delay is set to 5000 milliseconds.

The first expansion phase of our program is completed.
If you want to do a first test of POU ABLAUF in simulation mode, perform the following steps:
1. Open POU PLC_PRG. Each project starts running with PLC_PRG. In order to be able to

provisionally start POU ABLAUF, insert a box and replace "AND" by "ABLAUF". Remain
the inputs and outputs unassigned for the moment.

2. Compile the project via 'Project' 'Build'. In the message window you should get "0 Errors,
0 Warnings". Now check if option 'Online' 'Simulation' is activated and use command
'Online' 'Login' to get into simulation mode. Start program with 'Online' 'Start'. Open POU
ABLAUF by a double-click on entry "ABLAUF" in the Object Organizer. The program
is started now, but to get it run, variable START must be TRUE. Later this will be set
by PLC_PRG but at the moment we have to set it manually within the POU. To do
that, perform a double-click on the line in the declaration part, where START is defined
(START=FALSE). This will set the option "<:=TRUE>" behind the variable in turquoise
color. Now select command 'Online' 'Write values' to set this value. Thereupon START will
be displayed in blue color in the sequence diagram and the processing of the steps will be
indicated by a blue mark of the currently active step.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 191

When you have finished this intermediate test use command 'Online' 'Logout' to leave the
simulation mode and to continue programming.

"SEQUENCE" second expansion level
In order to ensure that our diagram has at least one alternative branch, and so that we can turn
off our traffic light unit at night, we now include in our program a counter which, after a certain
number of TRAFFICSIGNAL cycles, turns the unit off.
At first we need a new variable COUNTER of the type INT. Declare this as usual in the
declaration part of SEQUENCE, and initialize it in Init with 0.

Now select the transition after Switch1 and insert a step and then a transition Ä Chapter
1.4.1.1.10.5.4 “Transition / Transition condition” on page 172. Select the resulting transition and
insert an alternative branch to its left. After the left transition insert a step and a transition. After
the resulting new transition insert a jump after Switch1.
Name the new parts as follows: the upper of the two new steps should be called "Count" and
the lower "Off". The transitions are called (from top to bottom and from left to right) EXIT, TRUE
and DELAY.OK. The new part should look like the part marked with the black border in the
following figure:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US192

Now two new actions and a new transition condition are to be implemented Ä Chapter
1.4.1.1.10.5.2 “Action” on page 171 Ä Chapter 1.4.1.1.10.5.4 “Transition / Transition condition”
on page 172. At the step Count the variable COUNTER is increased by one:

The EXIT transition checks whether the counter is greater than a certain value, for example 7:

At Off the state of both lights is set at 5(OFF), (or each other number not equal 1,2,3 or 4) the
COUNTER is reset to 0, and a time delay of 10 seconds is set:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 193

The result
In our hypothetical situation, night falls after seven trafficsignal cycles, for ten seconds the
trafficsignal turns itself off, then we have daylight again, the traffic light unit turns itself on again,
and the whole process starts again from the beginning. If you like, do another test of the current
version of your program in simulation mode before we go on to create the POU PLC_PRG.

PLC_PRG
We have defined and correlated the time sequencing of the phases for both sets of traffic lights
in the block SEQUENCE. Since, however, we see the traffic lights system as a module of a
bus system, e.g. CAN bus, we have to make input and output variables available in the block
PLC_PRG. We want to start-up the traffic lights system over an ON switch and we want to send
each of the six lamps (each traffic light red, green, yellow) the corresponding "signal command"
for each step of the SEQUENCE. We are now declaring appropriate Boolean variables for these
six outputs and one input, before we create the programme in the editor, and are allocating
them, at the same time, to the corresponding IEC addresses.
The next step is declare the variables Light1 and Light2 of the type Phases in the declaration
editor.

These deliver the Boolean value of each of the six lights to the above mentioned six outputs for
each step of the block SEQUENCE. We are not, however, declaring the output variables which
are foreseen within the PLC_PRG block but under Resources for Global Variables instead. The
Boolean input variable IN, which is used to set the variable START in the block SEQUENCE to
TRUE, can be set in the same way. ON is also allocated to an IEC address.
Select the tab Resources and open the list Global Variables.
Make the declaration as follows:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US194

The name of the variable (e.g. IN) is followed, after AT, by a percent sign which begins the
IEC address. I stands for input, Q for output, B (used in the example) stands for byte and the
individual bits of the module are addressed using 0.0 (0.1, 0.2, etc.). We will not do the needed
controller configuration here in the example, because it depends on which target package you
have available on your computer.
We now want to finish off the block PLC_PRG.
For this we go into the editor window. We have selected the Continuous Function Chart editor
and we consequently obtain, under the menu bar, a CFC symbol bar with all of the available
elements.
Click on the right mouse key in the editor window and select the element Box. Click on the
text AND and write "SEQUENCE" instead. This brings up the block SEQUENCE with all of
the already defined input and output variables. Insert two further block elements which you
name PHASES. Phases is a function block and this causes you to obtain three red question
marks over the block which you replace with the already locally declared variables LIGHT1 and
LIGHT2. Now set an element of the type Input, which award the title ON and six elements of
the type Output which you award variable names to, as described, namely L1_green, L1_yellow,
L1_red, L2_green, L2_yellow, L2_red.
All of the elements of the programme are now in place and you can connect the inputs and
outputs, by clicking on the short line at the input/output of an element and dragging this with a
constantly depressed mouse key to the input/output of the desired element.
Your program should finally look like the example shown here.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 195

TRAFFICSIGNAL simulation
Now test your program in simulation mode. Compile ("Project" "Build") and load ("Online"
"Login") it. Start the program by "Online" "Start", then set variable ON to TRUE, e.g. by a
double-click on the entry "ON" in the input box of the CFC editor. This will mark the variable as
prepared to be set to <TRUE>. Then press <Ctrl><F7> or command "Online" "Write values", to
set the value. Now variable START in ABLAUF (which we had set to TRUE manually in the first
extension level of the program) gets this value by variable ON, which is used in PLC_PRG. This
will make run the traffic light cycles. PLC_PRG has changed to a monitoring window. Click twice
on the plus sign in the declaration editor, the variable display drops down, and you can see the
values of the individual variables.

Visualizing a traffic signal unit
Creating a new visualization

In order to create a visualization you must first select the range of Visualization in the Object
Organizer. First click on the lower edge of the window on the left side with the POU on the
register card with this symbol and the name Visualization. If you now choose the command
'Project' 'Object Add', then a dialog box opens Ä Chapter 1.4.1.2.4.6 “'Project' 'Object' ' Add'”
on page 258.

Enter here any name. When you confirm the dialog with OK, then a window opens in which you
can set up your new visualization.

Insert element in visualization
For our TRAFFICSIGNAL visualization you should proceed as follows:
● Give the command 'Insert' 'Ellipse'.Insert..Ellipse.>Proc and try to draw a medium sized

circle (?2cm). For this click in the editor field and draw with pressed left mouse button the
circle in its length.

● Now doubleclick the circle. The dialog box for editing visualization elements opens
● Choose the category Variables and in the field Change color enter the variable

name .L1_red or "L1_red". That means that the global variable L1_red will cause the color
change as soon as it is set to TRUE. The dot before the variable name indicates that it is a
global variable, but it is not mandatory.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US196

● Then choose the category Color and click on the button Inside in the area Color. Choose as
neutral a color as possible, such as black.

● Now click on the button within in the area Alarm color and choose the red which comes
closest to that of a red light.

The resulting circle will normally be black, and when the variable RED from TRAFFICSIGNAL1
is TRUE, then its color will change to red. We have therefore created the first light of the first
trafficsignal!

The other traffic lights
Now enter the commands 'Edit' 'Copy' (<Ctrl>+<C>) and then twice 'Edit' 'Paste' (<Ctrl>+<V>)
Ä Chapter 1.4.1.2.5.5 “'Edit' 'Copy'” on page 273 Ä Chapter 1.4.1.2.5.6 “'Edit' 'Paste'”
on page 274 . That gives you two more circles of the exact same size lying on top of the first
one. You can move the circles by clicking on the circle and dragging it with pressed left mouse
button. The desired position should, in our case, be in a vertical row in the left half of the editor
window. Doubleclick on one of the other two circles in order to open the configuration dialog box
again. Enter in the field Change Color of the corresponding circle the following variables:
● for the middle circle: L1_yellow
● for the lowest circle: L1-green
Now choose for the circles in the category 'Color' and in the area 'Alarm color' the corre-
sponding color (yellow or green).

The TRAFFICSIGNAL case
Now enter the command 'Insert' 'Rectangle', and insert in the same way as the circle a rectangle
which encloses the three circles. Once again choose as neutral a color as possible for the
rectangle and give the command 'Extras' 'Send to back' so that the circles are visible again.
If simulation modeis not yet turned on, you can activate it with the command 'Online' 'Simulation'
Ä Chapter 1.4.1.2.6.22 “'Online' 'Simulation'” on page 291.
If you now start the simulation with the commands 'Online' 'Login' and 'Online' 'Run', then you
can observe the color change of the first traffic signal Ä Chapter 1.4.1.2.6.2 “'Online' 'Login'”
on page 279 Ä Chapter 1.4.1.2.6.6 “'Online' 'Run'” on page 283.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 197

The second traffic signal
The simplest way to create the second traffic signal is to copy all of the elements of the first
traffic signal. For this you select all elements of the first traffic signal and copy them (as before
with the lights of the first traffic signal) with the commands 'Edit' 'Copy' and 'Edit' 'Paste'. You
then only have to change the text "TRAFFICSIGNAL1" in the respective dialog boxes into
"TRAFFICSIGNAL2", and the visualization of the second traffic signal is completed.

The ON switch
Insert a rectangle and award it, as described above, a colour for a traffic light of your choice and
enter .ON at “Variables” for the “Change color”. Enter "ON" in the input field for “Content” in the
category Text.
In order to set the variable ON to TRUE with a mouse click on the switch, activate option 'Toggle
variable' in category 'Input' and enter variable name ".ON" there. Variable keying means that
when a mouse click is made on the visualization element the variable .ON is set to the value
TRUE but is reset to the value FALSE when the mousekey is released again (we have created
hereby a simple switch-on device for our traffic lights program).

Font in the visualization
In order to complete the visualization you should first insert two more rectangles which you
place underneath the traffic signals.
In the visualizations dialog box set white in the category Color for Frame and write in the
category Text in the field Contents "Light1" or "Light2". Now your visualization looks like this:

1.4.1.2 The individual components
1.4.1.2.1 The main window
Menu bar

The menu bar is located at the upper edge of the main window. It contains all menu commands.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US198

Tool bar
By clicking with the mouse on a symbol you can select a menu command more quickly. The
choice of the available symbols automatically adapts itself to the active window.
The command is only carried out when the mouse button is pressed on the symbol and then
released. If you hold the mouse pointer for a short time on a symbol in the tool bar, then the
name of the symbol is shown in a Tooltip. In order to see a description of each symbol on the
tool bar, select in “Help” the editor about which you want information and click on the tool bar
symbol in which you are interested. The display of the tool bar is optional.

Object organizer
The Object Organizer is always located on the left side of the program. At the bottom there are
four register cards with symbols for the four types of objects:
● POUs
● Data types
● Visualizations
● Resources
In order to change between the respective object types click with the mouse on the corre-
sponding register card or use the left or right arrow key.

Screen divider
The screen divider is the border between two non-overlapping windows. There are screen
dividers between the object organizer and the of the main window, between the interface
(declaration part) and the implementation (instruction part) of POUs and between the work
space and the message window Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199
Ä Chapter 1.4.1.2.1 “The main window” on page 198 Ä Chapter 1.4.1.3.9.2 “Declaration part”
on page 297.
You can move the screen divider with the mouse pointer. You do this by moving the mouse with
the left mouse button pressed.
Make sure the screen divider always remains at its absolute position, even when the window
size has been changed. If it seems that the screen divider is no longer present, then simply
enlarge your window.

Workspace
This object in the 'Resources' tab provides an figure of the currently set project options. If
you open it, you get the project options dialog with the know categories Ä Chapter 1.4.1.2.2.1
“'Project' 'Options'” on page 200.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 199

Message window
The message window is separated by a screendivider underneath the workspace in the main
window Ä Chapter 1.4.1.2.1.4 “Screen divider” on page 199 Ä Chapter 1.4.1.2.1.5 “Workspace”
on page 199.
It contains all messages from the previous compilations, checks or comparisons. Search results
and the cross-reference list can also be output here.
If you doubleclick with the mouse in the message window on a message or press [Enter], the
editor opens with the object. The relevant line of the object is selected. With the commands
'Edit' 'Next error' and 'Edit' 'Previous error' you can can quickly jump between the error mes-
sages.

Status bar
The status bar at the bottom of the window frame of the main window gives you information
about the current project and about menu commands.
If an item is relevant, then the concept appears on the right side of the status bar in black script,
otherwise in gray script.
When you are working in online mode, the concept Online appears in black script. If you are
working in the offline mode it appears in gray script.
In Online mode you can see from the status bar whether you are in the simulation (SIM), the
program is being processed (RUNS), a breakpoint is set (BP), or variables are being forced
(FORCE) Ä Chapter 1.4.1.1.11.8 “Simulation” on page 184.
With the text editor the line and column number of the current cursor position is indicated (e.g.
Line:5, Col.:11). In online mode 'OV' is indicated black in the status bar. Pressing the [Ins] key
switches between Overwrite and Insert mode.
If the mouse point is in a visualization, the current X and Y position of the cursor in pixels
relative to the upper left corner of the screen is given. If the mouse pointer is on an Element, or
if an element is being processed, then its number is indicated. If you have an element to insert,
then it also appears (e.g. Rectangle).
If you have chosen a menu command but haven't yet confirmed it, then a short description
appears in the status bar.

Context menu
Shortcut: [Shift] + [F10]

Instead of using the menu bar for executing a command, you can use the right mouse button.
The menu which then appears contains the most frequently used commands for a selected
object or for the active editor. The choice of the available commands adapts itself automatically
to the active window.

1.4.1.2.2 Project options
'Project' 'Options'

With this command the dialog box for setting options is opened. The options are divided into
different categories. Choose the desired category on the left side of the dialog box by means of
a mouse click or using the arrow keys and change the options on the right side.
An image of the options which are set for the current project, will be found in the Resources tab
in component Workspace Ä Chapter 1.4.1.2.1.5 “Workspace” on page 199.
The settings amongst other things serve to configure the view of the main window. They are,
unless determined otherwise, saved in the file "codesys.ini" and restored at the next startup.
You have at your disposal the following categories:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US200

Category Stored in CODESYS Stored in project
Load & Save Ä Chapter
1.4.1.2.2.2 “Options for load &
save” on page 201

x

User information Ä Chapter
1.4.1.2.2.3 “Options for user
information” on page 203

x

Editor Ä Chapter 1.4.1.2.2.4
“Options for editor”
on page 203

x

Desktop Ä Chapter
1.4.1.2.2.5 “Options for the
desktop” on page 205

x

Color Ä Chapter 1.4.1.2.2.6
“Options for colors”
on page 206

x

Directories Ä Chapter
1.4.1.2.2.7 “Options for direc-
tories” on page 207

Cat. Common Cat. Project

Log Ä Chapter 1.4.1.2.2.8
“Options for log” on page 208

x

Build Ä Chapter 1.4.1.2.2.9
“Options for build”
on page 209

Passwords Ä Chapter
1.4.1.2.2.10 “Passwords”
on page 211

Source download Ä Chapter
1.4.1.2.2.11 “'Source down-
load'” on page 212

x

Symbol configuration
Ä Chapter 1.4.1.2.2.12
“Options for 'Symbol configu-
ration'” on page 214

x

Project Source Control
Ä Chapter 1.4.1.2.2.13
“Options for 'Project source
control'” on page 216

 x

Macros Ä Chapter
1.4.1.2.2.16 “Options for 'Ma-
cros'” on page 220

 x

Options for load & save
If you choose this category in the Options dialog box , then you get the following dialog box:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 201

When activating an option, a check icon appears before the option.
Create Backup: a backup file is created at every save with the extension ".bak". Contrary to
the *.asd-file (see below, 'Auto Save') this *.bak-file is kept after closing the project. So you can
restore the version you had before the last project save.
Auto Save: While you are working, your project is saved according to a defined time interval
(Auto Save Interval) to a temporary file with the extension ".asd" in the projects directory. This
file is erased at a normal exit from the program. If for any reason Automation Builder is not shut
down "normally" (e.g. due to a power failure), then the file will not get erased. When you open
the file again the following message appears:

You can now decide whether you want to open the original file or the auto save file.
If a library *.lib is opened as project, a corresponding auto-save-file "*.asl" will be created.
Auto save before compile: The project will be saved before each compilation. In doing so a file
with the extension ".asd" resp. ".asl" will be created, which behaves like described above for the
option 'Auto Save'.
Ask for project info: When saving a new project or saving a project under a new name, the
project info is automatically called. You can visualize the project info with the command 'Project'
'Project info' and also process it.
Auto Load: At the next start the last open project is automatically loaded. Loading of a project
at the start of Automation Builder can also take place by entering the project in the command
line.
Remind of boot project on exit: If the project has been modified and downloaded without cre-
ating a new boot project since the last download of a boot project, then a dialog will advise the
user before leaving the project: "No boot project created since last download. Exit anyway ?".
Save ENI credentials: User name and Password, as they might be inserted in the Login dialog
for the ENI data base, will be saved. Concerning the access data, entered once by the user at
'Open project from source code manager' ('File' 'Open') in this case additionally username and
password will be saved in the codesys.ini file.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US202

The settings will be stored in CODESYS.

Options for user information
If you choose this category in the Options dialog box, then you get the following dialog box:

To User information belong the name of the user, his initials and the company for which he
works. Each of the entries can be modified.

The settings will be stored in CODESYS.

Options for editor
If you choose this category in the “Options” dialog box, then you get the following dialog box:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 203

You can make the following settings for the Editors:
● Autodeclaration: If this option is activated , then after the input of a not-yet-declared variable

a dialog box will appear in all editors with which this variable can be declared.
● Autoformat: If this option is activted, then automatic formatting is executed in the IL editor

and in the declaration editor. When you finish with a line, the following formatting is made:
1.Operators written in small letters are shown in capitals; Tabs are inserted to that the
columns are uniformly divided.

● List components: If this option is activated, then the Intellisense functionality will be available
to work as an input assistant. This means that if you insert a dot at a position where a
identifier should be inserted, then a selection list will open, offering all global variables which
are found in the project. If you insert the name of a function block instance, then you will
get a selection list of all inputs and outputs of the instanced function block. The Intellisense
function is available in editors, in the Watch- and Receiptmanager, in visualizations and in
the Sampling Trace.

● Declarations as tables: If this option is activated, then you can edit variables in a table
instead of using the usual declaration editor. This table is sorted like a card box, where you
find tabs for input variables, output variables local variables and in_out variables. For each
variable there are edit fields to insert Name,Address, Type, Initial and Comment.

● Tab-Width: In the field Tab-Width in the category Editor of the Options dialog box you can
determine the width of a tab as shown in the editors. The default setting is four characters,
whereby the character width depends upon the font which is chosen.

● Font: By clicking on the button Font in the category Editor of the Options dialog box you can
choose the font in all editors. The font size is the basic unit for all drawing operations. The
choice of a larger font size thus enlarges the printout, even with each editor.
After you have entered the command, the font dialog box opens for choosing the font, style
and font size.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US204

● Mark: When choosing Mark in the Editor category in the Options dialog box you can choose
whether the current selection in your graphic editors should be represented by a dotted
rectangle (Dotted), a rectangle with continuous lines (Line) or by a filled-in rectangle (Filled).
In the last case the selection is shown inverted.

● Bitvalues: When choosing Bitvalues in the category Editor of the Options dialog box you
can choose whether binary data (type BYTE, WORD, DWORD) during monitoring should be
shown Decimal, Hexadecimal, or Binary.

● Suppress monitoring of complex types (Array, Pointer, VAR_IN_OUT): If this option is acti-
vated, complex data types like arrays, pointers, VAR_IN_OUTs will not get displayed in the
monitoring window in online mode.

● Show POU symbols: If this option is activated, in the module boxes which are inserted
to a graphic editor, additionally symbols will get displayed, if those are available in the
library folder as bitmaps. The name of the bitmap-file must be composed of the name of
the module and the extension ".bmp". Example: For module TON there is a symbol file
TON.bmp available. The box will be displayed as follows:

The settings will be stored in CODESYS.

Options for the desktop
When an option is activated, a check appears in front of it.
● Tool bar: The tool bar with the buttons for faster selection of menu commands becomes

visible underneath the menu bar.
● Status bar: The status bar at the lower edge of the main window becomes visible.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 205

● Online in Securitymode: In Online mode a dialog box appears with the confirmation request
whether the command should really be executed. If supported by the target system, an
extended dialog might be available when you want to load the actual project from the pro-
gramming system to the PLC If there is already a project on the PLC, this dialog will display
the project information of that project as well as the information of the project currently to be
loaded. This project information also will be available in case of creating a boot project when
there is already one on the PLC. This option is saved with the project.

● Query communication parameters before login: As soon as the command 'Online' 'Login' is
executed, first the communication parameters dialog will open. To get in online mode you
must first close this dialog with OK.

● Do not save communication parameters in project: The settings of the communication
parameters dialog ('Online' 'Communication Parameters') will not be saved with the project.

● Show print area margins:In every editor window, the limits of the currently set print range
are marked with red dashed lines. Their size depends on the printer characteristics (paper
size, orientation) and on the size of the "Content" field of the set print layout (menu: 'File"
"Documentation Settings").

● F4 ignores warnings:After compilation, when F4 is pressed in a message window, the focus
jumps only to lines with error messages; warning messages are ignored.

● MDI representation: Per default this option (Multiple-Document-Interface) is activated and
thus several windows can be opened at the same time. If the option is deactivated (SDI
mode) only one window can be opened and will be displayed in full screen mode. Exception:
The action of a program and the program itself can be displayed side by side even in MDI
mode.

● Communications timeout [ms]: for standard communication services: Time span in millisec-
onds, after which the communication to the target system will be terminated if no more
activity is detected. Possible values: 1-10000000 ms.

● Communications timeout for download [ms]: for long lasting communication services (pro-
gram download, file up- and download, boot project creation and check): Time span in
milliseconds after which the communication to the target system will be terminated if no
more activity is detected (Download Wait Time). Possible values: 1-10000000 ms.

● XML-Encoding: The format for XML-exports can be selected. The default setting is
"ISO 8859-1". This concerns the communication via ENI, Message Interface and COM
Automation Interface, as well as each user-triggered XML-export. An exception is the XML-
export of the Licensing Manager.

● Language: Define here, in which language the menu and dialog texts should be displayed.

The settings will be stored in CODESYS.

Options for colors
If you choose this category in the Options dialog box , then you get the following dialog box:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US206

You can edit the default color setting of CODESYS. You can choose whether you want to
change the color settings for Line numbers (default presetting: light gray), for Breakpoint posi-
tions (dark gray), for a Set breakpoint (light blue), for the Current position (red), for the Reached
Positions (green) or for the Monitoring of Boolean values (blue).
If you have chosen one of the indicated buttons, the dialog box for the input of colors opens.

The settings will be stored in CODESYS.

Options for directories
If you choose this category in the Options dialog box, then you get the following dialog box:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 207

Directories can be entered in the Project and Common areas for CODESYS to use in searching
for Libraries, controller Configuration and Visualization files (bitmaps, XML file for dynamic texts
etc.) iles, as well as for storing Compile and source-Upload files. (Compile files for example
are map- and list-files, not however e.g. symbol files ! The latter will be saved in the project
directory.) If you activate the button (...) behind a field, the directory selection dialog opens. For
library and configuration files, several paths can be entered for each, separated by semicolons
";".

Please regard: Library paths can be entered based on the project file's path
by prefixing a dot ".". If e.g. ".\libs" is entered, the libraries will be searched in
'C:\programs\projects\libs', if the current project is in 'C:\programs\projects'. For
information on library paths see also: 'Insert' 'Additional Library'.

Please regard: Do not use empty spaces and special characters except for "_"
in the directory pathes.

The Target area just displays the directories for libraries and configuration files set in the target
system, e.g. through entries in the Target file. These fields cannot be edited, but an entry can be
selected and copied (right mouse button context menu).
CODESYS generally searches first in the directories entered in 'Project', then in those in 'Target'
(defined in the Target file), and finally those listed under 'Common'. If two files with identical
names are found, the one in the directory that is browsed first will be used.

The settings for area Common will be stored in CODESYS, those for area
Project in the project..

Options for log
If you choose this category in the Options dialog box, then you get the following dialog box:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US208

In this dialog, you can configure a file that acts as a project log, recording all user actions and
internal processes during Online mode processing (see also: Log).
If an existing project is opened for which no log has yet been generated, a dialog box opens
which calls attention to the fact that a log is now being set up that will receive its first input after
the next login process.
The log is automatically stored as a binary file in the project directory when the project is saved.
If you prefer a different target directory, you can activate the option Directory for project logs:
and enter the appropriate path in the edit field. Use the button to access the "Select Directory"
dialog for this purpose:

The log file is automatically assigned the name of the project with the extension .log. The
maximum number of Online sessions to be recorded is determined by Maximum project log
size. If this number is exceeded while recording, the oldest entry is deleted to make room for the
newest.
The Log function can be switched on or off in the Option field Activate logging.
You can select in the Filter area which actions are to be recorded: User actions, Internal actions,
Status changes, Exceptions. Only actions belonging to categories checked here will appear in
the Log window and be written to the Log file.
The Log window can be opened with the command 'Window' 'Log'.

The settings will be stored in CODESYS.

Options for build
If you choose this category in the Options dialog box , then you get the following dialog box:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 209

● Debugging: It depends on the target descriptions whether this option can be acti-
vated/deactivated by the user resp. which is the given setting . If it is activated, additional
debugging code is created, that is the code can become considerably larger. The debugging
code is needed in order to make use of the debugging functions (e.g. breakpoints). When
you switch off this option, project processing becomes faster and the size of the code
decreases. The option is stored with the project.

● Replace constants: The value of each constant of scalar type (thus not for strings, arrays
and structures) is loaded directly, and in Online mode the constants are displayed in green.
Forcing, writing and monitoring of a constant is then no longer possible. If the option is
deactivated, the value is loaded into a storage location via variable access (this does in fact
allow writing the variable value, but implies longer processing time).

● Nested comments: Comments can be placed within other comments.
Example:
(*
a:=inst.out; (* to be checked *)
b:=b+1;
*)
Here the comment that begins with the first bracket is not closed by the bracket following
"checked," but only by the last bracket.
Attention: Currently this option must be used carefully: If the setting in the project does not
match the setting chosen in a library which also has been created in CODESYS and now
is used is the project, compiler errors will occur, which are hard to interpret by the user and
often cannot be cleared!

● Create binary file of the application: A binary image of the generated code (boot project)
is created in the project directory during compilation. File name: <project_name>.bin. By
comparison, the command “Online è Create boot project” sets up the boot project on the
controller Ä Chapter 1.4.1.2.6.25 “'Online' 'Create boot project'” on page 291.

● Actions hide programs: This option is activated per default, when a new project is created. It
means: If a local action has the same name like a global variable or a program, the following
hierarchy is valid: local variable before local action before global variable before program.
Regard: If an existing project is opened, which has been created with a previous version
of CODESYS, the option will be deactivated per default. Thus the previously vlid hierarchy
(local varaible before global variable before program before local action) can be kept.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US210

● Treat LREAL as REAL: If this option is activated, (availability depends on the runtime
system, default: not activated), the compile will handle LREAL values as REAL values. This
can be used for creating platform independent projects.

● Number of data segments: Here you define how many memory segments should be allo-
cated in the PLC for the project data. This space is needed to make possible online changes
even if new variables have been added. If during compilation you get the message "Out of
global data memory...", enter a higher number. In this regard local program variables will be
handled like global variables Ä Chapter 1.4.1.2.6.2 “'Online' 'Login'” on page 279.

● Exclude objects: This button opens the dialog Exclude objects from build: In the tree of
project components select those POUs which should not be regarded during compilation
and activate option Exclude. Hereupon the excluded POUs will be displayed green-colored
in the selection tree. Press button Exclude unused, if you just want to get displayed those
POUs which are currently used in the program. Regard that a single object which is selected
in the Object Organizer can also be excluded from build by using the command 'Exclude
from build' from the context menu.

● Compiler Version: Here you define the compiler version to be used. CODESYS versions
after V2.3.3 (version, service pack, patch) will include besides the actual compiler version
also the previous compiler versions (back to V2.3.3). If you want to get the project compiled
with the latest compiler version in any case, activate option Use latest. In this case however
it will be checked whether the currently opened programming system is also of that version.
If this is not true, the compiler version matching the actually used programming system
version will be used!. If the project should be compiled with a specific version, define this via
the selection list at Fix.
In order to exert control over the compilation process you can set up two macros:
The macro in the Macro before compile field is executed before the compilation process; the
macro in the Macro after compile field afterwards. The following macro commands can not,
however, be used here: file new, file open, file close, file save as, file quit, online, project
compile, project check, project build, project clean, project rebuild, debug, watchlist.

● Check automatically: In order to get the semantic correctness checked at each compilation
of the project the following options can be activated:
– Unused variables
– Overlapping memory areas
– Concurrent access
– Multiple write access on output
The results will be displayed in the message window. These checks also can be initiated by
the respective commands of the 'Check' submenu in the 'Project' menu. If supported by the
target system, negative check results will produce compiler errors.

All entries in the Build Options dialog are stored with the project.

Passwords
If you choose this category in the Options dialog box, then you get the following dialog box:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 211

To protect your files from unauthorized access use a password to protect against your files
being opened or changed.
Enter the desired password in the field Password. For each typed character an asterisk (*)
appears in the field. You must repeat the same word in the field Confirm Password. Close the
dialog box with OK. If you get the message:
"The password does not agree with the confirmation",
then you made a typing error during one of the two entries. In this case repeat both entries until
the dialog box closes without a message.
If you now save the file and then reopen it, then you get a dialog box in which you are requested
to enter the password. The project can then only be opened if you enter the correct password.
Along with the opening of the file, you can also use a password to protect against the file being
changed. For this you must enter a password in the field Write Protection Password and confirm
this entry in the field underneath.
A write-protected project can be opened without a password. For this, press the button Cancel,
if a message is prompted to enter the write protection password when opening a file. Now you
can compile the project, load it into the PLC, simulate, etc., but you cannot change it.
The passwords are saved with the project.
In order to create differentiated access rights you can define user groups and 'Passwords for
user groups').
Additionally regard the extended possibilities to protect a project by encryption which for
example can help to protect a library from getting used without having entered a key.

The settings will be stored in the project.

'Source download'
The user can configure a source code download (i.e. the project archive of the open project)
to an memory card of any V2 PLC defined in the project. This ensures that the project on a
PLC matches the current application, i.e. for maintenance purposes the project can be uploaded
directly from the PLC.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US212

The automatic source code download ensures that the V2 PLC always has the up-to-date
project archive on its memory card. With each online change or download of the application
program (that can be triggered via Automation Builder or via CODESYS editor) the Automation
Builder will send the current project archive to the PLCs memory card.
Enable one of the given project options in the 'Timing' section to trigger an automatic source
code download on each online change or application download.

– The option ‘Only on demand’ will never trigger any automatic download.
– The option ‘Prompt at program download and online change’ will prompt a

dialog before downloading the source code. Only one dialog is prompted,
even if multiple consecutive actions in CODESYS might have triggered
a download. By this, a user can finish configuring all required changes
in the application program before Automation Builder finally downloads all
changes to the PLCs memory card.

– If no memory card is inserted in the PLC, the download fails with an error
message.

A source code download can be triggered from the CODESYS editor via online login after any
change in the application program:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 213

With a source code download always the complete project archive is down-
loaded. This might lead to inconsistencies between the applications and the
project archive if an AC500-S device is envolved. For example, if there are
recent changes in a non-safety PLC that have not been downloaded yet, while
performing a download to the AC500-S PLC.

Options for 'Symbol configuration'

The dialog presented here is used for configuring the symbol file which will be created during
each compilation of the project. The symbol file is created as a text file <project name>.sym
respectively as a binary file <project name>.sdb (the format is depending on the used gateway
version) in the project directory. The file is needed for data exchange with the controller via the
symbolic interface and will be used for that purpose e.g. by OPC- or GatewayDDE-Server.
If the option Create symbol entries is activated, then symbol entries for the project variables will
be automatically written to the symbol file. Otherwise only version info about file and project is
contained.
If additionally the option Dump XML symbol table is activated, then also an XML file containing
the symbol information will be created in the project directory. It will be named <project
name>.SYM_XML.

Regard the following when configuring the symbol entries:
● If option 'Symbol config from INI-file' is activated in the target settings, then the symbol

configuration will be read from the codesys.ini file or from another ini-file which is defined
there. (In this case the dialog 'Set object attributes' cannot be edited.)

● If option 'Symbol config from INI-file' is not activated, the symbol entries will be generated in
accordance with the settings you can make in the 'Set object attributes' dialog. You get there
using the Configure symbol file button:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US214

Use the tree-structured selection editor to mark the variables which should be entered in the
symbol file. For this purpose you can select a POU's entry (e.g. Global Variables) which auto-
matically will mark all variables belonging to this POU, or you can select particular variables. For
the selected set of entries then activate the desired options in the lower part of the dialog box by
mouse-clicks on the corresponding option boxes. Activated options are displayed checked. The
following options can be set:
Export variables of object: The variables of the selected object are exported into the symbol file.
The following options can take effect only if the Export variables of object option is activated:
Export data entries: Entries for access to the global variables are created for object's structures
and arrays.
Export structure components: An individual entry is created for each variable component of
object's structures.
Export array entries: An individual entry is created for each variable component of object's
arrays.
Write Access: Object's variables may be changed by the OPC server.
Once the option settings for the currently selected variables are complete, other POUs can be
also be selected - without closing the dialog before - and given an option configuration. This can
be carried out for any desired number of POU selections, one after the other.
When the dialog box is closed by selecting OK, all configurations carried out since the dialog
box was opened are applied.

Note: Regard the possibility of using pragmas in the declaration of a variable,
which define that the variable is taken to the symbol file with restricted access
or that it is excluded from the symbol file.

The settings will be stored in CODESYS.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 215

Options for 'Project source control'

This dialog is used to define whether the project should be managed in a project data base and
to configure the ENI interface correspondingly.

Use source control (ENI): Activate this option, if you want to access a project data base via the
ENI Server in order to administer all or a selection of POUs of the project in this data base.
Preconditions: ENI Server and data base must be installed and you must be registered as an
user in the database. See also the documentation for the ENI-Server resp. in chapter 'ENI'.
If the option is activated, then the data base functions (Check in, Get last version etc.) will be
available for handling the project POUs. Then some of the data base functions will run automat-
ically like defined in the options dialogs, and in the menu 'Project' 'Data Base Link' you will
find the commands for calling the functions explicitly. Besides that a tab 'Data base-connection'
will be added in the dialog Properties, where you can assign a POU to a particular data base
catetory.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US216

Here you set a default: If a new object is inserted in the project ('Project' 'Object' 'Add'), then it
will automatically get assigned to that object category which is defined here. This assignment
will be displayed in the object properties dialog ('Project' 'Object' 'Properties') and can be
modified there later. The possible assignments:
● Project: The POU will be stored in that data base folder which is defined in the dialog ENI

configuration/Project objects in the field 'Project name'.
● Shared Objects: The POU will be stored in that data base folder which is defined in the

dialog ENI configuration/Shared objects in the field 'Project name'.
● Local: The POU will not be managed in a ENI data base, but only will be stored locally in the

project.
Besides 'Project objects' and 'Shared objects' there is a third data base category 'Compile
files' for such objects which are not created until the project has been compiled. Therefore this
category is not relevant for the current settings.
Ask for type of new objects: If this option is activated, then whenever a new object is added to
the project, the dialog 'Object' 'Properties' will open, where you can choose to which of the three
object categories mentioned above the POU should be assigned. By doing so the standard
setting can be overwritten.
configure ENI: This button opens the first of three ENI configuration dialogs:
Each object of a project, which is determined to get managed in the ENI data base, can be
assigned to one of the following data base categories: 'Project objects', 'Shared objects' or
'Compile files'. For each of these categories a separate dialog is available to define in which
data base folder it should be stored and which presettings should be effective for certain data
base functions:
● Ä Chapter 1.4.1.2.2.14 “Options for project objects and shared objects regarding the project

data” on page 217
● Ä Chapter 1.4.1.2.2.15 “Options for compile files regarding the project data base”

on page 220

Each object will be stored also locally (with project) in any case.

The dialog will open one after the other if you are doing a primary configuration. In this case
a Wizard (Button Next) will guide you and the settings entered in the first dialog will be auto-
matically copied to the other ones, so that you just have to modify them if you need different
parameter values.
If you want to modify an existing configuration, then the three dialogs are combined in one
window (three tabs).
If you have not yet logged in successfully to the data base before, then the Login dialog will be
opened automatically.

The settings will be stored in the project.

Options for project objects and shared objects regarding the project data
These dialogs are part of the configuration of the project data base options ('Project' 'Options'
'Project source control'). Here you define the access parameters for the data base categories
'Project objects' und 'Shared objects'. Both dialogs contain the same items. (A third dialog is
available for the configuration of the access to the data base category Compile files.

Connect new
objects with the
following data
base:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 217

TCP/IP-Address: Address of the computer where the ENI-
Server is running

Port: Default: 80; must be the same as set in the
configuration parameters of the ENI Server

Project name: Name of the data base folder where the
objects of this category should be stored.
Press button ... to open a folder tree of the
already existing data base projects. If the
desired folder already exists, you can select
it in this tree and it will be entered in the 'Pro-
ject name' edit field. If you had not logged in
to the ENI Server until you try to open the
folder tree by button ..., then you will first get
the Login dialog where you must enter 'User
name' and 'Password' as defined in your ENI
user account to get access to the three data
base categories.

Read only If this option is activated, then only read
access is possible to the above defined data
base folder.

ENI-Connection

Get latest ver-
sion

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US218

The data base function 'Get latest Version' (Menu 'Project' 'Data Base Link' copies the actual
version of POUs from the above defined data base folder to the currently opened project,
whereby the local version of objects will be overwritten. This will be done automatically for all
objects, for which the version found in the data base differs from that in the project, as soon as
one of the chosen timing conditions will meet. Choose the options by setting a check mark:

At Project Open As soon as the project is opened in
CODESYS

Immediately after Changes in ENI As soon as a newer version of the POU is
checked in to the data base (e.g. by another
user); then the POU will be updated in the cur-
rent project immediately and an appropriate
message will pop up.

Before any Compile Before any compile process in CODESYS

The data base function 'Check out' means that the POU will be marked as 'in the works' and will
be locked for other users until it will be de-blocked again by a 'Check in' or 'Undo check out'.
If the option Immediately at start of editing is activated, then an object will be checked out
automatically as soon as you start to edit it. If the object is currently already checked out
by another user (indicated by a red cross before the object name in the object organizer of
CODESYS), then a message will pop up.

The data base function 'Check in' means, that a new version of the object will be created in the
data base. The older versions will be kept anyway.
You can activate one or both of the following options to define the time of automatic Checking
in:

At Project Save as soon as the project is saved

After successfull compile as soon as the project has been compiled
without errors

For each of the options 'Get last version', 'Check out' and 'Check in' additionally the option with
Query can be activatd. In this case, before the corresponding action is carried out, a dialog
opens where you still can decide to cancel the action or otherwise confirm it.
The items of the dialog 'Shared objects' are the same like in the dialog 'Project objects'
described above. The settings apply to all objects which are assigned to the data base category
'Shared objects'.
If you do a primary configuration, the configuration dialogs will appear one after the other
and you will be guided by a wizard (button Next). The settings made in the first dialog will
automatically be inherited to the other ones. So those just have to be edited if modificiations are
necessary.
Cancel will close the dialog without saving the done modifications in the currently opened
dialog. You return to the main dialog 'Options' 'Project source control'.
If an already existing configuration has been modified, then the new settings (for all three
dialogs) can be saved by pressing OK. After that the dialog will be closed and you return to the
main dialog 'Options' 'Project source control'.

The settings will be stored in the project.

Check out

Check in

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 219

Options for compile files regarding the project data base
This dialog is part of the option settings for the project data base ('Project' 'Options' 'Project
source control'). Here you define how the objects of category 'Compile files' will be handled
in the data base. (Besides that two further dialogs are available to define this for objects of
category 'Project objects' and 'Shared objects'.)

For the input fields TCP/IP-Address, Port, Project namesee the description of dialog Project
objects/Shared objects.

If you do a primary configuration, the configuration dialogs will appear one after the other,
guided by a wizard (button Next). The settings made in the first dialog will automatically be
inherited to the other ones. So those just have to be edited if modificiations are necessary.
Cancel will close the dialog without saving the done modifications in the currently opened dialog
(the settings made in the previous dialogs will be kept anyway). You return to the main dialog
'Options' 'Project source control'.
If an already existing configuration has been modified, then the new settings (for all three
dialogs) can be saved by pressing OK. After that the dialog will be closed and you return to the
main dialog 'Options' 'Project source control'.

The settings will be stored in the project.

Options for 'Macros'
If you choose this category in the Options dialog, the following dialog box opens:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US220

In this dialog, macros can be defined using the commands of the batch mechanism, which can
then be called in the 'Edit' 'Macros' menu.
Perform the following steps to define a new macro:
● In the input field Name, you enter a name for the macro to be created. After the New button

is pressed, this name is transferred into the Macrolist field and marked as selected there.
The macro list is represented in a tree structure. The locally defined macros are positioned
one below the other. If macro libraries (see below) are integrated, then the library names will
be listed and by a mouse-click on the plus- resp. minus-signs in front of those entries you
can open or close a list of the library elements.

● The Menu field is used to define the menu entry with which the macro will appear in the
'Edit' 'Macros' menu. In order to be able to use a single letter as a short-cut, the letter must
be preceded by the symbol '&'. Example: the name "Ma&cro 1" generates the menu entry
"Macro 1". Example: the name "Ma&cro 1" will create a menu item "Macro 1".

● In the editor field Commands you define and/or edit the commands that are to constitute
the newly created or selected macro. All the commands of the batch mechanism and all
keywords which are valid for those are allowed. You can obtain a list by pressing the Help
button. A new command line is started by pressing <Ctrl><Enter>. The context menu with
the common text editor functions is obtained by pressing the right mouse button. Command
components that belong together can be grouped using quotation marks.

● If you want to create further macros, perform steps 1-3 again, before you close the dialog by
pressing the OK-button.

If you want to delete a macro, select it in the macro list and press button .
If you want to rename a macro, select it in the macro list, insert a new name in the edit field
'Name' and then press button Rename.
To edit an existing macro, select it in the macro list and edit the fields 'Menu' and/or 'Com-
mands'. The modifications will be saved when pressing the OK-button.
As soon as the dialog is closed by pressing the OK-button the actual description of all macros
will be saved in the project.
The macro menu entries in the 'Edit' 'Macros' menu are now displayed in the order in which they
were defined. The macros are not checked until a menu selection is made.

Macros can be saved in external macro libraries. These libraries can be included in other
projects.

Macro libraries:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 221

● Creating a macro library containing the macros of the currently opened project:
Press button Create. You get the dialog Merge project, where all available macros are listed.
Select the desired entries and confirm with OK. The selection dialog will close and dialog
Save Macrolibrary will open. Insert here a name and path for the new library and press
button Save. The library will be created named as <library name>.mac and the dialog will be
closed.

● Including a macro library <library name>.mac in the currently opened project:
Press button Include. The dialog Open Macrolibrary will open, which shows files with exten-
sion *.mac. Select the desired library and press button Open. The dialog will be closed and
the library will be added to the tree of the Macrolist.

Hint: The macros of a project also can be exported Ä Chapter 1.4.1.2.3.22 “'Project' 'Export'”
on page 239.

The settings will be stored in the project.

1.4.1.2.3 Managing projects
'File' 'New'

Symbol:
With this command you create an empty project with the name "Untitled". This name must be
changed when saving.

'File' 'New from template'
Use this command to open any desired project as a "template" project. The dialog for opening
a project file will be available and the selected project will be opened with project name
"Unknown" Ä Chapter 1.4.1.2.3.3 “'File' 'Open'” on page 222.

'File' 'Open'
Symbol:
With this command you open an already existing project. If a project has already been opened
and changed, then you are asked whether this project should be saved or not.
The dialog box for opening a file appears, and a project file with the extension "*.pro" or a library
file with the extension "*.lib" must be chosen. This file must already exist Ä Chapter 1.4.1.4.3.1
“Overview” on page 371. It is not possible to create a project with the command "Open".

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US222

To upload a project file from the PLC, press PLC at Open project from PLC. You will obtain,
as next, the dialog Communication parameters (see menu 'Online' 'Communication parameters')
for setting the transmission parameters when no connection exists yet to the PLC. Once an
on-line connection has been created, the system checks whether the same named project files
already exist in the directory on your computer hard disc. When this is the case you receive
the dialogue Load the project from the controller where you can decide whether the local files
should be replaced by those being used by the controller. (This sequence is the reverse of
the sequence of 'Online' 'Load source code', with which the project source file is stored in the
controller. Do not confuse with 'Create Boot project'!)

Please note, that you in any case have to give a new name to a project,
when you load it from the PLC to your local directory, otherwise it is unnamed.
If supported by the target system, a 'Title' entered in the project info will be
pre-defined as new project file name Ä Chapter 1.4.1.2.3.34 “'Project' 'Project
info'” on page 246. In this case at loading the project from the PLC the dialog
for saving a file will open, where the new file name automatically is entered and
can be confirmed or modified.

If there has not yet been loaded a project to the PLC, you get an error message.
Ä Chapter 1.4.1.2.2.11 “'Source download'” on page 212'

To open a project which is stored in a ENI project data base, activate option Open project from
Source code manager can be used . It is a precondition that you have access to an ENI Server
which serves the data base. Press button ENI..., to get a dialog where you can connect to the
server concerning the data base category 'Project objects'.
Insert the appropriate access data (TCP/IP-Address, Port, Username, Password, Read only)
and the data base folder (Project name) from which the objects should be get and confirm with
Next. The dialog will be closed and another one will open where you have to insert the access
data for the data base category 'Shared objects'. If you press button Finish the dialog will be
closed and the objects of the defined folders will automatically be retrieved and displayed in the
Object manager. If you want to continue to keep the project objects under data base control,
then open the Project options to set the desired parameters.
The access data are stored in the codesys.ini file, username and password however only if the
project option 'Save ENI credentials' is activated.

Open a project
from the PLC

Open a project
from Source
code manager
(ENI data base)

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 223

The most recently opened files are listed in the Files menu below the command 'File' 'Exit'. If
you choose one of them, then this project is opened.
If passwords or User groups have been defined for the project, then a dialog box appears for
entering the password.

'File' 'Close'
With this command you close the currently-open project. If the project has been changed, then
you are asked if these changes are to be saved or not. If the project to be saved carries
the name "Untitled", then a name must be given to it Ä Chapter 1.4.1.2.3.6 “'File' 'Save as'”
on page 224.

'File' 'Save'
Symbol: Shortcut: <Ctrl>+<S>
With this command you save any changes in the project. If the project to be saved is called
"Untitled", then you must give it a name Ä Chapter 1.4.1.2.3.6 “'File' 'Save as'” on page 224.

'File' 'Save as'
With this command the current project can be saved in another file or as a library. This does not
change the original project file.
After the command has been chosen the Save dialog box appears. Choose either an existing
File name or enter a new file name and choose the desired file type.

If the project is to be saved under a new name, then choose the file type Project (*.pro).
If you choose the file type Project Version 1.5 (*.pro), 2.0 (*.pro), 2.1 (*.pro) or 2.2 (*.pro), then
the current project is saved as if it were created with the version 1.5, 2.0, 2.1 or 2.2. Specific
data of the version 2.3 can thereby be lost! However, the project can be executed with the
version 1.5, 2.0, 2.1 or 2.2.
You can also save the current project as a library in order to use it in other projects. Choose the
file type Internal library (*.lib) if you have programmed your POUs in CODESYS.
Choose the file type External library (*.lib) if you want to implement and integrate POUs in
other languages (e.g. C). This means that another file is also saved which receives the file
name of the library, but with the extension "*.h". This file is constructed as a C header file with
the declarations of all POUs, data types, and global variables. If external libraries are used, in
the simulation mode the implementation, written for the POUs in CODESYS, will be executed.
Working with he real hardware the implementation written in C will be executed.

Most recently
opened files

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US224

Encryption of a project
In order to save the project as an encrypted project or library, choose option Encrypted Project
(*.pro) resp. Encrypted internal library (*.lib) or Encrypted external library (*.lib). In this case you
get the 'Encryption' dialog , where you can define and confirm a key. The project later cannot be
opened esp. a library cannot be used without this key:

The encryption extends the protection of a project, which up to now was only possible via the
assignment of passwords for access and write protection Ä Chapter 1.4.1.2.2.10 “Passwords”
on page 211. These possibilities will exist further on, but note that they e.g. cannot avoid that a
library is included in a project without the need of entering a library password (key).
A key once defined will be saved with any further savings of the project. To modify that key, you
have to use again the 'Save as' dialog.
If an encrypted project should be opened resp. if an encrypted library sShould be used in a
project, the dialog asking for the key will appear.

Licensing a library:
If you want save the project as a licensed library, you can add the appropriate licensing infor-
mation in the dialog 'Edit Licensing Information'. Open the dialog by pressing the button Edit
license info.
After having done all settings, press OK. The current project will be saved in the indicated file. If
the new file name already exists, then you are asked if you want to overwrite this file.
When saving as a library, the entire project is compiled. If an error occurs thereby, then you are
told that a correct project is necessary in order to create a library. The project is then not saved
as a library.

'File' 'Save/Mail archive'
This command is used to set up and create a project archive file. All files which are referenced
by and used with a CODESYS project can be packed in a compressed zip file. The zip file can
be stored or directly can be sent in an email. This is useful if you want to give forward a set of all
project relevant files.

The archive function is not practical for restoring a project environment. It
is designated for an easy packing of all files belonging to a project. When
unpacking an archive the paths of the particular files must be adapted to the
actual environment!

When the command is executed, the dialog box 'Save Archive' opens:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 225

Here you can define which file categories should be added to the archive zip file: Select or
deselect a category by activating/deactivating the corresponding checkbox. Do this by a single
mouseclick in the checkbox or by a doubleclick on the category name. If a category is marked
with , all files of this category will be added to the zip file, if it is marked with , none of the
files will be added. To select single files of a category press the corresponding button Details.
The dialog 'Details' will open with a list of available files:

The dialog shows a list of all files which are available for the category: Automatically alle files
are selected, an exception is category 'Target Files' where only the files are selected which are
relevant for the currently set target system. For modifying the selection activate resp. deactivate
the desired files. With the button 'Select All' all files of the list are selected, with 'Select None'
none of them. A single file can be selected/deselected by a mouseclick in the checkbox, also by
a doubleclick on the list entry or by pressing the spacebar when the list entry is marked.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US226

Close the Details dialog with 'Save' to store the new settings.
In the main dialog the checkbox of categories, for which not all files are selected, will appear
with a grey background color .
The following file categories are available, the right column of the table shows which files can be
added to the zip file:

Category Files

Project File projectname.pro (the project file)

Referenced Libraries *.lib, *.obj, *.hex (libraries and if available the
corresponding object and hex-files)

Compile Information

*.ci (compile information)
*.ri (download/reference information)
<temp>.* (temporary compile and download
files)
also for simulation

INI File

Codesys.ini

Log File *.log (project log file)

Bitmap Files

*.bmp (bitmaps for project POUs and visuali-
zations)

Registry Entries Registry.reg (Entries for Automation Alliance,
Gateway and SPS; the following subtrees will
be packed:
HKEY_LOCAL_MACHINE\SOFTWARE\3S-
Smart Software Solutions
HKEY_LOCAL_MACHINE\SOFTWARE\Auto-
mationAlliance"

Symbol Files *.sdb, *.sym (symbolic information)

Configuration files

files used for PLC configuration (configuration
files, device files, icons etc.): e.g. *.cfg, *.con,
*.eds, *.dib, *.ico

Target Files

*.trg (target files in binary format for all
installed targets)
*.txt (target files for the installed targets in text
format, if available)

Local Gateway

Gateway.exe, GatewayDDE.exe, GClient.dll,
GDrvBase.dll, GDrvStd.dll, GHandle.dll,
GSymbol.dll, GUtil.dll, further DLLs in the
gateway directory if available

Language Files language files used for visualizations (*.vis,
*.xml)

Boot project Boot project files <project name>.prg, <project
name>.chk resp. the target specific boot
project files.

To add any other files to the zip, press the button 'Other Files'. The dialog 'Other files' will open
where you can set up a list of desired files.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 227

Press the button Add to open the standard dialog for opening a file, where you can browse for
a file. Choose one and confirm with Open. The file will be added to the list in the 'Other files'
dialog. Repeat this for each file you want to add. To delete entries from the list, press the button
Remove. When the list of selected files is ok, close the dialog with OK.
To add a readme file to the archive zip, press the button 'Comment'. A text editor will open,
where you can enter any text. If you close the dialog with OK, during creation of the zip file
a readme.txt file will be added. Additionally to the entered comments it will contain information
about the build date and version of CODESYS.

If all desired selections have been made, in the main dialog press:
● Save... to create and save the archive zip file: The standard dialog for saving a file will

open and you can enter the path, where the zip should be stored. The zip file per default is
named <projectname>.zip. Confirm with Save to start building it. During creation the current
progress status is displayed and the subsequent steps are listed in the message window.
There also a message will be displayed if any file could not not been found.

● Mail... to create a temporary archive zip and to automatically generate an empty email
which contains the zip as an attachment. This feature only works if the MAPI (Messaging
Application Programming Interface) has been installed correctly on the system, otherwise an
error message is generated. During setup of the email the progressing status is displayed
and the steps of the action are listed in the message window. The temporary zip file will be
removed automatically after the action has been finished.

● Cancel to cancel the action; no zip file will be generated.

After unpacking the archive zip on a different system it might be necessary to
adapt the file paths!

'File' 'Print'
Shortcut: <Ctrl>+<P>
With this command the content of the active window is printed.
After the command has been chosen, then the Print dialog box appears. Choose the desired
option or configure the printer and then click OK. The active window is printed. Color output is
available from all editors.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US228

You can determine the number of the copies and print the version to a file.
With the button 'Properties' you open the dialog box to set up the printer.
You can determine the layout of your printout with the command 'File' 'Printer setup' Ä Chapter
1.4.1.2.3.9 “'File' 'Printer setup'” on page 229.
During printing the dialog box shows you the number of pages already printed. When you close
this dialog box, then the printing stops after the next page.
In order to document your entire project, use the command 'Project' 'Document' Ä Chapter
1.4.1.2.3.21 “'Project' 'Document'” on page 238.
If you want to create a document frame for your project, in which you can store comments
regarding all the variables used in the project, then open a global variables list and use the
command 'Extras' 'Make docuframe file'.

'File' 'Printer setup'
With this command you can determine the layout of the printed pages. The following dialog box
is now opened:

In the field File you can enter the name of the file with the extension ".dfr" in which the page
layout should be saved. The default destination for the settings is the file DEFAULT.DFR.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 229

If you would like to change an existing layout, then browse through the directory tree to find the
desired file with the button 'Browse'.
You can also choose whether to begin a new page for each object and for each subobject. Use
the 'Printer Setup' button to open the printer configuration.
If you click on the 'Edit' button, then the frame for setting up the page layout appears. Here you
can determine the page numbers, date, file name and POU name, and also place graphics on
the page and the text area in which the documentation should be printed.

With the menu item 'Insert' 'Placeholder' and subsequent selection among the five placeholders
(Page, POU name, File name, Date, and Content), insert into the layout a so-called placeholder
by dragging a rectangle the layout while pressing the left mouse button. In the printout they are
replaced as follows:

Command Placeholder Effect
Page {Page} Here the current page number

appears in the printout.

POU name {POU Name} Here the current name of the
POU appears.

File name {File Name} Here the name of the project
appears.

Date {Date} Here the current date
appears.

Contents {Contents} Here the contents of the POU
appear.

In addition, with 'Insert' 'Bitmap' you can insert a bitmap graphic (e.g. a company logo) in
the page. After selecting the graphic, a rectangle should also be drawn here on the layout
using the mouse. Other visualization elements can be inserted Ä Chapter 1.4.3 “Visualization”
on page 636.
If the template was changed, then you are asked when the window is closed if these changes
should be saved or not.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US230

In order to be aware of the page format which will be valid for printouts, define
the layout as described above and additionally activate option 'Show print area
margins' in the project options, category Desktop.

'File' 'Exit'
Shortcut: <Alt>+<F4>
With this command you exit from CODESYS.
If a project is opened, then it is closed Ä Chapter 1.4.1.2.3.5 “'File' 'Save'” on page 224.

'Project' 'Build'
Shortcut: <F11>
The project is compiled using 'Project' 'Build'. The compilation process is basically incremental,
that is only changed POUs are recompiled. The necessary information about the last compila-
tion is stored in a *.ci-file when the project is saved. A non-incremental compilation can also be
obtained if the command 'Project' 'Clear all' is first executed.
For target systems that support Online Change, all POUs that will be loaded into the controller
on the next download are marked with a blue arrow in the Object Organizer after compilation.
The compilation process that is carried out with 'Project' 'Build' occurs automatically if the
controller is logged-in via 'Online' 'Login' Ä Chapter 1.4.1.2.6.2 “'Online' 'Login'” on page 279.
See online login for a diagram showing the relations between Project-Build, Project-Download,
Online Change and Login on the target systemFig. .
During compilation a message window is opened which shows the progress of the compilation
process, any errors and warnings which may occur during compilation as well as information on
the used POU indices and memory space (number and percentage). Errors and warnings are
marked with numbers. Using F1 you get more information about the currently selected error.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 231

See the listing of all available error messages and warnings Ä Chapter 1.4.1.10.2.1 “1100”
on page 478.
If the option 'Save before compilation' is selected in the options dialog of the Load & Save
category, the project is stored before compilation.
An object, or several objects, selected in the Object Organizer can be excluded from compi-
lation by command 'Exclude from build' which is available in the context menu, or via an
appropriate configuration ('Exclude objects') in the Options for Build.

Cross references are created during compilation and are stored with the compi-
lation information. In order to be able to use the command 'Show Call Tree',
and to get up to date results with the commands 'Show Cross Reference' and
'Unused variables', 'Overlapping memory areas', '', 'Multiple Writes to output',
rebuild the project after any change Ä Chapter 1.4.1.2.4.16 “'Project' 'Show
call tree'” on page 264 Ä Chapter 1.4.1.2.4.17 “'Project' 'Show cross refer-
ence'” on page 264 Ä Chapter 1.4.1.2.3.41 “Concurrent access” on page 249
Ä Chapter 1.4.1.2.3.37 “'Project' 'Check'” on page 248.

'Project' 'Rebuild all'
With 'Project' 'Rebuild all', unlike the incremental compilation, the project is completely recom-
piled Ä Chapter 1.4.1.2.3.11 “'Project' 'Build'” on page 231. Download information is not dis-
carded, however, as is the case with the command 'Project' 'Clean all' Ä Chapter 1.4.1.2.3.13
“'Project' 'Clean all'” on page 232 Ä Chapter 1.4.1.2.3.14 “'Project' 'Load download information'”
on page 232. Note the possibility to exclude objects from compilation Ä Chapter 1.4.1.2.2.9
“Options for build” on page 209.
See 'Online' 'Login' for a diagram showing the relations between Project-Build, Project-Down-
load, Online Change and Login on the target systemFig. .

'Project' 'Clean all'
With this command, all the information from the last download and from the last compilation is
deleted.
After the command is selected a dialog box appears, reporting that Login without new download
is no longer possible Ä Chapter 1.4.1.2.6.2 “'Online' 'Login'” on page 279. At this point the
command can either be cancelled or confirmed.
Note: After having done a 'Clean all', an online change on the PLC project is only possible if the
*.ri file with the project information from the last download was first renamed or saved outside
the project directory and can now be loaded explicitly prior to logging-in Ä Chapter 1.4.1.2.6.2
“'Online' 'Login'” on page 279 Ä Chapter 1.4.1.2.3.14 “'Project' 'Load download information'”
on page 232.
See Online Login for a diagram showing the relations between Project-Build, Project-Download,
Online Change and Login on the target systemFig. .

'Project' 'Load download information'
With this command the Download-Information belonging to the project can get reloaded. After
choosing the command the standard dialogue 'File Open' opens.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US232

The Download-Information is saved automatically at each download and, dependent on the
target system, potentially also at each offline creation of a boot project to a file, which is
named <project name><target identifier>.ri and which is put to the project directory Ä Chapter
1.4.1.2.6.5 “'Online' 'Download'” on page 283. This file gets reloaded each time the project is
reopened and at login it is used to check the code of which POUs has been changed. Only
these POUs will then be loaded to the PLC during online change procedure. Thus the *.ri file is
a precondition for an online change Ä Chapter 1.4.1.2.6.2 “'Online' 'Login'” on page 279.

Using command 'Project' 'Clean all' the *.ri file belonging to the current project
automatically gets deleted from the projects directory, so that no online change
will be possible until the *.ri file can be reloaded from another directory or from a
renamed *.ri file Ä Chapter 1.4.1.2.3.13 “'Project' 'Clean all'” on page 232.

See online login for a diagram showing the relations between Project-Build, Project-Download,
Online Change and Login on the target systemFig. .

'Project' 'Translate into another language'
This menu item is used for translating the current project file into another language. This is
carried out by reading in a translation file that was generated from the project and externally
enhanced in the desired national language with the help of a text editor. The project can be just
displayed or really get translated into one of the generated language versions.
The following menu sub-items are present:
● Create translation file Ä Chapter 1.4.1.2.3.16 “Create translation file” on page 233
● Translate project Ä Chapter 1.4.1.2.3.18 “Translate project (into another language)”

on page 237
● Show project translated Ä Chapter 1.4.1.2.3.19 “Show project translated” on page 238
● Toggle translation Ä Chapter 1.4.1.2.3.20 “'Toggle translation'” on page 238
● See also: 'Editing of the translation file' Ä Chapter 1.4.1.2.3.17 “Editing of the translation

file” on page 236

Create translation file
This command in the 'Project' 'Translate into another language' menu leads to the 'Create
translation file' dialog.
Dialog for creating a translation file

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 233

In the Translation file field, enter a path that shows where the file is to be stored. The default file
extension is *.tlt; this is a text file. You also can use the extension *.txt, which is recommended,
if you want to work on the file in EXCEL or WORD, because in this case the data are organized
in table format.
If there already exists a translation file which you want to process, give the path of this file or
use the Search button to reach the standard Windows file selection dialog.
The following information from the project can optionally be passed to the translation file that is
being modified or created, so that they will be available for translation: Names (names, e.g. the
title 'POUs' in Object Organizer), Identifiers, Strings, Comments, Visualisation texts, Alarm texts.
In addition, Position information for these project elements can be transferred.
If the corresponding options are checked, the information from the current project will be
exported as language symbols into a newly created translation file or added to an already
existing one. If the respective option is not selected, information belonging to the pertinent
category, regardless of which project it came from, will be deleted from the translation file.
The option "Visualisation texts" only concerns 'Text' and 'Tooltip-Text' of a visualization element.
Regard the following items when using a translation file for visualization texts:
● A *.tlt- or *.txt translation file only can be used with CODESYS or CODESYS HMI, not

however with target visualization or web visualization. It might be better to use a special
visualization language file *.vis.

● Switching to another language is only possible in online mode. This means that the visuali-
zation texts will not be translated by command 'Translate into another language' Ä Chapter
1.4.1.2.3.15 “'Project' 'Translate into another language'” on page 233. A language change
can only occur in Online mode if the corresponding language is entered in the 'Extras'
'Settings' dialog.

● If a *.tlt- or *.txt-file should be used for visualization texts ('Text' and 'Text for Tooltip'), the
texts must be bracketed by two "#" symbols in the configuration dialog of the visualization
element (e.g. #text#) in order to be transferred to the translation file.

● Language switching in visualizations Ä Chapter 1.4.3.6.1 “'Extras' 'Settings'” on page 700.
Position information: This describes with the specifications file path, POU and line the position
of the language symbol made available for translation. Three options are available for selection:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US234

'None': No position information is generated.

'First appearance': The position on which the element first
appears is added to the translation file.

'All': All positions on which the corresponding ele-
ment appears are specified.

If a translation file created earlier is to be edited which already contains more position informa-
tion than that currently selected, it will be correspondingly truncated or deleted, regardless of
which project it was generated from.

A maximum of 64 position specifications will be generated per element (lan-
guage symbol), even if the user has selected "All" under "Position Information"
in the 'Create Translation File' dialog.

Overwrite existing: Existing position information in the translation file, that is currently being
processed, will be overwritten, regardless of which project generated it.
Target languages: This list contains identifiers for all languages which are contained in the
translation file, as well as those to be added upon completion of the 'Create translation file'
dialog.
The Exclude button opens the 'Exclude libraries' dialog. Here, libraries included to the project
can be selected, whose identifier information is not to be transferred to the translation file. To
accomplish this, the corresponding entry in the table Included libraries on the left is selected
with the mouse and placed in the Excluded libraries table to the right using the Add button.
Likewise, entries already placed there can be removed using the Remove button. OK confirms
the setting and closes the dialog.
Dialog for excluding library information for the translation file:

The Add button opens the 'Add Target Language' dialog:
Dialog for adding a target language (Project, Translate into Another Language):

A language identifier must be entered into the editor field; it may not have a space or an umlaut
character (ä, ö, ü) at either the beginning or the end.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 235

OK closes the 'Add Target Language' dialog and the new target language appears in the target
language list.
The Remove button removes a selected entry from the list.
You may also confirm the "Create translation file" dialog via OK, in order to generate a transla-
tion file.
If a translation file of the same name already exists you will get the following confirmation
message to be answered Yes or No:
" The specified translation file already exists. It will now be altered and a backup copy of the
existing file will be created. Do you want to continue?"
No returns you without action to the 'Create translation file' dialog. If Yes is selected, a copy of
the existing translation file with the filename "Backup_of_<translation file>.xlt" will be created in
the same directory and the corresponding translation file will be modified in accordance with the
options that have been entered.

● For each new target language, a placeholder ("##TODO") is generated for each language
symbol to be displayed Ä Chapter 1.4.1.2.3.17 “Editing of the translation file” on page 236.

● If an existing translation file is processed, file entries of languages that appear in the
translation file, but not in the target language list, are deleted, regardless of the project from
which they were generated.

Editing of the translation file
The translation file must be opened and saved as a text file. The signs ## mark keywords. The
##TODO-placeholders in the file can be replaced by the valid translation. For each language
symbol a paragraph is generated which starts and ends with a type identifier. For example
##NAME_ITEM and ##END_NAME_ITEM include a section for the name of an object as used
in the object organizer. (COMMENT_ITEM marks sections for comments, IDENTIFIER_ITEM
those for identifiers, STRING_ITEM those for strings and VISUALTEXT_ITEM those for visuali-
zation texts).
See in the following an example of a translation file paragraph which handles the name of one
of the POUs of the project. ST_Visu. The target languages shall be English(USA) and French.
In the example the position information of the project element which should be translated has
been added:
before translation:

##NAME_ITEM
[D:\codesys\projects\Bspdt_22.pro::ST_Visualisierung::0]
ST_Visualisierung
##English :: ##TODO
##French :: ##TODO
##END_NAME_ITEM

Example

after translation:
The ##TODOs have been replaced by the English resp. French word for 'Visualisierung':

##NAME_ITEM
[D:\codesys\projects\Bspdt_22.pro::ST_Visualisierung::0]
ST_Visualisierung
##English :: ST_Visualization
##French :: ST_Visu
##END_NAME_ITEM

Example

The following
takes place
when a transla-
tion file is gen-
erated:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US236

Please check that the translated Identifier and Names remain valid concerning the standard
and that strings and comments are in correct brackets. Example: For a comment (##COM-
MENT_ITEM) which is represented with "(* Kommentar 1)" in the translation file, the "##TODO"
behind "##English" must be replaced by a "(* comment 1 *)". For a string (##STRING_ITEM)
represented with "zeichenfolge1" the "##TODO" must be replaced by "string1".

The following parts of a translation file should not be modified without detailed
knowledge: Language block, Flag block, Position information, Original texts.

Translate project (into another language)
This command in the 'Project' 'Translate into Another Language' menu opens the 'Translate
Project into Another Language' dialog.

The current project can be translated into another language if an appropriate translation file is
used.

If you want to save the version of the project in the language in which it was
originally created, save a copy of the project prior to translation under a different
name. The translation process cannot be undone. Consider in this context the
possibility just to display the project in another language (in this display version
then however not editable).

In the field Translation file, provide the path to the translation file to be used. By pressing Search
you may access the standard Windows file selection dialog.
The field Target language contains a list of the language identifiers entered in the translation file,
from which you can select the desired target language.
OK starts the translation of the current project into the chosen target language with the help of
the specified translation file. During translation, a progress dialog is displayed, as well as error
messages, if any. After translation, the dialog box and all open editor windows of the project are
closed.
Cancel closes the dialog box without modification to the current project.
If the translation file contains erroneous entries, an error message is displayed after OK is
pressed, giving the file path and the erroneous line, e.g.: "[C:\Programs\codesys\projects\visu.tlt
(78)]; Translation text expected"

Regard the specialities for texts in visualizations.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 237

Show project translated
If there is a translation file available for the project, you can display one of the language
versions defined there, without overwriting the original language version of the project.
(Regard this possibility in comparison to the "real" translating of a project, which you would do
with the command 'Translate Project', and which would mean to create a new version of the
project !)
The command 'Translate this project' in menu 'Project' 'Translate into another language' opens
the dialog 'Translate project into another language'.

In field Translation file insert the path of the translation file, you want to use. You can receive
assistance by the standard dialog for opening a file which is opened by button Browse.
In field Target language you find a selection list, which besides the entry "<Native language>"
also offers the language identifiers which are defined by the currently set translation file. The
original language is that one, which is currently saved with the project. (It only could be changed
by a 'Project' 'Translate'.) Choose one of the available languages and confirm the dialog with
OK. Thereupon the project will be displayed in the chosen language, but cannot be edited in this
view !
If you want to change back to viewing the project in its original language, use command 'Switch
translation'.

Regard the specialities for texts in visualizations.

'Toggle translation'
If you have got displayed the project (not editable) in another language by command 'Show
project translated', you can now switch between this language version and the (editable) original
version by using the command 'Switch translation' of menu 'Project' 'Translate (into another
Language)' .

Regard the specialities for texts in visualizations.

'Project' 'Document'
This command lets you print the documentation of your entire project. The elements of a
complete documentation are:
● The POUs,
● the contents of the documentation,
● the datatypes Ä Chapter 1.4.1.8.1.1 “Data types” on page 443,
● the visualizations Ä Chapter 1.4.3.1 “Overview” on page 636,

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US238

● the resources, global variables, variables configuration, the Sampling Trace, the PLC Con-
figuration, the Task Configuration, the Watch and Receipt Manager),

● the call trees Ä Chapter 1.4.1.2.4.16 “'Project' 'Show call tree'” on page 264 of POUs and
data types, as well as

● the cross-reference list Ä Chapter 1.4.1.2.4.17 “'Project' 'Show cross reference'”
on page 264.

For the last two items the project must have been built without errors.

Only those areas highlighted in blue in the dialog box are printed.
If you want to select the entire project, then select the name of your project in the first line.
If, on the other hand, you only want to select a single object, then click on the corresponding
object or move the dotted rectangle onto the desired object with the arrow key. Objects which
have a plus sign in front of their symbols are organization objects which contain other objects.
With a click on a plus sign organization object is expanded, and with a click on the resulting
minus sign it can be closed up again. When you select an organization object, then all relevant
objects are also selected. By pressing the <Shift> key you can select a group of objects, and by
pressing the <Ctrl> key you can select several individual objects.
Once you have made your selection, then click on 'OK'. The Print dialog box appears. You can
determine the layout of the pages to be printed with 'File' 'Printer setup' Ä Chapter 1.4.1.2.3.9
“'File' 'Printer setup'” on page 229.

'Project' 'Export'
Projects can be exported or imported Ä Chapter 1.4.1.2.3.23 “'Project' 'Import'” on page 240.
That allows you to exchange programs between different IEC programming systems.
There is a standardized exchange format for POUs in IL, ST, and SFC (the Common Elements
format of IEC 1131-3). For the POUs in LD and FBD and the other objects, CODESYS has its
own filing format since there is no text format for this in IEC 1131-3.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 239

The selected objects are written to an ASCII file.
POUs, data types, visualizations, and the resources can be exported. In addition, entries in the
library manager, that is the linking information to the libraries, can be exported (not the libraries
themselves!).

WARNING!
Re-importing an exported FBD or LD POU results in an error if a comment in
the graphic editor contains a single quotation mark ('), as this will be interpreted
as the beginning of a string!

Once you have made your selection in the dialog box window (the same way as with 'Pro-
ject' 'Document' Ä Chapter 1.4.1.2.3.21 “'Project' 'Document'” on page 238), you can decide,
whether you want to export the selected parts to one file or to export in separate files, one for
each object. Switch on or off the option One file for each object then click on OK. The dialog box
for saving files appears. Enter a file name with the expansion ".exp" respectively a directory for
the object export files, which then will be saved there with the file name <objectname.exp>.

'Project' 'Import'
In the resulting dialog box for opening files select the desired export file Ä Chapter 1.4.1.2.3.22
“'Project' 'Export'” on page 239.
The data is imported into the current project. If an object with the same name already exists in
the same project, then a dialog box appears with the question "Do you want to replace it?": If
you answer Yes, then the object in the project is replaced by the object from the import file. If
you answer No, then the name of the new objects receives as a supplement an underline and a
digit ("_0", "_1", ..). With Yes, all or No, all this is carried out for all objects.
If the information is imported to link with a library, the library will be loaded and appended to the
end of the list in the library manager. If the library was already loaded into the project, it will not
be reloaded. If, however, the export file that is being imported shows a different storage time for
the library, the library name is marked with a "*" in the library manager (e.g. standard.lib*30.3.99
11:30:14), similar to the loading of a project. If the library can not be found, then an information
dialog appears: "Cannot find library {<path>\}<name> <date> <time>", as when a project is
loaded.
In the message window the import is registered.

'Project' 'Compare'
This command is used to compare two projects or to compare the actual version of one project
with that which was saved last.
Definitions:
● actual project: Project, which you are currently working on.
● reference project: Project, which should be compared with the actual project.
● compare mode: in this mode the project will be displayed after the command 'Project'

'Compare' has been executed.
● unit: Smallest unit which can be compared. Can be a line (declaration editor, ST editor, IL

editor), a network (FBD editor, LD editor) or a element/POU (CFC editor, SFC editor).
In compare mode the actual project and the reference project will be presented in a bipartited
window. The names of the POUs, for which differences have been found, are marked by color.
For editor POUs also the content of the POUs is displayed in a vis-a-vis way. The results and
the way of presenting in compare mode depend on: 1. what filters have been activated for the
compare run, affecting the consideration of whitespaces and comments during comparison; 2.
whether modification within lines or networks or elements are evaluated as a completely new
inserting of a POU or not.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US240

The version of the reference project can be accepted for single differences or for 'all equally
marked' differences. To accept means that the version of the reference project is taken over to
the actual project.

In compare mode (see status bar: COMPARE) the project cannot get edited!

See also:
Ä Chapter 1.4.1.2.3.25 “Execute comparison” on page 241

Ä Chapter 1.4.1.2.3.26 “Representation of the comparison result” on page 242

Execute comparison
After executing the command 'Project' 'Compare' the dialog Project Comparison opens:

Insert the path of the reference project at Project to compare Ä Chapter 1.4.1.2.3.24 “'Project'
'Compare'” on page 240. Press button if you want to use the standard dialog for opening
a project. If you insert the name of the actual project, the current version of the project will be
compared with the version which was saved last.
If the project is under source control in an ENI data base, then the local version can be
compared with the actual version found in the data base. For this activate option Compare with
ENI-Project.
The following options concerning the comparison can be activated:
● Ignore whitespaces: There will be detected no differences which consist in a different

number of whitespaces.
● Ignore comments: There will be detected no differences in comments.
● Ignore properties: There will be detected no differences in object properties.
● Compare differences: If a line, a network or an element within a POU has been modified, in

compare mode it will be displayed in the bipartited window directly opposite to the version
of the other project (marked red, see below). If the option is deactivated, the corresponding
line will be displayed in the reference project as 'deleted' and in the actual project as
'inserted' (blue/green, see below). This means it will not be displayed directly opposite to the
same line in the other project.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 241

Line 0005 has been modified in actual project (left side).Example:

When the dialog 'Project Comparison' is closed by pressing OK, the comparison will be exe-
cuted according to the settings.

Representation of the comparison result
First the structure tree of the project, titled with "Project Comparison", will be opened to display
the results of the comparison. Here you can select particular POUs to see the found differences
in detail.
1. Project overview in compare mode:
After the project compare has been executed, a bipartited window opens which shows the
project in compare mode. In the title bar you find the project paths: "Project comparison <path of
actual project> - <path of reference project>". The actual project is represented In the left half of
the window, the reference project in the right one. Each structure tree shows the projects' name
at the uppermost position, apart from that it corresponds to the the object organizer structure.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US242

POUs which are different, are marked in the structure tree by a shadow, a specific color and
eventually by an additional text :
● Red: Unit has been modified; is displayed with red colored letters in both partitions of the

window.
● Blue: Unit only available in compare project; a gap will be inserted at the corresponding

place in the structure overview of the actual project.
● Green: Unit only available in actual project; a gap will be inserted at the corresponding place

in the structure overview of the actual project.
● Black: Unit for which no differences have been detected.
"(Properties changed)": This text is attached to the POU name in the project structure tree, if
differences in the properties of the POU have been detected.
"(Access rights changed)": This text is attached to the POU name in the project structure tree, if
differences in the access rights of the POU have been detected.
2. POU contents in compare mode:
By a double click on a line in the structure overview, which is marked red because of a
modification, the POU is opened.
● If it is a text or graphic editor POU, it will be opened in a bipartited window. The content

of the reference project (right side) is set opposite to that of the actual project (left side).
The smallest unit which will be regarded during comparison, is a line (declaration editor, ST,
IL), a network (FBD, LD) or an element (CFC, SFC). The same coloring will be used as
described above for the project overview.
Example:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 243

● If it is not a editor POU, but the task configuration, the target settings etc., then the POU
version of the actual and the reference project can be opened in separate windows by a
double click on the respective line in the project structure. For those project POUs no further
details of differences will be displayed.

'Extras' 'Next difference'
Shortcut: <F7>
This command is available in the compare mode Ä Chapter 1.4.1.2.3.24 “'Project' 'Compare'”
on page 240.
The cursor jumps to the next unit, where a difference is indicated. (line in project overview,
line/network/element in POU)

'Extras' 'Previous difference'
Shortcut: <Shift><F7>
This command is available in the compare mode Ä Chapter 1.4.1.2.3.24 “'Project' 'Compare'”
on page 240.
The cursor jumps to the previous unit, where a difference is indicated (line in project overview,
line/network/element in POU) .

'Extras' 'Accept change'
Shortcut: <Space>

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US244

This command is available in the compare mode Ä Chapter 1.4.1.2.3.24 “'Project' 'Compare'”
on page 240.
For all units, which are cohering with that one where the cursor currently is placed, and which
have the same sort of difference marking, (e.g. subsequent lines), the version of the reference
project will be accepted for the actual project (only possible in this direction!) Ä Chapter
1.4.1.2.3.25 “Execute comparison” on page 241. The corresponding units will be shown (with
the corresponding coloring) in the left side of the window.
For accepting changes of particular units please use 'Accept changed item' Ä Chapter
1.4.1.2.3.30 “'Extras' 'Accept changed item'” on page 245.

The acceptance of different project parts (differences) or access right properties
is only possible from the reference project of the actual project, not vice versa.

'Extras' 'Accept changed item'
Shortcut: <Ctrl> <Spacebar>
This command is available in the compare mode Ä Chapter 1.4.1.2.3.24 “'Project' 'Compare'”
on page 240.
Only the single unit (line, network, element) where the cursor is currently placed, will be
accepted for the actual version Ä Chapter 1.4.1.2.3.25 “Execute comparison” on page 241.
The corresponding units will be shown (with the corresponding coloring) in the left side of the
window.
If for a POU, which has got marked red-colored in the structure tree because of a change of
its content, this change gets accepted, then the POU will be indicated by yellow coloring in the
actual project.
POUs which are only available in the current project because of 'Accept changed item', also
will be indicated by yellow coloring. POUs which have been removed from the current project
because of 'Accept changed item', will be indicated by yellow coloring in the reference project
Ä Chapter 1.4.1.2.3.25 “Execute comparison” on page 241.

The acceptance of different project parts (differences) or access right properties
is only possible from the reference project of the actual project, not vice versa.

'Extras' 'Accept properties'
This command is available in the compare mode Ä Chapter 1.4.1.2.3.24 “'Project' 'Compare'”
on page 240.
The object properties for the POU, where the cursor is currently placed, will be accepted for the
actual project as they are set in the ence version Ä Chapter 1.4.1.2.3.25 “Execute comparison”
on page 241.

The acceptance of different project parts (differences) or access right properties
is only possible from the reference project of the actual project, not vice versa.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 245

'Extras' 'Accept access rights'
This command is available in the compare mode only in project overview Ä Chapter
1.4.1.2.3.24 “'Project' 'Compare'” on page 240.
The object access rights for the POU, where the cursor is currently placed, will be accepted
for the actual project as they are set in the reference version Ä Chapter 1.4.1.2.3.25 “Execute
comparison” on page 241.

'Project' 'Merge'
With this command you can merge objects (POUs, data types, visualizations, and resources) as
well as links to libraries from other projects into your project.
When the command has been given, first the standard dialog box for opening files appears.
When you have chosen a file there, a dialog box appears in which you can choose the desired
object. The selection takes place as described with 'Project' 'Document' Ä Chapter 1.4.1.2.3.21
“'Project' 'Document'” on page 238.
If an object with the same name already exists in the project, then the name of the new object
receives the addition of an underline and a digit ("_1", "_2" ...).

'Project' 'Project info'
Under this menu item the information about your project can be saved. When the command has
been given, then the following dialog box opens:

The following project information is displayed:
● File name
● Directory path
● The time of the most recent change (Change date)
This information cannot be changed. In addition, you can add the following information:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US246

● A Title of the project: Please regard: If supported by the target system, this title automatically
will be proposed as project file name, when the project gets loaded by command 'File' 'Open
project from PLC' (In this case the dialog for saving a file will open).

● the name of the Author,
● the Version number, and
● a Description of the project.
This information is optional. When you press the button Statistics you receive statistical informa-
tion about the project.
It contains information such as the number of the POUs, data types, and the local and global
variables as they were traced at the last compilation.

The button 'License info' will be available, if you work on a project, which had been saved
already with licensing information by the command 'File' 'Save as' Ä Chapter 1.4.1.2.3.6 “'File'
'Save as'” on page 224. In this case the button opens the dialog 'Edit Licensing Information',
where you can modify or remove the license.
If you choose the option 'Ask for project info' in the category 'Load & Save' in the Options dialog
box, then while saving a new project, or while saving a project under a new name, the project
info dialog is called automatically.

'Project' 'Global search'
With this command you can search for the location of a text in POUs, data types, or in the
objects of the global variables.
When the command is entered, a dialog box opens in which you can choose the desired
object. The selection is made as in the 'Project' 'Document' description Ä Chapter 1.4.1.2.3.21
“'Project' 'Document'” on page 238.
If the selection is confirmed with 'OK', the standard dialog for Search will be opened. This
appears immediately when the command 'Global Search' is invoked via the symbol in the
menu bar; the search is then automatically carried out in all searchable parts of the project. The
most recently entered search strings can be selected through the combo box of the 'Search for'
field. If a text string is found in an object, the object is loaded into the corresponding editor or in
the library manager and the location where the string was found is displayed. The display of the
text that is found, as well as the search and find next functions behave similarly to the command
'Edit' 'Search'.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 247

If you select the 'In message window' button, all locations where the series of symbols searched
for appears in the selected object will be listed line by line in tabular form in the message
window. Afterward, the number of locations found will be displayed.
If the report window was not opened, it will be displayed. For each location that is found, the
following will be displayed:
● Object name
● Location of the find in the Declaration (Decl) or in the Implementation (Impl) portion of a

POU
● Line and network number if any
● The full line in the text editors
● Complete text element in the graphic editors

If you double-click the mouse on a line in the message window or press <Enter>, the editor
opens with the object loaded. The line concerned in the object is marked. You can jump rapidly
between display lines using the function keys <F4> and <Shift>+<F4>.

'Project' 'Global replace'
With this command you can search for the location of a text in POUs, data types, or the objects
of the global variables and replace this text by another. This is executed in the same way as
with 'Project' 'Global search' or 'Edit' 'Replace' Ä Chapter 1.4.1.2.3.35 “'Project' 'Global search'”
on page 247 Ä Chapter 1.4.1.2.5.10 “'Edit' 'Replace'” on page 275. The libraries, however, are
not offered for selection and no display in the message window is possible.
Results are displayed in the message window.

'Project' 'Check'
This command provides commands for checking the semantic correctness of the project. The
status of the most recent compilation will be regarded. If you have changed the project in the
mean time, do a recompilation in order to get an up to date check result. Otherwise you will get
an appropriate warning in the message window.
The results will be displayed in the message window.

In the project options, category 'Build', you can define these semantic checks to
be done at each compilation of the project automatically.

Unused variables
This function in the 'Project' 'Check' menu searches for variables that have been declared but
not used in the program. They are outputted by POU name and line, e.g.: PLC_PRG (4) – var1.
Variables in libraries are not examined. Results are displayed in the message window.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US248

Overlapping memory areas
This function in the 'Project' 'Check' menu tests whether in allocation of variables via the "AT"
declaration overlaps have arisen at specific memory areas. For example, an overlap occurs
when allocating the variables "var1 AT %QB21: INT" and "var2 AT %QD5: DWORD" because
they both use byte 21. The output then appears as follows:
%QB21 is referenced by the following variables:
PLC_PRG (3): var1 AT %QB21
PLC_PRG (7): var2 AT %QD5
Results are displayed in the message window.

Multiple write acces on output
This function of the 'Project' 'Check' menu searches for memory areas to which a single project
gains write access at more than one place. The output then appears as follows:
%QB24 is written to at the following locations:
PLC_PRG (3): %QB24
PLC_PRG.POU1 (8): %QB24
Results are displayed in the message window.

Concurrent access
This function in the 'Project' 'Check' menu searches for memory areas of IEC addresses which
are referenced in more than one task Ä Chapter 1.4.1.2.3.37 “'Project' 'Check'” on page 248.
No distinction is made here between read and write access. The output is for example:
%MB28 is referenced in the following tasks :
Task1 – PLC_PRG (6): %MB28 [read-only access]
Task2 – POU1.ACTION (1) %MB28 [write access]
Results are displayed in the message window.

User groups
Up to eight user groups with different access rights to the POUs, data types, visualizations, and
resources can be set up. Access rights for single objects or all of them can be established. Only
a member of a certain user group can open a project. A member of such a user group must
identify himself by means of a password.
The user groups are numbered from 0 to 7, whereby the Group 0 has the administrator rights,
i.e. only members of group 0 may determine passwords and access rights for all groups and/or
objects.
When a new project is launched, then all passwords are initially empty. Until a password has
been set for the 0 group, one enters the project automatically as a member of the 0 group.
If a password for the user group 0 is existing while the project is loaded, then a password will be
demanded for all groups when the project is opened.
In the combobox User group on the left side of the dialog box, enter the group to which you
belong and enter on the right side the relevant password. Press OK. If the password does not
agree with the saved password, then the message appears: "The password is not correct."
Only when you have entered the correct password the project can be opened. With the com-
mand 'Passwords for user group' you can assign the passwords, and with 'Object' 'Access
rights' you can define the rights for single objects or for all of them.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 249

'Project' 'Passwords for user groups'
With this command you open the dialog box for password assignment for user groups. This
command can only be executed by members of group 0. When the command has been given,
then the following dialog box appears:

In the left combobox 'User group' you can select the group. Enter the desired password for the
group in the field 'Password'. For each typed character an asterisk (*) appears in the field. You
must repeat the same password in the field 'Confirm password'. Close the dialog box after each
password entry with 'OK'. If you get the message:
"The password does not agree with the confirmation",

then you made a typing error during one of the two entries. In this case repeat both entries until
the dialog box closes without a message.
Then, if necessary, assign a password for the next group by calling the command again.

WARNING!
If passwords are not assigned to all user groups, a project can be opened by
way of a group to which no password was assigned!

Use the command 'Object' 'Access rights' to assign the rights for single objects or all of them
Ä Chapter 1.4.1.2.4.13 “'Project' 'Object access rights'” on page 262.

Concerning the protection of a project see also the following:
Encryption of a project at project saving Ä Chapter 1.4.1.2.3.6 “'File' 'Save as'” on page 224

'Project' 'Project database'
Overview

This menu item is only available if you have activated the option 'Use source control (ENI)' in
the project options dialog for category 'Project source control'. A submenu is attached where
you find the following commands for handling the object resp. the project in the currently
connected ENI data base:
Login (The user logs in to the ENI Server)
If an object is marked in the Object Organizer and the command Data Base Link is executed
(from the context menu, right mouse button), then several commands will be available for
executing the corresponding data base actions. If the user had not logged in successfully to the
ENI Server before, then the dialog 'Data base Login' will open automatically and the chosen
command will not been executed until the login was successful.
If the command 'Data Base Link' in the 'Project' menu is activated, then additional menu items
will be available, which concern all objects of the project.
How the status of an object's handling in the data base is displayed in the Object Organizer:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US250

Login
This command will open the dialog 'Login' where you can enter the access data for the ENI
data base via the ENI Server. The access data also have to be defined in the ENI Server (ENI
Admin, User Management) and – depending on the currently used data base – also in the user
management of the data base. After the command has been executed, first the Login dialog for
category 'Project objects' will open.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 251

The following items are displayed:
● Data base: project objects
● Host: address of the computer where the ENI Server is running (must match with the entry

in field 'TCP/IP address' in the project options dialog for 'Project source control').
● Project: Name of the data base project (must match with the entry in field 'Project name' in

the project options dialog for 'Project source control'/category 'Project Objects').

● Insert username and password.
● When option Use as default for this project is activated, then the above entered access data

will automatically be used for any further communication between the actual project and the
data base concerning objects of the actual category.

● Press OK to confirm the settings. The dialog will be closed and automatically the Login
dialog for 'Shared objects' will open. Enter the access data in the same way as described for
the 'Project objects' and confirm with OK. Do the same in the third Login dialog which will be
opened for category 'Compile files'.

● The Login dialog will always open as soon as you try to access the data base before having
logged in successfully as described above.

If you want to save the access data with the project, activate option 'Save ENI
credentials' in the project options, category 'Load & Save'.

Define
Command: 'Project' 'Data Base Link' 'Define'
Here you can define, whether the object which is currently marked in the Object organizer
should be kept in the data base or just locally in the project. A dialog will open, where you can
choose one of the two database categories 'Project' or 'Shared objects', or the category 'Local'.
The icons of all objects which are managed in the data base will be displayed grey-shaded in
the Object organizer. Shared objects are displayed with turquoise letters.

Credentials:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US252

Get latest version
Command: 'Project' Data Base Link'Get Latest Version'
The current version of the object which is marked in the Object organizer will be copied from
the data base and will overwrite the local version. In contrast to the Check Out action the
object will not be locked for other users in the data base Ä Chapter 1.4.1.2.3.44.5 “Check out”
on page 253.

Check out
Command: 'Project' 'Data Base Link' 'Check Out'
The object which is marked in the Object organizer will be checked out from the data base and
by that will be locked for other users.
When executing the command the user will get a dialog 'Check out object'. A comment can
be added there which will be stored in the version history of the object in the data base. Line
breaks are inserted by <Ctrl>+<Enter>. If the version of the object differs from that in the local
project, an appropriate message will be displayed and the user can decide whether the object
should be checked out anyway.
After the dialog has been closed with OK, the checked-out object will be marked with a green
check in the object organizer of the local project. For other users it will be appear marked with a
red cross and will not be editable by them.

Check in
Command: 'Project' 'Data Base Link' 'Check In'
The object which is marked in the Object organizer will be checked in to the data base. Thereby
a new version of the object will be created in the data base. The old versions will be kept
anyway.
When executing the command the user will get a dialog 'Check in object'. There a comment can
be added which will be stored in the version history of the object in the data base. Line breaks
are inserted by <Ctrl>+<Enter>.
After the dialog has been closed with OK the green check in front of the object name in the
Object organizer will be removed.

Undo check out
Command: 'Project' 'Data Base Link' 'Undo Check Out'
Use this command to cancel the Checking out of the object which is currently marked in the
Object organizer. Thereby also the modifications of the object which have been made locally,
will be canceled. No dialog will appear. The unchanged last version of the object will be kept in
the data base and it will be accessible again for other users. The red cross in front of the object
name in the Object organizer will disappear.

Show differences
Command: 'Project' 'Data Base Link' 'Show Differences'
The object which is currently open will be displayed in a window which is divided up in two parts.
There the local version, which is currently edited by the local user, will be opposed to the last
(actual) version which is kept in the data base. The differences of the versions will be marked
like described for the project comparison (see 'Project' 'Compare').

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 253

Show version history
Command: 'Project' 'Data Base Link' 'Show Version History'
For the currently marked object in the Object organizer a dialog Version history of <object
name> will be opened. There all versions of the object are listed which have been checked in to
the data base or which have been labeled there:
The following information is given:
Version: Data base specific numbering of the versions of the object which have been checked in
one after the other. Labeled versions get no version number but are marked by a label-icon.
User: Name of the user, who has executed the check-in or labeling action
Date: Date and time stamp of the action
Action: Type of the action which has been executed. Possible types: 'created' (the object has
been checked in to the data base for the first time), 'checked in' (all check-ins of the object
excluding the first one) and labeled with <label> (a label has been assigned to this version of
the object)
The buttons:
Close: The dialog will be closed.
Display: The version which is currently marked in the table will be opened. The title bar shows:
ENI: <name of the project in the data base>/<object name>
Details: The dialog 'Details of Version History' will open:
File (name of the project and the object in the data base), Version (see above), Date (see
above), User (see above), Comment (Comment which has been inserted when the object has
been checked in resp. has been labeled). Use the buttons Next resp. Previous to jump to the
details window of the next or previous entry in the table in dialog 'Version history of ..'.
Get latest version: The version which is marked in the table will be loaded and there will
overwrite the local version.
Differences: If in the table only one version of an object is marked, then this command will
cause a comparison of this version with the latest (actual) data base version. If two versions are
marked, then those will be compared. The differences are displayed in a bipartited window like it
is done at the project comparison.
Reset version: The version which is marked in the table will be set as latest version. All versions
which have been checked in later will be deleted ! This can be useful to restore an earlier status
of an object.
Labels only: If this option is activated, then only those versions of the object will be displayed in
the table, which are marked by a label.
Selection box below the option 'Labels only': Here you find the names of all users which have
executed any data base actions for objects of the current project. Select 'All' or one of the
names if you want to get the version history concerning all users or just for a certain one.

Multiple define
Command 'Project' 'Data Base Link' 'Multiple Define'
Use this command if you want to assign several objects at a single blow to a certain data
base category. The dialog 'Properties' will open like described for command 'Define'. Choose
the desired category and close the dialog with OK. After that the dialog 'ENI-Selection' will
open, listing all POUs of the project which are considered for the chosen category (Example:
if you choose category 'shared objects' then the selection window will only offer the POUs of
the Resources tab). The POUs are presented in a tree structure complying to that of the Object
Organizer. Select the desired POUs and confirm with OK.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US254

Get all latest versions
Command 'Project' 'Data Base Link' 'Get All Latest Versions'
The latest version of each object of the currently opened project, which is kept under source
control, will be called from the data base. Consider the following:
● If in the meantime additional objects have been stored to the data base project folder, then

those will now be added to the local project.
● If objects have been deleted in the data base in the meantime, those will not be deleted in

the local project, but they will automatically get assigned to category 'Local'.
● The latest version of objects of category 'Shared Objects' will only be called, if these objects

are already available in the local project. For further information see command 'Get latest
version' Ä Chapter 1.4.1.2.3.44.4 “Get latest version” on page 253.

Multiple check out
Command 'Project' 'Data Base Link' 'Multiple Check Out'
You can check out several objects at a single blow. For this the dialog 'ENI-Selection' will open,
listing all POUs of the project. Select those which should be checked out and confirm with OK.
For further information see command 'Check Out'.

Multiple check in
Command 'Project' 'Data Base Link' 'Multiple Check In'
You can check in several objects at a single blow. For this the dialog 'ENI-Selection' will open,
listing all POUs of the project. Select those which should be checked in and confirm with OK.
For further information see command 'Check In'.

Multiple undo check out
Command 'Project' 'Data Base Link' Undo Multiple Check Out'
You can undo the check out action for several objects at a single blow. For this the dialog
'ENI-Selection' will open, listing all POUs of the project. Select those for which you want to
cancel the check out and confirm with OK. For further information see command 'Undo Check
Out'.

Project version history
Command 'Project' 'Data Base Link' 'Project Version History
If the chosen data base system supports that functionality, you can use this command to view
the version history for the currently opened project.
The dialog 'History of <data base project name>' will open. It shows the actions (create, check
in, label) which have been performed for the particular objects of the project in a chronological
order. The total number of objects is displayed behind Version history. The dialog can be
handled like described for command 'Show Version History', but regard the following:
● The command 'Reset Version' is only available for single objects.
● The command 'Get latest version' means that all objects of the version of the currently

marked object will be called to the local project! That means, that the objects in CODESYS
will be overwritten with the older version. But: Local objects, which were not yet part of
the project in that older version, will not be removed from the local project ! If a labeled
version is called, which contains Shared Objects, then the user will get a dialog where he
can decide whether those Shared Objects should be called also or not.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 255

Label version
Command 'Project' 'Data Base Link' 'Label Version'
This command is used to put a "label" on the actual version of each object of a project, so that
exactly this project version can be recalled later. A dialog 'Label <data base project name>' will
open. Insert a label name (Label) (e.g. "Release Version") and optionally a Comment. When you
confirm with OK, the dialog will close and the label and the action "labeled with <label name>"
will appear in the table of the version history, as well in the history for a single object as in the
history of the project. Shared Objects which are part of the project will also get that label. A
labeled version of the project does not get a version number, but is just marked with a label icon
in the column 'Version'. If the option 'Labels only' is activated in the Version History dialog, then
only labeled versions will be listed.

Add shared objects
Command 'Project' 'Data Base Link' 'Add Shared Objects'
Use this command if you explicitly want to add new objects of data base category 'Shared
Objects' to the locally opened project. For objects of category 'Project Objects' this is not neces-
sary, because the command 'Get (all) latest version(s)' automatically calls all objects which are
found in the data base project folder, even if there are some which not yet available in the local
project. But for objects of category 'Shared Objects' in this case just those objects will be called
which are already available in the local project.
So execute the command 'Add Shared Objects' to open the dialog 'Browse ENI'. A list in the
right part of the window shows all objects which are available in the data base folder which is
currently selected in the list on the left side. Choose the desired object and press OK or do a
doubleclick on the entry to insert the object to the currently opened project.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US256

Refresh status
Command 'Project' 'Data Base Link' 'Refresh Status'
Use this command to update the display in the Object Organizer, so that you can see the actual
status of the objects concerning the source control of the project.

1.4.1.2.4 Managing objects in a project
Object

POUs, data types, visualizations and the resources global variables, the variable configuration,
the Sampling Trace, the PLC Configuration, the Task Configuration, and the Watch and Receipt
Manager are all defined as "objects". The folders inserted for structuring the project are partially
involved. All objects of a project are in the Object Organizer.
If you hold the mouse pointer for a short time on a POU in the Object Organizer, then the type
of the POU (Program, Function or Function block) is shown in a Tooltip. For the global variables
the tooltip shows the keyword (VAR_GLOBAL, VAR_CONFIG).
With drag & drop you can shift objects (and also folders, see 'Folder') within an object type. For
this, select the object and shift it to the desired spot by holding down the left mouse button. If
the shift results in a name collision, the newly introduced element will be uniquely identified by
an appended, serial number (e.g. "Object_1").

Folder
In order to keep track of larger projects you should group your POUs, data types, visualizations,
and global variables systematically in folders.
You can set up as many levels of folders as you want. If a plus sign is in front of a closed folder
symbol , then this folder contains objects and/or additional folders. With a click on the plus
sign the folder is opened and the subordinated objects appear. With a click on the minus (which
has replaced the plus sign) the folder can be closed again. In the context menu you find the
commands 'Expand nodes' and 'Collapse nodes' with the same functions Ä Chapter 1.4.1.2.4.4
“'Expand nodes' 'Collapse nodes'” on page 258.
With Drag&Drop you can move the objects as well as the folders within their object type. For
this select the object and drag it with pressed left mouse button to the desired position.
You can create more folders with the command 'New folder' Ä Chapter 1.4.1.2.4.3 “'New folder'”
on page 258.

Folders have no influence on the program, but rather serve only to structure
your project clearly.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 257

'New folder'
With this command a new folder is inserted as a structural object Ä Chapter 1.4.1.2.4.2 “Folder”
on page 257. If a folder has been selected, then the new one is created underneath it. Other-
wise it is created on the same level. If an action is selected, the new folder will be inserted at the
level of the POU to which the action belongs.
The context menu of the 'Object Organizer' which contains this command appears when an
object or the object type has been selected and you have pressed the right mouse button or
<Shift>+<F10> Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199.
The newly inserted folder initially has the designation 'New Folder'. Observe the following
naming convention for folders:
● Folders at the same level in the hierarchy must have distinct names.
● Folders on different levels can have the same name. A folder can not have the same name

as an object located on the same level.
If there is already a folder with the name "New Folder" on the same level, each additional
one with this name automatically receives an appended, serial number (e.g. "New Folder 1").
Renaming to a name that is already in use is not possible.

'Expand nodes' 'Collapse nodes'
With the Expand nodes command the objects which are located in the selected object are
visibly unfolded. Collapse nodes hides the subordinate objects.
With folders you can open or close them with a double mouse click or by pressing <Enter>
Ä Chapter 1.4.1.2.4.2 “Folder” on page 257.
This command appears in the context menu of the Object Organizer when you right-click on an
object, or press <Shift>+<F10>.

'Project' 'Object' 'Delete'
Shortcut: <Delete>
With this command the currently selected object (a POU, a data type, a visualization, or global
variables), or a folder with the subordinated objects is removed from the Object Organizer and
is thus deleted from the project. Deleting of an object can be reversed by the command 'Edit'
'Undo'.
You can get back the deleted objects by using the command 'Edit' 'Undo'.
If the editor window of the object was open, then it is automatically closed.
If you delete with the command 'Edit' 'Cut', then the object is parked on the clipboard Ä Chapter
1.4.1.2.5.4 “'Edit' 'Cut'” on page 273.

'Project' 'Object' ' Add'
Shortcut: <Insert>
With this command you create a new object. The type of the object (POU, data type, visuali-
zation, or global variables) depends upon the selected register card in the Object Organizer.
Note that in doing so possibly a template will be used for objects of type 'Global Variables',
'Data types', 'Function', 'Function Block' or 'Program' ., see below, chapter 'Save as template'
Ä Chapter 1.4.1.2.4.7 “'Save as template'” on page 259.
Enter the 'Name of the new POU' in the dialog box which appears. Remember that the name of
the object may not have already been used.
Take note of the following restrictions:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US258

● The name of a POU can not include any spaces
● A POU can not have the same name as another POU, a data type and should not have the

same as a visualization in order to avoid problems with visualization changes.
● A data type can not receive the same name as another data type or a POU.
● A global variable list can not have the same name as another global variable list.
● An action can not have the same name as another action in the same POU.
● A visualization can not have the same name as another visualization and should not have

the same as a POU in order to avoid problems with visualization changes.
In all other cases, identical naming is allowed. Thus for example actions belonging to different
POUs can have the same name, and a visualization may have the same as a POU.
In the case of a POU, the POU type (program, function or function block) and the language in
which it is programmed must also be selected. 'Program' is the default value of 'Type of the
POU', while that of 'Language of the POU' is that of most recently created POU. If a POU of the
function type is created, the desired data type must be entered in the 'Return Type' text input
field. Here all elementary and defined data types (arrays, structures, enumerations, aliases) are
allowed. Input assistance (e.g. via <F2>) can be used.

After pressing 'OK', which is only possible if there is no conflict with the naming conventions
described above, the new object is set up in the Object Organizer and the appropriate input
window appears.
If the command 'Edit' 'Insert' is used, the object currently in the clipboard is inserted and no
dialog appears. If the name of the inserted object conflicts with the naming conventions (see
above), it is made unique by the addition of a serial number appended with a leading underline
character (e.g. "Rightturnsig_1").
If the project is under source control in an ENI data base, it may be (depends on the settings
in the Project options dialog for 'Project source control') that you will be automatically asked in
which data base category you want to handle the new object Ä Chapter 1.4.1.2.2.13 “Options
for 'Project source control'” on page 216. In this case the dialog 'Properties' will open where you
can assign the object to one of the database object categories.

'Save as template'
Objects of type 'Global Variables', 'Data types', 'Function', 'Function Block' or 'Program' can be
saved as templates. Select the object in the Object Organizer and choose command 'Save
as template' in the context menu (right mouse button). Hereupon each further new object of
the same type will automatically initially get the declaration part of the template Ä Chapter
1.4.1.2.4.6 “'Project' 'Object' ' Add'” on page 258. The last created template for an object type
will be used.

'Project' 'Object' 'Rename'
Shortcut: <Spacebar>

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 259

With this command you give a new name to the currently-selected object or folder Ä Chapter
1.4.1.2.4.2 “Folder” on page 257. Remember that the name of the object may not have already
been used.
If the editing window of the object is open, then its title is changed automatically when the name
is changed.

'Project' 'Object' 'Convert'
This command can only be used with POUs. You can convert POUs from the languages SFC,
ST, FBD, LD, and IL into one of the three languages IL, FBD, and LD.
For this the project must be compiled. Choose the language into which you want to convert and
give the POU a new name. Remember that the name of the POU may not have already been
used. Then press 'OK', and the new POU is added to your POU list.
The type of processing that occurs during conversion corresponds to that which applies to
compilation.

NOTICE!
Actions cannot be converted.

Note the following possibility: A POU which has been created in the FBD-Editor can, using
the command 'Extras' 'View' be displayed and edited in the KOP-Editor as well without any
conversion Ä Chapter 1.4.1.3.11.7.12 “'Extras' 'View'” on page 321.

'Project' 'Object' 'Copy'
With this command a selected object is copied and saved under a new name. Enter the name of
the new object in the resulting dialog box. Remember that the name of the object may not have
already been used.
If, on the other hand, you used the command 'Edit' 'Copy', then the object is parked on the
clipboard, and no dialog box appears.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US260

'Project' 'Object' 'Open'
Shortcut: <Enter>
With the command you load a selected object within the 'Object Organizer' into the respective
editor Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199. If a window with this object is
already open, then it gets a focus, is moved into the foreground and can now be edited.
There are two other ways of opening an object:
● Doubleclick with the mouse on the desired object
● in the Object Organizer, type the first letter of the object name. This will open a dialog box in

which all objects of the available object types which have this initial letter are shown. Actions
are listed with the notation <POU name>.<action name>. Due to the fact that the objects
in the object selection dialog are listed alphabetically, the actions of a POU always get
positioned below this POU. Select the desired object and click on the button 'Open' in order
to load the object in its edit window. Hereupon the object gets also marked in the object
organizer and all folders which are hierarchically placed above the object will get expanded.
This option is supported with the object type 'Resources' only for global variables.

'Project' 'Object properties'
This command will open the dialog 'Properties' for that object which is currently marked in the
Object organizer.
On the tab 'Access rights' you find the same dialog as you get when executing the com-
mand 'Project' 'Object access rights' Ä Chapter 1.4.1.2.4.13 “'Project' 'Object access rights'”
on page 262.
It depends on the object and the project settings, whether there are additional tabs available
where you can define object properties:

In the tab 'Global variable list' the parameters concerning the actualization of the list and
concerning the data exchange of network variables are displayed and can be modified here.
This dialog also will be opened if you create a new global variable list by selecting one of the
entries in section 'Global Variables' in the Object Organizer and executing the command 'Add
Object' Ä Chapter 1.4.1.4.1.3.1 “Create a global variable list” on page 358.

In the tab 'Visualization' you can define for the visualization object, how it should be used
Ä Chapter 1.4.3 “Visualization” on page 636:

Global variable
list:

Visualization:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 261

Use as:
If in the target settings the option 'web visualization' or 'target visualization' is activated, then
you can choose here whether the object should be part of the web visualization or target
visualization Ä Chapter 1.4.1.4.7.3 “Target settings in category visualization” on page 388.
Used as:
Activate one of these settings referring to the possibility of using "Master layouts":
● Visualization: The object is used as a normal visualization.
● Visualization without master layout: If a Master Layout is defined in the project, it will not be

applied to this visualization object.
● Master layout: The object will be used as Master Layout. Per default the master layout

always will be in the foreground of a visualization, except the option as background is
activated.

If the project is connected to an ENI data base, then a tab 'Database-connection' will be
available Ä Chapter 1.4.1.2.2.13 “Options for 'Project source control'” on page 216. Here you
can display and modify the current assignment of the object to one of the data base categories
resp. to the category 'Local'.

'Project' 'Object access rights'
With this command you open the dialog box for assigning access rights to the different 'user
groups' Ä Chapter 1.4.1.2.3.42 “User groups” on page 249. The following dialog box appears:

Members of the user group 0 can now assign individual access rights for each user group.
There are three possible settings:

Database-con-
nection:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US262

● No Access: the object may not be opened by a member of the user group.
● Read Access: the object can be opened for reading by a member of the user group but not

changed.
● Full Access: the object may be opened and changed by a member of the user group.
The settings refer either to the currently-selected object in the 'Object Organizer' or, if the option
'Apply to all' is chosen, to all POUs, data types, visualizations, and resources of the project
Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199.
The assignment to a user group takes place when opening the project through a password
request if a password was assigned to the user group 0.
Please regard also the possibility to assign access rights concerning the operation of visualiza-
tion elements (Visualization, Security).

'Project' 'Add action'
This command is used to generate an action allocated to a selected block in the 'Object Organi-
zer' Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199. One selects the name of the action
in the dialog which appears and also the language in which the action should be implemented.
The new action is placed under your block in the Object Organiser. A plus sign appears in
front of the block. A simple mouse click on the plus sign causes the action objects to appear
and a minus sign appears in front of the block. Renewed clicking on the minus sign causes
the actions to disappear and the plus sign appears again. This can also be achieved over the
context menu commands 'Expand Node' and 'Collapse Node' Ä Chapter 1.4.1.2.4.4 “'Expand
nodes' 'Collapse nodes'” on page 258.
See also:
Calling actions Ä Chapter 1.4.1.1.9.9 “Action” on page 160

Action in the Sequential Function Chart Ä Chapter 1.4.1.1.10.5.2 “Action” on page 171

'Project' 'View instance'
With this command it is possible to open and display the instance of the function block which is
selected in the Object Organizer. In the same manner, a double click on the function block in the
Object Organizer gives access to a selection dialog in which the instances of the function block
as well as the implementation are listed. Select here the desired instance or the implementation
and confirm using OK. The desired item is then displayed in a window.

If you want to view instances, you first have to log in! (The project has been
compiled with no errors and downloaded to the PLC with 'Online' 'Login').

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 263

'Project' 'Show call tree'
With this command you open a window which shows the call tree of the object chosen in
the 'Object Organizer' Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199. Before this the
project must have been compiled without any error Ä Chapter 1.4.1.2.3.12 “'Project' 'Rebuild
all'” on page 232. The call tree contains both calls for POUs and references to data types.

'Project' 'Show cross reference'
With this command you open a dialog box which makes possible the output of all application
points for a variable, address, or a POU. For this the project must be compiled Ä Chapter
1.4.1.2.3.11 “'Project' 'Build'” on page 231.
At 'name' enter the name (e.g. "ivar") or path (e.g. "PLC_PRG.fbi.ivar") of the element for which
you want to get listed the cross references (input assistant <F2> can be used). If you specify
"*", all elements will be regarded. Also just a partial string followed by "*", e.g. "INT_*" can be
specified in order to get listed all elements, the names of which start with this string.
If the project has been changed since the last compile, the term "(Not up to date)" will be
displayed in the title bar of the dialog. In this case any cross references which have been
created recently will not be regarded in the list unless you do a re-compile!
By clicking on the button 'Cross References' you get the list of all application points. Along with
the POU and the line or network number, the variable name and the address binding, if any, are
specified.
The Domain space shows whether this is a local or a global variable; the Access column shows
whether the variable is to be accessed for 'reading' or 'writing' at the current location.
If the element is used within the address range of a structure or an array, this position will also
be listed (Example: A variable wVar of type WORD is assigned to %MW2. A variable arrVar of
type ARRAY [0..2] OF WORD is assigned to %MW0. If you call the cross-reference list for wVar,
arrVar[2] will be found). The same is true for structures.
If an element is used within a visualization, the visualization name will be shown in column
"POU". However note the following concerning placeholders within a visualization: The cross-
reference list only regards variable name strings, which are already entered in the configuration
of a visualization element, not however any names, which are generated during compilation of
the project due to placeholder replacements !!
When you select a line of the cross-reference list and press the button 'Go To' or doubleclick on
the line, then the POU is shown in its editor at the corresponding point. In this way you can jump
to all application points without a time-consuming search.
In order to make processing easier, you can use the 'Send to message window' button to
bring the current cross-reference list into the message window and from there change to the
respective POU Ä Chapter 1.4.1.2.1.6 “Message window” on page 200.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US264

Direct call of a cross-reference list out of a POU editor or a watchlist:
The cross-reference list can be generated directly out of the editor (ST, FUP, KOP, AWL, CFC,
AS), which is used to work on a POU, or out of a watchlist Ä Chapter 1.4.1.4.9.1 “Overview”
on page 395. In this case in online as well as in offline mode the command 'Show cross
references' is available in the context or "Extras" menu, when a variable is selected in the editor
or the watchlist Ä Chapter 1.4.1.3.7 “Show cross references” on page 295.

'Project' 'Project database'
Overview

This menu item is only available if you have activated the option 'Use source control (ENI)' in
the project options dialog for category 'Project source control'. A submenu is attached where
you find the following commands for handling the object resp. the project in the currently
connected ENI data base:
Login (The user logs in to the ENI Server)
If an object is marked in the Object Organizer and the command Data Base Link is executed
(from the context menu, right mouse button), then several commands will be available for
executing the corresponding data base actions. If the user had not logged in successfully to the
ENI Server before, then the dialog 'Data base Login' will open automatically and the chosen
command will not been executed until the login was successful.
If the command 'Data Base Link' in the 'Project' menu is activated, then additional menu items
will be available, which concern all objects of the project.
How the status of an object's handling in the data base is displayed in the Object Organizer:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 265

Login
This command will open the dialog 'Login' where you can enter the access data for the ENI
data base via the ENI Server. The access data also have to be defined in the ENI Server (ENI
Admin, User Management) and – depending on the currently used data base – also in the user
management of the data base. After the command has been executed, first the Login dialog for
category 'Project objects' will open.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US266

The following items are displayed:
● Data base: project objects
● Host: address of the computer where the ENI Server is running (must match with the entry

in field 'TCP/IP address' in the project options dialog for 'Project source control').
● Project: Name of the data base project (must match with the entry in field 'Project name' in

the project options dialog for 'Project source control'/category 'Project Objects').

● Insert username and password.
● When option Use as default for this project is activated, then the above entered access data

will automatically be used for any further communication between the actual project and the
data base concerning objects of the actual category.

● Press OK to confirm the settings. The dialog will be closed and automatically the Login
dialog for 'Shared objects' will open. Enter the access data in the same way as described for
the 'Project objects' and confirm with OK. Do the same in the third Login dialog which will be
opened for category 'Compile files'.

● The Login dialog will always open as soon as you try to access the data base before having
logged in successfully as described above.

If you want to save the access data with the project, activate option 'Save ENI
credentials' in the project options, category 'Load & Save'.

Define
Command: 'Project' 'Data Base Link' 'Define'
Here you can define, whether the object which is currently marked in the Object organizer
should be kept in the data base or just locally in the project. A dialog will open, where you can
choose one of the two database categories 'Project' or 'Shared objects', or the category 'Local'.
The icons of all objects which are managed in the data base will be displayed grey-shaded in
the Object organizer. Shared objects are displayed with turquoise letters.

Credentials:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 267

Get latest version
Command: 'Project' Data Base Link'Get Latest Version'
The current version of the object which is marked in the Object organizer will be copied from
the data base and will overwrite the local version. In contrast to the Check Out action the
object will not be locked for other users in the data base Ä Chapter 1.4.1.2.4.18.5 “Check out”
on page 268.

Check out
Command: 'Project' 'Data Base Link' 'Check Out'
The object which is marked in the Object organizer will be checked out from the data base and
by that will be locked for other users.
When executing the command the user will get a dialog 'Check out object'. A comment can
be added there which will be stored in the version history of the object in the data base. Line
breaks are inserted by <Ctrl>+<Enter>. If the version of the object differs from that in the local
project, an appropriate message will be displayed and the user can decide whether the object
should be checked out anyway.
After the dialog has been closed with OK, the checked-out object will be marked with a green
check in the object organizer of the local project. For other users it will be appear marked with a
red cross and will not be editable by them.

Check in
Command: 'Project' 'Data Base Link' 'Check In'
The object which is marked in the Object organizer will be checked in to the data base. Thereby
a new version of the object will be created in the data base. The old versions will be kept
anyway.
When executing the command the user will get a dialog 'Check in object'. There a comment can
be added which will be stored in the version history of the object in the data base. Line breaks
are inserted by <Ctrl>+<Enter>.
After the dialog has been closed with OK the green check in front of the object name in the
Object organizer will be removed.

Undo check out
Command: 'Project' 'Data Base Link' 'Undo Check Out'
Use this command to cancel the Checking out of the object which is currently marked in the
Object organizer. Thereby also the modifications of the object which have been made locally,
will be canceled. No dialog will appear. The unchanged last version of the object will be kept in
the data base and it will be accessible again for other users. The red cross in front of the object
name in the Object organizer will disappear.

Show differences
Command: 'Project' 'Data Base Link' 'Show Differences'
The object which is currently open will be displayed in a window which is divided up in two parts.
There the local version, which is currently edited by the local user, will be opposed to the last
(actual) version which is kept in the data base. The differences of the versions will be marked
like described for the project comparison (see 'Project' 'Compare').

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US268

Show version history
Command: 'Project' 'Data Base Link' 'Show Version History'
For the currently marked object in the Object organizer a dialog Version history of <object
name> will be opened. There all versions of the object are listed which have been checked in to
the data base or which have been labeled there:
The following information is given:
Version: Data base specific numbering of the versions of the object which have been checked in
one after the other. Labeled versions get no version number but are marked by a label-icon.
User: Name of the user, who has executed the check-in or labeling action
Date: Date and time stamp of the action
Action: Type of the action which has been executed. Possible types: 'created' (the object has
been checked in to the data base for the first time), 'checked in' (all check-ins of the object
excluding the first one) and labeled with <label> (a label has been assigned to this version of
the object)
The buttons:
Close: The dialog will be closed.
Display: The version which is currently marked in the table will be opened. The title bar shows:
ENI: <name of the project in the data base>/<object name>
Details: The dialog 'Details of Version History' will open:
File (name of the project and the object in the data base), Version (see above), Date (see
above), User (see above), Comment (Comment which has been inserted when the object has
been checked in resp. has been labeled). Use the buttons Next resp. Previous to jump to the
details window of the next or previous entry in the table in dialog 'Version history of ..'.
Get latest version: The version which is marked in the table will be loaded and there will
overwrite the local version.
Differences: If in the table only one version of an object is marked, then this command will
cause a comparison of this version with the latest (actual) data base version. If two versions are
marked, then those will be compared. The differences are displayed in a bipartited window like it
is done at the project comparison.
Reset version: The version which is marked in the table will be set as latest version. All versions
which have been checked in later will be deleted ! This can be useful to restore an earlier status
of an object.
Labels only: If this option is activated, then only those versions of the object will be displayed in
the table, which are marked by a label.
Selection box below the option 'Labels only': Here you find the names of all users which have
executed any data base actions for objects of the current project. Select 'All' or one of the
names if you want to get the version history concerning all users or just for a certain one.

Multiple define
Command 'Project' 'Data Base Link' 'Multiple Define'
Use this command if you want to assign several objects at a single blow to a certain data
base category. The dialog 'Properties' will open like described for command 'Define'. Choose
the desired category and close the dialog with OK. After that the dialog 'ENI-Selection' will
open, listing all POUs of the project which are considered for the chosen category (Example:
if you choose category 'shared objects' then the selection window will only offer the POUs of
the Resources tab). The POUs are presented in a tree structure complying to that of the Object
Organizer. Select the desired POUs and confirm with OK.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 269

Get all latest versions
Command 'Project' 'Data Base Link' 'Get All Latest Versions'
The latest version of each object of the currently opened project, which is kept under source
control, will be called from the data base. Consider the following:
● If in the meantime additional objects have been stored to the data base project folder, then

those will now be added to the local project.
● If objects have been deleted in the data base in the meantime, those will not be deleted in

the local project, but they will automatically get assigned to category 'Local'.
● The latest version of objects of category 'Shared Objects' will only be called, if these objects

are already available in the local project. For further information see command 'Get latest
version' Ä Chapter 1.4.1.2.4.18.4 “Get latest version” on page 268.

Multiple check out
Command 'Project' 'Data Base Link' 'Multiple Check Out'
You can check out several objects at a single blow. For this the dialog 'ENI-Selection' will open,
listing all POUs of the project. Select those which should be checked out and confirm with OK.
For further information see command 'Check Out'.

Multiple check in
Command 'Project' 'Data Base Link' 'Multiple Check In'
You can check in several objects at a single blow. For this the dialog 'ENI-Selection' will open,
listing all POUs of the project. Select those which should be checked in and confirm with OK.
For further information see command 'Check In'.

Multiple undo check out
Command 'Project' 'Data Base Link' Undo Multiple Check Out'
You can undo the check out action for several objects at a single blow. For this the dialog
'ENI-Selection' will open, listing all POUs of the project. Select those for which you want to
cancel the check out and confirm with OK. For further information see command 'Undo Check
Out'.

Project version history
Command 'Project' 'Data Base Link' 'Project Version History
If the chosen data base system supports that functionality, you can use this command to view
the version history for the currently opened project.
The dialog 'History of <data base project name>' will open. It shows the actions (create, check
in, label) which have been performed for the particular objects of the project in a chronological
order. The total number of objects is displayed behind Version history. The dialog can be
handled like described for command 'Show Version History', but regard the following:
● The command 'Reset Version' is only available for single objects.
● The command 'Get latest version' means that all objects of the version of the currently

marked object will be called to the local project! That means, that the objects in CODESYS
will be overwritten with the older version. But: Local objects, which were not yet part of
the project in that older version, will not be removed from the local project ! If a labeled
version is called, which contains Shared Objects, then the user will get a dialog where he
can decide whether those Shared Objects should be called also or not.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US270

Label version
Command 'Project' 'Data Base Link' 'Label Version'
This command is used to put a "label" on the actual version of each object of a project, so that
exactly this project version can be recalled later. A dialog 'Label <data base project name>' will
open. Insert a label name (Label) (e.g. "Release Version") and optionally a Comment. When you
confirm with OK, the dialog will close and the label and the action "labeled with <label name>"
will appear in the table of the version history, as well in the history for a single object as in the
history of the project. Shared Objects which are part of the project will also get that label. A
labeled version of the project does not get a version number, but is just marked with a label icon
in the column 'Version'. If the option 'Labels only' is activated in the Version History dialog, then
only labeled versions will be listed.

Add shared objects
Command 'Project' 'Data Base Link' 'Add Shared Objects'
Use this command if you explicitly want to add new objects of data base category 'Shared
Objects' to the locally opened project. For objects of category 'Project Objects' this is not neces-
sary, because the command 'Get (all) latest version(s)' automatically calls all objects which are
found in the data base project folder, even if there are some which not yet available in the local
project. But for objects of category 'Shared Objects' in this case just those objects will be called
which are already available in the local project.
So execute the command 'Add Shared Objects' to open the dialog 'Browse ENI'. A list in the
right part of the window shows all objects which are available in the data base folder which is
currently selected in the list on the left side. Choose the desired object and press OK or do a
doubleclick on the entry to insert the object to the currently opened project.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 271

Refresh status
Command 'Project' 'Data Base Link' 'Refresh Status'
Use this command to update the display in the Object Organizer, so that you can see the actual
status of the objects concerning the source control of the project.

1.4.1.2.5 General editing functions
Overview

You can use the following commands in all editors and some of them in the Object Organizer.
The commands are located under the menu item 'Edit' and in the context menu that is opened
with the right mouse button.
If the IntelliPoint-Software is installed on the computer, all functions of the MS IntelliMouse are
supported. In all editors with zoom functionality: To magnify press the <Strg> key while rolling
the wheel of the mouse, to reduce roll backwards while the <Ctrl> key is pressed.
See also:
Ä Chapter 1.4.1.2.5.2 “'Edit' 'Undo'” on page 272

Ä Chapter 1.4.1.2.5.3 “'Edit' 'Redo'” on page 273

Ä Chapter 1.4.1.2.5.4 “'Edit' 'Cut'” on page 273

Ä Chapter 1.4.1.2.5.5 “'Edit' 'Copy'” on page 273

Ä Chapter 1.4.1.2.5.6 “'Edit' 'Paste'” on page 274

Ä Chapter 1.4.1.2.5.7 “'Edit' 'Delete'” on page 274

Ä Chapter 1.4.1.2.5.8 “'Edit' 'Find'” on page 275

Ä Chapter 1.4.1.2.5.9 “'Edit' 'Find next'” on page 275

Ä Chapter 1.4.1.2.5.10 “'Edit' 'Replace'” on page 275

Ä Chapter 1.4.1.2.5.11 “'Edit' 'Input assistant'” on page 276

Ä Chapter 1.4.1.2.5.12 “Unstructured display” on page 276

Ä Chapter 1.4.1.2.5.13 “Stuctured display” on page 277

Ä Chapter 1.4.1.2.5.14 “'Edit' 'Autodeclare'” on page 278

Ä Chapter 1.4.1.2.5.15 “'Edit' 'Next error'” on page 278

Ä Chapter 1.4.1.2.5.16 “'Edit' 'Previous error'” on page 278

Ä Chapter 1.4.1.2.5.17 “'Edit' 'Macros'” on page 278

'Edit' 'Undo'
Shortcut: <Ctrl>+<Z>
This command undoes the action which was most recently executed in the currently-open
editor window or in the Object Organizer; repeated use undoes all actions back to the time
that the window was opened. This applies to all actions in the editors for POUs, data types,
visualizations and global variables and in the Object Organizer.
With 'Edit' 'Redo' Ä Chapter 1.4.1.2.5.3 “'Edit' 'Redo'” on page 273 you can restore an action
which you have undone.

The commands Undo and Redo apply to the current window. Each window
carries its own action list. If you want to undo actions in several windows, then
you must activate the corresponding window. When undoing or redoing in the
Object Organizer the focus must lie here.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US272

'Edit' 'Redo'
Shortcut: <Ctrl>+<Y>
With the command in the currently-open editor window or in the 'Object Organizer' you can
restore an action you have undone Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199
Ä Chapter 1.4.1.2.5.2 “'Edit' 'Undo'” on page 272.
As often as you have previously executed the command 'Undo' , you can also carry out the
command 'Redo'.

The commands 'Undo' and 'Redo' apply to the current window. Each window
carries its own action list. If you want to undo actions in several windows, then
you must activate the corresponding window. When undoing or redoing in the
Object Manager must lie there.

'Edit' 'Cut'
Symbol: Shortcut: <Ctrl>+<X> or <Shift>+<Delete>
This command transfers the current selection from the editor to the clipboard. The selection is
removed from the editor.
In the 'Object Organizer' this similarly applies to the selected object, whereby not all objects can
be deleted, e.g. the PLC Configuration Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199
Ä Chapter 1.4.1.2.5.10 “'Edit' 'Replace'” on page 275.
Remember that not all editors support the cut command, and that its use can be limited in some
editors.
The form of the selection depends upon the respective editor:
In the text editors IL, ST, and declarations the selection is a list of characters.
In the FBD and LD editors the choice is a number of networks which are indicated by a dotted
rectangle in the network number field or a box with all preceding lines, boxes, and operands.
In the SFC editor the selection is a part of a series of steps surrounded by a dotted rectangle
Ä Chapter 1.4.1.3.11.9.1 “Overview” on page 330.
In order to paste the content of the clipboard you use the command 'Edit' 'Paste' Ä Chapter
1.4.1.2.5.6 “'Edit' 'Paste'” on page 274. In the SFC editor you can also use the commands
'Extras' 'Insert parallel branch (right)' or 'Extras' 'Paste after' Ä Chapter 1.4.1.1.9.4 “Function
block” on page 153 Ä Chapter 1.4.1.3.11.9.17 “'Extras' 'Paste after'” on page 333.
In order to remove a selected area without changing the clipboard, use the command 'Edit'
'Delete' Ä Chapter 1.4.1.2.5.7 “'Edit' 'Delete'” on page 274.

'Edit' 'Copy'
Symbol: Shortcut: <Ctrl>+<C>
This command copies the current selection from the editor to the clipboard. This does not
change the contents of the editor window.
In the 'Object Organizer' this similarly applies to the selected object, whereby not all objects can
be deleted, e.g. the PLC configuration Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199
Ä Chapter 1.4.1.2.5.10 “'Edit' 'Replace'” on page 275

Remember that not all editors support copying and that it can be limited with some editors.
For the type of selection the same rules apply as with 'Edit' 'Cut'.
The form of the selection depends upon the respective editor:
In the text editors (IL, ST, and declarations) the selection is a list of characters.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 273

In the FBD and LD editors the choice is a number of networks which are indicated by a dotted
rectangle in the network number field or a box with all preceding lines, boxes, and operands.
In the SFC editor the selection is a part of a series of steps steps surrounded by a dotted
rectangle Ä Chapter 1.4.1.3.11.9.1 “Overview” on page 330.
In order to paste the content of the clipboard you use the command 'Edit' 'Paste' Ä Chapter
1.4.1.2.5.6 “'Edit' 'Paste'” on page 274. In the SFC editor you can also use the commands
'Extras' 'Insert parallel branch (right)' or 'Extras' 'Paste after' Ä Chapter 1.4.1.1.9.4 “Function
block” on page 153 Ä Chapter 1.4.1.3.11.9.17 “'Extras' 'Paste after'” on page 333.
In order to delete a selected area and simultaneously put it on the clipboard, use the command
'Edit' 'Cut' Ä Chapter 1.4.1.2.5.4 “'Edit' 'Cut'” on page 273.

'Edit' 'Paste'
Symbol: Shortcut: <Ctrl>+<V>
Pastes the content of the clipboard onto the current position in the editor window. In the graphic
editors the command can only be executed when a correct structure results from the insertion
Ä Chapter 1.4.1.3.11.1 “Overview” on page 314.
With the object organizer the object is pasted from the clipboard Ä Chapter 1.4.1.2.1.3 “Object
organizer” on page 199.
Remember that pasting is not supported by all editors and that its use can be limited in some
editors.
The current position can be defined differently according to the type of editor:
With the text editors (and declarations) the current position is that of the blinking cursor (a
vertical line) which you place by clicking with the mouse Ä IL, ST,.
In the FBD and LD editors the current position is the first network with a dotted rectangle
in the network number area Ä Chapter 1.4.1.3.11.7.1 “Overview” on page 317 Ä Chapter
1.4.1.3.11.8.1 “Overview” on page 323. The contents of the clipboard are inserted in front of
this network. If a partial structure has been copied, then it is inserted in front of the selected
element.
In the SFCeditor the current position is determined the selection which is surrounded by a
dotted rectangle Ä Chapter 1.4.1.3.11.9.1 “Overview” on page 330. Depending upon the selec-
tion and the contents of the clipboard, these contents are inserted either in front of the selection
or into a new branch (parallel or alternative) to the left of the selection.
In SFC the commands 'Extras' 'Insert parallel branch (right)' or 'Extras' 'Paste after' can be
used in order to insert the contents of the clipboard Ä Chapter 1.4.1.1.9.4 “Function block”
on page 153 Ä Chapter 1.4.1.3.11.9.17 “'Extras' 'Paste after'” on page 333.
In order to copy a selection onto the clipboard without deleting it, use the command 'Edit' 'Copy'
Ä Chapter 1.4.1.2.5.5 “'Edit' 'Copy'” on page 273.
In order to remove a selected area without changing the clipboard, use the command 'Edit'
'Delete' Ä Chapter 1.4.1.2.5.7 “'Edit' 'Delete'” on page 274.

'Edit' 'Delete'
Shortcut:
Deletes the selected area from the editor window. This does not change the contents of the
clipboard.
In the 'Object Organizer' this similarly applies to the selected object, whereby not all objects can
be deleted, e.g. the PLC Configuration Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199
Ä Chapter 1.4.1.2.5.10 “'Edit' 'Replace'” on page 275.
For the type of selection the same rules apply as with 'Edit' 'Cut'.
The form of the selection depends upon the respective editor:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US274

In the text editors (IL, ST, and declarations) the selection is a list of characters.
In the FBD and LD editors the choice is a number of networks which are indicated by a dotted
rectangle in the network number field.
In the SFC editor the selection is a part of a series of steps surrounded by a dotted rectangle
Ä Chapter 1.4.1.3.11.9.1 “Overview” on page 330.
In the 'library manager' the selection is the currently selected library name Ä Chapter
1.4.1.4.3.1 “Overview” on page 371.
In order to delete a selected area and simultaneously put it on the clipboard, use the command
'Edit' 'Cut' Ä Chapter 1.4.1.2.5.4 “'Edit' 'Cut'” on page 273.

'Edit' 'Find'
Symbol:
With this command you search for a certain text passage in the current editor window. The Find
dialog box opens. It remains opens until the button Cancel is pressed.
In the field 'Find what' you can enter the series of characters you are looking for.
In addition, you can decide whether the text you are looking for 'Match whole word only' or not,
or also whether 'Match case' is to be considered, and whether the search should proceed 'Up' or
'Down' starting from the current cursor position.
The button 'Find next' starts the search which begins at the selected position and continues in
the chosen search direction. If the text passages is found, then it is highlighted. If the passage
is not found, then a message announces this. The search can be repeated several times
in succession until the beginning or the end of the contents of the editor window has been
reached. In the CFC editor the geometrical order of the elements will be regarded, the search
will run from the left upper corner of the window to the right upper corner. Please regard that
FBD POUs are processed from the right to the left!
Find dialog box:

'Edit' 'Find next'
Symbol: Shortcut: <F3>
With this command you execute a search with the same parameters as with the most recent
action 'Edit' 'Find' Ä Chapter 1.4.1.2.5.8 “'Edit' 'Find'” on page 275. Please note that FBD POUs
are processed from the right to the left!

'Edit' 'Replace'
With this command you search for a certain passage just as with the command 'Edit' 'Find', and
replace it with another Ä Chapter 1.4.1.2.5.8 “'Edit' 'Find'” on page 275. After you have chosen
the command the dialog box for find and replace appears. This dialog box remains open until
the button 'Cancel' or 'Close' is pressed.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 275

In the field behind 'Find' automatically that string will be inserted which you have marked before
in the editor. You also can enter the search string manually. Pressing button 'Replace' will
replace the current selection with the string which is given in the field 'Replace with'. Use the
button 'Find Next' to get to the next passage where the string is found. Please regard, that FBD
POUs are processed from the right to the left!
The button 'Replace all' replaces every occurrence of the text in the field 'Find next' after the
current position with the text in the field 'Replace with'. At the end of the procedure a message
announces how many replacements were made.
Dialog box for find and replace:

'Edit' 'Input assistant'
Shortcut: <F2>
This command provides a dialog box for choosing possible inputs at the current cursor position
in the editor window. In the left column choose the desired input category, select the desired
entry in the right column, and confirm your choice with OK. This inserts your choice at this
position.

The categories offered depend upon the current cursor position in the editor
window (e.g. variables, operators, POUs, conversions, watch variables etc.).

If the option 'With arguments' is active, then when the selected element is inserted, the argu-
ments to be transferred are specified with it, for example: function block fu1 selected, which
defines the input variable var_in: fu1(var_in:=);
Insertion of function func1, which uses var1 and var2 as transfer parameters: func1(var1,var2)
It is basically possible to switch between structured and unstructured display of the available
elements Ä Chapter 1.4.1.2.5.13 “Stuctured display” on page 277 Ä Chapter 1.4.1.2.5.12
“Unstructured display” on page 276. This occurs through activation/deactivation of the 'Struc-
tured Display' option.

For inserting identifiers you also can use the intellisense functionality Ä Chapter
1.4.1.3.6 “Intellisense function” on page 295.

Unstructured display
In the left part of the window always those categories of elements are listed which are relevant
for the current insert position,. e.g. ST Operators, Local Variables, Global Variables, Standard
Programs, Defined Programs, Watch Expressions etc. In the right part of the window the ele-
ments of the selected category are listed simply linearly sorted in alphabetical order.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US276

At various places (e.g. in the Watch List), multi-stage variable names are required. In that event
the input assistant displays the available variables with a preceded POU name, resp. in case
of structured variables and function block instances additionally with the FB name resp. data
type name. Examples: PLC_PRG.ivar, PLC_PRG.Structure1.Component1. For global variables
no POU name is added.
The desired element must be selected and then will be inserted at the insert position by OK.
When the non-structured input assistant is used in the Watch- and Recipe Manager, then the
range of offered watch variables (Watch Expressions) can be reduced by a filter.
You can switch to structured display through activation of the Structured Display

Stuctured display
If Structured display is selected, the POUs, variables or data types will be sorted hierarchically.
This is possible for standard programs, standard functions, standard function blocks, defined
programs, defined functions, defined function blocks, global variables, local variables, defined
types, watch variables. The visual and hierarchical display corresponds to that of the 'Object
Organizer'; if elements in a library are referred to, these are inserted in alphabetical order at the
very top and the pertinent hierarchy is displayed as in the Library Manager.
The in- and output variables of function blocks which are declared as local or global variables
are listed in the category 'Local Variables' or 'Global Variables' under the instance name (e.g.
Inst_TP ET, Inst_TP IN,...). To get there, select the instance name (e.g. Inst_TP) and confirm
with OK.
If the instance of a function block is selected here, the option With arguments may be selected.
In the text languages ST and IL as well as during task configuration, the instance name and the
input parameters of the function block are then inserted.
For example, if Inst (DeklarationInst: TON;) is selected, the following is inserted:
Inst(IN:= ,PT:=)
If the option is not selected, only the instance name will be inserted. In the graphical languages
or in the Watch window, only the instance name is generally inserted.
Components of structures are displayed in an analog fashion to function block instances.
For enumerations, the individual enumeration values are listed under the enumeration type. The
order is: enumerations from libraries, enumerations from data types, local enumerations from
POUs.
The general rule is that lines containing sub-objects are not selectable (except instances, see
above), but can only have their hierarchy display expanded or contracted by one level, as for
multi-stage variable names.
If input assistant is invoked in the Watch and Receipt Manager or in the selection of trace
variables in the trace configuration dialog, it is possible to make a multiple selection. When the
<Shift> key is pressed, you can select a range of variables; when the <Ctrl> key is pressed
you can select many individual variables. The selected variables are so marked. If, during range
selection lines are selected that do not contain valid variables (e.g. POU names), these lines
will not be included in the selection. When individual selections are made, such lines can not be
marked.
In the watch window and in trace configuration it is possible to transfer structures, arrays or
instances from the Input Assistant dialog. As a double click with the mouse button is associated
with the extension or contraction of the element's hierarchy display, selection in these cases can
only be confirmed by OK.
Thereafter, the selected variables are inserted line by line in the watch window, that is each
selected variable is written on a separate line. In the case of trace variables, each variable is
inserted in a separate line of the trace variables list.
If the maximum number of trace variables, 20, is exceeded during insertion of the selected
variables, the error message "A maximum of 20 variables is allowed" appears. Further selected
variables are then not inserted in the list.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 277

Some entries (e.g. Global Variables) are only updated in the input assistant
dialog after compilation.

You can switch to unstructured display through deactivation of option Structured.

'Edit' 'Autodeclare'
Shortcut: <Shift>+<F2>
This command opens the dialog for the declaration of a variable Ä Chapter 1.4.1.3.9.11 “Varia-
bles declaration” on page 303. This dialog also opens automatically when the option 'Project'
'Options' 'Editor' 'Autodeclaration' is switched on and when a new undefined variable is used the
declaration editor Ä Chapter 1.4.1.3.9.17 “Autodeclaration” on page 306.

'Edit' 'Next error'
Shortcut: <F4>
After the incorrect compilation of a project this command can show the next error. The corre-
sponding editor window is activated and the incorrect place is selected. At the same time in the
message window the corresponding error message is shown Ä Chapter 1.4.1.2.1.6 “Message
window” on page 200.

'Edit' 'Previous error'
Shortcut: <Shift>+<F4>
After the incorrect compilation of a project this command shows the previous error. The corre-
sponding editor window is activated and the incorrect place is selected. At the same time in the
message window the corresponding error message is shown Ä Chapter 1.4.1.2.1.6 “Message
window” on page 200.

'Edit' 'Macros'
This menu item leads to a list of all macros, which are defined for the project. (For info on
generating macros see 'Project' 'Options' 'Macros' Ä Chapter 1.4.1.2.2.16 “Options for 'Macros'”
on page 220). When an executable macro is selected the dialog 'Process Macro'. The name of
the macro and the currently active command line are displayed. The button Cancel can be used
to stop the processing of the macro. In that event the processing of the current command will be
finished anyway. Then an appropriate message is displayed in the message window and in the
log during Online operation: "<Macro>: Execution interrupted by user".
Macros can be executed offline and online, but in each case only those commands are exe-
cuted which are available in the respective mode.

1.4.1.2.6 General online functions
Overview

The available online commands are assembled under the menu item 'Online'. The execution of
some of the commands depends upon the active editor.
The online commands become available only after logging in. See the book 'General Online
Functions..' in the Contents tab of this online help.See the following chapters for a description.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US278

Thanks to 'Online Change' functionality you have the possibility of making changes to programs
on the running controller. See in this connection 'Online' 'Login' Ä Chapter 1.4.1.2.6.2 “'Online'
'Login'” on page 279.
See 'Online' 'Login' for a diagram showing the relations between Project-Build, Project-Down-
load, Online Change and Login Ä “Relations between Login - Build - Download - Online
Change” on page 280.

'Online' 'Login'
Symbol: Shortcut: <Alt>+<F8>
This command combines the programming system with the PLC (or starts the simulation pro-
gram) and changes into the online mode Ä Chapter 1.4.1.1.11.8 “Simulation” on page 184.
If the current project has not been compiled since opening or since the last modification, then
it is compiled now Ä Chapter 1.4.1.2.3.11 “'Project' 'Build'” on page 231. If errors occur during
compilation, then Automation Builder does not change into Online mode.
If the current project was changed on the controller since the last download, but not closed,
and if the last download information was not deleted with the command 'Project' 'Clear all',
then after the command 'Login' a dialog opens with the question Ä Chapter 1.4.1.2.6.5 “'Online'
'Download'” on page 283: "The program has been changed. Load changes? (Online Change)".
By answering 'Yes' you confirm that, on log-in, the modified portions of the project are to be
loaded onto the controller. (Concerning this see below a diagram on the relations between
Project-Build, Project-Download, Online Change and Login and also some hints on Online
Change). 'No' results in a log-in without the changes made since the last download being loaded
onto the controller. 'Cancel' cancels the command. <Load all> causes the entire project to be
reloaded onto the controller.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 279

If in the project options, category Desktop, the option 'Online in security mode' is activated
and if the target system supports the functionality, in the Login dialog automatically also the
Project information will be displayed. This is the project information of the project which is
currently opened in Automation Builder and which is already available on the controller. Via
button 'Details <<' you can close this information part of the dialog. If the 'Online in security
mode' option is not activated, you can explicitly open the project information display in the dialog
via button 'Details >>'.

It depends on the target which button is set as default button.

Online Change does not cause a re-initialization of the variables, thus modifica-
tions of the initialization values will not be regarded ! Retain variables keep their
values when an Online Change is done, they won't do that at a re-download of
the project (see below, 'Online' 'Download').

After a successful login all online functions are available (if the corresponding settings in 'Pro-
ject' 'Options' category have been entered Ä 'Build'). The current values are monitored for all
visible variable declarations Ä Chapter 1.4.1.3.9.11 “Variables declaration” on page 303.
Use the 'Online' 'Logout' command to change from online back to offline mode Ä Chapter
1.4.1.2.6.4 “'Online' 'Logout'” on page 283.

See below a diagram which shows the relations between Login, Build (Compilation), Download
and Online Change:
The following terms are used:

Source Current Automation Builder project (*.pro-file,
local PC)

Compile Compile information from the last build
process, is needed for incremental compila-
tion (*.ci-file, local PC)

Download Information on what was loaded to the PLC at
the last download (*.ri file, local PC)

PLC Project currently available on the PLC (*.prg-
file, target system)

Relations
between Login -
Build - Down-
load - Online
Change

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US280

● Online Change is not possible after modifications in the Task or PLC Configuration, after
inserting a library and after performing 'Project' 'Clean all' (see below).

● If the download Information (file <projectname><targetidentifier>.ri), which had been created
at the last download (might have been an Online Change also) of the project, has been
deleted meanwhile (e.g. via command 'Project' 'Clean all', then no Online Change will be
possible further on, except for Ä Chapter 1.4.1.2.6.5 “'Online' 'Download'” on page 283
Ä Chapter 1.4.1.2.3.13 “'Project' 'Clean all'” on page 232: The .ri file has been saved at
another location or has been renamed and therefore now is still available and can be
loaded explicitly by command 'Project' 'Load download information' Ä Chapter 1.4.1.2.3.14
“'Project' 'Load download information'” on page 232. Concerning this see also below 'Online
Change for a project....'.

● Online Change does not cause a re-initialization of the variables, thus modifications of the
initialization values will not be regarded !

● retain variables keep their values when an Online Change is done, they won't do that at
a re-download of the project Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302
Ä Chapter 1.4.1.2.6.5 “'Online' 'Download'” on page 283.

Hints on Online
Change

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 281

If you want to run a project 'proj.pro' on two identical controllers PLC1 and PLC2 (same target
system) and want to make sure that an update of the project on both controllers can be done
via online change, do the following:
(1) Loading and starting project on PLC1, save download information for PLC1:

1. Connect the Automation Builder project proj.pro to controller PLC1 (Online/Communica-
tion parameters) and load proj.pro on PLC1 (Online/Login, Download). At the download
the file proj00000001.ri will be created in the projects directory, containing download
information.

2. Rename proj00000001.ri, e.g. to proj00000001_PLC1.ri. This save of the file with
another file name is necessary because at a further download of proj.pro the file
proj00000001.ri on another PLC would be overwritten with new download information
and thus the information belonging to the download on PLC1 would be lost.

3. Start the project on PLC1 and then log out ('Online' 'Start', 'Online' 'Logout').

(2) Loading and starting project on PLC2, save download information for PLC2:
1. Now connect to controller PLC2 (using same target as PLC1) and download proj.pro on

PLC2. Thus again a file proj00000001.ri will be created in the projects directory, now
containing the information on the currently done download.

2. Rename the new proj00000001.ri e.g. to proj00000001_PLC2.ri in order to store it explic-
itly.

3. Start the project on PLC2 and log out ('Online' 'Start', 'Online' 'Logout'.

(3) Change project in Automation Builder:
Do the modifications in proj.pro which you afterwards want to transfer via Online Change to the
program running on the both PLCs.
(4) Online Change on PLC1, Re-saving download information for PLC1:
In order to make possible the Online Change for proj.pro on PLC1, first the download infor-
mation referring to the download of proj.pro on PLC1 must be restored. At login Automation
Builder is looking for a file proj00000001.ri. But you have stored the appropriate download
information in file proj00000001_PLC1.ri.
Now you have 2 possibilities:
● You can rename proj00000001_PLC1.ri again to proj00000001.ri. Thus at a login on

PLC1 automatically the appropriate download information is available and Automation
Builder will ask you whether you want to do an Online Change.

● Instead of this you explicitly can load the file proj00000001_PLC1.ri before login by using
command 'Project' 'Load Download Information'. In this case no renaming of the .ri file is
necessary.

(5) Online Change on PLC2, Re-saving download information for PLC2:
In order to make possible an Online Change concerning the modifications in proj.pro done
in (3) also on PLC2 please perform the corresponding steps for proj00000001_PLC2.ri as
described in step (4) .

Online Change
for a project
which is run-
ning on several
PLCs:

If the system reports
Error:
"The selected controller profile does not match that of the target
system..."
Check that the target system entered in the target system settings (Resources) matches the
parameters entered in 'Online' 'Communications parameters'.
Error:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US282

"Communication error. Log-out has occurred"
Check whether the controller is running. Check whether the parameters entered in 'Online'
'Communications parameters' match those of your controller. In particular, you should check
whether the correct port has been entered and whether the baud rates in the controller and the
programming system match. If the gateway server is used, check whether the correct channel is
set.
Error:
"The program has been modified! Should the new program be loaded?"
The project which is open in the editor is incompatible with the program currently found in the
PLC (or with the simulation mode program being run Ä Chapter 1.4.1.2.6.22 “'Online' 'Simula-
tion'” on page 291). Monitoring and debugging is therefore not possible Ä Chapter 1.4.1.1.11.2
“Debugging” on page 182. You can either choose "No," logout, and open the right project, or
use "Yes" to load the current project in the PLC.
Message:
"The program has been changed. Load changes? (ONLINE CHANGE)".
The project is running on the controller. The target system supports 'Online Change' and the
project has been altered on the controller with respect to the most recent download or the most
recent Online Change. You may now decide whether these changes should be loaded with
the controller program running or whether the command should be cancelled. You can also,
however, load the entire compiled code by selecting the Load all button.

'Online' 'Logout'
Symbol: Shortcut <Ctrl>+<F8>
The connection to the PLC is broken, or the simulation mode program is ended and is shifted to
the offline mode Ä Chapter 1.4.1.2.6.22 “'Online' 'Simulation'” on page 291.
Use the 'Online' 'Login' command to change to the online mode Ä Chapter 1.4.1.2.6.2 “'Online'
'Login'” on page 279.

'Online' 'Download'
This command loads the compiled project in the PLC.
During compilation the Download-Information gets saved in a file called <project-
name>0000000ar.ri , which is used during online change to compare the current program with
the one most recently loaded onto the controller, so that only changed program components are
reloaded Ä Chapter 1.4.1.2.6.2 “'Online' 'Login'” on page 279. This file is erased by the com-
mand 'Project' 'Clean all' Ä Chapter 1.4.1.2.3.13 “'Project' 'Clean all'” on page 232! Concerning
Online Change on several PLCs please see 'Online' 'Login' Ä Chapter 1.4.1.2.6.2 “'Online'
'Login'” on page 279. Note that the *.ri file also gets updated during an Online Change.
Depending on the target system settings at each creation of a boot project in offline mode
the *.ri file might be regenerated Ä Chapter 1.4.1.2.6.25 “'Online' 'Create boot project'”
on page 291.
Only persistent variables keep their values even after a download Ä Chapter 1.4.1.3.9.7
“Remanent variables” on page 302.
See 'Online' 'Login' for a diagram showing the relations between Project-Build, Project-Down-
load, Online Change and Login on the target system Ä Table on page 280.

'Online' 'Run'
Symbol: Shortcut: <F5>
This command starts the program in the PLC or in simulation mode Ä Chapter 1.4.1.2.6.22
“'Online' 'Simulation'” on page 291.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 283

This command can be executed immediately after the 'Online' 'Download' command, or after the
user program in the PLC has been ended with the 'Online' 'Stop' command, or when the user
program is at a break point, or when the 'Online' 'Single cycle' command has been executed
Ä Chapter 1.4.1.2.6.7 “'Online' 'Stop'” on page 284 Ä Chapter 1.4.1.2.6.15 “'Online' 'Single
cycle'” on page 286.

'Online' 'Stop'
Symbol: Shortcut <Shift>+<F8>
Stops the execution of the program in the PLC or in simulation mode between two cycles
Ä Chapter 1.4.1.2.6.22 “'Online' 'Simulation'” on page 291.
Use the 'Online' 'Run' command to continue the program Ä Chapter 1.4.1.2.6.6 “'Online' 'Run'”
on page 283.

'Online' 'Reset'
This command resets – with exception of the retain variables (VAR RETAIN) - all variables to
that specific value, with which they have got initialized (also those variables which have been
declared as VAR PERSISTENT!). If you have initialized the variables with a specific value,
then this command will reset the variables to the initialized value. All other variables are set
at a standard initialization (for example, integers at 0). As a precautionary measure, you must
confirm your decision before all of the variables are overwritten. The situation is that which
occurs in the event of a power failure or by turning the controller off, then on (warm restart)
while the program is running.
Use the 'Online' 'Run' command to restart the program Ä Chapter 1.4.1.2.6.6 “'Online' 'Run'”
on page 283.
See also 'Online' 'Reset (original)', 'Online' 'Reset (cold)' and - for an overview on reinitializa-
tion - Remanent variables Ä Chapter 1.4.1.2.6.10 “'Online' 'Reset (original)'” on page 284
Ä Chapter 1.4.1.2.6.9 “'Online' 'Reset (cold)'” on page 284 Ä Chapter 1.4.1.3.9.7 “Remanent
variables” on page 302.

'Online' 'Reset (cold)'
This command corresponds to 'Online' 'Reset', but besides of "normal" and persistent variables
also sets back retain variables (!) to their initialization values Ä Chapter 1.4.1.2.6.8 “'Online'
'Reset'” on page 284. The situation is that which occurs at the start of a program which has
been downloaded just before to the PLC (cold start). See in this connection also 'Online' 'Reset'
Ä Chapter 1.4.1.2.6.8 “'Online' 'Reset'” on page 284, 'Online' 'Reset (original)' Ä Chapter
1.4.1.2.6.10 “'Online' 'Reset (original)'” on page 284, and - for an overview on reinitialization -
Remanent variables Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302.

'Online' 'Reset (original)'
This command resets all variables including the remanent ones (VAR RETAIN and VAR PER-
SISTENT) to their initialization values and erases the user program on the controller. The con-
troller is returned to its original state Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302.
See in this connection also 'Online' 'Reset' Ä Chapter 1.4.1.2.6.8 “'Online' 'Reset'” on page 284,
'Online' 'Reset (cold)' Ä Chapter 1.4.1.2.6.9 “'Online' 'Reset (cold)'” on page 284 and - for an
overview on reinitialization - Remanent variables Ä Chapter 1.4.1.3.9.7 “Remanent variables”
on page 302.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US284

'Online' 'Toggle breakpoint'
Symbol: image\ebx_946809370.gif Shortcut: <F9>
This command sets a breakpoint in the present position in the active window Ä Chapter
1.4.1.1.11.3 “Breakpoint” on page 182. If a breakpoint has already been set in the present
position, that breakpoint will be removed.
The position at which a breakpoint can be set depends on the language in which the POU in the
active window is written.
In the text editors (IL, ST), the breakpoint is set at the line where the cursor is located, if this line
is a breakpoint position (recognizable by the dark-gray color of the line number field) Ä Chapter
1.4.1.3.12.1 “Overview” on page 352. You can also click on the line number field to set or
remove a breakpoint in the text editors.
In FBD and LD, the breakpoint is set at the currently selected network. In order to set or remove
a breakpoint in the FBD or LD Editor, you can also click on the network number field.
In SFC, the breakpoint is set at the currently selected step Ä Chapter 1.4.1.3.11.9.1 “Overview”
on page 330. In SFC you can also use <Shift> with a doubleclick to set or remove a breakpoint.
If a breakpoint has been set, then the line number field or the network number field or the
step will be displayed with a light-blue background color. If a breakpoint is reached while
the program is running, the program will stop, and the corresponding field will be displayed
in a red background color. In order to continue the program, use the 'Online' 'Run', 'Online'
'Step in', or 'Online' 'Step over' commands Ä Chapter 1.4.1.2.6.6 “'Online' 'Run'” on page 283
Ä Chapter 1.4.1.2.6.14 “'Online' 'Step in'” on page 286 Ä Chapter 1.4.1.2.6.13 “'Online' 'Step
over'” on page 286.
You can also use the Breakpoint dialog box to set or remove breakpoints.

'Online' 'Breakpoint dialog box'
This command opens a dialog box to edit breakpoints throughout the entire project Ä Chapter
1.4.1.1.11.3 “Breakpoint” on page 182. The dialog box also displays all breakpoints presently
set.
In order to set a breakpoint, choose a POU in the POU combobox and the line or the network in
the Location combobox where you would like to set the breakpoint; then press the Add button.
The breakpoint will be added to the list.
In order to delete a breakpoint, highlight the breakpoint to be deleted from the list of the set
breakpoints and press the Delete button.
The Delete All button can be used to delete all the breakpoints.
In order to go to the location in the editor where a certain breakpoint was set, highlight the
respective breakpoint from the list of set breakpoints and press the Go to button.

To set or delete breakpoints, you can also use the 'Online' 'Toggle Breakpoint' command.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 285

'Online' 'Step over'
Symbol: Shortcut: <F10>
This command causes a single step to execute Ä Chapter 1.4.1.1.11.4 “Single step”
on page 182. If a POU is called, the program stops after its execution. In SFC a complete
action is executed Ä Chapter 1.4.1.1.10.5.2 “Action” on page 171.
If the present instruction is the call-up of a function or of a function block, then the function or
function block will be executed completely. Use the 'Online' 'Step in' command, in order to move
to the first instruction of a called function or function block Ä Chapter 1.4.1.2.6.14 “'Online' 'Step
in'” on page 286.
If the last instruction has been reached, then the program will go on to the next instruction in the
POU.

'Online' 'Step in'
Shortcut: <F8>
A single step is executed Ä Chapter 1.4.1.1.11.4 “Single step” on page 182. The program is
stopped before the first instruction of a called POU.
If necessary, there will be a changeover to an open POU.
If the present position is a call-up of a function or of a function block, then the command will
proceed on to the first instruction in the called POU.
In all other situations, the command will function exactly as 'Online' 'Step over' Ä Chapter
1.4.1.2.6.13 “'Online' 'Step over'” on page 286.

'Online' 'Single cycle'
Shortcut: <Ctrl>+<F5>
This command executes a single PLC Cycle and stops after this cycle Ä Chapter 1.4.1.1.11.5
“Single cycle” on page 182.
This command can be repeated continuously in order to proceed in single cycles.
The Single Cycle ends when the 'Online' 'Run' command is executed Ä Chapter 1.4.1.2.6.6
“'Online' 'Run'” on page 283.

'Online' 'Write values'
Shortcut: <Ctrl>+<F7>
With this command, one or more variables are set – one time only! – to user defined values
at the beginning of a cycle (see 'Online' 'Force values' for setting permanently Ä Chapter
1.4.1.2.6.17 “'Online' 'Force values'” on page 287).
The values of all single-element variables can be changed, so long as they are also visible in
Monitoring.
Before the command 'Write values' can be executed, a variable value must be ready to be
written: For non-boolean variables a double mouse click in performed on the line in which a
variable is declared, or the variable is marked and the <Enter> key is pressed. The dialog
box 'Write variable <x>' then appears, in which the value to be written to the variable can be
entered.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US286

For boolean variables, the value is toggled (switched between TRUE and FALSE, with no
other value allowed) by double-clicking on the line in which the variable is declared; no dialog
appears.
The value set for Writing is displayed in brackets and in turquoise colour behind the former
value of the variable. e.g. a=0 <:=34>.

Exception: In the FBD and LD Editor the value is shown turquoise without
brackets next to the variable name.

Set the values for as many variables as you like.
The values entered to be written to variables can also be corrected or deleted in the same
manner. This is likewise possible in the 'Online' 'Write/Force dialog' (see below).
The values to be written that were previously noticed are saved in a writelist (Watchlist), where
they remain until they are actually written, deleted or transferred to a forcelist by the command
'Force values'.
The command to Write Values can be found at two places:
● Command 'Write Values' in the menu 'Online'.
● Button 'Write Values' in the dialog Ä 'Editing the writelist and the forcelist'.
When the command 'Write values' is executed, all the values contained in the writelist are
written, once only , to the appropriate variables in the controller at the beginning of the cycle,
then deleted from the writelist. (If the command 'Force values' is executed, the variables
in question are also deleted from the writelist, and transferred to the forcelist! Ä Chapter
1.4.1.2.6.17 “'Online' 'Force values'” on page 287)

In the sequential function chart language, the individual values from which
a transition expression is assembled cannot be changed with 'Write values'
Ä Chapter 1.4.1.1.10.5.1 “Overview” on page 171. This is due to the fact that
in monitoring the 'Total value' of the expression, not the values of the individual
variables are displayed (e.g. "a AND b" is only displayed as TRUE if both
variables actually have the value TRUE).

In FBD, on the other hand, only the first variable in an expression, used for example as
input to a function block, is monitored Ä Chapter 1.4.1.1.10.2 “Function Block Diagram (FBD)”
on page 162. Thus a 'Write values' command is only possible for this variable.

'Online' 'Force values'
Shortcut: <F7>
With this command, one or more variables are permanently set (see 'Online' 'Write values' for
setting only once at the beginning of a cycle Ä Chapter 1.4.1.2.6.16 “'Online' 'Write values'”
on page 286) to user-defined values.
The setting occurs in the runtime system, both at the beginning and at the end of the cycle. The
time sequence in one cycle: 1.Read inputs, 2. Force values 3. Process code, 4. Force values 5.
Write outputs.
The function remains active until it is explicitly suspended by the user (command 'Online'
'Release force') or the programming system is logged-out.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 287

For setting the new values, a 'writelist' is first created, just as described under 'Online' 'Write
values' Ä Chapter 1.4.1.2.6.16 “'Online' 'Write values'” on page 286. The variables contained in
the writelist are accordingly marked in Monitoring. The writelist is transferred to a 'forcelist' as
soon as the command 'Online' 'Force values' is executed. It is possible that an active forcelist
already exists, in which case it is updated as required. The writelist is then emptied and the new
values displayed in red as 'forced'. Modifications of the forcelist are transferred to the program
with the next 'Force values' command.
Note: The forcelist is created at the first forcing of the variables contained in the writelist, while
the writelist existed prior to the first writing of the variables that it contains.
The command for forcing a variable, which means that it will be entered into the forcelist can be
found at the following places:
● Command 'Force Values' in the menu 'Online'.
● Button 'Force Values' in the dialog Ä 'Editing the writelist and the forcelist'.

In the sequential function chart language, the individual values from which a
transition expression is assembled cannot be changed with 'Force values'. This
is due to the fact that in monitoring the 'Total value' of the expression, not the
values of the individual variables are displayed (e.g. "a AND b" is only displayed
as TRUE if both variables actually have the value TRUE).

In FBD, on the other hand, only the first variable in an expression, used for example as input to
a function block, is monitored. Thus a 'Force values' command is only possible for this variable.

'Online' 'Release force'
Shortcut: <Shift>+<F7>
This command ends the forcing of variable values in the controller. The variable values change
again in the normal way.
Forced variables can be recognized in Monitoring by the red color in which their values are
displayed. You can delete the whole forcelist, but you can also mark single variables for which
the forcing should be released.
To delete the whole forcelist, which means to release force for all variables, choose one of the
following ways:
● Command 'Release Force' in menu 'Online'.
● Button 'Release Force' in dialog Ä 'Editing the writelist and the forcelist'
● Delete the whole forcelist using the command 'Release Force' in the dialog 'Remove Write-/

Forcelist'. This dialog opens if you choose the command 'Release Force' while also a
writelist exists Ä Chapter 1.4.1.2.6.16 “'Online' 'Write values'” on page 286.

● To release force only for single variables you have to mark these variables first. Do this in
one ways described in the following. After that the chosen variables are marked with an
turquoise extension <Release Force>:
- A double mouse click on a line, in which a non boolean variable is declared, opens the
dialog 'Write variable <x>' Ä Chapter 1.4.1.2.6.16 “'Online' 'Write values'” on page 286.
Press button <Release Force for this variable>.
- Repeat double mouse clicks on a line in which a boolean variable is declared to toggle to
the display <Release Force> at the end of the line.
- In the menu 'Online' open the Write/Force-Dialog and delete the value in the edit field of
the column 'Forced value'.

When for all desired variables the setting "<Release Force>" is shown in the declaration
window, choose the command 'Force values' to transfer the modifications of the forcelist to
the program Ä Chapter 1.4.1.2.6.17 “'Online' 'Force values'” on page 287.
If the current writelist is not empty while you execute the command 'Release Force', the
dialog 'Remove Write-/Forcelist' will be opened Ä Chapter 1.4.1.2.6.16 “'Online' 'Write values'”
on page 286. There the user has to decide whether he just wants to Release Force or addition-
ally wants to Remove the writelist or if he wants to remove both lists.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US288

'Online' 'Write/Force' Dialog'
Shortcut: <Ctrl>+<Shift>+<F7>
This command leads to a dialog which displays in two registers the current writelist (Watchlist)
and forcelist (Forcelist). Each variable name and the value to be written to it or forced on it are
displayed in a table.

The variables reach the watchlist via the commands 'Online' 'Write values' and are transferred
to the forcelist by the command 'Online' 'Force values' Ä Chapter 1.4.1.2.6.16 “'Online' 'Write
values'” on page 286 Ä Chapter 1.4.1.2.6.17 “'Online' 'Force values'” on page 287. The values
can be edited here in the "Prepared Value" or "Forced Value" columns by clicking the mouse
on an entry to open an editor field. If the entry is not type-consistent, an error message is
displayed. If a value is deleted, it means that the entry is deleted from the writelist or the
variable is noticed for suspension of forcing as soon as the dialog is closed with any other
command than Cancel.
The following commands, corresponding to those in the Online menu, are available via buttons:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 289

Force Values Ä Chapter 1.4.1.2.6.17 “'Online' 'Force values'” on page 287: All entries in the
current writelist are transferred to the forcelist, that is the values of the variables in the controller
are forced. All variables marked with 'Release Force' are no longer forced. The dialog is then
closed.
Write Values Ä Chapter 1.4.1.2.6.16 “'Online' 'Write values'” on page 286: All entries in the
current writelist are written once only to the corresponding variables in the controller. The dialog
is then closed.
Release Force Ä Chapter 1.4.1.2.6.18 “'Online' 'Release force'” on page 288: All entries in the
forcelist will be deleted or, if a writelist is present, the dialog "Delete write-/forcelist" comes up, in
which the user must decide whether he only wants to release forcing or discard the writelist, or
both. The dialog will close at that point, or after the selection dialog is closed as the case may
be.

'Online' 'Show call stack'
You can run this command when the simulation mode stops at a breakpoint Ä Chapter
1.4.1.2.6.22 “'Online' 'Simulation'” on page 291 Ä Chapter 1.4.1.2.3.9 “'File' 'Printer setup'”
on page 229. You will be given a dialog box with a list of the POU Call Stack.

The first POU is always PLC_PRG, because this is where the executing begins Ä Chapter
1.4.1.1.9.2 “POU (program organization unit)” on page 151.
The last POU is always the POU being executed.
After you have selected a POU and have pressed the 'Go to' button, the selected POU is loaded
in its editor, and it will display the line or network being processed.

'Online' 'Display flow control'
Depending on the target system settings the user can activate resp. deactivate the Flow Control
function. If it is activated, a check (✓) will appear in front of the menu item. Following this, every
line or every network will be marked which was executed in the last PLC Cycle.
The line number field or the network number field of the lines or networks which just run will be
displayed in green. An additional field is added in the IL editor in which the present contents of
the accumulator are displayed Ä Chapter 1.4.1.3.12.1 “Overview” on page 352. In the graphic
editors for the Function Block Diagram and Ladder Diagram, an additional field will be inserted
in all connecting lines not transporting any Boolean values Ä Chapter 1.4.1.3.11.1 “Overview”
on page 314 Ä Chapter 1.4.1.3.11.7.1 “Overview” on page 317 Ä Chapter 1.4.1.3.11.8.1 “Over-
view” on page 323. When these Out- and Inputs are verified, then the value that is transported
over the connecting line will be shown in this field. Connecting lines that transport only Boolean
values will be shaded blue when they transport TRUE. This enables constant monitoring of the
information flow.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US290

1. The run time of a program will be increased by using flow control. This might
cause timeouts in time-cyclic programs with high load.

2. At active breakpoint positions there is no flow control display.

3. If a watchdog has been defined for the concerned task, this will be switched
off when the flow control is active Ä Chapter 1.4.1.4.8.2 “'Insert' 'Insert Task' or
'Insert' 'Append Task'” on page 391.

'Online' 'Simulation'
If Simulation Mode is chosen, then a check (✓) will appear in front of the menu item.
In the simulation mode, the user program runs on the same PC under Windows. This mode is
used to test the project. The communication between the PC and Simulation Mode uses the
Windows Message mechanism.
If the program is not in simulation mode, then the program will run on the PLC. The communica-
tion between the PC and the PLC typically runs over the serial interface.
The status of this flag is stored with the project.

POUs of external libraries will not run in simulation mode.

'Online' 'Communication parameters'
You are offered a special dialog for setting communication parameters when the communication
between the local PC and the runtime system is running over a gateway server in your system.
(If the OPC or DDE server is used, the same communications parameters must be entered in its
configuration).

'Online' 'Sourcecode download'
This command loads the source code for the project into the controller system. This is not
to be confused with the Code that is created when the project is compiled! You can enter
the options that apply to Download (time, size) in the 'Project' 'Options' 'Source download'
dialog Ä Chapter 1.4.1.2.2.1 “'Project' 'Options'” on page 200 Ä Chapter 1.4.1.2.2.11 “'Source
download'” on page 212.

'Online' 'Create boot project'
With this command, the compiled project is set up on the controller in such a way that the
controller can load it automatically when restarted. Storage of the boot project occurs differ-
ently depending on the target system. For example, on 386 systems three files are created:
default.prg contains the project code, default.chk contains the code's checksum, default.sts
contains the controller status after restart (start/stop).
The command 'Online' 'Create boot project' is also available in offline mode if the project has
been built without errors. In this case the following files are created in the projects directory:
<projektname>.prg for the boot project code, and <projektname>.chk for the checksum. These
files can be renamed as necessary and then be copied to a PLC.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 291

Depending on the target system settings at the creation of a boot project in offline mode a
new *.ri file (download information) might be created Ä Chapter 1.4.1.2.6.5 “'Online' 'Download'”
on page 283. Also depending on the target setting a dialog will appear if this file is already
existing.

If the project option "Implicit at create boot project" (category Source download)
is activated, then the selected sources will be loaded automatically into the
controller on the command 'Online' 'Create boot project' Ä Chapter 1.4.1.2.2.11
“'Source download'” on page 212.

'Online' 'Write file to PLC'
This command is used for loading any desired file onto the controller. It opens the dialog for
'Write file to controller' in which you can select the desired file.
After the dialog is closed using the 'Open' button, the file is loaded into the controller and stored
there under the same name. The loading process is accompanied by a progress dialog.
With the command 'Online' 'Load file from PLC' you can retrieve a file previously loaded on the
controller Ä Chapter 1.4.1.2.6.27 “'Online' 'Load file from PLC'” on page 292.

'Online' 'Load file from PLC'
With this command, you can retrieve a file previously loaded into the controller using 'Online'
'Write file to PLC' Ä Chapter 1.4.1.2.6.26 “'Online' 'Write file to PLC'” on page 292. You receive
the 'Load file from controller' dialog. Under Filename, provide the name of the desired file, and
in the selection window enter the directory on your computer into which it is to be loaded as
soon as the dialog is closed with the "Save" button.

1.4.1.2.7 Window setup
'Window' 'Tile horizontal'

With this command you can arrange all the windows horizontally in the work area so that they
do not overlap and will fill the entire work area.

'Window' 'Tile vertical'
With this command you can arrange all the windows vertically in the work area so that they do
not overlap and will fill the entire work area.

'Window' 'Cascade'
With this command you can arrange all the windows in the work area in a cascading fashion,
one behind another.

'Window' 'Arrange symbols'
With this command you can arrange all of the minimized windows in the work area in a row at
the lower end of the work area.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US292

'Window' 'Close all'
With this command you can close all open windows in the work area.

'Window' 'Messages'
Shortcut: <Shift>+<Esc>
With this command you can open or close the Message window with the messages from the
last compiling, checking, or comparing procedure Ä Chapter 1.4.1.2.1.6 “Message window”
on page 200.
If the messages window is open, then a check (✓) will appear in front of the command.

1.4.1.2.8 Help
'Help' 'Contents and search'

With the commands Contents or Search in the Help menu you can open the help topics window,
which will be displayed via the HTML Help Viewer.
The Contents tab shows the contents tree. The books can be opened and closed by a double-
click or via the plus and minus signs. That page which is currently selected in the contents tree
will be displayed in the right part of the window. Hyperlinks from the text to other help pages
resp. expanding hotspots are marked by a different color and an underline. A mouse-click on
such texts will open the linked page resp. will show the expanded text or a figure. For example
you can click on "Help Topic Window" at the end of this page in order to get displayed a figure
of a help window, or you can click on the hyperlink "Context Sensitive Help" in order to get to the
respective help page.
In the Index tab you can look for help pages on specific items, in the Search tab a full-text
search on all help pages can be done. Follow the instructions in the register cards.
See also: Context sensitive help Ä Chapter 1.4.1.2.8.2 “Context sensitive help” on page 293.

Context sensitive help
Shortcut: <F1>
You can use the <F1> key in an active window, in a dialog box, or above a menu command
in order to open the 'Help' 'Contents and search' Ä Chapter 1.4.1.2.8.1 “'Help' 'Contents and
search'” on page 293. When you perform a command from the menu, the help for the command
called up at that time is displayed. You can also highlight a text (for example, a key word or a
standard function) and press <F1> to have the help displayed for that item.

1.4.1.3 Editors
1.4.1.3.1 Components of an editor

All editors for POUs (Program Organization Units) consist of a declaration part and a body. The
body can consist of other a text or a graphic editor; the declaration portion is always a text
editor. Body and declaration part are separated by a screen divider that can be dragged, as
required, by clicking it with the mouse and moving it up or down.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 293

1.4.1.3.2 Print margins
The vertical and horizontal margins that apply when the editor contents are printed, are shown
by red dashed lines if the 'Show print range' option in the project options in the dialog 'Work-
space' was selected. The properties of the printer that was entered apply, as well as the size
of the print layout selected in the 'File' 'Printer Setup' menu Ä Chapter 1.4.1.2.3.9 “'File' 'Printer
setup'” on page 229. If no printer setup or no print layout is entered, a default configuration
is used (Default.DFR and default printer). The horizontal margins are drawn as if the options
'New page for each object' or 'New page for each sub-object' were selected in 'Documentation
settings'. The lowest margin is not displayed.

An exact display of the print margins is only possible when a zoom factor of
100% is selected.

1.4.1.3.3 Comment
User comments must be enclosed in the special symbol sequences (* and *). Example: (*This is
a comment.*)
● Comments are allowed in all text editors, at any location desired, that is in all declarations,

in the IL and ST languages and in self-defined data types Ä Chapter 1.4.1.1.10.3.1 “Over-
view” on page 163 Ä Chapter 1.4.1.1.10.4.1 “Overview” on page 165. If the project is
printed out using a template, the comment that was entered during variable declaration
appears in text-based program components after each variable.

● In the FBD and LD graphic editors, comments can be entered for each network Ä Chapter
1.4.1.1.10.2 “Function Block Diagram (FBD)” on page 162 Ä Chapter 1.4.1.1.10.7.1 “Over-
view” on page 176. To do this, search for the network on which you wish to comment and
activate 'Insert' 'Comment'.

● Besides that comments always can be added where variable names are inserted.
Example in FBD for a network comment and for a comment placed behind an input variable:

In KOP a comment also can be added to each contact resp. each coil, if this is configured
accordingly in the display options in menu 'Extras' 'Options' Ä Chapter 1.4.1.3.11.9.22 “'Extras'
'Options'” on page 336.
● In the Ladder Editor additionally a comment for each particular contact and coil can be

added, if the corresponding options are activated in the menu 'Extras' 'Options'.
● In CFC there are special Comment POUs which can be placed at will Ä Chapter

1.4.1.1.10.6 “The continuous function chart (CFC)” on page 176 Ä Chapter 1.4.1.3.11.10.9
“'Insert' 'Comment' in CFC” on page 341.

● In SFC, you can enter comments about a step in the dialog for editing step attributes
Ä Chapter 1.4.1.1.10.5.1 “Overview” on page 171 Ä Chapter 1.4.1.3.11.9.20 “'Extras' 'Step
Attributes'” on page 334.

Nested comments are also allowed if the appropriate option in the 'Project' 'Options' 'Build
Options' dialog is activated Ä Chapter 1.4.1.2.2.9 “Options for build” on page 209.
In Online mode, if you rest the mouse cursor for a short time on a variable, the type and if
applicable the address and comment of that variable are displayed in a tooltip.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US294

1.4.1.3.4 Zoom to a POU
Shortcut: <Alt>+<Enter>
With this command a selected POU is loaded into its editor. The command is available in the
context menu (<F2>) or in the 'Extras' menu, if the cursor is positioned on the name of a POU in
a text editor or if the POU box is selected in a graphic editor.
If you are dealing with a POU from a library, then the library manager is called up, and the
corresponding POU is displayed.

1.4.1.3.5 Open instance
This command corresponds to the 'Project' 'View instance' command Ä Chapter 1.4.1.2.4.15
“'Project' 'View instance'” on page 263.
It is available in the context menu (<F2>) or in the "Extras" menu, if the cursor is positioned on
the name of a function block in a text editor or if the function block box is selected in a graphic
editor.

1.4.1.3.6 Intellisense function
If the option List components is activated in the project options dialog for category 'Editor' ,
then the "Intellisense" functionality will be available in all editors, in the Watch- and Recipe
manager, in the Visualization and in the Sampling Trace Ä Chapter 1.4.1.2.2.4 “Options for
editor” on page 203:
● If you insert a dot "." instead of an identifier, a selection box will appear, listing all local and

global variables of the project. You can choose one of these elements and press 'Return' to
insert it behind the dot. You can also insert the element by a doubleclick on the list entry.

● If you enter a function block instance or a structure variable followed by a dot, then a
selection box listing all input and output variables of the corresponding function block resp.
listing the structure components will appear, where you can choose the desired element
and enter it by pressing 'Return' or by a doubleclick Ä Chapter 1.4.1.1.9.5 “Function block
instances” on page 153 Ä Chapter 1.4.1.8.2.5 “Structures” on page 449.
Example: Insert "struvar." -> the components of structure struct1 will be offered:

● If you enter any string and press <Ctrl> + <Space Bar>, a selection box will appear listing
all POUs and global variables available in the project. The list entry starting with the given
string will be selected and can be entered to the program by pressing the <Enter> key.

1.4.1.3.7 Show cross references
Shortcut: <Strg>+<F3>
If a variable identifier is selected in an editor, then this command "Show cross references" will
be available in the 'Extras' menu or the context menu. It can be used to get a list of all positions
within the project where the variable is used. For information on this cross-reference list see:
'Project' 'Show cross reference'.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 295

1.4.1.3.8 Add variables to watchlist
If one or several variables or elements are selected in one of the POU editors, these can be
inserted in a new or existing watchlist via appropriate commands in the context menu. For
details see Creating Watch Lists, Recipes Ä Chapter 1.4.1.4.9.2 “Creating watch lists, recipes”
on page 397.

1.4.1.3.9 Declaration editor
Overview

The declaration editor is used to declare variables of POUs and global variables, for data
type declarations, and in the Watch and Receipt Manager. It gives access to the usual Win-
dows functions, and even those of the IntelliMouse can be used if the corresponding driver is
installed.
In Overwrite mode, 'OV' is shown in black on the status bar; switching between Overwrite and
Insert modes can be accomplished with the <Ins> key.
The declaration of variables is supported by syntax coloring Ä Chapter 1.4.1.3.9.15 “Syntax
coloring” on page 305.
The most important commands are found in the context menu (right mouse button or
<Ctrl>+<F10>).

Consider the possibility of using pragmas to affect the properties of a var-
iable concerning the compilation resp. precompilation process Ä Chapter
1.4.1.3.10.1 “Pragmas, overview” on page 309.

See also:
Declaration part Ä Chapter 1.4.1.3.9.2 “Declaration part” on page 297

Input variable Ä Chapter 1.4.1.3.9.3 “Input variable” on page 301

Output variable Ä Chapter 1.4.1.3.9.4 “Output variable” on page 301

Input and output variables Ä Chapter 1.4.1.3.9.5 “Input and output variables” on page 301

Local variables Ä Chapter 1.4.1.3.9.6 “Local variables” on page 301

Remanent variables Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302

Constants, typed literals Ä Chapter 1.4.1.3.9.8 “Constants, typed literals” on page 302

External variables Ä Chapter 1.4.1.3.9.9 “External variables” on page 303

Keywords Ä Chapter 1.4.1.3.9.10 “Keywords” on page 303

Variables declaration Ä Chapter 1.4.1.3.9.11 “Variables declaration” on page 303

AT declaration Ä Chapter 1.4.1.3.9.12 “AT Declaration” on page 304

'Insert' 'Declarations keywords' Ä Chapter 1.4.1.3.9.13 “'Insert' 'Declaration keywords'”
on page 304

'Insert' ' Type' Ä Chapter 1.4.1.3.9.14 “'Insert' 'Type'” on page 304

Syntax coloring Ä Chapter 1.4.1.3.9.15 “Syntax coloring” on page 305

Shortcut mode Ä Chapter 1.4.1.3.9.16 “Shortcut mode” on page 305

Autodeclaration Ä Chapter 1.4.1.3.9.17 “Autodeclaration” on page 306

Line numbers in the declaration editor Ä Chapter 1.4.1.3.9.18 “Line numbers in the declaration
editor” on page 307

Pragma command Ä Chapter 1.4.1.3.10.2 “Pragma instructions for initialization, monitoring,
creation of symbols, bitaccess, linking” on page 310

Declarations as table Ä Chapter 1.4.1.3.9.20 “Declarations as table” on page 307

'Insert' 'NewDeclaration' Ä Chapter 1.4.1.3.9.19 “'Insert' 'New declaration'” on page 307

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US296

Declaration editors in online mode Ä Chapter 1.4.1.3.9.21 “Declaration editors in online mode”
on page 308

Declaration part
All variables to be used only in this POU are declared in the declaration part of the
POU. These can include: input variable, output variable , input/output variables, local varia-
bles, remanent variables and constants Ä Chapter 1.4.1.3.9.3 “Input variable” on page 301
Ä Chapter 1.4.1.3.9.4 “Output variable” on page 301 Ä Chapter 1.4.1.3.9.5 “Input and output
variables” on page 301 Ä Chapter 1.4.1.3.9.6 “Local variables” on page 301 Ä Chapter
1.4.1.3.9.7 “Remanent variables” on page 302 Ä Chapter 1.4.1.3.9.8 “Constants, typed literals”
on page 302. The declaration syntax is based on the IEC61131-3 standard.
Regard the possibility of using templates for objects of type 'Global Variables', 'Data
types', 'Function', 'Function Block' or 'Program' Ä Chapter 1.4.1.2.4.7 “'Save as template'”
on page 259.

Regard the possibility of using pragmas to affect the properties of a variable
concerning the compilation resp. precompilation process Ä pragmas.

An example of a correct declaration of variables in the editor:

Recommendations on the naming of identifiers
Identifiers are defined at the declaration of variables (variable names), user-defined data types
and at the creation of POUs (functions, function blocks, programs) and visualizations. You might
follow the following recommendations concerning the naming of identifiers in order to make it as
unique as possible.
(1) Variable names
The naming of variables in applications and libraries as far as possible should follow the
Hungarian notation:
For each variable a meaningful, short description should be found, the base name. The first
letter of each word of a base name should be a capital letter, the others should be small
ones (Example: FileSize). If needed additionally an translation file for other languages can be
created.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 297

Before the base name, corresponding to the data type of the variable, prefix(es) are added in
small letters.

Data type Lower limit Upper limit Information
content

Prefix Comment

BOOL FALSE TRUE 1 bit x*

 b reserved

BYTE 8 bit by Bit string, not
for arithm.
operations

WORD 16 bit w Bit string, not
for arithm.
operations

DWORD 32 bit dw Bit string, not
for arithm.
operations

LWORD 64 bit lw not for arithm.
operations

SINT -128 127 8 bit si

USINT 0 255 8 bit usi

INT -32.768 32.767 16 bit i

UINT 0 65.535 16 bit ui

DINT -2.147.483.64
8

2.147.483.647 32 bit di

UDINT 0 4.294.967.295 32 bit udi

LINT -263 263 - 1 64 bit li

ULINT 0 264 - 1 64 bit uli

REAL 32 bit r

LREAL 64 bit lr

STRING s

TIME tim

TIME_OF_DA
Y

 tod

DATETIME dt

DATE date

ENUM 16 bit

e POINTER

 p ARRAY

 a

* pointedly for BOOLean variables x is chosen as prefix, in order to differentiate from BYTE and
also in order to accommodate the perception of an IEC-programmer (see addressing %IX0.0).

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US298

bySubIndex: BYTE;
sFileName: STRING;
udiCounter: UDINT;

Examples:

In nested declarations the prefixes are attached to each other in the order of the declarations:

pabyTelegramData: POINTER TO ARRAY [0..7] OF BYTE;Example:

Function block instances and variables of user-defined data types as a prefix get a shortcut for
the FB- resp. data type name (Examle: sdo).

cansdoReceivedTelegram: CAN_SDOTelegram;
TYPE CAN_SDOTelegram : (* prefix: sdo *)
STRUCT
wIndex:WORD;
bySubIndex:BYTE;
byLen:BYTE;
aby: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Example:

Locale contants (c) start with prefix c and an attached underscore, followed by the type prefix
and the variable name.

VAR CONSTANT
c_uiSyncID: UINT := 16#80;
END_VAR

Example:

For Global variables (g) and Global constants (gc) an additional prefix + underscore is attached
to the library prefix:

VAR_GLOBAL
CAN_g_iTest: INT;
END_VAR
VAR_GLOBAL CONSTANT
CAN_gc_dwExample: DWORD;
END_VAR

Examples:

(2) User-defined data types (DUT)
The name of each structure data type consists of a library prefix (Example: CAN), an under-
score and a preferably short expressive description (Example: SDOTelegram) of the structure.
The associated prefix for used variables of this structure should follow directly after the colon.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 299

TYPE CAN_SDOTelegram : (* prefix: sdo *)
STRUCT
wIndex:WORD;
bySubIndex:BYTE;
byLen:BYTE;
abyData: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Example:

Enumerations start with the library prefix (Example: CAL), followed by an underscore and the
identifier in capital letters..
Regard that in previous versions of CODESYS ENUM values > 16#7FFF have caused errors,
because they did not get converted automatically to INT values. For this reason ENUMs always
should be defined with correct INT values.

TYPE CAL_Day :(
CAL_MONDAY,
CAL_TUESDAY,
CAL_WEDNESDAY,
CAL_THIRSDAY,
CAL_FRIDAY,
CAL_SATURDAY,
CAL_SUNDAY);
Declaration:
eToday: CAL_Day;

Example:

(3) Functions, Function blocks, Programs (POU)
The names of functions, function blocks and programs consist of the library prefix (Example:
CAN), an underscore and an expressive short name of the POU (Example: SendTelegram). Like
with variables always the first letter of a word of the POU name should be a capital letter, the
others should be small letters. It is recommended to compose the name of the POU of a verb
and a substantive.

FUNCTION_BLOCK CAN_SendTelegram (* prefix: canst *)Example:

In the declaration part a short description of the POU should be provided as a comment. Further
on all inputs and outputs should be provided with comments. In case of function blocks the
associated prefix for set-up instances should follow directly after the name.
Actions get no prefix; just actions which should be called only internally, i.e. by the POU itself,
start with prv_.
Each function - for the reason of compatibility with previous CODESYS versions - must have at
least one parameter. External functions must not use structures as return values.
(4) Identifiers for Visualizations
Note: Currently you must avoid that a visualization has the same name like another POU in the
project. This would lead to problems in case of changes between visualizations.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US300

Input variable
Between the key words VAR_INPUT and END_VAR, all variables are declared that serve as
input variables for a POU. That means that at the call position, the value of the variables can be
given along with a call.

VAR_INPUT
 iIn1:INT (* 1. Inputvariable*)
END_VAR

Example:

Output variable
Between the key words VAR_OUTPUT and END_VAR, all variables are declared that serve as
output variables of a POU. That means that these values are carried back to the POU making
the call. There they can be answered and used further.

VAR_OUTPUT
 iOut1:INT; (* 1. Outputvariable*)
END_VAR

Example:

Input and output variables
Between the key words VAR_IN_OUT and END_VAR, all variables are declared that serve as
input and output variables for a POU.

NOTICE!
With this variable, the value of the transferred variable is changed ("transferred
as a pointer", Call-by-Reference). That means that the input value for such
variables cannot be a constant. For this reason, even the VAR_IN_OUT varia-
bles of a function block can not be read or written directly from outside via
<functionblockinstance><in/outputvariable>.

VAR_IN_OUT
 iInOut1:INT; (* 1. Inputoutputvariable *)
END_VAR

Example:

Local variables
Between the keywords VAR and END_VAR, all of the local variables of a POU are declared.
These have no external connection; in other words, they can not be written from the outside.

VAR
 iLoc1:INT; (* 1. Local Variable*)
END_VAR

Example:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 301

Remanent variables
Remanent variables can retain their value throughout the usual program run period. These
include Retain variables and Persistent variables.

VAR RETAIN
 iRem1:INT; (* 1. Retain variable*)
END_VAR

Example:

● Retain variables are identified by the keyword RETAIN. These variables maintain their value
even after an uncontrolled shutdown of the controller as well as after a normal switch off
and on of the controller (corresponding to command Online Reset). When the program is
run again, the stored values will be processed further. A concrete example would be an
piece-counter in a production line, that recommences counting after a power failure. All
other variables are newly initialized, either with their initialized values or with the standard
initializations.
Retains are reinitialized at Reset (cold) and Reset (original) and - contrary to Persistent
variables - at a new download of the program.

● Persistent variables are identified by the keyword PERSISTENT. Unlike Retain variables,
these variables retain their value only after a re-download, but not after an Online Reset,
Online Reset (original) or Online Reset (cold), because they are not saved in the "retain
area". If also persistent variables should maintain their values after a uncontrolled shutdown
of the controller, then they have to be declared additionally as VAR RETAIN variables. A
concrete example of "persistent Retain-Variables" would be a operations timer that recom-
mences timing after a power failure.

x = value will be retained
 - = value gets reinitialized

after Online
command

VAR VAR RETAIN VAR PERSIS-
TENT

VAR RETAIN
PERSISTENT
VAR PERSIS-
TENT RETAIN

 Reset - x - x

 Reset cold - - - -

 Reset origin - - - -

 Download - - x x

 Online Change x x x x

– If a local variable in a program is declared as VAR RETAIN, then exactly
that variable will be saved in the retain area (like a global retain variable).

– If a local variable in a function block is declared as VAR RETAIN, then the
complete instance of the function block will be saved in the retain area (all
data of the POU), whereby only the declared retain variable will be handled
as a retain.

– If a local variable in a function is declared as VAR RETAIN, then this will
be without any effect. The variable will not be saved in the retain area ! If
a local variable is declared as PERSISTENT in a function, then this will be
without any effect also!

Constants, typed literals
Constants are identified by the key word CONSTANT. They can be declared locally or globally.
Syntax:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US302

VAR CONSTANT
 <Identifier>:<Type> := <initialization>;
END_VAR

VAR CONSTANT
 c_iCon1:INT:=12; (* 1. Constant*)
END_VAR

Example:

See 'Operands' for a listing of possible constants Ä Chapter 1.4.1.7.1 “Overview” on page 435.
See there also regarding the possibility of using typed constants Ä Chapter 1.4.1.7.2.9 “Typed
literals” on page 437.

External variables
Global variables which are to be imported into the POU are designated with the keyword
EXTERNAL. They also appear in the Watch window of the declaration part in Online mode.
If the VAR_EXTERNAL declaration does not match the global declaration in every respect, the
following error message appears: "Declaration of '<var>' does not match global declaration!"
If the global variable does not exist, the following error message appears: "Unkown global
variable: '<var>'!"

VAR EXTERNAL
 iVarExt1:INT:=12; (* 1st external variable *)
END_VAR

Example:

Keywords
Keywords are to be written in uppercase letters in all editors Ä Chapter 1.4.1.3.9.13 “'Insert'
'Declaration keywords'” on page 304. Keywords may not be used as variables. Examples for
keywords: VAR, VAR_CONSTANT, IF, NOT, INT Ä Chapter 1.4.1.1.10.8 “Reserved keywords”
on page 178.

Variables declaration
A variables declaration has the following syntax:
<Identifier> {AT <Address>}:<Type> {:=<initialization>};
The parts in the braces {} are optional.
Regarding the identifier, that is the name of a variable, it should be noted that it may not contain
spaces or umlaut characters, it may not be declared in duplicate and may not be identical
to any keyword. Upper/lowercase writing of variables is ignored, in other words VAR1, Var1
and var1 are not different variables. Underlines in identifiers are meaningful, e.g. A_BCD and
AB_CD are interpreted as different identifiers. Multiple consecutive underlines at the beginning
of an identifier or within a identifier are not allowed. The length of the identifier, as well as the
meaningful part of it, are unlimited.
All declarations of variables and data type elements can include initialization. They are brought
about by the ":=" operator. For variables of elementary types, these initializations are constants.
The default-initialization is 0 for all declarations.

iVar1:INT:=12; (* Integer variable with initial value of 12*)Example:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 303

If you wish to link a variable directly to a definite address, then you must declare the variable
with the keywordAT.
For faster input of the declarations, use the shortcut mode.
In function blocks you can also specify variables with incomplete address statements. In order
for such a variable to be used in a local instance, there must be an entry for it in the variable
configuration.
Pay attention to the possibility of an automatic declaration.

Regard the possibility of using pragmas to affect the properties of a variable
concerning the compilation resp. precompilation process.

AT Declaration
If you wish to link a variable directly to a definite address, then you must declare the variable
with the keyword AT. The advantage of such a procedure is that you can assign a meaningful
name to an address, and that any necessary changes of an incoming or outgoing signal will
only have to be made in one place (e.g., in the declaration).
Notice that variables requiring an input cannot be accessed by writing.

xCounterHeat7 AT %QX0.0: BOOL;
wLightcabinetimpulse AT %IW2: WORD;
xDownload AT %MX2.2: BOOL;

Examples:

If boolean variables are assigned to a Byte, Word or DWORD address, they
occupy one byte with TRUE or FALSE, not just the first bit after the offset!

'Insert' 'Declaration keywords'
You can use this command to open a list of all the keywords that can be used in the declaration
part of a POU. After a keyword has been chosen and the choice has been confirmed, the word
will be inserted at the present cursor position Ä Chapter 1.4.1.1.10.8 “Reserved keywords”
on page 178.
You also receive the list when you open the input assistant (<F2>) and choose the Declarations
category Ä Chapter 1.4.1.2.5.11 “'Edit' 'Input assistant'” on page 276.

'Insert' 'Type'
With this command you will receive a selection of the possible types for a declaration of
variables. You also receive the list when you access the input assistant (<F2>).
The types are divided into these categories:
● Standard types BOOL, BYTE, etc.
● Defined types Structures, enumeration types, etc.
● Standard function blocks for instance declarations
● Defined function blocks for instance declarations
All standard types of IEC1131-3 are supported Ä Chapter 1.4.1.8.2.1 “ARRAY” on page 445.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US304

Syntax coloring
In all editors you receive visual support in the implementation and declaration of variables.
Errors are avoided, or discovered more quickly, because the text is displayed in color.
A comment left unclosed, thus annotating instructions, will be noticed immediately; keywords
will not be accidentally misspelled, etc.

Table 12: Used color highlighting
Color HIghlighted text
Blue Keywords

Green Comments in the text editors

Pink Special constants (e.g. TRUE/FALSE, T#3s, %IX0.0)

Red Input error (for example, invalid time constant, keyword,
written in lower case,...)

Black Variables, constants, assignment operators, ...

Shortcut mode
The declaration editor allows you to use the shortcut mode. This mode is activated when you
end a line with <Ctrl><Enter>
Supported shortcuts:
● All identifiers up to the last identifier of a line will become declaration variable identifiers
● The type of declaration is determined by the last identifier of the line. In this context, the

following will apply:
– B or BOOL gives the result - BOOL
– I or INT gives the result - INT
– R or REAL gives the result - REAL
– S or string gives the result - STRING

● If no type has been established through these rules, then the type is BOOL and the last
identifier will not be used as a type (Example 1.).

● Every constant, depending on the type of declaration, will turn into an initialization or a string
(Examples 2. and 3.).

● An address (as in %MD12) is extended around the ATATDeclaration>Proc... attribute
(Example 4.).

● A text after a semicolon (;) becomes a comment (Example 4.).
● All other characters in the line are ignored (e.g., the exclamation point in Example 5.).

Shortcut Declaration
A A: BOOL;

A B I 2 A, B: INT := 2;

ST S 2; A string ST:STRING(2); (* A string *)

X %MD12 R 5 Real Number X AT %MD12: REAL := 5.0;(* Real Number
*)

B ! B: BOOL;

Examples

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 305

Autodeclaration
If the Autodeclaration option has been chosen in the Editor category of the Options dialog box ,
then a dialog box will appear in all editors after the input of a variable that has not yet been
declared:

With the help of this dialog box, the variable can now be declared.
With the help of the Class combobox, select whether you are dealing with a local variable
(VAR), input variable((VAR_INPUT), output variable (VAR_OUTPUT), input/output variable
(VAR_INOUT), or a global variable (VAR_GLOBAL).
With the CONSTANT, RETAIN, PERSISTENT options, you can define whether you are dealing
with a constant or a retain variable Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302.
The variable name you entered in the editor has been entered in the Name field, BOOL has
been placed in the Type field. The button opens the input assistant dialog which allows you
to select from all possible data types.

If ARRAY is chosen as the variable type, the dialog for entering array boundaries appears:

For each of the three possible dimensions (Dim.), array boundaries can be entered under Start
and End by clicking with the mouse on the corresponding field to open an editing space. The
array data type is entered in the Type field. In doing this, the button can be used to call up an
input assistant dialog.
Upon leaving the array boundaries dialog via the OK button, variable declarations in IEC format
are set up based on the entries in the Type field in the dialog. Example: ARRAY [1..5, 1..3] OF
INT
In the field Initial value, you may enter the initial value of the variable being declared. If this is an
array or a valid structure, you can open a special initialization dialog via the button or <F2>,
or open the input assistant dialog for other variable types.
In the initialization dialog for an array you are presented a list of array elements; a mouse click
on the space following ":="opens an editing field for entering the initial value of an element.

Declaration of
Arrays

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US306

In the initialization dialog for a structure, individual components are displayed in a tree structure.
The type and default initial value appear in brackets after the variable name; each is followed by
":=". A mouse click on the field following ":=" opens an editing field in which you can enter the
desired initial value. If the component is an array, then the display of individual fields in the array
can be expanded by a mouse click on the plus sign before the array name and the fields can be
edited with initial values.
After leaving the initialization dialog with OK, the initialization of the array or the structure
appears in the field Initial value of the declaration dialog in IEC format.
Example: x:=5,field:=2,3,struct2:=(a:=2,b:=3)

In the Address field, you can bind the variable being declared to an IEC address (AT declara-
tion).
If applicable, enter a Comment. The comment can be formatted with line breaks by using the
key combination <Ctrl> + <Enter>.
By pressing OK, the declaration dialog is closed and the variable is entered in the corre-
sponding declaration editor in accordance to the IEC syntax.

The dialog box for variable declaration you also get by the command 'Edit'
'Declare Variable' Ä Chapter 1.4.1.2.5.14 “'Edit' 'Autodeclare'” on page 278. If
the cursor is resting on a variable in Online mode, the Autodeclare window can
be opened with <Shift><F2> with the current variable-related settings displayed.

Line numbers in the declaration editor
In offline mode, a simple click on a special line number will mark the entire text line.
In the online mode, a single click on a specific line number will open up or close the variable in
this line, in case a structural variable is involved.

'Insert' 'New declaration'
With this command you bring a new variable into the declaration table of the declaration editor
Ä Chapter 1.4.1.3.9.20 “Declarations as table” on page 307. If the present cursor position is
located in an field of the table, then the new variable will be pasted in the preceding line;
otherwise, the new variable is pasted at the end of the table. Moreover, you can paste a new
declaration at the end of the table by using the right arrow key or the tab key in the last field of
the table.
You will receive a variable that has "Name" located in the Name field, and "Bool" located in the
Type field, as its default setting. You should change these values to the desired values. Name
and type are all that is necessary for a complete declaration of variables.

Declarations as table
If the Declarations as tables option is activated in the Project Options (category ‘Editor’) or - if
you already are working in the declaration editor - in the context menu, the declaration editor
looks like a table. As in a card-index box, you can select the register cards of the respective
variable types and edit the variables.
For each variable you are given the following entry fields.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 307

Name: Input the identifier of the variable.

Address: If necessary, input the address of the vari-
able Ä Chapter 1.4.1.3.9.12 “AT Declaration”
on page 304

Type: Input the type of the variable. (Input the func-
tion block when instantiating a function block)

Initial: Enter a possible initialization of the variable
(corresponding to the ":= " assignment oper-
ator).

Comment: Enter a comment here.

Both of the display types of the declaration editor can be changed without causing any prob-
lems. In the online mode, there are no different display types.

Insert new declaration:
In order to edit a new variable, select the 'Insert' 'New Declaration' command Ä Chapter
1.4.1.3.9.19 “'Insert' 'New declaration'” on page 307.

Sorting the declarations:
In order to sort the table entries, set the cursor to the line number bar at the left border of the
editor window and choose one of the following commands in the context menu:
● Sort by name: All lines are sorted alphabetically according to the identifier names in column

‘Name’.
● Sort by address: All lines are sorted alphabetically according to the address entries in

column ‘Address’.
● Sort by type: All lines are sorted alphabetically according to the type names in

column ’Type’.
● Original order: The lines are displayed in the order in which they had been entered origi-

nally.

Declaration editors in online mode
In online mode , the declaration editor changes into a monitor window Ä Chapter 1.4.1.3.9.1
“Overview” on page 296. In each line there is a variable followed by the equal sign (=) and the
value of the variable. If the variable at this point is undefined, three question marks (???) will
appear. For function blocks, values are displayed only for open instances (command: 'Project'
'Open instance').

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US308

In front of every multi-element variable there is a plus sign. By pressing <Enter> or after
doubleclicking on such a variable, the variable is opened up. In the example, the traffic signal
structure would be opened up.

When a variable is open, all of its components are listed after it. A minus sign appears in front of
the variable. If you doubleclick again or press <Enter>, the variable will be closed, and the plus
sign will reappear.
Pressing <Enter> or doubleclicking on a single-element variable will open the dialog box to write
a variable. Here it is possible to change the present value of the variable. In the case of Boolean
variables, no dialog box appears; these variables are toggled.
The new value is displayed after the variable, in pointed brackets and in turquoise color, and
remains unchanged. If the 'Online' 'Write values' command is given, then all variables are
placed in the selected list and are once again displayed in black Ä Chapter 1.4.1.2.6.16 “'On-
line' 'Write values'” on page 286.
If the 'Online' 'Force values' command is given, then all variables will be set to the selected
values, until the 'Release force' command is given Ä Chapter 1.4.1.2.6.17 “'Online' 'Force
values'” on page 287 Ä Chapter 1.4.1.2.6.18 “'Online' 'Release force'” on page 288. In this
event, the color of the force value changes to red.

1.4.1.3.10 Pragma instructions
Pragmas, overview

The pragma instruction is used to affect the properties of a variable concerning the compilation
resp. precompilation process. It can be used in with supplementary text in a program line of the
declaration editor or in its own line Ä Chapter 1.4.1.3.9.1 “Overview” on page 296.
The pragma instruction is enclosed in curly brackets, upper- and lower-case are ignored:
{ <Instruction text> }
If the compiler cannot meaningfully interpret the instruction text, the entire pragma is handled as
a comment and read over. A warning will be issued in this case.
Depending on the type and contents of pragma, the pragma either operates on the line in which
it is located or on all subsequent lines until it is ended by an appropriate pragma, or the same
pragma is executed with different parameters, or the end of the file is reached. By file we mean
here: declaration part, implementation portion, global variable list, type declaration.
The opening bracket may immediately follow a variable name. Opening and closing brackets
must be located on the same line.
The following pragmas are currently available:
Ä “Pragma {flag} for Initialization, Monitoring, Creation of symbols:” on page 310

Ä “Pragma {bitaccess...} for the Bitaccess” on page 312

Ä “Pragma {link} for linking a POU during code generation” on page 312

Ä Chapter 1.4.1.3.10.3 “Pragmas for controlling the display of library declaration parts”
on page 312

Ä Chapter 1.4.1.3.10.4 “Pragma for nonpersistent data types” on page 313

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 309

Pragma instructions for initialization, monitoring, creation of symbols, bitaccess, linking
{flag [<flags>] [off|on]}
<flags> can be a combination of the following flags:

Flag Description
noini The variable will not be initialized.

nowatch The variable can not be monitored

noread The variable is exported to the symbol file without read permission

nowrite The variable is exported to the symbol file without write permission

noread, nowrite The variable will not get exported to the symbol file

With the "on" modifier, the pragma operates on all subsequent variable declarations until it is
ended by the pragma {flag off}, or until overwritten by another {flag <flags> on} pragma.
Without the "on" or "off" modifier, the pragma operates only on the current variable declaration
(that is the declaration that is closed by the next semicolon).

The variable a will not be initialized and will not be monitored. The variable b will not be
initialized:

VAR
 a : INT {flag noinit, nowatch};
 b : INT {flag noinit };

END_VAR

VAR
 {flag noinit, nowatch on}
 a : INT;
 {flag noinit on}
 b : INT;
 {flag off}

END_VAR
Neither variable will be initialized:
{flag noinit on}

VAR
a : INT;
b : INT;

END_VAR

{flag off}

VAR
{flag noinit on}
a : INT;

b : INT;

{flag off}

END_VAR

Example for
use of pragma
{flag}: Initiali-
zation and
monitoring of
variables

Pragma {flag}
for Initialization,
Monitoring, Cre-
ation of sym-
bols:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US310

The flags "noread" and "nowrite" are used, in a POU that has read and/or write permission,
to provide selected variables with restricted access rights. The default for the variable is the
same as the setting for the POU in which the variable is declared. If a variable has neither read
nor write permission, it will not be exported into the symbol file.
If the POU has read and write permission, then with the following pragmas variable a can only
be exported with write permission, while variable b can not be exported at all:
VAR
 a : INT {flag noread};
 b : INT {flag noread, nowrite};

END_VAR

VAR
 { flag noread on}
 a : INT;
 { flag noread, nowrite on}
 b : INT;
 {flag off}

END_VAR
Neither variable a nor b will be exported to the symbol file:
{ flag noread, nowrite on }
VAR
 a : INT;
 b : INT;
END_VAR
{flag off}

VAR
 { flag noread, nowrite on}
 a : INT;
 b : INT;
 {flag off}
END_VAR

Example for
use of pragma
{flag}: Getting
variables to the
symbol file

The pragma operates additively on all subsequent variable declarations.
Example: (all POUs in use will be exported with read and write permission)
a : afb;

...

FUNCTION_BLOCK afB
VAR
 b : bfb {flag nowrite};
 c : INT;
END_VAR

...

FUNCTION_BLOCK bfB
VAR
 d : INT {flag noread};
 e : INT {flag nowrite};
END_VAR
"a.b.d": Will not be exported
"a.b.e": Will be exported only with read permission
"a.c": Will be exported with read and write permission.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 311

This pragma can be used to get a correct display of a variable, which is doing a bitaccess
with the help of a global constant, in the input assistant, in the intellisense function and at
monitoring in the declaration window. Furtheron it will effect that, when this variable is monitored
in the declaration window of the particular POU, the used global constants are shown below the
respective structure variable.

Please regard: The project option 'Replace constants' (category Build) must be
activated !

The pragma must be inserted in the declaration of the structure in a separate line. The line is
not terminated by a semicolon.
Syntax: {bitaccess <Global Constant> <Bitnumber> '<comment>'}
<Global Constant> : Name of the global constant, which must be defined in a global variables
list.
<Bitnumber> : Value of the global constant, as defined in the global variables list.

Normally a POU (program, function, function block) or a data unit type definition (DUT) which is
not called within the project, will not be linked during code generation. But it might be desired
that a function, e.g. included in the project via a library, should be available after download
on the runtime system even if it is not used by the application program directly (e.g. for any
check operations). For this purpose you can add the {link} pragma at any desired position in the
declaration part of a POU or in a DUT in order to force a linking of the POU anyway.

Pragmas for controlling the display of library declaration parts
During creation of a library in CODESYS you can define via pragmas which parts of the
declaration window should be visible resp. not visible in the Library Manager later when the
library will be included in a project. The display of the implementation part of the library will not
be affected by that.
Thus comments or any variables declarations can be concealed from the user. The pragmas
{library private} and {library public} each affect the rest of the same line resp. the subsequent
lines, as long as they are not overwritten by the each other one.
Syntax: {library public} The subsequent test will be displayed in the Library Manager. {library
private} : he subsequent test will be not displayed.

Pragma {bitac-
cess...} for the
Bitaccess

Pragma {link}
for linking a
POU during
code generation

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US312

The comment "(* this is for all *)" should be displayed in the Library Manager after having
included the library in a project., the comment "(* but this is not for all ")" however should not
be displayed. The variables local and in2 also should not be displayed:

{library public}(* this is for all *) {library private} (* this is
not for all *)
{library public}
FUNCTION afun : BOOL
VAR_INPUT
in: BOOL;
END_VAR
{library private}
VAR
local: BOOL;
END_VAR
{library public}
VAR_INPUT
in2: BOOL;
{library private}
in3: BOOL;
{library public}
END_VAR

Example: Dec-
laration part of
a library cre-
ated in
CODESYS

Pragma for nonpersistent data types
Normally the following is valid: Even if only one local variable in a function block or a structure
is declared persistent, at usage of an instance automatically all components will be stored in the
persistent information (persist.dat) on the runtime system. In order to save space you can use
the pragma
{nonpersistent}
in the declaration of the function block resp. the structure. It effects that only those components
of the function block resp. structure, which are declared as "persistent", will be entered to the
persistent info.

If an instance of the following function block is declared as persistent, only variables local and
fblevel3 will be written to the persistent info. Without pragma {nonpersistent} all function block
variables would be stored there.
FUNCTION_BLOCK FB_Level_2
{nonpersistent}
VAR_INPUT
bvar_in : BOOL;
END_VAR
VAR_OUTPUT
bvar_out : BOOL;
END_VAR
VAR
ivar2 : INT;
END_VAR
VAR PERSISTENT
local : INT := 33;
fblevel3 : FB_Level_3;
END_VAR

Example

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 313

1.4.1.3.11 The graphic editors
Overview

The editors of the graphically oriented languages, Sequential Function Chart SFC, Ladder
Diagram LD and Function Block Diagram FBD and of free graphic Function Block Diagram have
many points in common. In the following paragraphs these features will be summarized; the
specific descriptions of LD, FBD an CFC, as well as the Sequential Function Chart language
SFC follow in separate sections. The implementation in the graphics editors is supported by
syntax coloring.

Zoom to a POU
Shortcut: <Alt>+<Enter>
With this command a selected POU is loaded into its editor. The command is available in the
context menu (<F2>) or in the 'Extras' menu, if the cursor is positioned on the name of a POU in
a text editor or if the POU box is selected in a graphic editor.
If you are dealing with a POU from a library, then the library manager is called up, and the
corresponding POU is displayed.

Network
In the LD and FBD editors, the program is arranged in a list of networks. Each network is
designated on the left side by a serial network number and has a structure consisting of either
a logical or an arithmetic expression, a program, function or function block call, and a jump or a
return instruction.

Label
Each network has a label that can optionally be left empty. This label is edited by clicking the
first line of the network, directly next to the network number. Now you can enter a label, followed
by a colon.

Comments, networks with linebreaks, 'Extras' 'Options'
Every network can be supplied with a multi-lined comment. In the dialog 'Function Block and
Ladder Diagram Options', which can be opened by executing the command 'Extras' 'Options',
you can do settings concerning comments and linebreaks.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US314

Maximum Comment Size: Maximum number of lines to be made available for a network com-
ment (The default value here is 4.)
Minimum Comment Size: Number of lines that generally should be reserved for comments. If,
for example, the number 2 is entered, then, at the start of each network there will be two empty
lines after the label line. The default value here is 0, which has the advantage of allowing more
networks to fit in the screen area.
If the minimal comment size is greater than 0, then in order to enter a comment you simply click
in the comment line and then enter the comment. Otherwise you first must select the network
to which a comment is to be entered, and use 'Insert' 'Comment' to insert a comment line. In
contrast to the program text, comments are displayed in grey.
Alternative Look & Feel: The following options allow to define an alternative look of the net-
works.
Comments per Contact (only for Ladder editor): If this option is activated, you can assign an
individual comment to each contact or coil . In the edit field Lines for Variable Comment enter
the number of lines which should be reserved and displayed for the comment. If this setting is
done, a comment field will be displayed in the editor above each contact and coil where you can
insert text.
If Comments per Contact is activated, then in the Ladder editor also the number of lines (Lines
for Variable Text:) can be defined which should be used for the variable name of the contact
resp. coil. This is used to display even long names completely by breaking them into several
lines. In the following example 2 lines are defined for the variable comment and 1 line for the
variable text:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 315

Networks with Linebreaks (only for Ladder editor): If this option is activated, linebreaks will be
forced in the networks as soon as the network length exceeds the given window size and some
of the elements would not be visible.
Replace with Symbol after entering Address: (only for Ladder editor): If this option is activated,
you can enter an address at a box resp. at a contact or coil (e.g. "%QB4") and this address will
be replaced immediately by the name of the variable which is assigned to the address. If there
is no variable assigned to the entered address, the address remains displayed unchangedly.
Set Contact Comment to Symbol Comment: If this option is activated, in the comment field of
a contact resp. a coil that comment will be displayed which has been defined at the declaration
of the variable used for the contact or coil. The comment then can be edited. (see example in
the subsequent figure). For this purpose however the option 'Comments per Contact' also must
be activated. Regard that a comment which has been entered already locally at a contact or coil
will be replaced automatically by the variable comment in any case, even if the variable has not
got a comment in its declaration!
Show Address of Symbol: (only for Ladder editor): If this option is activated and a variable
assigned to a contact or coil is assigned to an address, the address will be displayed above the
variable name (see example in the figure above).
Show Variable Comments per Rung in Printout: If this option is activated, in each network for
each variable used in that network there will be displayed a line showing the name, address,
data type and comment for this variable, as defined in the variables declaration. This might be of
useful for a documentation (printout) of the project. Example:

OK: Press this button to apply the settings on the actual POU and to close the options dialog.
Apply options: Press this button to apply the settings on the whole project. A dialog will open
asking you where you have explicitly to confirm that you want to do that.

'Insert' 'Network (after)' or 'Insert' 'Network (before)'
Shortcut: <Shift>+<T> (Network after)

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US316

In order to insert a new network in the FBD or the LD editor, select the 'Insert' 'Network (after)'
or the 'Insert' 'Network (before)' command, depending on whether you want to insert the new
network before or after the present network. The present network can be changed by clicking
the network number. You will recognize it in the dotted rectangle under the number. With the
<Shift key> and a mouse click you can select from the entire area of networks, from the present
one to the one clicked.

The Function Block Diagram Editor
Overview

The Function Block Diagram Editor is a graphic editor. It works with a list of networks, in
which every network contains a structure that displays, respectively, a logical or an arithmetical
expression, the calling up of a function block, a function, a program, a jump, or a return
instruction. The most important commands are found in the context menu (right mouse button or
<Ctrl>+<F10>).

Cursor positions in FBD
Every text is a possible cursor position. The selected text is on a blue background and can now
be changed.
You can also recognize the present cursor position by a dotted rectangle. The following is a list
of all possible cursor positions with an example:
1) Every text field (possible cursor positions framed in black):

2) Every input:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 317

3) Every operator, function, or function block:

4) Outputs, if an assignment or a jump comes afterward:

5) The lined cross above an assignment, a jump, or a return instruction:

6) Behind the outermost object on the right of every network ("last cursor position," the same
cursor position that was used to select a network):

7) The lined cross directly in front of an assignment:

How to set the cursor in FBD
The cursor can be set at a certain position by clicking the mouse, or with the help of the
keyboard.
Using the arrow keys, you can jump to the nearest cursor position in the selected direction at
any time. All cursor positions, including the text fields, can be accessed this way. If the last
cursor position is selected, then the <up> or <down> arrow keys can be used to select the last
cursor position of the previous or subsequent network.
An empty network contains only three question marks "???". By clicking behind these, the last
cursor position is selected.

'Insert' 'Assign'in FBD
Symbol: Shortcut: <Ctrl>+<A>
This command inserts an assignment.
Depending on the selected position, insertion takes place directly in front of the selected input
(Cursor Position 2), directly after the selected output (Cursor Position 4) or at the end of the
network (Cursor Position 6) Ä Chapter 1.4.1.3.11.7.2 “Cursor positions in FBD” on page 317.
For an inserted assignment, a selection can be made accompanying the entered text "???",
and the assignment can be replaced by the variable that is to be assigned. For this you can
also use the input assistant Ä Chapter 1.4.1.2.5.11 “'Edit' 'Input assistant'” on page 276. For the
possibility to enter an address instead of the variable name please see the description of the
options dialog.
In order to insert an additional assignment to an existing assignment, use the 'Insert' 'Output'
command.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US318

'Insert' 'Jump' in FBD
Symbol: Shortcut: <Ctrl>+<L>
This command inserts a jump. Depending on the selected position, insertion takes place directly
in front of the selected input (Cursor Position 2), directly after the selected output (Cursor
Position 4) or at the end of the network (Cursor Position 6) Ä Chapter 1.4.1.3.11.7.2 “Cursor
positions in FBD” on page 317.
For an inserted jump, a selection can be made accompanying the entered text "???", and the
jump can be replaced by the label to which it is to be assigned.

'Insert' 'Return' in FBD
Symbol: Shortcut: <Ctrl>+<R>
This command inserts a RETURN instruction. Depending on the selected position, insertion
takes place directly in front of the selected input (Cursor Position 2),directly after the selected
output (Cursor Position 4), directly before the selected line cross (Cursor Position 5), or at
the end of the network (Cursor Position 6) Ä Chapter 1.4.1.3.11.7.2 “Cursor positions in FBD”
on page 317.

'Insert' 'Box' in FBD
Symbol: Shortcut: <Ctrl>+
With this command, operators, functions, function blocks and programs can be inserted. First of
all, it is always inserted an "AND" operator. This can be converted by Selection and Overwrite
of the type text („AND") into every other operator, into every function, into every function block
and every program. You can select the desired POU by using Input Assistant (<F2>). If the new
selected block has another minimum number of inputs, these will be attached. If the new block
has a smaller highest number of inputs, the last inputs will be deleted.
In functions and function blocks, the formal names of the in- and outputs are displayed.
In function blocks there exists an editable instance field above the box. If another function block
that is not known is called by changing the type text, an operator box with two inputs and the
given type is displayed. If the instance field is selected, input assistant can be obtained via <F2>
with the categories for variable selection.
The newest POU is inserted at the selected position Ä Chapter 1.4.1.3.11.7.2 “Cursor positions
in FBD” on page 317:
● If an input is selected (Cursor Position 2), then the POU is inserted in front of this input. The

first input of this POU is linked to the branch on the left of the selected input. The output of
the new POU is linked to the selected input.

● If an output is selected (Cursor Position 4), then the POU is inserted after this output. The
first input of the POU is connected with the selected output. The output of the new POU is
linked to the branch with which the selected output was linked.

● If a POU, a function, or a function block is selected (Cursor Position 3), then the old element
will be replaced by the new POU.

● As far as possible, the branches will be connected the same way as they were before the
replacement. If the old element had more inputs than the new one, then the unattachable
branches will be deleted. The same holds true for the outputs.

● If a jump or a return is selected, then the POU will be inserted before this jump or return.
The first input of the POU is connected with the branch to the left of the selected element.
The output of the POU is linked to the branch to the right of the selected element.

● If the last cursor position of a network is selected (Cursor Position 6), then the POU will be
inserted following the last element. The first input of the POU is linked to the branch to the
left of the selected position.

All POU inputs that could not be linked will receive the text "???". This text must be clicked and
changed into the desired constant or variable.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 319

If there is a branch to the right of an inserted POU, then the branch will be assigned to the first
POU output. Otherwise the outputs remain unassigned.

'Insert' 'Input'
Symbol: Shortcut: <Ctrl>+<U>
This command inserts an operator input. With many operators, the number of inputs may vary.
(For example, ADD can have 2 or more inputs.)
In order to extend such an operator by an input, you need to select the input in front of which
you wish to insert an additional input (Cursor Position 1); or you must select the operator itself
(Cursor Position 3), if a lowest input is to be inserted Ä Chapter 1.4.1.3.11.7.2 “Cursor positions
in FBD” on page 317.
The inserted input is allocated with the text "???". This text must be clicked and changed into
the desired constant or variable. For this you can also use the input assistant. For the possibility
to enter an address instead of the variable name please see the description of the options
dialog.

'Insert' 'Output'
Symbol:
This command inserts an additional assignment into an existing assignment. This capability
serves the placement of so-called assignment combs; i.e., the assignment of the value presently
located at the line to several variables.
If you select the lined cross above an assignment (Cursor Position 5) or the output directly in
front of it (Cursor Position 4), then there will be another assignment inserted after the ones
already there Ä Chapter 1.4.1.3.11.7.2 “Cursor positions in FBD” on page 317.
If the line cross directly in front of an assignment is selected (Cursor Position 4), then another
assignment will be inserted in front of this one.
The inserted output is allocated with the text "???". This text must be clicked and changed into
the desired variable. For this you can also use the input assistant. For the possibility to enter an
address instead of the variable name please see the description of the options dialog.

'Extras' 'Negation'
Symbol: Shortcut: <Ctrl>+<N>
With this command you can negate the inputs, outputs, jumps, or RETURN instructions. The
symbol for the negation is a small circle at a connection.
If an input is selected (Cursor Position 2), then this input will be negated Ä Chapter
1.4.1.3.11.7.2 “Cursor positions in FBD” on page 317.
If an output is selected (Cursor Position 4), then this output will be negated.
If a jump or a return is marked, then the input of this jump or return will be negated.
A negation can be canceled through renewed negation.

'Extras' 'Set/Reset'
Symbol:
With this command you can define outputs as Set or Reset Outputs. A grid with Set Output is
displayed with [S], and a grid with Reset Output is displayed with [R] :

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US320

An Output Set is set to TRUE, if the grid belonging to it returns TRUE. The output now main-
tains this value, even if the grid jumps back to FALSE.
An Output Reset is set to FALSE, if the grid belonging to it returns FALSE. The output maintains
its value, even if the grid jumps back to FALSE.
With multiple executions of the command, the output will alternate between set, reset, and
normal output.

'Extras' 'View'
Using this command for a POU created in the FBD-Editor you can choose, whether it should
be displayed in the LD- (ladder logic) or in the FBD-Editor (Function Block Diagram). This is
possible in offline as well as in online mode.

Open instance
This command corresponds to the 'Project' 'View instance' Command Ä Chapter 1.4.1.2.4.15
“'Project' 'View instance'” on page 263.
It is available in the context menu (<F2>) or in the 'Extras' menu, if the cursor is positioned on
the name of a function block in a text editor or if the function block box is selected in a graphic
editor.

Cutting, copying, pasting, and deleting in FBD
The commands used to 'Cut', 'Copy', 'Paste', and 'Delete' are found under the 'Edit' menu item.
If a line cross is selected (Cursor Position 5), then the assignments, jumps, or RETURNS
located below the crossed line will be cut, deleted, or copied Ä Chapter 1.4.1.3.11.7.2 “Cursor
positions in FBD” on page 317.
If a POU is selected (Cursor Position 3), then the selected object itself, will be cut, deleted, or
copied, along with all of the branches dependent on the inputs, with the exception of the first
(highest position) branch. Otherwise, the entire branch located in front of the cursor position will
be cut, deleted, or copied.
After copying or cutting, the deleted or copied part is located on the clipboard and can now be
pasted, as desired.
In order to do so, you must first select the pasting point. Valid pasting points include inputs and
outputs.
If a POU has been loaded onto the clipboard (As a reminder: in this case all connected
branches except the first are located together on the clipboard), the first input is connected with
the branch before the pasting point.
Otherwise, the entire branch located in front of the pasting point will be replaced by the contents
of the clipboard.
In each case, the last element pasted is connected to the branch located in front of the pasting
point.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 321

The following problem is solved by cutting and pasting: A new operator is
inserted in the middle of a network. The branch located on the right of the
operator is now connected with the first input, but should be connected with
the second input. You can now select the first input and perform the command
“'Edit' 'Cut'”. Following this, you can select the second input and perform the
command “'Edit' 'Paste'”. This way, the branch is dependent on the second
input.

The Function Block Diagram in the online mode
In the Function Block Diagram, breakpoints can only be set to networks. If a breakpoint has
been set to a network, then the network numbers field will be displayed in blue. The processing
then stops in front of the network where the breakpoint is located. In this case, the network
numbers field will become red. Using stepping (single step), you can jump from network to
network Ä Chapter 1.4.1.4 “The 'Resources' tab” on page 357.
The current value is displayed for each variable. Exception: If the input to a function block is an
expression, only the first variable in the expression is monitored.
Doubleclicking on a variable opens the dialog box for writing a variable. Here it is possible
to change the present value of the variable. In the case of Boolean variables, no dialog box
appears; these variables are toggled.
The new value will turn red and will remain unchanged. If the 'Online' 'Write values' command
is given, then all variables are placed in the selected list and are once again displayed in black
Ä Chapter 1.4.1.2.6.16 “'Online' 'Write values'” on page 286.
The flow control is started with the 'Online' 'Flow control' command Using the flow control, you
can view the present values that are being carried in the networks over the connecting lines
Ä Chapter 1.4.1.2.6.21 “'Online' 'Display flow control'” on page 290. If the connecting lines do
not carry Boolean values, then the value will be displayed in a specially inserted field. If the lines
carry Boolean values, then they will be shaded blue in the event that they carry TRUE. By this
means, you can accompany the flow of information while the PLC is running.
If you place the mouse pointer briefly above a variable, then the type, the address and the
comment about the variable will be displayed in a Tooltip.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US322

The ladder editor
Overview

All editors for POUs consist of a declaration part and a body. These are separated by a screen
divider.
The LD editor is a graphic editor. The most important commands are found in the context menu
(right mouse button or <Ctrl>+<F10>).

Cursor positions in the LD editors
The following locations can be cursor positions, in which the function block and program
accessing can be handled as contacts. POUs with EN inputs and other POUs connected to
them are treated the same way as in the Function Block Diagram.
1. Every text field (possible cursor positions framed in black):

2. Every contact Ä Chapter 1.4.1.1.10.7.2 “Contact” on page 177 or function block:

3. Every Coil:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 323

4. The Connecting Line between the Contacts and the Coils:

The Ladder Diagram uses the following menu commands in a special way.

Move elements or names in the LD-editor
An element or just the name (variable name, address, comment) of an element can be moved to
a different position within a LD POU by "drag&drop".
In order to do this select the desired element (contact, coil, function block) and drag it - keeping
the mouse key pressed - away from the current position. Thereupon all possible positions within
all networks of the POU, to which the element might be moved, will be indicated by grey-filled
rectangles.
Move the element to one of these positions and let off the mouse key: the element will be
inserted at the new position.

If you however move the element to the name (variable name) of another element, the name
field will be shaded green. If you then let off the mouse key, the previous name will be replaced
by the "dragged" one. If additionally address and comment are displayed (options), the copying
also will apply to those.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US324

'Insert' 'Network (before)' in LD
Symbol:
This command inserts a network in the Ladder editor. If there are already networks, the new one
will be inserted before the currently focused.

'Insert' 'Network (after)' in LD
Symbol:
This command inserts a network in the Ladder editor. If there are already networks, the new one
will be inserted after the currently focused.

'Insert' 'Contact' in LD
Symbol: Shortcut: <Ctrl>+<K>
Use this command in the LD editor in order to insert a contact in front of the marked location in
the network Ä Chapter 1.4.1.1.10.7.2 “Contact” on page 177.
If the marked position is a coil or the connecting line between the contacts and the coils,
then the new contact will be connected serially to the previous contact connection Ä Chapter
1.4.1.3.11.8.2 “Cursor positions in the LD editors” on page 323 Ä Chapter 1.4.1.1.10.7.3 “Coil”
on page 177.
The contact is preset with the text "???". You can click on this text and change it to the desired
variable or the desired constant. For this you can also use the input assistant Ä Chapter
1.4.1.2.5.11 “'Edit' 'Input assistant'” on page 276. Note the possibility of entering an address
instead of the variable name, if this is configured appropriately in the Function Block and Ladder
Diagram Options.
Also in the options dialog you can activate the options Comments per Contact and Lines for
variable comment and reserve a certain number of lines for the variable name. This might be
useful, if long variable names are used, to keep the network short.
Also note the option 'Networks with linebreaks', which you also can activate in the Ladder
Diagram Options.

'Insert' 'Contact (negated)' in LD
Symbol: Shortcut: <Ctrl> + <G>
This command inserts a negated contact Ä Chapter 1.4.1.1.10.7.2 “Contact” on page 177. The
same is true as for the commands 'Insert' 'Contact' in LD and 'Extras' 'Negate' in LD, which in
combination also could be used to insert a negated contact Ä Chapter 1.4.1.3.11.8.6 “'Insert'
'Contact' in LD” on page 325 Ä Chapter 1.4.1.3.11.8.25 “'Extras' 'Negate' in LD” on page 329.

'Insert' 'Parallel contact' in LD
Symbol: Shortcut: <Ctrl>+<R>

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 325

Use this command in the LD editor to insert a contact parallel to the marked position in the
network Ä Chapter 1.4.1.1.10.7.2 “Contact” on page 177.
If the marked position is a coil or the connection between the contacts and the coils, then the
new contact will be connected in parallel to the entire previous contact connection Ä Chapter
1.4.1.3.11.8.2 “Cursor positions in the LD editors” on page 323 Ä Chapter 1.4.1.1.10.7.3 “Coil”
on page 177.
The contact is preset with the text "???". You can click on this text and change it to the desired
variable or the desired constant. For this you can also use the input assistant Ä Chapter
1.4.1.2.5.11 “'Edit' 'Input assistant'” on page 276.
For the possibility of entering addresses, of linebreaks for variable names and of comments per
contact or coil please see the description of the Ladder Options dialog.

'Insert' 'Parallel contact (negated)' in LD
Symbol: Shortcut: <Ctrl> + <D>
This command inserts a negated parallel contact Ä Chapter 1.4.1.1.10.7.2 “Contact”
on page 177. The same is true as for the commands 'Insert' 'Parallel contact' in LD and
'Extras' 'Negate' in LD, which in combination also could be used to insert a negated parallel
contact Ä Chapter 1.4.1.3.11.8.8 “'Insert' 'Parallel contact' in LD” on page 325 Ä Chapter
1.4.1.3.11.8.25 “'Extras' 'Negate' in LD” on page 329.

'Insert' 'Coil' in LD
Symbol: Shortcut: <Ctrl>+<L>
You can use this command in the LD editor to insert a coil in parallel to the previous coils
Ä Chapter 1.4.1.1.10.7.3 “Coil” on page 177.
If the marked position is a connection between the contacts and the coils, then the new
coil will be inserted as the last Ä Chapter 1.4.1.3.11.8.2 “Cursor positions in the LD editors”
on page 323 Ä Chapter 1.4.1.3.11.8.6 “'Insert' 'Contact' in LD” on page 325. If the marked
position is a coil, then the new coil will be inserted directly above it.
The coil is given the text "???" as a default setting. You can click on this text and change it to
the desired variable. For this you can also use the input assistant Ä Chapter 1.4.1.2.5.11 “'Edit'
'Input assistant'” on page 276.
For the possibility of entering addresses, of linebreaks for variable names and of comments per
coil please see the description of the Ladder Options dialog.

'Insert' 'Set' coil' in LD
Symbol: Shortcut: <Ctrl> + <I>
This command inserts a set coil Ä Chapter 1.4.1.1.10.7.5 “Set/Reset coils” on page 178. The
same is true as for the commands 'Insert' 'Coil' in LD and 'Extras' 'Set/Reset' in LD, which in
combination also could be used to get a set coil Ä Chapter 1.4.1.3.11.8.10 “'Insert' 'Coil' in LD”
on page 326 Ä Chapter 1.4.1.3.11.8.26 “'Extras' 'Set/Reset' in LD” on page 329.

'Insert' 'Reset' coil' in LD
Symbol:
This command inserts a reset coil Ä Chapter 1.4.1.1.10.7.5 “Set/Reset coils” on page 178.
The same is true as for the commands 'Insert' 'Coil' in LD and 'Extras' 'Set/Reset', which in
combination also could be used to get a reset coil Ä Chapter 1.4.1.3.11.8.10 “'Insert' 'Coil' in
LD” on page 326 Ä Chapter 1.4.1.3.11.7.11 “'Extras' 'Set/Reset'” on page 320.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US326

'Insert' 'Function Block' in LD
Symbol: Shortcut: <Ctrl>+
Use this command in order to insert an operator, a function block, a function or a program as
a POU. For this, the connection between the contacts and the coils, or a coil, must be marked.
The new POU at first has the designation AND. If you wish, you can change this designation to
another one. For this you can also use the input assistant Ä Chapter 1.4.1.2.5.11 “'Edit' 'Input
assistant'” on page 276. Both standard and self-defined POUs are available.
The first input to the POU is placed on the input connection, the first output on the output
connection; thus these variables must definitely be of type BOOL. All other in- and outputs of
the POU are filled with the text "???". These prior entries can be changed into other constants,
variables or addresses. For this you can also use the input assistant Ä Chapter 1.4.1.2.5.11
“'Edit' 'Input assistant'” on page 276.
For the possibility of entering addresses, of linebreaks for variable names and of comments
per contact, coil or function block please see the description of the Ladder Options dialog
Ä Chapter 1.4.1.3.11.5 “Comments, networks with linebreaks, 'Extras' 'Options'” on page 314.

POUs with EN inputs
If you want to use your LD network as a PLC for calling up other POUs , then you must merge
a POU with an EN input. Such a POU is connected in parallel to the coils. Beyond such a
POU you can develop the network further, as in the Function Block Diagram. You can find the
commands for insertion at an EN POU under the menu item 'Insert' 'Insert at Blocks'.
An operator, a function block, a program or a function with EN input performs the same way as
the corresponding POU in the Function Block Diagram, except that its execution is controlled
on the EN input. This input is annexed at the connecting line between coils and contacts. If this
connection carries the information "On", then the POU will be evaluated.
If a POU has been created once already with EN input, then this POU can be used to create a
network. This means that data from usual operators, functions, and function blocks can flow in
an EN POU and an EN POU can carry data to such usual POUs.
If, therefore, you want to program a network in the LD editor, as in FBD, you only need first
to insert an EN operator in a new network. Subsequently, from this POU, you can continue to
construct from your network, as in the FBD editor. A network thus formed will perform like the
corresponding network in FBD.

'Insert' 'Box with EN in LD'
Symbol:
Use this command to insert a function block, an operator, a function or a program with EN input
into a LD network.
The marked position must be the connection between the contacts and the coils (Cursor Posi-
tion 4) or a coil (Cursor Position 3). The new POU is inserted in parallel to the coils and
underneath them; it contains initially the designation "AND". If you wish, you can change this
designation to another one. For this you can also use the input assistant Ä Chapter 1.4.1.2.5.11
“'Edit' 'Input assistant'” on page 276.

'Insert' 'Insert at blocks in LD
With this command you can insert additional elements into a POU that has already been
inserted (also a POU with EN input). The commands below this menu item can be executed at
the same cursor positions as the corresponding commands in the Function Block Diagram.
With 'Input' you can add a new input to the POU.
With 'Output' you can add a new output to the POU.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 327

With 'POU', you insert a new POU. The procedure is similar to that described under 'Insert'
'POU'.
With 'Assign' you can insert an assignment to a variable. At first, this is shown by three question
marks "???", which you edit and replace with the desired variable. Input assistance is available
for this purpose.

'Insert' 'Rising edge detection' in LD
Symbol:
This commands inserts a R_TRIG function block, which serves to detect a rising edge (FALSE
-> TRUE) at the incoming signal. The same is true as for command 'Insert' 'Function Block' in
LD which can be used to insert any available function block Ä Chapter 1.4.1.3.11.8.13 “'Insert'
'Function Block' in LD” on page 327.

'Insert' 'Falling edge detection' in LD
Symbol:
This commands inserts a F_TRIG function block, which serves to detect a rising edge (TRUE
-> FALSE) at the incoming signal. The same is true as for command 'Insert' 'Function Block' in
LD which can be used to insert any available function block Ä Chapter 1.4.1.3.11.8.13 “'Insert'
'Function Block' in LD” on page 327.

'Insert' 'Timer (TON)' in LD
Symbol:
This command inserts a timer Function Block of type TON. This serves to get a turn-on delay
(delayed passing on of the incoming signal). For the inserting the same is true as for command
'Insert' 'Function Block' in LD, which also could be used to insert a TON module Ä Chapter
1.4.1.3.11.8.13 “'Insert' 'Function Block' in LD” on page 327.

'Insert' 'Jump' in LD
With this command you can insert a parallel jump in the selected LD editor, in parallel, at the
end of the previous coils Ä Chapter 1.4.1.1.10.7.3 “Coil” on page 177. If the incoming line
delivers the value "On", then the jump will be executed to the indicated label.
The marked position must be the connection between the contacts and the coils or a coil
Ä Chapter 1.4.1.3.11.8.2 “Cursor positions in the LD editors” on page 323.
The jump is present with the text "???". You can click on this text and make a change in the
desired label.

'Insert' 'Return' in LD
In the LD editor, you can use this command to insert a Return instruction in parallel at the end of
the previous coils. If the incoming line delivers the value "On," then the processing of the POU
in this network is broken off.
The marked position must be the connection between the contacts and the coils or a coil
Ä Chapter 1.4.1.3.11.8.2 “Cursor positions in the LD editors” on page 323.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US328

'Extras' 'Paste after' in LD
Use this command in the LD editor to paste the contents of the clipboard as serial contact below
the marked position. This command is only possible if the contents of the clipboard and the
marked position are networks comprised of contacts.

'Extras' 'Paste below'in LD
Use this command in the LD editor to insert the contents of the clipboard as parallel contact
below the marked position. This command is only possible if the contents of the clipboard and
the marked position are networks comprised of contacts.

'Extras' 'Paste above' in LD
Use this command in the LD editor to insert the contents of the clipboard as parallel contact
above the marked position. This command is only possible if the contents of the clipboard and
the marked position are networks comprised of contacts.

'Extras' 'Negate' in LD
Symbol: Shortcut: <Ctrl>+<N>
Use this command to negate a contact, a coil, a jump or return instruction, or an input or output
of EN POUs at the present cursor position Ä Chapter 1.4.1.3.11.8.2 “Cursor positions in the LD
editors” on page 323.
Between the parentheses of the coil or between the straight lines of the contact, a slash
will appear ((/) or |/|) Ä Chapter 1.4.1.1.10.7.3 “Coil” on page 177 Ä Chapter 1.4.1.1.10.7.2
“Contact” on page 177. If there are jumps, returns, or inputs or outputs of EN POUs, a small
circle will appear at the connection, just as in the FBD editor.
The coil now writes the negated value of the input connection in the respective Boolean vari-
able. Right at this moment, a negated contact switches the status of the input to the output, if
the respective Boolean variable carries the value FALSE.
If a jump or a return is marked, then the input of this jump or return will be negated.
A negation can be canceled through renewed negation.

'Extras' 'Set/Reset' in LD
Symbol:
If you execute this command on a coil, then you will receive a set coil Ä Chapter 1.4.1.1.10.7.3
“Coil” on page 177 Ä Chapter 1.4.1.1.10.7.5 “Set/Reset coils” on page 178. Such a coil never
overwrites the value TRUE in the respective Boolean variable. This means that once you have
set the value of this variable to TRUE, it will always remain at TRUE. A Set Coil is designated
with an "S" in the coil symbol.
If you execute this command once again, then you will be given a Reset coil. Such a coil
never overwrites the value FALSE in the respective Boolean variable. This means that once you
have set the value of this variable to FALSE, it will always remain at FALSE. A Reset Coil is
designated with an "R" in the coil symbol.
If you execute this command repeatedly, the coil will alternate between set, reset and normal
coil.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 329

The Ladder Diagram in the online mode
In Online mode, the contacts and coils in the Ladder Diagram that are in the "On" state are
colored blue. Likewise, all lines over which the "On" is carried are also colored blue. At the
inputs and outputs of function blocks, the values of the corresponding variables are indicated
Ä Chapter 1.4.1.1.9.4 “Function block” on page 153.
Breakpoints can only be set on networks; by using stepping, you can jump from network to
network Ä Chapter 1.4.1.1.11.3 “Breakpoint” on page 182.
If you place the mouse pointer briefly above a variable, then the type, the address and the
comment about the variable will be displayed in a Tooltip.

The sequential function chart editor
Overview

All editors for POUs consist of a declaration part and a body. These are separated by a screen
divider.
The Sequential Function Chart editor is a graphic editor. The most important commands are
found in the context menu (right mouse button or <Ctrl><F10>). Tooltips show in Offline as well
as in Online mode and in the zoomed state the full names or expressions of steps, transitions,
jumps, jump labels, qualifiers or associated actions.

Marking blocks in the SFC
A marked block is a bunch of SFC elements that are enclosed in a dotted rectangle.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US330

You can select an element (a step, a transition, or a jump) by pointing the mouse on this
element and pressing the left mouse button, or you can use the arrow keys. In order to mark a
group of several elements, press <Shift> for a block already marked, and select the element in
the lower left or right corner of the group. The resulting selection is the smallest cohesive group
of elements that includes both of these elements.
Please regard, that a step can only be deleted together with the preceding or the succeeding
transition Ä Chapter 1.4.1.3.11.9.5 “Delete step and transition” on page 331!

'Insert' 'Step Transition (before)'
Symbol: Shortcut: <Ctrl>+<T>
This command inserts a step in the SFC editor followed by a transition in front of the marked
block.
You can select and replace the automatically specified step name "Step_<x>" by another string,
also the transition name.

When renaming a step note that no comment may be added. Example:
"Step_xy (* counter *)" is not allowed!

'Insert' 'Step Transition (after)'
Symbol: Shortcut: <Ctrl>+<E>
This command inserts a step in the SFC editor followed by a transition after the first transition in
the marked block.
Concerning step name and transition name please see 'Insert' 'Step Transition (before)'
Ä Chapter 1.4.1.3.11.9.3 “'Insert' 'Step Transition (before)'” on page 331.

Delete step and transition
A step can only be deleted together with the preceding or the succeeding transition. For this
purpose put a selection frame around step and transition and choose command 'Edit' 'Delete' or
press the key.

'Insert' 'Alternative Branch (right)'
Symbol: Shortcut: <Ctrl>+<A>
This command inserts an alternative branch in the SFC editor as a right branch of the marked
block. For this the marked block must both begin and end with a transition. The new branch is
then made up of one transition.

'Insert' 'Alternative Branch (left)'
Symbol:
This command inserts an alternative branch in the SFC editor as the left branch of the marked
block. For this the marked block must both begin and end with a transition. The new branch is
then made up of one transition.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 331

'Insert' "Parallel Branch (right)"
Symbol: Shortcut: <Ctrl>+<L>
This command inserts a parallel branch in the SFC editor as the right branch of the marked
block. For this the marked block must both begin and end with a step. The new branch is then
made up of one step. To allow jumps to the parallel branches that have been created, these
must be provided with a jump label.

'Insert' 'Parallel Branch (left)'
Symbol: This command inserts a parallel branch in the SFC editor as the left branch of
the marked block. For this the marked block must both begin and end with a step. The new
branch is then made up of one step. To allow jumps to the parallel branches that have been
created, these must be provided with a jump label Ä Chapter 1.4.1.3.11.9.15 “'Extras' 'Add label
to parallel branch'” on page 333.

'Insert' 'Jump'
'This command inserts a jump in the SFC editor at the end of the branch, to which the marked
block belongs. For this the branch must be an alternative branch.
The inserted text string 'Step' in the inserted jump can then be selected and replaced by the
step name or the jump label of a parallel branch to be jumped to.
Concerning the step name please see 'Insert' 'Step Transition (before)' Ä Chapter 1.4.1.3.11.9.3
“'Insert' 'Step Transition (before)'” on page 331.

'Insert' 'Transition-Jump'
Symbol:
This command inserts a transition in the SFC editor, followed by a jump at the end of the
selected branch. For this the branch must be a parallel branch.
The inserted text string 'Step' in the inserted jump can then be selected and replaced by the
step name or the jump label of a parallel branch to be jumped to.
Concerning step name and transition name please see 'Insert' 'Step Transition (before)'
Ä Chapter 1.4.1.3.11.9.3 “'Insert' 'Step Transition (before)'” on page 331.

'Insert' 'Add Entry-Action'
With this command you can add an entry action to a step Ä Chapter 1.4.1.1.10.5.2 “Action”
on page 171. An entry-action is only executed once, right after the step has become active
Ä Chapter 1.4.1.1.10.5.5 “Active step” on page 172. The entry-action can be implemented in a
language of your choice.
A step with an entry-action is designated by an "E" in the bottom left corner.

'Insert' 'Add Exit-Action'
With this command you can add an exit-action to a step Ä Chapter 1.4.1.1.10.5.3 “Entry or exit
action” on page 172. An exit-action is only executed once, before the step is deactivated. The
exit-action can be implemented in a language of your choice.
A step with an exit-action is designated by an "X" in the lower right corner.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US332

'Extras' 'Paste Parallel Branch (right)'
This command pastes the contents of the clipboard as a right parallel branchof the marked
block Ä Chapter 1.4.1.1.10.5.10 “Parallel branch” on page 176. For this the marked block must
both begin and end with a step. The contents of the clipboard must, likewise, be an SFC block
that both begins and ends with a step.

'Extras' 'Add label to parallel branch'
In order to provide a newly inserted parallel branch with a jump label, the transition occurring
before the parallel branching must be marked and the command 'Add label to parallel branch'
must be executed. At that point, the parallel branch will be given a standard name consisting
of "Parallel" and an appended serial number, which can be edited according to the rules for
identifier names. In the following example, "Parallel" was replaced by "Par_1_2" and the jump to
the transition "End" was steered to this jump label.

Delete a label
A jump label can be deleted by deleting the label name.

'Extras' 'Paste after'
This command pastes the SFC block on the clipboard after the first step or the first transition
of the marked block. (Normal copying pastes it in front of the marked block.) This will now be
executed, if the resulting SFC structure is correct, according to the language norms.

'Extras' 'Zoom Action/Transition'
Shortcut: <Alt>+<Enter>
The action of the first step of the marked block or the transition body of the first transition of the
market block is loaded into the editor in the respective language, in which it has been written
Ä Chapter 1.4.1.1.10.5.2 “Action” on page 171. If the action or the transition body is empty, then
the language must be selected, in which it has been written.
Note that the transition condition which is written within the editor window will take precedence
over a condition which might be written directly at the transition mark.
Example: If here i>100, then the transition condition will be FALSE, although TRUE has been
entered at the mark!

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 333

'Extras' 'Clear Action/Transition'
With this command you can delete the actions of the first step of the marked block or of the
transitions body of the first transition Ä Chapter 1.4.1.1.10.5.2 “Action” on page 171.
If, during a step, you implement either only the action, the entry-action, or the exit-action, then
the same will be deleted by the command. Otherwise a dialog box appears, and you can select
which action or actions are to be deleted.
If the cursor is located in the action of an IEC step, then only this association will be deleted
Ä Chapter 1.4.1.1.10.5.6 “IEC step” on page 172. If an IEC step with an associated action is
selected, then this association will be deleted Ä Chapter 1.4.1.1.10.5.2 “Action” on page 171.
During an IEC step with several actions, a selection dialog box will appear.

'Extras' 'Step Attributes'
With this command you can open a dialog box in which you can edit the attributes for the
marked step.

You can take advantage of three different entries in the step attribute dialog box. Under 'Mi-
nimum Time', you enter the minimum length of time that the processing of this step should take.
Under the 'Maximum Time', you enter the maximum length of time that the processing of this
step should take. Note that the entries are of the TIME type, so you use a TIME constant (i.e.
T#3s) or a variable of the TIME type.
The time settings are also accessible in dialog 'Extras' 'Time Overview' Ä Chapter
1.4.1.3.11.9.21 “'Extras' 'Time Overview'” on page 335.
Under 'Comment' you can insert a comment to the step. In the 'Sequential function chart
options' dialog which you open under 'Extras' 'Options', you can then define whether comments,
the time setting or nothing is displayed for the steps in the SFC editor. On the right, next to the
step, either the comment or the time setting or none of both will appear.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US334

Those attributes which are not displayed because of the options settings, can - additionally to
the step name - be displayed in a tooltip, which appears when the cursor is placed on the
upper resp. lower right corner of the step box Ä Chapter 1.4.1.3.11.9.22 “'Extras' 'Options'”
on page 336.
If the maximum time is exceeded, SFC flags are set which the user can query Ä Chapter
1.4.1.1.10.5.8 “SFC flags” on page 174.

The example shows a step whose execution should last at least two, and at the most, ten
seconds. In Online mode, there is, in addition to these two times, a display of how long the step
has already been active.

'Extras' 'Time Overview'
With this command you can open a window in which you can edit the time settings of your SFC
steps:

In the time boundaries overview, all steps of your SFC POU are displayed. If you have entered
a time boundary for a step, then the time boundary is displayed to the right of the step
(first, the lower limit, then the upper limit) Ä Chapter 1.4.1.3.11.9.20 “'Extras' 'Step Attributes'”
on page 334. You can also edit the time boundaries. To do so, click on the desired step in the
overview. The name of the step is then shown below in the window. Go to the 'Minimum Time' or
'Maximum Time' field, and enter the desired time boundary there. If you close the window with
OK, then all of the changes will be stored.
In the example, steps 2 and 6 have a time boundary. Shift1 lasts at least two, and at most, ten
seconds. Shift2 lasts at least seven, and at most, eight seconds.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 335

'Extras' 'Options'
With this command you open a dialog box in which you can set different options for your SFC
POU.
Dialog Box for Sequential Function Chart Options:

Under 'Step Height', you can enter how many lines high an SFC step can be in your SFC editor.
4 is the standard setting here. Under 'Step Width', you can enter how many columns wide a step
should be. 6 is the standard setting here.
You can also preset the 'Display at Step', i.e. which of the attributes, defined 'Extras' 'Step Attrib-
utes' should be displayed next to the step Ä Chapter 1.4.1.3.11.9.20 “'Extras' 'Step Attributes'”
on page 334. Either choose Comment, Time Limits, or Nothing:
● If "Nothing" is set, the defined comment and the time limits nevertheless can be shown in a

tooltip, which appears when the cursor is placed on the lower right corner of the step box.
● If "Comment" is set, the defined comment and the time limits can be shown in a tooltip,

which appears when the cursor is placed on the upper right corner of the step box.
● If "Time Limits" is set, the defined comment and the time limits nevertheless can be shown

in a tooltip, which appears when the cursor is placed on the lower right corner of the step
box.

'Extras' 'Associate Action'
With this command actions and Boolean variables can be associated with IEC steps Ä Chapter
1.4.1.1.10.5.2 “Action” on page 171 Ä Chapter 1.4.1.1.10.5.6 “IEC step” on page 172.
To the right of, and next to the IEC step, an additional divided box is attached, for the associa-
tion of an action. It is preset in the left field with the qualifier "N" and the name "Action." Both
presets can be changed. For this you can use the input assistant Ä Chapter 1.4.1.2.5.11 “'Edit'
'Input assistant'” on page 276.
Maximum nine actions can be assigned to an IEC step.
New actions for IEC steps are created in the Object Organizer for an SFC POU with the 'Project'
'Add Action' command.

'Extras' 'Use IEC-Steps'
Symbol:
If this command is activated (denoted by a check in front of the menu item and a printed
symbol in the Tool bar), then IEC steps will be inserted instead of the simplified steps
upon insertion of step transitions and parallel branches Ä Chapter 1.4.1.1.10.5.6 “IEC step”
on page 172 Ä Chapter 1.4.1.1.10.5.4 “Transition / Transition condition” on page 172 Ä Chapter
1.4.1.1.10.5.10 “Parallel branch” on page 176.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US336

If this option is switched on, the Init step is set as an IEC step when you create a new SFC
POU.
These settings are saved in the file "codesys.ini" and are restored when CODESYS gets started
again.

Sequential function chart in online mode
With the Sequential Function Chart editor in Online mode, the currently active steps will be
displayed in blue. If you have set it under 'Extras' 'Options', then the time management is
depicted next to the steps Ä Chapter 1.4.1.3.11.9.22 “'Extras' 'Options'” on page 336. Under the
lower and upper bounds that you have set, a third time indicator will appear from which you can
read how long the step has already been active.

In the figure above the step depicted has already been active 8 seconds and 410 milliseconds.
The step must, however, be active for at least 7 minutes before the step will be left.
With 'Online' 'Toggle Breakpoint' a breakpoint can be set on a step, or in an action at the
locations allowed by the language in use. Processing then stops prior to execution of this
step or before the location of the action in the program. Steps or program locations where a
breakpoint is set are marked in light blue.
If several steps are active in a parallel branch, then the active step whose action will be
processed next is displayed in red.
If IEC step has been used, then all active actions in Online mode will be displayed in blue
Ä Chapter 1.4.1.1.10.5.6 “IEC step” on page 172.
With the command 'Online' 'Step over' it is stepped always to the next step which action is
executed. If the current location is:
● a step in the linear processing of a POU or a step in the rightmost parallel branch of a POU,

execution returns from the SFC POU to the caller. If the POU is the main program, the next
cycle begins.

● a step in a parallel branch other than the rightmost, execution jumps to the active step in the
next parallel branch.

● the last breakpoint location within an action, execution jumps to the caller of the SFC.
● the last breakpoint location within an IEC action, execution jumps to the caller of the SFC.
● the last breakpoint position within an input action or output action, execution jumps to the

next active step.
With 'Online' 'Step in' even actions can be stepped into. If an input, output or IEC action is to be
jumped into, a breakpoint must be set there. Within the actions, all the debugging functionality
of the corresponding editor is available to the user.
If you rest the mouse cursor for a short time on a variable in the declaration editor, the type, the
address and the comment of the variable will be displayed in a tooltip.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 337

If you rename a step and perform an Online Change while this step is active,
the program will be stopped in undefined status !

Processing order of elements in a sequence:
● First, all Action Control Block flags in the IEC actions that are used in this sequence are

reset (not, however, the flags of IEC actions that are called within actions).
● All steps are tested in the order which they assume in the sequence (top to bottom and left

to right) to determine whether the requirement for execution of the output action is provided,
and this is executed if that is the case.

● All steps are tested in the order which they assume in the sequence to determine whether
the requirement for the input action is provided, and this is executed if that is the case.

● For all steps , the following is done in the order which they assume in the sequence:
- If applicable, the elapsed time is copied into the corresponding step variable.
- If applicable, any timeout is tested and the SFC error flags are serviced as required.
- For non-IEC steps, the corresponding action is now executed.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US338

● IEC actions that are used in the sequence are executed in alphabetical order. This is done
in two passes through the list of actions. In the first pass, all the IEC actions that are
deactivated in the current cycle are executed. In the second pass, all the IEC actions that
are active in the current cycle are executed.

● Transitions are evaluated: If the step in the current cycle was active and the following
transition returns TRUE (and if applicable the minimum active time has already elapsed),
then the following step is activated.

The following must be noted concerning implementation of actions:
It can come about that an action is carried out several times in one cycle because it is associ-
ated with multiple sequences. (For example, an SFC could have two IEC actions A and B, which
are both implemented in SFC, and which both call IEC action C; then in IEC actions A and
B can both be active in the same cycle and furthermore in both actions IEC action C can be
active; then C would be called twice).
If the same IEC action is used simultaneously in different levels of an SFC, this could lead to
undesired effects due to the processing sequence described above. For this reason, an error
message is issued in this case. It can possibly arise during processing of projects created with
older versions of CODESYS.

In monitoring expressions (e.g. A AND B) in transitions, only the "Total value" of
the transition is displayed.

The continuous function chart editor (CFC)
Overview

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 339

No snap grid is used for the continuous function chart editor so the elements can be placed
anywhere. Elements of the sequential processing list include boxes, input, output, jump, label,
return and comments. The inputs and outputs of these elements can be connected by dragging
a connection with the mouse. The connecting line will be drawn automatically. The shortest
possible connection line is drawn taking into account existing connections. The connecting lines
are automatically adjusted when the elements are moved. If the case arises where a connecting
line cannot be drawn simply because of lack of space, a red line will be shown between the
input and the associated output instead. This line will be converted into a connecting line just as
soon as space is available.
One advantage of the continuous function chart as opposed to the usual Function Block Dia-
gram Editor is the fact that feedback paths can be inserted directly.
The most important commands can be found in the context menu.

Cursor positions in the CFC
Each text is a possible cursor position. The selected text is shaded in blue and can be modified.
In all other cases the current cursor position is shown by a rectangle made up of points. The
following is a list of all possible cursor positions with examples:
1. Trunks of the elements box, input, output, jump, label, return and comments:

2. Text fields for the elements box, input, output, jump, label, return and comments as well as
text fields for connection marker:

3. Inputs for the elements box, input, output, jump and return:

4. Outputs for the elements box and input:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US340

'Insert' 'Box' in the CFC
Symbol: Shortcut: <Ctrl>+
This command can be used to paste in operators, functions, function blocks and programs.
First of all, it is always inserted an "AND" operator. This can be converted by Selection and
Overwrite of the text into every other operator, into every function, into every function block and
every program. The input assistance serves to select the desired block from the list of supported
blocks. If the new block has another minimum number of inputs, these will be attached. If the
new block has a smaller highest number of inputs, the last inputs will be deleted.

'Insert' 'Input' in CFC
Symbol: Shortcut: <Ctrl>+<E>
This command is used to insert an input. The text offered "???" can be selected and replaced
by a variable or constant. The input assistance can also be used here.

'Insert' 'Output' in CFC
Symbol: Shortcut: <Ctrl>+<A>
This command is used to insert an output. The text offered "???" can be selected and replaced
by a variable. The input assistance can also be used here. The value which is associated with
the input of the output is allocated to this variable.

'Insert' 'Jump' in CFC
Symbol: Shortcut: <Ctrl>+<J>
This command is used to insert a jump. The text offered "???" can be selected and replaced by
the jump label to which the program should jump.
The jump label is inserted using the command 'Insert 'Label'.

'Insert' 'Label' in CFC
Symbol: Shortcut: <Ctrl>+<L> This command is used to insert a label. The text offered "???"
can be selected and replaced by the jump label. In Online mode a RETURN label for marking
the end of POU is automatically inserted.
The jump is inserted using the command 'Insert 'Jump'.

'Insert' 'Return' in CFC
Symbol: Shortcut: <Ctrl>+<R>
This command is used to insert a RETURN command. Note that in Online mode a jump label
with the name RETURN is automatically inserted in the first column and after the last element in
the editor; in stepping, it is automatically jumped to before execution leaves the POU.

'Insert' 'Comment' in CFC
Symbol: Shortcut: <Ctrl> + <K>
This command is used to insert a comment. You obtain a new line within the comment with
<Ctrl> + <Enter>.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 341

'Insert' 'Input of box' in CFC
Shortcut: <Ctrl>+<U>
This command is used to insert an input at a box. The number of inputs is variable for many
operators (e.g. ADD can have two or more inputs).
To increase the number of inputs for such an operator by one, the box itself must be selected.

Insert' 'In-Pin' in CFC, 'Insert' 'Out-Pin'
Symbol:
These commands are available as soon as a macro is opened for editing. They are used for
inserting in- or out-pins as in- and outputs of the macro. They differ from the normal in- and
outputs of POUs by the way they are displayed and in that they have no position index.

'Extras' 'Negate' in CFC
Symbol: Shortcut: <Ctrl> + <N>
This command is used to negate inputs, outputs, jumps or RETURN commands. The symbol for
the negation is a small cross on the connection.
The input of the element block, output, jump or return is negated when it is selected.
The output of the element block or input is negated when it is selected (Cursor position 4).
A negation can be deleted by negating again.

'Extras' 'Set/Reset' in CFC
Symbol: Shortcut: <Ctrl> + <T>
This command can only be used for selected inputs of the element output .
The symbol for Set is S and for Reset is R.

VarOut1 is set to TRUE, if VarIn1 delivers TRUE. VarOut1 retains this value, even when VarIn1
springs back to FALSE.
VarOut2 is set to FALSE, if VarIn2 delivers TRUE. VarOut2 retains this value, even when VarIn2
springs back to FALSE.
Multiple activation of this command causes the output to change between Set, Reset and the
normal condition.

'Extras' 'EN/ENO' in CFC
Symbol: Shortcut: <Ctrl> + <I>
This command is used to give a selected block (Cursor position 3) an additional Boolean enable
input EN (Enable In) and a Boolean output ENO (Enable Out).

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US342

ADD is only executed in the example when the Boolean variable "condition" is TRUE. VarOut
will also be set to TRUE after the execution of ADD. But if afterwords condition changes to
FALSE, ADD will not be executed any more and thus VarOut remains TRUE! The example
below shows how the value ENO can be used for further blocks:

x should initialised to 1 and y initialised to 0. The numbers in the right corner of the block
indicate the order in which the commands are executed.
x will be increased by one until it reaches the value 10. This causes the output of the block LT(0)
to deliver the value FALSE and SUB(3) and ADD(5) will be executed. x is set back to the value
1 and y is increased by 1. LT(0) is executed again as long as x is smaller than 10. y thus count
the number of times x passes though the range of values 1 to 10.

'Extras' 'Properties...' in CFC
Constant input parameters (VAR_INPUT CONSTANT) from functions Ä Chapter 1.4.1.2.3.34
“'Project' 'Project info'” on page 246 and function blocks Ä Chapter 1.4.1.1.9.4 “Function block”
on page 153 are not shown directly in the continuous function chart editor. These can be
shown and their value can be changed when one selects the trunk of the block in question and
then selects the command 'Extras' 'Properties' or simply double clicks on the trunk. The 'Edit
parameters' dialog opens:

The values of the constant input parameter (VAR_INPUT CONSTANT) can be changed. Here it
is necessary to mark the parameter value in the column Value. Another mouse click or pressing
on the space bar allows this to be edited. Confirmation of the change to the value is made by
pressing the <Enter> key or pressing <Escape> rejects the changes. The button 'OK' stores all
of the changes which were made.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 343

This functionality and the associated declaration of variables with keyword
"VAR_INPUT CONSTANT" is only of impact for the CFC editor. In the FBD
editor always all INPUT variables will be displayed at a box, no matter whether
declared as VAR_INPUT or VAR_INPUT CONSTANT. Also for text editors this
does not make any difference.

Moving/Copying elements in CFC
One or more selected elements can be moved with the arrow keys + <Shift> key. Another
possibility is to move elements using a depressed left mousekey. These elements are placed
by releasing the left mousekey in as far as they do not cover other elements or exceed the
foreseen size of the editor. The marked element jumps back to its initial position in such cases
and a warning tone sounds.

One or more selected elements can be copied with the command 'Edit' 'Copy' and inserted with
the command 'Edit' 'Paste'.

Creating connections
An input of an element can be precisely connected to the output of another element. An output
of an element can be connected to the inputs of a number of other elements.
There are a number of possibilities to connect the input of an element E2 with the output of an
element E1.

Place the mouse on the output of element E1, click with the left mousekey, hold the left
mousekey down and drag the mouse cursor onto the input of element E2 and let the left
mousekey go. A connection is made from the output of element E1 to the mouse cursor during
this dragging operation with the mouse.
Place the mouse on the input of element E2, click with the left mousekey, hold the left
mousekey down and drag the mouse cursor onto the output of element E1 and let the left
mousekey go.
Move one of the elements E1 or E2 and place it in such a way by letting go of the left mousekey
that the output of element E2 and the input of element E1 touch.
Where element E2 is a block with a free input, a connection can also be made by dragging the
mouse from an output from E1 to the trunk of E2. A connection with the free input at the highest
position on E2 will be created when the mousekey is released. In the case where block E2 does
not have a free input but is an operator which can have an input added to it, a new input will be
automatically generated.
The output and input of a block can be connected together (feedback path) by using this
method. To establish a connection between two pins, click with the left mouse button on one
pin, hold the button down and thus drag the connection to the desired pin, where you then
release the button. If during the dragging of the connection extends outside working area of the
editor, scrolling occurs automatically. For simple data types, type testing is carried out during the
connection. If the types of the two pins are not compatible, the cursor changes to "Forbidden".
For complex data types, no testing takes place.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US344

'Extras' 'Connection marker'
Connections can also be represented by a connector (connection marker) instead of a con-
necting line. Here the output and the associated input have a connector added to them which is
given a unique name.
Where a connection already exists between the two elements which should now be represented
by connectors, the output of the connecting line is marked and the menu point 'Extras' 'Con-
nection marker' is selected. The following diagram shows a connection before and after the
selection of this menu point.

A unique name is given as standard by the program which begins with M, but which can be
changed The connector name is stored as an output parameter, but can be edited both at the
input and at the output.
It is important to know that the connector name is associated with a property of the output of a
connection and is stored with it.

1. Edit the connector at the output:
If the text in the connector is replaced, the new connector name is adopted by all associated
connectors at the inputs. One cannot, however, select a name which already belongs to another
connection marker since the uniqueness of the connector name would be violated.

2. Edit the connector at the input:
If the text in a connector is replaced, it will also be replaced in the corresponding connection
marker on the other POU. Connections in connector representations can be converted to
normal connections in that one marks the output of the connections (Cursor position 4) and
again selects the menu point 'Extras' 'Connection marker'.

Changing connections
A connection between the output of an element E1 and the input of an element E2 can easily be
changed into a connection between the output of element E1 and the input of element E3. The
mouse is clicked on the input of E2, the left mousekey is kept depressed, the mouse cursor is
moved to the input of E3 and then released.

Deleting connections
There are a number of possibilities for removing the connection between the output of an
element E1 and the input of an element E2:
● Select the output of element E1 and press the <Delete> key or execute the command 'Edit'

'Delete'. Several connections will be removed at the same if the output of E1 is connected to
more than one of inputs.

● Select the input of element E2 and press the <Delete> key or execute the command 'Edit'
'Delete'.

● Select the input of E2 with the mouse, hold the left mousekey depressed and drag the
connection from the input to E2 away. The connection is removed when the left mousekey is
released in a free area of the screen.

Insert inputs/outputs on the fly
If exactly one input or output pin of an element is selected, then the corresponding input- or
output- element can be directly inserted and its editor field filled with a string by entering the
string at the keyboard.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 345

Order of execution
The elements block, output, jump, return and label each possess a number indicating the order
in which they are executed. In this sequential order the individual elements are evaluated at run
time.
When pasting in an element the number is automatically given according to the topological
sequence (from left to right and from above to below). The new element receives the number of
its topological successor if the sequence has already been changed and all higher numbers are
increased by one.
The number of an element remains constant when it is moved.
The sequence influences the result and must be changed in certain cases.
If the sequence is displayed, the corresponding sequential execution number is shown in the
upper right hand corner of the element.

'Extras' 'Order' 'Show Order'
This command switches the display of the order of execution on and off. The default setting is to
show it (recognised by a tick (✓) in front of the menu point).
The relevant order of execution number appears in the upper right hand corner for the elements
block, output, jump, return and label.

'Extras' 'Order' 'Order topologically'
Elements are ordered in a topological sequence when the execution takes place from left to
right and from above to below, that is the number increases from left to right and from above to
below for topologically arranged elements. The connections are not relevant, only the location of
the elements is important.
All selected elements are topologically arranged when the command 'Extras' 'Order' 'Order top-
ologically' is executed. All elements in the selection are taken out of the sequential processing
list by this process. The elements are then entered into the remaining sequential processing list
individually from bottom right through to upper left. Each marked element is entered into the
sequential processing list before its topological successor, i.e. it is inserted before the element
that in a topological sequencing would be executed after it, when all elements in the editor were
sequenced according to a topological sequencing system. This will be clarified by an example.

The elements with numbers 1, 2 and 3 are selected. If the command 'Order topologically' is
selected the elements are first taken out of the sequential processing list. Var3, the jump and
the AND-operator are then inserted again one after the other. Var3 is placed before the label
and receives the number 2. The jump is then ordered and receives the number 4 at first but this
then becomes 5 after the AND is inserted. The new order of execution which arises is:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US346

When a newly generated block is introduced it will be placed by default in front of its topological
successor in the sequential processing list.

'Extras' 'Order' 'One up'
With this command all selected elements with the exception of the element which is at the
beginning of the sequential processing list are moved one place forwards in the sequential
processing list.

'Extras' 'Order' 'One down'
With this command all selected elements with the exception of the element which is at the end
of the sequential processing list are moved one place backwards in the sequential processing
list.

'Extras' 'Order' 'Start'
With this command all selected elements will be moved to the front of the sequential processing
list whereby the order within the group of selected elements is maintained. The order within the
group of unselected elements also remains the same.

'Extras' 'Order' 'End'
With this command all selected elements will be moved to the end of the sequential processing
list whereby the order within the group of selected elements is maintained. The order within the
group of unselected elements also remains the same.

'Extras' 'Order' 'Order everything according to data flow'
This command effects all elements. The order of execution is determined by the data flow of
the elements and not by their position. The diagram below shows elements which have been
ordered topographically.

Sequence before the ordering according to data flow:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 347

The following arrangement exists after selecting the command.
Sequence after the ordering according to data flow:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US348

When this command is selected the first thing to happen is that the elements are ordered topo-
graphically. A new sequential processing list is then created. Based on the known values of the
inputs, the computer calculates which of the as yet not numbered elements can be processed
next. In the above "network" the block AND, for example, could be processed immediately since
the values at its inputs (1 and 2) are known. Block SUB can only then be processed since the
result from ADD must be known first, etc.
Feedback paths are inserted last Ä Chapter 1.4.1.3.11.10.34 “Feedback paths in CFC”
on page 350.
The advantage of the data flow sequencing is that an output box which is connected to the
output of a block comes immediately after it in the data flow sequencing system which by
topological ordering would not always be the case. The topological ordering can deliver another
result in some cases than ordering by data flow, a point which one can recognise from the
above example.

'Extras' 'Create macro''
Symbol:
With this command, several POUs that are selected at the same time can be assembled into
a block, which can be named as a macro. Macros only can be reproduced by Copy/Paste,
whereby each copy becomes a separate macro whose name can be chosen independently.
Macros are thus not references. All connections that are cut by the creation of a macro
generate in- or out-pins on the macro. Connections to inputs generate an in-pin. The default
name appears next to the pin in the form In<n>. For connections to outputs, Out<n> appears.
Affected connections which had connection markers prior to the creation of the macro, retain the
connection marker on the PIN of the macro.
At first, a macro has the default name "MACRO". This can be changed in the Name field of the
macro use. If the macro is edited, the name of the macro will be displayed in the title bar of the
editor window appended to the POU name.

Selection:

Macro:

In the editor:

Example:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 349

'Extras' 'Edit Macro'
Symbol:
By this command, or by double clicking on the body of the macro, the macro is opened for
editing in the editor window of the associated POU Ä Chapter 1.4.1.3.11.10.30 “'Extras' 'Create
macro''” on page 349. The name of the macro is displayed appended to the POU name in the
title bar.
The pin boxes generated for the in- and outputs of the macro during creation can be handled
like normal POU in- and outputs. They can also be moved, deleted, added, etc. They differ only
in how they are displayed and have no position index. For adding you can use the buttons
(input) or (output), which are available in the menu bar. Pin boxes have rounded corners. The
text in the pin-box matches the name of the pin in the macro display.
The order of the pins in the macro box follows the order of execution of the elements of the
macro. A lower order index before a higher one, higher pin before lower.
The processing order within the macro is closed, in other words the macro is processed as a
block, at the position of the macro in the primary POU. Commands for manipulating the order of
execution therefore operate only within the macro.

'Extras' 'Expand macro'
With this command, the selected macro is re-expanded and the elements contained in it are
inserted in the POU at the macro's location Ä Chapter 1.4.1.3.11.10.30 “'Extras' 'Create macro''”
on page 349. The connections to the pins of the macro are again displayed as connections to
the in- or outputs of the elements. If the expansion of the macro can not occur at the location
of the macro box for lack of space, the macro is displaced to the right and down until enough
space is available.

If the project is saved under project version number 2.1, the macros will likewise
all be expanded. All macros will also be expanded before conversion into other
languages.

'Extras' 'Back one macro level', 'Extras' 'Back all macro level'
Symbols:
These commands are also available in the toolbar, as soon as a macro is opened for editing
Ä Chapter 1.4.1.3.11.10.30 “'Extras' 'Create macro''” on page 349. If macros are nested within
one another, it is possible to switch to the next higher or to the highest display level.

Feedback paths in CFC
Feedback paths can only be displayed directly in the continuous function chart editor and not
in the usual Function Block Diagram Editor. Here it should be observed that the output of a
block always carries an internal intermediate variable. The data type of the intermediate variable
results, for operators, from the largest data type of the inputs.
The data type of a constant is obtained from the smallest possible data type, that is the constant
'1' adopts the data type SINT. If now an addition with feedback and the constant '1' is executed,
the first input gives the data type SINT and the second is undefined because of the feedback.
Thus the intermediate variable is also of the type SINT. The value of the intermediate variable is
only then allocated to the output variable.
The diagram below shows an addition with feedback and an addition with a variable. The
variables x and y should be of the type INT here.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US350

There are differences between the two additions:
The variable y can be initialised with a value which is not equal to zero but this is not the case
for intermediate variable for the left addition.
The intermediate variable for the left addition has the data type SINT while that on the right
has the data type INT. The variables x and y have different values after the 129th call up.
The variable x, although it is of the type INT, contains the value 127 because the intermediate
variable has gone into overflow. The variable y contains the value 129, on the other hand.

Zoom to POU
Shortcut: <Alt>+<Enter>
With this command a selected POU is loaded into its editor. The command is available in the
context menu (<F2>) or in the 'Extras' menu, if the cursor is positioned on the name of a POU in
a text editor or if the POU box is selected in a graphic editor.
If you are dealing with a POU from a library, then the library manager is called up, and the
corresponding POU is displayed.

CFC in Online mode
The values for inputs and outputs are displayed within the input or output boxes. Constants
are not monitored. For non-boolean variables, the boxes are expanded to accommodated the
values displayed. For boolean connections, the variable name as well as the connection are dis-
played in blue if the value is TRUE, otherwise they remain black. Internal boolean connections
are also displayed Online in blue in the TRUE state, otherwise black. The value of internal
non-boolean connections is displayed in a small box with rounded corners on the output pin of
the connection.

Pins in macros are monitored like in- or output boxes.

Non-boolean connections with connection markers display their value within the connection
marker. For boolean connections, the lines as well as the marker names are displayed in blue if
the line is carrying the value TRUE, otherwise black.

Monitoring:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 351

When flow control is switched on, the connections that have been traversed are marked with the
color selected in the project options.

Breakpoints can be set on all elements that also have a processing sequence order index
Ä Chapter 1.4.1.1.11.3 “Breakpoint” on page 182. The processing of the program will be halted
prior to execution of the respective element, that is for POUs and outputs before the assignment
of inputs, for jump labels before execution of the element with the next index. The processing
sequence index of the element is used as the breakpoint position in the Breakpoint dialog.
The setting of breakpoints on a selected element is accomplished with the F9 key or via the
menu item 'Breakpoint on/off' in the 'Online' or 'Extras' menu or in the editor's context menu.
If a breakpoint is set on an element, then this will be erased and reversed the next time the
command 'Breakpoint on/off' is executed. In addition, the breakpoint on an element can be
toggled by double-clicking on it.
Breakpoints are displayed in the colors entered in the project options.

In Online mode, a jump label with the name „RETURN" is automatically generated in the first
column and after the last element in the editor. This label marks the end of the POU and
is jumped to when stepping just before execution leaves the POU. No RETURN marks are
inserted in macros.

When using 'Step over' the element with the next-higher order index will always be jumped to
Ä Chapter 1.4.1.2.6.13 “'Online' 'Step over'” on page 286. If the current element is a macro or
a POU, then its implement branches when 'Step in' is in effect Ä Chapter 1.4.1.2.6.14 “'Online'
'Step in'” on page 286. If a 'Step over' is executed from there, the element whose order index
follows that of the macro is jumped to.

1.4.1.3.12 The text editors
Overview

The text editors used for the implementation portion (the Instruction List editor and the Struc-
tured Text editor) provide the usual Windows text editor functions.

Flow control:

Breakpoints:

RETURN label:

Stepping:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US352

The implementation in the text editors is supported by syntax coloring.
In Overwrite mode the status bar shows a black OV. You can switch between Overwrite mode
and Insert mode by key <Ins>
The most important commands are found in the context menu (right mouse button or
<Ctrl>+<F10>).

'Insert''Operators'
With this command all of the operators available in the current language are displayed in a
dialog box.
If one of the operators is selected and the list is closed with OK, then the highlighted operator
will be inserted at the present cursor position. (This is managed here just as it is in the input
assistant).

'Insert' 'Operand'
With this command all variables in a dialog box are displayed. You can select whether you
would like to display a list of the global, the local, or the system variables.
If one of the operands is chosen, and the dialog box is closed with OK, then the highlighted
operand will be inserted at the present cursor position. (This is managed here just as it is in the
input assistant).

'Insert' 'Function'
With this command all functions will be displayed in a dialog box Ä Chapter 1.4.1.1.9.3 “Func-
tion” on page 151. You can choose whether to have a list displaying user-defined or standard
functions.
If one of the functions is selected and the dialog box is closed with OK, then the highlighted
function will be inserted at the current cursor position. (The management will proceed, as in the
input selection.)
If the 'With arguments' option was selected in the dialog box, then the necessary input and
output variables will also be inserted.

'Insert' 'Function Block'
With this command all function blocks are displayed in a dialog box Ä Chapter 1.4.1.1.9.4
“Function block” on page 153. You can choose whether to have a list displaying user-defined or
standard function blocks.
If one of the function blocks is selected and the dialog box is closed with OK, then the high-
lighted function block will be inserted at the current cursor position. (This is managed here just
as it is in the input assistant).
If the 'With arguments' option was selected in the dialog box, then the necessary input variables
of the function block will also be inserted. However you are not forced to assign these parame-
ters.

Calling POUs with output parameters in text editors
The output parameters of a called POU can be directly assigned upon being called in the text
languages IL and ST.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 353

Output parameter out1 of afbinst is assigned variable a.
IL:
CAL afbinst(in1:=1, out1=>a)

ST:
afbinst(in1:=1, out1=>a);

If the POU is inserted via input assistant (<F2>) with option 'With arguments' in the implemen-
tation window of a ST or IL POU, it will automatically be displayed with all parameters in this
syntax. However you are not forced to assign these parameters.

Example:

'Extras' 'Monitoring Options'
With this command you can configure your monitoring window. In the text editors, the window is
divided into two halves during monitoring. The program is located in the left half. In the right half,
all variables that are located in the corresponding program line are monitored.
You can specify the Monitor Window Width and which Distance two variables should have in a
line. An distance declaration of 1 corresponds, in this case, to a line height in the selected font.
Regard that the width of the window halves also can be modified by drawing the divider with the
mouse.
Monitoring Options Dialog Box:

Breakpoint positions
Breakpoint positions include all positions in a program at which values of variables can change
or where the program flow branches off. (Exception: function calls. If necessary, a breakpoint in
the function must be set here.) At the positions lying inbetween, a breakpoint would not even
make sense, since nothing has been able to change in the data since the preceding breakpoint
position.
This results in the following breakpoint positions in the IL:
● At the start of the POU
● At every LD, LDN (or, in case a LD is located at a label, then at the label)
● At every JMP, JMPC, JMPCN
● At every label
● At every CAL, CALC, CALCN
● At every RET, RETC, RETCN
● At the end of the POU
Structured Text accommodates the following breakpoint positions:
● At every assignment
● At every RETURN and EXIT instruction
● in lines where conditions are being evaluated (WHILE, IF, REPEAT)
● At the end of the POU
Breakpoint positions are marked by darker line number fields (in the color which is set in the
project options):

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US354

In order to set a breakpoint, click the line number field of the line where you want to set a
breakpoint. If the selected field is a breakpoint position, then the color of the line numbers field
will change from dark gray to light blue, and the breakpoint will be activated in the PLC.

Correspondingly, in order to delete a breakpoint, click on the line number field of the line with
the breakpoint to be deleted.
Setting and deleting of breakpoints can also be selected via the menu ('Online' 'Toggle Break-
point'), via the function key <F9>, or via the symbol in the tool bar Ä Chapter 1.4.1.2.6.11
“'Online' 'Toggle breakpoint'” on page 285.

Line number of the text editor
The line numbers of the text editor give the number of each text line of an implementation of a
POU.
In Off-line mode, a simple click on a special line number will mark the entire text line.
In Online mode, the background color of the line number indicates the breakpoint status of
every line. The standard settings for the colors are
● dark gray: This line is a possible position for a breakpoint.
● light blue: a breakpoint has been set in this line.
● red: The program has reached this point.
In Online mode, simply clicking the mouse will change the breakpoint status of this line.

How do you set
a breakpoint?

Deleting break-
points

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 355

The instruction list editor
Overview

All editors for POUs consist of a declaration part and a body. These are separated by a screen
divider.
The Instruction List editor is a text editor with the usual capabilities of Windows text editors. The
most important commands are found in the context menu (right mouse button or <Ctrl>+<F10>).
Multiline POU calls are also possible.

CAL CTU_inst(
CU:=%IX10,
PV:=(
LD A
ADD 5
)
)

Example

IL in online mode
With the 'Online' 'Flow control' command Ä Chapter 1.4.1.2.6.21 “'Online' 'Display flow control'”
on page 290, an additional field in which the accumulator contents is displayed is inserted in the
IL editor on the left side of every line.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US356

The structured text editor

All editors for POUs consist of a declaration part and a body. These are separated by a screen
divider.
The editor for Structured Text is a text editor with the usual capabilities of Windows text edi-
tors. The most important commands are found in the context menu (right mouse button or
<Ctrl>+<F10>).

1.4.1.4 The 'Resources' tab
1.4.1.4.1 Global variables, variable configuration, document frame
'Global Variables' folder

In the Object Organizer, you will find two objects in the “Resources” register card in the “Global
Variables” folder (default names of the objects in parentheses).
● Global Variables Ä Chapter 1.4.1.4.1.2 “Global variables” on page 357
● Variables Configuration Ä Chapter 1.4.1.4.1.4.1 “Overview” on page 361

All variables defined in these objects are recognized throughout the project. If the Global
Variables folder is not opened, you can open it with a double-click [Enter] in the line.
Select the corresponding object. The “'Object Open'” command opens a window with the previ-
ously defined global variables. The editor for this works the same way as the declaration editor.

Global variables
Normal variables, constants or remanent variables that are known throughout the project can be
declared as global variables.

Objects in
'Global Varia-
bles' folder

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 357

In a project you can define a local variable which has the same name as a
global variable. In this case within a POU the locally defined variable will be
used.

It is not allowed to name two global variables identically. For example, you will get a compiler
error if you have defined a variable "var1" in the PLC Configuration as well as in a global
variables list.

Global variable lists
Create a global variable list

To create a Global Variable List, open the register 'Resources' in the Object Organizer and
select the entry 'Global Variables' or select an already existing list. Then choose the command
'Project' 'Object' 'Add'to open the dialog Global variable list Ä Chapter 1.4.1.2.4.6 “'Project'
'Object' ' Add'” on page 258.
This dialog can also be opened by the command 'Project' 'Object' 'Properties' which is available
if an existing Global Variable List is marked in the object organizer Ä Chapter 1.4.1.2.4.12
“'Project' 'Object properties'” on page 261. It shows the configuration of this list.
Dialog to create a new Global Variable List:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US358

Name of the global variable list: Insert a list name.

Filename: If you have an export file (*.exp) or a DCF file, which contains the desired variables,
you can set up a link to this file. To do this, insert the path of the file in the field Filename resp.
press the button Browse to get the standard dialog 'Select text file'. DCF files are converted to
ICE syntax when they are read in.
Activate option Import before compile, if you wish that the variable list will be read from the
external file before each compilation of the project. Activate the option Export before compile, if
you want the variable list to be written to the external file before each compilation of the project.
If you close the 'Global variable list' dialog with OK, the new object is created. Global variables
lists can be recognized in the Object Organizer by the symbol . With the command 'Project'
'Object' 'Properties' you can re-open the 'Global variable list' configuration dialog for the entry
marked in the Object Organizer.

Several variables lists
Global variables, global network variables (VAR_GLOBAL) and variable configurations
(VAR_CONFIG) must be defined in separate objects.

Link to file:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 359

If you have declared a large number of global variables, and you would like to structure your
global variables list better, then you can create further variables lists.

In the Object Organizer, select the Global Variables folder or one of the existing objects
with global variables. Then execute the 'Project' 'Object Add' command. Give the object that
appears in the dialog box a corresponding name. With this name an additional object will
be created with the key word VAR_GLOBAL. If you prefer an object a variable configuration,
change the corresponding key word to VAR_CONFIG.

Editing global variable lists
The editor for global variables works similar to the declaration editor. But note that you cannot
edit in this editor a list, which is an figure of an linked external variable list. External variable lists
only can be edited externally and they will be read at each opening and compiling of the project.
Syntax:
VAR_GLOBAL
 (* Variables declarations *)
END_VAR

Editing remanent global variables lists
If they are supported by the runtime system, remanent variables may be processed. There are
two types of remanent global variables:
● Retain variables remain unchanged after an uncontrolled shutdown of the runtime system

(off/on) or an 'Online' 'Reset' Ä Chapter 1.4.1.2.6.8 “'Online' 'Reset'” on page 284.
● Persistent variables remain only unchanged after a program download Ä Chapter

1.4.1.2.6.5 “'Online' 'Download'” on page 283.
Persistent variables are not automatically also Retain variables !
Remanent variables are additionally assigned the keyword RETAIN and/or PERSISTENT.
Syntax:
VAR_GLOBAL RETAIN
 (* Variables declarations *)
END_VAR
VAR_GLOBAL PERSISTENT
 (* Variables declarations *)
END_VAR
For the combination of retain and persistent properties both keywords are used:
 VAR_GLOBAL RETAIN PERSISTENT
or
 VAR_GLOBAL PERSISTENT RETAIN

Global constants
Global constants additionally get the keyword CONSTANT.
Syntax:
VAR_GLOBAL CONSTANT
 (* Variables declarations *)
END_VAR

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US360

Variable configuration
Overview

In function blocks it is possible to specify addresses for inputs and outputs that are not com-
pletely defined, if you put the variable definitions between the key words VAR and END_VAR.
Addresses not completely defined are identified with an asterisk.

FUNCTION_BLOCK locio
VAR
 loci AT %I*: BOOL := TRUE;
 loco AT %Q*: BOOL;
END_VAR

Example

Here two local I/O-variables are defined, a local-In (%I*) and a local-Out (%Q*).
If you want to configure local I/Os for variables configuration in the Object Organizer in the
Resources register card, the object Variable_Configuration will generally be available. The
object then can be renamed and other objects can be created for the variables configuration.
The editor for variables configuration works like the declaration editor.
Variables for local I/O-configurations must be located between the key words VAR_CONFIG
and END_VAR.
The name of such a variable consists of a complete instance path through which the individual
POUs and instance names are separated from one another by periods. The declaration must
contain an address whose class (input/output) corresponds to that of the incompletely specified
address (%I*, %Q*) in the function block. Also the data type must agree with the declaration in
the function block.
Configuration variables, whose instance path is invalid because the instance does not exist, are
also denoted as errors. On the other hand, an error is also reported if no configuration exists for
an instance variable. In order to receive a list of all necessary configuration variables, the "All
Instance Paths" menu item in the 'Insert' menu can be used.

Assume that the following definition for a function block is given in a program:

VAR
Hugo: locio;
Otto: locio;
END_VAR

Then a corrected variable configuration would look this way:
VAR_CONFIG
PLC_PRG.Hugo.loci AT %IX1.0 : BOOL;
PLC_PRG.Hugo.loco AT %QX0.0 : BOOL;
PLC_PRG.Otto.loci AT %IX1.0 : BOOL;
PLC_PRG.Otto.loco AT %QX0.3 : BOOL;
END_VAR

Example for a
variable config-
uration

'Insert' 'All Instance Paths'
With this command a VAR_CONFIG - END_VAR-block is generated that contains all of the
instance paths available in the project. Declarations already on hand do not need to be rein-
serted in order to contain addresses already in existence. This menu item can be found in the
window for configuration of variables if the project is compiled Ä Chapter 1.4.1.2.3.12 “'Project'
'Rebuild all'” on page 232.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 361

Document frame
Overview

If a project is to receive multiple documentations, perhaps with German and English comments,
or if you want to document several similar projects that use the same variable names, then you
can save yourself a lot of work by creating a docuframe with the 'Extras' 'Make Docuframe File'
command Ä Chapter 1.4.1.4.1.5.2 “'Extras' 'Make Docuframe File'” on page 362.
The created file can be loaded into a desired text editor and can be edited. The file begins
with the DOCUFILE line. Then a listing of the project variables follows in an arrangement that
assigns three lines to each variable: a VAR line that shows when a new variable comes; next,
a line with the name of the variable; and, finally, an empty line. You can now replace this line
by using a comment to the variable. You can simply delete any variables that you are unable to
document. If you want, you can create several document frames for your project.

In order to use a document frame, give the 'Extras' 'Link Docu File' command Ä Chapter
1.4.1.4.1.5.3 “'Extras' 'Link Docu File'” on page 362. Now if you document the entire project, or
print parts of your project, then in the program text, there will be an insertion of the comment
produced in the docuframe into all of the variables. This comment only appears in the printout!

'Extras' 'Make Docuframe File'
Use this command to create a document frame. The command is at your disposal, whenever
you select an object from the global variables. A dialog box will open for saving files under a
new name. In the field for the name file, the *.txt extension has already been entered. Select
a desired name. Now a text file has been created in which all the variables of your project are
listed.

'Extras' 'Link Docu File'
With this command you can select a document frame.
The dialog box for opening files is opened. Choose the desired document frame and press OK.
Now if you document the entire project, or print parts of your project, then in the program text
there will be an insertion of the comment produced in the docuframe into all of the variables.
This comment only appears in the printout!
To create a document frame, use the 'Extras' 'Make Docuframe File' command Ä Chapter
1.4.1.4.1.5.2 “'Extras' 'Make Docuframe File'” on page 362.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US362

1.4.1.4.2 Alarm configuration
Overview

The alarm system allows to detect critical process states, to record them and to visualize
them for the user with the aid of a visualization element. The alarm handling can be done
in Automation Builder or alternatively in the PLC. For alarm handling in the PLC please see
the target settings in category 'Visualization' Ä Chapter 1.4.1.4.7.3 “Target settings in category
visualization” on page 388.
If supported by the target system, the dialogs for 'Alarm configuration' are available in the
'Resources' tab.
Here you define alarm classes and alarm groups. An alarm class serves for the typing of an
alarm, that means it assigns certain parameters to the alarm. An alarm group serves for the
concrete configuration of one or several alarms (which get assigned a certain class and further
parameters) for the use in the project. Thus a class is useful for structuring the available alarms.
The different alarm groups are defined by the user by inserting appropriate entries below the
header 'System' in the configuration tree.
For the visualization of alarms the alarm table element is available in the visualization
Ä Chapter 1.4.3.5.26 “Alarm table” on page 684. Using this table the user can watch and
acknowledge alarms. The language of the displayed alarm message texts might be switched
dynamically.
If a history, i.e. recording of alarm events should be written to a log-file, such a file must be
defined and for each alarm group the saving behavior must be defined.
When you open the 'Alarm configuration' in the Resources tab, the dialog 'Alarm configuration'
opens with a bi-partited window, which concerning the mode of operation is similar to that of the
PLC Configuration or Task configuration. In the left part the configuration tree is displayed, in
the right part the appropriate configuration dialog will be opened.
Example of an Alarm configuration :

Open by a mouse-click on the plus sign at the entry 'Alarm configuration' the currently available
configuration tree. If you are going to create a new configuration, this tree only will show the
entries 'Alarm classes' and 'System'.
See also:
Ä Chapter 1.4.1.4.2.2 “General information on alarms, terms” on page 364

Ä Chapter 1.4.1.4.2.3 “Alarm classes” on page 364

Ä Chapter 1.4.1.4.2.4 “Alarm groups” on page 368

Ä Chapter 1.4.1.4.2.5 “Alarm saving” on page 369

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 363

General information on alarms, terms
The usage of an alarm system obeys the following universal descriptions and definitions con-
cerning alarms:
● Alarm: Generally an alarm is regarded as a special condition (expression value).
● Priority: The priority, also named "severity", of an alarm describes how important (severe)

the alarm condition is. The highest priority is "0", the lowest valid priority value is "255".
● Alarm state: An expression/variable configured for the alarm control can have the following

states: NORM (no alarm), INTO (alarm just has come), ACK (alarm has come and has been
acknowledged by the user), OUTOF (alarm state has been terminated, alarm "has gone",
but not yet acknowledged !)

● Sub-State: An alarm condition can have limits (Lo, Hi) and "extreme" limits (LoLo, HiHi).
Example: The value of an expression ascends and first will transit the HI-limit, thus causing
the coming of an HI-alarm. If the value continues ascending and exceeds also the HIHI-limit
before the alarm gets acknowledged by the user, then the HI-alarm will get acknowledged
automatically and just the HIHI-alarm remains in the alarm list (which is an internal list used
for alarm administration). The HI-state in this case is named sub-state.

● Acknowledgement of alarms: The main purpose of alarms is to inform the user on alarm
situations. In doing so it often is necessary to make sure that the user has noticed this
information (see possible actions assigned to an alarm in the alarm class configuration). The
user must acknowledge the alarm in order to get the alarm removed from the alarm list.

● Alarm Event: An alarm event must not be mixed up with an alarm condition. While an
alarm condition can be valid for a longer period of time, an alarm event just describes the
momentary occurrence of an change, e.g. a change from the normal state to the alarm
state. In the alarm configuration for the three types of events and the corresponding alarm
states the same names are used (INTO, ACK, OUTOF).

Supported features:
● Deactivation of the alarm generation for single alarms as well as for alarm groups
● Selection of the alarms which should be displayed by defining alarm groups and priorities
● Saving of all alarm events in an alarm table
● Visualization element 'Alarm table' in the visualization
See also:
Alarm configuration overview Ä Chapter 1.4.1.4.2.1 “Overview” on page 363

Alarm classes Ä Chapter 1.4.1.4.2.3 “Alarm classes” on page 364

Alarm groups Ä Chapter 1.4.1.4.2.4 “Alarm groups” on page 368

Alarm saving Ä Chapter 1.4.1.4.2.5 “Alarm saving” on page 369

Alarm classes
Alarm classes are used for the general description of certain alarm criteria, such as how
to handle acknowledgements (confirmation of an alarm by the user), which actions should
automatically run as soon as a particular alarm state has been detected and which colors and
bitmaps are to be used for a visualization of an alarm table Ä Chapter 1.4.1.4.2.2 “General
information on alarms, terms” on page 364Ä Chapter 1.4.3.5.26 “Alarm table” on page 684.
Alarm classes are defined globally in the alarm configuration and are then available as a base
configuration when configuring alarm groups Ä Chapter 1.4.1.4.2.1 “Overview” on page 363
Ä Chapter 1.4.1.4.2.4 “Alarm groups” on page 368.

Select entry 'Alarm classes' in the alarm configuration tree. The configuration dialog 'Alarm
classes' gets opened:

Configuration of
alarm classes

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US364

Press button 'Add' in order to create a new alarm class. Thereupon in the upper window
a line will be inserted, primarily only with an entry "NOACK" (no acknowledgement) in the
'Acknowledgement' column. Define a name for the alarm class in the corresponding field in
the 'Name' column (open an edit frame by a mouse-click on the field) and if necessary modify
the acknowledgement type in column 'Acknowledgement'. The following acknowledgements are
available:
● NO_ACK: No acknowledgement of the alarm by the user is required
● ACK_INTO: A "come" alarm condition (status "INTO", alarm occurs) must be confirmed by

the user.
● ACK_OUTOF: A "gone alarm" (status "OUTOF", alarm terminated) must be confirmed by

the user.
● ACK_ALL: Gone and come alarm conditions must be confirmed by the user Ä Chapter

1.4.1.4.2.2 “General information on alarms, terms” on page 364.
Additionally you can enter a Comment.
Entries for further alarm classes each will be added at the end of the list.
Use button Delete to remove the currently selected entry from the list.

Each alarm class defined in the upper window can get assigned a list of actions, which should
be performed as soon as an alarm event occurs Ä Chapter 1.4.1.4.2.2 “General information on
alarms, terms” on page 364.
In the list of Possible actions select one and press button ">" to get it into the field Assigned
actions. This field will finally contain the selection of actions assigned to the alarm class. Via
button ">>" you can add all actions at a single blow. Via "<" resp.. "<<" you can remove one or
all actions from the done existing selection. If an action is marked in the 'Assigned actions' list,
via "..." a corresponding dialog can be opened to define the desired E-Mail settings, the printer
settings, the process variable resp. the executable program and, if applicable, a message text.
The following action types (Possible actions) are supported (for a definition of a message text
see below):

Assigned
actions for class
<class name>

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 365

Action Description Settings to be done in the
corresponding dialog

Save The alarm event will be
saved internally, in order to
be given out e.g.in a log-
file Ä Chapter 1.4.1.4.2.5
“Alarm saving” on page 369.
Please note: In this case the
log-file must be defined in
the configuration of the alarm
groups Ä Chapter 1.4.1.4.2.4
“Alarm groups” on page 368!

The settings are done in
the Alarm group definition
in the Alarm saving dialog
Ä Chapter 1.4.1.4.2.5 “Alarm
saving” on page 369

Print A message text is sent to a
printer.

Printer: Select one of the
printers defined on the local
system;
Outputtext: Message text
(see below) which should be
printed out
● Please note that this func-

tion is not supported for
target visualization!

Message In the current visualization
of the alarm a message
window will be opened
showing the defined text
Ä Chapter 1.4.3.5.26 “Alarm
table” on page 684.

Message: Message text to
be displayed in the message
window
● Please note that this func-

tion is not supported for
target visualization!

E-Mail An E-Mail containing the
defined message will be sent.

From: E-Mail address of
sender; To: E-Mail address
of recipient; Subject: any sub-
ject; Message: Message text
(see below); Server: Name of
the E-Mail server

Variable A variable of the program will
get the alarm status resp. a
message text string.

Variable: Variable name: You
can select project variables
via the input assistant (<F2>):
A boolean variable will indi-
cate the alarm states NORM
=0 and INTO=1, an integer
variable will indicate the alarm
states NORM =0, INTO =1,
ACK =2, OUTOF =4; a string
variable will get the message
text defined in field; Message
(see below)

Execute An executable file will be
started as soon as the alarm
event occurs.

Executable file: name of the
file to be executed (e.g.
notepad.exe, you can use
the "..." button to get the
standard dialog for selecting
a file; Parameter: appropriate
parameter(s) which should be
attached to the call of the exe-
file

For action types 'Message', 'Print', 'Email' or 'Variable' you can define a message text which
should be output in case of an Alarm Event. Line breaks at the text definitions in 'Message',
'Email' or 'Variable' can be inserted by <Ctrl>+<Enter>.

Definition of the
message text

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US366

The following placeholders can be used when defining the alarm message:

MESSAGE The message text which is defined for the par-
ticular alarm in the configuration of the alarm
group will be used Ä Chapter 1.4.1.4.2.4
“Alarm groups” on page 368.

DATE Date, when the alarm status was reached
(INTO).

TIME Time of alarm entry.

EXPRESSION Expression (defined in alarm group) which has
caused the alarm.

PRIORITY Priority of the alarm (defined for alarm group.)

VALUE Current value of the expression (see above).

TYPE Alarm type (defined in alarm group)

CLASS Alarm class (defined in alarm group)

TARGETVALUE Target value for alarm types DEV+ and DEV-
(defined in alarm group)

DEADBAND Tolerance of the alarm (defined in alarm
group)

ALLDEFAULT Any information on the alarm will be output,
like described for the line entries in a log file
(History).

Example of defining an alarm message:
 For a definition of a message box enter the following in the message window:

Further on when defining the alarm in the alarm group enter in column 'Message' the following:
"Temperature critical !". The output of the final alarm message will be like follows:

Note for translation to other languages: The message text will also be affected in case of a
change of the project language if it is included in a *.vis-file or a translation file *.tlt Ä Chapter
1.4.1.2.3.16 “Create translation file” on page 233. BUT: In this case - like texts referring to a
visualization it has to be set between two "#"-characters (e.g. in the example shown above :
"#Temperature critical !#" and "TIME /EXPRESSION: MESSAGE #current#: VALUE", in order to
get the text entered in the translation file as ALARMTEXT_ITEMs.)

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 367

A log file for action 'Save' is to be defined in the configuration of the alarm group Ä Chapter
1.4.1.4.2.4 “Alarm groups” on page 368.

For each action you define, at which alarm events it should be started Ä Chapter 1.4.1.4.2.2
“General information on alarms, terms” on page 364.
Activate the desired events:
INTO The alarm occurs. Status = INTO.
ACK Acknowledgement by the user has been done. Status = ACK.
OUTOF Alarm state terminated. Status = OUTOF.

Each alarm class can get assigned own colors and bitmaps, which will be used for the differen-
tiation of the alarms in the visualization element alarm table Ä Chapter 1.4.3.5.26 “Alarm table”
on page 684. Select a Foreground color and Background color for the possible events INTO,
ACK and OUTOF.
The standard dialog for selecting a color will open as soon as you perform a mouse-click on the
color symbol. For selecting a bitmap a mouse-click on the grey rectangle will open the standard
dialog for selecting a file.

Alarm groups
Alarm groups are used for organizing the available alarms. Each alarm is definitely assigned to
right one alarm group and is managed by this group. All alarms of a group can get assigned a
common deactivation variable and common parameters regarding the alarm saving. Regard that
even a single alarm must be configured within an alarm group.
A hierarchical structure of alarm groups can be defined via Folder elements. When a alarm
group is selected in the configuration tree, automatically the dialog Alarm group will be dis-
played:

In the field “Description” you can enter a name for the alarm group.
As “Deactivation variable” a boolean project variable can be defined. At a rising edge on this
variable the alarm creation for all alarms of the group will be deactivate, at a falling edge it will
be re-activated.
Via button [Add] an alarm can be added to the group. A new line in the table window will be
inserted and there the following parameters are to be set:
Expression: Enter here the project variable or an expression (e.g. "a + b") to which the alarm
should refer. It is recommended to use the input assistant <F2> or the "Intellisense" function for
a correct entry Ä Chapter 1.4.1.3.6 “Intellisense function” on page 295.

Alarm events for
actions

Colors/Bitmaps
for class <class
name>

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US368

Type: The alarm types listed in the following can be used. For each type regard the appropriate
comment regarding the definitions to be done in the area beyond the table !
● DIG=0 Digital alarm, active as soon as the expression gets FALSE.
● DIG=1 Digital alarm, active as soon as the expression gets TRUE.
● LOLO Analog alarm, active as soon as the value of the expression falls below the Value

defined for Alarm type LOLO. You can define a tolerance (Deadband). As long as the
expression value is within the dead band, no alarm will be activated, even if the LOLO-value
has been falling below the limit.

● LO corresponding to LOLO
● HI Analog alarm, active as soon as the expression exceeds the Value defined for Alarm type

HIHI. You can define a tolerance (Deadband). As long as the expression value is within the
dead band, no alarm will be activated, even if the HI value has exceeded the limit.

● HIHI corresponding to HI
● DEV- Deviation from the target value; Alarm gets active as soon as the value of the

expression falls below the value defined for Alarm type DEV- plus the percentage deviation.
Percentage deviation = target value * (deviation in %) / 100.

● DEV+ Deviation from the target value); Alarm gets active as soon as the value of the
expression exceeds the value defined for Alarm type DEV+ plus the percentage deviation.
Percentage deviation = target value * (deviation in %) / 100.

● ROC Rate of Change per time unit; Alarm gets active as soon as the expression deviates
strongly from the previous value. The limit value for activating an alarm is defined by the
number of value changes (Rate of changes) per second, minute or hour (units per).

Class: Choose the desired alarm class. The selection list will offer all classes which have
been defined in the alarm class configuration before the last saving of the project Ä Chapter
1.4.1.4.2.3 “Alarm classes” on page 364.
Priority: Here you can define a priority level 0-152. 0 is the highest priority. The priority will
impinge on the sorting of the alarms within the alarm table.
Message: Define here the text for the message box, which will appear in case of an alarm. This
box must be confirmed by the user with OK, but this OK will not automatically acknowledge
the alarm ! For confirming (acknowledge) the alarm the alarm table must be accessed. This
is possible via the visualization element alarm table or via the date of the alarm entry in the
table. This date can be read from a log file which can be created optionally. Regard that, when
visualizing the alarms in an alarm table element in a visualization, the message text defined
here might be overwritten by a corresponding text entry from an language file in xml-format,
which is specified in the visualization for the purpose of dynamic language switching Ä Chapter
1.4.3.8.3 “Dynamic language switching” on page 709.
Deactivation: Here a project variable can be entered, which at a rising edge will deactivate any
creation of the alarm. Regard however, that this setting Alarm group' will be overwritten by the
entry which might be found in the field 'Deactivation variable'.

Alarm saving
For each alarm group a file can be defined, in which the alarm events are stored, if (!) a
'Save' action has been assigned to the class in the alarm class configuration dialog Ä Chapter
1.4.1.4.2.3 “Alarm classes” on page 364.
Select the alarm group in the configuration tree and open the dialog tab 'Alarm saving':

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 369

The following definitions are possible:
● Filepath: Directories path of the file which is defined in Filename; via button "..." you get the

standard dialog for selecting a directory. If the target-specific option 'Alarmhandling on PLC'
is activated, this path will be ignored an the file will be saved in the download directory of the
PLC Ä Chapter 1.4.1.4.7.3 “Target settings in category visualization” on page 388.

● Filename: Name of the file which should save the alarm events (e.g. "alarmlog"). Automat-
ically a file will be created which gets the name defined here plus an attached digit and
which has the extension ".alm". The digit indicates the version of the log-file. The first file
gets a "0"; each further file, which will be created according to the defined File change
event, will be numbered with 1, 2 etc. (Examples: "alarmlog0.alm", "alarmlog1.alm).

● File change event: Define here the event which will cause the creation of a new file for
alarm-saving. Possible entries: Never, after one Hour, after one Day, after one Week, after
one Month, at a rising edge of the variable defined in field Triggervariable, when the number
of records in the file as defined in Number of records gets exceeded.

● Triggervariable resp. Number of records: see above, File change event.
● Delete old files after .. Hours: Number of days since the day of creation, after which all alarm

log-files except from the actual one should be deleted.

The log-file (History) contains the following entries:
See the column types and exemplary entries for two alarms.

Date/
Time
in
DWO
RD

Date Time Event Expre
ssion

Alarm
type

Limit Toler-
ance

Cur-
rent
value

Class Pri-
ority

Mes-
sage

10469
63332

6.3.03 16:08:
52

INTO PLC_
PRG.
b

LO -30 5 -31 Alarm
_high

0 Tem-
pera-
ture !

10469
63333

6.3.03 16:08:
53

ACK PLC_
PRG.
n

HIHI 35 Warnn
g

9 Rising
Temp.
!

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US370

1046963332,6.3.03 16:08:52,INTO,PLC_PRG.ivar5,HIHI,,,, 9.00,a_class2,0,
1046963333,6.3.03 16:08:53,INTO,PLC_PRG.ivar4,ROC,2,,, 6.00,a_class2,2,
1046963333,6.3.03 16:08:53,INTO,PLC_PRG.ivar3,DEV-,,,, -6.00,a_class2,5,
1046963334,6.3.03 16:08:54,INTO,PLC_PRG.ivar2,LOLO,-35,,3, -47.00,warning,10,warning:
low temperature !
1046963334,6.3.03 16:08:54,INTO,PLC_PRG.ivar1,HI,20,,5, 47.00,a_class1,2,temperature to
high ! Acknowledge !

Example
appearance of
the log-file

Alarm configuration 'Extras' 'Settings'
The dialog Alarm configuration settings opens on the command 'Extras' 'Settings' in the Alarm
Configuration:

Here you set the formatting for the representation of the alarms in the log-file. Define the format
according to the following syntax. Dashes and colons are to be set in inverted commas:
for date: dd'-'MM'-'yyyy -> e.g. "12.Jan-1993"
for time: hh':'mm':'ss (12-hours format) -> e.g. "01:10:34" or HH':'mm':'ss (24-hours format) ->
e.g. "13:10:34"

The usage of this dialog corresponds to that used for doing the language settings of a visualiza-
tion object Ä Chapter 1.4.3.8 “Language switching” on page 706.
Choose here a language file (*.vis or *.tlt) which should be used for the alarm configuration texts
when the Option for the desktop is changed Ä Chapter 1.4.1.2.2.5 “Options for the desktop”
on page 205. Make sure that for this purpose the language file i.a. contains the translations for
the text strings of the alarm configuration. See also: 'Project' 'Translate into another language'
Ä Chapter 1.4.1.2.3.15 “'Project' 'Translate into another language'” on page 233.
Alternatively you can define dynamic language switching by specifying a special language file in
xml-format, like it is used for visualization elements. Note however that the actual settings only
concern the display of the alarm messages. If the alarm configuration is visualized by an alarm
table element in a visualization object, there the separate visualization language settings will be
valid!

Deactivate alarm evaluation in online mode: If this online setting is set, there will be no alarm
handling in online mode. This means that no alarm evaluation corresponding to the current
alarm configuration will be done and no alarms will be displayed. This might be desired in
certain environments in order to save computing time.

1.4.1.4.3 Library manager
Overview

The library manager shows all libraries that are connected with the current project. The POUs,
data types, and global variables of the libraries can be used the same way as user-defined
POUs, data types, and global variables.
The library manager is opened with the 'Window' 'Library Manager' command. Information con-
cerning included libraries is stored with the project and can be viewed in the dialog 'Informations
about external library'. To open this dialog select the corresponding library name in the library
manager and execute the command 'Extras' 'Properties'.
Libraries can contain pragma instructions in the declaration part, which effect that when the
library is included in a project, not the complete declaration part gets displayed Ä Chapter
1.4.1.3.10.3 “Pragmas for controlling the display of library declaration parts” on page 312. Thus
particular variable declarations or comments can be "concealed" from the user.

Category date/
time

Language

Online

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 371

The window of the library manager is divided into areas by screen dividers. The libraries
attached to the project are listed in the upper left area.
Depending on which register card has been selected, there is a listing of the POUs , Data types,
Visualizations or Global variables of the library selected in the upper area. Folders are opened
and closed by doubleclicking the line or pressing <Enter>.
There is a plus sign in front of closed folders, and a minus sign in front of opened folders.
If a POU is selected by clicking the mouse or selecting with the arrow keys then the declaration
of the POU will appear in the upper right area of the library manager; and in the lower right is
the graphic display in the form of a black box with inputs and outputs.
With data types and global variables, the declaration is displayed in the right area of the library
manager.

See also:
Standard library Ä Chapter 1.4.1.4.3.2 “Standard library” on page 372

User-defined libraries Ä Chapter 1.4.1.4.3.3 “User-defined libraries” on page 372

'Insert' 'Additional Library' Ä Chapter 1.4.1.4.3.4 “'Insert' 'Additional Library'” on page 373

Standard library
The library with "standard.lib" is always available. It contains all the functions and function
blocks which are required from the IEC61131-3 as standard POUs for an IEC programming
system. The difference between a standard function and an operator is that the operator is
implicitly recognized by the programming system, while the standard POUs must be tied to the
project (standard.lib).
The code for these POUs exists as a C-library.

User-defined libraries
If a project is to be compiled in its entity and without errors, then it can be saved in a library
with the 'Save as' command in the 'File' menu. The project itself will remain unchanged. An
additional file will be generated, which has the default extension ".lib". This library afterwards
can be used and accessed like e.g. the standard library.
For the purpose to have available the POUs of a project in other projects, save the project as
an Internal Library *.lib. This library afterwards can be inserted in other projects using the library
manager.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US372

Regard the possibility to define via pragmas to what extent the declaration part
of the library should be visible in the Library Manager when the library has been
included in a project.

If you have implemented POUs in other programming languages, e.g. C, and want to get them
into a library, then save the project using data type External Library *.lib). You will get the library
file but additionally a file with the extension "*.h". This file is structured like a C header file and
contains the declarations of all POUs, data types and global variables, which are available with
the library. If an external library is used in a project, then in simulation mode that implementation
of the POUs will be executed; but on the target the C-written implementation will be processed.
If you want to add licensing information to a library, then press button Edit license info... and
insert the appropriate settings in the dialog 'Edit Licensing Information'.

'Insert' 'Additional Library'
With this command you can attach an additional library to your project.
The command opens the dialog for opening a file. If the currently set directory does not contain
the desired library, you can select another directory in field Library directory where all directories
will be offered, which are defined in 'Project' 'Options' 'Directories' 'Libraries' (File type "*.lib").
Choose the desired library - multiple selection is possible - and confirm with OK. The dialog will
close and the library gets inserted to the Library Manager. Now you can use the objects of the
library in the project like user-defined objects.

Regard which libraries directories are currently defined in the project options Ä Chapter
1.4.1.2.2.7 “Options for directories” on page 207. If you insert a library from a directory which is
not defined there, the library will be entered with the respective path.
Example: You insert library standard.lib from directory "D:\codesys\libraries\standard".
● If this directory is defined in the project options, the entry in the library manager will be:

"standard.lib <date and time of file>".
● If in the project options there is just defined a directory "D:\codesys\libraries", then the entry

in the library manager will be: "standard\standard.lib <date and time of file>".
● If no matching directory at all is defined in the project options, then the complete path will be

entered: "D:\codesys\libraries\standard\standard.lib <date and time of file>".
When re-opening the project the libraries will be searched according to entries in the library
manager. So for example, if just the library file name is entered there, the library will be
searched in the libraries directories defined in the project options.
If libraries are not found when opening a project, you will be asked whether you want to change
the library directory defined in the project options. If you say no, a dialog will open providing
information on the libraries not found and the respective entries in the Library Manager will be
displayed red-colored. In this case you can select a red entry and choose command “Search”
from the context menu. Thus you will get the dialog for opening a file where you can browse for
the missing library and reload it immediately.

As soon as you include a library for which a license is needed and no valid license is found,
you may get a message that the library is only available in demo mode or that the library
is not licensed for the currently set target. You can ignore this message at that time or start
appropriate actions concerning the license. An invalid license will produce an error during
compile Ä Chapter 1.4.1.2.3.11 “'Project' 'Build'” on page 231. In this case a doubleclick on the
error message resp. <F4> will open the dialog 'License information' where you can start the
appropriate actions guided by a wizard Ä Chapter 1.4.6.1 “Overview” on page 733.

Library paths

Licensing

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 373

1.4.1.4.4 Log
Overview

The log stores in chronological order actions that occur during an Online session. For this
purpose a binary log file (*.log) is set up. Afterward, the user can store excerpts from the
appropriate project log in an external log.
The log window can be opened in either Offline or Online mode and can thus serve as a direct
monitor online.
See also:
'Window' 'Log' Ä Chapter 1.4.1.4.4.2 “'Window' 'Log'” on page 374

Menu Log Ä Chapter 1.4.1.4.4.3 “Menu log” on page 375

'Window' 'Log'
To open, select the menu item 'Window' 'Log' or select entry 'Log' in the Resources tab.

In the log window, the file name of the currently displayed log appears after Log. If this is the log
of the current project, the word "(Internal)" will be displayed.
Registered entries are displayed in the log window. The newest entry always appears at the
bottom.
Only actions belonging to categories that have been activated in the 'Filter' field of the menu
'Project' 'Options' 'Log' will be displayed Ä Chapter 1.4.1.2.2.8 “Options for log” on page 208.
Available information concerning the currently selected entry is displayed below the log window.
Category: The category to which the particular log entry belongs. The following four categories
are possible:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US374

● User action: The user has carried out an Online action (typically from the Online menu).
● Internal action: An internal action has been executed in the Online layer (e.g. Delete Buffers

or Init debugging).
● Status change: The status of the runtime system has changed (e.g. from Running to Break,

if a breakpoint is reached).
● Exception: An exception has occurred, e.g. a communication error.
Description: The type of action. User actions have the same names as their corresponding
menu commands; all other actions are in English and have the same name as the corre-
sponding OnlineXXX() function.

Info: This field contains a description of an error that may have occurred during an action. The
field is empty if no error has occurred.
System time: The system time at which the action began, to the nearest second.
Relative time: The time measured from the beginning of the Online session, to the nearest
millisecond.
Duration: Duration of the action in milliseconds.

Menu log
When the log window has the input focus, the menu option Log appears in the menu bar instead
of the items 'Extras' and 'Options'.
The menu includes the following items:
Load: An external log file *.log can be loaded and displayed using the standard file open dialog.
The log that is present in the project will not be overwritten by the command. If the log window
is closed and later opened again, or a new Online session is started then the version that is
loaded will again be replaced by the project log.
Save: This menu item can only be selected if the project log is currently displayed. It allows an
excerpt of the project log to be stored in an external file. For that, the following dialog will be
displayed, in which the Online sessions to be stored can be selected:

After successful selection, the standard dialog for storing a file opens ('Save Log').
Display Project Log: This command can only be selected if an external log is currently dis-
played. It switches the display back to the project log

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 375

1.4.1.4.5 PLC browser
Overview

The PLC browser is a text-based control monitor (terminal). Commands for the request of
specific information from the controller are entered in an entry line and sent as string to the
controller. The returned response string is displayed in a result window of the browser. This
functionality serves diagnostic- and debugging purposes.
Ä Chapter 1.4.1.4.5.3 “Command entry in the PLC browser” on page 376

General remarks concerning PLC browser operation
Select the entry PLC-Browser in the Resources tab-control. It will be available there if it is
activated in the current target settings (category networkfunctionality).

The browser consists of a command entry line and a result/display window.
In a selection box the input line displays a list of all the commands entered since the start of
the project (input history). They are available for re-selection until the project is closed. Only
commands, which differ from those already existing, are added to the list.
The entered command is sent to the controller with [Enter]. If there is no Online connection,
the command is displayed in the result window in the same way as it is sent to the controller,
otherwise the response from the controller is shown there. If a new command is sent to the
controller, the content of the result window is deleted.
Commands can be entered in the form of command strings, the use of macros is possible
as well Ä Chapter 1.4.1.4.5.3 “Command entry in the PLC browser” on page 376 Ä Chapter
1.4.1.4.5.4 “Use of macros during the command entry in PLC-browser” on page 378.

Command entry in the PLC browser
Basically the PLC browser makes available the standard commands hard-coded in the runtime
system. It is concerned with functions for direct memory manipulation, for the output of project-
and status functions as well as for runtime monitoring. They are described in the browser's
ini-file, which is an integral part of the Target Support Package. These standard commands
can be further supplemented by specialized ones, e.g. self-diagnostic functions or other status
messages of the control application. The expansion of the command list must be carried out
both in the customer interface in the runtime system as well as through additional entries in the
Browser ini-file.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US376

When opening the project the command list available in the PLC browser is generated based
on the entries in the Browser ini-file. It can be accessed as input help using the [...] key
in the dialog "Insert standard command" or using [F2]. Also the command 'Insert' 'Standard
commands' can be used to get the command list. A command can be typed in manually to the
command line or it can be selected from the list by a double-click on the appropriate entry.
The general command syntax is:
<KEYWORD><LEER><KEYWORD-DEPENDEND PARAMETERS>
The keyword is the command. With which parameters it can be expanded is described in the
respective tooltip in the entry help window.
The command, which has been sent, is repeated in the output data window, the controller's
response appears below it.

Request for the project Id from the controller with the command "pid"
Entry in command line:
pid
Output in result window:
pid
Project-ID: 16#0025CFDA

Example

A help text can be supplied for each standard command with ?<BLANK><KEYWORD>. This is
similarly defined in the ini-file.
The following commands are firmly integrated in the runtime system and contained in the ini-file
with the corresponding entries for entry help, tooltips and help:

Command Description
? The runtime system supplies a list of the available commands.

The list is independent of the status of the description files of
the target system.

mem Hexdump of a memory area
Syntax 1: mem <start address> <end address>

Addresses can be entered decimal, hexadecimal (Prefix 16#)
or as a macro.

memc Hexdump relative to the start address of the code in the con-
troller; like mem, the data are added to the code area start
address.

memd Hexdump relative to the data base address in the controller;
like mem, the data are added to the data area start address.

reflect Reflect current command line, for test purposes.

dpt Read and display data-pointer table.

ppt Read and display POU table.

pid Read and display project Id.

pinf Read and display project info (see 'Project' 'Project Info').

tsk Show list of IEC-tasks incl. task infos defined in the project.

startprg Start PLC program ('Online' 'Start').

stopprg Stop PLC program ('Online' 'Stop').

resetprg Reset PLC program. Only not-retentive data get initialized.
('Online' 'Reset).

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 377

Command Description
resetprgcold Reset PLC program cold. Retentive data also get initialized.

('Online' 'Reset (cold)').

resetprgorg Reset PLC program original. The current application program
as well as all data (incl. retentive and persistent) are deleted.

('Online' 'Reset (origin)').

reload Reload boot project.

getprgprop Read and display program properties (Name, title, version
author, date).

getprgstat Read and display program status (e.g. "run", "stop", last error,
flags)

filedir File command "dir". List of files in the PLC directory.

filecopy Copy file [from] [to].
Example: "filecopy filename.txt filename2.txt".

filerename Rename files on PLC [old] [new].
Example: filerename oldname.txt newname.txt".

filedelete Delete file on PLC;
Example: "filedelete file.xml".

saveretain Save retain variables. The name of the save file will be dis-
played afterwards.

restoreretain Load retain variables. The name of the save file, from which
the variables values are restored, will be displayed.

setpwd Set password on controller; Syntax: setpwd <password>
[level], e.g. "setpwd abcde 0"
<level> can be "0" (default) just valid concerning logins from
the programming system, or "1" valid for all applications

delpwd Delete password on PLC.

Please regard:
● The first word of the command sequence entered is interpreted as keyword (<KEYWORD>).
● If the first word of the command entry is not recognized by the controller, the response

'Keyword not found' will appear in the result window.
● If a keyword is preceded by a "?<SPACE>" (e.g. "? mem"), the ini-file will be searched for

the existence of a help section to this keyword. If one is available, nothing is sent to the
controller, but only the help text is displayed in the output data window.

Use of macros during the command entry in PLC-browser
If a command associated with a macro is entered in the command line, this is expanded
before it is sent to the controller. Then the response in the result window appears in a similarly
expanded form.
The entry syntax is: <KEYWORD><macro>
<KEYWORD> is the command.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US378

%P<NAME> If NAME is a POU-name, the expression is expanded to <POU-Index>,
otherwise there is no alteration

%V<NAME> If NAME is a variable name, the expression is expanded to
#<INDEX>:<OFFSET>, otherwise there is no alteration (this notation
#<INDEX>:<OFFSET> is interpreted by the controller as a memory
address)

%T<NAME> If NAME is a variable name, the expression is expanded to <VARIA-
BLENTYP>, otherwise there is no alteration.

%S<NAME> If NAME is a variable name, the expression is expanded to
<SIZEOF(VAR)>, otherwise there is no alteration.

The % character is ignored if the escape symbol \ (Backslash) is placed in front. The escape
symbol as such is only transmitted if written \\.

Entry in command line: (memory dump of the variable .testit ?)
mem %V.testit
Output in result window:
mem #4:52
03BAAA24 00 00 00 00 CD CD CD CDÍÍÍÍ

Example

Further PLC browser options
In the 'Extras' menu or in the PLC browser's toolbar there are the following commands for
handling the command entry or history list:
With 'History forward' and 'History backward' you scroll backwards and forwards through the
query results already carried out. The history recording is continued until you leave the project.
With 'Cancel' you break off a query which has been initiated.
With 'Save history list' you save the query results carried out up until that point in an external
text file. The dialogue 'Save file as' will appear, in which you can enter a file name with the
extension „.bhl" (Browser History List).
'Print last command' opens the standard dialogue to print. The current query plus the output
data in the message window can be printed.

1.4.1.4.6 Sampling trace
Overview and configuration
Overview

Sample tracing will be available as an object in the resources, if it is activated in the target
settings (category 'General'). It can be used to trace the progression of values for variables is
traced over a certain time. These values are written in a ring buffer (trace buffer). If the memory
is full, then the "oldest" values from the start of the memory will be overwritten. As a maximum,
20 variables can be traced at the same time. A maximum of 500 values can be traced per
variable.
Since the size of the trace buffer in the PLC has a fixed value, in the event of very many or very
wide variables (DWORD), fewer than 500 values can be traced.

If 10 WORD variables are traced and if the memory in the PLC is 5000 bytes long, then, for
every variable, 250 values can be traced.

Example

Macros

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 379

In order to be able to perform a trace, open the object for a 'Sampling Trace' in the 'Resources'
register card in the Object Organizer Ä Chapter 1.4.1.2.1.3 “Object organizer” on page 199.
Create or load an appropriate trace configuration and define the variables to be traced.
After you have created the configuration and have started the trace in the PLC with 'Start Trace',
then the values of the variables will be traced. With 'Read Trace', the final traced values will
be read out and displayed graphically as curves Ä Chapter 1.4.1.4.6.2.1 “'Extras' 'Start Trace'”
on page 382 Ä Chapter 1.4.1.4.6.2.2 “'Extras' 'Read Trace'” on page 382.
A Trace (variable values and configuration) can be saved and reloaded in project format (*.trc)
or in XML format (*.mon). Just the configuration can be stored and reloaded via a *.tcf-file.
Various traces can be available in a project for getting displayed. They are listed in a selection
list ('Trace') in the upper right corner of the trace window. You can select one of those to be the
currently used trace configuration.

If a task configuration is used for controlling the program, the trace functionality
refers to the debug task Ä Chapter 1.4.1.4.8.1 “Overview” on page 390.

'Extras' 'Trace Configuration'
With this command you will be given the dialog box for entering the variables to be traced, as
well as diverse trace parameters for the Sampling Trace. The dialog can also be opened by a
double click in the grey area of the dialog Sampling Trace.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US380

First define a name for the trace configuration (Trace Name). This name will be added to
the selection list 'Trace' in the upper right corner of the Trace window, as soon as you have
confirmed and closed the configuration dialog with OK. Optionally enter a comment.
The list of the Variables to be traced is initially empty. In order to append a variable the variable
must be entered in the field under the list. Following this, you can use the Add button or the
[Enter] to append the variable to the list. You can also use the input assistant Ä Chapter
1.4.1.2.5.11 “'Edit' 'Input assistant'” on page 276. The use of enumeration variables is possible.
A variable is deleted from the list when you select the variable and then press the [Delete]
button.
A Boolean or analog variable (also an enumeration variables) can be entered into the field
Trigger Variable. The input assistance can be used here. The trigger variable describes the
termination condition of the trace.
In Trigger Level you enter the level of an analog trigger variable at which the trigger event
occurs. You also can use an ENUM constant here. When Triggeredgepositive is selected the
trigger event occurs after an ascending edge of the Boolean trigger variable or when an analog
variable has passed through the trigger level from below to above. Negative causes triggering
after a descending edge or when an analog variable went from above to below. Both causes
triggering for both descending and ascending edges or by a positive or negative pass, whereas
none does not initiate a triggering event at all.
Trigger Position is used to set the percentage of the measured value which will be recorded
before the trigger event occurs. If, for example, you enter 25 here then 25% of the measured
values are shown before the triggering event and 75% afterwards and then the trace is termi-
nated.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 381

The field Sample Rate is used set the time period between two recordings in milliseconds resp.,
if supported by the target system, in microseconds. The default value "0" means one scanning
procedure per cycle.
Select the mode for recalling the recorded values: With Single the Number of the defined
samples are displayed one time. With Continuous the reading of the recording of the defined
number of measured values is initiated anew each time. If, for example, you enter the number
'35' the first display contains the first measured values 1 to 35 and the recording of the next
35 measured values (36-70) will then be automatically read, etc.Manual selection is used to
read the trace recordings specifically with 'Extras' 'Read Trace' Ä Chapter 1.4.1.4.6.2.2 “'Extras'
'Read Trace'” on page 382.
The recall mode functions independently of whether a trigger variable is set or not. If no trigger
variable is set the trace buffer will be filled with the defined number of measured values and the
buffer contents will be read and displayed on recall.
[Save] is used to store the trace configuration which has been created in a file. The standard
window "File save as" is opened for this purpose.
Stored trace configurations can be retrieved using [Load]. The standard window "File open" is
opened for this purpose.

[Save] and [Load] in the configuration dialog only relates to the configuration,
not to the values of a trace recording (in contrast to the menu commands 'Save
Values' and 'Load Trace' Ä Chapter 1.4.1.4.6.4.1 “'Save Values'” on page 385
Ä Chapter 1.4.1.4.6.4.2 “'Load Values'” on page 385).

If the field Trigger Variable is empty, the trace recording will run endlessly and can be stopped
by 'Extras' 'Stop Trace' Ä Chapter 1.4.1.4.6.2.4 “'Extras' 'Stop Trace'” on page 383.

Selection of the variables to be displayed
The comboboxes to the right, next to the window for displaying curves trace variables defined in
the trace configuration. If a variable is selected from the list, then after the trace buffer has been
read the variable will be displayed in the corresponding color (Var 0 green, etc.). Variables can
also be selected if curves are already displayed.
A maximum of up to eight variables can be observed simultaneously in the trace window.

Generating a trace sampling
'Extras' 'Start Trace'

Symbol:
With this command the trace configuration is transferred to the PLC and the trace sampling is
started in the PLC.

'Extras' 'Read Trace'
Symbol
With this command the present trace buffer is read from the PLC, and the values of the selected
variables are displayed.

'Extras' 'Auto Read'
With this command the present trace buffer is read automatically from the PLC, and the values
are continuously displayed.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US382

If the trace buffer is automatically read, then a check (ü) is located before the menu item.

'Extras' 'Stop Trace'
Symbol:
This command stops the Sampling Trace in the PLC.

Looking at the trace sampling
Display of the sampling trace

If a trace buffer is loaded (), then the values of all variables to be displayed can be read
out ('Extras' 'Read Trace' or 'Extras' 'AutoRead') and will be displayed accordingly Ä Chapter
1.4.1.4.6.2.1 “'Extras' 'Start Trace'” on page 382 Ä Chapter 1.4.1.4.6.2.2 “'Extras' 'Read Trace'”
on page 382 Ä Chapter 1.4.1.4.6.2.3 “'Extras' 'Auto Read'” on page 382. If no scan frequency
has been set, then the X axis will be inscribed with the continuous number of the traced
value. The trace buffer will be deleted as soon as the trace sampling is stopped Ä Chapter
1.4.1.4.6.2.4 “'Extras' 'Stop Trace'” on page 383.
The status indicator of the trace window (first line) indicates whether the trace buffer is full and
when the trace is completed.
If a value for the scan frequency was specified, then the x axis will specify the time of the traced
value. The time is assigned to the "oldest" traced value. In the example, e.g., the values for the
last 25 seconds are indicated.
The Y axis is inscribed with values in the appropriate data type. The scaling is laid out in a way
that allows the lowest and the highest value to fit in the viewing area. In the example, Var 0 has
taken on the lowest value of 6, and the highest value of 100: hence the setting of the scale at
the left edge.
If the 'Extras' 'Trace Configuration' Ä Chapter 1.4.1.4.6.1.2 “'Extras' 'Trace Configuration'”
on page 380 is met, then a vertical dotted line is displayed at the interface between the values
before and after the appearance of the trigger requirement.

'Extras' 'Cursor Mode'
The easiest way to set a cursor in the monitoring area is to click there with the left mouse
button. A cursor appears and can be moved by the mouse. At the top of the monitoring window
the current x-position of the cursor is displayed. In the fields next to 'Var 0', 'Var 1', ..., 'Var n' the
value of the respective variable is shown.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 383

Another way is the command 'Extras' 'Cursor mode'. With this command two vertical lines will
appear in the Sampling Trace. First they are laying one on the other. One of the lines can be
moved to the right or to the left by the arrow keys. By pressing [Ctrl] + [left] or [Ctrl] + [right] the
speed of the movement can be increased by factor 10.
If additionally [Shift] is pressed, the second line can be moved, showing the difference to the
first one.

'Extras' 'Multi Channel'
With this command you can alternate between single-channel and multi-channel display of the
Sampling Trace. In the event of a multi-channel display, there is a check (ü) in front of the menu
item.
The multi-channel display has been preset. Here the display window is divided into as many as
eight display curves. For each curve the maximum and the minimum value are displayed at the
edge.
In a single-channel display, all curves are displayed with the same scaling factor and are
superimposed. This can be useful when displaying curve abnormalities.

'Extras' 'Show grid'
With this command you can switch on and off the grid in the graphic window. When the grid is
switched on, a check symbol will appear next to the menu item.

'Extras' 'Y Scaling'
With this command you can change the preset Y scaling of a curve in the trace display. By
doubleclicking on a curve you will also be given the dialog box 'Y-scaling'.
As long as option Automatic is activated, the default scaling will be used, which depends on
the type of the used variable. In case of enumeration variables the enumeration values will be
displayed at the scale. In order to change the scaling, deactivate option 'Automatic' and enter
the number of the respective curve (Channel) and the new maximum (maximum y scale) and
the new minimum value (minimum y scale) on the y axis.
The channel and the former value are preset.

'Extras' 'Stretch'
Symbol:
With this command you can stretch (zoom) the values of the Sampling Trace that are shown.
The beginning position is set with the horizontal picture adjustment bar. With repeated stretches
that follow one-after-another, the trace section displayed in the window will increasingly shrink in
size.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US384

This command is the counterpart to 'Extras' 'Compress' Ä Chapter 1.4.1.4.6.3.7 “'Extras' 'Com-
press'” on page 385.

'Extras' 'Compress'
Symbol:
With this command the values shown for the Sampling Trace are compressed; i.e., after this
command you can view the progression of the trace variables within a larger time frame. A
multiple execution of the command is possible.
This command is the counterpart to 'Extras' 'Stretch' Ä Chapter 1.4.1.4.6.3.6 “'Extras' 'Stretch'”
on page 384.

'Extras' 'Save trace values'
Use the commands of this menu to save traces (configuration + values) to files resp. to reload
them from files to the project. Besides that a trace can be saved in a file in ASCII format.

Regard the alternative way of storing and reloading traces by using the
commands of menu 'Extras' 'External Trace Configurations' (XML format,
*.mon-Datei) Ä Chapter 1.4.1.4.6.5 “'Extras' 'External Trace Configurations'”
on page 386!

'Save Values'
With this command you can save a Sampling Trace (values + configuration data). The dialog
box for saving a file is opened. The file name receives the extension "*.trc".
Be aware, that here you save the traced values as well as the trace configuration, whereas
Save trace in the configuration dialog only concerns the configuration data.
The saved Sampling Trace can be loaded again with 'Load Trace' Ä Chapter 1.4.1.4.6.4.2
“'Load Values'” on page 385.

Regard the alternative way of saving a trace by using the commands of menu
'Extras' 'External Trace Configurations' Ä Chapter 1.4.1.4.6.5 “'Extras' 'External
Trace Configurations'” on page 386.

'Load Values'
With this command a saved Sampling Trace (traced values + configuration data) can be
reloaded. The dialog box for opening a file is opened. Select the desired file with the "*.trc"
extension.
With 'Save Values' you can save a Sampling Trace Ä Chapter 1.4.1.4.6.4.1 “'Save Values'”
on page 385.

'Trace in ASCII-File'
With this command you can save a Sampling Trace in an ASCII file. The dialog box for saving a
file is opened. The file name receives the extension "*.txt". The values are deposited in the file
according to the following scheme:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 385

BODAS Trace
D:\BODAS\PROJECTS\TRAFFICSIGNAL.PRO
Cycle PLC_PRG.COUNTER PLC_PRG.LIGHT1
0 2 1
1 2 1
2 2 1
.....
If no frequency scan was set in the trace configuration, then the cycle is located in the first
column; that means one value per cycle has been recorded at any given time. In the other
respects, the entry here is for the point in time in ms at which the values of the variables have
been saved since the Sampling Trace has been run.
In the subsequent columns, the corresponding values of the trace variables are saved. At any
given time the values are separated from one another by a blank space.
The appertaining variable names are displayed next to one another in the third line, according to
the sequence (PLC_PRG.COUNTER, PLC_PRG.LIGHT1).

'Extras' 'External Trace Configurations'
Use the commands of this menu to save or reload traces (configuration + trace values) in files
resp. from files, to load a trace from the controller to the project or to set a certain trace as that
which should be used in the project.

Regard the alternative way of storing and reloading traces by using the com-
mands of menu 'Extras' 'Save trace values' (project format, *.trc-file, ASCII)
Ä Chapter 1.4.1.4.6.4 “'Extras' 'Save trace values'” on page 385!

'Save to file'
With this command a trace (configuration + values) can be saved in a file in XML format. For
this purpose the standard dialog for saving a file opens. Automatically the file extension *.mon
will be used.
A *.mon-file can be reloaded to a project with command 'Load from file' Ä Chapter 1.4.1.4.6.5.2
“'Load from File'” on page 386.

Regard the alternative way of storing and reloading traces by using the com-
mands of menu 'Extras' 'Save trace values' (Project format, *.trc-Datei, ASCII)
Ä Chapter 1.4.1.4.6.4 “'Extras' 'Save trace values'” on page 385!

'Load from File'
With this command a trace (configuration + values), which is available in a file in XML format
(*.mon, can be loaded into the project. The dialog for opening a file will open and you can
browse for files with extension *.mon. The loaded trace will be displayed and added to the
selection list in field 'Trace in the configuration dialog. If you want to set it as currently used
project trace configuration, use command 'Set as project configuration' Ä Chapter 1.4.1.4.6.5.5
“Set as project configuration” on page 387.
A *.mon-file can be created by using command 'Save to file' Ä Chapter 1.4.1.4.6.5.1 “'Save to
file'” on page 386.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US386

Regard the alternative way of saving a trace by using the commands of menu
'Extras' 'Save trace values' Ä Chapter 1.4.1.4.6.4 “'Extras' 'Save trace values'”
on page 385.

'Save to Target'
With this command in online mode a trace configuration, which is available in a file in XML
format (*.mon), can be loaded into the controller (target).
The standard dialog for opening a file will be available, where per default files with extension
*.mon will be displayed. Regard in this concern the possibility to save trace configurations in
*.mon-files (XML format) Ä Chapter 1.4.1.4.6.5.1 “'Save to file'” on page 386.

'Load from Target'
With this command the trace (configuration + values) which is currently used on the controller
can be loaded to the project. It will be displayed in the trace window and can be set as project
configuration Ä Chapter 1.4.1.4.6.5.5 “Set as project configuration” on page 387.

Set as project configuration
With this command the trace configuration which is currently selected in the list of available
traces (field 'Trace' in the trace window) can be set as active configuration within the project.
The selection list besides the currently used (top position) offers all traces which have been
loaded to the project by command 'Load from file' from *.mon-files (e.g. for the purpose of
viewing) Ä Chapter 1.4.1.4.6.5.2 “'Load from File'” on page 386.

1.4.1.4.7 Target settings
Overview

The "Target Settings" is an object of the 'Resources'. Here you define, which target shall be
used for the project and how it will be configured. If a new project is started with 'Project' 'New',
a dialog will open where the target, that means a predefined configuration for a target, has to be
set.

Dialog 'Target Settings'
The dialog 'Target Settings' will open automatically, when a new project is created. It also can
be opened by selecting the menu item 'Target Settings' in the register 'Resources' in the Object
Organizer.
Choose one of the target configurations offered at Configuration.
If you choose one of the installed configurations it depends on the entries in the target files,
which possibilities are left to customize this configuration in the dialogs.
If a configuration is selected, which is provided with the entry "HideSettings" in the corre-
sponding target file, you only can see the name of the configuration. Otherwise you can use the
visualization dialog to modify the given configuration Ä Chapter 1.4.1.4.7.3 “Target settings in
category visualization” on page 388.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 387

Please be aware, that each modification of the predefined target configuration
can cause severe changes in performance and behavior of the target!

Press <Default> if you want to reset the target settings to the standard configuration given by
the target file.

Target settings in category visualization

The items described for this tab can be available for each standard target.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US388

Dialog item Meaning
Display width in pixel
Display height in pixel

An area of the given width and height will be displayed in the
editor window when editing a visualization. Thus e.g. the size
of the screen on which the target visualization will run later,
can be regarded when positioning the visualization elements.
Use 8.3 file format
The file names of the bitmaps and language files which are
used in the visualization will be shortened to the 8.3-notation
format and loaded to the PLC in this format.

Alarmhandling in the PLC The task ALARM_TASK will be inserted automatically in the
task configuration. It will process an implicitely created ST-
code evaluating the status of the particular alarms and
if applicable executing the associated actions Ä Chapter
1.4.1.4.2.1 “Overview” on page 363. The ST-code needs auxil-
iary functions of library SysLibAlarmTrend.lib. This library will
be loaded automatically.
Additionally the implicitely needed libraries SysLibSockets.lib,
SysLibMem.lib, SysLibTime.lib, SysLibFile.lib are loaded.
These libraries must be supported by the target system.
Hint: The 'Alarm handling in the PLC' can be used even if no
web visualization has been activated. Even then the required
ST-code will be generated.

Store trend data in the PLC The trend handling in the PLC will be activated. The task
TREND_TASK will be inserted automatically in the task con-
figuration It will process an implicitely created ST-code for
recording the trend data in a ring buffer and - if option History
is activated in the trend element - for storing the values in a
file system.
The ST-code needs auxiliary functions of library SysLibAlarm-
Trend.lib. This library will be loaded automatically.
Additionally the implicitely needed libraries SysLibSockets.lib,
SysLibMem.lib, SysLibTime.lib, SysLibFile.lib are loaded.
These libraries must be supported by the target system.
Hint: 'Store Trend data....' can be used even if no web visuali-
zation has been activated. Even then the required ST-code will
be generated.

Activate system variable 'Cur-
rentVisu'

The system variable can be used for switching between visu-
alizations Ä Chapter 1.4.3.11 “System variables” on page 717.

Supported fonts in the target List of fonts which are supported by the target system.

Simplified input handling If activated: In 'Operation over the keyboard' the input han-
dling in visualizations is simplified Ä Chapter 1.4.3.9.2 “Oper-
ation over the keyboard” on page 715: [Tab] and [Space] are
not needed to get from one input field to the next one. The
selection is automatically given forward to the next field after
having terminated an input by [Return]. An input field also can
be reached via the arrow or [Tab] keys and then immediately
an input can be entered.
If not activated: [Tab] and [Space] must be used to get to the
next input field and to select this field for making possible an
input.

Web visualization If activated: All visualisation objects of the project are com-
piled for the usage as Web-Visualization objects Ä Chapter
1.4.5.1 “Overview” on page 721.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 389

Dialog item Meaning
Compression If activated: The following files for the web visualization, which

are to be transferred to the web server/ PLC, will be trans-
ferred in a packed format (zip-Format); otherwise in original
format:
● XML visualization files
● image files (only *.bmp, because with others no compres-

sion effect)
● language files (*.xml for dynamic texts, *.tlt, *.vis)
The files additionally to the existing file name get the exten-
sion ".zip". The dot in the existing name will be replaced by
an underscore (example: "PLC_VISU.xml" will be renamed to
"PLC_VISU_xml.zip")
No compression is done for the Java-archives (minml.jar, web-
visu.jar) and the main page webvisu.htm.

Prevent download of visuali-
zation files

If activated: When the project is downloaded, all files which
are used in the current visualization will not be downloaded to
the target system. Visualization files are only downloaded for
web visualization and can be bitmaps, language files and for
web visualization also XML description files.
Keyboard usage for tables
If this option is activated, in online mode the keyboard usage
of tables in the visualization (CODESYS HMI or web visualiza-
tion) is possible. Switching off this option will effect that no
code is generated for the key functions.

1.4.1.4.8 Task configuration
Overview

In addition to declaring the special PLC_PRG program, you can also control the processing of
your project using the task management.
A Task is a time unit in the processing of an IEC program. It is defined by a name, a priority
and by a type determining which condition will trigger the start of the task. This condition can be
defined by a time (cyclic, freewheeling) or by an internal or external event which will trigger the
task; e.g. the rising edge of a global project variable or an interrupt event of the controller.
For each task you can specify a series of programs that will be started by the task. If the task
is executed in the present cycle, then these programs will be processed for the length of one
cycle.
The combination of priority and condition will determine in which chronological order the tasks
will be executed.
Each task can be enabled or disabled explicitly.
For each task you can configure a watch dog (time control); the possible settings depend on the
target system.
Additionally there is the possibility to link System events (e.g. Start, Stop, Reset) directly with
the execution of a project POU.

The Task Configuration is found as an object in the Resources tab of the Object Organizer. The
Task editor is opened in a bipartited window.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US390

In the left part of the window the tasks are represented in a configuration tree. At the topmost
position you will always find the entry 'Taskconfiguration'. Below there are the entry 'System
events' and the entries for the particular tasks, represented by the task name. Below each task
entry the assigned program calls are inserted. Each line is preceded by an icon.
In the right part of the window a dialog will be displayed which belongs to the currently marked
entry in the configuration tree. Here you can configure the tasks (Task properties), program calls
(Program call) resp. define the linking of system events (System events). It depends on the
target which options are available in the configuration dialogs. They are defined by a description
file which is referenced in the target file. If the standard descriptions are extended by customer
specific definitions, then those will be displayed in an additional tab 'Parameter' in the right part
of the window.

Please do not use the same string function (see standard.lib) in several tasks,
because this may cause program errors by overwriting.

For the execution, the following rules apply:
● That task is executed, whose condition has been met; i.e., if its specified time has expired,

or after its condition (event) variable exhibits a rising edge.
● If several tasks have a valid requirement, then the task with the highest priority will be

executed.
● If several tasks have valid conditions and equivalent priorities, then the task that has had the

longest waiting time will be executed first.
● The processing of the program calls will be done according to their order (top down) in the

task editor.
● Depending on the target system PLC_PRG might get processed in any case as a free-

wheeling task, without being inserted in the task configuration tree.

'Insert' 'Insert Task' or 'Insert' 'Append Task'
With this command you can insert a new task into the Task Configuration. The entries each
consist of a symbol and the task name.
If a task or the entry 'System events' is selected, then the 'Insert Task' command will be at your
disposal. The new task will be inserted after the selected one. If the entry 'Task Configuration' is
selected, then the 'Append Task' is available, and the new task will be appended to the end of
the existing list. The maximum number of tasks is defined by the target system. Please regard
that a certain number of tasks already might be reserved for modules of the PLC Configuration
(defined in the *.cfg file).
When inserting a task, the dialog for setting the Task attributes will be opened:

Which task is
being pro-
cessed?

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 391

Insert the desired attributes:
Name: a name for the task; with this name the task is represented in the configuration tree; the
name can be edited there after a mouseclick on the entry or after pressing the <Space> key
when the entry is selected.
Priority (0-31): a number between 0 and 31; 0 is the highest priority, 31 is the lowest

● cyclic (): The task will be processed cyclic according to the time definition given in the field
'Interval' (see below).

● freewheeling (): The task will be processed as soon as the program is started and at the
end of one run will be automatically restarted in a continuous loop. There is no cycle time
defined.

● triggered by event (): The task will be started as soon as the variable, which is defined in
the Event field gets a rising edge.

● triggered by external event (): The task will be started as soon as the system event,
which is defined in the Event field, occurs. It depends on the target, which events will be
supported and offered in the selection list. (Not to be mixed up with system events

● Interval (for Type 'cyclic' or 'triggered by external event' if the event requires a time entry):
the period of time, after which the task should be restarted. If you enter a number, then you
can choose the desired unit in the selection box behind the edit field: milliseconds [ms] or
microseconds [µs]. Inputs in [ms]-format will be shown in the TIME format (e.g. "t#200ms")
as soon as the window gets repainted; but you also can directly enter the value in TIME
format. Inputs in [ms] will always be displayed as a pure number (e.g. "300").

● Event (for Type 'triggered by event' or 'triggered by external event'): a global variable which
will trigger the start of the task as soon as a rising edge is detected. Use button ... or the
input assistant <F2> to get a list of all available global variables.

Possibly the target system defines Singleton-Events. These are events, which only allow to start
one single task. Whether such an event starts several tasks will be checked during compilation
of the project. The check regards the data address of the event variable, not on the name.
For example: If the target system defines %MX1.1 and %IB4 as Singleton-Events, using the
following variables as event variables will produce two errors (a and b as well as c and d each
have the same address).

Types:

Properties for
event triggered
tasks:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US392

 VAR_GLOBAL
a AT %MX1.1: BOOL;
b AT %MX1.1: BOOL;
c AT %MB4: BOOL;
d AT %MD1: BOOL;
END_VAR
If there is no entry in both fields 'Interval' and 'Event', then the task interval will depend on which
runtime system is used (see run time documentation); e.g. in this case for CODESYS SP NT
V2.2 and higher an interval of 10 ms will be used).

For each task a time control (watchdog) can be configured. If the target system supports an
extended watchdog configuration, possibly there are predefined upper and lower limits and a
default for the watchdog time are defined, as well as a time definition in percent.

Activate watchdog: When this option is activated () then regarding the currently set sensitivity
(see below), the task will be terminated in error status as soon as the processing takes longer
than defined in the 'Time' field (see below).

NOTICE!
Target system CODESYS SP 32-bit Full switches off the watchdog function
when the flow control is active or when the execution currently is stopped at a
breakpoint.

Time (e.g.: t#200ms): Watchdog time; after the expiration of this term, regarding the currently
set sensitivity (see below), the watchdog will be activated unless the task has not been termi-
nated already. Depending on the target system the time has to be entered as percent of the task
interval. In this case the unit selection box is greyed and shows "%".
Sensitivity: Here you can enter in integer numbers at which overrun of the watchdog time an
error should be generated. The default entry is "1", i.e. at the first overrun of the watchdog time
an error occurs. Attention: If "0" is entered, the watchdog will be deactivated!

Additionally to these standard attributes for the currently selected task manufacturer specific
attributes might be displayed in a second tab "Parameters". This will be the case if it is defined
in the target-specific description file for the task configuration.

'Insert' 'Insert Program Call' or 'Insert' 'Append Program Call'
With these commands you will open the dialog box for entering a program call to a task in the
Task Configuration. Each entry in the task configuration tree consists of a symbol () and the
program name.
With 'Insert Program Call', the new program call is inserted before the selected program call,
and with 'Append Program Call' the program call is appended to the end of the existing list or
program calls.

Watchdog

Manufacturer
specific attrib-
utes:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 393

In the field 'program call' specify a valid program name out of your project or open the input
assistant with the Select button to select a valid program name Ä Chapter 1.4.1.2.5.11 “'Edit'
'Input assistant'” on page 276. The program name later also can be modified in the configuration
tree. For this select the entry and press the <Space> key or just perform a mouseclick to open
an editor field. If the selected program requires input variables, then enter these in their usual
form and of the declared type (for example, prg(invar:=17)).
The processing of the program calls later in online mode will be done according to their order
(top down) in the task editor.

Do not use the same string function in several tasks, because in this
case values might be overwritten during processing of the tasks Ä Chapter
1.4.1.4.3.2 “Standard library” on page 372.

System events
Instead of a "task" also a "system event" can be used to call a POU of your project. The
available system events are target specific (definition in target file). The list of the standard
events of the target may be extended by customer specific events. Possible events are for
instance: Stop, Start, Online Change.
The assignment of system events to POUs is also done in the Task configuration editor. Use the
dialog 'Events', which will be opened as soon as the entry " System-events" is selected in the
task configuration tree:

Each event is represented in a line: Name and Description are displayed as defined in the target
file, in the column called POU you can enter the name of the project POU which should be
called and processed as soon as the event occurs.
For this use the input assistant (<F2>) or enter manually the name of an already existing POU
(e.g. "PLC_PRG" or "PRG.ACT1"), or insert a name for a not yet existing POU.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US394

In order to get a new POU (function) created in the project, press button Create POU. Hereupon
the POU will be inserted in the Object Organizer. The input and output parameters which are
required by the event will automatically be defined in the declaration part of the POU. Below
the assignment table the currently selected event is displayed in a picture, showing the required
parameters.
If you actually want the POU to be called by the event, activate the entry in the assignment
table.
Activating/deactivating is done by a mouseclick on the control box.

'Extras' 'Set Debug Task'
With this command a debugging task can be set in Online mode in the task configura-
tion Ä Chapter 1.4.1.4.8.3 “'Insert' 'Insert Program Call' or 'Insert' 'Append Program Call'”
on page 393. The text [DEBUG] will appear after the set task. The debugging capabilities apply,
then, only to this task. In other words, the program only stops at a breakpoint if the program is
gone through by the set task.

'Extras' 'Enable / disable task'
With this command the task which is currently marked in the task configuration can be disabled
or re-enabled. A disabled task will not be regarded during processing of the program. In the
configuration tree it is indicated by a grayed entry.

'Extras' 'Callstack'
This command is available in the Extras menu in the task configuration. If the program is
stopped at a breakpoint during debugging, it can be used to show the callstack of the corre-
sponding POU. For this purpose the debug task must be selected in the task configuration tree
of Ä Chapter 1.4.1.4.8.5 “'Extras' 'Set Debug Task'” on page 395. The window 'Callstack of task
<task name>' will open. There you get the name of the POU and the breakpoint position (e.g.
"prog_x (2)" for line 2 of POU prog_x) . Below the complete call stack is shown in backward
order. If you press button 'Go To', the focus will jump to that position in the POU which is
currently marked in the callstack.

1.4.1.4.9 Watch- and recipe manager
Overview
Function

In the Watch- and Recipe Manager (Resources tab of the Object Organizer) the current values
of specified variables can be viewed in so-called "watch lists (Monitoring).

Further on the variables listed in a watch list can be preset with constant values and this set of
values, named "Recipe" be transferred to the PLC. Also the current values of the variables of
a watch list can be read from the PLC to the Watch and Recipe Manager as a preset/recipe.
In this context regard the possibility to save recipes in files and to reload them to the Recipe
Manager when required. See further information on the usage of recipes in: 'Creating Watch
Lists, Recipes' Ä Chapter 1.4.1.4.9.2 “Creating watch lists, recipes” on page 397.
In online mode watch lists as well can be used to write and force variables Ä Chapter
1.4.1.2.6.16 “'Online' 'Write values'” on page 286 Ä Chapter 1.4.1.2.6.17 “'Online' 'Force val-
ues'” on page 287.
All these functions for example can be used for logging and setting of control parameters.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 395

Editor
Each watch list is viewed in a separate tabular editor window and multiple windows can be
opened at the same time. In this case the available watch lists will be shown as entries in the
"Resources" tab indented below the Watch and Recipe Manager. Each can be opened by a
doubleclick on the entry.
The tabular editor contains columns for name, address, value, prepared value, recipe value and
comment of the watch variable.

name: Here a variable identifier according to the following syntax must be entered of an address
in standard format:
<POU name>.<variable name>
In case of global variables the POU name is dropped. The variable name can be multilevel.
Addresses can be entered directly (e.g. "%IB0.0").

PLC_PRG.Instance1.Instance2.Structure.ComponentExample for a
multilevel vari-
able:

globalvar.component1Example for a
global variable:

address, comment: As specified in the declaration of the variable.
value: In online mode here the current value of the variable is displayed (Monitoring).
recipe value: Here a value can be entered, which will be transferred to the PLC when command
'Extras' 'Write Recipe' is applied on the whole watch list Ä Chapter 1.4.1.4.9.14 “'Extras' 'Write
Recipe'” on page 401. The recipe values of all variables of the list can be replaced by the
current values from the PLC by using command 'Extras' 'Read Recipe' Ä Chapter 1.4.1.4.9.15
“'Extras' 'Read Recipe'” on page 402.
In case of function block instances and structured variables a plus respectively minus sign
appears in front of the name in the first column. It serves to expand resp. collapse the list of
components. For function block variables the context menu is extended by the items 'Open
function block' and 'Open instance'.
By a double-click on a non-editable position within the editor window, the table gets adapted to
the window width and the column widths get optimized.

Tabular editor

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US396

There is only one bipartite editor window, in the left part of which you find all available watch
lists. For the list currently selected the right part of the window shows the associated variables.
This editor view is opened via object 'Watch- and Recipe Manager' in the 'Resources' tab in
the Object Organizer. The watch variables are entered line by line and a recipe value can be
assigned to each by ":=".

Adding variables to watch lists is possible in offline mode by typing, or in online mode directly
out of the POU editors. See 'Creating Watch Lists, Recipes' Ä Chapter 1.4.1.4.9.2 “Creating
watch lists, recipes” on page 397.
A 'cross-reference list' can be called directly from a watch list, when one of the watch variables
is selected. In this case the command 'Show cross references' in the Extras menu or in the
context menu is available Ä Chapter 1.4.1.3.7 “Show cross references” on page 295. On
cross-reference list see: 'Project' 'Show cross reference' Ä Chapter 1.4.1.2.4.17 “'Project' 'Show
cross reference'” on page 264.

Creating watch lists, recipes
By default in each project an empty watch list "Standard" is automatically created. See in the
following how further lists can be created and filled with watch variables and how recipes can
be defined. Partly this depends on which (target dependant) variant of the Watch- and Recipe
Manager is used:

Create a new, empty list - in offline or online mode:
If entry 'Watch- and Recipe Manager' is selected in the 'Resources' tab, then in the tabular
editor via command 'Object' 'Add' (menu 'Project' - 'Object', or context menu) a new, primarily
empty watch list can be created Ä Chapter 1.4.1.4.9.1 “Overview” on page 395 Ä Chapter
1.4.1.2.4.6 “'Project' 'Object' ' Add'” on page 258. In the 1-Window-Editor for this purpose the
command 'New Watch List' (menu 'Insert' or context menu) is available Ä Chapter 1.4.1.4.9.1
“Overview” on page 395 Ä Chapter 1.4.1.4.9.3 “'Insert' 'New Watch List'” on page 399. Each
a dialog for entering an unique watch list name opens. After confirmation the new list will be
immediately added in the Resources tree (tabular editor) resp. in the left part of the 1-Window-
Editor.

Fill new list with watch variables out of the POU editors, resp. add variables to existing lists:
Only possible in online mode. It is not necessary to deactivate monitoring for this purpose
Ä Chapter 1.4.1.4.9.13 “'Extras' 'Monitoring Active'” on page 401.
Tabular Editor and 1-Window-Editor:

1-window-editor

Creating watch
lists

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 397

● If one or multiple variables or elements are selected in one of the POU editors, they can
be directly entered in a new watch list by command 'Into new watch list' (menu 'Extras' or
context menu) Ä Chapter 1.4.1.4.9.8 “'Extras' 'Into new watch list'” on page 400. The new
list will be added automatically as "Watch<n>" in the Resources tab below the Watch- and
Recipe Manager and opened in the editor window. Renaming of the list is only possible in
offline mode Ä Chapter 1.4.1.4.9.10 “'Extras' 'Rename Watch List'” on page 401.

● If one or multiple variables or elements are selected in one of the POU editors, the varia-
bles can be directly added to one of the existing watch lists by command 'Add to watch
list' (menu 'Extras' or context menu) Ä Chapter 1.4.1.4.9.7 “'Extras' 'Add to watch list'”
on page 400.

● Instead of a variable identifier an address in standard format can be entered in a watch
list Ä Chapter 1.4.1.7.4.2 “Address” on page 441. Command 'Insert address range' (menu
'Extras' or context menu) allows to add all addresses of a specified address range at one go
Ä Chapter 1.4.1.4.9.9 “'Insert address range'” on page 400.

Fill a list manually:
Possible in online and offline mode; for the syntax see: Overview, Editor Ä Chapter
1.4.1.4.9.1.2 “Editor” on page 396

Tabular editor:
● If the watch list is opened, via commands 'Insert watch variable' or 'Insert' 'Attach watch var-

iable'further variables can be added Ä Chapter 1.4.1.4.9.4 “'Insert' 'Insert watch variable'”
on page 399 Ä Chapter 1.4.1.4.9.5 “'Insert' 'Attach watch variable'” on page 399. Existing
entries can be selected and removed by 'Delete watch variable' resp. Ä Chapter
1.4.1.4.9.6 “'Delete watch variable'” on page 400.

1-Window-Editor:
● For entering variables in a watch list, the list must be selected in the left part of the Watch-

and Recipe Manager Window. Then variables are added in the right part at the current
cursor position line by line, either with the help of the input assistant <F2> (see Note on
using the input assistant... below) or by typing. See Overview, Editor for the requested
syntax Ä Chapter 1.4.1.4.9.1.2 “Editor” on page 396. If the variables should be entered
in online mode, previously the monitoring must be deactivated. Via command 'Monitoring
active' in the 'Extras' or the context menu you can switch between activated and deactivated
Ä Chapter 1.4.1.4.9.13 “'Extras' 'Monitoring Active'” on page 401.

The non-structured view of the Input Assistant offers additional filter functions for selecting
watch variables Ä Chapter 1.4.1.2.5.12 “Unstructured display” on page 276: In the Filter input
field you can enter a string and additionally specify whether this string must be found at the
beginning of a variable name (Prefix), at the end of a variable name (Suffix), or at an arbitrary
position within the variable name in order to get the watch variables offered for selection.

The variables of a watch list can be preset with constant values. In the tabular editor this is
possible via column recipe value, in the 1-Window-Editor by an assignment via ":=". Then the
watch list can be used as a so-called "recipe".
If the presetting should be done automatically with the current values read from the PLC, then
command 'Read Recipe' can be used.
In the 1-Window-Editor variant of the Watch- and Recipe Manager the recipe values must be
assigned according to the following example:

Note on using
the input assis-
tant in the
watch- and
recipe manager:

Working with
recipes

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US398

PLC_PRG.TIMER:=50
Here variable PLC_PRG.TIMER is preset with 50.
Note the following for variables of type array, structure or function block instance: The partic-
ular elements resp. instance variables must be entered explicitly in order to be able to preset
them with values. Example: Let's assume that a structure STRU is defined with components a,
b,c, and a structure variable struvar is declared in program PLC_PRG. In order to preset a,b,c
with values, the following must be entered in the watch list:
PLC_PRG.struvar.a:=<value>
PLC_PRG.struvar.b:=<value>
PLC_PRG.struvar.c:=<value>
Correspondingly the presetting of elements of an array must be done: Example for an array
variable arr_var of type ARRAY[0...6]
PLC_PRG.arr_var[0]:=<value>
PLC_PRG.arr_var[1]:=<value>
If a function block FB contains the variables x,y and an instance variable fb_inst of type fb is
declared in PLC_PRG, then x and y can be preset as follows:
PLC_PRG.fb_inst.x:=<value>
PLC_PRG.fb_inst.y:=<value>

Example:

Recipes can be saved externally in a file via command “Extras è Save watch list” and they can
be loaded back to the editor via “Extras è Load watch list”. In online mode the recipe values
can be written to the variables on the PLC via “Extras è Write recipe”.
Ä Chapter 1.4.1.4.9.11 “'Extras' 'Save Watch List'” on page 401

Ä Chapter 1.4.1.4.9.12 “'Extras' 'Load Watch List'” on page 401

Ä Chapter 1.4.1.4.9.14 “'Extras' 'Write Recipe'” on page 401

'Insert' 'New Watch List'
This command is only available, if the 1-Window-Editor view of the Watch- and Recipe Manager
is opened Ä “Tabular editor” on page 396. Then in offline as well as in online mode a new watch
list can be created. A dialog for entering the watch list name will be opened for this purpose.

'Insert' 'Insert watch variable'
This command is only available in the tabular editor view of a watch list Ä Chapter 1.4.1.4.9.1.2
“Editor” on page 396. It appends a new line at the end of the list and and opens an edit field
in column "name" for entering a new watch variable via the input assistant (see the note in
Creating Watch Lists, Recipes Ä “Note on using the input assistant in the watch- and recipe
manager:” on page 398) or by typing Ä Chapter 1.4.1.4.9.2 “Creating watch lists, recipes”
on page 397.

'Insert' 'Attach watch variable'
This command is only available in the tabular editor view of a watch list Ä Chapter 1.4.1.4.9.1.2
“Editor” on page 396. It appends a new line at the end of the list and and opens an edit field
in column "name" for entering a new watch variable via the input assistant (see the note in
Creating Watch Lists, Recipes Ä “Note on using the input assistant in the watch- and recipe
manager:” on page 398) or by typing Ä Chapter 1.4.1.4.9.2 “Creating watch lists, recipes”
on page 397.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 399

'Delete watch variable'
This command is only available in the tabular editor view of a watch list Ä Chapter 1.4.1.4.9.1.2
“Editor” on page 396. It removes the currently focused line and corresponds to using the
key.

'Extras' 'Add to watch list'
Short key: <Alt>+<X>+<W>
Out of the POU editors in the project you can directly add variables to a watch list.
When one or multiple variables or elements are selected in an editor, they can directly be added
to one of the existing watch lists via command 'Add to watch list' ('Extras' menu or context
menu). It is not necessary to deactivate the monitoring for this purpose Ä Chapter 1.4.1.4.9.13
“'Extras' 'Monitoring Active'” on page 401.
For function blocks the command only will be available, if the full instance path of a variable
within the POU is known.

Basically particular variables can be selected like usual for the respective editor. Additionally the
following is true:
● In the FBD editor all elements on the left of a selected element will automatically be selected

too. For example also the inputs a and b of an AND box will be selected when you select the
AND box.

● In the Ladder editor multiple elements can be selected by keeping the <Shift> key pressed
while clicking on the desired elements.

● In the ST and IL editor in the right part of the window a single variable can be selected. In
the left part multiple lines can be selected in order to get all included variables added to the
watch list.

● In the SFC editor you can select multiple successive elements in order to get all included
variables added to the watch list.

● In the declaration parts of GVLs and POUs only particular variables can be selected.

'Extras' 'Into new watch list'
Short key: <Alt>+<X>+<N>
This command inserts the variable(s) currently selected in a POU editor to a new watch list. This
list will automatically be created with name "Watch<n>", whereby n is a running number starting
with 0 and used in a way that the name will be unique.
Furthermore for this command the same is true like for 'Extras' 'Add to watch list' Ä Chapter
1.4.1.4.9.7 “'Extras' 'Add to watch list'” on page 400.

'Insert address range'
Instead of a variable name an address in standard format can be entered in column "name" of a
watch list Ä Chapter 1.4.1.7.4.2 “Address” on page 441.
The command allows to insert all addresses of a defined address range to the watch list at one
go. For this purpose a dialog opens where you can specify the start address and the number
of addresses. If you define for example name="%MW0" and number = "10", then the addresses
%MW0 to %MW9 will be inserted in the watch list.

Notes on the
element selec-
tion in the POU
editors:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US400

'Extras' 'Rename Watch List'
This command will only be available, if the 1-Window-Editor view of the Watch- and Recipe
Manager is opened (target-dependent!) Ä “Tabular editor” on page 396.
It opens a dialog for specifying the new watch list name.

If the tabular view is used, the watch list can be renamed in the Object Organ-
izer via command 'Project' 'Object' 'Rename' Ä Chapter 1.4.1.2.4.8 “'Project'
'Object' 'Rename'” on page 259.

'Extras' 'Save Watch List'
With this command you can save a watch list Ä Chapter 1.4.1.4.9.1 “Overview” on page 395.
The dialog box for saving a file is opened. The file name is preset with the name of the watch list
and is given the extension "*.wtc".
The saved watch list can be loaded again with 'Extras' 'Load Watch List' Ä Chapter 1.4.1.4.9.12
“'Extras' 'Load Watch List'” on page 401.
For example this allows to manage various recipes for the same set of variables, which can be
loaded to the PLC as currently required Ä Chapter 1.4.1.4.9.2 “Creating watch lists, recipes”
on page 397.

'Extras' 'Load Watch List'
With this command you can reload a saved watch list, for example in order to reload a certain
recipe to the editor, so that it can be written to the PLC Ä Chapter 1.4.1.4.9.2 “Creating watch
lists, recipes” on page 397. The dialog box for opening a file will be opened. Select the desired
file with the "*.wtc" extension. In the dialog box that appears, you can give the watch list a new
name. The file name is preset without an extension.
With 'Extras' 'Save Watch List', you can save a watch list Ä Chapter 1.4.1.4.9.11 “'Extras' 'Save
Watch List'” on page 401.

'Extras' 'Monitoring Active'
Short key: <Alt>+<X>+<M>
This command turns off resp. on the display of the values in the Watch- and recipe manager
Ä Chapter 1.4.1.4.9.1 “Overview” on page 395. If the Monitoring is activated, a check (✓)
appears in front of the menu item.

'Extras' 'Write Recipe'
With this command in the online mode of the Watch- and Recipe Manager you can write the
preset values () into the variables Ä recipe values.

The command only concerns the values of that watch list, which is currently
selected in the Watch- and Recipe Manager!

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 401

'Extras' 'Read Recipe'
With the command, in the Online Mode of the Watch- and Recipe Manager, you can replace the
presetting of the variables with the present value of the variables.

PLC_PRG.Counter [:= <present value>] = <present value>Example:

The command only concerns the values of that watch list, which is currently
selected in the Watch- and Recipe Manager!

Force and write values in the watch- and recipe manager
In online mode in each watch list you can force values and write values Ä Chapter
1.4.1.2.6.17 “'Online' 'Force values'” on page 287 Ä Chapter 1.4.1.2.6.16 “'Online' 'Write val-
ues'” on page 286.
In the tabular editor you can enter a value in column prepared value and thus prepare that value
for forcing or writing on the PLC. For this purpose select the respective cell (mouseclick resp.
navigation within the table via the arrow keys) and by a mouseclick or the <Enter> key open a
dialog for entering the value. If they have the same data type, also the cells of multiple variables
can be selected at once in order to get the same value prepared for all these variables. For
multiselection of the cells just keep the <Shift> button pressed while selecting the particular
cells.
In the 1-Window-Editor by a mouseclick on an specified variable value you also can open a
corresponding dialog for entering the value which should be forced or written.

1.4.1.4.10 Workspace
This object in the 'Resources' tab provides an figure of the currently set project options. If
you open it, you get the project options dialog with the know categories Ä Chapter 1.4.1.2.2.1
“'Project' 'Options'” on page 200.

1.4.1.5 Principle of a gateway system
1.4.1.5.1 Overview

A gateway server can be used to allow your local PC to communicate with one or more runtime
systems. The setting concerning which runtime systems can be addressed, which is specifically
configured for each gateway server, and the connection to the desired gateway server, is made
on the local PC. Here it is possible that both the gateway server and the runtime system(s)
can run together on the local PC. If we are dealing with a gateway server which is running on
another PC we must ensure that it has been started there. If you are selecting a locally installed
gateway server, it automatically starts when you log onto the target runtime system. You can
recognize this through the appearance of a symbol on the bottom right in the task bar. This
symbol lights up as long as you are connected to the runtime system over the gateway. The
menu points Info and Finish are obtained by clicking with the right mousekey on the symbol.
Finish is used to switch off the gateway.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US402

PC_local is your local PC, PC_x is another PC, which gateway addresses. PC_gateway is the
PC on which the gateway server is installed, PC_PLC1 through to PC_PLC4 are PCs on which
the runtime systems are running. The diagram shows the modules as separated but it is fully
possible for the Gateway server and / or runtime systems to be installed together on the local
PC.

Please note that a connection to gateway is only possible over TCP/IP so make
sure that your PC is configured appropriately.

The connections from gateway to the various runtime computers can, on the other hand, run
over different protocols (TCP/IP, Pipe, etc.).

1.4.1.5.2 Setting up the desired gateway server and channel
To define the connection to the desired gateway server we open the dialog 'Communication
Parameters Gateway' by pressing the button Gateway.

Here you can enter and/or edit the following:

Setting up the
desired gateway
server and
channel in the
communication
parameters
dialog

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 403

● The type of connection from your computer to the computer on which the gateway server
that you want to use is running. If the gateway server is running on the local computer,
connection via shared memory ("local") or via TCP/IP is possible; if connection to a different
computer is needed, only TCP/IP can be used.

● The address of the computer, on which the gateway server that you want to use is running:
IP address or the appropriate symbolic name such as e.g. localhost. Regard that leading
zeros added to the address range number however are not allowed.
Example: not possible: '010.107.084.050', must be entered as '10.107.84.50'). On initial
setup, the standard 'localhost' is offered as the computer name (address), which means that
the locally installed gateway would be accessed. The name 'localhost' is set to be identical
to the local IP address 127.0.0.1 in most cases, but you may in some cases have to enter
this directly into the Address field. If you want to access a gateway server on another
computer, you must replace 'localhost' with its name or IP address.

● The password for the selected gateway server, if it is on a remote computer. If it is incor-
rectly entered, or not entered at all, an error message appears.
Note in this connection: you can give the locally installed gateway server a password with
the following procedure: click with the right mouse button on the gateway symbol in the
lower right portion of the toolbar and select "Change password". A dialog comes up for
changing or entering a password. If you access the gateway server locally any password
that is entered will not be asked for.

● The computer’s port on which the gateway server that you wish to use is running, as a rule
the correct value for the selected gateway is already given.

If the dialog is closed with OK, the corresponding entry (computer address) appears in the
Channels field at the top of the 'Communication parameters' dialog, and below it the channels
available on this gateway server.

Now select one of the channels by clicking on an entry with the mouse. The corresponding
parameters will then be shown in the table. If no connection can be established to the selected
gateway address possibly because it has not been started or the address is incorrect "” the
phrase 'not connected' appears in brackets after the address and a message 'No gateway with
these settings could be found' appears. In this connection perform a quick check Ä Chapter
1.4.1.5.6 “Quick check in the event of unsuccessful connection attempt to the gateway”
on page 407.
Once the desired channel is set up, close the dialog using OK. The settings are saved with the
project.

1.4.1.5.3 Setting up a new channel for the local gateway server
You can set up new channels for the currently connected gateway server, which are then
available for establishing further connection from the server, a connection to a controller for
example. The options that you have in this regard depend on the particular choice of the
number of device drivers installed on your computer.
Press the New button in the 'Online' 'Communication Parameters' dialog Ä Chapter 1.4.1.2.6.23
“'Online' 'Communication parameters'” on page 291. The dialog 'Communication Parameters:
New Channel' comes up.

Setting up the
desired channel
on the selected
gateway server

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US404

● The input field Name automatically contains the name used for the last inputted channel.
If no channel has yet been defined, the current gateway name will be offered, followed
by an underline character , e.g. 'localhost_'. You can edit the channel name at this point.
The channel name is purely informative, it does not have to be a unique name but it is
recommended to use one.

● The device drivers available on the gateway computer are listed in the table under Device.
In the Name column, select by mouse click one of the available drivers; the corresponding
comment, if any, appears in the Info column.

If you close the 'New Channel' dialog with OK, the newly defined channel appears in the
'Communication Parameters' dialog as a new entry in Channels at the lowest position under
the minus sign. So far, it is only stored locally in the project. At this point you can edit the
Value column. Now confirm the entered parameters with OK, thus leaving the 'Communication
Parameters' dialog.
In order for the newly entered gateway channel and its parameters to also be known to the
gateway server xy, and thus also to make it available to other computers that access this
gateway xy, you must log into the runtime system. If you then re-open the 'Online' 'Communica-
tion parameters' dialog, the new channel appears in the „channel tree“, not only in its previous
position but also indented under the address or name of the gateway server xy. This indicates
that it is known to the network. You can now open the Communication Parameter dialog on a
computer other than the local one, select gateway xy and use its new channel.
If a communication error occurs when logging in, it is possible that the interface cannot be
opened (e.g. COM1 for a serial connection) possibly because it is being used by another
device. It is also possible that the controller is not running.
The parameters for a channel already known by the gateway server can no longer be edited
in the configuration dialog. The parameter fields appear grey. You can, however, delete the
connection as long as it is not active.

The deletion of a channel is not reversible. It occurs at the moment that you
press on the button [Remove]!

1.4.1.5.4 What the communications parameters dialog on the local PC shows
This dialog is used to select a gateway server for the communication with a PLC. Furtheron
there can be set up new channels for a gateway server which is installed on the local PC so that
these channels can be used by other computers which are part of the network.
The current settings can be called up at any time using the button Update. A dialog will appear
if the communications parameters have already been configured according to the example in
Principle of a gateway system Ä Chapter 1.4.1.5.1 “Overview” on page 402.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 405

The Heading Channels lists two categories of connections:
● On the one hand all of the connections are shown which are installed on the currently

connected gateway server called 'localhost'. Here the address or the name of this gateway
is located on the upper position behind the minus sign, which in our example is running on
the local computer. The appropriate address 'localhost' corresponds in the normal case to
the IP address 127.0.0.1 of the local computer (PC_local). Below, indented to the right, are
three addresses of runtime computers which the gateway channels are set-up to (PC_PLC1
to 3). They could have been configured both from the local PC or from the other PCs (PC_x)
which are or were connected to the gateway server.

● The second category of the channels describes includes all connections to the gateway
which can be set up from your local PC, over this configuration dialog for example. They
create the "branch" which leads from the minus sign directly below to PC_PLC1 and
PC_PLC4. These channel addresses do not necessarily have to be known yet at the
gateway. For PC_PLC4 in the example described above, the configuration parameters are
stored locally in the project, but they will first be known to the gateway the next time log-in
to the runtime system occurs Ä Chapter 1.4.1.2.6.6 “'Online' 'Run'” on page 283. This has
already occurred for PC_PLC1 since the associated gateway address has appeared as an
additional "sub-branch" to the "channel tree".

In the central part of the dialog one finds the designation, in each case, of the left selected
channel and the associated parameter under Name, Value and Comment.

1.4.1.5.5 Tips for editing the parameters in the communications parameters dialogue
You can only edit the text fields in the column Value.
Select a text field with the mouse, and get into the editing mode by double clicking or by
pressing the space bar. The text input is finished by pressing the <Enter> key.
You can use <Tabulator> or <Shift> + <Tabulator> to jump to the next or the previous switching
or editing possibility.
To edit numerical values it is possible with the arrow keys or the Page Up/Down keys to change
the value by one or ten units respectively. A double click with the mouse also changes the value
by increasing by one unit. A typing check is installed for numerical values: <Ctrl> + <Home> or
<Ctrl> + <End> deliver the lowest or the highest value respectively for the possible input values
for the type of parameter in question.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US406

1.4.1.5.6 Quick check in the event of unsuccessful connection attempt to the gateway
You should make the following checks if the connection to the selected gateway computer is
not successful. (You get the message „not connected" in the Communication Parameters dialog
behind the gateway server address in the field Channels):
● Has the gateway server been started (the three-color symbol appears in the bottom right

portion of the toolbar) ?
● Is the IP address that you entered in the 'Gateway: Communication Parameters' dialog

really that of the computer on which the gateway is running ? (use „ping" to check)
● Is the TCP/IP connection working locally? The error may possibly lie with TCP/IP.

1.4.1.6 IEC operators and additional, norm-extending functions
1.4.1.6.1 Overview

All IEC operators are supported. In contrast with the standard functions (see Appendix D of
the Standard library Ä Chapter 1.4.1.4.3.2 “Standard library” on page 372), these operators are
recognized implicitly throughout the project.
Besides the IEC operators also the following operators are supported which are not prescribed
by the standard: INDEXOF and SIZEOF (see 'Arithmetic Operators'Link auf obsoletes Modul
Ä Chapter 1.4.1.6.2 “Arithmetic operators” on page 407), ADR and BITADR (see 'Address
Operators' Ä Chapter 1.4.1.6.7 “Address operators” on page 421).
Operators are used like functions in POU.

1.4.1.6.2 Arithmetic operators
ADD

IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Addition of variables of the types:
BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL and LREAL.
Two TIME variables can also be added together resulting in another time (e.g., t#45s + t#50s =
t#1m35s)

LD 7
ADD 2,4,7
ST Var1

Example in IL:

var1 := 7+2+4+7;Example in ST:

Example in
FBD:

MUL
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Multiplication of variables of the
types: BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL and LREAL.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 407

LD 7
MUL 2,4,7
ST Var1

Example in IL:

var1 := 7*2*4*7;Example in ST:

Example in
FBD:

SUB
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Subtraction of one variable from
another of the types: BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL
and LREAL.
A TIME variable may also be subtracted from another TIME variable resulting in third TIME type
variable. Note that negative TIME values are undefined.

LD 7
SUB 2
ST Var1

Example in IL:

var1 := 7-2;Example in ST:

Example in
FBD:

DIV
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Division of one variable by another
of the types: BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL and
LREAL.

LD 8
DIV 2
ST Var1 (* Result is 4 *)

Example in IL:

var1 := 8/2;Example in ST:

Example in
FBD:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US408

If you define functions in your project with the names CheckDivByte, CheckDiv-
Word, CheckDivDWord and CheckDivReal, you can use them to check the
value of the divisor if you use the operator DIV, for example to avoid a division
by 0. The functions must have the above listed names.

NOTICE!
Note that different target systems may behave differently concerning a division
by zero!

MOD
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Module Division of one variable by
another of the types: BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT. The result
of this function will be the remainder of the division. This result will be a whole number.

LD 9
MOD 2
ST Var1 (* Result is 1 *)

Example in IL:

var1 := 9 MOD 2;Example in ST:

Example in
FBD:

MOVE
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Assignment of a variable to another
variable of an appropriate type. As MOVE is available as a box in the graphic editors LD, CFC,
there the (unlocking) EN/EN0 functionality can also be applied on a variable assignment. In the
FBD editor this is not possible however.

Only if en_i is TRUE, var1 will be assigned to var2.Example in
CFC in con-
junction with
the EN/EN0
function:

LD ivar1
MOVE
ST ivar2 (* Result: ivar2 gets assigned value of ivar1 *)

You get the same result with:
LD ivar1
ST ivar2

Example in IL:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 409

ivar2 := MOVE(ivar1);
You get the same result with: ivar2 := ivar1;

Example in ST:

INDEXOF
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: This function is not prescribed by
the standard IEC61131-3.
Perform this function to find the internal index for a POU.

var1 := INDEXOF(POU2);Example in ST:

SIZEOF
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: This function is not prescribed by
the standard IEC 61131-3.
Perform this function to determine the number of bytes required by the given variable.

arr1:ARRAY[0..4] OF INT;
Var1 INT
LD arr1
SIZEOF
ST Var1 (* Result is 10 *)

Example in IL:

var1 := SIZEOF(arr1);Example in ST:

1.4.1.6.3 Bitstring operators
AND

IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Bitwise AND of bit operands. The
operands should be of the type BOOL, BYTE, WORD or DWORD.

Var1 BYTE
LD 2#1001_0011
AND 2#1000_1010
ST Var1 (* Result is 2#1000_0010 *)

Example in IL:

var1 := 2#1001_0011 AND 2#1000_1010
Example in ST:

Example in
FBD:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US410

If you have a program step in the SFC like the following and if you use 68xxx
generators, please note the following: The allocation of the value of the second
input variable at the AND operator module to variable z will not be executed!
This is due to the optimized processing in the SFC in case of value FALSE at
the input variable.

OR
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Bitwise OR of bit operands. The
operands should be of the type BOOL, BYTE, WORD or DWORD.

var1 :BYTE;
LD 2#1001_0011
OR 2#1000_1010
ST var1 (* Result is 2#1001_1011 *)

Example in IL:

Var1 := 2#1001_0011 OR 2#1000_1010Example in ST:

Example in
FBD:

If you have a program step in the SFC like the following and if you use 68xxx
generators, please note the following: The allocation of the value of the second
input variable at the OR operator module to variable z will not be executed! This
is due to the optimized processing in the SFC in case of value FALSE at the
input variable.

XOR
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Bitwise XOR of bit operands. The
operands should be of the type BOOL, BYTE, WORD or DWORD.

Note the behavior of the XOR function in extended form, that means if there are
more than 2 inputs. The inputs will be checked in pairs and the particular results
will then be compared again in pairs (this complies with the standard, but may
not be expected by the user).

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 411

Var1 :BYTE;
LD 2#1001_0011
XOR 2#1000_1010
ST Var1 (* Result is 2#0001_1001 *)

Example in IL:

Var1 := 2#1001_0011 XOR 2#1000_1010
Example in ST:

Example in
FBD:

NOT
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Bitwise NOT of a bit operand. The
operand should be of the type BOOL, BYTE, WORD or DWORD.

Var1 :BYTE;
LD 2#1001_0011
NOT
ST Var1 (* Result is 2#0110_1100 *)

Example in IL:

Var1 := NOT 2#1001_0011Example in ST:

Example in
FBD:

1.4.1.6.4 Bit-Shift operators
SHL

IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Bitwise left-shift of an operand :
erg:= SHL (in, n)
in gets shifted to the left by n bits. If n > data type width, for BYTE, WORD and DWORD will be
filled with zeros. But if signed data types are used, like e.g. INT, then an arithmetic shift will be
executed in such cases, that means it will be filled with the value of the topmost bit.

The amount of bits used for the arithmetic operation is determined by the data
type of the input variable! If the input variable is a constant the smallest possible
data type is used. The data type of the output variable has no effect at all on the
arithmetic operation.

See in the following example in hexadecimal notation that you get different results for erg_byte
and erg_word depending on the data type of the input variable (BYTE or WORD), although the
values of the input variables in_byte and in_word are the same.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US412

LD 16#45
SHL 2
ST erg_byte

Example in IL:

PROGRAM shl_st
VAR
in_byte : BYTE:=16#45;
in_word : WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR
erg_byte:=SHL(in_byte,n); (* Result is 16#14 *)
erg_word:=SHL(in_word,n); (* Result is 16#0114 *)

Example in ST:

Example in
FBD:

SHR
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Bitwise righ-shift of an operand :
erg:= SHL (in, n)
in gets shifted to the right by n bits. If n > data type width, for BYTE, WORD and DWORD will be
filled with zeros. But if signed data types are used, like e.g. INT, then an arithmetic shift will be
executed in such cases, that means it will be filled with the value of the topmost bit.

The amount of bits used for the arithmetic operation is determined by the data
type of the input variable! If the input variable is a constant the smallest possible
data type is used. The data type of the output variable has no effect at all on the
arithmetic operation.

See in the following example in hexadecimal notation that you get different results for erg_byte
and erg_word depending on the data type of the input variable (BYTE or WORD), although the
values of the input variables in_byte and in_word are the same.

LD 16#45
SHR 2
ST erg_byte

Example in IL:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 413

PROGRAM shr_st
VAR
in_byte : BYTE:=16#45;
in_word : WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR
erg_byte:=SHR(in_byte,n); (* Result is 11 *)
erg_word:=SHR(in_word,n); (* Result is 0011 *)

Example in ST:

Example in
FBD:

ROL
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Bitwise rotation of an operand to the
left: erg:= ROL (in, n)
erg, in and n should be of the type BYTE, WORD or DWORD. in will be shifted one bit position
to the left n times while the bit that is furthest to the left will be reinserted from the right.

The amount of bits used for the arithmetic operation is determined by the data
type of the input variable! If the input variable is a constant the smallest possible
data type is used. The data type of the output variable has no effect at all on the
arithmetic operation.

In the following example in hexadecimal notation you get different results for erg_byte and
erg_word depending on the data type of the input variable (BYTE or WORD), although the
values of the input variables in_byte and in_word are the same.

LD 16#45
ROL 2
ST erg_byte

Example in IL:

PROGRAM rol_st
VAR
in_byte : BYTE:=16#45;
in_word : WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR
erg_byte:=ROL(in_byte,n); (* Result is 16#15 *)
erg_word:=ROL(in_word,n); (* Result is 16#0114 *)

Example in ST:

Example in
FBD:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US414

ROR
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Bitwise rotation of an operand to the
right: erg:= ROL (in, n)
erg, in and n should be of the type BYTE, WORD or DWORD. in will be shifted one bit position
to the right n times while the bit that is furthest to the right will be reinserted from the left.

The amount of bits used for the arithmetic operation is determined by the data
type of the input variable! If the input variable is a constant the smallest possible
data type is used. The data type of the output variable has no effect at all on the
arithmetic operation.

In the following example in hexadecimal notation you get different results for erg_byte and
erg_word depending on the data type of the input variable (BYTE or WORD), although the
values of the input variables in_byte and in_word are the same.

LD 16#45
ROR 2
ST erg_byte

Example in IL:

PROGRAM ror_st
VAR
in_byte : BYTE:=16#45;
in_word : WORD:=16#45;
erg_byte : BYTE;
erg_word : WORD;
n: BYTE :=2;
END_VAR
erg_byte:=ROR(in_byte,n); (* Result is 16#51 *)
erg_word:=ROR(in_word,n); (* Result is 16#4011 *)

Example in ST:

Example in
FBD:

1.4.1.6.5 Selection operators
Overview

All selection operations can also be performed with variables. For purposes of clarity we will
limit our examples to the following which use constants as operators.
See also:
SEL Ä Chapter 1.4.1.6.5.2 “SEL” on page 416

MAX Ä Chapter 1.4.1.6.5.3 “MAX” on page 416

MIN Ä Chapter 1.4.1.6.5.4 “MIN” on page 417

LIMIT Ä Chapter 1.4.1.6.5.5 “LIMIT” on page 417

MUX Ä Chapter 1.4.1.6.5.6 “MUX” on page 418

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 415

SEL
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Binary selection.
OUT := SEL(G, IN0, IN1) means:
OUT := IN0 if G=FALSE;
OUT := IN1 if G=TRUE
IN0, IN1 and OUT can be any type of variable, G must be BOOL. The result of the selection is
IN0 if G is FALSE, IN1 if G is TRUE.

LD TRUE
SEL 3,4 (* IN0 = 3, IN1 =4 *)
ST Var1 (* Result is 4 *)
LD FALSE
SEL 3,4
ST Var1 (* Result is 3 *)

Example in IL:

Var1:=SEL(TRUE,3,4); (* Result is 4 *)Example in ST:

Example in
FBD:

An expression occurring ahead of IN1 or IN2 will not be processed if IN0 is
TRUE.

MAX
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Maximum function. Returns the
greater of the two values.
 OUT := MAX(IN0, IN1)
IN0, IN1 and OUT can be any type of variable.

LD 90
MAX 30
MAX 40
MAX 77
ST Var1 (* Result is 90 *)

Example in IL:

Var1:=MAX(30,40); (* Result is 40 *)
Var1:=MAX(40,MAX(90,30)); (* Result is 90 *)

Example in ST:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US416

Example in
FBD:

MIN
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Minimum function. Returns the
lesser of the two values.
 OUT := MIN(IN0, IN1)
IN0, IN1 and OUT can be any type of variable.

LD 90
MIN 30
MIN 40
MIN 77
ST Var1 (* Result is 30 *)

Example in IL:

Var1:=MIN(90,30); (* Result is 30 *);
Var1:=MIN(MIN(90,30),40); (* Result is 30 *);

Example in ST:

Example in
FBD:

LIMIT
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Limiting
 OUT := LIMIT(Min, IN, Max) means:
 OUT := MIN (MAX (IN, Min), Max)
Max is the upper and Min the lower limit for the result. Should the value IN exceed the upper
limit Max, LIMIT will return Max. Should IN fall below Min, the result will be Min.
IN and OUT can be any type of variable.

LD 90
LIMIT 30,80
ST Var1 (* Result is 80 *)

Example in IL:

 Var1:=LIMIT(30,90,80); (* Result is 80 *);
Example in ST:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 417

Example in
FBD:

MUX
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Multiplexer.
 OUT := MUX(K, IN0,...,INn) means:
 OUT := INK
IN0, ...,INn and OUT can be any type of variable. K must be BYTE, WORD, DWORD, SINT,
USINT, INT, UINT, DINT or UDINT. MUX selects the Kth value from among a group of values.

LD 0
MUX 30,40,50,60,70,80
ST Var1 (* Result is 30 *)

Example in IL:

Var1:=MUX(0,30,40,50,60,70,80); (* Result is 30 *);Example in ST:

An expression occurring ahead of an input other than INK will not be processed
to save run time! Only in simulation mode all expressions will be executed.

1.4.1.6.6 Comparison operators
GT

IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Greater than.
A Boolean operator which returns the value TRUE when the value of the first operand is greater
than that of the second. The operands can be BOOL, BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL, LREAL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and
STRING.

LD 20
GE 30
ST Var1 (* Result is FALSE *)

Example in IL:

VAR1 := 20 > 30 > 40 > 50 > 60 > 70;Example in ST:

Example in
FBD:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US418

LT
Ä Chapter 1.4.1.6.1 “Overview” on page 407: Less than.
A Boolean operator that returns the value TRUE when the value of the first operand is less
than that of the second. The operands can be BOOL, BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL, LREAL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and
STRING.

LD 20
LT 30
ST Var1 (* Result is TRUE *)

Example in IL:

VAR1 := 20 < 30;Example in ST:

Example in
FBD:

LE
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Less than or equal to.
A Boolean operator that returns the value TRUE when the value of the first operand is
less than or equal to that of the second. The operands can be BOOL, BYTE, WORD,
DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL, TIME, DATE, TIME_OF_DAY,
DATE_AND_TIME and STRING.

LD 20
LE 30
ST Var1 (* Result is TRUE *)

Example in IL:

VAR1 := 20 <= 30;Example in ST:

Example in
FBD:

GE
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Greater than or equal to.
A Boolean operator that returns the value TRUE when the value of the first operand is
greater than or equal to that of the second. The operands can be BOOL, BYTE, WORD,
DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL, TIME, DATE, TIME_OF_DAY,
DATE_AND_TIME and STRING.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 419

LD 60
GE 40
ST Var1 (* Result is TRUE *)

Example in IL:

VAR1 := 60 >= 40;Example in ST:

Example in
FBD:

EQ
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Equal to
A Boolean operator that returns the value TRUE when the operands are equal. The operands
can be BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL,
TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

LD 40
EQ 40
ST Var1 (* Result is TRUE *)

Example in IL:

VAR1 := 40 = 40;Example in ST:

Example in
FBD:

NE
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Not equal to
A Boolean operator that returns that value TRUE when the operands are not equal. The oper-
ands can be BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,
LREAL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

LD 40
NE 40
ST Var1 (* Result is FALSE *)

Example in IL:

VAR1 := 40 <> 40;Example in ST:

Example in
FBD:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US420

1.4.1.6.7 Address operators
ADR

IEC operator: Address function not prescribed by the standard IEC 61131-3 Ä Chapter 1.4.1.6.1
“Overview” on page 407.
dwVar:=ADR(bVAR);

LD bVar
ADR
ST dwVar
man_fun1

Example in IL:

NOTICE!
After an online change there might be changes concerning the data on certain
addresses. Please regard this in case of using pointers on addresses.

ADRINST
Operator: Address function not prescribed by the standard IEC 61131-3 Ä Chapter 1.4.1.6.1
“Overview” on page 407.
ADRINST can be used within a function block instance to return the address of this instance in a
DWORD.

dvar:=ADRINST(); (* Address of the instance is written to
variable dvar *)
fun(a:=ADRINST()); (* The instance address is given to input
parameter a of function fun *)

Examples in ST
(within a func-
tion block
instance):

ADRINST
ST dvar

ADRINST
fun

Examples in IL:

BITADR
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Address function not prescribed by
the standard IEC 61131-3.
BITADR returns the bit offset within the segment in a DWORD. Note that the offset value
depends on whether the option byte addressing in the target settings is activated or not.
VAR
 var1 AT %IX2.3:BOOL;
 bitoffset: DWORD;
END_VAR

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 421

 bitoffset:=BITADR(var1); (* Result if byte addressing=TRUE: 19, if
byte addressing=FALSE: 35 *)

Example in ST:

LD Var1
BITADR
ST Var2

Example in IL:

NOTICE!
After an Online Change there might be changes concerning the data on certain
addresses. Please regard this in case of using pointers on addresses.

Content operator
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: A pointer can be dereferenced by
adding the content operator "^" after the pointer identifier.

pt:POINTER TO INT;
var_int1:INT;
var_int2:INT;
pt := ADR(var_int1);
var_int2:=pt^;

Example in ST:

NOTICE!
After an Online Change there might be changes concerning the data on certain
addresses. Please regard this in case of using pointers on addresses.

1.4.1.6.8 Calling operators
CAL

IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Calling a function block or a pro-
gram
Use CAL in IL to call up a function block instance. The variables that will serve as the input
variables are placed in parentheses right after the name of the function block instance.

Calling up the instance Inst from a function block where input variables Par1 and Par2 are 0
and TRUE respectively.
CAL INST(PAR1 := 0, PAR2 := TRUE)

Example:

1.4.1.6.9 Type conversion
Type conversion functions

Its is forbidden to implicitly convert from a "larger" type to a "smaller" type (for example from INT
to BYTE or from DINT to WORD). Special type conversions are required if one wants to do this.
One can basically convert from any elementary type to any other elementary type.
Syntax:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US422

<elem.Typ1>_TO_<elem.Typ2>
Please note that at ...TO_STRING conversions the string is generated left-justified. If it is
defined to short, it will be cut from the right side.
See also:
● BOOL_TO conversions Ä Chapter 1.4.1.6.9.2 “BOOL_TO conversions” on page 423
● TO_BOOL conversions Ä Chapter 1.4.1.6.9.3 “TO_BOOL conversions” on page 424
● Conversion between integral number types Ä Chapter 1.4.1.6.9.4 “Conversion between

integral number types” on page 425
● REAL_TO-/ LREAL_TO conversions Ä Chapter 1.4.1.6.9.5 “REAL_TO-/ LREAL_TO con-

versions” on page 426
● TIME_TO/TIME_OF_DAY conversions Ä Chapter 1.4.1.6.9.6 “TIME_TO/TIME_OF_DAY

conversions” on page 426
● DATE_TO/DT_TO conversions Ä Chapter 1.4.1.6.9.7 “DATE_TO/DT_TO conversions”

on page 427
● STRING_TO conversions Ä Chapter 1.4.1.6.9.8 “STRING_TO conversions” on page 428

BOOL_TO conversions
Conversion from type BOOL to any other type:
For number types the result is 1, when the operand is TRUE, and 0, when the operand is
FALSE.
For the STRING type the result is 'TRUE' or 'FALSE'.

(*Result is 1 *)
LD TRUE
BOOL_TO_INT
ST i

(*Result is 'TRUE' *)
LD TRUE
BOOL_TO_STRING
ST str

(*Result is T#1ms *)
LD TRUE
BOOL_TO_TIME
ST t

(*Result is TOD#00:00:00.001 *)
LD TRUE
BOOL_TO_TOD
ST

(*Result is D#1970-01-01 *)
LD FALSE
BOOL_TO_DATE
ST dat

(*Result is DT#1970-01-01-00:00:01 *)
LD TRUE
BOOL_TO_DT
ST dandt

Examples in IL:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 423

(* Result is 1 *)
i:=BOOL_TO_INT(TRUE);

(* Result is "TRUE" *)
str:=BOOL_TO_STRING(TRUE);

(* Result is T#1ms *)
t:=BOOL_TO_TIME(TRUE);

(* Result is TOD#00:00:00.001 *)
tof:=BOOL_TO_TOD(TRUE);

(* Result is D#1970 *)
dat:=BOOL_TO_DATE(FALSE);

(* Result is DT#1970-01-01-00:00:01 *)
dandt:=BOOL_TO_DT(TRUE);

Examples in
ST:

Result is 1

Result is "TRUE"

Result is T#1ms

Result is TOD#00:00:00.001

Result is D#1970-01-01

Result is DT#1970-01-01-00:00:01

Examples in
FBD:

TO_BOOL conversions
Conversion from another variable type to BOOL:
The result is TRUE when the operand is not equal to 0. The result is FALSE when the operand
is equal to 0.
The result is true for STRING type variables when the operand is "TRUE", otherwise the result
is FALSE.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US424

(*Result is TRUE *)
LD 213
BYTE_TO_BOOL
ST b

(*Result is FALSE *)
LD 0
INT_TO_BOOL
ST b

(*Result is TRUE *)
LD T#5ms
TIME_TO_BOOL
ST b

(*Result is TRUE *)
LD 'TRUE'
STRING_TO_BOOL
ST b

Examples in IL:

(* Result is TRUE *)
b := BYTE_TO_BOOL(2#11010101);

(* Result is FALSE *)
b := INT_TO_BOOL(0);

(* Result is TRUE *)
b := TIME_TO_BOOL(T#5ms);

(* Result is TRUE *)
b := STRING_TO_BOOL('TRUE');

Examples in
ST:

Result is TRUE

Result is FALSE

Result is TRUE

Result is TRUE

Examples in
FBD:

Conversion between integral number types
Conversion from an integral number type to another number type:
When you perform a type conversion from a larger to a smaller type, you risk losing some
information. If the number you are converting exceeds the range limit, the first bytes for the
number will be ignored.

si := INT_TO_SINT(4223); (* Result is 127 *)Example in ST:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 425

If you save the integer 4223 (16#107f represented hexadecimally) as a SINT variable, it will
appear as 127 (16#7f represented hexadecimally).

LD 2
INT_TO_REAL
MUL

Example in IL:

Example in
FBD:

REAL_TO-/ LREAL_TO conversions
Converting from the variable type REAL or LREAL to a different type:
The value will be rounded up or down to the nearest whole number and converted into the new
variable type. Exceptions to this are the variable types STRING, BOOL, REAL and LREAL.
Please note at a conversion to type STRING that the total number of digits is limited to 16. If
the (L)REAL-number has more digits, then the sixteenth will be rounded. If the length of the
STRING is defined to short, it will be cut beginning from the right end.
When you perform a type conversion from a larger to a smaller type, you risk losing some
information.

LD 2.7
REAL_TO_INT
GE %MW8

Examples in IL:

i := REAL_TO_INT(1.5); (* Result is 2 *)
j := REAL_TO_INT(1.4); (* Result is 1 *)
i := REAL_TO_INT(-1.5); (* Result is -2 *)
j := REAL_TO_INT(-1.4); (* Result is -1 *)

Examples in
ST:

Examples in
FBD:

TIME_TO/TIME_OF_DAY conversions
Converting from the variable type TIME or TIME_OF_DAY to a different type:
The time will be stored internally in a DWORD in milliseconds (beginning with 12:00 A.M. for the
TIME_OF_DAY variable). This value will then be converted.
When you perform a type conversion from a larger to a smaller type, you risk losing some
information.
For the STRING type variable, the result is a time constant.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US426

(*Result is 'T#12ms' *)
LD T#12ms
TIME_TO_STRING
ST str

(*Result is 300000 *)
LD T#300000ms
TIME_TO_DWORD
ST dw

(*Result is 12 *)
LD TOD#00:00:00.012
TOD_TO_SINT
ST si

Examples in IL:

(* Result is T#12ms *)
#str :=TIME_TO_STRING(T#12ms);

(* Result is 300000 *)
dw:=TIME_TO_DWORD(T#5m);

(* Result is 12 *)
si:=TOD_TO_SINT(TOD#00:00:00.012);

Examples in
ST:

Examples in
FBD:

DATE_TO/DT_TO conversions
Converting from the variable type DATE or DATE_AND_TIME to a different type:
The date will be stored internally in a DWORD in seconds since Jan. 1, 1970. This value will
then be converted.
When you perform a type conversion from a larger to a smaller type, you risk losing some
information.
For STRING type variables, the result is the date constant.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 427

(* Result is FALSE *)
LD D#1970-01-01
DATE_TO_BOOL
ST b

(* Result is 29952 *)
LD D#1970-01-15
DATE_TO_INT
ST i

(* Result is 129 *)
LD DT#1970-01-15-05:05:05
DT_TO_BYTE
ST byt

(* Result is 'DT#1998-02-13-14:20' *)
LD DT#1998-02-13-14:20
DT_TO STRING
ST str

Examples in IL:

(* Result is FALSE *)
b :=DATE_TO_BOOL(D#1970-01-01);

(* Result is 29952 *)
i :=DATE_TO_INT(D#1970-01-15);

(* Result is 129 *)
byt :=DT_TO_BYTE(DT#1970-01-15-05:05:05);

(* Result is 'DT#1998-02-13-14:20' *)
str:=DT_TO_STRING(DT#1998-02-13-14:20);

Examples in
ST:

Examples in
FUP:

STRING_TO conversions
Converting from the variable type STRING to a different type:
The operand from the STRING type variable must contain a value that is valid in the target
variable type, otherwise the result will be 0.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US428

(* Result is TRUE *)
LD 'TRUE'
STRING_TO_BOOL
ST b

(* Result is 0 *)
LD 'abc34'
STRING_TO_WORD
ST w

(* Result is T#127ms *)
LD 't#127ms'
STRING_TO_TIME
ST t

Examples in IL:

(* Result is TRUE *)
b :=STRING_TO_BOOL('TRUE');

(* Result is 0 *)
w :=STRING_TO_WORD('abc34');

(* Result is T#127ms *)
t :=STRING_TO_TIME('T#127ms');

Examples in
ST:

Examples in
FBD:

TRUNC
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Converting from REAL to INT. The
whole number portion of the value will be used.
When you perform a type conversion from a larger to a smaller type, you risk losing some
information.

LD 2.7 TRUNC GE %MW8Example in IL:

i:=TRUNC(1.9); (* Result is 1 *)
i:=TRUNC(-1.4); (* Result is -1 *)

Examples in
ST:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 429

1.4.1.6.10 Numeric operators
ABS

IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the absolute value of a
number. ABS(-2) equals 2.
The following type combinations for input and output variables are possible:

IN OUT
INT INT, REAL, WORD, DWORD, DINT

REAL REAL

BYTE INT, REAL, BYTE, WORD, DWORD, DINT

WORD INT, REAL, WORD, DWORD, DINT

DWORD REAL, DWORD, DINT

SINT REAL

USINT REAL

UINT INT, REAL, WORD, DWORD, DINT, UDINT,
UINT

DINT REAL, DWORD, DINT

UDINT REAL, DWORD, DINT, UDINT

LD -2
ABS
ST i (* Result is 2 *)

Example in IL:

i:=ABS(-2);Example in ST:

Example in
FBD:

SQRT
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the square root of a
number.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT. OUT
must be type REAL.

LD 16
SQRT
ST q (* Result is 4 *)

Example in IL:

q:=SQRT(16);Example in ST:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US430

Example in
FBD:

LN
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the natural logarithm of a
number.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT.
OUT must be type REAL.

LD 45
LN
ST q (* Result is 3.80666 *)

Example in IL:

q:=LN(45);Example in ST:

Example in
FBD:

LOG
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the logarithm of a number
in base 10.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT.
OUT must be type REAL.

LD 314.5
LOG
ST q (* Result is 2.49762 *)

Example in IL:

q:=LOG(314.5);Example in ST:

Example in
FBD:

EXP
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the exponential function.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT, OUT
must be type REAL.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 431

LD 2
EXP
ST q (* Result is 7.389056099 *)

Example in IL:

q:=EXP(2);Example in ST:

Example in
FBD:

SIN
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the sine of a number. The
result is calculated in radians.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT, OUT
must be type REAL.

LD 0.5
SIN
ST q (* Result is 0.479426 *)

Example in IL:

q:=SIN(0.5);Example in ST:

Example in
FBD:

COS
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the cosine of a number.
The result is calculated in radians.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT, OUT
must be type REAL.

LD 0.5
COS
ST q (* Result is 0.877583 *)

Example in IL:

q:=COS(0.5);Example in ST:

Example in
FBD:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US432

TAN
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the tangent of a number.
The value is calculated in radians.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT, OUT
must be type REAL.

LD 0.5
TAN
ST q (* Result is 0.546302 *)

Example in IL:

q:=TAN(0.5);Example in ST:

Example in
FBD:

ASIN
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the arc sine (inverse
function of sine) of a number.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT, OUT
must be type REAL.

LD 0.5
ASIN
ST q (* Result is 0.523599 *)

Example in IL:

q:=ASIN(0.5);Example in ST:

Example in
FBD:

ACOS
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the arc cosine (inverse
function of cosine) of a number. The value is calculated in radians.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT, OUT
must be type REAL.

LD 0.5
ACOS
ST q (* Result is 1.0472 *)

Example in IL:

q:=ACOS(0.5);Example in ST:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 433

Example in
FBD:

ATAN
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Returns the arc tangent (inverse
function of tangent) of a number.
IN can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT, UDINT. The
result OUT is calculated in radians and must be type REAL.

LD 0.5
ATAN
ST q (* Result is 0.463648 *)

Example in IL:

q:=ATAN(0.5);Example in ST:

Example in
FBD:

EXPT
IEC operator Ä Chapter 1.4.1.6.1 “Overview” on page 407: Exponentiation of a variable with
another variable:
IN1 and IN2 can be type BYTE, WORD, DWORD, INT, DINT, REAL, SINT, USINT, UINT,
UDINT, OUT must be type REAL.

LD 7
EXPT 2
ST Var1 (* Result is 49 *)

Example in IL:

var1 := EXPT(7,2);Example in ST:

Example in
FBD:

1.4.1.6.11 Initialization operator
INI operator

The INI operator can be used to initialize retain variables which are provided by a function block
instance used in the POU.
The operator must be assigned to a boolean variable.
Syntax: <bool-Variable> := INI(<FB-instance, TRUE|FALSE)

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US434

If the second parameter of the operator is set to TRUE, all retain variables defined in the
function block FB will be initialized.

fbinst is the instance of function block fb, in which a retain variable retvar is defined.
Declaration in POU:
fbinst:fb;
b:bool;

Implementation part:
b := INI(fbinst, TRUE);
ivar:=fbinst.retvar (* => retvar gets initialized *)

Example in ST:

LD fbinst
INI TRUE
ST b

Example of
operator call in
IL:

Example of
operator call in
FUP:

1.4.1.7 Operands
1.4.1.7.1 Overview

In constants, variables, addresses and possibly function calls can appear as operands.

1.4.1.7.2 Constants
BOOL constants

BOOL constants are the logical values TRUE and FALSE.

TIME constants
TIME constants can be declared. These are generally used to operate the timer in the standard
library. A TIME constant is always made up of an initial "t" or "T" (or "time" or "TIME" spelled
out) and a number sign "#".
This is followed by the actual time declaration which can include days (identified by "d"), hours
(identified by "h"), minutes (identified by "m"), seconds (identified by "s") and milliseconds
(identified by "ms").
Please note that the time entries must be given in this order according to length (d before h
before m before s before m before ms) but you are not required to include all time increments.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 435

TIME1 := T#14ms;
TIME1 := T#100S12ms; (*The highest component may be allowed to exceed its limit*)
TIME1 := t#12h34m15s;
The following would be incorrect:
TIME1 := t#5m68s; (*limit exceeded in a lower component*)
TIME1 := 15ms; (*T# is missing*)
TIME1 := t#4ms13d; (*Incorrect order of entries*)

Examples of
correct TIME
constants in a
ST assign-
ment:

DATE constants
These constants can be used to enter dates. A DATE constant is declared beginning with a "d",
"D", "DATE" or "date" followed by "#". You can then enter any date with format Year-Month-Day.

DATE#1996-05-06
d#1972-03-29

Examples:

TIME_OF_DAY constants
Use this type of constant to store times of the day. A TIME_OF_DAY declaration begins
with "tod#", "TOD#", "TIME_OF_DAY#" or "time_of_day#" followed by a time with the format:
Hour:Minute:Second.
You can enter seconds as real numbers or you can enter fractions of a second.

TIME_OF_DAY#15:36:30.123
tod#00:00:00

Examples:

DATE_AND_TIME constants
Date constants and the time of day can also be combined to form so-called DATE_AND_TIME
constants. DATE_AND_TIME constants begin with "dt#", "DT#", "DATE_AND_TIME#" or
"date_and_time#".
Place a hyphen after the date followed by the time.

DATE_AND_TIME#1996-05-06-15:36:30
dt#1972-03-29-00:00:00

Examples:

Number constants
Number values can appear as binary numbers, octal numbers, decimal numbers and hexadec-
imal numbers. If an integer value is not a decimal number, you must write its base followed
by the number sign (#) in front of the integer constant. The values for the numbers 10-15 in
hexadecimal numbers will be represented as always by the letters A-F.
You may include the underscore character within the number.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US436

14 (decimal number)
2#1001_0011 (dual number)
8#67 (octal number)
16#A (hexadecimal number)

Examples

These number values can be from the variable types BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL or LREAL. Implicit conversions from "larger" to "smaller" vari-
able types are not permitted. This means that a DINT variable cannot simply be used as an INT
variable. You must use the type conversion.

REAL/LREAL constants
REAL / LREAL constants can be given as decimal fractions and represented exponentially
Ä Chapter 1.4.1.8.1.4 “REAL / LREAL” on page 443. Use the standard American format with
the decimal point to do this.

7.4 instead of 7,4
1.64e+009 instead of 1,64e+009

Example

STRING constants
A string is a sequence of characters. STRING constants are preceded and followed by
single quotation marks. You may also enter blank spaces and special characters (umlauts for
instance). They will be treated just like all other characters.
In character sequences, the combination of the dollar sign ($) followed by two hexadecimal
numbers is interpreted as a hexadecimal representation of the eight bit character code. In
addition, the combination of two characters that begin with the dollar sign are interpreted as
shown below when they appear in a character sequence:

$$ Dollar signs

$' Single quotation mark

$L or $l Line feed

$N or $n New line

$P or $p Page feed

$R or $r Line break

$T or $t Tab

'w1Wüß?'
' Abby and Craig '
':-)'

Examples

Typed literals
Basically, in using IEC constants, the smallest possible data type will be used. If another data
type must be used, this can be achieved with the help of typed literals without the necessity
of explicitly declaring the constants. For this, the constant will be provided with a prefix which
determines the type.
This is written as follows: <Type>#<Literal>

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 437

<Type> specifies the desired data type; possible entries are: BOOL, SINT, USINT, BYTE, INT,
UINT, WORD, DINT, UDINT, DWORD, REAL, LREAL. The type must be written in uppercase
letters.
<Literal> specifies the constant. The data entered must fit within the data type specified under
<Type>.

var1:=DINT#34;Example

If the constant can not be converted to the target type without data loss, an error message is
issued:
Typed literals can be used wherever normal constants can be used.

1.4.1.7.3 Variables
Overview

Variables can be declared either locally in the declaration part of a POU or in a global variable
list.

In a project you can define a local variable which has the same name like a
global variable. In this case within a POU the locally defined variable will be
used. It is not allowed however to name two global variables identically. For
example you will get a compiler error, if you have defined a variable "var1" in
the PLC Configuration as well as in a global variables list.

The variable identifier may not contain any blank spaces or special characters, may not be
declared more than once and cannot be the same as any of the keywords. Capitalization is not
recognized which means that VAR1, Var1, and var1 are all the same variable. The underscore
character is recognized in identifiers (e.g., "A_BCD" and "AB_CD" are considered two different
identifiers). An identifier may not have more than one underscore character in a row. The length
of the identifier, as well as the meaningful part of it, are unlimited.
Variables can be used anywhere the declared type allows for them.
You can access available variables through the input assistant.

System flags
System flags are implicitly declared variables that are different on each specific PLC. To find out
which system flags are available in your system, use the command 'Insert' 'Operand'. An input
assistant dialog box pops up, select the category 'System Variable'.

Accessing variables for arrays, structures and POUs
Two-dimensional array components can be accessed using the following syntax:
<Fieldname>[Index1, Index2]
Structure variables can be accessed using the following syntax:
<Structurename>.<Variablenname>
Function block and program variables can be accessed using the following syntax:
<Functionblockname>.<Variablename>

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US438

Addressing bits in variables
In integer variables individual bits can be accessed. For this, the index of the bit to be
addressed is appended to the variable, separated by a dot. The bit-index can be given by
any constant. Indexing is 0-based.

Bitaccess in Direct variables is not allowed Ä Chapter 1.4.2.4.4 “The library
SysLibDirect.lib” on page 570.

a : INT;
b : BOOL;
...
a.2 := b;

The third bit of the variable a will be set to the value of the variable b.

Example

If the index is greater than the bit width of the variable, the following error message is issued:
Index '<n>' outside the valid range for variable '<var>'!
Bit addressing is possible with the following variable types: SINT, INT, DINT, USINT, UINT,
UDINT, BYTE, WORD, DWORD.
If the variable type does not allow it, the following error message is issued: "Invalid data type
'<type>' for direct indexing"
A bit access must not be assigned to a VAR_IN_OUT variable!

If you have declared a global constant, which defines the bit-index, you can use this constant for
a bitaccess.

The project option 'Replace constants' (category Build) must be activated.

See in the following examples for such a bitaccess on a variable resp. a structure variable:

Variable enable defines which bit should be accessed:

VAR_GLOBAL CONSTANT
enable:int:=2;
END_VAR

Declaration in
global varia-
bles list for
both examples:

Bitaccess via a
global constant:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 439

Declaration in POU:

VAR
xxx:int;
END_VAR

Bitaccess:
xxx.enable:=true;

The third bit in variable xxx will be set TRUE.

Example 1,
Bitaccess on
an integer vari-
able:

Declaration of structure stru1:

TYPE stru1 :
STRUCT
bvar:BOOL;
rvar:REAL;
wvar:WORD;
{bitaccess enable 42 'Start drive'}
END_STRUCT
END_TYPE

Declaration in POU:
VAR
x:stru1;
END_VAR

Bitaccess:
x.enable:=true;

Example 2,
Bitaccess on
an integer
structure com-
ponent:

This will set TRUE the 42. bit in variable x. Since bvar has 8 bits and rvar has 32 bits, the
bitaccess will be done on the second bit of variable wvar, which as a result will get value 4.

If a variable, which does a bitaccess on a structure variable with the aid of
a global constant, should be displayed correctly in the input assistant, at mon-
itoring in the declaration window and in the intellisense function. Please use
pragma {bitaccess} which is shown in the example Ä Chapter 1.4.1.3.10.2
“Pragma instructions for initialization, monitoring, creation of symbols, bitac-
cess, linking” on page 310. Then in addition you get displayed the global
constant beyond the respective structure variable during monitoring in the dec-
laration window:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US440

1.4.1.7.4 Addresses
Addresses, note

Online Change might change the contents on addresses.

Please regard this when using pointers on addresses. See Pointer and Address
Ä Chapter 1.4.1.8.2.3 “Pointer” on page 447 Ä Chapter 1.4.1.7.4.2 “Address”
on page 441.

Address
The direct display of individual memory locations is done through the use of special character
sequences. These sequences are a concatenation of the percent sign "%", a range prefix, a
prefix for the size and one or more natural numbers separated by blank spaces.
The following range prefixes are supported:

I Input

Q Output

M Memory location

The following size prefixes are supported:

Examples:

%QX7.5 and %Q7.5 Output bit 7.5

%IW215 Input word 215

%QB7 Output byte 7

%MD48 Double word in memory position 48 in the
memory location.

%IW2.5.7.1 depending on the PLC Configuration

 ivar AT %IW0 : WORD; Example of a variable declaration including an
address assignment

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 441

The current PLC Configuration for the program determines whether or not an address is valid.

Boolean values will be allocated bytewise, if no explicit single-bit address is
specified.

Example: A change in the value of varbool1 AT %QW0 affects the range from
QX0.0 to QX0.7.

Online Change might change the contents on addresses.

Please regard this when using Pointer on addresses Ä Chapter 1.4.1.8.2.3
“Pointer” on page 447.

Memory location
You can use any supported size to access the memory location.
For example, the address %MD48 would address bytes numbers 192, 193, 194, and 195 in the
memory location area (48 * 4 = 192). The number of the first byte is 0.
You can access words, bytes and even bits in the same way: the address %MX5.0 allows you to
access the first bit in the fifth word (Bits are generally saved wordwise).

Online Change might change the contents on addresses.

Please regard this when using pointers on addresses.

1.4.1.7.5 Functions
In ST a function call can also appear as an operand.

Result := Fct(7) + 3;Example:

TIME()-Function
This function returns the time (based on milliseconds) which has been passed since the system
was started. The data type is TIME.

TIME ST systime (* Result e.g.: T#35m11s342ms *)Example in IL:

systime:=TIME();Example in ST:

Example in
FUP:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US442

1.4.1.8 Data types
1.4.1.8.1 Standard data types
Data types

You can use standard data types and user-defined data types when programming. Each identi-
fier is assigned to a data type which dictates how much memory space will be reserved and
what type of values it stores.

BOOL
BOOL type variables may be given the values TRUE and FALSE. 8 bits of memory space will
be reserved.
See also: BOOL constants Ä Chapter 1.4.1.7.2.1 “BOOL constants” on page 435

Integer data types
BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, and UDINT are all integer data types.
Each of the different number types covers a different range of values. The following range
limitations apply to the integer data types:

Type Lower limit Upper limit Memory space
BYTE 0 255 8 bit

WORD 0 65535 16 bit

DWORD 0 4294967295 32 bit

SINT -128 127 8 bit

USINT 0 255 8 bit

INT -32768 32767 16 bit

UINT 0 65535 16 bit

DINT -2147483648 2147483647 32 bit

UDINT 0 4294967295 32 bit

As a result when larger types are converted to smaller types, information may be lost.
See also: Number constants Ä Chapter 1.4.1.7.2.6 “Number constants” on page 436

REAL / LREAL
REAL and LREAL are so-called floating-point types. They are required to represent rational
numbers. 32 bits of memory space is reserved for REAL and 64 bits for LREAL.
Valid values for REAL: 1.175494351e-38 to 3.402823466e+38
Valid values for LREAL: 2.2250738585072014e-308 to 1.7976931348623158e+308
See also: REAL/LREAL constants Ä Chapter 1.4.1.7.2.7 “REAL/LREAL constants” on page 437

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 443

STRING
A STRING type variable can contain any string of characters. The size entry in the declaration
determines how much memory space should be reserved for the variable. It refers to the
number of characters in the string and can be placed in parentheses or square brackets. If no
size specification is given, the default size of 80 characters will be used.
The string length basically is not limited, but string functions only can process strings of 1 - 255
characters!

str:STRING(35):='This is a String';Example of a
String Declara-
tion with 35
characters:

See also: STRING constants Ä Chapter 1.4.1.7.2.8 “STRING constants” on page 437

Time data types
The data types TIME, TIME_OF_DAY (abb. TOD), DATE and DATE_AND_TIME (abb. DT) are
handled internally like DWORD.
Time is given in milliseconds in TIME and TOD, time in TOD begins at 12:00 A.M.
Time is given in seconds in DATE and DT beginning with January 1, 1970 at 12:00 A.M.
See in the following the time data formats used to assign values for time constants:

always made up of an initial "t" or "T" (or "time" or "TIME" spelled out) and a number sign "#".
This is followed by the actual time declaration which can include days (identified by "d"), hours
(identified by "h"), minutes (identified by "m"), seconds (identified by "s") and milliseconds
(identified by "ms"). Please note that the time entries must be given in this order according to
length (d before h before m before s before m before ms) but you are not required to include all
time increments.
Maximum value: 49d17h2m47s295ms (4194967295 ms)

TIME1 := T#14ms;

TIME1 := T#100S12ms; (*The highest component may be allowed
to exceed its limit*)

TIME1 := t#12h34m15s;

the following would be incorrect:

TIME1 := t#5m68s; (*limit exceeded in a lower component*)

TIME1 := 15ms; (*T# is missing*)

TIME1 := t#4ms13d; (*Incorrect order of entries*)

Examples of
correct TIME
constants in a
ST assign-
ment:

A date constant begins with a "d", "D", "DATE" or "date" followed by "#". You can then enter any
date with format Year-Month-Day. Possible values: 1970-00-00 to 2106-02-06.

DATE#1996-05-06
d#1972-03-29

Examples:

TIME constants:

DATE con-
stants:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US444

begin with "tod#", "TOD#", "TIME_OF_DAY#" or "time_of_day#" followed by a time with the
format: Hour:Minute:Second. Seconds can be entered as real numbers or you can enter frac-
tions of a second. Possible values: 00:00:00 bis 23:59:59.999.

TIME_OF_DAY#15:36:30.123
tod#00:00:00

Examples:

begin with "dt#", "DT#", "DATE_AND_TIME#" or "date_and_time#". Place a hyphen after the
date followed by the time. Possible values: 1970-00-00-00:00:00 to 2106-02-06-06:28:15.

DATE_AND_TIME#1996-05-06-15:36:30
dt#1972-03-29-00:00:00

Examples:

1.4.1.8.2 Defined data types
ARRAY

One-, two-, and three-dimensional fields (arrays) are supported as elementary data types.
Arrays can be defined both in the declaration part of a POU and in the global variable lists.
Maximum 9 dimensions may result from nesting of arrays ("ARRAY[0..2] OF ARRAY[0..3] OF
…").
Syntax:
<Field_Name>:ARRAY [<ll1>..<ul1>,<ll2>..<ul2>] OF <elem. Type>.
ll1, ll2, ll3 identify the lower limit of the field range; ul1, ul2 and ul3 identify the upper limit. The
limit values must be integers and must match the DINT range of values.

Card_game: ARRAY [1..13, 1..4] OF INT;Example:

arr1 : ARRAY [1..5] OF INT := 1,2,3,4,5;
arr2 : ARRAY [1..2,3..4] OF INT := 1,3(7); (* short for 1,7,7,7 *)
arr3 : ARRAY [1..2,2..3,3..4] OF INT := 2(0),4(4),2,3; (* short for
0,0,4,4,4,4,2,3 *)

Example for
complete initi-
alization of an
array:

TIME_OF_DAY
constants, for
storing times of
the day:

DATE_AND_TIM
E constants,
combination of
date and the
time of day:

Initializing
arrays:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 445

TYPE STRUCT1
STRUCT
p1:int;
p2:int;
p3:dword;
END_STRUCT
ARRAY[1..3] OF STRUCT1:= (p1:=1,p2:=10,p3:=4723),
(p1:=2,p2:=0,p3:=299),(p1:=14,p2:=5,p3:=112);

Example of the
initialization of
an array of a
structure:

arr1 : ARRAY [1..10] OF INT := 1,2;Example of the
partial initiali-
zation of an
array:

Elements to which no value is pre-assigned are initialized with the default initial value of the
basic type. In the example above, the elements anarray[6] to anarray[10] are therefore initial-
ized with 0.

Array components are accessed in a two-dimensional array using the following syntax:
<Field_Name>[Index1,Index2]

Card_game [9,2]Example:

If you define a function in your project with the name CheckBounds, you can
use it to check for range overflows in your project (see chapter 'How is a project
structured?' Ä Chapter 1.4.1.1.1 “How is a project structured?” on page 145)
Ä Chapter 1.4.1.8.2.2 “Function CheckBounds” on page 446.

Function CheckBounds
If you define a function in your project with the name CheckBounds, you can automatically
check for out-of-range errors in arrays Ä Chapter 1.4.1.8.2.1 “ARRAY” on page 445. The name
of the function is fixed and can only have this designation.

FUNCTION CheckBounds : DINT
VAR_INPUT
 index, lower, upper: DINT;
END_VAR
IF index < lower THEN
 CheckBounds := lower;
ELSIF index > upper THEN
 CheckBounds := upper;
ELSE CheckBounds := index;
END_IF

Example for
the function
CheckBounds:

Accessing array
components:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US446

The following sample program for testing the CheckBounds function exceeds the bounds of a
defined array. The CheckBounds function allows the value TRUE to be assigned, not to location
A[10], but to the still valid range boundary A[7] above it. With the CheckBounds function,
references outside of array boundaries can thus be corrected.

PROGRAM PLC_PRG
VAR
 a: ARRAY[0..7] OF BOOL;
 b: INT:=10;
END_VAR
a[b]:=TRUE;

Test program
for the function
CheckBounds:

NOTICE!
The CheckBounds-function provided by the Check.Lib library is just a sample
solution! Before using that library module check whether the function is working
in your sense, or implement an appropriate function directly as a POU in your
project.

Pointer
Variable or function block addresses Ä Addresses are saved in pointers while a program is
running.
Pointer declarations have the following syntax:
<Identifier>: POINTER TO <Datatype/Functionblock>;
A pointer can point to any data type or function block even to user-defined types.
The function of the Address Operator ADR is to assign the address of a variable or function
block to the pointer.
A pointer can be dereferenced by adding the content operator "^" after the pointer identifier.

A pointer is counted up bytewise ! You can get it counted up like it is usual in
the C-Compiler by using the instruction p=p+SIZEOF(p^);.

pt:POINTER TO INT;
var_int1:INT := 5;
var_int2:INT;
pt := ADR(var_int1);
var_int2:= pt^; (* var_int2 is now 5 *)

Example:

For checking pointer accesses during run time you can create check functions, which will be
called automatically before each access on the address of a pointer. For this purpose the
respective function must be available in the project, directly or via a library. The following
functions are supported:
● Function CheckPointer: checks whether the address currently stored at the pointer is within

the valid memory range,
● Function CheckPointerAligned: implicates the functionality of CheckPointer and additionally

checks the memory alignment.

Checking
pointer
accesses at run
time

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 447

The functions must exactly have the mentioned names. They return the address which is used
for dereferencing the pointer, thus at best that which has been passed on as the first input
parameter (dwAddress in the example shown below).
See in the following example of a CheckPointerAligned function, which input parameters are
processed. The parameter names are examples too. A CheckPointer function must look the
same, except that there may be no parameter for the granularity of the pointer access:

FUNCTION CheckPointerAligned :
DWORD

(* The data type of the function (return value)
must be the same as used for pointers in the
currently set target system; i.e. DWORD for
systems using 32-bit pointers, WORD for sys-
tems using 16-bit pointers *)

VAR_INPUT
 dwAddress : DWORD; (* Target address of the pointer; the data type

must be the same as used for pointers in the
currently set target system, see above: return
value *)

 iSize : DINT; (* Size of pointer access; the data type must
be integer-compatible and must cover the
maximum potential data size stored at the
pointer address *)

 iGran : DINT; (* ! not to be used in CheckPointer func-
tions ! : Granularity of the access, e.g. "2",
if INT is the smallest not-structured datatype
used on the given address; the data type must
be integer-compatible *)

 bWrite: BOOL; (*Access type: Read or Write; TRUE=read
access; the data type must be BOOL *)

END_VAR

If there are a CheckPointer function and a CheckPointerAligned function in the project, Check-
PointerAligned will be called.

Enumeration
Enumeration is a user-defined data type that is made up of a number of string constants. These
constants are referred to as enumeration values.
Enumeration values are recognized in all areas of the project even if they were declared within
a POU. It is best to create your enumerations as objects in the Object Organizer under the
register card Data types. They begin with the keyword TYPE and end with END_TYPE.
Syntax:
TYPE <Identifier>:(<Enum_0> ,<Enum_1>, ...,<Enum_n>);
END_TYPE
A variable of the type <Identifier> can take on one of the enumeration values and will be
initialized with the first one. These values are compatible with whole numbers which means that
you can perform operations with them just as you would with INT. You can assign a number x
to the variable. If the enumeration values are not initialized, counting will begin with 0. When
initializing, make certain the initial values are increasing. The validity of the number will be
reviewed at the time it is run.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US448

TYPE TRAFFIC_SIGNAL: (Red, Yellow, Green:=10); (*The initial value
for each of the colors is red 0, yellow 1, green 10 *)
END_TYPE
TRAFFIC_SIGNAL1 : TRAFFIC_SIGNAL;
TRAFFIC_SIGNAL1:=0; (* The value of the traffic signal is red*)
FOR i:= Red TO Green DO
 i := i + 1;
END_FOR;

Example:

The same enumeration value may not be used twice within an enumeration or within all enumer-
ations used in the same POU.

TRAFFIC_SIGNAL: (red, yellow, green);
COLOR: (blue, white, red);
Error: red may not be used for both TRAFFIC_SIGNAL and COLOR.

Example:

Structures
Structures are created as objects in the Object Organizer under the register card Data
types. They begin with the keywords TYPE and STRUCT and end with END_STRUCT and
END_TYPE.
The syntax for structure declarations is as follows:
TYPE <Structurename>:
STRUCT
 <Declaration of Variables 1>
 .
 .
 <Declaration of Variables n>
END_STRUCT
END_TYPE
<Structurename> is a type that is recognized throughout the project and can be used like a
standard data type.
Interlocking structures are allowed. The only restriction is that variables may not be placed at
addresses (the AT declaration is not allowed!).

TYPE Polygonline:
STRUCT
 Start:ARRAY [1..2] OF INT;
 Point1:ARRAY [1..2] OF INT;
 Point2:ARRAY [1..2] OF INT;
 Point3:ARRAY [1..2] OF INT;
 Point4:ARRAY [1..2] OF INT;
 End:ARRAY [1..2] OF INT;
END_STRUCT
END_TYPE

Example for a
structure defi-
nition named
Polygonline:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 449

Poly_1:polygonline := (Start:=3,3, Point1 =5,2, Point2:=7,3,
Point3:=8,5, Point4:=5,7, End := 3,5);
Initializations with variables are not possible. See an example of the initialization of an array of
a structure under 'Arrays'.

Example for
the initializa-
tion of a struc-
ture:

You can gain access to structure components using the following syntax:
<Structure_Name>.<Componentname>
So for the above mentioned example of the structure 'polygonline' you can access the compo-
nent 'start' by Poly_1.Start.

References
You can use the user-defined reference data type to create an alternative name for a variable,
constant or function block.

Create your references as objects in the Object Organizer under the register card Data types.
They begin with the keyword TYPE and end with END_TYPE.
Syntax:
TYPE <Identifier>: <Assignment term>;
END_TYPE

TYPE message:STRING[50];
END_TYPE;

Example:

Subrange types
A subrange type is a type whose range of values is only a subset of that of the basic type.
The declaration can be carried out in the data types register, but a variable can also be directly
declared with a subrange type:
Syntax for the declaration in the 'Data types' register:
TYPE <Name> : <Inttype> (<ug>..<og>) END_TYPE;

<Name> must be a valid IEC identifier,

<Inttype> is one of the data types SINT, USINT, INT,
UINT, DINT, UDINT, BYTE, WORD, DWORD
(LINT, ULINT, LWORD).

<ug> Is a constant which must be compatible with
the basic type and which sets the lower boun-
dary of the range types. The lower boundary
itself is included in this range.

<og> Is a constant that must be compatible with the
basic type, and sets the upper boundary of
the range types. The upper boundary itself is
included in this basic type.

Access on
structure com-
ponents:

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US450

TYPE
 SubInt : INT (-4095..4095);
END_TYPE

Example:

VAR
 i : INT (-4095..4095);
 ui : UINT (0..10000);
END_VAR
If a constant is assigned to a subrange type (in the declaration or in the implementation) that
does not fall into this range (e.g. 1:=5000), an error message is issued.
In order to check for observance of range boundaries at run time, the functions CheckRange-
Signed or CheckRangeUnsigned must be introduced. In these, boundary violations can be
captured by the appropriate method and means (e.g. the value can be cut out or an error
flag can be set.). They are implicitly called as soon as a variable is written as belonging to a
subrange type constructed from either a signed or an unsigned type.

In the case of a variable belonging to a signed subrange type (like i, above), the function
CheckRangeSigned is called; it could be programmed as follows to trim a value to the permis-
sible range:
FUNCTION CheckRangeSigned : DINT
VAR_INPUT
 value, lower, upper: DINT;
END_VAR
IF (value < lower) THEN
 CheckRangeSigned := lower;
ELSIF(value > upper) THEN
 CheckRangeSigned := upper;
ELSE
 CheckRangeSigned := value;
END_IF

Example:

In calling up the function automatically, the function name CheckRangeSigned is obligatory, as
is the interface specification: return value and three parameters of type DINT
When called, the function is parameterized as follows:
●
● - value: the value to be assigned to the range type
● - lower: the lower boundary of the range
● - upper: the upper boundary of the range
● - Return value: this is the value that is actually assigned to the range type
An assignment i:=10*y implicitly produces the following in the example:
i := CheckRangeSigned(10*y, -4095, 4095);
Even if y for example has the value 1000, then i still has only the value 4095 after this assign-
ment.
The same applies to the function CheckRangeUnsigned: function name and interface must be
correct.
FUNCTION CheckRangeUnsigned : UDINT
VAR_INPUT
 value, lower, upper: UDINT;
END_VAR

Direct declara-
tion of a vari-
able with a sub-
range type:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 451

WARNING!
If neither of the functions CheckRangeSigned or CheckRangeUnsigned is
present, no type checking of subrange types occurs during run time! The vari-
able i could then take on any value between 32768 and 32767 at any time!

NOTICE!
If neither of the functions CheckRangeSigned or CheckRangeUnsigned is
present like described above, there can result an endless loop if a subrange
type is used in a FOR loop. This will happen when the range given for the FOR
loop is as big or bigger than the range of the subrange type!

NOTICE!
The CheckRangeSigned-function provided with the Check.Lib library is just a
sample solution! Before using the library module check whether the function
is working as requested for your project, or implement an appropriate Check-
Range-function directly as a POU in the project.

VAR
 ui : UINT (0..10000);
END_VAR

FOR ui:=0 TO 10000 DO
...
END_FOR

Example:

The FOR loop will never be finished, because ui cannot get bigger than 10000.
Also take care of the definition of the CheckRange functions when you define the incremental
value of a FOR loop!

1.4.1.8.3 Overview operators and library elements
The table shown below shows an overview on the operators, which are available in CODESYS
or in the libraries Standard.lib and Util.lib. You find there the notation for ST and IL. For IL also
the supported modificators are listed.
Take note that for the 'IL operator' column: Only the line in which the operator is used will be
displayed. A prerequisite is that the (first) required operand have been successfully loaded in
the preceding line (e.g. LD in).

Table 13: The 'Mod. IL' column shows the possible modifiers in IL:
C The command is only executed if the result of the preceding

expression is TRUE.

N for JMPC, CALC, RETC: The command is only executed if the
result of the preceding expression is FALSE.

N otherwise: negation of the operand (not of the accumulator)

(Operator enclosed in brackets: only after the closing bracket
is reached will the operation preceding the brackets be carried
out.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US452

Please obtain a detailed description of usage from the appropriate appendices concerning IEC
operators.

in ST in AWL Mod.
AWL

Description

' String delimiters (e.g.
'string1')

.. [] Size of Array range
(e.g. ARRAY[0..3] OF
INT)

: Delimiter between
Operand and Type
in a declaration (e.g.
var1 : INT;)

; Termination of instruc-
tion (e.g. a:=var1;)

^ Dereferenced Pointer
(e.g. pointer1^)

 LD var1 N Load value of var1 in
buffer

:= ST var1 N Store actual result to
var1

 S boolvar Set boolean operand
boolvar exactly then
to TRUE, when the
actual result is TRUE

 R boolvar Set boolean operand
boolvar exactly then
to FALSE, when the
actual result is TRUE

in ST in AWL Mod.
AWL

Description

 JMP label CN Jump to label

<Program name> CAL prog1 CN Call program prog1

<Instance name> CAL inst1 CN Call function block
instance inst1

<Fctname>(vx, vy,..) <Fctname> vx, vy CN Call function fctname
and transmit variables
vx, vy

RETURN RET CN Leave POU and go
back to caller

 (The value following
the bracket is han-
dled as operand,
the operation before
the bracket is not
executed before the
expression in the
brackets.

Operators in
CODESYS:

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 453

in ST in AWL Mod.
AWL

Description

) Now execute the
operation which has
been set back

AND AND N,(Bitwise AND

OR OR N,(Bitwise OR

XOR XOR N,(Bitwise exclusive OR

NOT NOT Bitweise NOT

+ ADD (Addition

- SUB (Subtraction

* MUL (Multiplication

/ DIV (Division

> GT (Greater than

>= GE (Greater or equal

= EQ (Equal

<> NE (Not equal

<= LE (Less or equal

< LT (Less than

MOD(in) MOD Modulo Division

INDEXOF(in) INDEXOF Internal index of POU
in1; [INT]

SIZEOF(in) SIZEOF Number of bytes
required for the given
data type of in

SHL(K,in) SHL Bitwise left-shift of
operator in by K

SHR(K,in) SHR Bitwise right-shift of
operator in by K

ROL(K,in) ROL Bitwise rotation to the
left of operator in by K

ROR(K,in) ROR Bitwise rotation to the
right of operator in by
K

SEL(G,in0,in1) SEL Binary selection
between 2 operands
in0 (G is FALSE) and
in1 (G is TRUE)

MAX(in0,in1) MAX Returns the greater of
2 values

MIN(in0,in1)

MIN Returns the lesser of
2 values in0 and in1

LIMIT(MIN,in,Max) LIMIT Limits the range of
values (in is set back
to MIN or MAX in
case of exceeding the
range)

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US454

in ST in AWL Mod.
AWL

Description

MUX(K,in0,...in_n) MUX Selecti the Kth value
out of a group of
values (in0 to In_n)

ADR(in) ADR Address of the
operand in [DWORD]

ADRINST() ADRINST()

 Address of the func-
tion block instance
from which you are
calling that operator.

BITADR(in) BITADR Bitoffset of the
operand in [DWORD]

BOOL_TO_<type>(in) BOOL_TO_<type> Type conversion of
the boolean operand

<type>_TO_BOOL(in) <type>_TO_BOOL Type conversion to
BOOL

INT_TO_<type>(in) INT_TO_<type> Type conversion of
an INT Operand to
another elementary
type

REAL_TO_<type>(in) REAL_TO_<type> Type conversion of
an REAL operand
to another elementary
type

LREAL_TO_<type>(in
)

LREAL_TO_<type> Type conversion of
a LREAL operand
to another elementary
type

TIME_TO_<type>(in) TIME_TO_<type> Type conversion of
a TIME operand to
another elementary
type

TOD_TO_<type>(in) TOD_TO__<type> Type conversion of
a TOD operand to
another elementary
type

DATE_TO_<type>(in) DATE_TO_<type> Type conversion of
a DATE operand to
another elementary
type

DT_TO_<type>(in) DT_TO_<type> Type conversion of
a DT operand to
another elementary
type

STRING_TO_<type>(i
n)

STRING_TO_<type> Type conversion of
a string operand to
another elementary
type, in must contain
valid value of desired
type

TRUNC(in) TRUNC Conversion from
REAL to INT

ABS(in) ABS Absolute value of
operand in

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 455

in ST in AWL Mod.
AWL

Description

SQRT(in) SQRT Square root of
operand in

LN(in) LN Natural logarithm of
operand in

LOG(in) LOG Logarithm of operand
in, base 10

EXP(in) EXP Exponential function
of operand in

SIN(in) SIN Sine of operand in

COS(in) COS Cosine of operand in

TAN(in) TAN Tangent of operand in

ASIN(in) ASIN Arc sine of operand in

ACOS(in) ACOS Arc cosine of operand
in

ATAN(in) ATAN Arc tangent of
operand in

EXPT(in,expt) EXPT expt Exponentation of
operand in with expt

in ST in AWL Description
LEN(in) LEN String length of operand in

LEFT(str,size) LEFT Left inital string of given size
of string str

RIGHT(str,size) RIGHT Right initial string of given size
of string str

MID(str,size,pos) MID Partial string of str of given
size at position pos

CONCAT('str1','str2') CONCAT 'str2' Concatenation of two subse-
quent strings

INSERT('str1','str2',pos) INSERT 'str2',p Insert string str1 in String str2
at position pos

DELETE('str1',len,pos) DELETE len,pos Delete partial string (length
len), start at position pos of
str1

REPLACE('str1','str2',len,pos) REPLACE 'str2',len,pos Replace partial string of lenght
len by str2, start at position
pos of str1

FIND('str1','str2') FIND 'str2' Search for partial string str2 in
str1

SR SR Bistable FB is set dominant

RS RS Bistable FB is set back

SEMA SEMA FB: Software Semaphor
(interruptable)

R_TRIG R_TRIG FB: rising edge is detected

F_TRIG F_TRIG FB: falling edge is detected

Elements of the
Standard.lib

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US456

in ST in AWL Description
CTU CTU FB: Counts upv

CTD CTD FB: Counts down

CTUD CTUD FB: Counts up and down

TP TP FB: trigger

TON TON FB: Timer On-Delay

TOF TOF FB: Timer Off-Delay

RTC RTC FB: Real-time clock

Element Description
BCD_TO_INT Conversion of a Byte: BCD to INT format

INT_TO_BCD Converstion of a Byte: INT to BCD format

EXTRACT(in,n) The n-th bit of DWORD in is returned in BOOL

PACK Up to 8 bits are packed into a byte

PUTBIT A bit of a DWORD is set to a certain value

UNPACK A byte is returned as single bits

DERIVATIVE Local derivation

INTEGRAL Integral

LIN_TRAFO Transformation of REAL values

STATISTICS_INT Min., Max., average values in INT format

STATISTICS_REAL Min., Max., average in REAL format

VARIANCE Variance

PD PD controller

PID PID controller

BLINK Pulsating signal

FREQ_MEASURE Measuring frequency of boolean input signal

GEN Periodic functions

CHARCURVE Linear functions

RAMP_INT Limiting ascendance of descendance of the
function beeing fed (INT)

RAMP_REAL Limiting ascendance of descendance of the
function beeing fed (REAL)

HYSTERESIS Hysteresis

LIMITALARM Watches whether input value exceeds limits of
a defined range

1.4.1.9 Utilities
1.4.1.9.1 Command line-/Command file
Command line commands

When CODESYS is started you can add commands in the command line which will be asserted
during execution of the program. These commands start with a "/". Capitalization / use of small
letters is not regarded. The commands will be executed sequentially from the left to the right.

Elements of the
Util.lib

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 457

/online Immediately after start, CODESYS tries to go
online with the current project.

/run After login, CODESYS starts the application
program.
Only valid in combination with /online.

/batch CODESYS starts without user interface and
returns the error code of the first error or the
return value of the first command which is ter-
minated with a warning. CODESYS will termi-
nate immediately after the command file has
been processed. The processing of the com-
mand file will be aborted as soon as the first
command is processed with an error. Warn-
ings do not terminate the processing. If neither
errors nor warnings occur, the return value is
S_OK.

/show ...
/show hide
/show icon
/show max
/show normal

Settings for the frame window of CODESYS
can be made.
The window will not be displayed, it also will
not be represented in the task menu.
The window will be minimized in display.
The window will be maximized in display.
The window will be displayed in the same
status as it was during the last closing.

/out <outfile> All messages are displayed in the message
window and additionally are written in the file
<outfile>.

/noinfo No splash screen at start of CODESYS

/userlevel <group> Definition of the user group (e.g. "/userlevel 0"
for user group 0)

/password <password> Direct input of the user group password (e.g.
"/password abc")

/openfromplc The project which is currently available on the
connected target system, will be loaded.

/visudownload If CODESYS HMI is started with a project,
which does not match with the project cur-
rently available on the target system, a down-
load will be offered. (Dialog, to be closed with
YES or NO).

/notargetchange A change of the target system only can be
done via a command file Ä Table 31 “Select
target system” on page 464.

/targetfile <file>.trg A target description file (*.trg) can be speci-
fied. So the already installed targets will not
be regarded when CODESYS is started. The
commands 'File' 'New', File' 'New from tem-
plate...', 'File' 'Open...' and the list of recently
opened projects will not be available. Addition-
ally the selection list in the target settings con-
figuration dialog will not usable.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US458

/targetfilenosaveas <file>.trg In addition to the effects described for the "/
targetfile" option, see above, also the menu
command 'File' 'Save as...' will not be avail-
able.

/cmd <cmdfile> After starting the commands of the <cmdfile>
get executed Ä Chapter 1.4.1.9.1.2 “Com-
mand file (cmdfile) commands” on page 459.

Regard the following syntax for a command line:
"<Path of codesys.exe-file>" "<Path of the project>" /<command1> /<command2>

The project ampel.pro gets opened, but no window opens. The commands included in the
command file command.cmd will be executed.
"D:\dir1\codesys" "C:\projects\ampel.pro" /show hide /cmd command.cmd

Example for a
command line:

Command file (cmdfile) commands
See the following tables for a list of commands which can be used in a command file
(<cmdfile>). The command file you then can call by a command line Ä Chapter 1.4.1.9.1.1
“Command line commands” on page 457. There is no case sensitivity. The command line will be
displayed as a message in the message window and can be given out in a message file (see
below) except the command is prefixed by a "@".
All signs after a semicolon (;) will be ignored (comment). Parameters containing blanks must
be embraced by quotation marks. Umlauts only may be used if the command file is created in
ANSI code. Keywords can be used in the command parameters. A list of the keywords you find
subsequent to the following tables of command descriptions.

Table 14: Commands for controlling the subsequent commands
Command Description
onerror continue The subsequent commands will be executed

even if an error occurs.

onerror break The subsequent commands will not be exe-
cuted any more if an error has been detected.

Table 15: Commands of the online menu
Command Description
online login Login with the loaded project ('Online Login')

online logout Logout ('Online' 'Logout')

online run Start of the application program ('Online'
'Run')

online stop Stop application program ('Online' 'Stop')

online bootproject Creation of a boot project. This command can
be applied in offline and online mode! (See
also description of command 'Online' 'Create
boot project' Ä Chapter 1.4.1.2.6.25 “'Online'
'Create boot project'” on page 291!)

online sourcecodedownload Download of the source code of the project to
the PLC ('Online' 'Sourcecode download')

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 459

Command Description
online sim Switch on of simulation mode 'Online' 'Simula-

tion')

online sim off Switch off of simulation mode ('Online' 'Simu-
lation')

Table 16: Commands of the file menu
Command Description
file new A new project is created ('File' 'New')

file open <projectfile>

possible additions:
The project <projectfile> will be loaded ('File'
'Open')

/readpwd:<readpassword> The password for read access is given here
so that no dialog asking for the password
will appear when the read-protected project is
opened.

/writepwd:<writepassword> The password for full access is given here,
so that no dialog asking for the password will
appear when the project is openend.

file close The current project will be closed ('File'
'Close')

file save The current project will be stored ('File' 'Save')

file saveas <projectfile>

optionally add: <type><version>

The current project will be saved with the file
name <projectfile> ('File' 'Save as')
Default: Project will be saved as <proj-
ectfile>.pro under the current version of
CODESYS. If you want to save the project
as an internal or external library or as project
for an older version of CODESYS, add the
respective command:
Possible entries for <type>:
"internallib" Save as internal library:
"externallib" Save as external library:
"pro" Save as project for older version:
valid entries for <Version>: 15, 20, 21, 22
(product versions 1.5, 2.0, 2.1, 2.2)
Example: "file save as lib_xy internallib22":
The project "project xy.pro", which is created
in the current version of CODESYS will be
saved as "lib_xy.lib" for V2.2.

file saveas <projectfile> The current project will be saved with the file
name <projectfile> ('File' 'Save as')

file printersetup <filename>.dfr
optionally add: pageperobject or
pagepersubject

Define a document frame file ('File' Printer
setup') and optionally define one of the
print options 'New page per object' or 'New
page per subobject'; these settings affect the
printing of the document (project documenta-
tion, see below)

file archive <filename>.zip The project will be archived in a zip-file with
the given file name ('File' Save/Mail Archive')

file quit CODESYS will be closed ('File' 'Exit')

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US460

Table 17: Commands of the project menu
Command Description
project build The project that is loaded will be incrementally

compiled ('Project' 'Build')

project rebuild or project compile The project that is loaded will be compiled in
full ('Project' 'Rebuild')

project clean Compilation information and Online Change
information in the current project will be
deleted ('Project' 'Clean Project')

project check The project that is loaded will be checked
('Project' 'Check all')

project compile The current project will be compiled by
"Rebuild all" ('Project' 'Rebuild all')

project check The current project will be checked ('Project'
'Check')

project build The current project will be built ('Projekt'
'Build')

project import <file1> ... <fileN> The files <file1> ... <fileN> get imported into
the current project ('Project' 'Import'). Regard:
Wildcards can be used, e.g. "project import
C:\projects*.exp" will import all files with
extension *.exp found in directory C:\projects.

project export <expfile> The current project will be exported in the file
<expfile> ('Project' 'Export')

project expmul Each object of the current project will be
exported in an own file, which gets the name
of the object.

project documentation The entire project will be printed on the default
printer ('Project' 'Documentation', see also
above "file printersetup")

Table 18: Commands for the control of the message file
Command Description
out open <msgfile> The file <msgfile> opens as message file.

New messages will be appended

out close The currently shown message file will be
closed.

out clear All messages of the currently opened mes-
sage file will be deleted.

Table 19: Commands for the control of messages
Command Description
echo on The command lines will be displayed as mes-

sages.

echo off The command lines will not be displayed as
messages.

echo <text> <text> will be displayed in the message
window.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 461

Table 20: Commands for the control of replace of objects respectively for the control of files for
import, export, copy
Command Description
replace yesall Replace all (any 'query on' command will be

ignored; no dialogs will open)

replace noall Replace none (any 'query on' command will
be ignored; no dialogs will open)

replace query If a 'query on' command is set, then a
dialog will open regarding the replacing of the
objects even if there is a 'replace yesall' or
'replace noall' command

Table 21: Commands for the control of the default parameters of the dialogs
Command Description
query on Dialogs are displayed and need user input

query off ok All dialogs respond as if the user had clicked
on the 'OK' button

query off no All dialogs respond as if the user had clicked
on the 'No' button

query off cancel All dialogs respond as if the user had clicked
on the 'Cancel' button

Table 22: Command for calling command files as subprograms
Command Description
call <parameter1> ... <parameter10> Command files will be called as subprograms.

Up to 10 parameters may be passed. In the
file that is called, the parameters can be
accessed with $0 - $9.

call <parameter1> ... <parameter10> Command files are called as subroutines. Up
to ten parameters can be consigned. In the
subroutine called you can access the parame-
ters using $0 - $9.

Table 23: Setting of used directories
Command Description
dir lib <libdir> Sets <libdir> as the library directory

dir compile <compiledir> Sets <compiledir> as the directory for the
compilation files

dir config <configdir> Sets <configdir> as the directory for the con-
figuration files

dir upload <uploaddir> Sets <uploaddir> as the directory for the
upload files

Remarks for settings of used directories:
Project options dialog, category 'Directories', subcategory 'General'
If several directories are defined with one of the following commands, these must be separated
by a semicolon + emptyspace and the whole row of directories must be embraced by double
quotation marks.
Example, two paths: dir lib "D:\codesys\Libraries\Standard;
D:\codesys\Libraries\NetVar"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US462

Table 24: Delaying processing of the CMDFILE
Command Description
delay 5000 Waits 5 seconds

Table 25: Controlling the Watch and Receipt Manager
Command Description
watchlist load <file> Loads the Watchlist saved as <file> and

opens the corresponding window ('Extras'
'Load Watchlist')

watchlist save <file> Saves the current Watchlist as <file> ('Extras'
'Save Watchlist')

watchlist set <text> The watchlist is set active (corresponds to
selecting a watchlist in the left part of the
Watch and Receipt Manager)

watchlist read Updates the values of the Watch variables
('Extras' 'Read receipt')

watchlist write Fills the Watch variables with the values found
in the Watchlist ('Extras' 'Write receipt')

Table 26: Linking libraries
Command Libraries
library add <library file1> <library file2> ..
<library fileN>

Attaches the specified library file to the library
list of the currently open project. If the file path
is a relative path, the library directory entered
in the project is used as the root of the path.

library delete [<library1> <library2> ..
<libraryN>]

Deletes the specified libraries from the library
list of the currently open project.

Table 27: Copying objects
Command Description
object copy <source project file> <source
path> <target path>

Copies objects from the specified path of the
source project file to the target path of the
already opened project.

If the source path is the name of an object,
this will be copied. If it is a folder, all objects
below this folder will be copied. In this case,
the folder structure below the source folder
will be duplicated.

If the target path does not yet exist, it will be
created.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 463

Table 28: Read-only access for particular objects
Command Description
object setreadonly <TRUE|FALSE> <object
type> | <object name>

Sets read-only access to a object; Define the
object type and in case of object types pou,
dut, gvl, vis also the name of the object.

Possible object types: pou, dut (data type), gvl
(global variables list), vis (visualization), cnc
(CNC object), liblist (Libraries), targetsettings,
toolinstanceobject (particular Tools instance),
toolmanagerobject (all instances in the Tools
tree), customplconfig (PLC configuration), pro-
jectinfo (Project information), taskconfig (task
configuration), trace, watchentrylist (Watch-
and Recipe Manager), alarmconfig (Alarm
configuration)

e.g. "object setreadonly TRUE pou plc_prg"
will set the PLC_PRG to read-only access

Table 29: Entering communications parameters (gateway, device)
Command Description
gateway local Sets the gateway on the local computer as the

current gateway.

gateway tcpip <Address> <Port> Sets the gateway in the specified remote com-
puter as the current gateway.

<Address>: TCP/IP address or hostname of
the remote computer

<Port>: TCP/IP port of the remote gateway

Important: Only gateways that have no pass-
word set can be reached!

device guid <guid>

Sets the device with the specified GUID as the
current device.

GUID must have the following format:

{01234567-0123-0123-0123-0123456789ABC
}

The curly brackets and the hyphens must
appear at the specified positions.

device instance <Instance name> Sets the instance name for the current device
to the name specified

device parameter <Id> <Value> Assigns the specified value, which will then
be interpreted by the device, to the parameter
with the specified ID.

Table 30: System call
Command Description
system <command> Carries out the specified operating system

command.

Table 31: Select target system
Command Description
target <Id> Sets the target platform for the current project.

If CODESYS is getting started with command
line option "/notargetchange", only by this
command a target can be set.

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US464

Table 32: Query system state
Command Description
state offline Returns "S_OK", if currently there is no con-

nection between programming system and
target system (offline mode), otherwise "HRE-
SULT[0x800441f0)" (online mode).

state online Returns "S_OK", if currently there is a con-
nection between programming system and
target system (online mode), otherwise "HRE-
SULT[0x800441f0)" (offline mode).

Table 33: Password for user group
user level User group, the password for which is defined

in the project and is given by the subsequent
command "user password".

user password Password for user group specified by the pre-
ceding command "user group".

With the password settings - when opening a project which is protected by user group pass-
words - you can enter the password for a certain user group. Thus, even if the display of the
user input dialogs is switched off ("query off...", see above), a password-protected project can
be opened via the command file. The entries for the user group and the password must be
placed before the command "file open..."!

user level 0
user password aaa
file open "D:\codesys\projects\xxxx.pro"
query off ok

Example:

Table 34: Visualization settings
Command Description
visual settings... Corresponds to the possible settings which

can be done for a visualization in 'Extras' 'Set-
tings', category Language, or in the Target
Settings, category Visualization

 ... language file on || off Option 'Language file gets activated (on) or
deactivated (off). In case of activation the
option 'Dynamic texts' will be deactivated.

... set languagefile <path language file> Specification of the language file to be used
(.tlt or .vis).
Example: "visual settings set languagefile
proj1.tlt"

... dynamictexts on || off Option 'Dynamic texts' will be deactivated
(on) or deactivated (off). In case of activation
the option Language file will be deactivated.

... dynamictextfiles <file path> | <file path>
| ...

Specification of a list of language file paths to
be used. The previous list will be deleted.
Example: "visual settings D:\dynfiles\p1.xml
D:\dynfiles\p2.xml"

... dynamictexthideelements on || off Activation or deactivation of option 'Suppress
elements if no text replacement has taken
place'.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 465

Command Description
... language <language> Specification of the language to be used;

Example: "visual settings language German"

... tablekeyboardusage_web on || off Activation or deactivation of option 'Keyboard
usage for tables' in the web visualization
(Target Settings).

... tablekeyboardusage_codesys on || off Activation or deactivation of option 'Keyboard
usage for tables'.

visual webvisuactivation on || off Activation or deactivation of option web visual-
ization.

Table 35: Commands concerning managing the project in the ENI project database
Command Description
eni on
eni off

The option 'Use source control (ENI)' will be
activated or deactivated
(Dialog 'Project' 'Options' 'Project source con-
trol')

eni project readonly on
eni project readonly off

The option 'Read only' for the database cate-
gory 'Project objects' will be activated or deac-
tivated.
(Dialog 'Project' 'Options' 'Project objects')

eni shared readonly on
eni shared readonly off

The option 'Read only' for the database cate-
gory 'Shared objects' will be activated or deac-
tivated.
(Dialog 'Project' 'Options' 'Shared objects')

eni set local <POUname> The object will be assigned to category 'Local',
i.e. it will not be stored in the project database.
(Dialog 'Project' 'Object' 'Properties' 'Data
base-connection')

eni set shared <POUname> The object will be assigned to category
'Shared objects'.
(Dialog 'Project' 'Object' 'Properties' 'Data
base-connection')

eni set project <POUname> The object will be assigned to category 'Pro-
ject objects'.
(Dialog 'Project' 'Object' 'Properties' 'Data
base-connection')

eni <category> server <TCP/IP_Address>
<Port> <Projectname> <Username> <Pass-
word>

Configures the connection to the ENI Server
for the category 'Project objects'.
(Dialog 'Project' 'Options' 'Project data base');
Example: eni project server
localhost 80 batchtest\project
EniBatch Batch
(TCP/IP-Address = localhost, Port = 80,
Project name = batchtest\project, User name
= EniBatch, Password = Batch)

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US466

Command Description
eni compile sym on
eni compile sym off

The option 'Create ASCII symbol information
(.sym)' for the objects of category 'Compile
files' will be activated/deactivated.
(Dialog 'Project' 'Options' 'Project source con-
trol' 'ENI settings' for 'Compile files')

eni compile sdb on
eni compile sdb off

The option 'Create binary symbol information
(.sym)' for the objects of category 'Compile
files' will be activated/deactivated.
(Dialog 'Project' 'Options' 'Project source con-
trol' 'ENI settings' for 'Compile files')

eni compile prg on
eni compile prg off

The option 'Create boot project' for the
objects of category 'Compile files' will be acti-
vated/deactivated.
(Dialog 'Project' 'Options' 'Project source con-
trol' 'ENI settings' for 'Compile files')

In the description of the commands placeholders are used:
<category>: Replace by "project" or "shared" or "compile" depending on which of the following
database categories is concerned: Project Objects, Shared Objects, Compile Files
<POUname>: Name of the object, corresponds to the object name which is used.
<Objecttype>: Replace by the shortcut, which is appended as an extension to the POU name of
the object in the database, and which reflects the object type (defined by the list of object types,
see ENI Administration, 'Object Types'). Example: Object "GLOBAL_1.GVL": the POU name is
"GLOBAL_1", the object type is "GVL" (global variables list).
<comment>: Replace by a comment text (embraced by single quotation marks) which will be
stored in the version history with the particular action.

Table 36: Commands of the menu 'Project' 'Data Base Link' for working with the database
Command Description
eni set <category> The object gets assigned to the named data-

base category ('Define')

'eni set <category>set <Objecttype>:<POU-
name> <Objecttype>:<POUname>

eni <category> getall

The objects which are listed separated by
spaces will be assigned to the named data-
base category. ('Multiple Define')
Example: "eni set project pou:as_fub
pou:st_prg"

The objects (pou) as_fub and st_prg get
assigned to category 'Project objects'

The latest version of all objects of the named
category will be called from the database ('Get
All Latest Versions')

'eni <category>get <Objecttype>:<POUname>
<Objecttype>:<POUname>

The objects of the named category, which are
listed separated by spaces will be called from
the database. ('Multiple Define'). ('Get latest
version')
Example: "eni project get pou:as_fub
gvl:global_1"

Tthe POU as_fub.pou and the global variables
list global_1.gvl will be called from the data-
base

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 467

Command Description
eni <category> checkoutall "<comment>" All objects of the named category will be

checked out from the database. The defined
comment will be stored with the check-out-
action in the version history.

eni <category> checkout "<com-
ment>" <Objecttype>:<POUname> <Object-
type>:<POUname>

All objects (Objecttype:POUname) which are
listed separated by spaces will be checked
out from the database. The defined comment
will be stored with the check-out-action in the
version history for each particular object.
Example: "eni project checkout
"for working on xy" pou:as_fub
gvl:global_1"

The POU as_fub and the global variables list
global_1 will be checked out and the comment
"for working on xy" will be stored with this
action

eni <category>checkinall "<comment>" All objects of the project, which are under
source control in the project database, will
be checked in. The defined comment will be
stored with the check-in-action.

eni <category> checkin "<com-
ment>" <Objecttype>:<POUname> <Object-
type>:<POUname>

All objects (Objecttype:POUname) which are
listed separated by spaces will be checked in
to the database. The defined comment will be
stored with the check-in-action in the version
history for each particular object. (see above:
check out)
The defined comment will be stored with the
check-in-action in the version history for each
particular object.

Keywords for the command parameters:
The following keywords, enclosed in "$", can be used in command parameters:

$PROJECT_NAME$ Name of the current project in CODESYS
(file name without extension ".pro", e.g.
"project_2.pro")

$PROJECT_PATH$ Path of the directory, where the current project
file is (without indication of the drive and
without a backslash at the end, e.g. "proj-
ects\sub1").

$PROJECT_DRIVE$ Drive, where the current project is (without
backslash at the end, e.g. "D:")

$COMPILE_DIR$ Compile directory of the current project (with
indiciation of the drive and without backslash
at the end, e.g. "D:\codesys\compile")

EXE_DIR Directory where the codesys.exe file is (with
indication of the drive and without backslash
at the end, e.g. D:\codesys)

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US468

A command file like shown below will open the project file ampel.pro, will then load a watch
list, which was stored as w.wtc, will then start the application program and write after 1 second
delay - the values of the variables into the watch list watch.wtc (which will be saved) and will
finally close the project.
file open C:\projects\codesys_test\ampel.pro
 query off ok
 watchlist load c:\work\w.wtc
 online login
 online run
 delay 1000
 watchlist read
 watchlist save $PROJECT_DRIVE$\$PROJECT_PATH$\w_update.wtc
 online logout
 file close

This command file will open the project ampel.pro, will load an existing watchlist w.wtc, will
start the application program, after 1 second will write the variables values to the watch list
w_update.wtc, which will be saved in the directory "C:\projects\codesys_test" and then will
close the project again.
A command file is called in a command line as shown here:
"<path of codesys.exe>" /cmd "<path of cmd file>"

Example of a
command file:

1.4.1.9.2 Use of keyboard
Overview

If you would like to run the program using only the keyboard, you will find it necessary to use a
few commands that are not found in the menu.
● The function key [F6] allows you to toggle back and forth within the open POU between the

Declaration and the Instruction parts.
● [Alt] + [F6] allows you to move from an open object to the Object Organizer and from there

to the Message window if it is open. If a Search box is open, [Alt] + [F6] allows you to switch
from Object Organizer to the Search box and from the there back to the object.

● Press [Ctrl] + [F6] to move to the next open editor window, press [Ctrl] + [Shift] + [F6] to get
to the previous

● Press [Tab] to move through the input fields and buttons in the dialog boxes.
● The arrow keys allow you to move through the register cards and objects within the Object

Organizer and Library Manager.
All other actions can be performed using the menu commands or with the shortcuts listed after
the menu commands. [Shift] + [F10] opens the context menu which contains the commands
most frequently used for the selected object or for the active editor.

Key combinations
The following is an overview of all key combinations and function keys:

Function Function Key
General Functions

Move between the declaration part and the
instruction part of a POU

<F6>

Context Menu <Shift>+<F10>

Shortcut mode for declarations <Ctrl>+<Enter>

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 469

Function Function Key
Move from a message in the Message window
back to the original position in the editor

<Enter>

Move to the next open editor window <Ctrl>+<F6>

Move to the previous open editor window <Ctrl>+<Shift>+<F6>

Open and close multi-layered variables <Enter>

Open and close folders <Enter>

Switch register cards in the Object Organizer
and the Library Manager

<Arrow keys>

Move to the next field within a dialog box <Tab>

Context sensitive Help <F1>

General Commands

'File' 'Save' <Ctrl>+<S>

'File' 'Print' <Ctrl>+<P>

'File' 'Exit' <Alt>+<F4>

'Project' 'Build' <F11>

'Project' 'Delete Object'

'Project' 'Add Object' <Ins>

'Project' 'Rename Object' <Spacebar>

'Project' 'Open Object' <Enter>

'Edit' 'Undo' <Ctrl>+<Z>

'Edit' 'Redo' <Ctrl>+<Y>

'Edit' 'Cut' <Ctrl>+<X> or
<Shift>+

'Edit' 'Copy' <Ctrl>+<C>

'Edit' 'Paste' <Ctrl>+<V>

'Edit' 'Delete'

'Edit' 'Find next' <F3>

'Edit' 'Input Assistant' <F2>

'Edit' 'Auto Declare' <Shift>+<F2>

'Edit' 'Next Error' <F4>

'Edit' 'Previous Error' <Shift>+<F4>

'Online' 'Log-in' <Alt><F8>

'Online' 'Logout' <Ctrl>+<F8>

'Online' 'Run' <F5>

'Online' 'Toggle Breakpoint' <F9>

'Online' 'Step over' <F10>

'Online' 'Step in' <F8>

'Online' 'Single Cycle' <Ctrl>+<F5>

'Online' 'Write Values' <Ctrl>+<F7>

'Online' 'Force Values' <F7>

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US470

Function Function Key
'Online' 'Release Force' <Shift>+<F7>

'Online' ''Write/Force dialog' <Ctrl><Shift>+<F7>

'Window' 'Messages' <Shift>+<Esc>

FBD Editor Commands

'Insert' 'Network (after)' <Ctrl>+<T>

'Insert' 'Assignment' <Ctrl>+<A>

'Insert' 'Jump' <Ctrl>+<L>

'Insert' 'Return' <Ctrl>+<R>

'Insert' 'Function Block' <Ctrl>+

'Insert' 'Input' <Ctrl>+<U>

'Extras' 'Negate' <Ctrl>+<N>

'Extras' 'Zoom' <Alt>+<Enter>

CFC Editor Commands

'Insert' 'POU' <Ctrl>+

'Insert' 'Input' <Ctrl>+<E>

'Insert' 'Output' <Ctrl>+<A>

'Insert' 'Jump' <Ctrl>+<J>

'Insert' 'Label' <Ctrl>+<L>

'Insert' 'Return' <Ctrl>+<R>

'Insert' 'Comment' <Ctrl>+<K>

'Insert' 'POU input' <Ctrl>+<U>

'Extras' 'Negate' <Ctrl>+<N>

'Extras' 'Set/Reset' <Ctrl>+<T>

'Extras' 'Connection' <Ctrl>+<M>

'Extras' 'EN/ENO' <Ctrl>+<I>

'Extras' 'Zoom' <Alt>+<Enter>

LD Editor Commands

'Insert' 'Network (after)' <Ctrl>+<T>

'Insert' 'Contact' <Ctrl>+<K>

'Insert' 'Contact (negated)' <Ctrl>+<G>

'Insert' 'Parallel Contact' <Ctrl>+<R>

'Insert' 'Parallel contact (negated)' <Ctrl>+<D>

'Insert' 'Function Block' <Ctrl>+

'Insert' 'Coil' <Ctrl>+<L>

'Insert' '’Set’ coil' <Ctrl>+<I>

'Insert at blocks' 'Input' <Ctrl>+<U>

'Insert at blocks' 'Assign' <Ctrl>+<A>

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 471

Function Function Key
'Extras' 'Negate' <Ctrl>+<N>

'Extras' 'Zoom' <Alt>+<Enter>

SFC Editor Commands

'Insert' 'Step-Transition (before)' <Ctrl>+<T>

'Insert' 'Step-Transition (after)' <Ctrl>+<E>

'Insert' 'Alternative Branch (right)' <Ctrl>+<A>

'Insert' 'Parallel Branch (right)' <Ctrl>+<L>

'Insert' 'Jump' <Ctrl>+<U>

'Extras' 'Zoom Action/Transition' <Alt>+<Enter>

Move back to the editor from the SFC Over-
view

<Enter>

Work with the PLC- resp. Task Configura-
tion

Open and close organization elements <Enter>

Place an edit control box around the name <Spacebar>

'Extras' 'Edit Entry' <Enter>

Working in the Parameter Manager Editor

Toggle between navigation window and list
editor

<F6>

Delete a line in the list editor <Ctrl>+
<Shift>+

Delete a field in the list editor

1.4.1.9.3 Reserved keywords
The following strings are reserved as keywords, i.e. they cannot be used as identifiers for
variables or POUs:

ABS Ä Chapter 1.4.1.6.10.1 “ABS” on page 430

ACOS Ä Chapter 1.4.1.6.10.10 “ACOS” on page 433

ACTION (only used in the Export Format)
ADD Ä Chapter 1.4.1.6.2.1 “ADD” on page 407

ADR Ä Chapter 1.4.1.6.7.1 “ADR” on page 421

ADRINST Ä Chapter 1.4.1.6.7.2 “ADRINST” on page 421

AND Ä Chapter 1.4.1.6.3.1 “AND” on page 410

ANDN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

ARRAY Ä Chapter 1.4.1.8.2.1 “ARRAY” on page 445

ASIN Ä Chapter 1.4.1.6.10.9 “ASIN” on page 433

AT Ä Chapter 1.4.1.7.4.2 “Address” on page 441

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US472

ATAN Ä Chapter 1.4.1.6.10.11 “ATAN” on page 434

BITADR Ä Chapter 1.4.1.6.7.3 “BITADR” on page 421

BOOL Ä Chapter 1.4.1.8.1.2 “BOOL” on page 443

BY Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

BYTE Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

CAL Ä Chapter 1.4.1.6.8.1 “CAL” on page 422
CALC Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

CALCN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

CASE Ä Chapter 1.4.1.1.10.4.9 “CASE instruction” on page 169

CONSTANT Ä Chapter 1.4.1.3.9.8 “Constants, typed literals” on page 302

COS Ä Chapter 1.4.1.6.10.7 “COS” on page 432
DATE Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444

DINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

DIV Ä Chapter 1.4.1.6.2.4 “DIV” on page 408

DO Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

DT Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444

DWORD Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

ELSE Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

ELSEIF Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

END_ACTION (only used in the Export Format)
END_CASE Ä Chapter 1.4.1.1.10.4.9 “CASE instruction” on page 169

END_FOR Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

END_FUNCTION (only used in the Export Format)
END_FUNCTION_BLOCK (only used in the Export Format)
END_IF Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

END_PROGRAM (only used in the Export Format)
END_REPEAT Ä Chapter 1.4.1.1.10.4.12 “REPEAT loop” on page 170

END_STRUCT Ä Chapter 1.4.1.8.2.5 “Structures” on page 449

END_TYPE Ä Chapter 1.4.1.8.2.4 “Enumeration” on page 448

END_VAR Ä Chapter 1.4.1.3.9.6 “Local variables” on page 301

END_WHILE Ä Chapter 1.4.1.1.10.4.11 “WHILE loop” on page 170

EQ Ä Chapter 1.4.1.6.6.5 “EQ” on page 420

EXIT Ä Chapter 1.4.1.1.10.4.13 “EXIT instruction” on page 171

EXP Ä Chapter 1.4.1.6.10.5 “EXP” on page 431

EXPT Ä Chapter 1.4.1.6.10.12 “EXPT” on page 434

FALSE Ä Chapter 1.4.1.8.1.2 “BOOL” on page 443

FOR Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

FUNCTION Ä Chapter 1.4.1.1.9.3 “Function” on page 151

FUNCTION_BLOCK Ä Chapter 1.4.1.1.9.4 “Function block” on page 153

GE Ä Chapter 1.4.1.6.6.4 “GE” on page 419

GT Ä Chapter 1.4.1.6.6.1 “GT” on page 418

IF Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 473

INDEXOF Ä Chapter 1.4.1.6.2.7 “INDEXOF” on page 410

INI Ä Chapter 1.4.1.6.11.1 “INI operator” on page 434

INT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

JMP Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

JMPC Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

JMPCN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

LD Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

LDN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

LE Ä Chapter 1.4.1.6.6.3 “LE” on page 419

LINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

LN Ä Chapter 1.4.1.6.10.3 “LN” on page 431

LOG Ä Chapter 1.4.1.6.10.4 “LOG” on page 431

LREAL Ä Chapter 1.4.1.8.1.4 “REAL / LREAL” on page 443

LT Ä Chapter 1.4.1.6.6.2 “LT” on page 419

LWORD Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

MAX Ä Chapter 1.4.1.6.5.3 “MAX” on page 416

MIN Ä Chapter 1.4.1.6.5.4 “MIN” on page 417

MOD Ä Chapter 1.4.1.6.2.5 “MOD” on page 409

MOVE Ä Chapter 1.4.1.6.2.6 “MOVE” on page 409

MUL Ä Chapter 1.4.1.6.2.2 “MUL” on page 407

MUX Ä Chapter 1.4.1.6.5.6 “MUX” on page 418

NE Ä Chapter 1.4.1.6.6.6 “NE” on page 420

NOT Ä Chapter 1.4.1.6.3.4 “NOT” on page 412

OF Ä Chapter 1.4.1.8.2.1 “ARRAY” on page 445

OR Ä Chapter 1.4.1.6.3.2 “OR” on page 411

ORN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

PERSISTENT Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302

POINTER Ä Chapter 1.4.1.8.2.3 “Pointer” on page 447

PROGRAM Ä Chapter 1.4.1.1.9.7 “Program” on page 156

R Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

READ_ONLY
READ_WRITE
REAL Ä Chapter 1.4.1.8.1.4 “REAL / LREAL” on page 443

REPEAT Ä Chapter 1.4.1.1.10.4.12 “REPEAT loop” on page 170

RET Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

RETAIN Ä Chapter 1.4.1.3.9.7 “Remanent variables” on page 302

RETC Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

RETCN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

RETURN Ä Chapter 1.4.1.1.10.4.7 “RETURN instruction” on page 168

ROL Ä Chapter 1.4.1.6.4.3 “ROL” on page 414

ROR Ä Chapter 1.4.1.6.4.4 “ROR” on page 415

S Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US474

SEL Ä Chapter 1.4.1.6.5.2 “SEL” on page 416

SHL Ä Chapter 1.4.1.6.4.1 “SHL” on page 412

SHR Ä Chapter 1.4.1.6.4.2 “SHR” on page 413

SIN Ä Chapter 1.4.1.6.10.6 “SIN” on page 432

SINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

SIZEOF Ä Chapter 1.4.1.6.2.8 “SIZEOF” on page 410

SQRT Ä Chapter 1.4.1.6.10.2 “SQRT” on page 430

ST Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

STN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

STRING Ä Chapter 1.4.1.8.1.5 “STRING” on page 444

STRUCT Ä Chapter 1.4.1.8.2.5 “Structures” on page 449

SUB Ä Chapter 1.4.1.6.2.3 “SUB” on page 408

TAN Ä Chapter 1.4.1.6.10.8 “TAN” on page 433

THEN Ä Chapter 1.4.1.1.10.4.8 “IF instruction” on page 168

TIME Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444

TO Ä Chapter 1.4.1.1.10.4.10 “FOR loop” on page 169

TOD Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444
TRUE Ä Chapter 1.4.1.8.1.2 “BOOL” on page 443

TRUNC Ä Chapter 1.4.1.6.9.9 “TRUNC” on page 429

TYPE Ä Chapter 1.4.1.8.2.4 “Enumeration” on page 448

UDINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

UINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

ULINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

UNTIL Ä Chapter 1.4.1.1.10.4.12 “REPEAT loop” on page 170

USINT Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

VAR Ä Chapter 1.4.1.3.9.6 “Local variables” on page 301

VAR_ACCESS (only used very specifically, depending on the hardware)
VAR_CONFIG Ä Chapter 1.4.1.4.1.4.1 “Overview” on page 361

VAR_CONSTANT Ä Chapter 1.4.1.3.9.8 “Constants, typed literals” on page 302

VAR_EXTERNAL Ä Chapter 1.4.1.3.9.9 “External variables” on page 303

VAR_GLOBAL Ä Chapter 1.4.1.4.1.3.2 “Several variables lists” on page 359

VAR_IN_OUT Ä Chapter 1.4.1.3.9.5 “Input and output variables” on page 301

VAR_INPUT Ä Chapter 1.4.1.3.9.3 “Input variable” on page 301

VAR_OUTPUT Ä Chapter 1.4.1.3.9.4 “Output variable” on page 301

WHILE Ä Chapter 1.4.1.1.10.4.11 “WHILE loop” on page 170

WORD Ä Chapter 1.4.1.8.1.3 “Integer data types” on page 443

WSTRING (IEC data type is not supported)
XOR Ä Chapter 1.4.1.6.3.3 “XOR” on page 411

XORN Ä Chapter 1.4.1.1.10.3.2 “Modifiers and operators in IL” on page 163

Additionally all conversion operators as listed in the 'Edit' 'Input assistant' are handled as
keywords Ä Chapter 1.4.1.2.5.11 “'Edit' 'Input assistant'” on page 276.

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 475

1.4.1.9.4 File types
The following file types can be created:

File extension Example Description Format Path (default)
*.pro project01.pro Project file binary project directory

*.ci project01<number>.c
i

Information on the
last build (compila-
tion) of the project
➝ incremental com-
pile possible; only
created when project
gets saved

number: coded target
ID

binary

project directory *.eci project01<number>.e
ci

external Compile-
Information; Subset
of the ci-file in eci-
format; can be read
via an access-dll

number: coded target
ID

PE project directory *.cic project01<number>.c
ic

target-dependant
information on the
last build (compila-
tion) of the project
-> incremental com-
pile possible; only
created when project
gets saved

number: coded target
ID

binary project directory *.cit project01<number>.c
it

temporary *.ci-file;
created at target
change, transformed
to a ci-file at next
save of the project

number: coded target
ID

binary project directory *.ri

project01<number>.ri information on the
last download, impor-
tant for Online
Change; created at
each download

number: coded target
ID

binary project directory

*.exp project01.exp,
PLC_PRG.exp

export file ('Project'
'Export')

Export format (Text) project directory

*.tlt *.txt project01.tlt project01.txt translation file
(defined in 'Project'
'Translate in another
language')

Text *.sym project01.sym symbol file

Text project directory *.sdb project01.sdb symbol file

binary project directory *.sym_xml project01.sym_xml symbol file

XML project directory *.asd project01.asd save file (temporary,
'Auto save', 'Auto
save before compile')

binary project directory *.asl lib01.asl save file for a
library opened as
project (temporary,
'Auto save', 'Auto
save before compile')

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US476

File extension Example Description Format Path (default)
binary library resp. project

directory
*.bak project01.bak backup file for project

(permanent, 'Create
backup')

binary project directory *.prg *.bin default.prg

project01.prg boot project, file
name depending on
target

binary target system (cre-
ated online)

project directory (cre-
ated offline)

*.chk default.chk project01.chk checksum for boot
projekt code

binary target system (cre-
ated online)

project directory (cre-
ated offline)

*.ini codesys.ini

ini-file for various set-
tings

Text with codesys.exe *.dfr default.dfr

project01.dfr frame file (Printer
setup)

binary with codesys.exe *.asm

code386.asm assembler-Listing of
the created project
code

Text compile directory *.lst

project01.lst assembler-Listing of
the created project
code

Text compile directory

*.bpl project01.bpl debug-files (break-
point-information)

Text compile directory

 *.st PLC_PRG.st debug-files, implicit
ST-code

Text

compile directory *.map project01.map map-file; information
on memory organi-
zation and variable
locations

Text compile directory *.hex *.h86

project01.hex
(Output) resp.
standard.hex (Lib)

.hex for Intel or
Motorola, .h86 for
Intel; compiler output
or input for external
library

Intel or Motorola hex-
files

compile directory resp. library directory

*.trd projectxy0.trd trend logging
(number befor the
dot is counted up, if
file is full and another
must be created)

Text project directory

*.log projectxy.log log file (Log) binary project directory

*.wtc projx_watch1.wtc watch list (Watch-
and Recipe-Man-
ager)

Text user defined direc-
tory

*.alm alarmlog0.alm alarm log-file user defined direc-
tory resp. download-
directory of the con-
troller

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 477

File extension Example Description Format Path (default)
*.zip projectxy.zip project archive file;

zip-file with files
belonging to the
project , 'File' 'Save/
Mail Archive'

 user defined direc-
tory

*.trc project01_tr1.trc trace recording binary with codesys.exe

*.mon project01_tr1.mon trace recording XML with codesys.exe

*.tcf project01_tr1.tcf trace configuration binary with codesys.exe

1.4.1.10 Compiler errors and warnings
1.4.1.10.1 Remarks on compiler errors and warnings

If errors are detected during the compilation of the project, messages will be dumped in the
message window. Also warnings might be displayed there. [F4] always allows to jump to the
next message line in this window, whereby also the concerned POU will be opened. The error
and warning messages are preceded by unique numbers. If a message line is selected in the
message window, [F1] will open the corresponding online help window.
See also:
●
● Ä Chapter 1.4.1.2.3.11 “'Project' 'Build'” on page 231
● Ä Chapter 1.4.1.2.1.6 “Message window” on page 200
● Ä Chapter 1.4.1.2.5.15 “'Edit' 'Next error'” on page 278
● Ä Chapter 1.4.1.2.8.1 “'Help' 'Contents and search'” on page 293

1.4.1.10.2 Warnings
1100

An external library is used. Please check, whether all functions, which are defined in the .hex
file, are also defined in the .lib file.

1101
The code generator expects a POU with the name <Symbol>. It is not defined in the project.
Define a function/program with this name.

1102
The code generator expects a function with the name <Symbol> and exactly one scalar input, or
a program with the name <Symbol> and no input or output.

1103
A string constant exceeds the 16K page boundary. The system cannot handle this. It depends
on the runtime system whether the problem could be avoided by an entry in the target file.

"Unknown func-
tion '<name>' in
library."

"Unresolved
symbol
'<Symbol>'."

"Invalid inter-
face for symbol
'<Symbol>'."

"The constant
'<name>' at
code address
'<address>'
overwrites a
16K page boun-
dary!"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US478

1200
Variables, which are only used at a function block call in the task configuration, will not be listed
in the cross-reference list.

1300
The file, to which the global variable object is pointing, does not exist. Please check the path.

1301
The analyze function is used, but the library analyzation.lib is missing. Add the library in the
library manager.

1302
Since the last download you have linked a library containing functions which are not yet refer-
enced in the runtime system. For this reason you have to download the complete project.

1400
This pragma is not supported by the compiler. See 'Pragmas' for supported directives
Ä Pragmas.

1401
The structure does not contain any elements, but variables of this type allocate 1 Byte of
memory.

1410
Remanent variables which are defined locally in functions are handled like normal local varia-
bles.

1411
The top level instance of the variable is not referenced by a call in any task. Thus it will not be
copied from the process image.

"Task '<name>',
call of '<name>'
Access varia-
bles in the
parameter list
are not
updated"

"File not found
'<name>'"

"Analyze-
Library not
found! Code for
analyzation will
not be gener-
ated."

"New externally
referenced func-
tions inserted.
Online Change
is therefore no
longer pos-
sible!"

"Unknown
Pragma
'<Name>' is
ignored!"

"The struct
'<name>' does
not contain any
elements."

"'RETAIN' and
'PERSISTENT'
do not have any
effect in func-
tions"

"Variable
'<name>' in the
variable config-
uration isn't
updated in any
task"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 479

Variable Configuration:
VAR_CONFIG
 plc_prg.aprg.ainst.in AT %IB0 : INT;
END_VAR
plc_prg:
index := INDEXOF(aprg);

Example:

The program aprg is referenced but not called. Thus plc_prg.aprg.ainst.in never will get the
actual value of %IB0.

1412
You are using a pragma which is not written correctly or which cannot be used at this location.
See Ä Pragmas.

1413
In the pragma a nonexistent parameter list is specified. Check the list name resp. have a look in
the Parameter Manager for the currently available lists.

1414
The Pragma contains more definitions (in square brackets) than there are elements in the
corresponding array, function block or structure.

1415
In the declaration of enumeration <Name> the same number is assigned to more than one
enumeration components (e.g. TYPE aenum (a:=1, b:=1); END_TYPE).

1500
The result of this expression is not used. For this reason there is no code generated for the
whole expression.

1501
The constant may not be written within the POU, because there no size check is possible.

"Unexpected
token Name-
Name in pragma
{pragma name}"

"'<Name>' is not
a valid key for
list '<Name>'.
The key will be
ignored"

Too many com-
ponent defini-
tions in pragma
'<name>'

’<Name>’
(<Number>):
The literal
'<Number>' is
assigned to
more than one
enumeration

"Expression
contains no
assignment. No
code was gener-
ated."

"String constant
passed as
'VAR_IN_OUT':
'<Name>' must
not be over-
written!"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US480

1502
A variable is used, which has the same name like a POU.

PROGRAM a
...
VAR_GLOBAL
 a: INT;
END_VAR ...
a; (* Not POU a is called but variable a is loaded. *)

Example:

1503
The Output pin of a POU which has no outputs, is connected in FBD or KOP. The assignment
automatically gets the value TRUE.

1504
Eventually not all branches of the logic expression will be executed.

IF a AND funct(TRUE) THENExample:

If a is FALSE then funct will not be called.

1505
The first input of the POU is FALSE. For this reason the side branch, which may come in at the
second input, will not be executed.

1506
Rename the variable or the action.

"Variable
'<Name>' has
the same name
as a POU. The
POU will not be
called!"

"The POU
‘<name>’ has no
outputs. Box
result is set to
'TRUE'."

"'<name>'
('<number>'):
Statement may
not be executed
due to the eval-
uation of the
logical expres-
sion"

"Side effect in
'<Name>'!
Branch is prob-
ably not exe-
cuted !"

"Variable
'<name>' has
the same name
as a local
action. The
action will not
be called!"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 481

1507
You call in ST an instance which has the same name as a function. The function will be called!
Use different names.

1509
You are using a callback function, the name of which does not start with "callback".This can
cause unexpected effects on RISC resp. Motorola 68K controllers!

1510
For the constant used in the ROL resp. ROR operation there must be a data type definition. For
information on typed constants see Typed Literals Ä Typed Literals.

1511
For the constant used in the SHL resp. SHR operation there must be a data type definition. For
information on typed constants see 'Typed Literals' Ä Typed Literals.

1550
Check whether the multiple call of this POU is really necessary. By a multiple call unwanted
value overstrikes may occur.

1600
The original Siemens program does not tell, which POU is opened.

1700
An input box is used in CFC which has no assignment. For this no code will be generated.

1750
Open dialog 'Step attributes' for this step and correct the time definitions.

"Instance
'<name>' has
the same name
as a function.
The instance
will not be
called"

"'<name>'
('<number>'):
Functions to be
registered as
callbacks have
to start with
'Callback'."

"Operand to be
rotated has no
explicit type.
Please use a
typed literal, like
'DWORD#1'."

"Operand to be
shifted has no
explicit type.
Please use a
typed literal, like
'DWORD#1'."

"Multiple calls
of the POU
'<Name>' in one
network may
lead to unde-
sired side
effects"

"Open DB
unclear (gener-
ated code may
be erroneous)."

"Input not con-
nected."

"Step '<Name>':
the minimal time
is greater than
the maximal
time!"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US482

1751
We recommend to rename the variable, so that unique identifiers are used within the project
and undesired side effects can be avoided.

1800
The visualization element contains an expression which cannot be monitored. Check variable
name and placeholder replacements.

1801
In the configuration of the visualization object at field input a composed expression is used.
Replace this by a single variable.

1802
Make sure that an external bitmap file is available in the path which is defined in the visualiza-
tion configuration dialog.

1803
A print action is assigned to an alarm configured in the visualization. This will not be regarded in
the web or target visualization.

1804
In the visualization you are using a font which is not supported by the target system. See in the
target settings, category 'Visualization' for the supported fonts.

1807
Note that action "message" is not supported for the target visualization!

1808
Per default maximum 512 points are allowed, target-specifically another maximum number
might be defined. By opening the configuration dialog the element will be optimized to the
allowed number of points.

"Caution with
usage of vari-
able '<name>'.
This variable is
used by implicit
code and influ-
ences the
behaviour of the
step sequence."

"<name>(ele-
ment #<element
number>):
Invalid watchex-
pression
'<name>'"

"'<name>
(number): No
Input on Expres-
sion '<name>'
possible"

"<Visualization
object>(Element
number):
Bitmap '<name>'
was not found"

"'<name>'('<nu
mber>'): "The
print action
would not sup-
ported for web
and target visu-
alisation"

"'<name>'('<nu
mber>'): The
font '<name>' is
not supported
by the target."

"<name>
(<number>): No
message
window for
alarms for target
visualization"

"'<name>'('<nu
mber>'): A pol-
ygon consists
of to many
points for target

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 483

1809
This visualization could not be found. Please check whether the visualization name is correct
and that the visualization object is available.

1850
Please check which tasks are using this variable and whether the current programming is not
causing undesirable effects. The update of the variable value usually is done in the task with the
highest priority.

1851
Please check which tasks are using this variable and whether the current programming is not
causing undesirable effects. The update of the variable value usually is done in the task with the
highest priority.

1852
Currently the CanOpen Master is called by the named event task. If you want to get it called
cyclically, specify an appropriate task via parameter UpdateTask in the PLC Configuration in
dialog 'Module parameters'.

1853
Currently the named PDO is controlled via the named event task. But if you want to get it called
cyclically, you must assign an appropriate task to the PDO by shifting I/O-references to this task.

1900
The Start-POU (e.g. PLC_PRG) will not be available, when the project is used as library.

1901
Access variables and variable configuration are not stored in the library.

visualization. In
case of a meter
element, please
open the config-
uration once."

"'<name>
('<nummer>'):
Invalid visuali-
zation as zoom
target:
'<number>'"

"Input variable
at %IB<number>
is used in task
'<name>' but
updated in
another task"

"Output variable
at
%IQ<number> is
used in task
'<name>' but
updated in
another task"

"CanOpen-
Master might
not be called
cyclically in
event task
'<name>'! Set
modul param-
eter Update-
Task!"

"A PDO (index:
'<number>')
might not be
updated cycli-
cally in event
task '<name>'"

"POU '<name>'
(main routine) is
not available in
the library"

"Access Varia-
bles and Vari-
able Configura-
tions are not
saved in a
library!"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US484

1902
The .obj file of the library was generated for another device.

1903
The file does not have the format requested for the actual target.

1904
In your project you have defined a constant which has the same name as one which is defined
in a linked library. The library variable will be overwritten!

1970
Check the Import-file *.prm for entries which do not match the current configuration (standard
values resp. XML-description file) of the Parameter Manager.

1980
In the configuration of the network variables list options 'Read' and 'Write' are activated (select
list in the Resources tab and open dialog 'Global variables list' via command 'Properties' in the
context menu). Note that this might result in data losses during communication.

1990
For this variable there is no address configuration available in the 'Variable Configuration'
(VAR_CONFIG) Ä Chapter 1.4.1.4.1.4.1 “Overview” on page 361. Open window Variable_Con-
figuration in the Resources tab and insert the appropriate configuration (Command 'Insert' 'All
Instance Paths' Ä Chapter 1.4.1.4.1.4.2 “'Insert' 'All Instance Paths'” on page 361).

2500
In the Task configuration a cyclic task has been created, for which no cycle time has been
defined. Enter an appropriate time span in dialog 'Taskattributes' at "Interval".

4710
Check the configuration of the slider element in category 'Variables'. There must be defined a
valid value for each of the fields 'Min.Value', 'Slider' and 'Max. Value'.

"'<Name>': is no
Library for the
current machine
type!"

"<Name>: is no
valid Library"

"The constant
'<Name>' hides
a constant of
the same name
in a library"

"Parameter
manager: List
'<Name>' ,
Column
'<Name>', Value
'<Name>' could
not be
imported!"

Global network
variables
'<Name>'
'<Name>': simul-
taneous reading
and writing may
result in loss of
data!"

"No 'VAR_CON-
FIG' for
'<name>'"

"Task '<task
name>': fno
cycle time
specified for
cyclic task"

"'<name>'
('<number>'): A
required expres-
sion has not
been config-
ured"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 485

4711
Install and use the current version of the library SysLibTargetVisu.library.

4714
Check and appropriately correct the configuration of the table element in category "Selection".

4715
Option "Formatted time display" is activated in the settings of a visualization Ä Chapter
1.4.3.6.1 “'Extras' 'Settings'” on page 700. However this is not supported by the currently used
target system.

4716
In the target settings, in category 'Visualization' option 'Simplified input handling' is activated.
Maybe it is not supported by the current target system, because an old version of the library
SysLibTargetvisu.lib is used.

1.4.1.10.3 Errors
3100

The maximum program size is exceeded. Reduce project size.

3101
Memory is exceeded. Reduce data usage of the application.

3110
The .hex file is not in INTEL Hex format.

3111
The .hex file exceeds the set maximum size.

"'<name>'('<nu
mber>'): The
slider element is
not supported
by your SysLib-
TargetVisu."

"'<name>'('<nu
mber>'): The
type of the
selection vari-
able has to be a
signed type
compatible to
INT"

"The current
target does not
support for-
matted display
of time and date
values"

"The current
target does not
support simpli-
fied input han-
dling"

"Code too large.
Maximum size:
'<number>' Byte
(<number>K)"

"Total data too
large. Maximum
size: '<number>'
Byte
(<number>K)"

"Error in Library
'<Name>'."

"Library
'<Name>' is too
large. Maximum
size: 64K"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US486

3112
The .hex file contains an instruction which is not relocatable. The library code cannot be linked.

3113
The ranges for code and function tables are overlapping.

3114
The tables and the code in the .hex file use more than one segment.

3115
The internal pointer format for string constants cannot get converted to the internal pointer
format of VAR_IN_OUT, because the data are set "near" but the string constants are set " huge"
or "far". If possible change these target settings.

3116
Code 166x: The external library cannot be used with the current target settings. These must be
adapted resp. the library must be rebuilt with appropriate settings.

3117
The named expression is too complex to be handled by the available registers. Please try to
reduce the expression by using interim variables.

3120
The currently generated code is bigger than 64K. Eventually too much initializing code is
created.

3121
A POU may not exceed the size of 64K.

3122
The initialisation code for a function or a structure POU may not exceed 64K.

"Nonrelocatable
instruction in
library."

"Library code
overwrites func-
tion tables."

"Library uses
more than one
segment."

"Unable to
assign constant
to VAR_IN_OUT.
Incompatible
data types."

"Function tables
overwrite library
code or a seg-
ment boundary."

"<Name>
(<code>):
Expression too
complex. No
more registers
available"

"Current code-
segment
exceeds 64K."

"POU too large."

"Initialisation
too large. Max-
imum size: 64K"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 487

3124
The given constant must be reduced in number of characters.

3130
The nesting depth of the POU calls is too big. Enter a higher stack size in the target settings or
compile build project without option 'Debug’ (set in dialog ‘Project’ ‘Options’ ‘Build’).

3150
Use an intermediate variable, to which the result of the IEC function is assigned.

3160
A library <name> is included in the library manager for this project, but the library file does not
exist at the given path.

3161
An .obj file of a library must contain at least one C function. Insert a dummy function in the .obj
file, which is not defined in the .lib file.

3162
The .obj file contains an unresolvable reference to another symbol. Please check the settings of
the C Compiler.

3163
The .obj file contains a reference type which is not resolvable by the code generator. Please
check the settings of the C Compiler.

"String constant
too large:
'<number>'
characters
(maximum 253
characters)"

"User-Stack too
small:
'<number>'
DWORD
needed,
'<number>'
DWORD avail-
able."

"Parameter
<number> of
function
'<name>':
Cannot pass the
result of a IEC-
function as
string parameter
to a C-function."

"Can't open
library file
'<name>'."

"Library
'<name>' con-
tains no code-
segment"

"Could not
resolve refer-
ence in Library
'<name>'(Symbo
l '<name>',
Class '<name>',
Type '<name>')"

"Unknown refer-
ence type in
Library '<name>'
(Symbol
'<name>' , Class
'<name>' , Type
'<name>')"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US488

3200
The temporary memory of the target system is insufficient for the size of the expression. Divide
up the expression into several partial expressions thereby using assignments to intermediate
variables.

3201
Internal jumps can not be resolved. Activate option "Use 16 bit jump offsets" in the 68k target
settings.

3202
A nested function call CONCAT(x, f(i)) is used. This can lead to data loss. Divide up the call into
two expressions.

3203
Divide up the assignment into several expressions.

3204
Jump distances may not be bigger than 32767 bytes.

3205
In a POU a maximum of 3000 string constants may be used.

3206
A function block may produce maximum 32767 Bytes of code.

3207
The optimization of the array accesses failed because during index calculation a function has
been called.

3208
A conversion function is used, which is not implemented for the actual code generator.

3209
A operator is used which is not implemented for this data type and the actual code generator.
MIN(string1,string2).

"<name>: Boo-
lean expression
too complex"

"<name> (<net-
work>): A net-
work must not
result in more
than 512 bytes
of code"

"Stack overrun
with nested
string/array/
structure func-
tion calls"

"Expression too
complex (too
many used
address regis-
ters)."

"A jump
exceeds 32k
Bytes"

"Internal Error:
Too many con-
stant strings"

"Function block
data exceeds
maximal size"

"Array optimiza-
tion"

"Conversion not
implemented
yet"

"Operator not
implemented"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 489

3210
A function is called which is not available in the project.

3211
A variable of type string can be used in one expression 10 times at the most.

3212
The order of libraries for this POU does not match with that in the cslib.hex file. Correct the
order accordingly. (only for 68K targets, if the checking option is activated in the target file.)

3250
The target is currently not supported.

3251
The target is currently not supported.

3252
The target is currently not supported.

3253
The target is currently not supported.

3254
The target is currently not supported.

3255
Avoid using pointers in your program to get it running on the 8 bit system.

3260
If possible, modify the size of the stack in dialog Target Platform in the Target Settings (Default:
40).

"Function
'<Name>' not
found"

"Max string
usage
exceeded"

"Wrong library
order at POU
<POU name>"

"Real not sup-
ported for 8 Bit
Controller"

"Date of day
types are not
supported for 8
Bit Controller"

"Size of stack
exceeds
<number>
bytes"

"Could not find
hex file:
'<Name>' "

"Call to external
library function
could not be
resolved."

"Pointers are
not supported
for 8 bit control-
lers."

"Function
'<name>' has
too many argu-
ments: Increase
the size of the
argument stack
in the target set-
tings."

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US490

3400
The .exp file contains an incorrect access variables section.

3401
The .exp file contains an incorrect configuration variables section.

3402
The .exp file contains an incorrect global variables section.

3403
The section for object <name> in the .exp file is not correct.

3404
The section for the task configuration the .exp file is not correct.

3405
The section for the PLC configuration in the .exp file is not correct.

3406
The section for the SFC POU in the .exp file contains two steps with equal names. Rename one
of the steps in the export file.

3407
The step <name> is missing in the .exp file.

3408
The step <name> is missing in the .exp file.

3409
In the .exp file a transition is missing, which requires step <name> as preceeding step.

"An error
occured during
import of
Access varia-
bles"

"An error
occured during
import of vari-
able configura-
tion"

"An error
occured during
import of global
variables"

"Could not
import <name>"

"An error
occured during
import of task
configuration"

"An error
occured during
import of PLC
configuration"

"Two steps with
the name
'<name>'.
Second step not
imported."

"Predecessor
step '<name>'
not found"

"Successor step
'<name>' not
found"

"No successing
transition for
step '<´name>' "

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 491

3410
In the .exp file a step is missing which requires the transition <name> as preceeding condition.

3411
In the .exp file the connection between step <name> and the initial step is missing.

3412
Check the export file.

3413
You have imported an export file (*.exp) which contains erroneous information on a CAM. Check
the export file.

3414
You have imported an export file (*.exp) which contains erroneous information on a CNC
program. Check the export file.

3415
You have imported an export file (*.exp) which contains erroneous information on the Alarm
Configuration. Check the export file.

3450
Click on the button 'Properties’ in the PLC configuration dialog for the module and enter a COB
ID for the PDO <PDO Name>.

3451
The device file needed for the CAN configuration is not in the correct directory. Check the
directory setting for configuration files in 'Project' 'Options' 'Directories'.

3452
The device file for module <name> does not fit to the current configuration. It has been modified
since the configuration has been set up or it is corrupted.

"No successing
step for transi-
tion '<name>'"

"Step '<name>'
not reachable
from initial step"

"Macro
'<name>' not
imported"

"Error during
import of the
CAMs."

"Error during
import of the
CNC program
list"

"Error during
import of the
Alarm configu-
ration"

"PDO'<PDO-
name>': Missing
COB-Id!"

"Error during
load: EDS-File
'<name>' could
not be found,
but is refer-
enced in hard-
ware configura-
tion!"

"The module
'<name>'
couldn't be cre-
ated!"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US492

3453
The device file for channel <name> does not fit to the current configuration. It has been modi-
fied since the configuration has been set up or it is corrupted.

3454
Option 'Check for overlapping addresses' is activated in the dialog 'Settings’ of the PLC configu-
ration and an overlap has been detected. Note that the area check is based on the size which
results of the data types of the modules, not on the size which is given by the entry 'size’ in the
configuration file.

3455
The device file required by the PROFIBUS configuration is not in the correct directory. Check
the directory setting for configuration files in 'Project' 'Options' 'Directories'.

3456
The device file for module <name> does not fit to the current configuration. It has been modified
since the configuration has been set up or it is corrupted.

3457
Please check the device file of this module.

3458
Check if all required configuration and device files are available in the correct path (see defined
compile directory in 'Project' 'Options' /Directories).

3459
Change the setting in the CAN Parameter dialog. Check the specification of the baud rate given
by the GSD file.

3460
Make sure that the 3S_CanDrv.lib included in the project is up to date.

3461
Make sure that the 3S_CanOpenMaster.lib included in the project is up to date.

"The channel
'<name>'
couldn't be cre-
ated!"

"The address
'<name>' points
to an used
memory!"

"Error during
load: GSD-File
'<name>' could
not be found,
but is refer-
enced in hard-
ware configura-
tion!"

"The profibus
device '<name>'
couldn't be cre-
ated!"

"Error in module
description!"

"The PLC-Con-
figuration
couldn't be cre-
ated! Check the
configuration
files."

"The selected
baudrate is not
supported."

3S_CanDrv.lib
has the wrong
version.

"3S_CanOpen-
Master.lib has
the wrong ver-
sion."

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 493

3462
Make sure that the 3S_CanOpenDevice.lib included in the project is up to date.

3463
Make sure that the 3S_CanOpenManager.lib included in the project is up to date.

3464
Make sure that the 3S_CanNetVar.lib included in the project is up to date.

3465
In parameter lists used by the CanDevice the sub-indices must be numbered sequentially and
without interruption. Check the corresponding list in the Parameter Manager.

3466
There are network variables configured for a CAN network (Resources, Global Variables), but in
the PLC Configuration there is no CAN Controller available.

3468
The update task (used for calling the CANdevice) which is defined in the Base Settings dialog
of the CANdevice in the PLC Configuration, must be configured in the Task Configuraiton of the
project.

3469
Assign a task, which should call the master, via parameter UpdateTask in the Module parame-
ters dialog in the PLC Configuration.

3470
Open the CanMasters Module parameter dialog in the PLC Configuration. Check parameter
UpdateTask. The specified task must be available in the project. If you cannot set an appro-
priate task here, the device file must be checked for the corresponding value definitions for
UpdateTask.

3500
Insert a declaration for this variable in the global variable list which contains the 'Variable_Con-
figuration'.

"3S_CanOpen-
Device.lib has
the wrong ver-
sion."

"3S_CanOpen-
Manager.lib has
the wrong ver-
sion."

"3S_Can-
NetVar.lib has
the wrong ver-
sion."

"CanDevice:
Sub indices
have to be num-
erated sequen-
tially"

"CAN network
variables: No
CAN controller
found in the
PLC configura-
tion"

"CanDevice:
Update task not
available in the
task configura-
tion."

"The CanOpen-
Master can not
be called.
Please assign a
task manually."

"Invalid name in
parameter
UpdateTask"

"No 'VAR_CON-
FIG' for
'<Name>'"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US494

3501
Assign an address to this variable in the global variable list which contains the 'Variable_Config-
uration'.

3502
In the global variables list which contains the 'Variable_Configuration’ the variable is declared
with a different data type than in the POU.

3503
In the global variables list which contains the 'Variable_Configuration’ the variable is declared
with a different address than in the POU.

3504
A variable of the 'Variable_Configuration’ is declared with address and initial value, but an initial
value can only be defined for input variables without address assignment.

3505
The Variable_Configuration contains a non-existent variable.

3506
In the global variable list for Access Variables the access path for a variable is not correct.
Correct: <Identifier>:'<Access path>':<Type> <Access mode>.

3507
The global variable list for Access Variables contains an address assignment for a variable. This
is not allowed.
Valid variable definition: <Identifier>:'<Access path>':<Type> <Access mode>

3550
There are two tasks defined with identical names. Rename one of them.

3551
Insert a program call or delete the task.

"No address in
'VAR_CONFIG'
for '<name>'."

"Wrong data
type for
'<name>' in
'VAR_CONFIG"

"Wrong data
type for
'<name>' in
'VAR_CONFIG'"

"Initial values
are not sup-
ported for
'VAR_CONFIG"

"'<name>'is no
valid instance
path"

"Access path
expected"

"No address
specification for
'VAR_ACCESS'-
variables"

"Duplicate defi-
nition of identi-
fier '<name>'"

"The task
'<name>' must
contain at least
one program
call"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 495

3552
There is an event variable set in the ‘Single’ field of the task properties dialog which is not
declared globally in the project. Use another variable or define the variable globally.

3553
Use a variable of type BOOL as event variable in the ‘Single’ field of the task properties dialog.

3554
In the field 'Program call’ a function or an undefined POU is entered. Enter a valid program
name.

3555
In the field 'Append program call’ parameters are used which do not comply with the declaration
of the program POU.

3556
The currently defined task configuration cannot be used for the currently set target system.
Change target or modify the task configuration correspondingly.

3557
The currently defined number of tasks exceeds the maximum number allowed for the currently
set target system. Change target or modify the task configuration correspondingly. Attention: Do
not edit the XML description file of the task configuration!

3558
The currently defined priority for the task is not valid for the currently set target system. Change
target or modify the task configuration correspondingly.

3559
The current task configuration contains an interval task. This is not allowed by the currently set
target system. Change target or modify the task configuration correspondingly.

"Event variable
'<name>' in task
'<name>' not
defined"

"Event variable
'<name>' in task
'<name>' must
be of type
'BOOL'"

"Task entry
'<name>' must
be a program or
global function
block instance"

"The task entry
'<name>' con-
tains invalid
parameters"

"Tasks are not
supported by
the currently
selected target"

"Maximum
number of Tasks
('<number>')
exceeded"

"Priority of task
'<name>' is out
of valid range
between '<lower
limit>' and
'<upper limit>'"

"Task '<name>':
Interval-Tasks
are not sup-
ported by the
current target"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US496

3560
The current task configuration contains a free wheeling task. This is not allowed by the currently
set target system. Change target or modify the task configuration correspondingly.

3561
The current task configuration contains event tasks which are not supported by the currently set
target system. Change target or modify the task configuration correspondingly.

3562
The current task configuration contains external event tasks which are not supported by the
currently set target system. Change target or modify the task configuration correspondingly.

3563
Change the interval value in the configuration dialog for the task.

3564
The currently set target system does not support the external event which is defined in the task
configuration for this task. Change target or modify the task configuration correspondingly.

3565
The currently set target system does not allow as many event tasks as are defined at the
moment. Change target or modify the task configuration correspondingly.

3566
The currently set target system does not allow as many interval tasks as defined at the moment.
Change target or modify the configuration correspondingly.

3567
The currently set target system does not allow as many free wheeling tasks as defined at the
moment. Change target or modify the configuration correspondingly.

"Task '<name>':
free wheeling
tasks are not
supported by
the current
target"

"Task '<name>':
event tasks are
not supported
by the current
target"

"Task '<name>':
external event
tasks are not
supported by
the current
target"

"The interval of
task '<name>' is
out of valid
range between
'<lower limit>'
and '<upper
limit>'"

"The external
event '<name>'
of task '<name>'
is not supported
by the current
target"

"Maximum
number of event
tasks
('<number>')
exceeded"

"Maximum
number of
interval tasks
('<number>')
exceeded"

"Maximum
number of free
wheeling tasks
('<number>')
exceeded"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 497

3568
The currently set target system does not allow as many external interval tasks as defined at the
moment. Change target or modify the configuration correspondingly.

3569
The POU which should be called by the named system event, as defined in the task configura-
tion, is not available in the project. Modify the task configuration correspondingly or make sure
that the POU is available in the project.

3570
Modify the task configuration so that each task has a different priority.

3571
In order to create event tasks, the SysLibCallback.lib is needed. Link this library to the project
in the library manager, or modify the task configuration (task attributes) so that there is no task
triggered by an event.

3572
In the task configuration in dialog 'Taskattributes' there is a watchdog time defined in microsec-
onds, which is out of the valid range defined in the XML-description file Ä Chapter 1.4.1.4.8.1
“Overview” on page 390.

3573
In the task configuration in dialog 'Taskattributes' there is a watchdog time defined in percents,
which is out of the valid range defined in the XML-description file Ä Chapter 1.4.1.4.8.1 “Over-
view” on page 390.

3574
A singleton event is used several times in the task configuration. For information on singleton
events see the description in 'Insert' 'Insert task' or 'Insert' 'Append Task' Ä Chapter 1.4.1.4.8.2
“'Insert' 'Insert Task' or 'Insert' 'Append Task'” on page 391.

"Maximum
number of
external interval
tasks
('<number>')
exceeded"

"POU '<name>'
for system
event '<name>'
not defined"

"The tasks
'<name>' and
'<name>' share
the same pri-
ority"

"The library 'Sy-
sLibCallback' is
not included in
the project!
System events
can not be gen-
erated."

"Watchdog
interval of task
'<name>' is out
of the valid
range from
<number>µs' to
'<number>µs'"

"Watchdog
interval of task
'<name>' is out
of the valid
range from
<number>%' to

"The event vari-
able '<name>'
respectively its
direct address
must not be
used multiple
times as an
event"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US498

3575
Correct the cycle time accordingly in the Taskattributes dialog for this task. The target system
defines a base time and prescribes that the cycle time must be equal to or be a multiple of this
base time.

3600
Use command 'Rebuild all’.

3601
The given variable is declared in the project, although it is reserved for the code generator.
Rename the variable.

3610
The given feature is not supported by the current version of the programming system.

3611
There is an invalid directory given in the 'Project’‚ 'Options’‚ 'Directories’ for the compile files.

3612
Too many POUs and data types are used in the project. Modify the maximum number of POUs
in the Target Settings / Memory Layout.

3613
The compile process was cancelled by the user.

3614
Create an init POU of type Program (e.g. PLC_PRG) or set up a task configuration.

3615
An init POU (e.g. PLC_PRG) is used in the project which is not of type Program.

"Task '<name>':
the cycle time
has to be a mul-
tiple of
'<number>' µs."

"Implicit varia-
bles not found!"

"<name> is a
reserved vari-
able name"

" '<Name>' not
supported"

"The given com-
pile directory
'<name>' is
invalid"

"Maximum
number of POUs
(<number>)
exceeded! Com-
pile is aborted."

"Build can-
celed"

"Project must
contain a POU
named '<name>'
(main routine)
or a taskconfi-
guration"

"<Name> (main
routine) must be
of type pro-
gram"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 499

3616
The project which should be saved as an external library contains a program. This will not be
available when the library is used.

3617
Increase the virtual memory capacity of your computer.

3618
The code generator for the currently set target system does not support bit access on variables.

3619
Make sure that for the library there are available matching versions of *.lib and *.obj resp. *.hex
files. These files must have the very same time stamp.

3620
You want to save the project as a library of version 2.1. In this version a library may not contain
a PLC_PRG object. Use a different POU name.

3621
Probably in the path which is specified for the compile file there is already a file of the same
name, which is "read only". Remove that file or change the access rights.

3622
Probably in the path which is specified for the symbol file (usually project directory) there is
already a file of the same name, which is "read only". Remove that file or change the access
rights.

3623
Probably in the path which is specified for the symbol file (target specific) there is already a file
of the same name, which is "read only". Remove that file or change the access rights.

3624
Check and correct these settings in the Target settings dialogs (Resources tab).

"Programs
musn't be imple-
mented in
external libra-
ries"

"Out of
memory"

"BitAccess not
supported in
current code
generator!"

"Object file
'<name>' and
library '<name>'
have different
versions!"

"The POU
'<name>' must
not be present
inside a library"

"Cannot write
compile file
'<name>'"

"The symbol file
'<name>' could
not be created"

"Cannot write
boot project file
'<name>'"

"Target setting
<targetset-
ting1>=<set
value> not com-
patible with
<targetset-
ting2>=<set
value>"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US500

3700
A POU name is used in the project, which is already used for a library POU. Rename the POU.

3701
Use command ‘Project’ ‘Rename object’ to rename the POU in the object organizer, or change
the name of the POU in the declaration window. There the POU name has to be placed next to
one of the keywords PROGRAM, FUNCTION or FUNCTIONBLOCK.

3702
Maximum 100 identifiers can be entered in one variable declaration.

3703
Take care that there is only one identifier with the given name in the declaration part of the POU.

3704
An instance of a function block is used which calls itself.

3705
Create a task configuration or make sure that there are no VAR_IN_OUT variables used in
PLC_PRG.

3706
Constants cannot be declared for this type of variable.

3720
Add a valid address after the keyword AT or modify the keyword.

3721
Put the declaration to a VAR or VAR_GLOBAL declaration area.

"POU with name
'<name>' is
already in
library
'<name>'"

"Name used in
interface is not
identical with
POU Name"

"Overflow of
identifier list"

"Duplicate defi-
nition of identi-
fier '<Name>'"

"Data recursion:
"<POU 0> ->
<POU 1> -> .. ->
<POU 0>"

"<Name>:
VAR_IN_OUT in
Top-Level-POU
not allowed, if
there is no Task-
Configuration"

"Modifier 'CON-
STANT' allowed
for 'VAR',
'VAR_INPUT',
'VAR_EXTER-
NAL' and
'VAR_GLOBAL'
only"

"Address
expected after
'AT'"

"Only 'VAR' and
'VAR_GLOBAL'
can be located
to addresses"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 501

3722
Modify the address or modify the type of the variable to which the address is assigned.

3726
Modify the address assignment correspondingly.

3727
Modify the address assignment correspondingly.

3728
This address is not supported by the PLC configuration. Check the PLC configuration or modify
the address.

3729
The type of this variable cannot be placed on the given address. Example: For a target system
working with ‘alignment 2’ the following declaration is not valid: var1 AT %IB1:WORD;
This error message also might indicate that an array is assigned to the address of a direct
variable, which is not allowed.

3740
An invalid data type is used in a variable declaration.

3741
A keyword or an operator is used instead of a valid type identifier.

3742
In the definition of the enumeration type an identifier is missing after the opening bracket or after
a comma between the brackets.

3743
Enumerations can only be initialized with numbers of type INT.

3744
Check if you have followed the rules for the definition of enumeration values:
● Within one enum definition all values have to be unique.
● Within all global enum definitions all values have to be unique.
● Within all local enum definitions all values have to be unique.

"Only 'BOOL'
variables
allowed on bit
addresses"

"Constants can
not be laid on
direct
addresses"

"No array decla-
ration allowed
on this address"

"Invalid
address:
'<address>'"

"Invalid type
'<name>' at
address:
'<Name>' "

"Invalid type:
'<Name>' "

"Expecting type
specification"

"Enumeration
value expected"

"Integer number
expected"

"Enum constant
'<name>'
already defined"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US502

3745
Subrange types can only be defined for integer data types.

3746
One of the limits set for the range of the subrange type is out of the range which is valid for the
base type.

3747
There is a not valid constant used for the definition of the string length.

3748
More than the allowed three dimensions are given in the definition of an array. If applicable use
an ARRAY OF ARRAY.

3749
There is an undefined constant used to define the lower limit for a subrange or array type.

3750
There is an undefined constant used to define the upper limit for a subrange or array type.

3751
The defined string length exceeds the maximum value which is defined for the currently set
target system.

3752
An array can be 1- 2- or 3-dimensional Ä Chapter 1.4.1.8.2.1 “ARRAY” on page 445. The max-
imum number of dimensions reached by nesting of arrays is 9, e.g. "arr: ARRAY [0..2,0..2,0..2]
OF ARRAY [0..2,0..2,0..2] OF ARRAY [0..2,0..2,0..2, 0..2] OF DINT". This maximum has been
exceeded in the current error case. Reduce to a maximum of 9 dimensions.

3760
Use an initial value which corresponds to the type definition. To change the declaration you can
use the declaration dialog for variables (Shift/F2 or 'Edit''Autodeclare').

"Subranges are
only allowed on
Integers!"

"Subrange
'<name>' is not
compatible with
Type '<name>'"

"Unknown
string length:
'<name>'"

"More than
three dimen-
sions are not
allowed for
arrays"

"Lower bound
'<name>' not
defined"

"Upper bound
'<name>' not
defined"

"Invalid string
length '<number
of characters>'"

"More than 9
dimensions are
not allowed for
nested arrays"

"Error in inital
value"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 503

3761
Remove the initialisation at the declaration of the VAR_IN_OUT variable.

3780
The first line following the name of a POU must contain one of these keywords.

3781
Enter a valid identifier or a END_VAR at the beginning of the given line in the declaration
window.

3782
In the declaration editor: Add keyword END_VAR at the end of the declaration part.
In the text editor of the programming part: Add an instruction which terminates the last instruc-
tion sequence (e.g. END_IF).
This error message already might be created together with error 3703, if there are two identical
declarations at the end of the declaration part.

3783
Ensure that the type declaration is terminated correctly.

3784
The target system does not support this type of variable (e.g. RETAIN, PERSISTENT).

3800
Increase the number of segments given in the settings in dialog 'Project’, 'Options’, 'Build’.

3801
The variable uses a type which is bigger than 1 data segment. The segment size is a target
specific parameter and can be modified in the target settings/memory layout.

"'VAR_IN_OUT'
variables must
not have an ini-
tial value."

"'VAR',
'VAR_INPUT',
'VAR_OUTPUT'
or
'VAR_IN_OUT'
expected"

"'END_VAR' or
identifier
expected"

"Unexpected
end"

"END_STRUCT'
or identifier
expected"

"The current
target doesn't
support
attribute
<attribute
name>"

"The global vari-
ables need too
much memory.
Increase the
available
memory in the
project
options."

"The variable
'<name>' is too
big. (<size>
byte)"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US504

3802
The memory space available for retain variables is exhausted. The size of the memory area can
be set target-specific in the target settings / memory layout.
If retain variables are used in a function block instance, the complete instance POU will be
stored in the retain memory area.

3803
The memory space available for global variables is exhausted. The size of the memory area can
be set target-specific in the target settings / memory layout. If you do not find the settings field in
the dialog, please contact your PLC manfacturer.

3804
Reduce the persistent data to the size allowed by the target system.

3820
In a function no output or in_output variables may be defined.

3821
Add at least on input parameter for the function.

3840
In the POU a VAR_EXTERNAL variable is used, for which no global variable declared.

3841
The type given in the declaration of the VAR_EXTERNAL variable is not the same as that in the
global declaration.

3850
This structure definition leads to a misalignment in the memory. You must change the structure
definition appropriately.

"Out of retain
memory. Vari-
able '<name>',
<number>
bytes."

"Out of global
data memory.
Variable
'<name>',
'<number>'
bytes."

"The current
size of the per-
sistent data
description is
<'number'>
bytes and
exceeds the
maximum of
<'number'>
bytes."

"'VAR_OUTPUT'
and
'VAR_IN_OUT'
not allowed in
functions"

"At least one
input required
for functions"

"Unknown
global variable
'<name>'!"

"Declaration of
'<name>' do not
match global
declaration!"

"Declaration of
an unpacked
struct '<name>'
inside a packed
struct '<name>'
is not allowed!"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 505

3900
Remove multiple underlines in the identifier name.

3901
There is a direct assignment to an address which has more than four levels, e.g. %QB0.1.1.0.1.

3902
Use capital letters for the keyword or activate option 'Autoformat' in 'Project', 'Options'.

3903
The notation of the constant does not comply with the IEC61131-3 format.

3904
The value used for the time constant cannot be represented in the internal format. The max-
imum value which is presentable is t#49d17h2m47s295ms.

3905
The notation of the constant does not comply with the IEC61131-3 format.

3906
The notation of the constant does not comply with the IEC61131-3 format.

3907
The notation of the constant does not comply with the IEC61131-3 format.

3908
The string constant contains an invalid character.

4000
Enter a valid identifier at this position.

4001
Declare variable local or global.

"Multiple under-
lines in identi-
fier"

"At most 4
numerical fields
allowed in
addresses"

"Keywords must
be uppercase"

"Invalid duration
constant"

"Overflow in
duration con-
stant"

"Invalid date
constant"

"Invalid time of
day constant"

"Invalid date
and time con-
stant"

"Invalid string
constant"

"Identifier
expected"

"Variable
'<Name>' not
declared"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US506

4010
Check what data type the operator expects (Browse online help for name of operator) and
change the type of the variable which has caused the error, or select another variable.

4011
The data type of the actual parameter cannot be automatically converted to that of the formal
parameter. Use a type conversion or use another variable type.

4012
A value with the invalid type <Type2> is assigned to the input variable '<Name>'. Replace
the variable or constant to one of type <Type1> or use a type conversion or a constant with
type-prefix.

4013
A value with the invalid type <Type2> is assigned to the output variable '<Name>'. Replace
the variable or constant to one of type <Type1> or use a type conversion or a constant with
type-prefix.

4014
The type of the constant is not compatible with the type of the prefix. Example: SINT#255

4015
Direct bit addressing is only allowed for Integer- and Bitstring datatypes and not for direct
variables. You are using a variable var1 of type REAL/LREAL or a constant in bit access
<var1>.<bit>, or you are trying a bit access on a direct variable.

4016
You are trying to access a bit which is not defined for the data type of the variable.

4017
The operator MOD can only be used for integer and bitstring data types.

"Type mis-
match: Cannot
convert
'<Name>' to
'<Name>'."

"Type mismatch
in parameter
'<Name>' of
'<Name>':
Cannot convert
'<Name>' to
'<Name>'."

"Type mismatch
in parameter
'<Name>' of
'<Name>':
Cannot convert
'<Name>' to
'<Name>'."

"Type mismatch
in output
'<Name>' of
'<Name>':
Cannot convert
'<Name>' to
'<Name>'."

"Typed literal:
Cannot convert
'<name>' to
'<name>'"

"Data type
'<name>' illegal
for direct bit
access"

"Bit index
'<number>' out
of range for var-
iable of type
'<name>'"

"'MOD' is not
defined for
'REAL'"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 507

4020
Replace the first operand by a variable with write access.

4021
Replace the variable by a variable with write access.

4022
Add an operand behind the command.

4023
Enter a digit.

4024
Enter a valid operand at the named position.

4025
Enter one of the operators at the named position.

4026
Use a valid bit address (e.g. %IX0.1).

4027
Enter a integer number or the identifier of a valid constant.

4028
Check the data type of the variable for which the INI operator is used.

4029
In non-reentrant target systems and in simulation mode a function call may not contain a call to
itself as a parameter.

"Variable with
write access or
direct address
required for 'ST',
'STN', 'S', 'R'"

"No write
access to vari-
able '<name>'
allowed"

"Operand
expected"

"Number
expected after
'+' or '-'"

"Expecting
<Operator 0> or
<Operator 1>
or ... before
<Name>'"

"Expecting ':='
or '=>' before
'<Name>'"

"'BITADR'
expects a bit
address or a
variable on a bit
address"

"Integer number
or symbolic
constant
expected"

"'INI' operator
needs function
block instance
or data unit type
instance"

"Nested calls of
the same func-
tion are not pos-
sible."

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US508

fun1(a,fun1(b,c,d),e);Example:

Use an intermediate table.

4030
Replace the constant or the expression by a variable or a direct address.

4031
Use BITADR. Please note that the BITADR function does not return a physical memory address.

4032
Check how many operands the named operator requires and add the missing operands.

4033
Check how many operands the named operator requires and remove the surplus operands.

4034
You are using a division by 0 in a constant expression. If you want to cause a runtime error then
use, if applicable, a variable with the value 0.

4035
An address access on constants, for which the direct values are used, is not possible. If
applicable, deactivate the option 'Replace Constants’ in 'Project’ 'Options’ 'Build’.

4040
Define a label with the name <LabelName> or change the name <LabelName> to that of a
defined label.

4041
The label '<Name>' has multiple definitions in the POU. Rename the label or remove one of the
definitions.

"Expressions
and constants
are not allowed
as operands of
'ADR'"

"'ADR' is not
allowed on bits!
Use 'BITADR'
instead."

"'<number>'
operands are
too few for
'<name>'. At
least '<number>'
are needed"

"'<number>'
operands are
too many for
'<name>'. At
least '<number>'
are needed"

"Division by 0"

"ADR must not
be applied on
'VAR CON-
STANT' if 're-
placed con-
stants' is
activated"

"Label '<name>'
is not defined"

"Duplicate defi-
nition of label
'<name>'"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 509

4042
The number of jump labels is limited to '<number>'. Insert a dummy instruction.

4043
The label name is not valid or the colon is missing in the definition.

4050
Define a POU with the name '<Name>' using the command ‘Project’ ‘Add Object’, or change
'<Name>' to the name of a defined POU.

4051
Use instead of <name> a function name which is defined in the project or in the libraries.

4052
Use an instance of data type '<Name>' which is defined in the project or change the type of
<Instance name> to '<Name>'.

4053
Replace '<name>' by the name of a POU or an operator defined in the project.

4054
The given parameter is not a valid POU name.

4060
Variables with write access have to be passed to VAR_IN_OUT parameters, because a
VAR_IN_OUT can be modified within the POU.

4061
A VAR_IN_OUT parameter must be passed a variable with write access, because a
VAR_IN_OUT can be modified within the POU.

"No more than
<number>
labels in
sequence are
allowed"

"Format of label
invalid. A label
must be a name
optionally fol-
lowed by a
colon."

"POU '%s' is not
defined"

"'%s' is no func-
tion"

"'<name>' must
be a declared
instance of FB
'<name>'"

"'<name>' is no
valid box or
operator"

"POU name
expected as
parameter of 'IN-
DEXOF'"

"'VAR_IN_OUT'
parameter
'<name>' of
'<name>' needs
variable with
write access as
input"

"'VAR_IN_OUT'
parameter
'<name>' of
'<name>' must
be used."

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US510

4062
VAR_IN_OUT parameter may be written or read only within the POU, because they are handed
over by reference.

4063
A bit address is not a valid physical address. Hand over a variable or a direct non-bit address.

4064
Delete the parameters set for the VAR_IN_OUT variable in the local action call.

4070
Decrease nesting depth by dividing up the expression into several expressions. Use inter-
mediate variables for this purpose.

4071
Divide up the network into several networks.

4072
You have defined two actions of a function block FB: e.g. a1 and a2, but in the call of one of the
actions in the FBD you are using a type (string within the box, e.g. fb.a1 different to that used in
the instance-name (e.g. inst.a2, above box). Correct the name correspondingly into the name of
the desired action.

4100
You are trying to dereference a variable which is not declared as a pointer.

4110
[<index>] is used for a variable which is not declared as an array with ARRAY OF.

4111
Use an expression of the correct type or a type conversion.

"No external
access to
'VAR_IN_OUT'
parameter
'<name>' of
'<name>'."

"'VAR_IN_OUT'
parameter
'<name>' of
'<name>' must
not be used with
bit addresses."

"'VAR_IN_OUT'
must not be
overwritten in
local action
call!"

"The POU con-
tains a too com-
plex expres-
sion"

"Network too
complex"

"Inconsistent
use of an action
identifier in FB
type ('<name>')
and instance
('<name>')."

"'^' needs a
pointer type"

"'[<index>]'
needs array var-
iable"

"Index expres-
sion of an array
must be of type
'INT'"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 511

4112
Check the number of indices (1, 2, or 3) for which the array is declared and remove the surplus.

4113
Check the number of indices (1, 2, or 3) for which the array is declared and add the missing
ones.

4114
Make sure that the used indices are within the bounds of the array.

4120
The identifier on the left hand of the dot must be a variable of type STRUCT or FUNC-
TION_BLOCK or the name of a FUNCTION or a PROGRAM.

4121
The component '<Name>' is not included in the definition of the object <object name>.

4122
Check the input variables of the called function block and change ‘<name>' to one of these.

4200
Insert at least one LD instruction after the jump label in the IL editor.

4201
Each IL instruction must start with an operator or a jump label.

4202
Insert a closing bracket after the text.

4203
The operator <name> is not valid in a IL bracket expression. Not valid are: 'JMP', 'RET', 'CAL',
'LDN', 'LD', 'TIME'.

"Too many
indexes for
array"

"Too few
indexes for
array"

"One of the con-
stant indices is
not within the
array range"

"'.' needs struc-
ture variable"

"'<Name>' is not
a component of
<object name>"

"'<name>' is not
an input vari-
able of the
called function
block"

"'LD' expected"

"IL Operator
expected"

"Unexpected
end of text in
brackets"

"<name> in
brackets not
allowed"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US512

4204
Insert an opening bracket or remove the closing one.

4205
Remove comma after closing bracket.

4206
Shift jump label so that it is outside of the brackets.

4207
The N modifier requires a data type, for which a boolean negation can be executed.

4208
Make sure that the expression gives out a boolean result or use a type conversion.

4209
Replace the function call by a variable or a constant.

4210
Declare an instance of the function block which you want to call.

4211
Shift the comment to the end of the line or to an extra line.

4212
The accumulator is not defined. This happens if an instruction is preceeding which does not
submit a result (e.g. 'CAL').

4213
Use a boolean variable at this place.

"Closing
bracket with no
corresponding
opening
bracket"

"No comma
allowed after ')'"

"Label in
brackets not
allowed"

"'N' modifier
requires
operand of type
'BOOL', 'BYTE',
'WORD' or
'DWORD'"

"Conditional
Operator
requires type
'BOOL'"

"Function name
not allowed
here"

"'CAL', 'CALC'
and 'CALN'
require a func-
tion block
instance as
operand"

"Comments are
only allowed at
the end of line
in IL"

"Accumulator is
invalid before
conditional
statement"

"'S' and 'R'
require 'BOOL'
operand"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 513

4250
The line does not start with a valid ST instruction.

4251
There are more parameters given than are declared in the definition of the function.

4252
There are fewer parameters given than are declared in the definition of the function.

4253
Make sure that the condition for IF or ELSIF is a boolean expression.

4254
Make sure that the condition following the ‘WHILE’ is a boolean expression.

4255
Make sure that the condition following the ‘UNTIL’ is a boolean expression.

4256
Make sure that the condition following the ‘NOT’ is a boolean expression.

4257
Make sure that the counter variable is of an integer or bitstring data type (e.g. DINT, DWORD).

4258
Replace the counter variable by a variable with write access.

4259
The start value in the 'FOR' instruction must be compatible to the type of the counter variable.

"Another 'ST'
statement or
end of POU
expected"

"Too many
parameters in
function
'<name>'"

"Too few param-
eters in function
'<name>'"

"'IF' or 'ELSIF'
require 'BOOL'
expression as
condition"

"'WHILE'
requires 'BOOL'
expression as
condition"

"'UNTIL'
requires 'BOOL'
expression as
condition"

"'NOT' requires
'BOOL'
operand"

"Variable of
'FOR' statement
must be of type
'INT'"

"Expression in
'FOR' statement
is no variable
with write
access"

"Start value in
'FOR' statement
is no variable
with write
access"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US514

4260
The end value in the 'FOR' instruction must be compatible to the type of the counter variable.

4261
The incremental value in the 'FOR' instruction must be compatible to the type of the counter
variable.

4262
Use 'EXIT' only within 'FOR', 'WHILE' or 'UNTIL' instructions.

4263
Within a ‘CASE' expression you can only use a number or a 'ELSE' instruction or the ending
instruction 'END_CASE'.

4264
Make sure that the selector is of an integer or bitstring data type (e.g. DINT, DWORD).

4265
In the enumeration of the CASE selectors there must be inserted a further selector after a
comma.

4266
Insert an instruction, at least a semicolon.

4267
The identifier in the function block call is no instance. Declare an instance of the desired
function block or use the name of an already defined instance.

4268
Insert an expression.

4269
Terminate the 'CASE' instruction after the 'ELSE' part with an 'END_CASE'.

"End value of
'FOR' statement
must be of type
'INT'"

"Increment
value of 'FOR'
statement must
be of type 'INT'"

"'EXIT' outside a
loop"

"Expecting
Number, 'ELSE'
or 'END_CASE'"

"'CASE'
requires
selector of an
integer type"

"Number
expected after
','"

"At least one
statement is
required"

"Function block
call requires
function block
instance"

"Expression
expected"

"'END_CASE'
expected after
'ELSE'-branch"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 515

4270
A 'CASE' selector may only be used once within a ‘CASE' instruction.

4271
Modify the area bounds for the selectors so that the lower border is less than the upper border.

4272
You can edit a function call so that the parameter names are contained, not only the parameter
values. But nevertheless the position (sequence) of the parameters must be the same as in the
function definition.

4273
Make sure that the areas for the selectors which are used in the CASE instruction don’t overlap.

4274
A CASE instruction may not contain more than one 'ELSE' instruction.

4300
Make sure that the input for the jump or the RETURN instruction is a boolean expression.

4301
The number of inputs does not correspond to the number of VAR_INPUT and VAR_IN_OUT
variables which is given in the POU definition.

4302
The number of outputs does not correspond to the number of VAR_OUTPUT variables which is
given in the POU definition.

4303
Replace '<name>' with a valid operator.

"'CASE' con-
stant '<name>'
already used"

"The lower
border of the
range is greater
than the upper
border."

"Expecting
parameter
'<name>' at
place <position>
in call of
'<name>'!"

"Parts of the
'CASE'-Range
'<range>'
already used in
Range
'<range>'"

"Multiple 'ELSE'
branch in
'CASE' state-
ment"

"Jump requires
'BOOL' as input
type"

"POU '<name>'
need exactly
<number>
inputs"

"POU '<name>'
need exactly %d
outputs"

"'<name>' is no
operator"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US516

4320
The switch signal for a contact must be a boolean expression.

4321
The output variable of a coil must be of type BOOL.

4330
Assign an input or an expression to the input EN of POU '<name>’.

4331
The input <number> of the operator POU is not assigned.

4332
The input of the POU is of type VAR_IN_OUT and is not assigned.

4333
The given jump mark is not a valid identifier.

4334
Assign a boolean expression to the input of the jump. If this is TRUE, the jump will be executed.

4335
Assign a boolean expression to the input of the RETURN instruction. If this is TRUE, the jump
will be executed.

4336
Assign a suitable expression to the output box.

4337
Insert a valid expression or identifier in the input box.

"Non-boolean
expression
'<name>' used
with contact"

"Non-boolean
expression
'<name>' used
with coil"

"Expression
expected at
input 'EN' of the
box '<name>' "

"Expression
expected at
input
'<number>' of
the box
'<Name>' "

"Expression
expected at
input '<name>'
of the box
'<Name>'"

"Identifier in
jump expected"

"Expression
expected at the
input of jump"

"Expression
expected at the
input of the
return"

"Expression
expected at the
input of the
output"

"Identifier for
input expected"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 517

4338
None of the inputs of the operator POU '<name>' have been assigned a valid expression.

4339
The type of the expression in the output box is not compatible with that of the expression which
should be assigned to it.

4340
Make sure that the input for the jump is a boolean expression.

4341
Make sure that the input for the RETURN instruction is a boolean expression.

4342
Assign a valid boolean expression to the EN input of the box.

4343
Input '<name>' of box '<name>' is declared as VAR_INPUT CONSTANT. But to this POU box an
expression has been assigned in the dialog 'Edit Parameters' which is not type compatible.

4344
Insert a valid boolean expression after the Set or Reset instruction.

4345
An expression is assigned to input '<name>' of POU box '<name>' which is not type compatible.

4346
You can only assign an output to a variable or a direct address with write access.

"Box '<name>'
has no inputs"

"Type mismatch
at output:
Cannot convert
'<name>' to
'<name>'

"Jump requires
'BOOL' as input
type"

"Return needs a
boolean input"

"Expression
expected at
input 'EN' of the
box '<name>'"

"Values of Con-
stants:
'<name>'"

"'S' and 'R'
require 'BOOL'
operand"

"Invalid type for
parameter
'<name>' of
'<name>':
Cannot convert
'<type>' to
'<type>'"

"Not allowed to
use a constant
as an output"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US518

4347
Only variables with write access can be passed to VAR_IN_OUT parameters, because these
can be modified within the POU.

4348
You have inserted a program box in the CFC editor which has the same name as a (global)
variable already existing in your project. You must rename accordingly.

4349
Error in CFC POU.

4350
SFC actions only can be called within the SFC POU in which they are defined. But this error
also will be dumped if you call an action from within a SFC POU, which is allowed, but are not
using IEC steps while the iecsfc.lib is still included in your project. In this case please remove
the library in the library manager and rebuild the project.

4351
Rename the step or choose a valid identifier as step name.

4352
Remove the invalid characters in the step name.

4353
Rename one of the steps. This error also will be generated if a step has the same name as a
non-boolean variable.

4354
Choose an existing step name as a target for the jump, or insert a step with name '<name>’.

"'VAR_IN_OUT'
parameter
needs variable
with write
access as input"

"Invalid pro-
gram name
'<name>'. A vari-
able with the
same name
exists already."

Input or output
in POU <name>
has been
deleted: Check
all connections
to the box. This
error message
disappears only
after the CFC
was edited

"An SFC-Action
can not be
accessed from
outside!"

"Step name is
no identifier:
'<name>'"

"Extra charac-
ters following
valid step
name:'<Name>'"

"Step name
duplicated:
'<Name>'"

"Jump to unde-
fined Step:
'<Name>'"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 519

4355
A transition must be a boolean expression.

4356
Use a valid identifier as the target of the jump.

4357
Check whether the library iecsfc.lib is inserted in the library manager and whether the library
paths defined in ‘Project’ ‘Options’ ‘Paths’ are correct.

4358
Make sure that in the object organizer the action of the IEC step is inserted below the SFC
POU, and that in the editor the action name is inserted in the box on the right hand of the
qualifier.

4359
In the box on the left hand of the action name enter a qualifier for the IEC action.

4360
Enter next to the box on the left hand of the action name a time constant behind the qualifier.

4361
Enter next to the box on the right hand of the qualifier the name of an action or the name of a
variable which is defined in the project.

4362
Insert a boolean variable or a valid action name.

4363
Please rename the step or the variable.

4364
The result of the transition expression must be of type BOOL.

"A transition
must not have
any side effects
(Assignments,
FB-Calls etc.)"

"Jump without
valid Step
Name:
'<Name>'"

"IEC-Library not
found"

"Action not
declared:
'<name>'"

"Invalid Quali-
fier: '<name>'"

"Time Constant
expected after
qualifier
'<name>'"

"'<name>' is not
the name of an
action"

"Nonboolean
expression used
in action:
'<name>'"

"IEC-Step name
already used for
variable:
'<Name>'"

"A transition
must be a boo-
lean expres-
sion"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US520

4365
Open dialog 'step attributes’ for the step '<name>' and enter a valid time variable or time
constant.

4366
Enter a valid identifier next to the triangle which marks the jump label.

4367
There is already a jump label or a step with this name. Please rename correspondingly.

4368
The action '<name>' is used in the POU as well as in one or several actions of the POU.

4369
There are used several FBD or LD networks for a transition. Please reduce to 1 network.

4370
Remove the unnecessary lines at the end of the transition.

4371
Remove the unnecessary characters at the end of the transition.

4372
Define the time limits of the step in the step attributes by using a variable of type TIME, or by a
time definition in correct format (e.g "t#200ms").

4373
There is an action assigned to a non-SFC-POU (see the Object Organizer), which is pro-
grammed in SFC and which contains IEC actions. Replace this action by one which contains no
IEC actions.

"Time constant
expected after
qualifier
'<name>'"

"The label of the
parallel branch
is no valid iden-
tifier: '<Name>'"

"The label
'<name>' is
already used"

"Action
'<name>' is
used in multiple
step chains,
where one is
containing the
other!"

"Exactly one
network
required for a
transition"

"Additional lines
found after cor-
rect IL-transi-
tion"

"Invalid charac-
ters following
valid expres-
sion: '<name>"

"Step '<name>':
Time limit needs
type 'TIME'"

"IEC-actions are
only allowed
with SFC-POUs"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 521

4374
The SFC POU is corrupt, possibly due to any export-import actions.

4375
The SFC POU is corrupt, possibly due to any export-import actions.

4376
The SFC POU is corrupt, possibly due to any export-import actions.

4377
The SFC POU is corrupt, possibly due to any export-import actions.

4400
The POU cannot be converted to IEC 61131-3 completely.

4401
There is no valid BCD coded time in the accumulator.

4402
Make sure that you only access variables which are defined as input or output.

4403
Some STEP5/7 commands are not convertible to IEC 61131-3, e.g. CPU commands like MAS.

4404
Some STEP5/7 operands are not convertible to IEC 61131-3 or an operand is missing.

"Step expected
instead of tran-
sition '<name>'"

"Transition
expected
instead of step
'<name>'"

"Step expected
after transition
'<name>'"

"Transition
expected after
step '<name>'"

"Import / con-
version of POU
'<name>' con-
tains errors
resp. is not
complete."

"S5 time con-
stant <number>
seconds is too
big (max.
9990s)."

"Direct access
only allowed on
I/Os."

"STEP5/7
instruction
invalid or not
convertible to
IEC 61131-3."

"STEP5/7
operand invalid
or not conver-
tible to
IEC 61131-3."

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US522

4405
The corresponding IEC timer has no reset input.

4406
There is no valid BCD coded counter constant in the accu.

4407
Some STEP5/7 instructions cannot be converted to IEC 61131-3, e.g. DUF.

4408
Special timer/counter commands are not convertible into IEC 61131-3.

4409
A command, which connects the both accus, cannot be converted because the accu values are
not defined.

4410
Import the called POU.

4411
Please check the SEQ file.

4413
In the code which should be imported there is an erroneous date.

4414
In the original S5D file the symbolic name of an (extended) POU is missing.

4415
A protected POU cannot get imported.

"Reset of a
STEP5/7 timer
cannot be con-
verted into
IEC 61131-3."

"STEP5/7
counter con-
stant out of
range (max.
999)."

"STEP5 instruc-
tion not conver-
tible to
IEC 61131-3."

"Bit access of
timer or counter
words not con-
vertible into
IEC 61131-3."

"Contents of
ACCU1 or
ACCU2 unde-
fined, not con-
vertible into
IEC 61131-3."

"Called POU not
in project."

"Error in global
variable list."

"Error in format
of line in data
block"

"FB/FX name
missing."

"Instruction
after block end
not allowed."

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 523

4416
The S5/S7 command cannot be disassembled.

4417
Close the comment with "*)".

4418
The symbolic name of an (extended) POU is too long.

4419
Correct the line correspondingly.

4420
Check the POUs.

4421
Check the POUs.

4422
Check the POUs.

4423
Check the interface of the POU.

4424
The called POU is not imported yet, is not correct, or has no parameters (in the last case you
can ignore the error message).

4425
The target (label) of the jump is not defined.

"Invalid com-
mand"

"Comment not
closed"

"FB/FX-Name
too long (max. 8
characters)"

"Expected
format of line
""(* Name:
<FB/FX-Name>
*)"" "

"Name of FB/FX
parameter
missing"

"Type of FB/FX
parameter
invalid"

"Type of FB/FX
parameter
missing"

"Invalid FB/FX
call parameter"

"Warning: FB/FX
for call either
missing or
parameters
invalid or has '0'
parameters"

"Definition of
label missing"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US524

4426
Modify the POU name.

4427
Add a declaration of the timer in the global variables list.

4428
You may not use more than seven open brackets.

4429
The parameter name may not exceed four characters.

4430
In IEC 61131-3 Timer, counter and POUs cannot be converted as formal parameters.

4431
A POU may not contain more than 16 formal parameters as outputs.

4432
In IEC 61131-3 jump labels may not be inserted at any desired position.

4434
A POU may not contain more than 100 labels.

4435
After jump or call a Load command LD must follow.

4436
The command which is used by VKE cannot get converted, because the value of the VKE is not
known.

"POU does not
have a valid
STEP 5 block
name, e.g.
PB10"

"Timer type not
declared"

"Maximum
number of open
STEP5 brackets
exceeded"

"Error in name
of formal param-
eter"

"Type of formal
parameter not
IEC-convertible"

"Too many
'VAR_OUTPUT'
parameters for a
call in STEP5
STL"

"Labels within
an expression
are not allowed"

"Too many
labels"

"After jump /
call, a new
expression
must start"

"Bit result unde-
fined, not con-
vertible to
IEC 61131-3."

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 525

4437
A bit command is used for a word operand or the other way round.

4438
Insert a "A DB".

4500
The watch variable is not declared within the project. By pressing <F2> you get the input
assistant which lists the declared variables.

4501
Remove the surplus signs.

4520
The pragma is not correct. Check whether ‘<Name>' is a valid flag.

4521
Check whether pragma is composed correctly.

4522
Pragma has not been terminated, insert a 'flag off' instruction.

4523
The Pragma cannot be used at this location, see 'Pragmas, overview' for the correct use of
pragmas Ä Chapter 1.4.1.3.10.1 “Pragmas, overview” on page 309.

4550
Ensure that the index is within the area which is defined in the target settings/networkfunction-
ality.

"Type of instruc-
tion and
operand are not
compatible"

"No data block
opened (insert
instruction C DB
before)"

"Unrecognized
variable or
address"

"Extra charac-
ters following
valid watch
expression"

"Error in
Pragma: Flag
expected before
'<Name>'!"

"Error in
Pragma: Unex-
pected element
'<Name>'!"

"'flag off'
pragma
expected!"

"Pragma
{<Pragma-
name>} not
allowed in inter-
face of type
'<Name>'"

"Index out of
defined range :
Variable OD
"number>, Line
<line number>."

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US526

4551
Ensure that the subindex is within the area which is defined in the target settings/network
functionality.

4552
Ensure that the index is within the area which is defined in the target settings/network function-
ality.

4553
Ensure that the subindex is within the area which is defined in the target settings/network
functionality.

4554
Enter a valid project variable in the field 'variable’. Use the syntax <POU name>.<variable
name>, or for global variables .<variable name>

4555
You must make an entry in this field.

4556
You must make an entry in this field.

4557
The maximum size of data which can be loaded via parameter lists of type Parameters to the
controller has been exceeded. This size is defined by the target system. Information on the data
size is displayed in the message window at compilation. Reduce the parameter lists size.

4558
The maximum size of data which can be loaded via parameter lists of type Variables to the
controller has been exceeded. This size is defined by the target system. Information on the data
size is displayed in the message window at compilation. Reduce the parameter lists size.

"Subindex out
of defined
range : Variable
OD "number>,
Line <line
number>."

"Index out of
defined range :
Parameter OD
"number>, Line
<line number>."

"Subindex out
of defined
range : Param-
eter OD
"number>, Line
<line number>."

"Variable name
invalid: Variable
OD <number>,
Line <line
number>."

"Empty table-
entry, input not
optional: Param-
eter OD
<number>, Line
<line number>

"Empty table-
entry, input not
optional: Vari-
able OD
<number>, Line
<number>"

"The required
parameter
memory is too
large"

"The required
variable
memory is too
large"

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 527

4560
Check this entry. It depends on the currently used column (attribute) definition which entries
are valid for this field. This definition is given by the target-specific XML description file of the
Parameter Manager, or by the standard settings which will be used if there is no description file.

4561
Entries in a column of the parameter list refer to another column which is not defined. The
column definitions are given by the description file (XML) of the Parameter Manager for the
current target. If a description file is not available, standard settings are used.

4562
The Index/Subindex-combination must be unique throughout all parameter lists, because it can
be used for parameter access. Correct the indices correspondingly.

4563
The name must be unique throughout all parameter lists, because it can be used for parameter
access.

4564
Enter an index which is within the range defined in the target settings, category network func-
tionality in field 'Index range...' for the respective list types (Variables, Parameters, Mappings).

4565
Enter a subindex which is within the range defined in the target settings, category network
functionality in field 'SubIndex range'.

4566
You have imported an export file which contains erroneous information on the Parameter Man-
ager. Check the *.exp file.

4600
Make sure that the variable defined in the properties dialog of the network variables list at option
'Transmit on event' is of type BOOL.

"Invalid value:
Dictionary
'<Name>',
column
'<Name>', line
'<line number>'"

"Column not
defined:
'<Name>'"

"Index/subindex
used already:
Dictionary
'<Name>', line
'<Line
Number>'"

"Identifier
'<Name>' used
already: Dic-
tionary
'<Name>', line
'<Line
Number>'"

"Index '<Name>'
is out of range:
Dictionary
'<Name>', line
'<Line
Number>'"

"Subindex
'<Name>' is out
of range: Dic-
tionary
'<Name>', line
'<Line Number>'
"

"An error
occurred during
import of the
parameter man-
ager"

"Network varia-
bles: '<name>'
expression is
not from type
bool!"

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US528

4601
There is no cyclic or free-wheeling task or PLC_PRG in the project where the network variables
of type CAN or UDP of the given list are used (only declaration is not sufficient!). You must take
care that the variables are used in an appropriate task or in PLC_PRG. If you want to use them
in several tasks, note that at data exchange the task with the highest priority will be regarded.

4602
In the Settings 'Create a global variable list' of the named network variables list a port number is
used which is not the same as that which is used in the first network variables list found in the
global variables folder Ä Chapter 1.4.1.4.1.3.1 “Create a global variable list” on page 358. Take
care that all network variables lists are using the same port!

4604
The same COB-ID is used in the configuration settings of multiple network variables lists.
Assign unique IDs.

4605
In the configuration of a network variables list a COB-ID is used which is also specified in the
CAN PLC Configuration. Assign unique IDs.

4620
Unused variables have been found in the project Ä Chapter 1.4.1.2.3.38 “Unused variables”
on page 248. See the description for command 'Project' 'Check' Ä Chapter 1.4.1.2.3.37 “'Pro-
ject' 'Check'” on page 248.

4621
There are overlaps at the assignment of variables to memory areas via the "AT"-declaration
Ä Chapter 1.4.1.2.3.39 “Overlapping memory areas” on page 249. See the description of
command 'Project' 'Check' Ä Chapter 1.4.1.2.3.37 “'Project' 'Check'” on page 248.

4622
IEC addresses assigned to the same memory area are referenced in more than one task.
See the description of command 'Project' 'Check' Ä Chapter 1.4.1.2.3.37 “'Project' 'Check'”
on page 248 Ä Chapter 1.4.1.2.3.41 “Concurrent access” on page 249.

4623
The project gains write access to the same memory area at more than one place. See the
description of command ' Ä Chapter 1.4.1.2.3.37 “'Project' 'Check'” on page 248' ' Ä Chapter
1.4.1.2.3.40 “Multiple write acces on output” on page 249'.

"Network varia-
bles '<name>':
No cyclic or
freewheeling
task for network
variable
exchange
found"

"'<name of net-
work variables
list>': The object
uses UDP port
'<port number>'
instead of '<port
number>'"

"Network varia-
bles '<name>':
Base identifier
has been used
more than
once."

"Network varia-
bles '<name>':
Duplicate CAN
COB id."

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 529

4650
In the PLC Configuration in the definition of the axis group (dialog 'Module parameters', column
'Value') there is a name defined for the task which is controlling the data transfer of this axis
group. This task name is not known in the Task Configuration. Correct Task Configuration or
PLC Configuration correspondingly.

4651
In dialog 'Module parameters' of the axis group enter a value for the cycle time (dwCycle).

4652
In the PLC Configuration within the same axis group there is already a drive with the same
Drive ID. Select the drive in the configuration tree and define an ID in configuration dialog 'Drive'
which is unique within the axis group.

4656
Open the PLC Configuration and check the Scale entries in the configuration dialog of the drive.
All fields must have entries not equal "0".

4670
In the CNC program a global variable is used (e.g. $glob_var$), which is not defined in the
project. Add the appropriate declaration or correct the assignment to the variable in the CNC
program.

4671
There is a variable assigned in an instruction of the CNC program, which is declared of a data
type which is not valid in this place. Use another variable or correct the type specification.

4685
Check the data type which is specified in the CAM Editor dialog ''Compile options.." for the
equidistant or element optimized point table.

4686
CAM points are used which are out of the data range specified for the point table. For the
current range definition see dialog 'Compile options..' in the CAM-Editor.

"AxisGroup
'<Name>': Task
'<Name>' does
not exist."

"AxisGroup
'<Name>':
Cycletime
(dwCycle) not
set."

"Drive '<name>':
wDriveID exists
already in this
axis group"

"Drive '<name>':
Scaling factor
must not be 0."

"CNC program
'<Name>':
Global variable
'<Name>' not
found."

"CNC program
'<Name>': Vari-
able '<Name>'
has an incom-
patible type."

"CAM '<Name>':
CAM table type
unknown."

"CAM '<Name>':
CAM point
exceeds data-
type range."

PLC Automation with V2 CPUs
Programming with CODESYS > Development system

2022/01/203ADR010582, 3, en_US530

4700
In the configuration of the visualization a variable is used which is not a number, as required in
this place (e.g. at the configuration of XOffset or Angle values etc.).

4701
In the configuration of the visualization a variable is used which is not of type BOOL, as required
in this place.

4702
The visualization contains a variable which is not of type STRING although this is required in
this place (e.g. at the tooltip configuration).

4703
The visualization contains an invalid variable.

4704
In this watchlist, used in a visualization (INTERN command in category Input), there is a
erroneous initial value. Check the used list.

4705
Enter a valid alarm group in the configuration dialog of the alarm table (category Alarm table).

4706
Open the target settings in tab 'Resources', and in dialog 'Visualization' activate option 'Alarm-
handling in the PLC'. Otherwise the alarm table element will not work in the target visualization
which is currently activated also in the target settings.

4707
The target system does not support the processing of alarms (target setting 'Alarmhandling in
the PLC' cannot be activated). Thus for running a target visualization (currently activated in
the target settings in tab 'Visualization') the alarm table elements must be removed from the
visualization.

"'<Number>'
('<Name>'):
Watch expres-
sion '<Name>' is
not a numeric
variable."

"'<Name>'
('<Number>'):
Watch expres-
sion '<name>' is
not of type
BOOL."

"'<Name>'
('<Number>'):
Watch expres-
sion '<name>' is
not of type
STRING."

"'<Name>'
('<Number>'):
Invalid watch
expression
'<Name>'"

"'<Name>'('<Nu
mber>'): Invalid
initial value in
watchlist
'<Name>'."

"'<name>'
('<number>'): No
valid alarm
group assigned
to alarm table."

"'<name>'
('<number>'):
Use of alarm
tables requires
the target set-
ting 'Alarmhan-
dling in control-
ler' to be
activated."

"'<name>'
('<number>'):
 Alarm tables
are not sup-
ported by the

PLC Automation with V2 CPUs

Programming with CODESYS > Development system

2022/01/20 3ADR010582, 3, en_US 531

4708
Open the target settings in tab 'Resources' and in dialog 'Visualization' activate option 'Store
trend data in the PLC'. Otherwise the trend element will not work in the target visualization
which is currently activated also in the target settings.

4709
The target system does not support the processing of trend data (target setting 'Store trend
data in the PLC' cannot be activated). Thus for running a target visualization (currently activated
in the target settings in tab 'Visualization') the trend elements must be removed from the
visualization.

4712
The text output in the visualization element is configured to work via dynamic texts or unicode
texts. Additionally the option "Hidden" is activated in the "Input" category. This is not supported
by the target visualization.

4900
You are using a type conversion which is not supported by the currently chosen code generator.

4901
The array bounds are too large for a 32-bit-variable. Reduce the array index range.

5100
The named expression is to complex to be handled by the available registers. Please try to
reduce the expression by using interim variables.

1.4.2 Libraries
1.4.2.1 Standard.library

in ST in AWL Description
LEN(in) LEN String length of operand in

LEFT(str,size) LEFT Left inital string of given size
of string str

current target.
Please remove
these elements
from the target
visualization."

"'<name>'
('<number>'):
 Use of trends
requires the
target setting
'Trend recording
in controller' to
be activated."

"'<name>'
('<number>'):
 Trends are not
supported by
the current
target. Please
remove these
elements from
the target visu-
alization."

"'<Name>'('<nu
mber>'): The
selected target
does not sup-
port the output
of passwords"

"Invalid type for
conversion"

"Internal error:
Overflow in
array access!"

"<Name>
(<Number>):
Expression too
complex. No
more registers
available"

Elements of the
Standard.lib

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US532

in ST in AWL Description
RIGHT(str,size) RIGHT Right initial string of given size

of string str

MID(str,size,pos) MID Partial string of str of given
size at position pos

CONCAT('str1','str2') CONCAT 'str2' Concatenation of two subse-
quent strings

INSERT('str1','str2',pos) INSERT 'str2',p Insert string str1 in String str2
at position pos

DELETE('str1',len,pos) DELETE len,pos Delete partial string (length
len), start at position pos of
str1

REPLACE('str1','str2',len,pos) REPLACE 'str2',len,pos Replace partial string of lenght
len by str2, start at position
pos of str1

FIND('str1','str2') FIND 'str2' Search for partial string str2 in
str1

SR SR Bistable FB is set dominant

RS RS Bistable FB is set back

SEMA SEMA FB: Software Semaphor
(interruptable)

R_TRIG R_TRIG FB: rising edge is detected

F_TRIG F_TRIG FB: falling edge is detected

CTU CTU FB: Counts upv

CTD CTD FB: Counts down

CTUD CTUD FB: Counts up and down

TP TP FB: trigger

TON TON FB: Timer On-Delay

TOF TOF FB: Timer Off-Delay

RTC RTC FB: Real-time clock

1.4.2.1.1 String functions
LEN

Provided by standard.lib.
Returns the length of a string. Input STR is of type STRING, the return value of the function is
type INT.

LD 'SUSI'
LEN
ST VarINT1 (* Result is 4 *)

Example in IL

Example in FBD

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 533

VarSTRING1 := LEN ('SUSI');

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

LEFT
Provided by standard.lib.
Left returns the left, initial string for a given string. Input STR is type STRING, SIZE is of type
INT, the return value of the function is type STRING.
LEFT (STR, SIZE) means: Take the first SIZE character from the left in the string STR.

LD 'SUSI'
LEFT 3
ST VarSTRING1 (* Result is 'SUS' *)

VarSTRING1 := LEFT ('SUSI',3);

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

RIGHT
Provided by standard.lib.
Right returns the right, initial string for a given string.
RIGHT (STR, SIZE) means: Take the first SIZE character from the right in the string STR.
Input STR is of type STRING, SIZE is of type INT, the return value of the function is of type
STRING.

LD 'SUSI'
RIGHT 3
ST VarSTRING1 (* Result is 'USI' *)

Example in ST

Example in IL

Example in FBD

Example in ST

Example in IL

Example in FBD

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US534

VarSTRING1 := RIGHT ('SUSI',3);

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

MID
Provided by standard.lib.
Mid returns a partial string from within a string.
Input STR is type STRING, LEN and POS are type INT, the return value of the function is type
STRING.
MID (STR, LEN, POS) means: Retrieve LEN characters from the STR string beginning with the
character at position POS.

LD 'SUSI'
MID 2,2
ST VarSTRING1 (* Result is 'US' *)

VarSTRING1 := MID ('SUSI',2,2);

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

CONCAT
Provided by standard.lib.
Concatenation (combination) of two strings.
The input variables STR1 and STR2 as well as the return value of the function are type
STRING.

LD 'SUSI'
CONCAT 'WILLI'
ST VarSTRING1 (* Result is 'SUSIWILLI' *)

Example in ST

Example in IL

Example in FBD

Example in ST

Example in IL

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 535

VarSTRING1 := CONCAT ('SUSI','WILLI');

The CONCAT function does not work, if nested over more than five levels.

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

INSERT
Provided by standard.lib.
INSERT inserts a string into another string at a defined point.
The input variables STR1 and STR2 are type STRING, POS is type INT and the return value of
the function is type STRING.
INSERT(STR1, STR2, POS) means: insert STR2 into STR1 after position POS.

LD 'SUSI'
INSERT 'XY',2
ST VarSTRING1 (* Result is 'SUXYSI' *)

VarSTRING1 := INSERT ('SUSI','XY',2);

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

DELETE
Provided by standard.lib.
DELETE removes a partial string from a larger string at a defined position.
The input variable STR is type STRING, LEN and POS are type INT, the return value of the
function is type STRING.

Example in FBD

Example in ST

Example in IL

Example in FBD

Example in ST

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US536

DELETE(STR, L, P) means: Delete L characters from STR beginning with the character in the P
position.

LD 'SUXYSI'
DELETE 2,3
ST Var1 (* Result is 'SUSI' *)

Var1 := DELETE ('SUXYSI',2,3);

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

REPLACE
Provided by standard.lib.
REPLACE replaces a partial string from a larger string with a third string.
The input variable STR1 and STR2 are type STRING, LEN and POS are type INT, the return
value of the function is type STRING.
REPLACE(STR1, STR2, L, P) means: Replace L characters from STR1 with STR2 beginning
with the character in the P position.

LD 'SUXYSI'
REPLACE 'K',2,2
ST VarSTRING1 (* Result is 'SKYSI' *)

VarSTRING1 := REPLACE ('SUXYSI','K',2,2);

String functions are not "thread safe": When using tasks, string functions may
only be used in a single task. If the same function is used in different tasks,
there is a danger of overwriting.

Example in IL

Example in FBD

Example in ST

Example in IL

Example in FBD

Example in ST

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 537

FIND
Provided by standard.lib.
FIND searches for a partial string within a string.
The input variable STR1 and STR2 are type STRING, the return value of the function is type
STRING.
FIND(STR1, STR2) means: Find the position of the first character where STR2 appears in
STR1 for the first time. If STR2 is not found in STR1, then OUT:=0.

LD 'abcdef'
FIND 'de'
ST VarINT1 (* Result is '4' *)

arINT1 := FIND ('abcdef','de');
Please note: String functions are not "thread safe": When using tasks, string functions may only
be used in a single task. If the same function is used in different tasks, there is a danger of
overwriting.

1.4.2.1.2 Bistable function blocks
SR

Provided by standard.lib.
Making bistable function blocks dominant:
Q1 = SR (SET1, RESET) means:
Q1 = (NOT RESET AND Q1) OR SET1
The input variables SET1 and RESET as well as the output variable Q1 are type BOOL.

SRInst : SR ;Declaration
example

CAL SRInst(SET1 := VarBOOL1, RESET := VarBOOL2)
LD SRInst.Q1 ST VarBOOL3

SRInst(SET1:= VarBOOL1 , RESET:=VarBOOL2);
VarBOOL3 := SRInst.Q1 ;

Example in IL

Example in FBD

Example in ST

Example in IL

Example in FBD

Example in ST

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US538

RS
Provided by standard.lib.
Resetting bistable function blocks
Q1 = RS (SET, RESET1) means:
Q1 = NOT RESET1 AND (Q1 OR SET)
The input variables SET and RESET1 as well as the output variable Q1 are type BOOL.

RSInst : RS ;Declaration
example

CAL RSInst(SET:= VarBOOL1,RESET1:=VarBOOL2)
LD RSInst.Q1
ST VarBOOL3

RSInst(SET:= VarBOOL1 , RESET1:=VarBOOL2);
VarBOOL3 := RSInst.Q1 ;

SEMA
Provided by standard.lib.
A Software Semaphore (Interruptible)
BUSY = SEMA(CLAIM, RELEASE) means:
BUSY := X;
IF CLAIM THEN X:=TRUE;
ELSE IF RELEASE THEN BUSY := FALSE; X:= FALSE;
END_IF
X is an internal BOOL variable that is FALSE when it is initialized.
The input variables CLAIM and RELEASE as well as the output variable BUSY are type BOOL.
If BUSY is TRUE when SEMA is called up, this means that a value has already been assigned
to SEMA (SEMA was called up with CLAIM = TRUE). If BUSY is FALSE, SEMA has not yet
been called up or it has been released (called up with RELEASE = TRUE).

SEMAInst : SEMA ;Declaration
example

CAL SEMAInst(CLAIM:=VarBOOL1,RELEASE:=VarBOOL2)
LD SEMAInst.BUSY
ST VarBOOL3

Example in IL

Example in FBD

Example in ST

Example in IL

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 539

SEMAInst(CLAIM:= VarBOOL1 , RELEASE:=VarBOOL2);
VarBOOL3 := SEMAInst.BUSY;

1.4.2.1.3 Trigger
R_TRIG

Provided by standard.lib.
The function block R_TRIG detects a rising edge.
FUNCTION_BLOCK R_TRIG
VAR_INPUT
 CLK : BOOL;
END_VAR
VAR_OUTPUT
 Q : BOOL;
END_VAR
VAR
 M : BOOL := FALSE;
END_VAR
 Q := CLK AND NOT M;
 M := CLK;

The output Q and the help variable M will remain FALSE as long as the input variable CLK is
FALSE. As soon as CLK returns TRUE, Q will first return TRUE, then M will be set to TRUE.
This means each time the function is called up, Q will return FALSE until CLK has falling edge
followed by an rising edge.

RTRIGInst : R_TRIG ;Declaration
example

CAL RTRIGInst(CLK := VarBOOL1)
LD RTRIGInst.Q
ST VarBOOL2

RTRIGInst(CLK:= VarBOOL1);

Example in FBD

Example in ST

Example in IL

Example in FBD

Example in ST

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US540

VarBOOL2 := RTRIGInst.Q;

F_TRIG
Provided by standard.lib.
The function block F_TRIG a falling edge.
FUNCTION_BLOCK F_TRIG
VAR_INPUT
CLK: BOOL;
END_VAR
VAR_OUTPUT
Q: BOOL;
END_VAR
VAR
M: BOOL := FALSE;
END_VAR
Q := NOT CLK AND NOT M;
M := NOT CLK;
The output Q and the help variable M will remain FALSE as long as the input variable CLK
returns TRUE. As soon as CLK returns FALSE, Q will first return TRUE, then M will be set to
TRUE. This means each time the function is called up, Q will return FALSE until CLK has a
rising followed by a falling edge.

FTRIGInst : F_TRIG ;Declaration
example

CAL FTRIGInst(CLK := VarBOOL1)
LD FTRIGInst.Q
ST VarBOOL2

FTRIGInst(CLK:= VarBOOL1);
VarBOOL2 := FTRIGInst.Q;

1.4.2.1.4 Counter
CTU

Provided by standard.lib.
Function block Incrementer:
The input variables CU and RESET as well as the output variable Q are type BOOL, the input
variable PV and the output variable CV are type WORD.

Example in IL

Example in FBD

Example in ST

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 541

The counter variable CV will be initialized with 0 if RESET is TRUE. If CU has a rising edge from
FALSE to TRUE, CV will be raised by 1.Q will return TRUE when CV is greater than or equal to
the upper limit PV.

CTUInst : CTU ;Declaration
example

CAL CTUInst(CU := VarBOOL1, RESET := VarBOOL2, PV := VarINT1)
LD CTUInst.Q
ST VarBOOL3
LD CTUInst.CV
ST VarINT2

CTUInst(CU:= VarBOOL1, RESET:=VarBOOL2 , PV:= VarINT1);
VarBOOL3 := CTUInst.Q ;
VarINT2 := CTUInst.CV;

CTD
Provided by standard.lib.
Function block Decrementer:
The input variables CD and LOAD as well as the output variable Q are type BOOL, the input
variable PV and the output variable CV are type WORD.
When LOAD_ is TRUE, the counter variable CV will be initialized with the upper limit PV. If CD
has a rising edge from FALSE to TRUE, CV will be lowered by 1 provided CV is greater than 0
(i.e., it doesn't cause the value to fall below 0).
Q returns TRUE when CVis equal 0.

CTDInst : CTD ;Declaration
example

CAL CTDInst(CD := VarBOOL1, LOAD := VarBOOL2, PV := VarINT1)
LD CTDInst.Q
ST VarBOOL3
LD CTDInst.CV
ST VarINT2

Example in IL

Example in FBD

Example in ST

Example in IL

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US542

CTDInst(CD:= VarBOOL1, LOAD:=VarBOOL2 , PV:= VarINT1);
VarBOOL3 := CTDInst.Q ;
VarINT2 := CTDInst.CV;

CTUD
Provided by standard.lib.
Function block Incrementer/Decrementer
The input variables CU, CD, RESET, LOAD as well as the output variables QU and QD are type
BOOL, PV and CV are type WORD.
If RESET is valid, the counter variable CV will be initialized with 0. If LOAD is valid, CV will be
initialized with PV.
If CU has a rising edge from FALSE to TRUE, CV will be raised by 1. If CD has a rising edge
from FALSE to TRUE, CV will be lowered by 1 provided this does not cause the value to fall
below 0.
QU returns TRUE when CV has become greater than or equal to PV.
QD returns TRUE when CV has become equal to 0.

CTUDInst : CUTD ;Declaration
example:

CAL CTUDInst(CU:=VarBOOL1, RESET:=VarBOOL3, LOAD:=VarBOOL4, PV:=VarINT1)
LD CTUDInst.Q
ST VarBOOL5
LD CTUDInst.QD
ST VarBOOL5
LD CTUInst.CV
ST VarINT2

Example in FBD

Example in ST

Example in IL

Example in FBD

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 543

CTUDInst(CU := VarBOOL1, RESET := VarBOOL3, LOAD:=VarBOOL4 , PV:= VarINT1);
VarBOOL5 := CTUDInst.QU ;
VarBOOL6 := CTUDInst.QD ;
VarINT2 := CTUDInst.CV;

1.4.2.1.5 Timer
TP

Provided by standard.lib.
The function block Timer is a trigger. TP(IN, PT, Q, ET) means:
IN and PT are input variables of the BOOL and TIME types respectively. Q and ET are output
variables of the BOOL and TIME types respectively. If IN is FALSE, Q is FALSE and ET is 0.
As soon as IN becomes TRUE, the time will begin to be counted in milliseconds in ET until its
value is equal to PT. It will then remain constant.
Q is TRUE as from IN has got TRUE and ET is less than or equal to PT. Otherwise it is FALSE.
Q returns a signal for the time period given in PT.
Graphic Display of the TP Time Sequence

TPInst : TP ;Declaration
example:

CAL TPInst(IN := VarBOOL1, PT := T#5s)
LD TPInst.Q
ST VarBOOL2

TPInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 :=TPInst.Q;

Example in ST

Example in IL

Example in FBD

Example in ST

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US544

TON
Provided by standard.lib.
The function block Timer On Delay implements a turn-on delay.
TON(IN, PT, Q, ET) means:
IN and PT are input variables of the BOOL and TIME types respectively. Q and ET are output
variables of the BOOL and TIME types respectively. If IN is FALSE, Q is FALSE and ET is 0.
As soon as IN becomes TRUE, the time will begin to be counted in milliseconds in ET until its
value is equal to PT. It will then remain constant.
Q is TRUE when IN is TRUE and ET is equal to PT. Otherwise it is FALSE.
Thus, Q has a rising edge when the time indicated in PT in milliseconds has run out.
Graphic display of TON behavior over time:

TONInst : TON ;Declaration
example:

CAL TONInst(IN := VarBOOL1, PT := T#5s)
LD TONInst.Q
ST VarBOOL2

TONInst(IN := VarBOOL1, PT:= T#5s);

TOF
Provided by standard.lib.
The function block TOF implements a turn-off delay..
TOF(IN, PT, Q, ET) means:
IN and PT are input variables type BOOL respectively TIME. Q and E are output variabls type
BOOL respectively TIME. If IN is TRUE, the outputs are TRU respectively 0.
As soon as IN becomes FALSE, in ET the time will begin to be counted in milliseconds in ET
until its value is equal to PT. It will then remain constant.

Example in IL

Example in FBD

Example in ST

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 545

Q is FALSE when IN is FALSE und ET equal PT. Otherwise it is TRUE.
Thus, Q has a falling edge when the time indicated in PT in milliseconds has run out.
Graphic display of TOF behavior over time:

TOFInst : TOF ;Declaration
example

CAL TOFInst(IN := VarBOOL1, PT := T#5s)
LD TOFInst.Q
ST VarBOOL2

TOFInst(IN := VarBOOL1, PT:= T#5s);
VarBOOL2 :=TOFInst.Q;

RTC
Provided by standard.lib.
The function block run-time clock returns, starting at a given time, the current date and time.

RTC(EN, PDT, Q, CDT) means:
EN and PDT are input variables type TIME. Q and CDT are output variables type BOOL respec-
tively DATE_AND_TIME. When EN is FALSE, the output variables Q und CDT are FALSE
respectively DT#1970-01-01-00:00:00.
As soon as EN becomes TRUE, the time of PDT is set, is counted up in seconds and returned
in CDT as long as EN is TRUE (see example in the picture above). As soon as EN is reset to
FALSE, CDT is reset to the initial value DT#1970-01-01-00:00:00. Please note that the time in
PDT is only set by a rising edge.

Example in IL

Example in FBD

Example in ST

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US546

1.4.2.2 UTIL.library

Element Description
BCD_TO_INT Conversion of a Byte: BCD to INT format

INT_TO_BCD Converstion of a Byte: INT to BCD format

EXTRACT(in,n) The n-th bit of DWORD in is returned in BOOL

PACK Up to 8 bits are packed into a byte

PUTBIT A bit of a DWORD is set to a certain value

UNPACK A byte is returned as single bits

DERIVATIVE Local derivation

INTEGRAL Integral

LIN_TRAFO Transformation of REAL values

STATISTICS_INT Min., Max., average values in INT format

STATISTICS_REAL Min., Max., average in REAL format

VARIANCE Variance

PD PD controller

PID PID controller

BLINK Pulsating signal

FREQ_MEASURE Measuring frequency of boolean input signal

GEN Periodic functions

CHARCURVE Linear functions

RAMP_INT Limiting ascendance of descendance of the
function beeing fed (INT)

RAMP_REAL Limiting ascendance of descendance of the
function beeing fed (REAL)

HYSTERESIS Hysteresis

LIMITALARM Watches whether input value exceeds limits of
a defined range

1.4.2.2.1 Overview
This library contains an additional collection of various blocks which can be used for BCD
conversion, bit/byte functions, mathematical auxiliary functions, as controller, signal generators,
function manipulators and for analog value processing.
As some of the functions and function blocks contain REAL variables, an accessory library
named UTIL_NO_REAL exists in which these POUs are excluded.

1.4.2.2.2 BCD conversion
BCD conversion

Provided by util.lib.
A byte in the BCD format contains integers between 0 and 99. Four bits are used for each
decimal place. The ten decimal place is stored in the bits 4-7. Thus the BCD format is similar to
the hexadecimal presentation, with the simple difference that only values between 0 and 99 can
be stored in a BCD byte, whereas a hexadecimal byte reaches from 0 to FF.

Elements of the
Util.lib

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 547

The integer 51 should be converted to BCD format. 5 in binary is 0101, 1 in binary is 0001,
which makes the BCD byte 01010001, which corresponds to the value $51=81.

Example

BCD_TO_INT
Provided by util.lib.
This function converts a byte in BCD format into an INT value:
The input value of the function is type BYTE and the output is type INT.
Where a byte should be converted which is not in the BCD format the output is -1.

i:=BCD_TO_INT(73); (* Result is 49 *)
k:=BCD_TO_INT(151); (* Result is 97 *)
l:=BCD_TO_INT(15); (* Output -1, because it is not in BCD format *)

INT_TO_BCD_
Provided by util.lib.
This function converts an INTEGER value into a byte in BCD format:
The input value of the function is type INT, the output is type BYTE.
The number 255 will be outputted where an INTEGER value should be converted which cannot
be converted into a BCD byte.

i:=INT_TO_BCD(49); (* Result is 73 *)
k:=BCD_TO_INT(97); (* Result is 151 *)
l:=BCD_TO_INT(100); (* Error! Output: 255 *)

1.4.2.2.3 Bit-/Byte functions
EXTRACT

Provided by util.lib.
Inputs to this function are a DWORD X, as well as a BYTE N. The output is a BOOL value,
which contains the content of the Nth bit of the input X, whereby the function begins to count
from the zero bit.

FLAG:=EXTRACT(X:=81, N:=4); (* Result : TRUE, because 81 is binary 1010001, so the 4th bit
is 1 *)
FLAG:=EXTRACT(X:=33, N:=0); (* Result : TRUE, because 33 is binary 100001, so the bit '0' is
1 *)

PACK
Provided by util.lib.
This function is capable of delivering back eight input bits B0, B1, ..., B7 from type BOOL as a
BYTE.
The function block UNPACK is closely related to this function.

Examples in ST

Examples in ST

Examples in ST

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US548

PUTBIT
Provided by util.lib.
The input to this function consists of a DWORD X, a BYTE N and a BOOLean value B.

PUTBIT sets the Nth bit from X on the value B, whereby it starts counting from the zero bit.

A:=38; (* binary 100110 *)
B:=PUTBIT(A,4,TRUE); (* Result : 54 = 2#110110 *)
C:=PUTBIT(A,1,FALSE); (* Result : 36 = 2#100100 *)

UNPACK
Provided by util.lib.
UNPACK converts the input B from type BYTE into 8 output variables B0,...,B7 of the type
BOOL, and this is the opposite to PACK.

1.4.2.2.4 Mathematic auxiliary functions
DERIVATIVE

Provided by util.lib.
This function block approximately determines the local derivation.
The function value is delivered as a REAL variable by using IN. TM contains the time which has
passed in ms in a DWORD and the input of RESET of the type BOOL allows the function block
to start anew through the delivery of the value TRUE.
The output OUT is of the type REAL.
In order to obtain the best possible result, DERIVATIVE approximates using the last four values,
in order to hold errors which are produced by inaccuracies in the input parameters as low as
possible.

Example in ST

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 549

INTEGRAL
Provided by util.lib.
This function block approximately determines the integral of the function.
In an analog fashion to DERIVATIVE, the function value is delivered as a REAL variable by
using IN. TM contains the time which has passed in ms in a DWORD and the input of RESET of
the type BOOL allows the function block to start anew with the value TRUE.
The output OUT is of the type REAL. The integral is approximated by two step functions. The
average of these is delivered as the approximated integral.
Example: Integration of a linear function:

LIN_TRAFO
This function block (util.lib. transforms a REAL-value, which lies in a range of values defined by
a lower and upper limit value, to a REAL-value which lies correspondingly in another range also
defined by a lower and upper limit. The following equation is basis of the conversion:
(IN - IN_MIN) : (IN_MAX - IN) = (OUT - OUT_MIN) : (OUT_MAX - OUT)

Table 37: Input variables
Variable Data type Description
IN REAL Input value

IN_MIN REAL Lower limit of input range of
values

IN_MAX REAL Upper limit of input range of
values

OUT_MIN REAL Lower limit of output value
range

OUT_MAX REAL Upper limit of output value
range

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US550

Table 38: Output variables
Variable Data type Description
OUT REAL Output value

ERROR BOOL Error occurred: TRUE, if
IN_MIN = IN_MAX, or if IN is
outside of the specified input
range of values

Application example:
A temperature sensor provides Volt-values (input IN). These are to be converted to temperature
values in degree celsius (output OUT). The input(Volt) range of values is defined by the limits
IN_MIN=0 and IN_MAX=10. The output(degree celsius) range of values is defined by the limits
OUT_MIN=-20 and OUT_MAX=40.
Thus for an input of 5 Volt a temperature of 10 degree celsius will result.

STATISTICS_INT
Provided by util.lib.
This function block calculates some standard statistical values:
The input IN is of the type INT. All values are initialised anew when the BOOLean input RESET
is TRUE. The output MN contains the minimum, MX of the maximum value from IN. AVG
describes the average, that is the expected value of IN. All three outputs are of the type INT.

STATISTICS_REAL
Provided by util.lib.
This function block corresponds to STATISTICS_INT, except that the input IN is of the type
REAL like the outputs MN, MX, AVG.

VARIANCE
Provided by util.lib.
VARIANCE calculates the variance of the entered values.
The input IN is of the type REAL, RESET is of the type BOOL and the output OUT is again of
the type REAL.
This block calculates the variance of the inputted values. VARIANCE can be reset with
RESET=TRUE.
The standard deviation can easily be calculated as the square root of the VARIANCE.

1.4.2.2.5 Controllers
PD

The library util.lib provides the following PD controller function block:

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 551

Table 39: Inputs of the function block
Variable Data type Description
ACTUAL REAL Current value of the controlled

variable

SET_POINT REAL Desired value, command vari-
able

KP REAL Coefficient of proportionality,
unity gain of the P-part

TV REAL Derivative action time, unity
gain of the D-part in seconds,
e.g. "0.5" for 500 ms

Y_MANUAL REAL Defines output value Y in case
of MANUAL = TRUE

Y_OFFSET REAL Offset for the manipulated var-
iable Y

Y_MIN, Y_MAX REAL Lower resp. upper limit for the
manipulated variable Y. If Y
exceeds these limits, output
LIMITS_ACTIVE will be set
to TRUE and Y will be kept
within the prescribed range.
This control will only work if
Y_MIN<Y_MAX.

MANUAL BOOL If TRUE, manual operation
will be active, i.e. the manipu-
lated value will be defined by
Y_MANUAL.

RESET BOOL TRUE resets the controller;
during reinitialization Y =
Y_OFFSET.

Table 40: Outputs of the function block
Variable Data type Description
Y REAL Manipulated value, calculated

by the function block (see
below)

LIMITS_ACTIVE BOOL TRUE indicates that Y has
exceeded the given limits
(Y_MIN, Y_MAX).

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US552

Y_OFFSET, Y_MIN und Y_MAX are used for the transformation of the manipulated variable
within a prescribed range.
MANUAL can be used to switch on and off manual operation. RESET serves to reset the
controller.
In normal operation (MANUAL = RESET = LIMITS_ACTIVE = FALSE) the controller calculates
the controller error e as difference SET_POINT - ACTUAL, generates the derivation with
respect to time de/ dt and stores these values internally.

The output, i.e. the manipulated variable Y is calculated as follows:
Y = KP (D + TV dD/dt) + Y_OFFSET whereby D = SET_POINT-ACTUAL

So besides the P-part also the current change of the controller error (D-part) influences the
manipulated variable.
Additionally Y is limited on a range prescribed by Y_MIN and Y_MAX. If Y exceeds these limits,
LIMITS_ACTIVE will get TRUE. If no limitation of the manipulated variable is desired, Y_MIN
and Y_MAX have to be set to 0.
As long as MANUAL=TRUE, Y_MANUAL will be written to Y.
A P-controller can be easily created by setting TV=0.

PID
The library util.lib provides the following PID controller function block:

Unlike the PD controller, this function block contains a further REAL input TN for the readjusting
time in sec (e.g. "0.5" for 500 ms).

Table 41: Inputs of the function block
Variable Data type Description
ACTUAL REAL Current value of the controlled

variable

SET_POINT REAL Desired value, command vari-
able

KP REAL Coefficient of proportionality,
unity gain of the P-part

TN REAL Reset time, reciprocal unity
gain of the I-part; given in sec-
onds, e.g. "0.5" for 500 ms

TV REAL Derivative action time, unity
gain of the D-part in seconds,
e.g. "0.5" for 500 ms

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 553

Variable Data type Description
Y_MANUAL REAL Defines output value Y in case

of MANUAL = TRUE

Y_OFFSET REAL Offset for the manipulated var-
iable Y

Y_MIN, Y_MAX REAL Lower resp. upper limit for the
manipulated variable Y. If Y
exceeds these limits, output
LIMITS_ACTIVE will be set
to TRUE and Y will be kept
within the prescribed range.
This control will only work if
Y_MIN<Y_MAX.

MANUAL BOOL If TRUE, manual operation
will be active, i.e. the manipu-
lated value will be defined by
Y_MANUAL.

RESET BOOL TRUE resets the controller;
during reinitialization Y =
Y_OFFSET.

Table 42: Outputs of the function block
Variable Data type Description
Y REAL Manipulated value, calculated

by the function block (see
below)

LIMITS_ACTIVE BOOL TRUE indicates that Y has
exceeded the given limits
(Y_MIN, Y_MAX).

OVERFLOW BOOL TRUE indicates an overflow
(see below)

Y_OFFSET, Y_MIN und Y_MAX serve for transformation of the manipulated variable within a
prescribed range.
MANUAL can be used to switch to manual operation; RESET can be used to re-initialize the
controller..
In normal operation (MANUAL = RESET = LIMITS_ACTIVE = FALSE) the controller calculates
the controller error e as difference from SET_POINT "“ ACTUAL, generates the derivation with
respect to time de/dt and stores these values internally.

The output, i.e. the manipulated variable Y unlike the PD controller contains an additional
integral part and is calculated as follows:
Y = KP (D + 1/TN òedt + TV dD /dt) + Y_OFFSET

So besides the P-part also the current change of the controller error (D-part) and the history of
the controller error (I-part) influence the manipulated variable.
The PID controller can be easily converted to a PI-controller by setting TV=0.
Because of the additional integral part, an overflow can come about by incorrect parameteriza-
tion of the controller, if the integral of the error D becomes to great. Therefore for the sake of
safety a BOOLean output called OVERFLOW is present, which in this case would have the
value TRUE. This only will happen if the control system is instable due to incorrect parameteri-
zation. At the same time, the controller will be suspended and will only be activated again by
re-initialization.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US554

PID_FIXCYCLE
Provided by util.lib.
The PID_FIXCYCLE controller function block:

This function block functionally corresponds to the PID controller with the exception that the
cycle time is not measured autmatically by an internal function but is set by input CYCLE (in
seconds).

1.4.2.2.6 Signal generators
BLINK

Provided by util.lib.
The function block BLINK generates a pulsating signal. The input consists of ENABLE of the
type BOOL, as well as TIMELOW and TIMEHIGH of the type TIME. The output OUT is of the
type BOOL.
If ENABLE is set to TRUE, BLINK begins to set the output for the time period TIMEHIGH to
TRUE and afterwards to set it for the time period TIMELOW to FALSE.
When ENABLE is reset to FALSE, output OUT will not be changed, i.e. no further pulse will be
generated. If you explicitly also want to get OUT FALSE when ENABLE is reset to FALSE, you
might use "OUT AND ENABLE" (i.e. adding an AND box with parameter ENABLE) at the output.
Example in CFC:

FREQ_MEASURE
Provided by util.lib.
This function block measures the (average) frequency (Hz) of a boolean input signal. You can
specify over how many periods it should be averaged. A period is the time between two rising
edges of the input signal.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 555

Table 43: Input variables
Variable Data Type Description
IN BOOL Input signal

PERIODS INT Number of periods, i.e. the
time intervals between the
rising edges, over which the
average frequency of the input
signal should be calculated.
Possible values: 1 to 10

RESET BOOL Reset of all parameters to 0

Table 44: Output variables
Variable Data Type Description
OUT REAL Resulting frequency in [Hz]

VALID BOOL FALSE until the first measure
has been finished, or if the
period > 3*OUT (indicating
something wrong with the
inputs)

GEN
Provided by util.lib.
The function generator generates typical periodic functions:
The inputs are a composition consisting of MODE from the pre-defined counting type
GEN_MODE, BASE of the type BOOL, PERIOD of the type TIME, of two INT values CYCLES
and AMPLITUDE and of the BOOLean RESET input.
The MODE describes the function which should be generated, whereby the enumeration
values TRIANGLE and TRIANGLE_POS deliver two triangular functions, SAWTOOTH_RISE
an ascending, SAWTOOTH_FALL a descending sawtooth, RECTANGLE a rectangular signal
and SINE and COSINE the sine and cosine:

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US556

BASE defines whether the cycle period is really related to a defined time (BASE=TRUE) or
whether it is related to a particular number of cycles, which means the number of calls of
function block (BASE=FALSE).
PERIOD or CYCLES defines the corresponding cycle period.
AMPLITUDE defines, in a trivial way, the amplitude of the function to be generated.
The function generator is again set to 0 as soon as RESET=TRUE.

1.4.2.2.7 Function manipulators
CHARCURVE

Provided by util.lib.
This function block serves to represent values, piece by piece, on a linear function:

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 557

IN of the type INT is fed with the value to be manipulated. The BYTE N designates the number
of points which defines the presentation function. This characteristic line is then generated in an
ARRAY P[0..10] with P of the type POINT which is a structure based on two INT values (X and
Y).
The output consists of OUT of the type INT, the manipulated value and BYTE ERR, which will
indicate an error if necessary.
The points P[0]..P[N-1] in the ARRAY must be sorted according to their X values, otherwise
ERR receives the value 1.
If the input IN is not between P[0].X and P[N-1].X, ERR=2 and OUT contains the corresponding
limiting value P[0]. Y or P[N-1].Y.
If N lies outside of the allowed values which are between 2 and 11, then ERR=4.

First of all ARRAY P must be defined in the header:
VAR
...
CHARACTERISTIC_LINE:CHARCURVE;
KL:ARRAY[0..10] OF POINT:=(X:=0,Y:=0),(X:=250,Y:=50),
(X:=500,Y:=150),(X:=750,Y:=400),7((X:=1000,Y:=1000));
COUNTER:INT;
...
END_VAR
Then we supply CHARCURVE with for example a constantly increasing value:
COUNTER:=COUNTER+10;
CHARACTERISTIC_LINE(IN:=COUNTER,N:=5,P:=KL);
The subsequent tracing illustrates the effect:

RAMP_INT
Provided by util.lib.
RAMP_INT serves to limit the ascendance or descendance of the function being fed:
The input consists on the one hand out of three INT values: IN, the function input, and ASCEND
and DESCEND, the maximum increase or decrease for a given time interval, which is defined
by TIMEBASE of the type TIME. Setting RESET to TRUE causes RAMP_INT to be initialised
anew.
The output OUT of the type INT contains the ascend and descend limited function value.

Example in ST

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US558

When TIMEBASE is set to t#0s, ASCEND and DESCEND are not related to the time interval,
but remain the same.

RAMP_REAL
Provided by util.lib.
RAMP_REAL functions in the same way as RAMP_INT, with the simple difference that the
inputs IN, ASCEND, DESCEND and the output OUT are of the type REAL.

1.4.2.2.8 Analog value processing
HYSTERESIS

Provided by util.lib.
The input to this function block consists of three INT values IN, HIGH and LOW. The output
OUT is of the type BOOL.

If IN goes below the limiting value LOW, OUT becomes TRUE. If IN goes over the upper limit
HIGH, FALSE is delivered.
An illustrative example:

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 559

LIMITALARM
Provided by util.lib.
This function block specifies, whether the input value is within a set range and which limits it has
violated if it has done so.
The input values IN, HIGH and LOW are each of the type INT, while the outputs O, U and IL are
of the type BOOL. If the upper limit HIGH is exceeded by IN, O becomes TRUE, and when IN is
below LOW, U becomes TRUE. IL is TRUE if IN lies between LOW and HIGH.
Result:

1.4.2.3 AnalyzationNew.library
1.4.2.3.1 Analysis of expression

This library provides modules for the analysis of expressions. If a composed expression is
FALSE, those of its components can be evaluated which are adding to this result. In the
SFC-Editor the flag uses this function implicitely for the analysis of expressions in transitions
Ä Chapter 1.4.1.3.11.9.1 “Overview” on page 330 Ä SFCErrorAnalyzationTable.
Example of an expression:
b OR NOT(y < x) OR NOT (NOT d AND e)

The following variables are used by all modules:
● InputExpr: BOOL, expression to be analysed
● DoAnalyze: BOOL, TRUE starts analysis
● ExpResult: BOOL, current value of the expression
Different is the output of the result of the analyzation:
'AnalyzeExpression' returns in a string the components of the expression, which are adding
to the total value FALSE. Function AppendErrorString is used for this purpose, separating the
particular components in the output string by "|" characters:
 OutString: STRING, Result of the analysis, Sequence of the concerned components of the
expression (e.g. y < x | d)

The functions:

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US560

'AnalyseExpressionTable' writes the components of the expression, which are adding to the total
value FALSE, to an array. For each component the following information is provided by structure
ExpressionResult: name, address, comment, (current)value:
 OutTable: ARRAY [0..15] OF ExpressionResult; e.g..

'AnalyseExpressionCombined' combines the functionalities of AnalyzeExpression plus Analy-
seExpressionTable

1.4.2.4 Protocol- and system libraries
1.4.2.4.1 The library SysLibCallback.lib

This library provides the functions SysCallbackRegister and SysCallbackUnregister, which serve
to activate defined callback functions for runtime events.
Both functions are of type BOOL and return TRUE as soon as the required callback function
successfully has been registered resp. de-registered.
The execution is synchronous.

The prototype of the callback function must look as follows:
FUNCTION Callback : DWORD
VAR_INPUT
 dwEvent:DWORD; // Event
 dwFilter:DWORD; // Filter
 dwOwner:DWORD; // Source
END_VAR

Attention for RISC and Motorola 68K target systems: The name of the callback
function must start with "callback"!

The library functions SysCallbackRegister and SysCallbackUnregister each use the following
parameters when calling the callback function which should be registered or de-registered:

Prototype of the
callback func-
tion

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 561

Input-Variable Data Type Description
iPOUIndex INT POU Index of the callback

function which should be
(de)registered. The index
must be accquired before
with the aid of the operator
INDEXOF(<function name>).

Event RTS_EVENT The runtime event, for which
the callback function is called,
is defined by a value of the
enumeration RTS_EVENT,
which also is contained in the
library (see below).

The enumeration RTS_EVENT is defined as follows:
TYPE RTS_EVENT :
(
EVENT_ALL,
(* General events *)
EVENT_START,
EVENT_STOP,
EVENT_BEFORE_RESET,
EVENT_AFTER_RESET,
EVENT_SHUTDOWN,

(* Exceptions generated by run time *)
EVENT_EXCPT_CYCLETIME_OVERFLOW, (* Cycle time overflow *)
EVENT_EXCPT_WATCHDOG, (* Software watchdog OF IEC-task expired *)
EVENT_EXCPT_HARDWARE_WATCHDOG, (* Hardware watchdog expired. Global software
error *)
EVENT_EXCPT_FIELDBUS, (* Fieldbus error occurred *)
EVENT_EXCPT_IOUPDATE, (* IO-update error *)

(* Exceptions generated BY system *)
EVENT_EXCPT_ILLEGAL_INSTRUCTION, (* Illegal instruction *)
EVENT_EXCPT_ACCESS_VIOLATION, (* Access violation *)
EVENT_EXCPT_PRIV_INSTRUCTION, (* Privileged instruction *)
EVENT_EXCPT_IN_PAGE_ERROR, (* Page error *)
EVENT_EXCPT_STACK_OVERFLOW, (* Stack overflow *)
EVENT_EXCPT_MISALIGNMENT, (* Datatype misalignment *)
EVENT_EXCPT_ARRAYBOUNDS, (* ARRAY bounds exceeded *)
EVENT_EXCPT_DIVIDEBYZERO, (* Division BY zero *)
EVENT_EXCPT_OVERFLOW, (* Overflow *)
EVENT_EXCPT_NONCONTINUABLE, (* Non continuable *)
EVENT_EXCPT_NO_FPU_AVAILABLE, (* FPU: No FPU available *)

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US562

EVENT_EXCPT_FPU_ERROR, (* FPU: Unspecified error *)
EVENT_EXCPT_FPU_DENORMAL_OPERAND, (* FPU: Denormal operand *)
EVENT_EXCPT_FPU_DIVIDEBYZERO, (* FPU: Division BY zero *)
EVENT_EXCPT_FPU_INVALID_OPERATION, (* FPU: Invalid operation *)
EVENT_EXCPT_FPU_OVERFLOW, (* FPU: Overflow *)
EVENT_EXCPT_FPU_STACK_CHECK, (* FPU: Stack check *)

(* IO events *)
EVENT_AFTER_READING_INPUTS,
EVENT_BEFORE_WRITING_OUTPUTS,

(* Miscellaneous events *)
EVENT_TIMER, (* Schedule tick (timer interrupt) *)
EVENT_DEBUG_LOOP, (* Debug loop at breakpoint *)

(* Online services *)
EVENT_ONLINE_SERVICES_BEGIN := 500,
EVENT_LOGIN,
EVENT_CUSTOM_SERVICES,

(* Interrupts *)
EVENT_INT_0:=1000,
EVENT_INT_1,
EVENT_INT_2,
EVENT_INT_3,
EVENT_INT_4,
EVENT_INT_5,
EVENT_INT_6,
EVENT_INT_7,
EVENT_INT_8,
EVENT_INT_9,
EVENT_INT_10,
EVENT_INT_11,
EVENT_INT_12,
EVENT_INT_13,
EVENT_INT_14,
EVENT_INT_15,
EVENT_INT_255:=1255,
EVENT_MAX
);
END_TYPE

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 563

1.4.2.4.2 The library SysLibCom.lib
Overview

This library supports the serial communication with a target system. If the target system pro-
vides the functionality, then the following library functions can be used to open or close a serial
port and to read or write data via this port (The execution is synchronous.)

SysComOpen
This function serves to open a serial port.
The function returns a handle for the port, which can be passed on when calling other functions
of the library. If the port cannot be opened, 0xFFFFFFFF will be returned as handle.

Input Variable Data Type Description
Port PORTS specifies the port which

should be opened (COM1,..);
Port number see below: Enu-
meration PORTS

Enumeration PORTS:
TYPE PORTS : (COM1:=1, COM2, COM3, COM4, COM5, COM6, COM7, COM8);
END_TYPE

SysComSetSettings
This function serves to set values like tranmission rate, stopbits, parity, function-timout, buffer-
size and scan-time for a serial port. The parameter value is of type POINTER TO COMSET-
TINGS; the structure COMSETTINGS is used.
As soon as the parameters could be set successfully, TRUE will be returned, otherwise FALSE.

Input Variable Data Type Description
ComSettings POINTER TO COMSET-

TINGS;
Pointer to the structure COM-
SETTINGS;
you can make use of the
operator ADR (see below,
example)

dwHandle DWORD Port handle, acquired by
Ä Chapter 1.4.2.4.2.2
“SysComOpen” on page 564

The structure COMSETTINGS, which is also part of the library, is defined as follows:
TYPE COMSETTINGS :
STRUCT

Port:PORTS; Port number, see below: Enumeration PORTS

dwBaudRate:DWORD; 4800, 9600, 19200, 38400, 57600, 115200

byStopBits:BYTE; 0 = ONESTOPBIT, 1=ONE5STOPBITS,
2=TWOSTOPBITS

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US564

byParity:BYTE; 0 = NOPARITY, 1 = ODDPARITY, 2 = EVEN-
PARITY

dwTimeout:DWORD; Timeout of the interface in ms, Default = 0

dwBufferSize:DWORD; Buffer size of the internal device buffer,
Default = 0

dwScan:DWORD; Polling time of the serial interface; should be
set to 0

END_STRUCT
END_TYPE

Enumeration PORTS:
TYPE PORTS : (COM1:=1, COM2, COM3, COM4, COM5, COM6, COM7, COM8);
END_TYPE

SysComSetSettingsEx
This function of type BOOL with the parameters of type POINTER TO COMSETTINGSEX is
used to set all relevant parameters of a serial communication port. Not only the parameters of
the above function are set, but also the parameters for flowcontrol and character size can be set
with this function. This is performed by filling them into the structure COMSETTINGSEX.
The return value of the function is true if the parameters were successfully set and false if the
parameters could not be applied to the communication port. It is hardware-dependent whether
the settings can be changed more often than one time after opening a port. It may be necessary
to close and reopen the port before setting the parameters new.

Input Variable Data Type Description
ComSettingsEx POINTER TO COMSET-

TINGSEX;
Pointer to the structure COM-
SETTINGSEX; Use the ADR
operator to determine an
address.

 dwHandle DWORD Port handle, acquired by
SysComOpen Ä Chapter
1.4.2.4.2.2 “SysComOpen”
on page 564

TYPE COMSETTINGSEX :
STRUCT

Size:INT; (*The size in bytes of the structure. Use the
sizeof() operator to fill in. Used for backward
compatibility.*)

Port:PORTS; (*Port number, see below: Enumeration
PORTS *)

dwBaudRate:DWORD; (* 4800, 9600, 19200, 38400, 57600, 115200
*)

byStopBits:BYTE; (* 0 = ONESTOPBIT, 1=ONE5STOPBITS,
2=TWOSTOPBITS *)

Structure COM-
SETTINGSEX:

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 565

byParity:BYTE; (* 0 = NOPARITY, 1 = ODDPARITY, 2 =
EVENPARITY *)

dwTimeout:DWORD; (* Timeout of the port in ms, Default = 0 *)

dwBufferSize:DWORD; (* Buffersize used by the driver, Default = 0 *)

dwScan:DWORD; (* Poll-time of the serial driver. Should be set
to 0. Only change if the documentation of the
hardware-vendor tells so. *)

cByteSize : BYTE; (*4...8: Character size in bits.*)

fOutxCtsFlow : BOOL; (*Specifies whether the CTS (clear-to-send)
signal is monitored for output flow control. If
this member is TRUE and CTS is turned off,
output is suspended until CTS is sent again. *)

fDtrControl : BYTE;

(*0:Disables the DTR line when the device is
opened and leaves it disabled.
1:Enables the DTR line when the device is
opened and leaves it on.
2:Enables DTR handshaking. *)

fDsrSensitivity : BOOL; (*Specifies whether the communications driver
is sensitive to the state of the DSR signal. If
this member is TRUE, the driver ignores any
bytes received, unless the DSR modem input
line is high. *)

fRtsControl : BYTE; (*0: Disables the RTS line when the device is
opened and leaves it disabled.
1: Enables the RTS line when the device is
opened and leaves it on.
2: Enables RTS handshaking. The driver
raises the RTS line when the "type-ahead"
(input) buffer is less than one-half full and
lowers the RTS line when the buffer is more
than three-quarters full.
3: Specifies the RTS line will be high if bytes
are available for transmission. After all buf-
fered bytes have been sent, the RTS line will
be low. *)

fOutxDsrFlow : BOOL; (*Specifies whether the DSR (data-set-ready)
signal is monitored for output flow control. If
this member is TRUE and DSR is turned off,
output is suspended until DSR is sent again.
*)

END_STRUCT
END_TYPE

TYPE PORTS : (COM1:=1, COM2, COM3, COM4, COM5, COM6, COM7, COM8);
END_TYPE

Example for the settings to perform a hardwarehandshake:
dwHandle: DWORD;
pt_comsettingsex:COMSETTINGSEX:=(Port:=COM1,
dwBaudRate:=38400,

Enumeration
PORTS

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US566

byStopBits:=0,
dwTimeout:=5000,
cByteSize:=7,
byParity := 2,
fOutxCtsFlow := FALSE,
fOutxDsrFlow:=TRUE,
DtrControl := 2,
fRtsControl := 2);

Implementation:
pt_comsettingsex.Size := sizeof(pt_comsettingsex);
SysComSetSettingsEx(dwHandle := Handle, ComSettingsExt := ADR(pt_comsettingsex));
Where Handle is the returnvalue of a call to SysComOpen(COM1).

SysComClose
This function of type BOOL closes the COM port. For that purpose the port handle, which has
been got by SysComOpen, must be given as input parameter. The return value will be TRUE
after a successful operation, otherwise FALSE.

Input Variable Data Type Description
dwHandle DWORD Port handle, acquired by

SysComOpen Ä Chapter
1.4.2.4.2.2 “SysComOpen”
on page 564

SysComWrite
This function of type DWORD writes the data to that port which is defined by the handle got by
SysComOpen. Besides the handle also the address from which the data should be taken, the
number of data which should be written and the timeout of the function must be passed on.
The function will return the number of actually written bytes.

Input Variable Data Type Description
dwHandle DWORD Port handle, acquired by

SysComOpen Ä Chapter
1.4.2.4.2.2 “SysComOpen”
on page 564

dwBufferAddress DWORD Address from which the data
should be taken and written to
the port; you can use the ADR
operator to get this address

dwBytesToWrite DWORD Number of bytes, which
should be written

dwTimeout DWORD Time in [ms], after which the
function will return at the latest

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 567

SysComRead
This function of type DWORD reads the data of COM-PORT. The input parameters are the port
handle got by SysComOpen, the number of expected bytes and the timeout of the function.
Besides that the address to which the read data should be copied, will be passed on.
The function will return the number of actually read bytes.

Input Variable Data Type Description
dwHandle DWORD Port handle, acquired by

SysComOpen Ä Chapter
1.4.2.4.2.2 “SysComOpen”
on page 564

dwBufferAddress DWORD address, to which the read
bytes should be copied after
having been read from the
port; (you can make use of
the operator ADR to get this
address)

dwBytesToRead DWORD Number of bytes, which
should be read

dwTimeout DWORD Time in [ms], after that the
function returns at the latest

SysComGetVersion2300
This function (type DWORD, always returns 0) is only used for an automatic internal version
check and is not to be called explicitly in the application program.

1.4.2.4.3 The library SysLibDir.lib
Overview

If supported by the runtime system, you can use the functions of this library to handle a file
directory system on the target system. Entries of the directory can be read and modified. The
execution is synchronous.

SysDirCreate
This function of type BOOL can be used to create a new directory.
The return value is TRUE, if the directory has been created, or FALSE in case of error.

Input-Variable Data type Description
stName STRING Name of the directory

SysDirOpen
This function of type DWORD can be used, to open a directory in order to read the direc-
tory entries (files, subdirectories) via function SysDirRead Ä Chapter 1.4.2.4.3.4 “SysDirRead”
on page 569.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US568

To close the directory, SysDirRead must be called until it returns 0.
The return value is a handle, which is required by function SysDirRead Ä Chapter 1.4.2.4.3.4
“SysDirRead” on page 569 as an input.

Input-Variable Data type Description
stDirectory STRING Directory name

SysDirRead
This function of type UDINT can be used to read directory entries.
Each time the function is called, one entry of the directory will be read. As long as "1" is
returned, a further entry is in the directory. Thus for reading all entries the function must be
called repeatedly until "0" is returned. In this case, the directory is closed and the handle is
not valid any more. In every case, the function has to be called until it returns 0 to close the
directory.
The information on the particular entries will be written to structure DIRECTORY_INFO.

Input-Variable Data type Description
hDir DWORD Handle of the directory;

Returned by function SysDir-
Open Ä Chapter 1.4.2.4.3.3
“SysDirOpen” on page 568,
which was called before for
opening the directory.

stDirEntry STRING Name of an entry in the direc-
tory. Can be a file or another
directory. Max. 80 characters.

pDirInfo POINTER TO 'Struc-
ture DIRECTORY_INFO'
Ä Chapter 1.4.2.4.3.7 “Struc-
ture DIRECTORY_INFO”
on page 570

Pointer on structure DIREC-
TORY_INFO, which will be
filled with information on the
read entry. You can enter "0"
here if the information should
not be read.

SysDirRemove
This function of type BOOL can be used to delete a directory.
TRUE will be returned if the directory could be removed, otherwise FALSE.

Input-Variable Data type Description
stName STRING Name of the directory to be

removed

SysDirRename
This function of type BOOL can be used to rename a directory.
TRUE will be returned if the directory could be renamed, otherwise FALSE.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 569

Input-Variable Data type Description
stOldName STRING old directory name

stNewName STRING new directory name

Structure DIRECTORY_INFO
This structure contains information on a directory, which is read via function SysDirRead
Ä Chapter 1.4.2.4.3.4 “SysDirRead” on page 569.
The components:

Variable Data type Description
ftTime DIRFILETIME

Ä Chapter 1.4.2.4.3.8
“Structure DIRFILETIME”
on page 570

Structure with information on
creation date, change date,
access date

dwSize DWORD Size of the directory entry
(file)

bDirectory BOOL TRUE, if entry is a directory;
FALSE, if the entry is a file

Structure DIRFILETIME
This structure contains data information for a directory entry. It is used by 'Structure DIREC-
TORY_INFO' Ä Chapter 1.4.2.4.3.7 “Structure DIRECTORY_INFO” on page 570.
The components:

Variable Data type Description
dtCreation DT Date of creation

dtLastAccess DT Date of last access

dtLastModification DT Date of last modification

1.4.2.4.4 The library SysLibDirect.lib
The functions of this library serve to access variables by indices with which they are referenced
in the runtime system. For detailed information see the description of the particular runtime
system.
The user does not have to call a function! The functions will be called implicitely, according to
the data type and the access mode of the variable, as soon as the library is linked to the project
and a variable will be used in the program with the "#" like shown in the following:
iVar1 AT #MW17.4: INT;
The functions must be implemented in the runtime system as external C-functions.
The execution is synchronous.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US570

1.4.2.4.5 The library SysLibEvent.lib
Overview

This library serves to synchronize and control the processing of two (IEC-) tasks.
A task waiting for an event can get re-activated by a second task which sets this event.
The functions are available to define, to delete and start an event resp. to set the timeout.
The execution is synchronous.

SysEventCreate
This function of type DWORD serves to create a new event and to name it. A handle will be
returned, which is used by the other functions of the library to access the event.

Variable Data Type Description
stName STRING Name of the new event

SysEventDelete
This function of type BOOL deletes an event. The event is defined by the handle which was
returned by the function SysEventCreate when creating the event. TRUE will be returned if as
the event has been deleted successfully, otherwise FALSE.

Variable Data Type Description
DwHandle DWORD Event handle returned by

SysEventCreate Ä Chapter
1.4.2.4.5.2 “SysEventCreate”
on page 571.

SysEventSet
This function of type DWORD is used to set an event. The event is defined by the handle which
was returned by the function SysEventCreate when creating the event. TRUE will be returned if
as the event has been set successfully, otherwise FALSE.

Variable Data Type Description
DwHandle DWORD Event handle returned by

SysEventCreate Ä Chapter
1.4.2.4.5.2 “SysEventCreate”
on page 571.

SysEventWait
This function of type DWORD is used to set the timeout for an event. The event is defined by
the handle which was returned by the function SysEventCreate when creating the event. TRUE
will be returned if as the timeout has been set successfully, otherwise FALSE.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 571

Variable Data Type Description
DwHandle DWORD Event handle returned by

SysEventCreate Ä Chapter
1.4.2.4.5.2 “SysEventCreate”
on page 571.

dwTimeout DWORD Time in [ms], after which the
function will return at the
latest.

1.4.2.4.6 The library SysLibDPV1Hilscher.lib
Overview

Note: It depends on the target system, which system libraries can be used in the application
program. Please see the document SysLibs_Overview.pdf.
This library supports the acyclic PROFIBUS DPV1, Class 1, Read- and Write-Services for the
data transfer between master and slaves. The data are addressed within the slaves by slot and
index. (Concerning this see the PB-DP standard.)
If supported by the target system the following function blocks are available:
● DPV1_Read, DPV1_ReadEx: Reading data
● DPV1_Write, DPV1_WriteEx: Writing data
Each module uses the following parameters:

Input variable Data type Description
ENABLE BOOL At a rising edge at this input the module starts pro-

cessing.

Device INT Index of the Hilscher card, to which the request is given.

StationAddr INT Station address of the slave in the PROFIBUS.

Slot INT Data slot, for identification of the data within the slave.

Index INT Data index, for identification of the data within the slave.

Len INT Length of the data to be read/written in Bytes. Fed in
the maximum length of the data buffer "buffer".

buffer DWORD Local address of the data. (Evaluate via using ADR().)

Output variable Data type Description
Ready BOOL The function block has finished processing.

State V1State Information on the state of the request (see below, Enu-
meration "V1State")

Size INT Length of the actually read/written data in case of suc-
cessful execution.

Variable Data type Description
ENABLEOLD BOOL internal variable.

JobId DWORD internal variable.

Additionally the modules DPV1_ReadEx and DPV1_WriteEx have an output parameter Error,
which tells about possibly occurred errors:

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US572

Output variable Data type Description
Error ARRAY[0..7] OF

BYTE;
Byte 1: Hilscher error code (see the documentation
on the Hilscher PB-cards "Protocol Interface Manual
PROFIBUS DP".
Byte 2: Error class code. These values can be looked
up in the PB standard.
Bytes 3+4 (index 2+3): Slave-specific error information.
These values can be looked up in the slave-specific
documentation.

Enumeration V1State
This structure is used by the function blocks of the SysLibDPV1Hilscher.lib always in the output
variable "state". It describes the current state of the request.
TYPE V1State :
(NotEnabled := 0, InvalidParam, Started, Done, DoneWithError);
END_TYPE
Meaning of the components:
NotEnabled := 0 - Function block currently not active
InvalidParam - Invalid input variable
Started - Function block has started execution
Done - Function block has terminated execution
DoneWithError - Function block has aborted execution with an error

1.4.2.4.7 The library SysLibFile.lib
Overview

This library supports a file system on the target computer. If the target supports the functionality,
the library functions can be used to open, close, delete, rename, write to or read from files.
Further functions are available for getting the file size or the date of the last access, as well as
for reading or modifying the offset. The execution is synchronous.

If you are working with target system CODESYS SP RTE, please regard, that
file access operations can affect the real-time behavior.

SysFileOpen
This function of type DWORD serves to open a file, which already exists or which should be
created.
The return value is a file number, which will be used in the functions SysFileWrite, SysFileRead,
SysFileClose as an input ('File'). In case of an error '0' will be returned resp. (watch out this
exception!) '-1' by target CODESYS SP RTE.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 573

Input-Variable Data Type Description
FileName STRING File name

Mode STRING Access mode:
● w write (File will be

updated or created newly)
● r read (File will only be

opened for reading; if the
file does not exist, an
error will be returned)

● rw read and write (File will
be updated; if the file does
not exist, an error will be
returned)

● a append (File will be
opened like described for
'w', but the written data
will be appended at the
end of the file)

SysFileWrite
This function of type DWORD serves to write data to a file, which has been opened before by
the function SysFileOpen. The return value is the number of successfully written bytes.
The return value is a file number, which will be used in the functions SysFileWrite, SysFileRead,
SysFileClose as an input ('File'). In case of an error '0' will be returned resp. (watch out this
exception!) '-1' by target CODESYS SP RTE.

Input-Variable Data Type Description
File DWORD File number Ä Chapter

1.4.2.4.7.2 “SysFileOpen”
on page 573

Buffer DWORD Address of the buffer (ascer-
tainable by the ADR operator)
of the file to which you want to
write

Size DWORD Number of bytes, which you
want to write to the file (ascer-
tainable by the SIZEOF oper-
ator)

WriteBuffer : ARRAY[0..5] OF BYTE:=0,1,2,4,5,6;
DwWritten : DWORD;
hFile : DWORD;

Example:

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US574

SysFileRead
This function of type DWORD serves to read a file, which has been opened before by SysFi-
leOpen. The return value is the number of successfully read bytes.

Input-Variable Data Type Description
File DWORD File number Ä Chapter

1.4.2.4.7.2 “SysFileOpen”
on page 573

Buffer DWORD Address of the buffer which
contains the data to be read
(get this with the aid of the
ADR operator)

Size DWORD Number of bytes to be read
from the buffer

ReadBuffer : ReadBuffer:ARRAY[0..5] OF BYTE;
hFile : DWORD;
dwRead : DWORD;

Example:

SysFileClose
This function of type BOOL serves to close a file, which has been opened before by SysFi-
leOpen. The return value is 1 (ok) or 0 (error).

Input-Variable Data Type Description
File DWORD File number Ä Chapter

1.4.2.4.7.2 “SysFileOpen”
on page 573

SysFileDelete
This function of type BOOL serves to delete a file. The return value is 1 (ok) or 0 (error).

Input-Variable Data Type Description
FileName STRING File name

SysFileCopy
This function of type UDINT serves to copy the file content to another file (different file name). It
will return the number of actually copied bytes.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 575

Input-Variable Data Type Description
FileDest STRING File to which you want to copy

FileSource STRING File from which you want to
copy

SysFileEOF
This function of type BOOL will return 1, if the current offset is at the end of the file; it will return
0, if the end of file has not yet been reached.

Input-Variable Data Type Description
File DWORD File number Ä Chapter

1.4.2.4.7.2 “SysFileOpen”
on page 573

SysFileGetPos
This function of type DINT returns the currently set offset position in the file, which is iden-
tifed by the file number that you have got from the SysFileOpen function before Ä Chapter
1.4.2.4.7.2 “SysFileOpen” on page 573.

Input-Variable Data Type Description
File DWORD File number Ä Chapter

1.4.2.4.7.2 “SysFileOpen”
on page 573

SysFileGetSize
This function of type DWORD returns the size of the file (in Bytes), which is identified by the file
name.

Input-Variable Data Type Description
FileName DWORD File name

SysFileGetTime
This function of type BOOL returns the creation date, the date of last access and the date of the
last modification of the file (which is identified by the file name). The used format is DT. You get
these data by accessing elements of the structure FILETIME.
The return value is 1(ok) or 0 (error).

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US576

Input-Variable Data Type Description
FileName STRING File name

ftFileTime POINTER TO FILETIME Points to the structure FILE-
TIME; the operator ADR can
be used for this purpose.

The structure FILETIME is defined as follows:
TYPE FILETIME
STRUCT
dtCreation:DT; (* Creation date *)
dtLastAccess:DT; (* Last access date; Attention: In VxWorks-systems
possibly only day, without time! *)
dtLastModification:DT; (* Last modification date *)
END_STRUCT
END_TYPE

For the file 'TestFile' the creation date is read:
Ft : FILETIME;
filecreationtime : DT;

Example

SysFileRename
This function of type BOOL serves to rename a file.
It returns 1 (ok) or 0 (error).

Variable Data Type Description
FileOldName STRING Old file name

FileNewName STRING New file name

SysFileSetPos
This function of type BOOL serves to change the current offset (which can be read by the
function SysFileGetPos Ä Chapter 1.4.2.4.7.9 “SysFileGetPos” on page 576) for a file access.
The file is identifed by the file number which has been got by SysFileOpen.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 577

Input-Variable Data Type Description
File DWORD File number Ä Chapter

1.4.2.4.7.2 “SysFileOpen”
on page 573)

Pos DWORD Access offset within the file

1.4.2.4.8 The library SysLibFileAsync.lib
Overview

This library supports asynchronous file access from the IEC-application. If the target system
supports the library, the following function blocks can be instanciated:

Attention: If you are working with target system CODESYS SP RTE, please
regard, that file access operations can affect the real-time behavior!

The function blocks provided by this library have the following common parameters:
- Input parameter bEnable : BOOL
- Output parameter bDone : BOOL
- Output parameter bBusy : BOOL
- Output parameter bError : BOOL
- Output parameter wErrorId : WORD
All these function blocks start an action on a rising edge at the input parameter bEnable. After
an action has been started, all these function blocks have to be called until the output parameter
bDone is set. Now the outputs are valid.
The common parameters listed above will not explicitly be mentioned in the following descrip-
tions of the particular function blocks.
The row I/O shows I for inputs, O for outputs.

SysFileOpenAsync
This function block is used for opening an existing file or creating a new one.
The output is hFile, a handle to the file. A file handle is an identifier for a file and is used as an
input for other function blocks.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US578

Input-Variable Data type Description
stFileName STRING File name

stMode STRING Mode to open the file:
● w write (file is created or

overwritten)
● r read (file is only opened

for reading if it exists)
● rw read and write (file

is created if not existing,
opened for reading if it
exists)

● a append (file is opened
for writing if it exists, cre-
ated if it exists not, data
is appended at the end
always.)

SysFileCloseAsync
This function block is used to close a file. From now on the file handle is invalid and the file is
free for other processes.

Variable Datentyp Beschreibung
hFile DWORD File’s handle from SysFi-

leOpenAsync Ä Chapter
1.4.2.4.8.2 “SysFileOpenA-
sync” on page 578

SysFileWriteAsync
This function block is used for writing to a file. The file has to be opened with the function block
SysFileOpenAsync Ä Chapter 1.4.2.4.8.2 “SysFileOpenAsync” on page 578.

Variable I/O Data type Description
hFile E DWORD File identifier

Ä Chapter 1.4.2.4.8.2
“SysFileOpenAsync”
on page 578)

pBuffer E DWORD Address of the data to
write (to be retrieved
using ADR-operator)

dwSize E DWORD Number of bytes to
write (to be retrieved
using SIZEOF-oper-
ator)

dwWrite A DWORD Number of actually
written bytes.

The data is written to the file in binary mode, means without any conversion.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 579

SysFileReadAsync
This function block is used to read from an open file.

Variable I/O Data type Description
hFile I DWORD File identifier

Ä Chapter 1.4.2.4.8.2
“SysFileOpenAsync”
on page 578)

pBuffer I DWORD Address of the buffer
to read to.

dwSize I DWORD Number of bytes to
read from the file to
buffer.

dwRead O DWORD Number of actually
read bytes.

Parameter pBuffer must be evaluated via the ADR() operator. The files to be written are read
binarily, i.e. without any conversion and copied to pBuffer.

SysFileDeleteAsync
This function block is used to delete a file.

Input-Variable Data type Description
stFileName STRING File name of the file to be

deleted.

SysFileGetPosAsync
This function block retrieves the current read-/write position of the file.

Variable Data type Description
hFile DWORD File handle from SysFi-

leOpenAsync Ä Chapter
1.4.2.4.8.2 “SysFileOpenA-
sync” on page 578

SysFileSetPosAsync
This function block retrieves the current read-/write position of the file.

Variable Data type Description
hFile DWORD File number Ä Chapter

1.4.2.4.8.2 “SysFileOpenA-
sync” on page 578)

dwPos DWORD Offset within the file which is
valid for access.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US580

SysFileEOFAsync
This function block is used to determine, whether the read-/write pointer has reached the end of
the file.

Variable I/O Data type Description
hFile I DWORD File handle from Sys-

FileOpenAsync

bEOF O DWORD Tells if file handle is
reached

SysFileGetSizeAsync
This function block is used to retrieve the size in bytes of a file.

Variable I/O Data type Description
stFileName I STRING File name

dwSize O DWORD Size of the file in
bytes

SysFileGetTimeAsync
This function block retrieves the modification times of a file.

Variable I/O Data type Description
stFileName I STRING File name

ftFileTime O POINTER TO FILE-
TIME

Points to a FILE-
TIMEAsync-structure;
the ADR can be used

Structure FILETIMEASYNC (is included in the library):
TYPE FILETIMEASYNC
STRUCT
 dtCreation:DT; (* Erstelldatum *)
 dtLastAccess:DT; (* Datum letzter Zugriff *)
 dtLastModification:DT; (* Datum letzte Änderung *)
END_STRUCT
END_TYPE

SysFileCopyAsync
This function block is used to copy a file to another name/location.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 581

Variable I/O Data type Description
stFileDest I STRING Name of destination

file

stFileSource I STRING Name of source file

dwCopied O DWORD Number of copied
bytes.

SysFileRenameAsync
This function block is used to rename a file.

Variable Data type Description
stFileOldName STRING Old file name

stFileNewName STRING New file name

SysFileCloseAllOpenAsync
With this function block one can close all currently open files, without knowing any handles or
names. The system always knows these handles.

1.4.2.4.9 The library SysLibFileStream.lib
This library provides functions which correspond to ANSI C functions for file stream operations.
The execution is synchronous.
The functions:

SysLibFileStream
function

ANSI C Function Data Type Description

SysFileStreamFOpen *fopen(char *file-
name, char *mode);

DWORD File with name file-
name will be opened
as stream; possible
values for inputvari-
able Mode: 'w' (write),
'r' (read), 'a' (append),
'+', 'b', 't'

SysFileStream-
Clearerr

clearerr(FILE* pFile); DINT internal error state of
pFile will be deleted;
always returns 1

SysFileStreamFClose fclose(FILE *pFile); DINT all open streams will
be closed (except for
stdin, stdout, stderr).
Returns SysFileS-
treamFClose_EOF in
case of error, other-
wise 0.

SysFileStreamFEOF *feof(FILE* pFile); DINT returns !=0, as soon
as end of file in pFile
is reached

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US582

SysLibFileStream
function

ANSI C Function Data Type Description

SysFileStreamFError ferror(FILE* pFile); DINT returns !=0, as soon
as an error has been
detected for pFile

SysFileStreamFFlush fflush(FILE *pFile); DINT Characters which are
still buffered internally,
will be output

SysFileStreamRe-
move

remove(char* file-
name);

BOOL File will be deleted;
returns 1 for OK, 0 in
case of an error

SysFileStreamRe-
name

rename(char* file-
name);

BOOL Renaming a file;
returns 1 for OK, 0 in
case of an error

SysFileStreamRewind rewind(FILE* pFile); DINT sets file position to
start and deletes
internal error state;
always returns 1

SysFileStreamFGetC fgetc(FILE *pFile); DINT returns the next
character in the
stream (0--255, SYS-
FILESTREAM_EOF in
case of an error

SysFileStreamF-
GetPos

fgetpos(FILE pFile,
fpos_t * ptr);

DINT writes current file
position of pFile to ptr;
fpos_t here defined as
an unsigned long (32
bits)

SysFileStreamF-
SetPos

fsetpos(FILE* pFile,
fpos_t * ptr);

DINT sets file position of
pFile according to ptr;
fpos_t here is defined
as unsigned long (32
bits);
pFPos:DWORD; (*
pointer !!*)

SysFileStreamFGetS * fgets(char * str, int
n, FILE * pFile);

POINTER TO
STRING

Reads at most the
next n-1 characters
into the array s, (ter-
mination automatically
with 0); Truncation
at '\n', the '\n' will
be taken over to s;
Return value: s resp.
0 (at end of file or
error)

SysFileStreamF-
Printf_Int

fprintf(FILE* pFile,
char* szFormat,
intnArg);

DINT formatted output in
stream pFile;
Restrictions compared
to C:only 1argument
of type INT/DINT etc.
can be printed;
szFormat should be
e.g. '%d'

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 583

SysLibFileStream
function

ANSI C Function Data Type Description

SysFileStreamF-
Printf_Real

fprintf(FILE* pFile,
char* szFormat, float
fArg);

DINT formatted output in
stream pFile;
Restrictions compared
to C:only 1argument
of type REAL etc. can
be printed;
szFormat should be
e.g. '%f'

SysFileStreamF-
Printf_String

fprintf(FILE* pFile,
char* szFormat, char
*pcArg);

DINT formatted output in
stream pFile;
Restrictions compared
to C:only 1argument
of type STRING etc.
can be printed;
szFormat should be
e.g. '%s'

SysFileStreamFPutC fputc(int c, FILE
*pFile);

DINT Writing character
(unsignedchar) c to
stream pFile
Returns c (converted
to DINT) or SYSFI-
LESTREAM_EOF in
case of an error

SysFileStreamFPutS fputs(char* str, FILE *
pFile);

DINT Writing string s in
stream pFile
Returns str (pointer
to string) or SYSFI-
LESTREAM_EOF in
case of an error

SysFileStreamFRead fread(void* ptr,
size_t size,
size_t nobj, FILE*
pFile);

DWORD nobj objects of size
size will be read
from pFile to ptr;
Returns number of
read objects

SysFileStreamFWrite fwrite(void* ptr,
size_t size,
size_t nobj, FILE*
pFile);

DWORD nobj objects of size
size wil lbe written
from ptr to pFile;
Returns number of
written objects

SysFileStreamFS-
canf_Int

fscanf(FILE* pFile,
char* szFormat, int *
pnArg);

DINT formatted input from
stream pFile; Restric-
tions compared to
C: only 1 DINT argu-
ment can be read;
szFormat should be
e.g. '%d'

SysFileStreamFS-
canf_String

fscanf(FILE* pFile,
char* szFormat, char
*pcArg);

DINT formatted input from
stream pFile; Restric-
tions compared to C:
only 1 STRING argu-
ment can be read;
szFormat should be
e.g. '%s'

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US584

SysLibFileStream
function

ANSI C Function Data Type Description

SysFileStreamFS-
canf_Real

fscanf(FILE* pFile,
char* szFormat, float*
pfArg);

DINT formatted input from
stream pFile; Restric-
tions compared to C:
only 1 REAL argu-
ment can be read;
szFormat should be
e.g. '%f'

SysFileStreamF-
SeekÂ

fseek(FILE* pFile,
long offset, int origin);

DINT sets file position
on offset Bytes
based on origin;
values for origin:
SEEK_SET=Start of
file, SEEK_CUR=cur-
rent position;
SEEK_END=End of
file; 0=OK

SysFileStreamFTell ftell(FILE* pFile); DINT returns current file
position (based on file
start) in Bytes (-1 in
case of error)

1.4.2.4.10 The library SysLibGetAddress.lib
Overview

This library provides functions which - if supported by the target system - return the start
address and the size of a data segment (Memory, Input, Output, Retain or Global) in a DWORD.
The data segment is to be specified via its number, which is defined in the enumeration.

SysLibGetSize
This function returns the start address and the size of a data segment (Memory, Input, Output,
Retain or Global) in a DWORD.
The data segment is to be specified via its number, which is defined in the enumeration
ADDRESS_SEGMENTS.

Input-Variable Data type Description
iSegment INT Number of the data segment,

see 'Enumeration
ADDRESS_SEGMENTS'
Ä Chapter 1.4.2.4.10.3 “Enu-
meration ADDRESS_SEG-
MENTS” on page 585

Enumeration ADDRESS_SEGMENTS
This enumeration defines the number of a data segment (Memory, Input, Output, Retain or
Global), which is needed as an input for the functions.
TYPE ADDRESS_SEGMENTS :
(

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 585

DATAID_MEMORY, (0)
DATAID_INPUT, (1)
DATAID_OUTPUT, (2)
DATAID_RETAIN, (3)
DATAID_GLOBVARS (4)
);
END_TYPE

1.4.2.4.11 The library SysLibIECTasks.lib
Overview

This library can be used to call information on the configuration of IEC tasks. To create, delete,
prioritize, stop and restart a task you can use the library SysLibTasks.lib.
The execution is synchronous.

SysIECTaskGetConfig
This function of type BOOL serves to retrieve the configuration parameters of an IEC task.
The task is addressed by its name or its index, which it has got assigned in the task configura-
tion. The structure SysIECTaskConfEntry contains all parameters which are used in the task
configuration.
As soon as the task has been found, TRUE will be returned, otherwise FALSE.

Input Variable Data Type Description
udiTaskId UDINT Task Id (Index in the task con-

figuration)

pTaskInfo POINTER TO SYSIECTASK-
CONFENTRY

Information on the task config-
uration (structure, see below)

TYPE SYSIECTASKCONFENTRY :
STRUCT

byTaskNr USINT; (* Task Number *)

byPriority USINT; (* Priority, see Dialog 'Taskat-
tributes' *)

lInterval DINT; (* Interval of cyclic tasks, see
Dialog 'Taskattributes' *)
(* (in this case ldrEvent has
an invalid entry) *)

ldrEvent LDATAREF_TYPE; (* IdrEvent represents
address of event variable (by
POURef, offset and size) *)

Structure
SysIECTaskCon-
fEntry:

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US586

wIndex UINT; (*If POU is called by task,
then special wrapper _Call-
Task<TaskName> (also POU)
is created. *)
(*Returned Index corresponds
to index of this POU. *)

uiNameLen UDINT; (* ulNameLen has a max.
length of 32 characters (max.
task name length) *)

szName STRING(80); (* Name of the task, see
Dialog 'Taskattributes' *)

END_STRUCT
END_TYPE

TYPE LDATAREF_TYPE :
STRUCT

POURef UINT; POU-ID of the event variable

Offset UDINT; Offset for the event variable

Size UDINT; Size of the event variable

END_STRUCT
END_TYPE

SysIECTaskGetInfo
This function of type BOOL returns the current time values of an IEC task.
The task is identified by the task name or by the index, it has got in the task configuration.
As soon as the task has been found, TRUE will be returned, otherwise FALSE.

Input-Variable Data Type Description
stTaskName STRING Name of the task

pTaskInfo POINTER TO SYSIECTAS-
KINFO

Pointer to current data of
the IEC task (structure, see
below)

TYPE SYSIECTASKINFO :
STRUCT

dwCount : DWORD; (* Number of cycles since
start of task *)

dwCycleTime : DWORD; (* Current cycle time *)

dwCycleTimeMin : DWORD; (* Minimum cycle time *)

dwCycleTimeMax : DWORD; (* Maximum cycle time *)

dwCycleTimeAvg : DWORD; (* Average cycle time *)

Structure Lda-
taRef_Type:

Structure
SysIECTaskInfo:

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 587

wStatus : WORD; For cyclic task = 0 (PLC RUN)
and for event triggered task
wStatus = 1 (PLC STOP)

wMode : WORD; wMode = 1 (task mode run-
ning) for both tasks, although
the event triggered task isn't
running

END_STRUCT
END_TYPE

SysIECGetFctPointer
This auxiliary function of type DWORD returns a function pointer, which is required as input
parameter for the function which is used to create a new task Ä Chapter 1.4.2.4.26.2 “SysTask-
Create” on page 629 Ä Chapter 1.4.2.4.26 “The library SysLibTasks.lib” on page 628.
The function requires as an input parameter the internal index of the POU, which should be
called by the task. This index can be acquired with the aid of the INDEXOF operator.

Input-Variable Data Type Description
wIndexOf WORD Internal index of the POU,

which is to be called by the
task.

SysIECTaskResetEvent
This auxiliary function of type BOOL resets the event variable of an event triggered IEC task.
The function has no input parameter. It is working on the current task. It returns TRUE in case of
success, otherwise 0 FALSE (e.g. if the task is not an event triggered task).
The function sets the BOOLean IEC-variable, which is used as an event, to FALSE, and the
internal flag of the runtime system task management to 0.
So it is achieved that a rising edge of the event variable will be regarded at the next cycle of the
scheduler.

1.4.2.4.12 The library SysLibInit.lib
Overview

This library contains a function which can be used to initialize an external library, which is
available as an obj-file. The execution is synchronous.

To use the functionality "Initializing of special external object libraries", include
the library in the Automation Builder project. It is not necessary to call a function
explicitely.

SysInitLibrary
This function of type BOOL can be used to initialize an external library. The index of the function
<LibName>SetPointer will be handed over.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US588

The function call is created automatically. Do not call the function explicitely.
Include the library in the Automation Builder project.

TRUE is returned after the operation ha been finished successfully, otherwise FALSE.

Input Variable Data Type Description
index DINT Index of the function <Lib-

Name>SetPointer.

1.4.2.4.13 The library SysLibInt.lib
Overview

If the target system supports this functionality you can use this library to set and remove an
interrupt handler for a function. The execution is synchronous.

SysInstallHandler
This function of type BOOL sets the interrupt with a given number on the function which is
identified by its address. This address can be retrieved by the SysIECGetFctPointer function
(see Library SysLibIECTasks.lib) Ä Chapter 1.4.2.4.11.4 “SysIECGetFctPointer” on page 588.
The return value is TRUE or FALSE depending on the success of the operation.
The interrupt handler can be removed by the SysRemoveIntHandler function.

Input Variable Data Type Description
iInterrupt INT Interrupt number

dwFctAddress DWORD Function pointer, retrieved
with the aid of SysIEC-
GetFctPointer (SysLibIEC-
Tasks.lib) Ä Chapter
1.4.2.4.11.4 “SysIECGetFct-
Pointer” on page 588

SysRemoveHandler
This function of type BOOL removes the interrupt, which is identifed by the given number, for
the function which is identified by its address. This address can be retrieved by the function
SysIECGetFctPointer (Library SysLibIECTasks.lib). The interrupt handler is set by the SysIn-
stallHandler function Ä Chapter 1.4.2.4.13.2 “SysInstallHandler” on page 589.
The return value is TRUE or FALSE depending on the success of the operation.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 589

Input Variable Data Type Description
iInterrupt INT Interrupt number

dwFctAddress DWORD Function pointer, retrieved
with the aid of SysIEC-
GetFctPointer (SysLibIEC-
Tasks.lib) Ä Chapter
1.4.2.4.11.4 “SysIECGetFct-
Pointer” on page 588

1.4.2.4.14 The library SysLibMem.lib
Overview

This library can be used for memory management. The library functions are available to allo-
cate, to free, to define, to compare memory locations and to copy, move or swap between
different memory locations. The execution is synchronous.

SysMemAlloc
This function of type DWORD is used to dynamically allocate memory space.
The return value is either the pointer on the allocated memory location or it is 0, in case there is
not as much space available as requested. This return value always should be checked, even if
just a small memory area is to be allocated.

This function is not supported by CODESYS SP RTE.

Variable Data Type Description
dwSize DWORD Number of bytes to be allo-

cated.

SysMemFree
This function of type BOOL is used to deallocate memory space.
The return value is TRUE or FALSE depending on the success of the operation.

This function is not supported by CODESYS SP RTE.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US590

Variable Data Type Description
dwAddress DWORD Address of the memory space

which is currently allocated
Ä Chapter 1.4.2.4.14.2 “Sys-
MemAlloc” on page 590.

dwSize DWORD Number of bytes to get reallo-
cated.

SysMemCmp
This function of type DWORD compares the content of two memory buffers of size dwCount.
dwBuf1 and dwBuf2 each show the start address of the buffer.
The function returns the difference of the buffer area contents:
< 0 buf1 smaller than buf2
0 buf1 is of equal size as buf2
> 0 buf1 bigger than buf2

Variable Data Type Description
dwBuf1 DWORD Address of memory buffer 1

(buf1)

dwBuf2 DWORD Address of memory buffer 2
(buf2)

dwCount DWORD Number of memory bytes
which should be compared

SysMemCpy
This function of type DWORD is used to copy a defined number of memory locations from one
buffer to another. The function will return the pointer to the address of the destination buffer
area.
The difference to SysMemMove is that you only can copy between two non-adjoining buffers.

Variable Data Type Description
dwDest DWORD Address of destination buffer

dwSrc DWORD Address of source buffer

dwCount DWORD Number of memory locations
to be copied

SysMemMove
This function of type DWORD moves one memory buffer to another. The function will return the
address of the destination buffer.
The difference to SysMemCpy is that this function allows to copy even memory areas which are
adjoining or even overlapping.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 591

Variable Data Type Description
dwDest DWORD Address of destination buffer

dwSrc DWORD Address of source buffer

dwCount DWORD Number of memory locations
to be moved

SysMemSet
This function of type DWORD can be used to initialize a memory location with a defined value. It
will return the address of the destination buffer.

Variable Data Type Description
dwDest DWORD Pointer to the address of the

memory location which should
be initialized

bCharacter BYTE Character or numeric value
with which the memory loca-
tion should be initialized

dwCount DWORD Number of memory locations
in bytes

SysMemSwap
This function of type BOOL can be used to swap data.
It is used on Motorola byte order systems (PPC) to swap from Motorola to Intel byte order. On
Intel systems (ARM, MIPS, SH, x86) the function has no effect. This allows to write portable
libraries.
The function will return TRUE if the operation has been terminated successfully, otherwise
FALSE.

The return value does not indicate whether the operation was performed or not.

Variable Data Type Description
dwAddress DWORD Address of the memory buffer

to be swapped

diSwapSize DINT Number of locations to be
swapped: 2,4,8

diSwapElements DINT Number of elements in the
memory area to be swapped

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US592

1.4.2.4.15 The library SysLibPciCards.lib
Overview

This library is designed for access to a Pci card plugged to the Plc. If the system supports the
functionality, the function SysPciGetCardInfo can be used to retrieve information about a Pci
card Ä Chapter 1.4.2.4.15.2 “Function SysPciGetCardInfo” on page 593.

Function SysPciGetCardInfo
This function is for retrieving information about a Pci card.
The return value is a pointer to a Structure PCI_INFO structure Ä Chapter 1.4.2.4.15.3 “Struc-
ture PCI_INFO” on page 593. The structure is defined in the library too. The structure contains
all the Pci configuration registers. If the specified card is not found, the function will return zero.

Input Variable Data type Description
usVendorId WORD The vendor ID of the card.

usDeviceId WORD The device ID of the card.

usCardIndex WORD The card’s index with the
specified vendor ID and
device ID. The index is zero-
based. If there are more than
one cards with this vendor
and device ID, one can use
the index to distinguish the
cards.

Structure PCI_INFO
The structure has the following members:

Member Data type
usVendorID WORD

usDeviceID WORD

usSubVendorID WORD

usSubSystemID WORD

ulBusNr DWORD

SlotNr DWORD

ulFunction DWORD

ulBaseAddresses ARRAY[0..5] OF DWORD

byInterrupt BYTE

DeviceSpecific ARRAY[0..191] OF BYTE

The structure is set up by the Pci Bios. The access is read-only, do never write to this structure.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 593

1.4.2.4.16 The library SysLibPlcConfig.lib
Overview

This library supports the reading of the configuration data of the PLC Configuration. These data
are also loaded to the controller at a download of the application and are written to structures
by the runtime system. The library offers functions for getting pointers on these structures. The
execution is synchronous.
Due to the fact that pointers on original structures of the runtime system are provided, the
following is:
● The structure (pointer to sub-elements) may not be modified!
● If default values of parameters in the structures get modified, this will be of on effect!

CfgCCGetError

Currently not yet implemented in the runtime system. Error code always 0.

This function provides information on the errors which occur during the download of the PLC
configuration.
The function returns a pointer to Structure CCLoadError Ä Chapter 1.4.2.4.16.7 “Structure
CCLoadError” on page 595.

CfgCCGetHeader
This function returns a pointer on the header structure of the PLC configuration Ä Chapter
1.4.2.4.16.8 “Structure CCHeader” on page 595.

CfgCCGetRootModule
This function provides information on the root module of the PLC configuration. It returns a
pointer to Structure CCLoadError Ä Chapter 1.4.2.4.16.9 “Structure CCModule” on page 595.

CfgCCGetRootModuleByModuleId
This function provides information on the root module of the currently used PLC configuration,
which is given by the module Id. The module Id is defined in the configuration file by entry "Id".
The function returns a pointer to Structure CCModule (see above, function CfgCCGetRoot-
Module Ä Chapter 1.4.2.4.16.4 “CfgCCGetRootModule” on page 594) Ä Chapter 1.4.2.4.16.9
“Structure CCModule” on page 595.

Variable Data Type Description
ulModuleId UDINT Module id of the root module.

CfgCCGetRootModuleByNodeId
This function provides information on the root module of the currently used PLC configuration,
which is given by the node Id. The node Id of the module normally results from the position of
the module within the PLC Configuration.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US594

The function returns a pointer to Structure CCModule (see above, function CfgCCGetRoot-
Module Ä Chapter 1.4.2.4.16.4 “CfgCCGetRootModule” on page 594) Ä Chapter 1.4.2.4.16.9
“Structure CCModule” on page 595.

Variable Data Type Description
ulNodeId UDINT Node id of the root module.

Structure CCLoadError
This structure provides information on the last error during the download of the PLC configura-
tion data. It is accessed by function CfgCCGetError Ä Chapter 1.4.2.4.16.2 “CfgCCGetError”
on page 594.
The components:

Variable Data Type Description
ulLastError UDINT Error code of the last error

ulAddInfo1 UDINT According to ulLastError, the
meaning changes.

ulAddInfo2 UDINT According to ulLastError, the
meaning changes.

szLastError STRING(32) Last error message. A pos-
sibility to make debugging
easier

Structure CCHeader
This structure provides information on the header structure for the PLC configuration which has
been loaded on the target system. It can be accessed by function CfgCCGetHeader Ä Chapter
1.4.2.4.16.3 “CfgCCGetHeader” on page 594.
The components:

Variable Data Type Description
szTag STRING(10) zero-terminated STRING

"CommConf"

cByteOrder BYTE The file data are in Intel ('I') or
Motorola format ('M')

ulSize UDINT Size of the following data

lVersion UDINT Version number of the file

Structure CCModule
This structure provides information on the module, which e.g. can be accessd via function
CfgCCGetRootModule Ä Chapter 1.4.2.4.16.4 “CfgCCGetRootModule” on page 594.
The components:

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 595

Variable Data Type Description
ucEntryTag BYTE 'M' = Module

ucDummy1 BYTE

ucDummy3

ulModuleId Id of the module given in the
configuration file *.cfg

sModuleNumber Number of the module in the
parent module (-1 if root)

usModuleTag Describes the kind of
the module (0=3S-Module,
1=DP-Master, 2=DP-Slave,
3=CAN-Master, 4=CAN-Slave,
5=DP-SingleSlave)

byDeviceDriver BYTE The module needs a device
driver (0=FALSE, 1=TRUE)

ucDummy4 BYTE

ucDummy5 BYTE

ucDummy6 BYTE

ulNodeId UDINT NodeId of the module

byDefinedWithStruct: BYTE The module was defined
with a structure (0=FALSE,
1=TRUE)

ucDummy7 BYTE

ucDummy8 BYTE

ucDummy9 BYTE

ulBitOffsetInput UDINT Offset of the modules input
area

ulBitSizeInput UDINT Size of the modules input area
in bit

ulBitOffsetOutput UDINT Offset of the modules output
area

ulBitSizeOutput UDINT Size of the modules output
area in bit

ulRefIdCommonDiag UDINT RefId of the modules common
diagnosis area

ulBitOffsetCommonDiag Offset of the modules
common diagnosis area

ulBitSizeDiag UDINT Size of the modules diagnosis
area in bit

usParameterCount UINT Number of parameters

usDummy UINT

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US596

Variable Data Type Description
ppccpModuleParams POINTER TO POINTER TO

ccParam
<ccParam [0..usParameter-
Count]> a pointer to an
array of pointers to CCMo-
duleParam-structures. (Defini-
tion of structure CCParam see
below).
Dereferencing the pointer
with ppccpModuleParams^
gives you the pointer to
the first parameter structure.
(ppccpModuleParams+4)^
gives you the pointer to the
next parameter structure. See
also comment (*Read pointer
to parameters *) in example
project.

ulSizeOfSpecificData UDINT Size in bytes of the module
specific data

pModuleData POINTER TO BYTE <MODULE_SPE-
CIFIC_DATA> Here
the data, according
to usModuleTag is located:
pModuleData is possible
to be a pointer to PBSlave,
CANSlave, PBMaster,
PBSlave, PBSingleSlave,
see definitions below.

usChannelCount: UINT Number of configured chan-
nels

usModuleCount UINT Number of configured
modules

In the following the Channels and Modules of this Module in the configured order are
located! (DP-Slaves are ordered by the stationnumber!) This means, it is possible that another
CCModule structure is inserted here.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 597

Variable Data Type Description
ppcccChannels POINTER TO POINTER TO

ccChannel;
<ccChannel [0..usChannel-
Count]> Definition of structure
CCChannel see below * Der-
eferencing the pointer with
ppccpChannels^ gives you
the pointer to the first param-
eter structure. (ppccpChan-
nels+4)^ gives you the pointer
to the next parameter struc-
ture. See also comment
"(*Read pointer to parameters
*)" in example project.

ppccmSubModules POINTER TO POINTER TO
BYTE

<ccModule [0..usModule-
Count]> Points to an array of
variables of type POINTER
TO ccModule. To view
the contents, you have to
assign the value to a var-
iable of type "POINTER
TO CCModule". Definition
of structure CCModule see
below. Dereferencing the
pointer with ppccpSubMod-
ules^ gives you the pointer
to the first parameter struc-
ture. (ppccpSubModules+4)^
gives you the pointer to the
next parameter structure. See
also comment "(*Read pointer
to parameters *)" in example
project.

Structure CCChannel
This structure provides information on the channel of a module; see usage in Structure
CCModule Ä Chapter 1.4.2.4.16.9 “Structure CCModule” on page 595.

Variable Data Type Description
ucEntryTag BYTE C' = Channel

ulChannelId UDINT Id of the channel given in the
configuration file

usChannelNumber UINT Number of the channel in the
parent module

ulRefId UDINT Direction of the channel
(1=input, 2=output, 3=input
AND output)

usChannelType UINT TYPE of the channel (coded
as "TypeClass")

ulBitOffset UDINT Offset of the channel in in-/
output area

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US598

Variable Data Type Description
usParameterCount UINT Number of parameters

ppccpParams POINTER TO POINTER TO
CCParam

PARAMETER[1..usParame-
terCount]> POINTER TO an
ARRAY OF pointers TO Struc-
ture CCParam Ä Chapter
1.4.2.4.16.11 “Structure
CCParam” on page 599.

Structure CCParam
This structure provides information on a channel of the module; see usage in Struc-
ture CCModule and Structure CCChannel Ä Chapter 1.4.2.4.16.9 “Structure CCModule”
on page 595 Ä Chapter 1.4.2.4.16.10 “Structure CCChannel” on page 598.

Variable Data Type Description
ulParameterId UDINT Id of the parameter given in

the configuration file *.cfg

usParameterNumber UINT Number of the parameter in
the module

byReadOnly BYTE 1=TRUE, 0=FALSE

byDummy BYTE

usParameterType UINT Type of the parameter; coded
as "TypeClass"

usDummy UINT

ulSize UDINT Size of the parameter in bytes

byValue BYTE The memory representation
of the parameter value starts
with this byte. The other bytes
follow immediately, if the size
of the parameter value is
bigger than 1.

1.4.2.4.17 The library SysLibPlcCtrl.lib
Overview

This library contains the following functions for controlling a PLC. The execution is synchronous.
● Ä Chapter 1.4.2.4.17.2 “SysStartPlcProgram” on page 600
● Ä Chapter 1.4.2.4.17.3 “SysResetPlcProgram” on page 600
● Ä Chapter 1.4.2.4.17.4 “SysStopPlcProgram” on page 600
● Ä Chapter 1.4.2.4.17.5 “SysShutdownPlc” on page 600
● Ä Chapter 1.4.2.4.17.6 “SysEnableScheduling” on page 601
● Ä Chapter 1.4.2.4.17.7 “SysGetPlcLoad” on page 601

Additionally there are functions to handle the retain variables:
● Ä Chapter 1.4.2.4.17.9 “SysRestoreRetains” on page 601
● Ä Chapter 1.4.2.4.17.8 “SysSaveRetains” on page 601

as well as a function for activating the watchdog:

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 599

● Ä Chapter 1.4.2.4.17.10 “SysWdgEnable” on page 602

SysStartPlcProgram
This function of type BOOL can be used to start a PLC. It will return TRUE in case of success,
otherwise FALSE.

Input-Variable Data type Description
bDummy BOOL Without function

SysResetPlcProgram
This function of type BOOL can be used to reset the PLC. The reset mode is set with the aid of
the enumeration Reset_Mode. The function will return always TRUE.
This function is not synchronous, but it creates a task. The priority of the task is lower than the
lowest user task.

The function may not be called in a callback, especially in no one where
user tasks are created or destroyed, for example EVENT_BEFORE_RESET,
EVENT_AFTER_RESET, EVENT_SHUTDOWN, EVENT_STOP.

Variable Data type Description
rmRESETMODE RESET_MODE Choose one of the enumera-

tion values to give the desired
reset command to the PLC:

0=RESET_WARM,
1=RESET_COLD,
2=RESET_HARD;

RESET_WARM corresponds
with the 'Reset' command
in the Online Menu,
RESET_HARD corresponds
with the 'Reset (original)'

SysStopPlcProgram
This function of type BOOL can be used to stop the PLC. It will return TRUE in case of success,
otherwise FALSE.

Input Variable Data type Description
bDummy BOOL Without function

SysShutdownPlc
This function of type BOOL can be used to shut down the PLC. It will return TRUE in case of
success, otherwise FALSE.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US600

Variable Data type Description
bDummy BOOL Without function.

SysEnableScheduling
This function of type DWORD can be used to enable resp. disable the scheduler for the IEC
tasks in the PLC.

Variable Data type Description
bEnable BOOL Without function

SysGetPlcLoad
This function of type DWORD returns the current processor load of the IEC tasks.

Variable Data type Description
bDummy BOOL Without function

SysSaveRetains
This function of type DINT can be used to save the values of retain variables in a file. One of the
following values will be returned:
1: OK
0: No program loaded
-1: The given file could not be opened

Input Variable Data type Description
stFileName STRING Name of the file where you

want to save the retain varia-
bles

SysRestoreRetains
This function of type DINT can be used to to restore the values of retain variables, which
have been saved in a file Ä Chapter 1.4.2.4.17.8 “SysSaveRetains” on page 601. One of the
following values will be returned:
1: OK
0: No program loaded
-1: The given file could not be opened
-2: The content of the file exceeds the size of the retain area

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 601

Input Variable Data type Description
stFileName STRING Name of the file which con-

tains the retain variables
Ä Chapter 1.4.2.4.17.8 “Sys-
SaveRetains” on page 601

SysWdgEnable
This function of type BOOL can be used to activate resp. deactivate the watchdog for a speci-
fied task. It will return TRUE in case of success, otherwise FALSE.

Variable Data type Description
bEnable BOOL if TRUE: The watchdog func-

tionality gets activated
if FALSE: The watchdog func-
tionality gets deactivated

byIECTaskIndex BYTE Index of the IEC task, for
which the watchdog should be
activated/deactivated

stIECTaskName POINTER TO STRING Name of the IEC task, can be
a pointer to zero

1.4.2.4.18 The library SysLibPorts.lib
Overview

This library can be used to communicate with external hardware devices via their port
addresses; e.g. real-time clock, graphic controller etc. The port addresses can accessed
reading and writing. The execution is synchronous.

SysPortIn
This function of type BYTE returns the byte value at that port address, which has been passed
on by wPort.

Variable Data Type Description
wPort WORD Port address of the hardware

device.

SysPortInW
This function of type WORD returns the byte value at that port address, which has been passed
on by wPort.

Variable Data Type Description
wPort WORD Port address of the hardware

device.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US602

SysPortInD
This function of type DWORD returns the byte value at that port address, which has been
passed on by wPort.

Variable Data Type Description
wPort DWORD Port address of the hardware

device.

SysPortOut
This function of type BOOL writes the BYTE value which is passed on by byData to that port
address which is passed on by wPort. The function returns TRUE if the operation has been
terminated successfully, otherwise FALSE.

Variable Data Type Description
wPort WORD Port address of the hardware

device.

byData BYTE Value to be written to the port
address.

SysPortOutW
This function of type BOOL writes the WORD value which is passed on by byData to that port
address which is passed on by wPort. The function returns TRUE if the operation has been
terminated successfully, otherwise FALSE.

Variable Data Type Description
wPort WORD Port address of the hardware

device.

byData WORD Value to be written to the port
address.

SysPortOutD
This function of type BOOL writes the DWORD value which is passed on by byData to that port
address which is passed on by wPort. The function returns TRUE if the operation has been
terminated successfully, otherwise FALSE.

Variable Data Type Description
wPort WORD Port address of the hardware

device.

byData DWORD Value to be written to the port
address.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 603

1.4.2.4.19 The library SysLibProjectInfo.lib
Overview

The functions contained in this library can be used to read the Menu 'Project' 'Project Info'
respectively the function SysGetProjectID Ä Chapter 1.4.2.4.19.3 “Structure PROJECT_INFO”
on page 604 Ä Chapter 1.4.2.4.19.4 “Function SysGetProjectID” on page 604.
The execution is synchronous.

Function SysGetProjectInfo
This function of type BOOL provides the components of the project info which was entered in
the programming system ('Project' 'Project Info'); the structure PROJECT_INFO is used for that
purpose.
TRUE is returned if the operation has been successful, otherwise FALSE.

Input Variable Data type Description
ProjectInfo POINTER TO

PROJECT_INFO
Pointer on the project infor-
mation which is stored in
the structure PROJECT_INFO
Ä Chapter 1.4.2.4.19.3
“Structure PROJECT_INFO”
on page 604

The ADR operator can be
used to retrieve the offset

Structure PROJECT_INFO
The components of this structure show the project info ('Project' 'Project Info'). The structure
is used by the function SysGetProjectInfo Ä Chapter 1.4.2.4.19.2 “Function SysGetProjectInfo”
on page 604.

Component Data type corresponding field in the
dialog 'Project Info'

dtDate DT 'Change date:'

stProject STRING(255) 'File:'

stTitle STRING(255) 'Title:'

stVersion STRING(255) 'Version:'

stAuthor STRING(255) 'Author'

stDescription STRING(255) 'Description:'

Function SysGetProjectID
This function of type DWORD returns the project ID. It is used to determine whether the project
in the editor and the project on the controller are identical, whether an online change can be
performed, or whether they are different projects.
The project ID is also stored in the symbol file. Using this function a visualization can check if
the symbol file fits to the project on the controller.
The return value contains the project ID.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US604

The function is supported by runtime systems CSP32F 2.4.5.0 and newer.

Input Variable Data type Description
--- --- ---

1.4.2.4.20 The library SysLibRtc.lib
The library SysLibRtc.lib

This library contains functions for accessing the real-time clock of the local system. If the target
system is supporting the functionality, the real-time clock can be read and set; additionally the
current hour display mode as well as the battery can be retrieved. The execution is synchro-
nous.

In this context regard the RTC function, which is part of the standard.ibrary and
which returns the running date and time referring to a given start time.

RTC is not a real real-time clock function because the start time must be set
explicitly. But using RTC will save system operating time. Think about setting
the start time for RTC with the aid of the SysRtcGetTime function Ä Chapter
1.4.2.4.20.4 “SysRtcGetTime” on page 605.

SysRtcCheckBattery
This function of type BOOL checks the status of the battery of the computer, which is important
for the exactness of the shown clock time.
The function returns 0, if the battery is not ok, otherwise 1.

Variable Data Type Description
bDummy BOOL TRUE starts the function.

SysRtcGetHourMode
This function of type BOOL can be used to read the display mode of the real-time clock of the
local system.
The function returns 0 in case of 12-hour mode, it returns 1 in case of 24-hour mode .

Variable Data Type Description
bDummy BOOL TRUE starts the function.

SysRtcGetTime
This function of type DATE_AND_TIME returns the current time which is read from the PC
clock.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 605

Variable Data Type Description
dummy BOOL TRUE starts the function.

SysRtcSetTime
This function of type DATE_AND_TIME can be used to set the real-time clock of the local
system. It returns 1, if the operation has been terminated successfully, otherwise 0.

Variable Data Type Description
ActDateAndTime DATE_AND_TIME Time to which the real-time

clock of the computer should
be set

1.4.2.4.21 The library SysLibSem.lib
Overview

This library can be used to create and use semaphores for the synchronization of tasks. The
semaphores serve to avoid any concurrent access on critical data, which are used by several
tasks. The target system must support this functionality. The execution is synchronous.

SysSemCreate
This function of type DWORD can be used to create a semaphore. The function returns a
handle, which identifies the semaphore and which is required as input value for the other
functions of the SysLibSem.lib.

Variable Data Type Description
bDummy BOOL If bDummy=TRUE, a sema-

phore will be created

SysSemDelete
This function of type BOOL deletes the semaphore which is identified by the handle retrieved by
SysSemCreate. TRUE will be returned in case of success, otherwise FALSE.

Variable Data Type Description
dwHandle DWORD Handle of the semaphore;

was returned by Sys-
SemCreate Ä Chapter
1.4.2.4.21.2 “SysSemCreate”
on page 606.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US606

SysSemEnter
This function of type BOOL must be called before a task accesses data which also are used by
other tasks. Thus the data will be blocked for other tasks, which also use SysSemEnter until by
function SysSemLeave Ä Chapter 1.4.2.4.21.5 “SysSemLeave” on page 607 the semaphore
will be set free again.
The semaphore is identified by the handle which was returned by SysSemCreate. TRUE will be
returned in case of success, otherwise FALSE.

Input Variable Data Type Description
dwHandle DWORD Handle of the semaphore;

was returned by Sys-
SemCreate Ä Chapter
1.4.2.4.21.2 “SysSemCreate”
on page 606.

SysSemLeave
This function of type BOOL must be called after an access on data, which also are used by
other tasks. This is necessary to release the semaphore which has been blocked before the
data access by SysSemEnter Ä Chapter 1.4.2.4.21.4 “SysSemEnter” on page 607.
The semaphore is identified by the handle which was returned by SysSemCreate. TRUE will be
returned in case of success, otherwise FALSE.

Input Variable Data Type Description
dwHandle DWORD Handle of the semaphore;

was returned by Sys-
SemCreate Ä Chapter
1.4.2.4.21.2 “SysSemCreate”
on page 606.

SysSemTry
If a semphore can be entered by SysSemTry(), TRUE will be returned. If not the function returns
FALSE with the particular error code.
In contrast to SysSemEnter Ä Chapter 1.4.2.4.21.4 “SysSemEnter” on page 607 SysSemTry()
is non-blocking.

Input Variable Data Type Description
dwHandle DWORD Handle of the semaphore;

was returned by Sys-
SemCreate Ä Chapter
1.4.2.4.21.2 “SysSemCreate”
on page 606.

1.4.2.4.22 The Library SysLibShm.lib
Overview

This library provides functions for accessing a memory area which is used in common by
several processes resp. referencing a physical address (Shared-Memory, shortcut ShM).

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 607

The library functions can be used to open and to close the ShM and to read and write from it.
The reading, writing and closing functions need the handle which is returned by the opening
function.
The execution is synchronous.

SysShmOpen
This function of type DWORD opens a Shared Memory. It returns a handle for the ShM, which
can be used as a pointer. The handle is required as input parameter for the other library
functions.

Variable Data Type Description
stName STRING Name of the Shared Memory,

can be set as desired dwPhy-
sicalAddress DWORD

dwPhysicalAddress DWORD Set here one of the following:
- the desired physical address
of the ShM; must be valid!
- 0, if the location of the ShM
area can be arbitrary pdwSize
DWORD

pdwSize DWORD Address of size of the area for
the ShM
- If the ShM is already
existing, the actual size will be
returned.
- If the ShM does not yet exist,
it will be created according to
the given size. If you enter
"0" here, the function will fail.
Thus the function also can be
used to check whether the
ShM already has been cre-
ated.

SysShmClose
This function of type BOOL closes the Shared Memory, which is identified by the handle
returned by SysShmOpen. TRUE will be returned after successful operation, otherwise FALSE.

Variable Data Type Description
hShm DWORD Handle of the Shared

Memory; was returned by
SysShmOpen Ä Chapter
1.4.2.4.22.2 “SysShmOpen”
on page 608.

SysShmRead
This function of type DWORD can be used to read a defined number of bytes from a Shared
Memory, starting at a certain offset. It will return the number of actually read bytes.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US608

Variable Data Type Description
hShm DWORD Handle of the Shared

Memory; was returned by
SysShmOpen Ä Chapter
1.4.2.4.22.2 “SysShmOpen”
on page 608.

dwOffset DWORD Offset in the data area, where
reading should start

pData DWORD Address of the data buffer to
be read

dwSize DWORD Number of bytes to be read

SysShmWrite
This function of type DWORD can be used to write a defined number of bytes to a Shared
Memory. It will return the number of actually written bytes.

Variable Data Type Description
hShm DWORD Handle of the Shared

Memory; was returned by
SysShmOpen Ä Chapter
1.4.2.4.22.2 “SysShmOpen”
on page 608.

dwOffset DWORD Offset in the data area where
the writing of the data should
start

pData DWORD Address of the data buffer to
be written

dwSize DWORD Number of bytes to be written

1.4.2.4.23 The library SysLibSockets.lib
Overview

This library supports the access on sockets for the communication via TCP/IP and UDP.

UDP
– For AC500 Firmware < 2.4 FreeUDP must be used.
– For AC500 Firmware ≥ 2.4 UDP is available.

If the target system supports the functionality then the functions listed below are available,
each calling the corresponding function of the operating system Ä Chapter 1.4.2.4.23.1.1 “Con-
straints for AC500 V2” on page 610.
The execution is synchronous.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 609

The behavior of the functions may differ target-specifically.

The opening/closing of sockets may take a long time if many sockets are to be
opened/closed simultaneously.

Using the asynchronous functions is recommended (only AC500 V3).
Ä Chapter 1.4.2.4.24 “The library SysLibSocketsAsync.lib” on page 625.

TCP specific:
● Ä Chapter 1.4.2.4.23.24.1 “SysSockRecv” on page 622
● Ä Chapter 1.4.2.4.23.24.2 “SysSockSend” on page 623

UDP specific:
● Ä Chapter 1.4.2.4.23.25.1 “SysSockRecvFrom” on page 623
● Ä Chapter 1.4.2.4.23.25.2 “SysSockSendTo” on page 624

Constraints for AC500 V2
The Implementation of the SysLibSockets library offers the opportunity to implement user spe-
cific communication protocols based on TCP/IP sockets on AC500 V2.
However, there are some restrictions for AC500 V2.

SysLibSocketsAsync
The SysLibSocketsAsync library is not supported.

In order to minimize the influence on timing behavior, AC500 offers the user exclusively non-
blocking stream sockets.
Changing such a socket to blocking is not possible for AC500 Firmware < 2.4. The function
SysSockIoctl will return an error when trying to do so.

Opposing standard behavior, sockets are always created non-blocking by the function SysSock-
Create.
The system offers a limited number of sockets. If the maximum number is reached, SysSock-
Create and SysSockAccept return an error.

The system tries to close all sockets that are created by the application, nevertheless, the user
is advised to close all sockets he created using SysSockClose, even in case of of a reset or a
download. The function SysSockClose might return an error, if the socket was already closed on
network side. Please refer to the SysCallbackRegister calls in the example application.

The error codes returned by SysSockGetLastErrorSync refer to the values of the Winsock
implementation by Microsoft. Thus, development of applications using SysLibSockets can be
done on a SoftPLC as well.

The function SysSockShutdown is not available.

A socket should only be used in the task where it was created. Avoid using sockets in different
tasks.

SysSockIoctl

SysSockCreate

SysSockClose

SysSockGetLas-
tErrorSync

SysSockShut-
down

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US610

For AC500 Firmware < 2.4, socket options can only be set before the socket is bound.
The returned values of functions SysSockCreate and SysSockAccept are socket handles.
For these a value of 0 is valid, which is why those return values should be compared to
SOCKET_INVALID (=-1) instead of comparison to Zero.

Restart needed
If a task that uses sockets is suspended by the system due to an error, this
might lead to a leakage of system resources. This can lead to the need of
restarting the system.

After a reset or a new download of the user program the PLC can not be set to
run again. A power-cycle or a reboot is needed to restart the operating system.

SysSockAccept Supported for non-blocking
sockets

Returns negative values, only
-1 signals error

SysSockConnect Supported for non-blocking
sockets

SysSockSelect Supported for non-blocking
sockets

SysSockRecv (TCP only) Supported for non-blocking
sockets

SysSockSend (TCP only) Supported for non-blocking
sockets

SysSockBind Supported for non-blocking
sockets

SysSockClose Supported for non-blocking
sockets

Might return failure, when
socket was already closed

SysSockCreate Supported for non-blocking
sockets

Returns negative values, only
-1
signals error, Sockets are
non-blocking by default

SysSockListen Supported for non-blocking
sockets

Attention when Listen socket
is closed all accepted sockets
get closed.

SysSockShutdown Not supported

SysSockSendTo (UDP only) Not supported for AC500 firm-
ware < 2.4 (UDP)

SysSockRecvFrom (UDP
only)

Not supported for AC500 firm-
ware < 2.4 (UDP)

SysSockGetLastError Supported See above for codes

SysSockGetLastErrorSync Supported See above for codes

SysSockGetOption Supported See above for options

SysSockIoctl Not allowed for AC500 firm-
ware < 2.4

See above

SysSockSetOption Supported See Options above

SysSockGetHostByName Not supported as requires
DNS

SysSockNtohl Supported

SysSockNtohs Supported

AC500 V2 sup-
port overview

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 611

SysSockHtons Supported

SysSockHtonl Supported

SysSockGetHostName Supported Will return product name

SysSockInetAddr Supported

SysSockInetNtoa Supported

SysSockSetIPAddress Not supported on AC500

SysSockAccept
This function of type DINT calls the function accept of the operating system, which can accept
a connection request to the socket. A new descriptor (handle) for the socket is returned. The
orignal socket will be reset to the "listening" status Ä Chapter 1.4.2.4.23.16 “SysSockListen”
on page 618.

Variable Data type Description
diSocket DINT A descriptor identifying a

socket that has been placed
in a listening state with the
listen function. The connection
will actually be made with the
socket that is returned by the
SysSockListen function. The
requested connection then will
be made with that socket,
for which the SysSockAccept
function returned a handle.
(corresponding parameter,
e.g. in Win32:s)

pSockAddr DWORD Pointer on a variable of type
SOCKADDR; will be filled with
the address of the caller.
(corresponding parameter,
e.g. in Win32: addr)

piSocketAddrSize DWORD Pointer to a variable of type
DINT. This variable has got
assigned the length of the
structure SockAddr (can be
retrieved with the aid of the
SIZEOF operator)
(corresponding parameter,
e.g. in Win32: addrlen)

Structure SOCKADDR:
sin_family : INT; (* Adress-family, defines address format *)
sin_port : UINT; (* Port of the connection requesting unit *)
sin_addr : UDINT; (* IP-address of the requesting unit *)
sin_zero : ARRAY [0..7] OF SINT; (* buffer *)

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US612

SysSockBind
This function of type BOOL calls the function bind of the operating system. This function will
allocate a local address to the socket which was assigned before just to an address range by
SysSockCreate Ä Chapter 1.4.2.4.23.6 “SysSockCreate” on page 614.
Usually the "binding" will be done before functions like SysSockListen or SysSockAccept
are called for a socket Ä Chapter 1.4.2.4.23.16 “SysSockListen” on page 618 Ä Chapter
1.4.2.4.23.2 “SysSockAccept” on page 612.
In case of successful operation the function will return TRUE, otherwise FALSE.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

pSockAddr DWORD Pointer on a varialbe of
type SOCKADDR; Ä Chapter
1.4.2.4.23.2 “SysSockAccept”
on page 612

diSockAddrSize DINT Lenght of the structure SOCK-
ADDR (can be retrieved with
the aid of the SIZEOF oper-
ator)

SysSockClose
This function of type BOOL calls the function closesocket of the operating system, in order to
close a socket.
In case of successful operation the function will return TRUE, otherwise FALSE.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

SysSockConnect
This function of type BOOL calls the function connect of the operating system. In case the
socket has not yet been "bound" by the SysSockBind function, now automatically a local
address will be assigned to it Ä Chapter 1.4.2.4.23.3 “SysSockBind” on page 613. Afterwards
the socket will be ready to send and /or receive data.
In case of successful operation the function will return TRUE, otherwise FALSE.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 613

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

pSockAddr DWORD Pointer on a variable of
type SOCKADDR; Ä Chapter
1.4.2.4.23.2 “SysSockAccept”
on page 612

diSockAddrSize DINT Length of the structure SOCK-
ADDR;
(can be retrieved with the aid
of the SIZEOF operator)

Note for operating system VxWorks: There are systems on which function SysSockConnect
returns FALSE even in case of success. Reason: The special behavior of connect under
VxWorks.

SysSockCreate
This function of type DINT calls the function socket of the operating system. A new socket will
be created and assigned to a Service Provider.
The function returns the descriptor of the new socket, which is used as input parameter in other
functions of the library, e.g. SysSockBind, SysSockConnect.

Variable Data type Description
diAddressFamily DINT Address family

(corresponding parameter e.g.
in Win32: af)

diType DINT One of the following
two types can be used
e.g. for Windows Sockets
1.1: SOCK_STREAM,
SOCK_DGRAM
(corresponding parameter e.g.
in Win32: type)

diProtocol DINT Protocol, depending on the
chosen address family
(corresponding parameter e.g.
in Win32: protocol)

SysSockGetHostByName
This function of type DWORD ruft die Funktion hostGetByName (VxWorks)resp.gethostbyname
(win32)of the operating system.
In case of successful operation the function will return the host address, otherwise
SOCKET_INADDR_NONE (defined in the library as a global constant).

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US614

Variable Data type Description
stHostName POINTER TO STRING Name of the host

(corresponding parameter e.g.
in Win32: name)

SysSockGetHostName
This function of type BOOL calls the function gethostnameof the operating system and returns
the host name.
In case of successful operation the function will return TRUE, otherwise FALSE.

Variable Data type Description
stHostName STRING Host name

(corresponding parameter e.g.
in Win32: name)

diNameLength DINT Length of the host name
(corresponding parameter e.g.
in Win32: buflen)

SysSockGetOption
This function of type BOOL calls the function getsockoptof the operating system, in order to get
the value of a particular socket option.
In case of successful operation the function will return TRUE, otherwise FALSE.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

diLevel DINT protocol specific level; pos-
sible values: SOL_SOCKET,
IPPROTO_TCP
(corresponding parameter e.g.
in Win32: level)

diOption DINT Name of the option, for
which you want to get the
current value; see function
SysSockSetOption for a list
of the options Ä Chapter
1.4.2.4.23.21 “SysSockSetOp-
tion” on page 621

(corresponding parameter e.g.
in Win32: optname)

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 615

Variable Data type Description
diOptionValue DWORD Pointer to the variable, to

which the current value of the
option should be written
(corresponding parameter e.g.
in Win32: optval)

diOptionLength DWORD Pointer to the size of the var-
iable, to which the current
value of the option should be
written
(corresponding parameter e.g.
in Win32: optlen)

Note for operating system VxWorks: There are systems on which a multiple call
of SysSockGetOption only at the first call returns a reasonable option value.
This is especially true if an error has occurred just before.

Reason: The special behavior of getsockopt under VxWorks.

SysSockGetLastErrorSync
This function of type INT calls the function getlasterror of the operating system, which returns
the error code of the last error occurred at the given socket.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

SysSockGetLastError
This function block calls the function getlasterror of the operating system, which returns the
error code of the last error occurred at the given socket.

Input Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

bEnable BOOL Rising edge: the function
block starts the action.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US616

Output Variable Data type Description
bDone BOOL TRUE indicates that the func-

tion block has completed pro-
cessing.

bBusy BOOL TRUE indicates that the func-
tion block is still processing.

bError BOOL TRUE indicates that an error
has occured.

wErrorId WORD Error number

dwLastError DWORD Return value of getlasterror of
operating system.

SysSockHtons
This function of type WORD calls the function htons of the operating system, which converts a
short value from host byte order to TCP/IP network order.
The function returns the converted value.

Variable Data type Description
wHost WORD Value to be converted.

SysSockInetAddr
This function of type DWORD calls the function inet_addr of the operating system, which con-
verts a string, containing an internet address, in an address which can be used in the IN_ADDR
structure.
The function returns the converted address.

Variable Data type Description
stIPAddr STRING IP address (dotted notation)

(corresponding parameter e.g.
in Win32: cp)

SysSockInetNtoa
This function of type BOOL calls the function inet_ntoa (Win32) resp.inet_ntoa_b (VxWorks),
which converts an Internet network address in a string in Internet standard format..
In case of successful operation the function will return TRUE, otherwise FALSE.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 617

Variable Data type Description
pInAddr INADDR Pointer to structure INADDR,

which contains the Internet
address, see below
(corresponding parameter e.g.
in Win32: in)

stIPAddr STRING IP address

diIPAddrSize DINT Size of the IP address

Structure INADDR:
S_addr : DWORD; (* Internet-Adresse als DWORD *)

SysSockIoctl
This function of type DINT calls the function ioctl of the operating system in order to control the
I/O mode of the socket.
In case of successful operation the function will return TRUE, otherwise FALSE.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

diCommand DINT Command which you want to
apply on the socket.
(corresponding parameter
e.g. in Win32:
cmd). Valid commands
are: SOCKET_FIONBIO,
SOCKET_FIONREAD.

piParameter DWORD Pointer to the command
parameter
(corresponding parameter e.g.
in Win32: argp)

SysSockListen
This function of type BOOL calls the function listen of the operating system. This function will
cause the socket to listen to connection requests and to queue them until they can be accepted
by the SysSockAccept Ä Chapter 1.4.2.4.23.2 “SysSockAccept” on page 612 function.
In case of successful operation the function will return TRUE.
As soon as the maximum number of connection requests in the queue is exceeded the function
will return FALSE.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US618

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

diMaxConnections DINT Maximum number of connec-
tion requests, which can be
put in the input queue of the
socket.
(corresponding parameter e.g.
in Win32: backlog)

SysSockNtohl
This function of type DWORD calls the function ntohl of the operating system, which converts a
u_long value of the TCP/IP network order to the host byte order.
The function will return the value in host byte order.

Variable Data type Description
dwNet DWORD u_long value to be converted

(corresponding parameter e.g.
in Win32: netlong)

SysSockNtohs
Attention: Please regard the General Remarks on the library.
This function of type WORD calls the function ntohs of the operating system, which converts a
u_short value from the TCP/IP network order to the host byte order.
The function will return the value in host byte order.

Variable Data type Description
wNet WORD u_short value to be converted

(corresponding parameter e.g.
in Win32: netshort

SysSockSelect
This function of type DINT calls the function select of the operating system to check whether
one or several sockets are ready for certain communication actions. The group of sockets, to
which this request should be applied, can be defined via the structure SOCKET_FD_SET.
The function will return the result of the select function.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 619

Variable Data type Description
diWidth DINT Size of structure

SOCKET_FD_SET.

fdRead DWORD Optionally a pointer to the
structure defining the socket
set for which the status of
the read actions should be
checked. You also can pass 0.
Structure SOCKET_FD_SET
see below
(corresponding parameter e.g.
in Win32: readfds)

fdWrite DWORD Optionally a pointer to the
structure, defining the socket
for which the status of
the write actions should be
checked. You also can pass 0.
Structure SOCKET_FD_SET
see below
(corresponding parameter e.g.
in Win32: writefds)

fdExcept DWORD Optionally a pointer to the
structure, defining the socket
for which the error status
should be checked. You
also can pass 0. Structure
SOCKET_FD_SET see below
(corresponding parameter e.g.
in Win32: exceptfds)

ptvTimeout DWORD Maximum time which the
SysSockSelect function will
wait for an answer; Struc-
ture SOCKET_TIMEVAL, see
below
(corresponding parameter e.g.
in Win32:timeout)

Structure SOCKET_FD_SET

fd_count: UDINT; (* Number of sockets *)

fd_array: ARRAY [0..63] OF DINT; (* Field with socket descrip-
tors *)

Structure SOCKET_TIMEVAL:

tv_sec: DINT; (* seconds *)

tv_usec: DINT; (* microseconds *)

SysSockSetIPAddress
This function of type BOOL is only implemented for VxWorkstargets. It sets the IP address of
the given card.
In case of successful operation the function will return TRUE, otherwise FALSE.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US620

For other operating systems the function always will return FALSE.

Variable Data type Description
stCardName STRING Name of the network card

stIPAddress STRING IP address to be set

SysSockSetOption
This function of type BOOL calls the function getsockoptof the operating system in order to set
particular socket options..
For a description of the getsockopt function please see the online help resp. documentation on
the operating system.
In case of successful operation the function will return TRUE, otherwise FALSE.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

diLevel DINT Protocol specific level
(corresponding parameter e.g.
in Win32: level)

diOption DINT Name of the option:
(corresponding parameter e.g.
in Win32: optname)
depends on the operating
system

diOptionValue DWORD Option value; Deactivate boo-
lean option values by setting a
"0"; otherwise set the value
(corresponding parameter e.g.
in Win32: optval)

diOptionLength DWORD Length of the buffer for the
option value
(corresponding parameter e.g.
in Win32: optlen)

SysSockShutdown
This function of type BOOL calls the function shutdown of the operating system in order to
inhibit further send or receive actions. The function does not close the socket ! This must be
done via SysSockClose Ä Chapter 1.4.2.4.23.4 “SysSockClose” on page 613.
In case of successful operation the function will return TRUE, otherwise FALSE.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 621

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

diHow DINT Here you define, which type of
communication actions should
be inhibited
(corresponding parameter e.g.
in Win32: how)

SysSockHtonl
This function of type DWORD calls the function htonl of the operating system, which will convert
a u_long value from host byte order to TCP/IP network order.
The function returns the converted value.

Variable Data type Description
dwHost DWORD Value to be converted.

TCP specific functions
SysSockRecv

This TCP/IP specific function of type DINT calls the function read (VxWorks) resp. recv (Win32)
of the operating system in order to receive data which have been sent to the socket.
The function will return the number of read bits.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

pbyBuffer DWORD Address of the buffer from
which the data should be read
(corresponding parameter e.g.
in Win32: buf)

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US622

Variable Data type Description
diBufferSize DINT Size of the buffer from which

the data should be read
(corresponding parameter e.g.
in Win32: len)

diFlags DINT Defines in which way the
function should be called;
depending on the socket
options.
(corresponding parameter e.g.
in Win32: flags)

If the socket has been "gracefully closed" , 0 will be returned, otherwise 1.

SysSockSend
This TCP/IP specific function of type DINT calls the function send of the operating system in
order to send the data which are buffered at the socket.
The function will return the number of sent bits. If the socket has been "gracefully closed" , 0 will
be returned, otherwise 1.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

pbyBuffer DWORD Address of the buffer from
which the data should be send
(corresponding parameter e.g.
in Win32: buf)

diBufferSize DINT Size of the buffer from which
the data should be send
(corresponding parameter e.g.
in Win32: len)

diFlags DINT Defines in which way the
function should be called;
depending on the socket
options.
(corresponding parameter e.g.
in Win32: flags)

UDP specific functions
SysSockRecvFrom

This UDP specific function of type DINT calls the function recvfrom of the operating system, in
order to read the data which have been sent to the socket.
The function will return the number of read bits. If the socket has been "gracefully closed" , 0 will
be returned, otherwise 1.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 623

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

pbyBuffer DWORD Address of the buffer from
which the data should be
received
(corresponding parameter e.g.
in Win32: buf)

diBufferSize DINT Size of the buffer from which
the data should be received
(corresponding parameter e.g.
in Win32: len)

diFlags DINT Defines in which way the
function should be called;
depending on the socket
options.
(corresponding parameter e.g.
in Win32: flags)

pSockAddr DWORD Pointer to a variable of
type SOCKADDR; Ä Chapter
1.4.2.4.23.2 “SysSockAccept”
on page 612

diSockAddrSize DINT Length of structure SockAddr
(can be retrieved via the
SIZEOF operator)
(corresponding parameter e.g.
in Win32: iSockAddrSize)

SysSockSendTo
This UDP specific function of type DINT calls the function send of the operating system in order
to send the data which are stored at the socket.
The function will return the number of read bits. If the socket has been "gracefully closed" , 0 will
be returned, otherwise 1.

Variable Data type Description
diSocket DINT Descriptor of the socket,

returned by SysSockCreate
Ä Chapter 1.4.2.4.23.6 “Sys-
SockCreate” on page 614

(corresponding parameter e.g.
in Win32: s)

pbyBuffer DWORD Address of the buffer from
which the data should be sent
(corresponding parameter e.g.
in Win32: buf)

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US624

Variable Data type Description
diBufferSize DINT Size of the buffer from which

the data should be sent
(corresponding parameter e.g.
in Win32: en)

diFlags DINT Defines in which way the
function should be called;
depending on the socket
options.
(corresponding parameter e.g.
in Win32: flags)

pSockAddr DWORD Pointer to a variable or
type SOCKADDR; Ä Chapter
1.4.2.4.23.2 “SysSockAccept”
on page 612

diSockAddrSize DINT Length of the structure Sock-
Addr (can be retrieved via the
SIZEOF operator)
(corresponding parameter e.g.
in Win32: iSockAddrSize)

1.4.2.4.24 The library SysLibSocketsAsync.lib
This library offers the same functionality as 'The library SysLibSockets.lib', however func-
tion blocks instead of functions are used and the processing is asynchronous Ä Chapter
1.4.2.4.23.1 “Overview” on page 609.

Restriction
This library is not supported for AC500 V2 devices.

– The opening/closing of sockets may take a long time if many sockets are to
be opened/closed simultaneously.

– Using the asynchronous functions is recommended.

Corresponding to the parameters of the functions in SysLibSockets.lib the respective function
blocks of SysLibSocketsAsync.lib have specific input parameters with identic impact.
Corresponding to the return values of the functions in SysLibSockets.lib the respective function
blocks of SysLibSocketsAsync.lib have specific output parameters with identic impact.
Additionally the following input and output parameters are available in all function blocks:

Input: bEnable BOOL Rising edge: the func-
tion block starts the
action.

Outputs: bDone BOOL TRUE indicates that
the function block
has completed pro-
cessing.

bBusy BOOL TRUE indicates that
the function block is
still processing.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 625

bError BOOL TRUE indicates that
an error has occurred.

wErrorId WORD Error number

Each function block will start the respective action as soon as a rising edge is detected at
bEnable. Then it must be called cyclically until bDone=TRUE. Thereafter the outputs bError and
wErrorId as well as the specific output parameters of the particular function block are in effect.
● Ä Chapter 1.4.2.4.23.2 “SysSockAccept” on page 612
● Ä Chapter 1.4.2.4.23.3 “SysSockBind” on page 613
● Ä Chapter 1.4.2.4.23.4 “SysSockClose” on page 613
● Ä Chapter 1.4.2.4.23.5 “SysSockConnect” on page 613
● Ä Chapter 1.4.2.4.23.6 “SysSockCreate” on page 614
● Ä Chapter 1.4.2.4.23.7 “SysSockGetHostByName” on page 614
● Ä Chapter 1.4.2.4.23.8 “SysSockGetHostName” on page 615
● Ä Chapter 1.4.2.4.23.11 “SysSockGetLastError” on page 616
● Ä Chapter 1.4.2.4.23.9 “SysSockGetOption” on page 615
● Ä Chapter 1.4.2.4.23.12 “SysSockHtons” on page 617
● Ä Chapter 1.4.2.4.23.12 “SysSockHtons” on page 617
● Ä Chapter 1.4.2.4.23.13 “SysSockInetAddr” on page 617
● Ä Chapter 1.4.2.4.23.14 “SysSockInetNtoa” on page 617
● Ä Chapter 1.4.2.4.23.15 “SysSockIoctl” on page 618
● Ä Chapter 1.4.2.4.23.16 “SysSockListen” on page 618
● Ä Chapter 1.4.2.4.23.17 “SysSockNtohl” on page 619
● Ä Chapter 1.4.2.4.23.18 “SysSockNtohs” on page 619
● Ä Chapter 1.4.2.4.23.19 “SysSockSelect” on page 619
● Ä Chapter 1.4.2.4.23.20 “SysSockSetIPAddress” on page 620
● Ä Chapter 1.4.2.4.23.21 “SysSockSetOption” on page 621
● Ä Chapter 1.4.2.4.23.22 “SysSockShutdown” on page 621

TCP specific:
● Ä Chapter 1.4.2.4.23.24.1 “SysSockRecv” on page 622
● Ä Chapter 1.4.2.4.23.24.2 “SysSockSend” on page 623

UDP specific:
● Ä Chapter 1.4.2.4.23.25.1 “SysSockRecvFrom” on page 623
● Ä Chapter 1.4.2.4.23.25.2 “SysSockSendTo” on page 624

1.4.2.4.25 The library SysLibStr.lib
Overview

This library provides functions for string operations. If the target system is supporting the func-
tionality, the library functions can be used to compare or copy strings or to retrieve the length of
a string. The execution is synchronous.

SysStrCmp
This function of type DINT compares lexicographically two strings and returns one of the fol-
lowing values:
Return value < 0 String1 smaller than String2
Return value = 0 String1 = String2
Return value > 0 String1 bigger than String2

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US626

Variable Data Type Description
dwString1 STRING First string (String1)

dwString2 STRING Second string (String2)

SysStrCmpI
This function of type DINT checks whether two strings are identical and returns one of the
following values:
Return value < 0 String1 smaller than String2
Return value = 0 String1 = String2
Return value > 0 String1 bigger than String2

Variable Data Type Description
dwString1 STRING First string (String1)

dwString2 STRING Second string (String2)

SysStrCmpN
This function of type DINT compares the size of two strings, whereby a defined number of
characters counted from the beginning of the string will be considered. One of the following
values will be returned:
Return value < 0 String1 smaller than String2
Return value = 0 String1 = String2
Return value > 0 String1 bigger than String2

Variable Data Type Description
sString1 STRING First string (String1)

sString2 STRING Second string (String2)

diChars DINT Number of locations for which
(start counting from the begin-
ning of the string) the size
of the strings should be com-
pared

SysStrCmpNI
This function of type DINT checks whether a defined number of characters of two strings
(starting at the beginning of the string) are identical. One of the following return values will show
the result:
Return value < 0 String1 smaller than String2
Return value = 0 String1 = String2
Return value > 0 String1 bigger than String2

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 627

Variable Data Type Description
sString1 STRING First string (String1)

sString2 STRING Second string (String2)

diChars DINT Number of characters starting
at the beginning of the string,
which will be checked for
identical values in both strings

SysStrCpy
This function of type DWORD copies one string (Str1) to another (Str2). It will return a pointer to
the target string Str2.

Variable Data Type Description
sString1 STRING String, to which you want to

copy (destination)

sString2 STRING String, which should be
copied (source)

SysStrLen
This function of type DINT acquires the length of a string. It will return the number of characters,
excluding the "terminal NULL".

Variable Data Type Description
sString1 STRING String, for which the length

should be retrieved

1.4.2.4.26 The library SysLibTasks.lib
Overview

If the target system supports the functionality, then the library functions can be used to manage
tasks. That means to generate, to delete, to modify priority level, to stop and restart tasks. The
execution is synchronous.

These functions are not reentrant. This should be no problem in normal cases,
but if in the application program a situation might occur, where several IEC-
tasks create and manage additional tasks, the calls to these functions have to
be synchronized. You can use the library SysLibSema in this case.

If you need functions to get information on the configuration of IEC-Tasks, use the library
SysLibIECTasks.lib. Ä Chapter 1.4.2.4.11.1 “Overview” on page 586.
Functions to be used within a task:
● Ä Chapter 1.4.2.4.26.9 “SysTaskSleep” on page 632
● Ä Chapter 1.4.2.4.26.10 “SysTaskEnd” on page 633
● Ä Chapter 1.4.2.4.26.11 “SysTaskGetCurrent” on page 633

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US628

SysTaskCreate
This function of type UDINT creates a new task. It will return an unique Id number for the task,
which is required as an input parameter for the other functions of SysLibTask.lib.

SysTask functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library SysLibSema in this case.

Input Variable Data type Description
stName STRING Name of the task

byPriority BYTE Priority of the Task; possible
values : 0-255,
Reserved: 0..31 for System
IEC-Tasks: 32..63
Communication -Tasks: 64
and higher

udiInterval UDINT Task interval in milliseconds

pfFunction DWORD Function pointer, which must
be acquired with the aid
of the function SysIECGetFct-
Pointer()

pArgument DWORD Pointer to parameters for the
new task

SysTaskDestroy
This function of type BOOL can be used to delete a task. It will return TRUE, if the operation has
succeeded, otherwise FALSE.

SysTask-functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

Input Variable Data type Description
udiTaskId UDINT Id of the task, which should be

deleted;
Id is returned by Sys-
TaskCreate Ä Chapter
1.4.2.4.26.2 “SysTaskCreate”
on page 629

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 629

SysTaskGetInfo
This function of type BOOL returns information on a task, which is identified by the task Id.

SysTask-functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

Input Variable Data type Description
udiTaskId UDINT Id of the task, on which you

want to get information; this
Id was returned by SysTask-
Create at creating the task
Ä Chapter 1.4.2.4.26.2 “Sys-
TaskCreate” on page 629

pSysTaskInfo POINTER TO SYSTASKINFO Pointer on the structure Sys-
TaskInfo, see below, which
contains information on the
task

Structure SysTaskInfo:
TYPE SYSTASKINFO :
STRUCT

dwHandle: DWORD; (* Operating system handle of
the task *)

dwId: DWORD; (* Index of the task *)

dwSem: DWORD; (*Reserved, only use in the
runtime system *)

wIECTaskNr: WORD; (* IEC task index in case it is
an IEC task *)

stName: STRING; (* Name of the task *)

END_STRUCT
END_TYPE

SysTaskGetPriority
This function of type BYTE returns the priority of the task identified by the task Id.
The priority can be a value between 0 (=highest priority) and 255 (=lowest priority).

SysTask functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US630

Input Variable Data type Description
udiTaskId UDINT Id of the task, of which you

want to know the priority level;
this Id was returned by
SysTaskCreate during crea-
tion of the task Ä Chapter
1.4.2.4.26.2 “SysTaskCreate”
on page 629

SysTaskSetPriority
This function of type BOOL can be used to define the priority level for a task which is identified
by the task Id. TRUE will be returned in case of a successful operation, otherwise FALSE.
The priority level can be a value between 0 (=highest priority) and 255 (=lowest priority).

SysTask functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

Input Variable Data type Description
UdiTaskId UDINT Id of the task, for which the

priority level should be set;
this Id was returned by
SysTaskCreate during crea-
tion of the task Ä Chapter
1.4.2.4.26.2 “SysTaskCreate”
on page 629

byPriority BYTE Priority ; possible values : 0
"“ 255
- Reserved for system: 0..31
- IEC-Tasks: 32..63
- Communication tasks: 64
and higher

SysTaskSuspend
This function of type BOOL can be used to stop a task during operation. The task will be identi-
fied by the task Id. (By calling the function SysTaskResume the processing can be continued
later Ä Chapter 1.4.2.4.26.8 “SysTaskResume” on page 632.)
TRUE will be returned in case of a successful stop of the task, otherwise FALSE.

SysTask functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 631

Input Variable Data type Description
udiTaskId UDINT Id of the task, which should be

stopped;
this Id was returned by
SysTaskCreate during crea-
tion of the task Ä Chapter
1.4.2.4.26.2 “SysTaskCreate”
on page 629

SysTaskResume
This function of type BOOL can be used to continue the processing of a task, which was
stopped before by the function SysTaskSuspend Ä Chapter 1.4.2.4.26.7 “SysTaskSuspend”
on page 631.
TRUE will be returned in case of a successful stop of the task, otherwise FALSE.

SysTask functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

Input Variable Data type Description
udiTaskId UDINT Id of the task, which should

continue processing;
this Id was returned by
SysTaskCreate during crea-
tion of the task Ä Chapter
1.4.2.4.26.2 “SysTaskCreate”
on page 629

SysTaskSleep
This function of type BOOL can be used to interrupt the processing in a running task and to
make it continue after a defined period of time.
TRUE will be returned, if the sleep function has been executed successfully, otherwise FALSE.

SysTask functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

Input Variable Data type Description
udiMilliseconds UDINT Time in milliseconds after

which the stopped (sleeping)
task should continue to be
processed

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US632

SysTaskEnd
This function of type BOOL should be called by a task as soon its processing has been
terminated. Typically this should be done immediately before the task is left.

SysTask functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

Input Variable Data type Description
udiExitCode UDINT Should be 0

udiTaskId UDINT Id of the task, which should be
terminated; has been returned
by SysTaskCreate during cre-
ation of the task Ä Chapter
1.4.2.4.26.2 “SysTaskCreate”
on page 629

SysTaskGetCurrent
This function of type UDINT can be called by the currently processing task in order to get
returned the own task Id.

SysTask functions are not reentrant. This should be no problem in normal
cases, but if in the application program a situation might occur, where several
IEC-tasks create and manage additional tasks, the calls to these functions have
to be synchronized. You can use the library 'The library SysLibSem.lib' in this
case Ä Chapter 1.4.2.4.21.1 “Overview” on page 606.

Input Variable Data type Description
bDummy BOOL TRUE starts the function

1.4.2.4.27 The library SysLibSymbols.lib
Overview

If supported by the target system (CSP32F as from Version 2.4.5.0), the function SysLibGet-
SymbolAddress1 provided by this library can be used to read the physical address of a symbol
of an IEC project. The processing is done synchronously Ä Chapter 1.4.2.4.27.2 “Function
SysLibGetSymbolAddress” on page 633.

Function SysLibGetSymbolAddress
This function of type DWORD of the library 'The Library SysLibSymbols' returns the physical
address for the given symbol. A variable must be specified by its full name, e.g. "PLC_PRG.a’
or "*.global_var’ Ä Chapter 1.4.2.4.27.1 “Overview” on page 633.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 633

As a precondition the symbol file must be available on the PLC and the symbol must be entered
in the symbol file. The appropriate settings are to be done in the project options and in the
target settings dialogs.
There is still the possibility to get the address of a variable by the ADR operator (e.g.
ADR(PLC_PRG.a)). But in this case the symbol must be known already at compile time. The
SysLibGetSymbolAddress function however allows to adapt the symbol name during run time
Ä Chapter 1.4.2.4.27.2 “Function SysLibGetSymbolAddress” on page 633.
The return value is the address of the variable or 0 in case the symbol could not be found.

Input Variable Data Type Description
pszSymbol STRING Name of the variable

1.4.2.4.28 The library SysLibTime.lib
Overview

This library provides function blocks for reading the real-time clock of the local system. The
execution is synchronous.
● Ä Chapter 1.4.2.4.28.2 “CurTime” on page 634
● Ä Chapter 1.4.2.4.28.3 “CurTimeEx” on page 634

Used structures:
● Ä Chapter 1.4.2.4.28.4 “Structure SystemTimeDate” on page 635
● Ä Chapter 1.4.2.4.28.5 “Structure SysTime64” on page 635

CurTime
This function block provides the real time of the local system in microseconds; using the
structure SysTime64.

VARINOUT Variable Data type Description
SystemTime SysTime64 Value of the real-time

clock of the local system
in microseconds, see Struc-
ture SysTime64 Ä Chapter
1.4.2.4.28.5 “Structure Sys-
Time64” on page 635

CurTimeEx
This function block provides extended information on the real-time clock data on the local
system.

PLC Automation with V2 CPUs
Programming with CODESYS > Libraries

2022/01/203ADR010582, 3, en_US634

VARINOUT Variable Data type Description
SystemTime SysTime64 Value of the real-time clock

in microseconds, see Struc-
ture SysTime64 Ä Chapter
1.4.2.4.28.5 “Structure Sys-
Time64” on page 635

TimeDate SystemTimeDate Detailed information on the
value of the real-time clock,
see Structure SystemTime-
Date Ä Chapter 1.4.2.4.28.4
“Structure SystemTimeDate”
on page 635

Structure SystemTimeDate
This structure contains the following information on the real time given by the local system
clock. It is used by the function block CurTimeEx Ä Chapter 1.4.2.4.28.3 “CurTimeEx”
on page 634.

Component Data type Description
dwLowMSecs DWORD The value of the real-

time clock is returned
in microseconds, using
a Low DWORD plus a
High DWORD, see Struc-
ture SysTime64 Ä Chapter
1.4.2.4.28.5 “Structure Sys-
Time64” on page 635

dwHighMsec DWORD

Year UINT Year, e.g. "2002"

Month UINT Month, e.g. "12"

Day UINT Day of month, e.g. "3"

Hour UINT Hour of the current day, e.g.
"13"

Minute UINT Minutes of the current hour,
e.g. "43"

Second UINT Seconds of the current
minute, e.g. "15"

Milliseconds UINT Milliseconds of the current
second, e.g. "649"

DayOfWeek UINT Day of the week, e.g. "2"
(Sunday=0, Monday = 1...)

Structure SysTime64
This structure contains the real time of the local system in microseconds. A Low- plus a
High-DWORD are used for that purpose, thus 64 bit are available. The structure is used by
the function blocks CurTime and CurTimeEx Ä Chapter 1.4.2.4.28.2 “CurTime” on page 634
Ä Chapter 1.4.2.4.28.3 “CurTimeEx” on page 634.

PLC Automation with V2 CPUs

Programming with CODESYS > Libraries

2022/01/20 3ADR010582, 3, en_US 635

Component Data type Description
ulLow DWORD Low DWORD of the real-time

value (microseconds)

ulHigh DWORD High DWORD of the real-time
value (microseconds)

1.4.3 Visualization
1.4.3.1 Overview

A visualization is a graphical representation of the project variables which allows inputs to the
PLC program in online mode via mouse and keypad. The integrated visualization provides
graphic elements which can be arranged as desired and can be connected with project varia-
bles. Thereupon in online mode the look of the graphical elements will change depending on the
variables values.
Simple example: In order to represent a fill level, which is calculated by the PLC program, draw
a bar and connect it to the corresponding project variable, so that the length and color of the bar
will show the current fill level value. Add a text field which will display the current value in a text
string and a button for starting and stopping the program.
The properties of a single visualization element as well as of the whole visualization object
will be defined in appropriate configuration dialogs and in the Object Properties dialog. There
it is possible to set basic parameters by activating options as well as to define a dynamic
parameterizing by entering project variables.
Additional special possibilities for configuring are given by the programmability of element
properties via structure variables.
Using placeholders in the configuration dialogs may save a lot of effort in case you want to use
the same visualization object several times with different configurations.
The visualization which is created in the programming system will in many cases be used
as the only user interface available for controlling and watching the associated PLC program
in online mode. For this purpose it must be possible to give inputs to the program solely by
activating visualization elements. To reach this you can use special input possibilities during the
configuration of the visualization and you have the option to define special hotkeys for each
particular visualization.
A visualization can later be used in different ways:
● It can be made available on CODESYS HMI, a special runtime system for operating the

visualization in full screen mode on a PLC computer.
● It can be made available as a web visualization, which allows to call and operate it via the

Internet (useful for remote maintenance purposes)
Example of a visualization:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US636

1.4.3.2 Create a new visualization
A visualization object is managed in the 'Visualization' register of the Object Organizer. It
contains an arrangement of visualization elements and can get certain object properties. One or
several visualization objects can be created in a Automation Builder project and might be linked
with each other.
In order to create a visualization object in the Object Organizer, you must select the register
card for Visualization in the Object Organizer.

Using the 'Project' 'Object Add' command, you can create a new visualization object. Open the
'New visualization' dialog, in which you can enter the name of the new visualization (see the
remarks below). Once a valid entry is made, that is not a name that is already in use and no
special characters used, you can close the dialog with OK. A window opens, in which you can
edit the new visualization.
When the visualization object is marked in the Object Organizer, via command 'Project' 'Object'
'Properties' the properties dialog can be opened, where you can make settings concerning the
usage of the object in a web visualization as well as concerning a Master layout Ä Chapter
1.4.1.2.4.12 “'Project' 'Object properties'” on page 261.
When defining the name of the visualization object, please regard the following:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 637

● A visualization named "PLC_VISU" per default automatically will be used as start visualiza-
tion in a web visualization or in CODESYS HMI, if there not explicitly another visualization is
configured for this.

● A visualization may not get the same name as another object within the project because this
would result in problems when changing between visualizations.

If you want to use the implicit variable CurrentVisu (type STRING) for
addressing the currently opened visualization object, with compiler versions <
V2.3.7.0 and if the library SysLibStr.lib is not included in the project, you must
use capital letters for the names of the visualization objects (e.g. PLC_VISU).

For information on implicit variables see 'System variables' Ä Chapter 1.4.3.11
“System variables” on page 717.

1.4.3.3 Inserting visualization elements
A visualization element is a graphical element, which is used to fill a visualization object. The
available elements are offered in the menu bar. Each element gets a separate configuration.
You can insert various geometric forms, as well as bitmaps, metafiles, buttons, various special
elements and existing visualizations into your visualization. Regard the possibility of defining
a special directory for visualization files in the Options for directories Ä Chapter 1.4.1.2.2.7
“Options for directories” on page 207.
Go to the 'Insert' menu item and select freely from the following commands: 'Rectangle',
'Rounded Rectangle', 'Ellipse', 'Polygon', 'Polyline', 'Curve', 'Pie', 'Bitmap', 'Visualization', 'But-
ton', 'Table', 'ActiveX-Element', 'Scrollbar', 'Meter', 'Bar Display', 'Histogram', 'Alarm table',
'Trend', 'WMF file'.
Alternatively you can use the tool bar.
If you then draw the mouse pointer to the editor window, the corresponding element symbol will
be displayed at the pointer. Click on the desired starting point of your element and move the
pointer with pressed left mouse key until the element has the desired dimensions.
If you want to create a polygon or a line, first click with the mouse on the position of the first
corner of the polygon resp. on the starting point of the line, and then click on the further desired
corner points. By doubleclicking on the last corner point you will close the polygon and it will be
completely drawn respectively the line will be completed. If you want to create a curve (Bezier
curves) determine the initial and two other points with mouse clicks to define the circumscribing
rectangle. An arc is drawn after the third mouse click. You can then change the position of the
end point of the arc by moving the mouse and can then end the process with a double click or
add another arc with additional mouse clicks.
Furthermore pay attention to the status bar and the change from select and insert modes.

1.4.3.3.1 'Insert' 'Rectangle'
Symbol:

With the command you can insert a rectangle as an element into your present visualization
Ä Chapter 1.4.3.3 “Inserting visualization elements” on page 638.

1.4.3.3.2 'Insert' 'Rounded Rectangle'
Symbol:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US638

With the command you can insert a rectangle with rounded corners as an element in your
present visualization Ä Chapter 1.4.3.3 “Inserting visualization elements” on page 638.

1.4.3.3.3 'Insert' 'Ellipse'
Symbol:

With the command you can insert a circle or an ellipse as an element in your present visualiza-
tion Ä Chapter 1.4.3.3 “Inserting visualization elements” on page 638.

1.4.3.3.4 'Insert' 'Polygon'
Symbol:

With the command you can insert a polygon as an element in your present visualization
Ä Chapter 1.4.3.3 “Inserting visualization elements” on page 638.

1.4.3.3.5 'Insert' 'Polyline'
Symbol:

With the command you can insert a line as an element into your current visualization Ä Chapter
1.4.3.3 “Inserting visualization elements” on page 638.

1.4.3.3.6 'Insert' 'Curve'
Symbol:

With the command you can insert a Bezier curve as an element into your current visualization
Ä Chapter 1.4.3.3 “Inserting visualization elements” on page 638.

1.4.3.3.7 'Insert' 'Pie'
Symbol:

Use this command to insert a Pie Segment as an element into your current visualization.
While pressing the left mouse button, bring up an area in the desired size. An oval element
including a line marking the radius at the 0° position will be displayed. As long as keeping the
mouse button pressed you can immediately change size and position of the element by moving
the mouse. A little black square is attended to the the element, indicating the corner of a virtual
rectangle surronding the element.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 639

In order to define the start and end angles of a Pie, select the end point of the radius line on
the circular arc by a mouse-click. As soon as you, keeping the mouse button pressed, move
the cursor, two small rectangles will be displayed, indicating the two angle positions. As from
now those can be selected and moved seperately. If you want the angle values get defined
dynamically by variables, open the configuration dialog category 'Angle' and enter the desired
variable names Ä Chapter 1.4.3.5.5 “Angle” on page 650.
You can resize or reshape the element later by either clicking on the centre point, the cursor
getting displayed as diagonally crossed arrows, and moving the mouse while keeping the
mouse button pressed (or using the arrow keys). Alternatively you can select and move the
corner indicating little square outside of the element. In order to move the element to another
position, click inside the element to get the cursor beeing displayed as vertically crossed arrows
and then move the cursor.

1.4.3.3.8 'Insert' 'Bitmap'
Symbol:

With the command you can insert a bitmap as an element in your present visualization
Ä Chapter 1.4.3.3 “Inserting visualization elements” on page 638.
While pressing the left mouse button, bring up an area in the desired size. The standard dialog
box for browsing for a file will be opened. You can use this dialog to select and enter a bitmap
file from the local file system. In the configuration dialog of the inserted bitmap you then can
define, whether a link to the bitmap file should be stored or the bitmap should be inserted as an
element.
Alternatively you can specify a project variable to define which bitmap should be used. This
allows a dynamic change of bitmaps in online mode. The variable must be entered in the config-
uration dialog of an already inserted bitmap element and it must contain the name of a bitmap
file managed in the project-global Ä Chapter 1.4.3.7.1 “'Extras' 'Bitmap list'” on page 706.
For a description on the configuration of a bitmap element please see 'Bitmap' Ä Chapter
1.4.3.5.19 “Bitmap” on page 669.

1.4.3.3.9 'Insert' 'Visualization'
Symbol:

With the command you can insert an existing visualization as an element in your present
visualization Ä Chapter 1.4.3.3 “Inserting visualization elements” on page 638.
While pressing the left mouse button, bring up an area in the desired size. A selection list of
existing visualizations opens. After you have selected the desired visualization, it will be inserted
in the defined area. An inserted visualization will also be named "instance".

1.4.3.3.10 'Insert' 'Button'
Symbol:

This command is used to insert a button into your current visualization Ä Chapter 1.4.3.3
“Inserting visualization elements” on page 638.
Drag the element to the desired size with the left mouse button held down.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US640

If a toggle variable is configured for the button it displays the state of this variable by visually
displaying whether it is pressed or not pressed. Conversely, the variable is toggled by "pressing"
the button.
Like for a "Bitmap" element also for the filling of a button element an image file can be speci-
fied (static or dynamic use). See the description of the configuration dialog for 'Insert Bitmap'
Ä Chapter 1.4.3.3.8 “'Insert' 'Bitmap'” on page 640.

1.4.3.3.11 'Insert' 'WMF file'
Symbol:

This command is used to insert a Windows Metafile. The standard dialog for opening a file will
appear, where you can select a file (extension *.wmf). After having closed the dialog with OK the
file will be inserted as an element in the visualization. Please regard, that no link to a file will be
saved, like it is done when you insert a bitmap, but the elements of the metafile will be inserted
as a group Ä Chapter 1.4.3.3.8 “'Insert' 'Bitmap'” on page 640 Ä Chapter 1.4.3.4.8 “Grouping
elements” on page 644.

1.4.3.3.12 'Insert' 'Table'
Symbol:

Use this command to insert a Table element as an element into your current visualization. It is
used to display the current values of the elements of an array.
While pressing the left mouse button, bring up an area in the desired size. Before the element
gets displayed the configuration dialog 'Configure Table' will be opened Ä Chapter 1.4.3.5.20
“Table” on page 671. Here you will find additionally to the standard categories Tooltip and
Security the categories 'Table', 'Columns', 'Rows' and 'Selection' where you can define contents
and appearance of the table.

1.4.3.3.13 'Insert' 'ActiveX-Element'
Symbol:

Use this command to insert an ActiveX Control into your current visualization. It can be used
later on Windows32 systems in CODESYS HMI. While pressing the left mouse button, bring up
an area in the desired size. It will be inserted as a rectangle with the inscription "Control:".
To select a certain ActiveX Control and to configure the method calls and the display open the
dialog 'Configure ActiveX-Control' by a double-click on the element resp. via command 'Extras'
'Configure' Ä Chapter 1.4.3.5.4 “'Extras' 'Configure'” on page 649.

1.4.3.3.14 'Insert' 'Scrollbar'
Use this command to insert a Scrollbar element in the current visualization. In the configuration
of that element you can assign a variable to the element, the value of which will be changed
when the user moves the scrollbar slider in online mode Ä Chapter 1.4.3.5.22 “Scrollbar”
on page 679. Vice versa the slider position will reflect the current value of the variable if this
value is given by any other input. In the target visualization the element will work only if it is
supported by the target system.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 641

Insert the element by drawing a rectangle in desired size. The shape of the rectangle deter-
mines whether the scrollbar will be entered vertically or horizontally .

1.4.3.3.15 'Insert' 'Meter'
Symbol:

Use this command to insert a Meter as an element into your current visualization. It provides a
scale which is defined as a sector of a circular arc, and a pointer element.
While pressing the left mouse button, bring up an area in the desired size. Before the element
gets displayed the configuration dialog 'Meter' will be opened Ä Chapter 1.4.3.5.23 “Meter”
on page 680. Here you can define various parameters concerning the display of the element
and a preview is available to check the configuration before really inserting the element by
confirming the dialog.

1.4.3.3.16 'Insert' 'Bar Display'
Symbol:

Use this command to insert a Bar Display element into your current visualization. It is used to
visualize the value of the assigned variable by a bar indicating the value by its length along a
horizontal scale.
While pressing the left mouse button, bring up an area in the desired size. Before the ele-
ment gets displayed the configuration dialog 'Configure bar display' will be opened Ä Chapter
1.4.3.5.24 “Bar display” on page 682. Here you can define various parameters concerning
the display of the element and a preview is available to check the configuration before really
inserting the element by confirming the dialog.

1.4.3.3.17 'Insert' 'Histogram'
Symbol:

Use this command to insert a Histogram element into your current visualization. It is used to
visualize the elements of an array by bars which are placed side by side each indicating the
value of the element by its length.
While pressing the left mouse button, bring up an area in the desired size. Before the ele-
ment gets displayed the configuration dialog 'Configure Histrogram' will be opened Ä Chapter
1.4.3.5.25 “Histogram” on page 683. Here you can define various parameters concerning
the display of the element and a preview is available to check the configuration before really
inserting the element by confirming the dialog.

1.4.3.3.18 'Insert' 'Alarm table'
Symbol:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US642

Use this command to insert an alarm table into your current visualization object.
While pressing the left mouse button, bring up an area in the desired size. Before the element
gets displayed the configuration dialog 'Configure Alarm table' will open Ä Chapter 1.4.3.5.26
“Alarm table” on page 684. Here you will find additionally to the standard categories Tooltip and
Security the categories 'Alarmtable', 'Settings for sorting', 'Columns' and Settings for alarmtable'
where you can define contents and appearance of the table.
An alarm table can be used to visualize the alarms, which have been defined in the Alarm
configuration of the project.

1.4.3.3.19 'Insert' 'Trend'
Symbol:

Use this command to insert a trend element into your current visualization object.. While
pressing the left mouse button, bring up an area in the desired size. The configuration (axes,
variables, history) is done in the configuration dialog 'Trend' Ä Chapter 1.4.3.5.27 “Trend”
on page 688.
The trend element, also named oscilloscope element, is used to display variable values within
a certain time period. It stores the data in a file on the client and displays them as a graph. As
soon as a value changes, a new entry will be made in the file, showing date/time and the new
value.
The trend element is drawn transparently. So you can assign any desired background (bitmap,
color).

1.4.3.4 Positioning visualization elements
1.4.3.4.1 Selecting visualization elements

The selection mode is activated by default. In order to select an element, click with the mouse
on the element. You can also select the first element of the elements list by pressing the <Tab>
key and jump to the next by each further keystroke. If you press [Tab] while pressing [Shift], you
jump backwards in the order of the elements list.
In order to select elements, which are placed one upon the other, first select the top level
element by a mouse-click. Then do further mouse-clicks while [Ctrl] + [Shift] are pressed, to
reach the elements in the underlying levels .
In order to mark multiple elements, press and hold [Shift] and click the corresponding elements,
one after another. Or while holding down the left mouse button, pull a window over the elements
to be selected.
In order to select all the elements, use the 'Extras' 'Select All' Ä Chapter 1.4.3.4.4 “'Extras'
'Select All'” on page 644 command.
If you are in the element list (called by 'Extras' 'Element list'), you can select the concerned
element in the visualization by selecting a line.

1.4.3.4.2 Changing the selection and insert mode
After the insertion of a visualization element, there is an automatic change back into the selec-
tion mode. If you want to insert an additional element the same way, you can once again select
the corresponding command in the menu.
You can also quickly change between the selection mode and the insert mode by pressing [Ctrl]
and the right mouse button simultaneously.
In the insert mode, the corresponding symbol will also appear at the mouse pointer, and the
name will also be indicated in black in the status bar.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 643

1.4.3.4.3 'Extras' 'Select'
This command is used to switch the selection mode on or off. This can also be achieved by
pressing the right mouse-key while holding down the [Ctrl]key at the same time.

1.4.3.4.4 'Extras' 'Select All'
This command allows you to select all visualization elements within the current visualization
object.

1.4.3.4.5 Copying visual elements
One or more selected elements can be inserted with the 'Edit' 'Copy'command, the [Ctrl] + [C]
combination, or the corresponding copy symbol, and with 'Edit' 'Paste'.
A further possibility is to select the elements and to again click in one of these elements with
[Ctrl] held down. If you now hold the left mouse button down, you can separate the elements
thus copied from the original.

1.4.3.4.6 Modifying visualization elements
You can select an element which has already been inserted by a mouse click on the element
or by pressing [tab]. A small black square will appear at each corner of each of the elements,
(with ellipses at the corners of the surrounding rectangle). Except in the case of polygons, lines
or curves further squares appear in the middle of the element edges between the corner points.

With a selected element, the turning point (balance point) is also displayed at the same time.
You can then rotate the element around this point with a set motion/angle. The turning point
is displayed as a small black circle with a white cross. You can drag the turning point with a
pressed left mouse button.
You can change the size of the element by clicking on one of the black squares and, while
keeping the left mouse button pressed, controlling the new outline.
With the selection of a polygon, you can drag each individual corner using the same technique.
While doing this, if you press [Ctrl] then an additional corner point will be inserted at the corner
point, an additional corner point will be inserted, which can be dragged by moving the mouse.
By pressing [Shift] + [Ctrl], you can remove a corner point.

1.4.3.4.7 Dragging visualization elements
One or more selected elements can be dragged by pressing the left mouse button or the arrow
key.

1.4.3.4.8 Grouping elements
Elements can be grouped by selecting all desired elements and performing the command
'Extras' 'Group'. The group will behave like a single element:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US644

● the grouped elements get a collective frame; when dragging the frame, depending on the
current configuration all elements will be stretched, compressed or keep their original size;
only the group can be moved to another position.

● the grouped elements get collective properties: inputs only can effect the group and not a
single element. Thus the elements also get one collective configuration (category 'group').
The property 'Change color' can not be configured for a group!

To redefine a single element of a group, the grouping must be redone by the command 'Extras'
'Ungroup'. The configuration of the group will be lost in this case.

As soon as you save the project as program version 2.1 or lower, a group
of visualization elements will be resolved automatically; that means that the
elements of the group will be shown as single elements in the visualization.

1.4.3.4.9 'Extras' 'Send to Front'
Use this command to bring selected visualization elements to the front.

1.4.3.4.10 'Extras' 'Send to Back'
Use this command to send selected visualization elements to the back.

1.4.3.4.11 'Extras' 'Align'
Use this command to align selected visualization elements.
The following alignment options are available:
● Left: the left edge of each of the elements will be aligned to the element that is furthest to

the left.
● the same is true for Right / Top / Bottom.
● Horizontal Center: each of the elements will be aligned to the average horizontal center of

all elements.
● Vertical Center: each of the elements will be aligned to the average vertical center of all

elements.

1.4.3.4.12 'Extras' 'Element list'
This command opens a dialog box containing a list of all visualization elements including their
number, type and position. The element number will be displayed in the element in the editor
view, if the corresponding option is activated in the visualization settings Ä Chapter 1.4.3.6.1
“'Extras' 'Settings'” on page 700. The position is given according to the x and y position of the
upper left (x1, y1) and the lower right (x2, y2) corner of the element.
When one or more items have been selected, the corresponding elements in the visualization
are marked for visual control and if necessary the display will scroll to that section of the
visualization that contains the elements.
Use the [To front] button to bring selected visualization elements to the front. Use the [To
behind] button to move them to the back.
Below the elements list there you find depending on which element is currently selected - one of
the following combinations of edit fields where you can modify size and position of the element:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 645

● If a rectangle, rounded rectangle, ellipse, bitmap, visualization, button or a meta file is
currently selected, then next to the text "Rectangle (x1, y1, x2, y2)" there are four edit fields,
where the actual x/y positions are shown and can be modified.

● If a line, polygon or a curve is currently selected, a table will be available showing the
actual X-Position and Y-Position of each of the black squares which mark the shape of the
element, as soon as it is selected. These values can be edited here.

To set the modified position values in the elements list and in the visualization, press button [Set
rectangle] (in case 1.) resp. [Set polygon] (in case 2.).
Use the Delete button to remove selected visualization elements.
Use the [Undo] and [Redo] buttons to undo or restore changes that have been made just as you
would do with the commands 'Edit' 'Undo' and 'Edit' 'Redo' . In the dialog box, you can observe
the changes that are being made.
Click on [OK] to close the dialog box and confirm the changes.
Use “Configure” to get the configuration dialog for the element.

1.4.3.4.13 Status bar in the visualization
If a visualization has the focus, the current X and Y position of the mouse cursor in pixels
relative to the upper left corner of the image is displayed in the status bar. If the mouse pointer
is located on an Element, or if the element is being processed, then the number of the element
will be displayed. If you have selected an element to insert, then this element will also appear
(for example, Rectangle).

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US646

1.4.3.5 Configuring visualization elements
1.4.3.5.1 Overview

In the configuration dialogs opened via the 'Extras' 'Configure' command the properties of
an element or object are set either by activating options or dynamically by inserting project
variables Ä Chapter 1.4.3.5.4 “'Extras' 'Configure'” on page 649. Besides that the properties
can be programmed via the components of a structure variable, which can be defined for each
visualization element.

Regard the order of analysis, which will be followed in online mode:

– The values which are given dynamically, i.e. via project variables, will over-
write the fix parameters defined for the same property.

– If an element property is defined by a "normal" project variable as well as
by the component of a structure variable, then in online mode primarily the
value of the project variable will be regarded.

Please regard the possibility of using placeholders as well as the special input possibilities
which are useful if the visualization should be used in CODESYS HMI or web visualization ,
that means if the visualization serves as the only user interface for a PLC program Ä Chapter
1.4.3.5.30 “Special input possibilities for operating versions” on page 695.

Dialogs which include the configuration of Colors and Fonts for a visualization
element, can look differently depending on the currently selected target system.
Possibly instead of the standard dialog there is a dialog with restricted options.
This might be reasonable for projects, which are designated for a use in target
visualizations.

Also regard that in the project options a separate directory can be defined for visualization files
Ä Chapter 1.4.1.2.2.7 “Options for directories” on page 207.

1.4.3.5.2 Placeholder
At each location in the configuration dialog at which variables or text are entered, a placeholder
can be set in place of the respective variable or text. This makes sense if the visualization object
is not to be used directly in the program, but is created to be inserted in other visualization
objects as an "instance". When configuring such an Instance, the placeholders can be replaced
with variable names or with text (see Configuring an inserted visualization , there you also find
an example for using placeholders Ä Chapter 1.4.3.5.28 “Visualization” on page 693).
Any string enclosed in two dollar signs ($) is a valid placeholder (e.g. $variable1$, variablex).
For each placeholder a „value group" can be defined as an input specification in the 'Place-
holder list' dialog (called from 'Extras' 'List of placeholders'). With one of these values you can
replace the placeholder when configuring an instance of the visualization object. A placeholder
list will be available in the instance to do this replacements.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 647

Instances of a function block can easily be displayed with the help of instances of the same
visualization. For example, in configuring the visualization visu, which visualizes the variables
of function block, one could begin each variable entry with the placeholder FUB (e.g.
FUB.a). If an instance of visu is then used (by inserting visu in another visualization or
by calling via 'Zoom to vis.'), then in the configuration of this instance the placeholder FUB
can then be replaced with the name of the function block instance to be visualized. This might
look like shown in the following: In the project define a function block containing the following
declarations:
FUNCTION_BLOCK fu
VAR_INPUT
 changecol : BOOL; (* should cause a color change in the
visualization *`)
END_VAR

In PLC_PRG define two instances of 'fu':
inst1_fu : fu;
inst2_fu : fu;

1. Create a visualization object 'visu'. Insert an element and open the configuration dialog,
category 'Variables'. Enter in field 'Change color' the following: "FUB.changecol". Open
category 'Input' and enter in field 'Tap Variable' "FUB.changecol". Open category 'Text'
and enter"FUB - change color ".

2. Create another visualization object 'visu1'.
3. Insert visualization 'visu' twice in 'visu1' (two references of 'visu').
4. Mark the first reference of 'visu' and open the configuration dialog of category 'Visuali-

zation'. Press button 'Placeholder', so that the placeholder list will be displayed. There
replace entry 'FUB' by 'PLC_PRG.inst_1'.

5. Now mark the second instance of 'visu' and (like described for the first one) replace 'FUB'
by 'PLC_PRG.inst_2'.

ð In online mode, the values of the variables which are used to configure the two
instances of 'fu' will be visualized in the corresponding instance of 'visu'. Of course
the placeholder FUB can be used at all places in the configuration of 'visu' where
variables or text strings are entered.

Example of an
application of
the placeholder
concept

1.4.3.5.3 'Extras' 'List of Placeholders'
This list is used to manage placeholders and to configure them:
Primarily you use the list when configuring a visualization object, which later should be inserted,
which means instanced, in other visualization(s). For this reason you will use placeholders
instead of or additionally to variables and strings in the configuration dialogs. You can open
the dialog 'Placeholders' by the command 'List of Placeholders' in the 'Extras' menu or in the
context menu.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US648

Column 'Placeholder' will list all placeholders, which are currently used in the configuration
of the visualization object. Column 'Element number' shows the elements which contain a
placeholder. In column 'Replacements' you can enter one or several strings (text, variable,
expression) which you want to get available later when replacing a placeholder during the
configuration of an instance of the visualization object. The elements of the selection must be
entered separated by commas. If no or an impossible replacement string is specified, then
the placeholder can be replaced with any desired text later during the configuration of the
visualization's reference.
Later you use the list of placeholders when configuring an instance of the above mentioned
visualization object, that means after this object has been inserted (as a 'reference') in another
visualization by the command 'Insert' 'Visualization'. For this purpose do the following to open
the dialog: Select the inserted visualization, execute command 'Extras' 'Configure' and press
button 'Placeholders' in Category 'Visualization'. In this case the dialog will only contain two
columns:

Column 'Placeholder' – like described above – shows all placeholders which have been defined
for the primary visualization object. If additionally a selection of possible replacements had been
defined, this list will now be available in column 'Replacement'. Select one of the entries to
replace the placeholder in the present instance. If no replacements have been pre-defined then
you can manually enter an expression or variable. For this purpose perform a mouse-click on
the field in column Replacement to open an editor field.

1.4.3.5.4 'Extras' 'Configure'
With this command, the 'Configure element' dialog opens for configuring the selected visualiza-
tion element Ä Chapter 1.4.3.4.1 “Selecting visualization elements” on page 643. You are given
the dialog box when you double-click on the element.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 649

Select a category in the left area of the dialog box (available categories depending on element
type) and fill out the requested information in the right area. This has to be done by activating
options resp. by inserting the name of valid variables, whose values should define the property
of the element.

There are also configuration dialogs available for a group of elements. Regard
that the settings will be valid for the "element" group. If you want to configure
the particular elements of the group, you have to resolve the group.

If you have defined an element property by a "static" setting as well as dynam-
ically by a variable, then in online mode the variable will overwrite the static
value (Example: "Alarm color Inside" can be defined statically in category 'Color'
and additionally dynamically in category 'Colorvariables' by a variable). If the
setting is controlled by a "normal" project variable as well as by a structure
variable, then the value of structure variable also will be overwritten by the
"normal" project variable.

Meter, Bar Display and Histogram must be re-grouped before!

At locations in the element configuration where variables are operative, the following Entries are
possible:
● Variable names, for which input assistant is available.
● Expressions which are assembled from component accesses, field accesses with constant

index, variables and direct addresses.
● Operators and constants, which can be combined at will with the aforementioned expres-

sions.
● Placeholders instead of variable names or text strings.

x + y
100*PLC_PRG.a
TRUE
NOT PLC_PRG.b
9*sin(x + 100)+cos(y+100)

Examples of
permissible
expressions

Function calls are not possible. Invalid expressions result in an error message on login („Invalid
Watch expression..."). Examples of invalid expressions: fun(88), a := 9, RETURN.
There are two possible ways in the configuration dialogs to write global variables: „.globvar"
and „globvar" are equivalent. The style with a dot (which is that used in the Watch- and Receipt
Manager) is not allowed within an assembled expression, however.
Regard also the possibility of using placeholders Ä Chapter 1.4.3.5.2 “Placeholder”
on page 647.

1.4.3.5.5 Angle
In the configuration dialog 'Configure Pie' in the Angle category you can each enter a value or a
variable defining the start angle and the end angle of the sector element in degrees. The sector
will be drawn clockwise from the start angle position to the end angle position.

Enter start angle: "90", end angle: "180"Example:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US650

Dialog for Configuring a Pie

1.4.3.5.6 Shape
In the visualization element configuration dialog box, you can select in the 'Shape' category from
among Rectangle, Rounded Rectangle, Line and Ellipse respectively Polygon, Line and Curve.
The form will change into the size already set.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 651

1.4.3.5.7 Text
In the dialog for configuring visualization elements, you can specify a text for the element in
the Text category. This can be entered directly or/and a variable can be defined which will deter-
mine the text string. The usage of placeholders is possible Ä Chapter 1.4.3.5.2 “Placeholder”
on page 647. Also the default settings for font and alignment are done here.

As soon as text parameters are additionally provided dynamically, which means
by a system or structure variable (see resp. 'Programmability'), the static def-
initions which are done in the currently opened dialog , will be overwritten
Ä Chapter 1.4.3.5.8 “Textvariables” on page 655!

In case of multiple definition of an element property consider the specific order of precedence
concerning according to which a value might be overwritten in online mode by another.

Enter the text in the Content field. With the key combination [Ctrl] + [Enter] you can insert line
breaks, with [Ctrl] + [Tab], tab stops. Besides the input of a pure text string you can use the
following formatting sequences (via button the corresponding online help page can be opened):

● If you include "%s" into the text, then this location, in Online mode, will be replaced by the
value of the variable from the Textdisplay field of the Variables category. Instead of "s" you
also can use other formatting strings conforming with the standard C-library function 'sprintf':
See here a sample list of strings and arguments:

Character Argument / Output as
d,i Decimal number

o Unsigned octal number (without leading zerol)

x Unsigned hexadecimal number (without
leading 0x)

u Unsigned decimal number

c Single character

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US652

Character Argument / Output as
s String

f REAL-values;
syntax: %|<alignment><minimal
width><accuracy>|f
Accuracy defines the number of decimal
places behind the comma (Default is 6).
Example see below.

- If you want to get displayed a percent sign% combined with one of the format-
ting strings mentioned above, you must enter "%%". For example: Enter "Rate
in %%: %s" to get displayed in online mode "Rate in %: 12" (if the text display
variable currently is "12").

- Be careful with letter case: capital letters, i.e. %S instead of %s not accept-
able."

The value of the variable will be displayed correspondingly in online mode. You can enter any
IEC-conforming format strings, which fit to the type of the used variable.

It is not checked whether the type which is used in the formatting string matches
with the type of the variable which is defined in the 'Text Output' field!

Input in the 'Content' field: Fill level %2.5f mm
Input in the 'Textdisplay' field (variable of type REAL), e.g.: plc_prg.fvar1
-> Output in online mode e.g.: Fill level 32.8999 mm

Example:

● If you enter "%t", followed by a certain sequence of special placeholders, then this location
will be replaced in Online mode by the system time. The placeholders define the display
format, see the following table.

Do not insert any other characters before %t in the 'Content' field (in contrast
this is allowed for e.g. "%s", see above)

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time representation appropriate for
locale

%d Day of month as decimal number (01 "“ 31)

%H Hour in 24-hour format (00 "“ 23)

%I Hour in 12-hour format (01 "“ 12)

%j Day of year as decimal number (001 "“ 366)

%m Month as decimal number (01 "“ 12)

%M Minute as decimal number (00 "“ 59)

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 653

%p Current locale’s A.M./P.M. indicator for 12-
hour clock

%S Second as decimal number (00 "“ 59)

%U Week of year as decimal number, with Sunday
as first day of week (00 "“ 53)

%w Weekday as decimal number (0 "“ 6; Sunday
is 0)

%W Week of year as decimal number, with
Monday as first day of week (00 "“ 53)

%x Date representation for current locale

%X Time representation for current locale

%y Year without century, as decimal number (00
"“ 99)

%Y Year with century, as decimal number

%z, %Z Time-zone name or abbreviation; no charac-
ters if time zone is unknown

%% Percent sign

%t%a %b %d.%m.%y %H:%M:%S
 -> Display in online mode: Wed Aug 28.08.02 16:32:45
Between the placeholders you can insert any text strings:
%Today is %d.%m.%y
-> Display in online mode: Today is 28.08.02

Examples:

If a text string is to be transferred into a translation file, which will then be used
in Online mode to enable switching into another national language, it must be
delimited at the beginning and end by #.

Examples: "#Pump 1#" or else even "#Pump# 1".

The second case might for example in the event of multiple occurrences of
the text Pump (Pump 1, Pump 2, etc.), prevent multiple appearances in the
translation.

● If you include"%<PREFIX>" into the text, you can enter instead of "PREFIX" a certain
string, which will serve as an identifier concerning the use of dynamic texts. The prefix will
be used together with an ID number, which is to be defined in the 'Variables' category of
the configuration dialog in field 'Textdisplay'. The combination references to a certain text,
which is defined in a XML file available for this purpose and listing all possible dynamic
texts. Thus at run time the text which is indicated by the current ID-Prefix-combination
will be displayed. For further information see also the description of Language Switching
Ä Chapter 1.4.3.8 “Language switching” on page 706. See there also information on the
usage of Unicode-Format.

The configured text will appear online in the prescribed alignment within the element: horizon-
tally left, center or right and vertically top, center or bottom.
Via button “Font” the dialog for font selection will appear. Choose the desired font and confirm
with OK. (The list of offered fonts depends on the target system.) The Standard-Font button
can be used to assign the currently valid standard font to the element. That is defined in the
visualization settings in category Display Ä Chapter 1.4.3.6.1 “'Extras' 'Settings'” on page 700.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US654

1.4.3.5.8 Textvariables
In category 'Textvariables' of the dialog for configuring visualization elements you can specify a
variable which should dynamically set color and font of that string which is defined in category
'Text' Ä Chapter 1.4.3.5.7 “Text” on page 652. At best enter the variable name with the aid of
the input assistant ([F2]).
You can also use components of the structure VisualObjectType to set the text properties. For
this see the description of category 'Programability' Ä Chapter 1.4.3.5.18 “Programmability”
on page 665; there you will find the possible values of the particular structure components and
their effect.

If there are corresponding static definitions in category 'Text', these will be
overwritten by the dynamic parameter values.

In case of multiple definition of an element property consider the specific order of precedence
concerning according to which a value might be overwritten in online mode by another.
The parameters of the dialog:

Parameter: Meaning: Example entry
of project vari-
able:

Example Usage
of variable in
program:

corresponding
component of
structure Visu-
alObjectType:

Textcolor: Text color "plc_prg.var_text-
color"

var_text-
color=16#FF00F
F
-> Farbe

dwTextColor

Textflags: Alignment (right,
left, centered...)

"plc_prg.textpos" textpos:=2
-> Text right justi-
fied

dwTextFlags

Fontheight: Font height in
Pixel

".fonth" fonth:=16;
-> Font height 16
pt

ntFontHeight

Fontname: Font name "vis1.fontn" fontn:=arial;
-> Arial is used

stFontName

Fontflags: Font display
(bold, underlined,
italic...)

"plc_prg.fontchar" fontchar:=2
-> Text will be
displayed bold

dwFontFlags

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 655

1.4.3.5.9 Line width
In the dialog for configuring visualization elements, you can choose the line width for an ele-
ment. As predefined options you find width settings from 1 to 5 pixel, additionally an other value
can be entered manually (Other:), or a project variable (Variable for line width:) can be inserted.
For the latter the input assistance ([F2]) can be used.

As soon as the parameter is additionally defined dynamically, i.e. by a structure
variable, see category 'Programmability', the static setting will be overwritten in
online mode Ä Chapter 1.4.3.5.18 “Programmability” on page 665.

1.4.3.5.10 Colors
In the visualization element configuration dialog box, in the Color category you can select
primary colors and alarm colors for the inside area and for the frame of your element. Choosing
the options no color inside and no frame color you can create transparent elements.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US656

As soon as the parameter is additionally defined dynamically by a variable, the
static setting will be overwritten in online mode.

In case of multiple definition of an element property consider the specific order of precedence
concerning according to which a value might be overwritten in online mode by another.

If you now enter a Boolean variable in the Variables category in the Change Color field, then the
element will be displayed in the Color set, as long as the variable is FALSE. If the variable is
TRUE, then the element will be displayed in its Alarm Color.

The change color function only becomes active, if the PLC is in Online Mode!

If you want to change the color of the frame, then press the Frame button, instead of the Inside
button. In either case, the dialog box will open for selection of the color.
Here can to choose the desired hue from the primary colors and the user-defined colors. By
pressing the Define Colors you can change the user-defined colors.
Depending on the target the dialog might offer only a restricted selection of colors. This can
be reasonable for creating projects which are intended for target visualizations. In this case the
colors are defined via selection lists.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 657

1.4.3.5.11 Color variables
Here you can enter project variables (e.g. PLC_PRG.color_inside), which should determine
the particular property in online mode: These property definitions also or additionally can be
programmed with the aid of components of the structure VisualObjectType. Therefore see the
description on the "Programmability" of a visualization element. There you will find a list of the
possible values and their effects.

The variables, entered in the Color Variables dialog, in online mode will over-
write the static values given in the 'Color' category as well as corresponding
values given by a structure variable.

In case of multiple definition of an element property consider the specific order of precendence
concerning according to which a value might be overwritten in online mode by another.
The parameters of the dialog:

Parameter Description Example of an
entry

Example for
using the vari-
able in the pro-
gram

corresponding
component of
structure Visu-
alObjectType

Fillcolor: fill color "plc_prg.var_fillco
l"

var_var_fillcol:=1
6#FF00FF
-> fill color pink

dwFillColor

Fillcolor alarm: fill color if the
'Change color'
variable is TRUE
(Ä Chapter
1.4.3.5.10
“Colors”
on page 656)

"plc_prg.var_fillco
l_a"

var_fillcol_a:=16#
FF00FF
-> alarm fill color
pink

dwFillColorAlarm

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US658

Parameter Description Example of an
entry

Example for
using the vari-
able in the pro-
gram

corresponding
component of
structure Visu-
alObjectType

Framecolor: frame color "plc_prg.var_fra-
mecol"

var_fra-
mecol::=16#FF00
FF
-> frame color
pink

dwFrameColor

Framecolor
alarm:

frame color if the
'Change color'
variable is TRUE
(Ä Chapter
1.4.3.5.10
“Colors”
on page 656)

"plc_prg.var_fra-
mecol"

var_fra-
mecol:=16#FF00
FF
-> alarm frame
color farbe pink

dwFrameColorA-
larm

Fillflags: The current
inside color con-
figuration can be
activated
(FALSE) resp.
deactivated
(TRUE)

"plc_prg.var_col_
off"

var_col_off:=1
-> the color defi-
nition for the fill
color will not be
regarded, that for
the frame
remains valid

dwFillFlags

Frameflags: Display of the
frame (solid,
dotted etc.)

"plc_prg.var_line-
type"

var_linetype:=2;
-> frame will be
displayed as
dotted line

dwFrameFlags

Dialog Box for Configuring Visualization Elements (Category Colorvariables):

1.4.3.5.12 Motion absolute
In the visualization element configuration dialog box, in the Motion absolute category, X- or
Y-Offset fields variables can be entered. These variables can shift the element in the X or the
Y direction, depending on the respective variable value. A variable in the Scale field will change
the size of the element linear to its current value. This value, which is used as scaling factor, will
be divided by 1000 implicitely, so that it is not necessary to use REAL-variables in order to get a
reduction of the element. The scaling always will refer to the balance point.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 659

A variable in the Angle field causes the element to turn on its turning point, depending on
the value of the variable. (Positive Value = Mathematic Positive = Clockwise). The value is
evaluated in degrees. With polygons, every point rotates; in other words, the polygon turns. With
all other elements, the element rotates, in such a way, that the upper edge always remains on
top.
The turning point appears after a single click on the element, and is displayed as a small black
circle with a white cross. You can drag the turning point with a pressed left mouse button.

In online mode the variables which are set in the 'Motion absolute' dialog will
override the values of structure components which additionally might be used to
define the same property ('Programability').

In case of multiple definition of an element property consider the specific order of precedence
concerning according to which a value might be overwritten in online mode by another.
Visualization Element Configuration Dialog Box (Motion Absolute Category)

1.4.3.5.13 Motion relative
In the dialog for configuring visualization elements in the Motion Relative category, you can
assign variables to the individual element edges. Depending on the values of the variables, the
corresponding element edges are then moved. The easiest way to enter variables into the fields
is to use the Input Assistant ([F2]).
The four entries indicate the four sides of your element. The base position of the corners is
always at zero. A new value in the variables, in the corresponding column, shifts the boundary
in pixels around this value. Therefore, the variables that are entered ought to be INT variables.

Positive values shift the horizontal edges downward, or, the vertical edges, to
the right!

In online mode the variables which are set in the 'Motion absolute' dialog will
override the values of structure components which additionally might be used to
define the same property ('Programmability').

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US660

In case of multiple definition of an element property consider the specific order of precedence
concerning according to which a value might be overwritten in online mode by another.
Dialog Box for Configuration of Visualization Elements (Motion Relative Category)

1.4.3.5.14 Variables
Visualization Element Configuration Dialog Box (Variables Category):

You can enter the variables that describe the status of the visualization elements in the Variable
category within the dialog box for configuring visualization elements. The simplest way to enter
variables in the fields is to use the Input Assistant.

In online mode the variables which are set in the 'Motion absolute' dialog will
override the values of structure components which additionally might be used to
define the same property ('Programmability').

In case of multiple definition of an element property consider the specific order of precedence
concerning according to which a value might be overwritten in online mode by another.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 661

You can enter Boolean variables in the Invisible and Change color fields. The values in the
fields determine their actions. If the variable of the Invisible field contains the value FALSE, the
visualization element will be visible. If the variable contains the value TRUE, the element will be
invisible.
Disable input: If the variable entered here is TRUE, all settings of category 'Input' will be
ignored.
Change color: If the variable which is defined in this field, has the value FALSE, the visualization
element will be displayed in its default color. If the variable is TRUE, the element will be
displayed in its alarm color.
Textdisplay:
● If you have inserted a "%s" in the Content field of the Text category or if you have included

"%s" in the textstring, then the value of the variable which is defined in 'Textdisplay' will be
displayed in online mode in the visualization object. "%s" will be replaced by the value.

● If you have inserted resp. included a "%<PREFIX>" in the Content field of the Text category
("PREFIX" must be a sequence of letters), then the variable resp. the numeric value which
is entered here in 'Textdisplay' will be interpreted as an ID, which in combination with the
prefix serves as a reference on a text, which is described in a XML file. This text will
be displayed in online mode instead of "%<PREFIX>" in the visualization object. Thus a
dynamic modification of the text display is possible.

● If you want to edit the value of the variable in Online mode using the keyboard, you can do
this via the 'Text input of variable' 'Textdisplay' in the Input category.

Tooltip-display: Here you can enter a string or a variable of type STRING, which defines the
ID for a dynamic tooltip text. In combination with a prefix to be defined in category 'ToolTip'
uniquely a certain text in a dynamic textlist can be called to be displayed as tooltip Ä Chapter
1.4.3.5.16 “Text for ToolTip” on page 664. Thus dynamic text switching resp. language
switching is also possible for tooltip texts.

1.4.3.5.15 Input
Dialog for configuring the visualization elements (Category Input):

Toggle variable: If this option is activated, in online mode you will toggle the value of the
variables which are located in the input field by each mouse click on the visualization element.
You can obtain input assistance for data entry via [F2]. The value of the Boolean variable
changes with each mouse click from TRUE to FALSE and then back to TRUE again at the next
mouse click, etc.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US662

Tap Variable: If this option is activated, in online mode you can switch the value of the Boolean
variable which is located in the input field, between TRUE and FALSE. Place the mouse cursor
on the element, press the mouse-key and hold it depressed. If option Tap FALSE is activated,
the value is set to FALSE as soon as the mouse key is pressed, otherwise it is set to TRUE at
this moment. The variable changes back to its initial value as soon as you release the mouse
key.
Zoom to Vis...: If this option is activated, you can enter in the edit field the name of a visualiza-
tion object of the same project to which you want to jump by a mouse-click on the element
in online mode. In this case always first the window of the target visualization will be opened
before that of the current one will be closed.
The following entries are allowed:
● The name of a visualization object of the current project (see Object Organizer)
● If a visualization reference that contains placeholders is to be jumped to, the placeholders

can be directly replaced by variable names or text when called up Ä Chapter 1.4.3.5.2
“Placeholder” on page 647. For this pupose, conform to the following syntax:
<Visuname>(<Placeholder1>:=<Text1>, <Placeholder2>:=<Text2>,..., <Placeholder
n>:=<Textn>).
Example:
Calling the visualization visu1, whereby the placeholders var_ref1 and var_ref2 used in
visu1 are replaced by the variables PLC_PRG.var1 and PROG.var1 respectively:
visu1(var_ref1:=PLC_PRG.var1, var_ref2:=PROG.var1)

● If a program variable of the type STRING (e.g. PLC_PRG.xxx) has been entered instead of
a visualization object, then this variable can be used to define the name of the visualization
object (e.g. ,visu1') which the system should change to when a mouse click occurs (e.g.
xxx:= ,visu1).

● If you issue the command „ZOOMTOCALLER" in the Zoom to vis. field, a backward jump
into the calling visualization is achieved in Online mode by a mouse click on the element, if
such a constellation was configured.

The implicit variable CurrentVisu (type STRING, for implicit (system) variables
see here) describes the name of the currently opened visualization object. For
example it can be used in the application to control which visualization should
be opened resp. to see which is the currently opened.

Note: with compiler version < V2.3.7.0, and if the library SysLibStr.lib is not
included in the project, this will only work if the names of the visualization
objects are defined in capital letters.

Example: CurrentVisu:='PLC_VISU';

Execute program: If this option is activated you can enter ASSIGN- or special "INTERN"-com-
mands in the input field, which will be executed in online mode as soon as you perform a
mouse-click on the element. Press button "..." to get the dialog Configure programs where you
can select the desired commands (Add) and arrange them in the desired order (Before, After).

This feature especially is important if the visualization will be the only operating
interface of a system (pure operating version).

Text input of variable 'Textdisplay': If this option is activated, in online mode you can enter text in
an edit field in this visualization element. This value upon pressing [Enter] will be written to the
variable that appears in the textdisplay field of the 'Variables' category.
If option Hidden is activated, the text will be replaced by asterisks ("***") in the online display of
the visualization element.
Select in the scroll box which kind of input should be possible later in online mode
Text: An edit field will open, where you can enter the value.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 663

Numpad resp. Keypad: A window will open showing an image of the numeric resp. alphabetic
keypad, where you can enter a value by activating the appropriate key elements. This might be
useful if the visualization must be operatable via a touch screen. The range of valid input values
can be restricted by defining a minimum and a maximum value in the edit fields 'Min' and 'Max'.

In case of using target visualization regard the possibility to get information
on user inputs via mouse-clicks by special interface functions and to use that
directly in the project.

In case of multiple definition of an element property consider the specific order of precedence
concerning according to which a value might be overwritten in online mode by another.

1.4.3.5.16 Text for ToolTip
The dialog Text for Tooltip offers an input field for text which appears in a text field as soon as
the mouse cursor is passed over the object in online mode. The text can be formatted with line
breaks by using the key combination [Ctrl] + [Enter].

If in field 'Content' you enter "%<PREFIX>" instead of a fix text string, "PREFIX" can be any
string which serves as an identifier for the usage of dynamic texts. The prefix will be used in
combination with an ID, which is to be specified in category 'Variables' in field 'Tooltip-display'.
The combination prefix-ID references uniquely a certain text which is defined in a special lan-
guage file in xml-format. Thus at run time always that text will be displayed which corresponds
to the currently valid combination of prefix and ID. For further information see the description
of the dialog 'Settings', category 'Language', and the help pages on Language Switching in the
Visualization Ä Chapter 1.4.3.8 “Language switching” on page 706.
Concerning the usage of Unicode format please also see the pages on Language Switching in
the Visualization.

1.4.3.5.17 Security
It might be useful that different user groups get different operating possibilities and display of a
visualization. This can be reached by assigning different access rights concerning particular vis-
ualization elements. You can do this for the eight user groups Ä Chapter 1.4.1.2.4.12 “'Project'
'Object properties'” on page 261 Ä Chapter 1.4.1.2.3.43 “'Project' 'Passwords for user groups'”
on page 250. The access rights can be assigned by activating the appropriate option in the
configuration dialog 'Access rights' for a visualization element:

Dynamic lan-
guage switching

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US664

Access right Effect in online mode
No Access Element will not be visible

Read Access Element will be visible but not operatable (no inputs allowed)

Full Access Element is not visible and not operatable

If you want to assign the access rights also to all other elements of the visualization object,
activate option 'Apply to all visual elements'.

Please regard, that the access rights which are set for the visualization object
in the 'Project''Object' 'Properties' dialog, are independent on those of the partic-
ular visualization elements!

1.4.3.5.18 Programmability
Programability The properties of an visualization element can not only be defined by a static
setting or by a "normal" project variable, but also by the components of a structure variable,
which is exclusively used for programming visualization elements.
For this purpose the structure VisualObjectType is available in the library SysLibVisu.lib. Its
components can be used to define most of the element properties.

In case of multiple definition of a element property the value of the "normal"
project variables will overwrite that of the structure variable and both will over-
write a static definition.

In order to configure the element properties by using a structure variable, do the following:
Open the configuration dialog, category 'Programmability' and enter a new, unique (!) variable
name in the field 'Object Name'. For this purpose you must activate the option by a mouse-click
in the checkbox. The variable automatically will be declared with type 'VisualObjectType', a
structure which is contained in the library 'SysLibVisu.Lib'. The declaration is done implicitely
and not visible for the user. Make sure that the library is included in the library manager.
After the next compile the newly assigned structure variable will be available in the project.
(Hint: Activate the Intellisense functionality 'List components' in the project options, category
Editor, in order to get the structure components in a selection list as soon as the variable name
followed by a dot is entered).
Example: If you have defined a Object Name "visu1_line" for a visualization element, then you
can program the line width of this element by e.g. "visu1_line.nLIneWidth:=4".

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 665

The following table will show you all components of the structure and references to the corre-
sponding items in the different categories of the configuration dialog:
At the beginning of the component name the data type is integrated:
● n INT
● dw DWORD
● b BOOL
● st STRING

Component (+Data
type)

Effect Example (the Object
Name "vis1" has
been defined for the
element)

corresponding
entries in configura-
tion dialog:

nXOffset : INT; Shift element in X-
direction

vis1.nXOffset:=val2;
(element is set to
position X=val2)

- Cat. Motion abso-
lute: X-Offset

nYOffset : INT; Shift element in Y-
direction

vis1.nYOffset:=22;
(element is set to
position Y=val2)

- Cat. Motion abso-
lute: Y-Offset

nScale : INT; Change of the size vis1.nScale:=plc_prg.
scale_var;
(element size changes
linear with change
of value of
plc_prg.scale_var)

- Cat. Motion abso-
lute: Scaling

nAngle : INT; Rotating element
around its center

vis1.anglevar:=15;
(element rotates
clockwise by 15)

- Cat. Motion abso-
lute: angle

bInvisible : BOOL; Element is visible /
invisible

vis1.visible:=TRUE;
(element is invisible)

- Cat. Color: No color
inside + No frame
color
- Cat. Colorvariables:
Fillcolor + Framecolor

The structure
VisualObject-
Type

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US666

Component (+Data
type)

Effect Example (the Object
Name "vis1" has
been defined for the
element)

corresponding
entries in configura-
tion dialog:

stTextDisplay :
STRING;

Text is displayed in
element

vis1.TextDis-
play:='ON / OFF';
element is inscribed
with this text

- Cat. Text: entry at
'Content'

bToggleColor : BOOL; color change when
toggling between
TRUE and FALSE

 vis1.bToggle-
Color:=alarm_var;
As soon as alarm_var
gets TRUE, the ele-
ment gets the color
defined via the com-
ponents dwFillColorA-
larm, dwFrameColor-
Alarm resp. via the
settings in category
'Colorvariables' or
'Color'.

- Cat. Input: Toggle
variable +
- Cat. Variables:
Change color

bInputDisabled:
BOOL;

if FALSE: Inputs in
category 'Input' are
ignored

vis1.bInputDisa-
bled:=FALSE; (no
input is possible
for this elementt)

- Cat. Variables: 'Dis-
able Input'

stTooltipDis-
play:STRING;

Text of the tooltip vis1.stTooltipDis-
play:='Switch for';

- Cat. Text for Tooltip:
Entry in 'Content:'

dwText-
Flags:DWORD;

Text position:
1 left justified
2 right justified:
4 centered horizon-
tally
8 top
10 bottom
20 centered vertically
Note: Always set a
horizontal and a ver-
tical position (addition
of values)!

vis1.dwTextFlags:=24;
(Text will be placed in
the center of the ele-
ment (4 + 20)

- Cat. Text: Horizontal
and Vertical options
- Cat. Textvariables:
Textflags

dwTextColor :
DWORD;

Text color
(definition of colors
see subsequent to this
table)

vis1.dwTextColor :=
16#00FF0000;
(Text is blue-colored)

- Cat. Text: Font |
Color
- Cat. Textvariables:
Textcolor

nFontHeight : INT; Font height in Pixel
should be in range
10-96

vis1.nFontHeight:=16;
(Text height is 16 pt)

- Cat. Text: Font |
Grad
- Cat. Textvariables:
Font heigth

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 667

Component (+Data
type)

Effect Example (the Object
Name "vis1" has
been defined for the
element)

corresponding
entries in configura-
tion dialog:

dwFontFlags :
DWORD;

Font display. Available
flags:
1 italic
2 fett
4 underlined
8 canceled + com-
binations by adding
values

vis1.dwFont-
Flags:=10;
(Text is displayed blue
and canceled)

- Cat. Text: Schrift |
Schriftschnitt
- Cat. Textvariables:
Fontflags

stFontName :
STRING;

Change font vis1.stFontName:=’Ar-
ial’;
(Arial is used)

- Cat. Text: Schrift |
Schriftart
- Cat. Textvariables:
Fontname

nLineWidth : INT; Line width of the
frame (pixels)

vis1.nLWidth:=3;
(Frame width is 3
Pixels)

- Cat. Line width

dwFillColor : DWORD; Fill color
(definition of colors
see subsequent to this
table)

vis1.dwFill-
Color":=16#00FF0000
;
(Element ist im "Nor-
malzustand" blau)

- Cat. Color: Color |
Inside
- Cat. Colorvariables:
Inside

dwFillColorAlarm :
DWORD;

Fill color as soon
as bToggleColor gets
TRUE, see above)
(definition of colors
see subsequent to this
table)

vis1.dwFillColorA-
larm:=16#00808080;
(as soon as Vari-
able togglevar gets
TRUE, the element
will be displayed grey-
colored)

- Cat. Color: Alarm
color | Inside
- Cat. Colorvariables:
Inside Alarm

dwFrameColor:
DWORD;

Frame color
(definition of colors
see subsequent to this
table)

vis1.dwFrame-
Color:=16#00FF0000;
(Frame is blue-col-
ored)

- Cat. Color: Color |
Frame
- Cat. Colorvariables:
Frame

dwFrameColorAlarm:
DWORD;

Fill color as soon
as bFrameColor gets
TRUE, see above
(definition of colors
see subsequent to this
table)

vis1.dwFrameColorA-
larm:=16#00808080;
(as soon as
Variable vis1.bToggle-
Color gets TRUE,
the frame will be dis-
played grey-colored)

- Cat. Color: Alarm
color | Frame
- Cat. Colorvariables:
Frame Alarm

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US668

Component (+Data
type)

Effect Example (the Object
Name "vis1" has
been defined for the
element)

corresponding
entries in configura-
tion dialog:

dwFillFlags: DWORD; Color, as defined by
the color variables,
can be displayed or
ignored 0 = show
color >0 = ignore
setting

vis1.dwFillFlags:=1;
(element gets invis-
ible)

- Cat. Color: No color
inside + No frame
color
- Cat. Colorvariables:
Fillflags

dwFrameFlags:
DWORD;

Display of frame:
0 full
1 dashed (---)
2 dotted ()
3 dash-point (_._._)
4 dash-point-point
(_.._..)
8 blind out line

vis1.FrameFlags:=1;
(Frame will be dis-
played as dashed line)

- Cat. Colorvariables:
Frameflags

Example: e1.dwFillColor := 16#00FF00FF;
A color is entered as a hex number which is composed of the Blue/Green/Red (RGB) compo-
nents. The first two zeros after "16#" should be set to in each case, to fill the DWORD size. For
each color value 256 (0-255) colors are available.
● FF Blue component
● 00 Green component
● FF Red component

Define a global variable 'blink1' of type VisualObjectType in the configuration of a rectangle. In
a program of function block the value of a component of the structure can be modified.
PROGRAM PLC_PRG
VAR
n:INT:=0;
bMod:BOOL:=TRUE;
END_VAR
(* Blinking element *)
n:=n+1;
bMod:= (n MOD 20) > 10;
IF bMod THEN
blinker.nFillColor := 16#00808080; (* Grau *)
ELSE blinker.nFillColor := 16#00FF0000; (* Blau *)
END_IF

Example for a
blinking visual-
ization element

1.4.3.5.19 Bitmap
You can do the following settings in category 'Bitmap' in the visualization element configuration
dialog box:

Defining color
values

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 669

Specify, which image file should be used. This specification can be static or dynamic. If there
are entries both in the 'Bitmap' field and in the 'Bitmap Variable' field, then that in the 'Bitmap'
field will be ignored:
Bitmap: Static definition: You can enter the path of an image file available in the local file
system. Via button ... the standard dialog for browsing for a file will be opened, where you can
select the desired file.
Bitmap variable: Dynamic definition: A project variable of type STRING can be entered here,
containing the name of the image file currently to be used. This allows dynamic change of
images in online mode, but only works with image files which are entered in the project-global
"bitmap list" Ä Chapter 1.4.3.7.1 “'Extras' 'Bitmap list'” on page 706. The string-variable always
only must get assigned the file name, even if there is a full path specified in the bitmap list.
See in the following example 'stBitmap' as string-variable, which is got assigned various image
files that are part of the global bitmap list.
CASE nId OF
0: stBitmap := 'background.bmp';
1: stBitmap := 'deutest.bmp';
2: stBitmap := 'alarm.bmp';
END_CASE
If stBitmap e.g. is declared in object PLC_PRG, it can be entered here in the configuration
dialog in field 'Bitmap variable' like follows: "PLC_PRG.stBitmap".
The following entries affect the frame of the bitmap:
By selecting Anisotropic, Isotropic or Fixed you specify how the bitmap should react to changes
in the size of the frame. Anisotropic means that the bitmap remains the same size as the
frame which allows you to change the height and width of the bitmap independently. Isotropic
means that the bitmap retains the same proportions even if the overall size is changed (i.e., the
relationship between height and width is maintained). If Fixed is selected, the original size of the
bitmap will be maintained regardless of the size of the frame.
If the Clip option is selected together with the Fixed setting, only that portion of the bitmap that is
contained within the frame will be displayed.
If you select the Draw option, the frame will be displayed in the color selected in the Color and
Alarm color buttons in the color dialog boxes (standard or target-specific options). The alarm
color will only be used if the variable in the Change Color field in the Variable category is TRUE.
In the selection list in the lower part of the dialog you can define whether the bitmap should be
inserted in the project (Embed) or whether just a link to an external bitmap-file (path as entered
above in the 'Bitmap' field) should be created (Remember the link). It is reasonable to keep the
bitmap file in the project directory, because then you can enter a relative path. Otherwise you
would enter an absolute path and this might cause problems in case you want to transfer the
project to another working environment.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US670

1.4.3.5.20 Table
As soon as a table is inserted for the purpose of visualization of an array, the dialog Configure
Table will be opened. Besides the categories 'Tooltip' and 'Security' which are also available
for other visualization elements, the following categories will be available for configuring display
and contents of the table.

Do the following table settings:

Category table:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 671

● Data array: Insert the name of an array which should be visualized in the table. It is
recommended to use the input assistant (<F2>) resp. the Intellisense function.

● Slider size: Insert here the desired height of the slider which will appear at the bottom of the
table element if the display of the array columns exceeds the element width.

● Column header, Line header: Activate these options if you want to get displayed the titles in
the table. The line title reflects the array index (first column of the table), the column title can
be defined in category 'Columns'.

Here you define the table elements. In the left window you get al list of all elements, which are
handled in the array per index. In case of an array of a structure these would be the structure
components.
Using the arrow button > you can transfer a selected component from the left window to the
right window where you define the set of elements to be displayed in the table. Pressing button
>> all elements will be transferred at a single blow. In the same manner you can remove
elements from an already defined set (<, <<). In order to modify the default settings concerning
the display of the table column for one of the elements, perform a double-click on the desired
entry in the right part of the window, or press button '...' to open the dialog 'Configure columns':

Editing the column header and the column width:
Initially the edit field Column header will contain an automatically created title (e.g.
"PLC_PRG.arr1[INDEX].iNo" in case of an array of structure for the column representing the
structure component "iNo") which you can change. Further on the Column width (number of
characters) can be set.

Category col-
umns:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US672

By default the table fields are displayed as simple rectangles and the entries are not editable.
If you however activate button Edit template for the currently marked column, you can modify
the parameters of the fields of this column, e.g. the line width, text input etc. The template
affects all fields of the current column and can be edited via the known configuration dialog for a
visualization element.
If you want to configure only one or several particular fields of the column, you can use the fol-
lowing placeholders determining the desired row and column: $ROWCONST$, $COLCONST$,
INDEX. (INDEX has the same effect as $ROWCONST$).

Example 1:
You visualize an array "arr1 [0..2] of BOOL" (table with 1 column) and you want, that in online
mode by a mouse-click on a table cell the cell gets red-colored and the corresponding array
element will be toggled and vice versa. To reach this activate 'Use template' in the configuration
dialog for the column and define the template as follows: Category 'Input', Action 'Toggle varia-
ble': "PLC_PRG.arr1[INDEX]. Category 'Colors': Alarm color red. Category 'Variables', Action
'Change color': "PLC_PRG.arr1[INDEX].
Example 2:
The following template configuration has been created for a table column representing Index "0"
of an array:

Meaning: For the concerned table column...
● the field in line 6 (line number, index) is invisible.
● in the field in line 7 no edit field can be opened.
● in all fields of column 0 the color will change to alarm color. The other fields of the column

remain in base color.
● always entered automatically, but of course changeable, is the textdisplay configuration,

which combined with the "%s" entry in category "Text" effects that the corresponding vari-
able value will be displayed in the table field.

The placeholder entries can be connected with "AND" resp. "OR"; Example: "$ROWCONST$=1
OR $ROWCONST$=3" makes that both fields will get the respective setting.
The use of the currently configured template can be activated or deactivated: Option Use
template.

Editing configu-
ration parame-
ters for all ele-
ments of a
column:

Examples for
the use of place-
holders in
column-tem-
plates:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 673

Row height: Insert the desired height in number of pixels.

Here you can set the following parameters concerning the selection behavior within the table:
● Selection color: Press this button to define a color for selected cells. You get the standard

dialog for choosing a color or a color selection list.
● Selection type: Define which part of the table will be selected when you perform a mouse-

click on one of the table fields in online mode:
– Select single cells: Only the cell will be selected.
– Select only rows: The whole line will be selected.
– Select only columns: The whole column will be selected.
– Select rows and columns: The whole column and line will be selected.

● Frame around selected cells: A selected cell gets surrounded by a frame.
● Variable for selection X, Variable for selection Y: Here you each can enter a project variable,

which will indicate the X- resp. Y-Index of the selected table cell.

TYPE strucTab :
STRUCT
iNo: INT; bDigi : BOOL; sText:STRING; byDummy: BYTE;
END_STRUCT END_TYPE
In PLC_PRG define the following array:

Category rows:

Category selec-
tion:

Example: Create
a table element
visualizing the
array of a struc-
ture

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US674

arr1:ARRAY [1..5] OF strucTab;
and the following variables:
selX:INT;
selY:INT;
Create a visualization object and insert a table element. Configure like follows:
Cat. Table: data array: "PLC_PRG.arr1"
Cat. Columns: Transfer the components iNo, bDigi, sText to the right window - In the right
window perform a double-click on the first entry (PLC_PRG.arr1[INDEX].iNo) and in the dialog
which will open, replace the default title by "Number". Confirm with OK and also define new
column titles for the other two entries (e.g. "Value" and "Text").
Cat. 'Selection': Enter here at 'Variable Selection X': "PLC_PRG.selX" and at Variable Selection
"Y: PLC_PRG.selY". Activate option 'Frame around selected cells'. Press button 'Selection color'
and choose color 'yellow'. Close the configuration dialog with OK. The table element now should
be displayed as shown in the following:

At the left border the numbers of the array index, at the top the titles of the selected structure
components. You can modify the column widths by placing the cursor on the separator between
two columns and moving the mouse as soon as the cursor appears as a horizontal double-
arrow. .
In online mode the current values of the array elements will be displayed in the table cells. As
soon as you select a table cell by a mouse-click, it will get yellow-colored and surrounded by a
frame. Example:

1.4.3.5.21 ActiveX element
The ActiveX element serves for displaying a passive ActiveX Control within a visualization. The
element is usable on Windows32 based systems in CODESYS HMI.
The configuration dialog is opened by a double-click on the Inserted element and offers three
sub-dialogs, for selecting the control type, for defining method calls and for the configuration of
the display:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 675

In this dialog you can mark the desired ActiveX Control in the selection list offering all ActiveX
Controls which are registered on your computer.

Here you configure the method calls for the chosen ActiveX Control:
Web browser:
These input fields only can be edited if you are configuring a control element which supports
the 'IWebBrowser' interface (e.g. Internet Explorer or Mozilla Browser). In this case the method
Navigate can be called (other method calls must be controlled via a user defined DLL, see
below 'Additional Call').

Control:

Methodcalls:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US676

Enter an URL as a parameter value in field Variable for URL (Input as a string between inverted
commas) resp. a project variable of type STRING defining an URL. The browser will be called
as soon as the variable entered in field Condition for call gets TRUE (rising edge). If no call
condition is defined here, in the target visualization the browser will be called in each cycle of
the visualization task!
Additional Call:
Via a user defined Windows-Dll you can define method calls for the ActiveX Control in order to
control the behavior of the control at a call. For this purpose you must enter the DLL in the field
at DLL for Call. If you press the button you get the File Open dialog to browse for a DLL. If the
DLL is in the visualization files directory which is specified in the project options, just the path
relative to this directory will be entered, otherwise the complete file path.

If the DLL is to be used on a runtime system with a target visualization, it must
explicitly be copied there. When the Control is called in the target visualization,
only the file name contained in the path will be regarded.

The DLL is called as soon as the variable defined below in Condition for call gets TRUE (rising
edge). If no condition is specified, in the target visualization it will be called in each cycle of the
visualization task!
Regard the following when creating an appropriate DLL:
The DLL must export a method "ExecuteActiveXCall" with this function prototype :
void ExecuteActiveXCall(IUnknown* pUnk, char* pszId, char* pszParam,
char* pszReturnBuffer, int nReturnBufferSize, DWORD* pdwReturnFlag);
The function will be called with the following parameters which can be defined in the configura-
tion dialog:
● pszId : string resp. string variable specified in field Methodidentification
● pszParam : value specified in field Parameter
The parameter pUnk allows a query of further Com(ActiveX-)interfaces. With these interfaces
you can call any Method on your ActiveX-Control with any parameters packed in a string!
The parameters pszReturnBuffer, nReturnBufferSize and pdwReturnFlag currently are not used.
Display:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 677

In this dialog you can specify the variables defining the position with X-Offset, Y-Offset (see
Ä Chapter 1.4.3.5.12 “Motion absolute” on page 659) and visibility of the control element
Invisible (see Ä Chapter 1.4.1.7.3.1 “Overview” on page 438).

This example DLL will only call the methods GoBack or GoForward of the control if it supports
the 'IWebBrowser' interface.
The method is chosen by the parameter pszId.
#include "stdafx.h"
#include <unknwn.h>
#include <exdisp.h>
BOOL APIENTRY DllMain(HANDLE hModule,
 DWORD ul_reason_for_call,
 LPVOID lpReserved
)
{
 return TRUE;
}
extern "C" __declspec (dllexport) void ExecuteActiveXCall(IUnknown*
pUnk, char* pszId, char* pszParam,
 char* pszReturnBuffer, int nReturnBufferSize, DWORD* pdwReturnFlag)
{
if (strcmp(pszId, "IWebBrowser|GoBack") == 0)
{
IUnknown* pNewUnk;
IWebBrowser* pwb;
pUnk->QueryInterface(IID_IWebBrowser, (void**) &pNewUnk);
pwb = (IWebBrowser*) pNewUnk;
if (pwb)
{
pwb->GoBack();
pwb->Release();
}
}
else if (strcmp(pszId, "IWebBrowser|GoForward") == 0)
{
IUnknown* pNewUnk;
IWebBrowser* pwb;
pUnk->QueryInterface(IID_IWebBrowser, (void**) &pNewUnk);
pwb = (IWebBrowser*) pNewUnk;
if (pwb)
{
pwb->GoForward();
pwb->Release();

Example of a
DLL source file:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US678

}
}
}

1.4.3.5.22 Scrollbar
The scrollbar element can be used to modify the value of a variable (or vice versa). The slider
position will correspond to the value of an assigned variable within a defined range of values.
The user can move the slider in online mode by clicking on the slider and then moving it by
moving the mouse - or alternatively by clicking on one of the arrow symbols on the scrollbar,
whereby each mouse-click will move the slider (and thus the variable value) by 1 in the respec-
tive direction: If the slider is moved to the right resp. up, the value will be increased, if the slider
is moved to the left resp. down, the value will be decreased.

A vertical or horizontal display of the scrollbar can be reached by a respective shaping of the
element (see 'Insert' 'Scrollbar').
The configuration dialog gets opened by a double-click on the element.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 679

● Slider: Enter here the path of the project variable, the value of which should corre-
spond to the slider position between the given Minimum value and Maximum value (e.g.
"PLC_PRG.ivar"). So, when the slider gets moved in online mode, the value of the variable
will change. Vice versa, if the variable gets modified by any other input the slider would get
moved correspondingly.

● Minimum value, Maximum value: Boundaries for the range of values which can be displayed
for the variable assigned to the slider. In horizontal scrollbars the minimum value corre-
sponds to the left-most position of the slider, in vertically scrollbars to the bottom-most
position. The values can be entered directly or via a project variable (e.g. "0", "200",
"PLC_PRG.minvar").

● Invisible: The visibility of the element in online mode can be controlled dynamically, if
here an appropriate boolean variable is entered, e.g. "PLC_PRG.bScrollbar_vis". A static
definition is also possible ("TRUE", "FALSE" resp. "0", "1"). Default: visible.

● Tooltip-display: If "dynamic texts" should be used for the tooltip text, here the ID of the
prefix-ID-combination must be entered, which uniquely references the desired text in a
specific language file (xml-format). You can enter the ID directly (string, e.g. "tt_scrollbar1")
or via a project variable of string format which gives the ID (e.g. "PLC_PRG.tt_ID"). Con-
cerning this see the help pages on Tooltip and generally on Language Switching.

1.4.3.5.23 Meter

This dialog will open automatically as soon as you insert a Meter into a visualization object. A
Preview is part of the dialog, immediately showing how the element will look as a result of the
currently set parameters:
● Arrowtype: Define the type of the arrow which will point at the current value on the Meter.

Possible types: Normal arrow, Thin arrow, Wide arrow, Thin needle.
● Arrow start, Arrow end: Here you define the start and the end positions of the scale on a

virtual circular arc in ° Degrees (angle). (Example: a Start angle of 180° and an End angle of
0° will define a upturned semicircle).

● Arrow color: This button opens the standard dialog or a target-specific color selection list for
choosing a color. Define the color of the pointer.

● Variable/Scale: This button opens the dialog Ä “Dialog 'Configure scale and variable'”
on page 681.

● Color areas: This button opens the dialog Ä “Dialog 'Configure color areas'” on page 681:
Here you can define a separate color for each partition of the scale.

Additional settings:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US680

● Frame inside, Frame outside: If one or both of these options is/are activated, an inner or
outer frame will be added to the scale arc.

● Additional arrow: In addition to the main pointer a little arrow will indicate the current value
directly on the scale.

● No Scaling: If this option is activated, the inserted element cannot get resized.

● Scale start, Scale end: lowest and highest value on the scale, e.g. "-4" and "4".
● Main scale: Define which intervals on the scale should be marked "with all", that means

which should get a scale pitch and a label. If you insert e.g. "2", each second integer value
will be indicated.

● Sub scale: In addtion to the main scale (Label + long pitch lines) here you can define a
sub-scale which will be displayed as short pitch lines without any labels.

● Unit: Define here the scale unit, e.g. "cm" or "sec". The unit is indicated by a label at the
origin of the pointer.

● Scale format (C-Syntax): According to the C-syntax you can define the display format of the
scale labels; see the description concerning Category 'Text'. Example: If you insert "%1.1f"
the scale values will be indicated by a floating point number with one decimal place before
and one after the comma (e.g. "12.0")

● Variable: Here you can define a variable which is assigned to the pointer position. (e.g.
"PLC_PRG.posvar")

● Font selection: This button will open the standard dialog for defining the font used in the
Meter element (the selection list can be target-specific).

Dialog for the configuration of color areas for a Meter:

Dialog 'Con-
figure scale and
variable'

Dialog 'Con-
figure color
areas'

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 681

● Begin of area, End of area: Insert here the start and end values of the scale partition which
should get the color defined in the following:

● Color selection: This button opens the standard dialog for choosing a color or a target-spe-
cific selection list. Confirm your selection with OK, which will close the dialog, and press
button Add, whereupon the color and the assigned partition of the scale will be added to
the window 'Active areas'. In order to remove an already defined area, select the entry and
press Delete.
If the option Durable color areas is activated, the defined color ranges will be displayed
permanently, otherwise in online mode just that partition of the scale will be colored which
contains the current value of the respective value.

● Label: Depending on which of the options is activated (inside or outside), the scale labels
are placed at the inside or the outside of the circular arc of the scale.

1.4.3.5.24 Bar display

This dialog will be opened as soon as you insert a Bar Display element into a visualization
object. A Preview is part of the dialog, immediately showing how the element will look as a
result of the currently set parameters:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US682

● Diagram type: Choose one of the options: 'Scale beside bar', 'Scale inside bar' and 'Bar
inside scale'.

● Orientation: Define one of the options: Horizontal or Vertical bar.
● Running direction: Choose whether the bar should be elongated corresponding to a growing

value of the assigned variable in Left "“ Right or in Right "“ Left direction.
● Bar color: This button opens the standard dialog for choosing a color. Define a color for the

bar in normal state (no alarm). If option 'Use color areas' (see below) is activated, no entries
are possible.

● Alarm color: This button opens the dialog 'Configure alarm', where you define at which value
the bar will be displayed in alarm color and which is the alarm color: Insert the desired limit
value in the edit field and activate one of the Conditions greater than or lower than, in order
to define whether values higher or lower than the limit value should set off an alarm. Press
button “Alarm color” to open the standard dialog or a target-specific color selection list for
choosing the alarm color. Close both dialogs with OK in order to confirm the settings and to
return to the main dialog for configuring the bar display. If the option 'Use color ranges' (see
below) is activated, no entries are possible.

● Variable/Scale: This button opens the dialog 'Configure scale and variable', which corre-
sponds to that used for the Meter element Ä Chapter 1.4.3.5.23 “Meter” on page 680.

● Element frame: If this option is activated a frame will enclose the bar display.
● Bar background: If this option is activated, the whole display range will be indicated by a

black bar in the background of the current values' bar, otherwise only the current values' bar
will be displayed.

● Use color areas: If this option is activated, any settings defined in the dialogs for 'Bar color'
and 'Alarm color' (see above) will not be valid. In this case the color area definitions will
be used, which have been made in the dialog 'Configure color areas'. This dialog can be
opened by pressing button 'Color areas' (see below)

● Color areas: This button opens the dialog 'Configure color areas' where you can define
a separate color for each partition of the scale. These definitions will only be valid if the
option 'Use color areas' (see above) is activated. Use the dialog as described for the Meter
element Ä Chapter 1.4.3.5.23 “Meter” on page 680.

● No Scaling: If this option is activated, the inserted element cannot get resized.

1.4.3.5.25 Histogram
A histogram element can be used to visualize an array. The values of the array elements will be
represented by bars or lines side by side, indicating the current values of the element by their
height.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 683

The configuration dialog will be opened as soon as you insert a histogram element into a
visualization object. A preview is part of the dialog, immediately showing how the element will
look as a result of the currently set parameters:
● Presentation: Activate one of the options Barchart or Lines.
● Show horizontal lines: If this option is activated, horizontal lines spanning the diagram will

additionally display the scale gradation.
● No Scaling: If this option is activated, the inserted element cannot get resized.
● Alarm color: This button opens the dialog 'Configure alarm', where you define at which value

the bar will be displayed in alarm color and which is the alarm color: Insert the desired
threshold value in the edit field and activate one of the Conditions greater than or less than,
in order to define whether values higher or lower than the limit value should set off an alarm.
Press button “Alarm color” to open the standard dialog or a target-specific color selection list
for choosing the alarm color. Close both dialogs with OK in order to confirm the settings and
to return to the main dialog for configuring the histogram.

● Variable/Scale: This button opens the dialog 'Configure scale and variable', which can be
filled like described for the Meter element Ä Chapter 1.4.3.5.23 “Meter” on page 680.

● Color areas: This button opens the dialog 'Configure color areas': Here you can define a
separate color for each partition of the scale. See the description of the Meter where the
same dialog is available Ä Chapter 1.4.3.5.23 “Meter” on page 680.

● Bar color: This button opens the standard dialog for choosing a color. Define a color for the
bar in normal state (no alarm).
Define which range of the array should be displayed:
– Arraybegin: First array element to be displayed (Index).
– Arrayend: Last array element to be displayed (Index).

● Barwidth: Define the width of the bars in percent by the total width available for one bar.

See in the following picture an example of the online display (bars resp. lines) of a histogram
which represents an array arr1 [0..4] of INT. The arraybegin was set to "0", the arrayend to
"4", the scale start to "-4", the scale end to "24", the main graduation was set to "2", the
sub-graduation to "1" and the scale range 0 "“ 8 has got assigned another color (dark grey)
than the rest of the scale range. Furtheron the bars should be displayed alarm-colored (blue)
as soon as the value of the corresponding array element exceeds "8". You see the array
elements arr1[2] and arr1[3] currently being in alarm state:

Example:

1.4.3.5.26 Alarm table
The element 'Alarm table' is used to visualize alarms, which must be defined before, see 'Alarm
configuration, Overview' Ä Chapter 1.4.1.4.2.1 “Overview” on page 363.
As soon as the element gets inserted in the visualization object, the dialog 'Configure alarm
table'. Besides the known categories for configuration of tooltip and security the following
settings concerning display and selection in the table can be made.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US684

Define what you want to get displayed in the alarm table:
● Change alarm group: Press this button to get the selection tree of the alarm configuration,

which offers all alarm groups currently defined. Choose the desired group (which even may
contain just one alarm).
Note: The name of the alarm group, as it is displayed here (e.g. "System/Alarmgroup1")
can be used as PREFIX in a XML file for dynamic texts in order to get dynamic language
switching for the message texts in the alarm table; the associated ID in this must be the
number of that line in the Alarm group configuration table, that defines the respective
message text.

● Priority: Define the priority for which you want to get displayed all alarms. Permissible range:
0 to 255.

● Alarm classes: Mark a class which you want to get displayed and press button Add to add
the class to the list in the window 'Alarm classes'. Do this for all required classes. In order to
remove a marked entry from the alarm classes window press button Delete.

● Activate options Column heading resp. Row heading, if the headings should be displayed in
the alarm table.

Category alarm
table

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 685

Define here according to which criteria the alarm table should be sorted:
● Sort column: Sorting according to Priority, Alarm class, Date/Time or Alarm state
● Sort order: Ascending or Descending;

Example: Ascending according to priority means that the table will start with alarms of
priority 0 (if available), followed by higher numbered priorities.

When using in a target visualization this settings are not regarded in the display
of the alarm history. There the sorting always is descending according to the
date.

Category set-
tings for sorting

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US686

Define here, which of the columns (alarm parameters) should be displayed in the alarm table:
The parameters are defined -- except for date and time (alarm is coming) and alarm state in
the configuration of the alarm groups: Bitmap, Date, Time, Expression, Value, Message, Priority,
Type, Class, State, Target value (for alarm types DEV+ and DEV-), Deadband.
Using the buttons ">", ">>", you can take single resp. all parameters from the left to the right
window. The selection defined in the right window will be displayed in the alarm table. Using the
buttons "<" resp. "<<" entries can be removed from the selection.
For each column you can open the dialog 'Configure columns' by a double-click on the entry in
the right window. In this dialog Column header and Column width can be defined.

Category col-
umns

Category selec-
tion settings for
alarm table

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 687

Define here some settings for the display for the chosen table fields:
● Selection color: This button opens the standard dialog or a target-specific selection list for

choosing a color. Define the color in which selected fields should be displayed.
● Row height: Height of the table rows in Pixel.
● Slider size: Height of the slider (Pixel) at the bottom of the table.
● Frame around selected rows: If this option is activated, selected table rows will get a frame.
● Show statusline: If this option is activated, below the alarm table a status bar will be

displayed providing the following buttons for the operation in online mode:
– Acknowledge: All alarm entries marked in the alarm table get acknowledged.
– Acknowledge all: All alarm entries listed in the alarm table get acknowledged.
– History: If this button is pressed, instead of the current status of the alarms the table

will show a complete list of all events which have occurred up to now (all transitions
between any alarm stati). In this list no acknowledgement is possible ! Any new events
will be added currently.
If you have defined a record file, also there you will find this history for all alarm classes,
for which the action 'Save' has been activated.

– Start: cancels Stop (see below)
– Stop: the current update of the list with newly occurring events will be stopped until it is

restarted by pressing button 'Start'.
● Acknowledge variables: This option is only available as long as you have not chosen option

'Show statusline' (see above). If it is activated, the functions described above for the status
string buttons can get controlled by variables. In order to define these variables, choose a
function from the selection list and enter a project variable in the assigned edit field. Thus for
example the acknowledgement of all alarms in online mode can be done by a rising edge of
the assigned variable.

The web visualization might be configured in a way, that in online mode a tooltip
will display the full string of a text entry, which is only partially visible in the
alarm table.

1.4.3.5.27 Trend

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US688

The Trend element can be used to log the time dependent behavior of variable values in the
online mode. The online presentation is done in a diagram, in case of logging to a text file each
of the values is written to a separate line.
In the dialog for configuring visualization elements in category 'Trend' you can do the following
settings :
● Curve: X/t, horizontal axis = time axis, vertical axis = scale of values
● Orientation: Left-right or Right.-left: The latest value will be displayed on the left/right side;
● Axis:

– Horizontal Axis Ä “Horizontal axis” on page 689
– Vertical Axis Ä “Vertical axis” on page 690

● Recording: Define here whether the trend should be recorded 'only online', i.e. the time
dependent behavior of the variable values will be displayed using the chosen range of
the scale, or whether the record should be saved to history file, which can be configured
after pressing the button History. The dialog corresponds to that which is used for the
configuration of the alarm log file.
In the log file for each time of measurement a separate line is written which contains the
name and the values of all regarded variables. Each line starts with a unique identifier in
DWORD format, which is built from the date of measuring.

● Choose variable Ä “Choose variable” on page 690
● Curve configuration Ä “Curve configuration” on page 691

● Division lines: Activate option 'visible', if vertical division lines should be displayed which are
elongating the scale marks. In this case define the 'Scale': The given number defines the
interval between the division lines on the horizontal axis. Type (normal ___, dashed _ _ _,
dotted, dashdotted _ . _ .) and color of the lines can be defined in dialogs which will
open when you perform a mouse-click on the corresponding rectangle showing the currently
set line type resp. color.

● Scale: The shown range of the scale is determined by the entry for Duration. If here e.g. "
T#20s0ms" is defined, the scale will display a period of 20 seconds. The Main division and
the Sub scale division, which will be displayed by the means of long and short marks are to
be defined according to the same syntax.

● Degree of accuracy: Define here (in the standard format for dates, e.g. T#5ms) the interval
for displaying the current values of the variables.

Horizontal axis

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 689

● Legend: Here you define the display of the legend. Via button Font the standard or a
target-specific restricted dialog for setting the font will be opened. At Scaling define the
distances between the particular letterings on the scale (e.g. T#4ms, if the scale markings
should get a lettering each 4 milliseconds). The lettering will contain the Time and/or Date,
depending on which options are activated. The desired format each can be defined in the
field 'Format'. Regard that you can either set the 12-hour format ("hh") or the 24-hour format
("HH").

● Variables: Here you can define project variables, which contain the zoom values resp. offset
values for the horizontal scale. For example the offset of the display range of the horizontal
axis will be set to "10" as soon as the variable assigned here gets value 10.

● Symbol bar: If option use is activated, at the bottom of the element a horizontal symbol bar
will be added, providing buttons for scrolling and zooming in online mode. The simple arrow
buttons will move the displayed range along the time axis step by step, the double arrow
buttons will shift it to the end resp. start of the record. The zoom buttons allow a zooming
of the horizontal scale step by step. To get a possibility to restore the original settings
concerning zoom and offset, define the vertical symbol bar to get the 'home' symbol.

● Dialog for configuration of the vertical axis in the trend element
● Division lines: corresponding to the horizontal axis (see above)
● Scale: Define whether the scale should be displayed at the left or right border of the trend

diagram. Choose the Start value (lower end) and End value (upper end) of the scale as well
as the Main and Sub scale divisions (longer and shorter markings will be displayed in the
here defined distances).

● Legend: Font and divisions; see above, horizontal axis
● Variables: see above, horizontal axis
● Symbol bar: see above, horizontal axis, additionally there is a "home" button for restoring

the standard settings concerning zooming and offset of the axes.

Choose variable: Press this button to get the dialog Variables, where you can configure the
variables for which the trend record should be done and how they should be displayed:

Vertical axis

Choose variable

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US690

Enter a project variable in column Variable (mouse-click on the field will open an edit frame). It is
recommended to use the input assistant <F2> or Intellisense function.
Color and Line type for the display of the variable in the record you can define by a mouse-click
on the corresponding field in column Color (the standard dialog or a target-specific color selec-
tion list) resp. by selecting a line type in the corresponding field of column Line type (normal
___, dashed _ _ _, dotted, dashdotted _ . _ .).
In column Marker you can define a variable, which will provide the currently recorded value
when you use the marker function in online mode. The marker will be displayed as a little
grey triangle in the upper left corner of the diagram. If you click on the triangle and keep the
mouse-button pressed, you can shift a vertical marker line along the horizontal time axis. The
variable defined as 'marker' then will read the corresponding value from the record curve of the
associated project variable.
Do the settings for all variables you want to record. Via button Add a further line will be added at
the end of the list. A line can be deleted by button Delete.

Curve configuration: This button opens the dialog Curve configuration. Here some settings
concerning the trend curves can be done:

Curve configu-
ration

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 691

Curve type: Select one of the options Straight line, Steps or Points. For the first two types the
display of Additional points can be defined. For displaying a point a bitmap can be defined,
otherwise a filled rectangle (same color as curve) will be used as point symbol. Press the
rectangle next to Bitmap to get the standard dialog for selecting a bitmap file. Via Delete the
currently set bitmap can be removed from the configuration.
Tolerance band: You can define an upper and lower limit value on the vertical axis to be
displayed as a tolerance band. For each band a color (Press the color rectangle to get the
default resp. target-specific selection dialog) can be defined. If the bands should be displayed
in online mode, activate option Tolerance band as line. If you want the curve to get displayed
in the color defined for the respective band as soon as exceeding the tolerance value, activate
Curve color outside tolerance like tolerance band. Activate Both or None if you want to activate
both or none of the above described display options at a time.

Declaration in program PLC_PRG:
VAR
n: INT;
rSinus:REAL;
rValue:REAL;
rSlider1:REAL; (*for marker function*)
rSlider2:REAL; (*for marker function*)
END_VAR
Programmteil von PLC_PRG:
n:=n+1;
rValue := rValue + 0.01;
rSinus:=SIN(rValue)*50 + 50;
IF n>100 THEN
n:=0;
END_IF
Configuration of a trend element in a visualization:
Orientation Left-Right, History activated
Horizontal axis: Division lines: T#2s, Duration: T#10s, Main: T#1s, Sub scale: T#500ms, Degree
if accuracy: T#200ms, Legend: Time Format ('HH':'mm':'ss'), Scaling T#2s. Symbol bar acti-
vated.
Vertical axis: Division lines visible, Scale: 10, dotted, grey; Scale left, Start: 0, End: 100, Main:
10, Sub scale: 5; Legend: 10; Symbol bar activated.
Variables:
1. Variable PLC_PRG.rsinus, blue line, Marker: PLC_PRG_TRD.rSlider1;
2. Variable PLC_PRG.n, red line, Marker: PLC_PRG_TRD.rSlider2
Curve configuration: Straight line, no tolerance band

Configuration of two display fields for the current record values provided by the marker varia-
bles:
Rectangle element 1: Category Text: insert "%s" in the Content field; Category Variables: insert
in field Textdisplay: PLC_PRG.rSlider1
Rectangle element 2: Category Text: insert "%s" in the Content field; Category Variables: insert
in field Textdisplay: PLC_PRG.rSlider2
(additionally insert a rectangle element at the left border of the rectangle elements 1 and 2,
showing the curve color of the corresponding record variable)

Example: Dis-
play of a trend
element in
online mode

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US692

Result in online mode after login and start of the program:

The record is running from the left to the right; the latest value is shown on the leftmost position;
every 200 milliseconds the current value will be added to the display. The arrow buttons in the
symbol bars allow shifting the displayed time range. Using the simple arrow buttons you can
shift step by step, using the double arrows you get to the end resp. start of the record.
For example: if you go to the start of the record by pressing the double arrows pointing to the
left, you get a still display of the former values. If you then move the marker (grey triangle in
the upper left corner) along the time axis, you can read the exact values of each of the both
recorded variables for each time in the rectangle elements below the diagram.

1.4.3.5.28 Visualization
When you insert a visualization as an element in another visualization, you are creating a
"reference" of the visualization.
The configuration of this reference can be done in the Visualization category within the visuali-
zation element configuration dialog box.

Enter the object namefor the visualization, which should be inserted, in the Visualization field.
Use the ... button to open a dialog box containing the visualizations available in this project. Any
visualization may be used with the exception of the current one.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 693

The possible settings concerning the visualization frame are the same as described for a bitmap
(see above).
The [Placeholder] button leads to the 'Replace placeholder' dialog. It lists in the 'Placehol-
der' column all the placeholders which had been inserted in the configuration dialogs of the
"mother"-visualization and offers in the 'Replacements' column the possibility of replacing these
for the current reference with a definite value. Which replacements are possible in a given case
depends on whether a value group was predefined in the 'Extras' 'Placeholder list' dialog in the
"mother"-visualization. If this is the case, it will be displayed in a combo box for selection. If
nothing was pre-defined, double clicking on the corresponding field in the Replacements column
opens an editing field which can be filled in as desired.
A further possibility for replacing placeholders in references occurs directly when you define the
call of a visualization by an entry into the Zoom to vis. option field in the configuration dialog
('Input' category).

No control of the chronological sequence of replacements is possible! Therefore
no placeholders should be replaced with text that also contains placeholders!

When using placeholders it is no longer possible to check for invalid entries
in the configuration of the visualization element immediately upon compilation
of the project. Hence the appropriate error messages are first issued in Online
mode (...Invalid Watch expression..).

Instances of a function block can easily be displayed with the help of references of the same
visualization. For example, in configuring the visualization visu, which visualizes the variables of
function block, one could begin each variable entry with the placeholder FUB (e.g. FUB.a).
If a reference from visu is then used (by inserting visu in another visualization or by calling via
'Zoom to vis.'), then in the configuration of this reference the placeholder FUB can then be
replaced with the name of the function block instance to be visualized.
This might look like shown in the following:
In the project define a function block containing the following declarations:
FUNCTION_BLOCK fu
VAR_INPUT
changecol : BOOL; (* should cause a color change in the visualization
*`)
END_VAR
In PLC_PRG define two instances of 'fu':
inst1_fu : fu;
inst2_fu : fu;
Create a visualization object 'visu'. Insert an element and open the configuration dialog, cat-
egory 'Variables'. Enter in field 'Change color' the following: "FUB.changecol". Open cate-
gory 'Input' and enter in field 'Tap Variable' "FUB.changecol". Open category 'Text' and
enter"FUB - change color ". Define an alarm color in category 'Colors'.
Create another visualization object 'visu1'.
Insert visualization 'visu' twice in 'visu1' (two references of 'visu').
Mark the first reference of 'visu' and open the configuration dialog of category 'Visualization'.
Press button 'Placeholder', so that the placeholder list will be displayed. There replace entry
'FUB' by 'PLC_PRG.inst1_fu'.
Now mark the second reference of 'visu' and (like described for the first one) replace 'FUB' by
'PLC_PRG.inst2_fu'.

Example of an
application of
the placeholder
concept

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US694

Now in online mode the values of the variables which are used to configure the two instances of
'fu' will be visualized in the corresponding reference of 'visu'.
Of course the placeholder FUB can be used at all places in the configuration of 'visu' where
variables or text strings are entered.

Attention: Online behavior of a visualization reference: If you insert a visualiza-
tion and then select and configure this reference, it will be regarded as a single
object and in online mode will react to inputs correspondingly to its configura-
tion. In contrast: if you do not configurate the reference, then in online mode
its particular visualization elements will react exactly like those of the original
visualization.

1.4.3.5.29 Group
The configuration dialog for a group of visualization elements offers the same options Aniso-
tropic, Isotropc,Fixed, Draw, Clip, Color and Alarm color in field 'Frame' as that for a Bitmap. For
example regard the possibility to keep the size of the single elements of the group even when
the frame gets stretched or compressed.

1.4.3.5.30 Special input possibilities for operating versions
The visualization can target specifically be used with CODESYS HMI or as web visualization as
a mere operating interface. Then no menus and status and tool bars will be available to the user
and no possibility to modify the code.
Thus, when a visualization is created with CODESYS for the purpose of being used as a
'operating version' the principal control and monitoring functions in a project must be assigned
to visualization elements thus making them accessible via mouse click or keyboard in Online
mode.
See in the following some special input possibilities to configure visualization elements for the
purpose of being used in CODESYS HMI. They are available in the configuration dialog for a
visualization element:
Enter internal commands in the field Execute program in the category Input according to the
following syntax (The dialog 'Configure Programs' is available for this purpose):

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 695

INTERN <COMMAND> [PARAMETER]*
The following table shows the available internal commands. Some of them expect to receive
several parameters, which are then entered separated by spaces. Optional parameters are
enclosed in square brackets. For those commands which require that a Watch list be specified,
a placeholder can be used instead of the direct name. If you enter several commands for one
element, these are separated by commas.

Command The equivalent in the
programming version of
CODESYS HMI

Explanation

ASSIGN <Vari-
able>:=<Expression>

Assignment A variable or expression gets
assigned to another variable.
Example:
INTERN ASSIGN
PLC_PRG.ivar1:=PROG1.ivar
+12;

<Path executable program>
[Path of the file to be opened]
2)

Program call The program will be executed.
Example:
C:\programms\notepad.exe
text.txt

LANGUAGEDIALOG2) 'Extras' 'Settings' Ä Chapter
1.4.3.6.1 “'Extras' 'Settings'”
on page 700

The dialog for visualiza-
tion settings which includes
the category language gets
opened.

LANGUAGE <language identi-
fier as used in the currently
set language file *.vis, *.tlt or
*.txt>
Attention: For visualizations it
is recommended to use the
*.vis language file.

'Extras' 'Settings' Ä Chapter
1.4.3.6.1 “'Extras' 'Settings'”
on page 700, Language

The desired language is set
without using the dialog for
visualization settings.

LANGUAGE DEFAULT <lan-
guage identifier as used in the
currently set language file>

'Extras' 'Settings' Ä Chapter
1.4.3.6.1 “'Extras' 'Settings'”
on page 700, Language

For dynamic texts the default
language will be used, which
is defined in the currently
included XML file.

DELAY <delay time in milli-
seconds>1) 2)

 The next command will not be
executed before this time has
elapsed.
E.g. a delay of 500 ms is nec-
essary between DEFINERE-
CEIPT, READRECEIPT and
SAVEWATCH.

DEFINERECEIPT <name of
watch list>

Select watch lists A watch list is selected from
the receipt manager which
enters your name (name)
when the command is given.
The variables in this watch list
are registered and displayed.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US696

Command The equivalent in the
programming version of
CODESYS HMI

Explanation

READRECEIPT <name of
watch list>

'Read receipt' In the defined watch list the
pre-definition of the variables
will be replaced by the current
values.
Regard: The watch list must
be defined before via DEFIN-
ERECEIPT and a delay of
500 ms must be inserted (see
above: command DELAY).

WRITERECEIPT <name of
watch list>

'Write receipts' The name of a watch list
of the receipt manager is
expected. The receipt of this
watch list will be written. A
previous execution of DEFIN-
ERECEIPT is not necessary.

SAVEWATCH 'Save watch list' The receipt will be read into
the current watch list which
will be stored in a file.
Important: call a previous
DEFINERECEIPT to define
the current receipt and insert
a delay of 500 ms (see
above: command DELAY).

LOADWATCH 'Load watch list'+ 'Write
receipt'

The standard window 'File
open' appears, from which a
previously stored receipt can
be selected. This receipt will
be immediately written into the
controller system.

CHANGEUSERLEVEL - A dialog for setting the user
group level will open. The
eight user group levels are
offered for selection.

CHANGEPASSWORD cp. 'Project' 'User Group
Passwords...'

A dialog for changing the user
group password will appear.

SAVEPROJECT1) 2) 'File' 'Save' The project will be saved.

EXITPROGRAM1) 2) 'File' 'Close' The program will be exited.

PRINT1) 2) 'File' 'Print' The current visualization will
be printed out online.

HELP <name of help file>1) 2) Call of a help file Depending on which language
is set for the visualization, a
help file will be called which
is entered for that language in
the codesys.ini-file Ä Chapter
1.4.3.6.1 “'Extras' 'Settings'”
on page 700.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 697

Command The equivalent in the
programming version of
CODESYS HMI

Explanation

TRACE1) 2) Resources, Sampling Trace The window for trace
recording (Sampling Trace)
will be opened.
The menu commands Trace
Start, Read, Stop, Save, Load
which are available in the full
version are available in this
window.

CAM1) 2) Resources, CAMs If there is a CAMs defini-
tion available in the project
(Resources), the CAM-Editor
will be opened.
As soon as the editor will
be closed again, it will be
returned to the visualization.

CNC1) 2) Resources, CNC program list f there is a CNC program
list available in the project
(Resources), the CNC editor
will be opened.
As soon as the CNC editor
will be closed again, it will be
returned to the visualization.

1) not supported for target visualization
2) not supported for web visualization

Only for usage in a web visualization:
The following commands can be used to give the write access in online mode on a visualiza-
tion to a certain client. This is of interest if multiple clients at the same time might modify data
on the PLC Ä Chapter 1.4.3.9.4 “Access protection for multi-client operations” on page 716.

REQUESTWRITEACCESS Request for write access

RELEASEWRITEACCESS Deallocation of the write access which has been requested
before

GLOBALRELEASEWRI-
TEACCESS

Global deallocation of the write access

INTERN LINK <URL>

The web visualization will switch over within the browser to the
defined URL (Unified resource location)

INTERN LINK <HTTP file
path>

The defined file will be opened.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US698

Command The equivalent in the
programming version of
CODESYS HMI

Explanation

INTERN LINK mailto:<email
address>

The entry mask for sending an EMail to the defined address
will be opened; e.g. " INTERN LINK mailto:s.sdfjksk@compa-
nyxy.com"

INTERN CONNECT_TO
<PLC name>|<Start-Visu>

The PLC (target) will be switched;
Preconditions: The web server must be configured appropri-
ately with the connection parameters for the respective target
systems and a matching ini-file for the PLCHandler must be
available.
PLC name: Name of the target PLC, as defined in the
PLCHandler ini-file.
Start-Visu: Name of the desired start visualization page.
The web server will establish the connection to the respective
PLC automatically.
Example: "INTERN CONNECT_TO PLC1|PLC_VISU"

Dialog for the trace recording in the operating version:

1.4.3.6 Configuring visualization objects
Besides the configuration of the individual visualization elements also the visualization object as
a whole can get configured. This is possible concerning the settings for frame, language, grid,
background, placeholders etc. as well as the assignment of special hotkey definitions (keyboard
usage), which should be valid for exactly one visualization object. These settings are done in
the visualization editor via commands of the 'Extras' menu.
Besides that outside of the editor you can do some settings in the Properties dialog of the
visualization object, which concern the usage as web visualization or as Master layout.
Regard that in the project options a separate directory can be defined for visualization files
Ä Chapter 1.4.1.2.2.7 “Options for directories” on page 207.
Image files can be used for the background (static) of a visualization in "bitmap" elements (static
or dynamic use).

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 699

1.4.3.6.1 'Extras' 'Settings'
When this command is used, a dialog box will open in which you can make certain settings
that affect the display and language in the visualization as well as the check of the visualization
variables.

The categories Display, Frame and Language also can be edited in the online
mode.

● Category Display : Enter a zoom factor into the field Zoom of between 10 and 500 %
in order to increase or decrease the size of the visualization display. If option 'Element
numbers' is activated, in each visualization element its number will be displayed, via which it
is managed in the Element List.
In the 'Text' area via button [Font] the standard dialog for selecting a font can be used for
defining the font for the current visualization. This font will be automatically applied to all
visualization elements, which do not have got a different font explicitly assigned via the
element configuration (category 'Text'). Via button [Standard-Font] the project font, which is
defined in the Project Options, can be set as Visualization font, which also will only effect
those elements without individual font definitions. Even those elements however can get
assigned the currently valid standard font by the [Standard-Font] button in their element
configuration dialog.

● Category Frame: If Auto-scrolling is selected, the visible portion of the visualization
window will move automatically when you reach the edge while drawing or moving a visual-
ization element. If “Best fit in Onlinemode” is selected, the entire visualization including all
elements will be shown in the window in Online mode regardless of the size of the window.
When “Include Background Bitmap” is selected, the background bitmap will be fitted into the
window as well, otherwise only the elements will be considered.

● Category Grid: Define here whether the grid points are visible in the offline mode, whereby
the spacing between the visible points is at least 10 even if the entered size is smaller than
that. In this case the grid points only appear with a spacing which is a multiple of the entered
size. Selecting “Active” causes the elements to be placed on the snap grid points when they
are drawn and moved. The spacing of the grid points is set in the field Size.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US700

● Category Compile: Per default the used variables get not checked for validity before going
online with a project. If you want this check to be done already during a build run of
the project (command 'Project ' 'Build' resp. 'Rebuild all'), then activate option “Check
visualization variable on compile”. Invalid variables will be announced by a warning "...
invalid watch expression..." in the message window.

● Category Time/Date: Here you can define in which format the date or time data outputs in a
visualization should be displayed.
If option “Formatted time display” is activated, outputs controlled by a variable of the corre-
sponding time or date datatype (e.g. timevar:TIME;) will be displayed in that format which is
defined in the respective edit field here in the dialog. If the option is not activated or if for
a datatype no formatting is defined here, the output will be displayed in that format which
is used when assigning values to date and time constants (e.g. "t#12h34m15s"), see 'Time
data types' Ä Chapter 1.4.1.8.1.6 “Time data types” on page 444.

During compilation as target visualization a warning will be displayed, if the
functionality is not supported by the target system.

Settings for the following datatypes are possible: Format for TIME/TOD, Format for DATE,
Format for DT.
You can use the formattings listed in the table stated below. Upper and lower case must be
regarded. Empty spaces inserted in a formatting definition will be displayed in the output string
at the same position. Additional characters, which should not be interpreted as format definition,
must be embraced by single quotation marks.

A project variable "timevar" of data type TIME is defined, which is configured to control the
text output of a visualization element. In the Time/Date settings of this visualization, in the edit
field at "Format for TIME/TOD" the data hh':'mm':'ss tt is entered. Output by the respective
visualization element in online mode (e.g. if timevar has the value "t#12h34m15s"): 12:24:15
PM.

Example:

h Hours as number, with no leading zero for single-digit hours; 12-hour clock

hh Hours as number, with leading zero for single-digit hours; 12-hour clock

H Hours as number, with no leading zero for single-digit hours; 24-hour clock

HH Hours as number, with leading zero for single-digit; 24-hour clock

m Minutes as number, with no leading zero for single-digit minutes

mm Minutes as number, with leading zero for single-digit minutes

s Seconds as number, with no leading zero for single-digit seconds

ss Seconds as number, with leading zero for single-digit seconds

ms Milliseconds as number, with no leading zero for single-digit microseconds

t One-character time marker string; "A" (ante meridiem) for the time between
00:00 and 11:59, "P" (post meridiem) for the time between 12:00 and 23:59

tt Two-character time marker string: "AM" (ante meridiem) for the time between
00:00 and 11:59, "PM" (post meridiem) for the time between 12:00 and 23:59

d Day of the month as number, with no leading zero for single-digit days

dd Day of the month as number, with leading zero for single-digit days

M Month as number, with no leading zero for single-digit days

MM Month as number, with leading zero for single-digit days

y Year as last two digits, with no leading zero for years less than 10 (example:
year 2007 is displayed as "7")

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 701

yy Year as last two digits, with leading zero for years less than 10 (example: year
2007 is displayed as "07")

yyyy Year represented by full four digits (example: year 2007 is displayed as
"2007")

● Category Language: Here you can specify in which national language the text that you
assigned to an element in the Text and Text for Tooltip options should be displayed. Addi-
tionally the option 'Dynamic Texts' allows a dynamic change of the displayed text.

The text display changes only in Online mode!

1.4.3.6.2 'Extras' 'Select Background Bitmap'
Use this command to open the dialog box for selecting files. Select a file with the extension
"*.bmp". The selected bitmap will then appear as the background in your visualization.
The bitmap can be removed with the command 'Extras' 'Clear Background Bitmap'.

1.4.3.6.3 'Extras' 'Clear Background Bitmap'
Use this command to remove the bitmap as the background for the current visualization.
You can use the command 'Extras' 'Select Background Bitmap' to select a bitmap for the current
visualization Ä Chapter 1.4.3.6.2 “'Extras' 'Select Background Bitmap'” on page 702.

1.4.3.6.4 'Extras' 'Keyboard usage'
The use of hotkeys can optimize the pure keyboard operation of a visualization.
In the configuration of a visualization object you can define hotkeys which will cause actions like
visualization elements do. For example you could define that "“ if visualization 'xy' is active "“ in
online mode the hotkey <Strg><F2> will stop the program, which also will happen as soon as
element 'z' of visu 'xy' gets an input (by mouse-click or via touch screen).
Anyway per default the keys <Tabulator> <Space> <Enter> will work in that way that in online
mode each element of a visualization can be selected and activated.
The dialog 'Keyboard usage: set possible keystrokes' can be called in the menu 'Extras' or in
the context menu:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US702

Fig. 11: Dialog 'Keyboard usage: set possible keystrokes'

In column Key a selection list offers the following keys to which an action can get assigned:

VK_TAB Tab-Key

VK_RETURN Enter-Key

VK_SPACE Space-Key

VK_ESCAPE Esc-Key

VK_INSERT Insert-Key

VK_DELETE Delete-Key

VK_HOME Pos1-Key

VK_END End-Key

VK_PRIOR Bild-Key (previous)

VK_NEXT Bild-Key (next)

VK_LEFT Arrow-Key (to the left)

VK_RIGHT Arrow-Key (to the right)

VK_UP Arrow-Key (up)

VK_DOWN Arrow-Key (down)

VK_F1-VK_F12 Function keys F1 to F12

0-9 Keys 0 to 9

A-Z Keys A to Z

VK_NUMPAD0 - VK_NUMPAD9 Keys 0 to 9 of the numeric keypad

VK_MULTIPLY Key* of the numeric keypad

VK_ADD Key+ of the numeric keypad

VK_SUBTRACT Key- of the numeric keypad

VK_DIVIDE Key¸ of the numeric keypad

In the columns Shift and Ctrl you can add the [Shift]- and/or the [Ctrl]-key to the already chosen
key, so that a key combination will result.
See the possible key combinations for the particular visualization variants Ä Chapter 1.4.3.12
“Possible key combinations for the particular visualization variants” on page 718.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 703

In column Action you define what should happen as soon as the key (combination) will be
pressed. Select the desired action from the list and insert an appropriate expression. See in the
following the available actions and valid expressions, corresponding to those which can be set
in the configuration dialog of category 'Input':

Action Meaning Expression
Toggle Toggle variable Variable, e.g."plc_prg.tvar"

Tap true Tap variable (set to TRUE) Program variable, e.g. "plc_prg.svar"

Tap false Tap variable (set to FALSE) Program variable, e.g. "plc_prg.xvar"

Zoom Zoom to Vis. Name of the visualization object to which you
want to jump, e.g. "Visu1"

Exec Execute program Name of the executable file, e.g. "notepad
C:\help.txt" (notepad will start and open the file
help.txt)

Text Text input of variable 'Textdis-
play'

Number of the element for which the text input
is to be configured, e.g. "#2".
Display of element numbers can be switched
on in 'Extras' 'Settings'; also see 'Elementlist...'.

In column Expression you must enter "“ depending on the type of action "“ either a variable
name, a INTERN-command, a visualization name of a text string, exactly like you would do in
the configuration dialog of category 'Input' for the corresponding visualization element.
Use button [Add] to add another empty line at the end of the table. Use the [Delete] button to
remove the line where the cursor is positioned currently. [OK] resp. [Cancel] will save resp. not
save the done settings and close the dialog.
The keyboard usage can be configured separately for each visualization object. Thus the same
key (combination) can start different actions in different visualization.

The following key configurations have been done for the visualizations VIS_1 and VIS_2:

Table 45: VIS_1:
Shift Ctrl Action Key Expression
x Toggle A PLC_PRG.autom

atic

 x Zoom Z VIS_2

Table 46: VIS_2:
Shift Ctrl Action Key Expression
 Exec E INTERN LAN-

GUAGE
DEUTSCH

 x Zoom Z PLC_VISU

If you now go online and set the focus to VIS_1, then pressing [Shift] + [A] will cause that
variable PLC_PRG.automatic will be toggled. [Ctrl] + [Z] will cause a jump from Visu1 to VIS_2.
If VIS_2 is the active window, pressing key [E] will cause that the language within the visualiza-
tion will switch to German. [Ctrl]+ [Z] here will cause a jump to visualization PLC_VISU.

Example

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US704

1.4.3.6.5 Master layout
The usage of a "Master layout" in visualizations for example could be used to provide a dialog in
various visualizations without the need to explicitly insert it in each of them. Whether and when
the dialog will be displayed in online mode could be controlled via a variable which is defined in
the Master layout configuration for the visibility of the dialog elements .

If a visualization is defined as "Master layout", it will be inserted automatically in all other
visualizations (if those are not explicitly excluded, see below) and will be available there with all
its functions during online mode. It always will be inserted on the front level, if you however it
always want to get it in the background, then activate option 'in background' in the properties
dialog of the visualization element (see below). A master layout cannot be edited any longer in
the visualization where it has been inserted. Modifications of the configuration only can be done
in the master layout visualization itself.
Appointing a visualization to be the master layout is done in the Properties dialog, which can
be opened for an object currently selected in the Object Organizer via command 'Project' 'Ob-
jectproperties' Ä Chapter 1.4.1.2.4.12 “'Project' 'Object properties'” on page 261. Option Master
layout must be activated for this purpose. If prior to this another visualization has been defined
to be a master layout, that one will automatically be re-defined to be a "normal" visualization
(option Visualization in the Properties dialog.

Also in the Properties dialog of a visualization object you can define that it should be used as a
Visualization without master layout.

1.4.3.6.6 Use as web visualization
If a project is created for a web visualization, for each visualization object you can define
whether it should be used for this purpose or not Ä Chapter 1.4.5.1 “Overview” on page 721.
There to select the visualization object in the Object Organizer and open the Properties dialog
Ä Chapter 1.4.1.2.4.12 “'Project' 'Object properties'” on page 261. If in the Target Settings the
options web visualization are activated, in the Properties dialog the corresponding options use
as web visualization automatically also will be activated. In order to explicitly exclude the object
from the use in a web visualization deactivate the appropriate option.

1.4.3.7 Images in visualization
Image files can be used in a visualization object for the background as well as in visualization
elements of type "Bitmap". The following formats are supported:

CODESYS HMI: *.bitmap, *.jpg, *.tif

Web visualization: *.bmp, *.jpg

In "Bitmap" elements a dynamic change of images can be reached by specifying the image file
name by a project variable instead of using a definite file reference.
Ä Chapter 1.4.3.5.19 “Bitmap” on page 669

Ä Chapter 1.4.3.7.1 “'Extras' 'Bitmap list'” on page 706

The background image of a visualization can only be defined by a static file reference.
Ä Chapter 1.4.3.6.2 “'Extras' 'Select Background Bitmap'” on page 702

Use as master
layout

Visualization
without master
layout

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 705

1.4.3.7.1 'Extras' 'Bitmap list'
In the 'Extras' menu which is available when the Visualization editor is active, command 'Bitmap
list' opens dialog 'Bitmap list:...". Here you can enter image files, which then can be used in
all visualization objects via a project variable defining the content of a "Bitmap" element. This
allows a dynamic change of images in online mode - alternatively to the static use of image files,
which for this purpose are not to be part of the bitmap list.

In order to enter an image file in the bitmap list, use button [Add]. The standard dialog for
browsing for a file will be opened, where you can select an image file (*.bmp, *.tif, *.jpg, regard
the supported file formats). If the chosen file is in the project directory, only the file name will be
added to the list, otherwise the full path.
Via button [Delete] the currently selected entry (click by the right mouse-button) can be deleted.
In order to modify an entry, either edit it directly (click by the left mouse-button on the entry
opens the edit frame), of use button [Edit] to open the standard dialog for browsing for a file. For
the latter the entry first must be selected by a click with the right mouse-button.
[OK] saves the current list.

Each file name specified in the list now can be assigned to a variable of type STRING, which is
entered in the bitmap configuration of a visualization element in order to define the image to be
used Ä Chapter 1.4.3.5.19 “Bitmap” on page 669.

1.4.3.8 Language switching
1.4.3.8.1 Overview

The language switching for texts, tooltips and alarm messages in a visualization can be done
via static texts or via dynamic texts, which must be provided by a file Ä Chapter 1.4.3.8.2
“Static language switching” on page 707 Ä Chapter 1.4.3.8.3 “Dynamic language switching”
on page 709. Unicode format is only possible with dynamic texts.
How can a language switching be done:
In the configuration dialog ‘Visualization settings’ in the selection list below 'Language' you can
choose one of the languages defined in the currently used language file, which should be used
as '(start) language' in online mode; for the example shown below: german and english.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US706

A language switch in online mode is done via an input on a visualization element. For this
purpose the internal commands "INTERN LANGUAGE <language>" and "INTERN LANGUA-
GEDIALOG" are available, which can be used in the configuration dialog in category 'input'
Ä Chapter 1.4.3.5.30 “Special input possibilities for operating versions” on page 695 Ä Chapter
1.4.3.5.15 “Input” on page 662.

Insert a button element which can be used to switch the visualization texts to German. For
this purpose, label the element with ‘German’, in configuration category ‘Input’ activate option
‘Execute program’ and define a command "INTERN LANGUAGE <language>". "language" is
to be replaced by the language shortcut used in the language file, thus for the vis-file example
shown under 'Static Language Switching' Ä Chapter 1.4.3.8.2 “Static language switching”
on page 707: "INTERN LANGUAGE german". If the button will be operated in online mode
the visualization texts will be displayed according to the entries which are available for
"german" in the language file.

Example:

Unicode format is only possible with dynamic texts. An appropriate entry must be available in
the XML language file. Additionally the following preconditions must be complied:
1. In the configuration of the visualization object a unicode-enabled font must be specified.

Attention: Currently for tooltip texts this font must be specified in the
codesys.ini file ("FaceTooltip=") and is not read from the XML lan-
guage file!

2. In order to get work the unicode font in the target visualization, it must be supported by the
target system.

3. In order to get work the unicode font in the web visualization, the configuration entry
TOOLTIPFONT in webvisu.htm must be set with a unicode-enabled font.

1.4.3.8.2 Static language switching
For a static switch of the language a language file (*.vis, *.tlt, *.txt) file can be used (for how
to create see below). The difference to the dynamic language switching is that the language
cannot be defined by a project variable during run time.

For visualizations it is recommended to use the *.vis language file, because *.tlt-
or *.txt-translation files only work for visualizations in CODESYS or CODESYS
HMI and also in those not for the Meter, Bar display and Histogram elements.

In dialog ‘Visualization settings’ you configure, which language file should be used with the
project. In order to choose a translation (*.tlt, *.txt) or a pure visualization language file (*.vis),
which contains the texts in the various languages, activate the Language file option and in the
input field next to it enter the appropriate file path. Via the button you get the standard dialog for
opening a file.

Unicode format:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 707

Regarding creating a translation file *.tlt, see 'Project' 'Translate into another language'
Ä Chapter 1.4.1.2.3.15 “'Project' 'Translate into another language'” on page 233.

For creating a special language file *.vis for the visualization, perform the following steps:
1. Open likewise the Settings Visualization dialog, Language category.
2. Choose option language file. In the associate input field enter where you want to store the

file. The extension is .vis. If a language file with the extension .vis is already present, it will
be offered to you here.

3. In the input field next to Language you fill in a keyword for the language which is currently
used in the visualization, i.e."german" (or "D"). Then press the button [Save].

4. A file with the extension .vis will be created, which now can be edited by a normal text
editor. For example you can open the file by notepad. Example file:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US708

5. You get a list of the text variables for the language currently used in the visualization. It
includes a reference to the title of this list, for example "1=german" as reference to the
title [german]. You can extend the list by copying all lines, then replacing the German by
English text and setting a new title [english]. Beyond the line 1=german you accordingly
have to add 2=english.
To view the visualization in one of the prepared languages, open the dialog “Language”
again. In the option field beyond “Language” now you can choose between german and
english (for the example described above).

1.4.3.8.3 Dynamic language switching
Dynamic texts allow switching between different, always language-assigned text versions for a
visualization element (texts, texts for tooltips, message texts in alarm tables). The difference
to static text is that the definite text selection also can be done via a variable used in the
application.
In the configuration of the element a Prefix-ID-combination is entered, which is assigned to a
text in a XML files (also named "textlist" in the following). The ID can be defined by a project
variable.
Example of application: The ID represents an error number, as Prefix e.g. "Error" is used.
The language file provides via the Prefix-ID-combination an appropriate error message, which
(depending on the currently set language) will be displayed in this language.

Please regard:

- The language files for dynamic texts can be created in Unicode (UTF-16) or
ANSI (ISO-8859-1), e.g. " <?xml version='1.0' encoding='UTF-16'?>". For the
preconditions for the usage of unicode-able fonts please see static language
switching Ä Chapter 1.4.3.8.2 “Static language switching” on page 707.

- For the target visualization the start language, the directory for the XML file
to be used and a list of XML files can be defined by the target system. This
allows to modify these parameters later without the need of creating a new boot
project. Thus in an easy way existing textlists can be modified (start language,
texts) resp. new languages can be added. If the target system is providing such
a configuration, the textlists which are defined for the visualization, will not be
regarded in online mode! If no target-specific configuration is available for the
language switching, then after a modification of the textlists a project download
must be done.

1.4.3.8.4 Configuration of dynamic language switching
You can control dynamically which text (also alarm message text in an alarm table) will be
displayed in a visualization element resp. as tooltip of an element in online mode by using
Prefix-ID-combinations, each pointing to another text defined in a XML file.
For this purpose a XML file describing the text assignments must be linked to the project in
the configuration of the visualization (Ä Chapter 1.4.3.6.1 “'Extras' 'Settings'” on page 700).
The XML file must have a certain format. A language code is added to the particular texts,
thus later you not only can switch between different text contents but also language switching is
supported.
In the configuration of a visualization element, for which the text display should be switched
dynamically, Prefix and ID are entered (see below) whereby the ID can be provided by a project
variable. A default language can be defined via an INTERN command (LANGUAGE DEFAULT).

Set the following entries in the different configuration dialogs of a visualization:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 709

1. Link the XML file(s) and choose the (start) language: Dialog 'Settings' category Language:
Activate option “Dynamic texts” and press [Add], in order to link one or several XML files,
which are available on your system, to the project. The selected files will be listed in the
window below the button. Press [Delete] if you want to remove a selected file from the
list. If you want to get displayed just those visualization elements, for which a dynamic
text replacement is done, then activate option “Hide elements, if no text replacement took
place”.
Selecting one of the language identifiers offered in the selection list at field “Language”
will cause the display of those text versions (for the corresponding prefix-ID-combination)
which are marked with that language identifier in the XML file.

ð Configuration dialog Settings, category Language, for dynamic texts:

2. Specify the ID (as used in the XML file) in configuration dialog 'Variables' in field 'Textdis-
play' resp. 'Tooltip-display':
Enter a value (number) resp. a project variable which should define the ID of a text (as
used in the XML file).
In case of message texts of an alarm table, the ID must match the respective line number
in the table .

3. Define the text format in configuration dialog 'Text' resp. 'Text for tooltip':
In the Content field, insert a placeholder "%<PREFIX>" at that position of the text, where
you want to get displayed a dynamic text in online mode. Instead of "PREFIX" you can
enter any string matching with a PREFIX-definition used in the XML textlist. See the
description for the 'Text' configuration dialog.

For each prefix-ID-combination, which is found in a linked XML file, the assigned text will be
displayed in the visualization element in online mode. If no appropriate entry is found, no
replacement will be done.

1.4.3.8.5 XML file for dynamic texts
For a description how to use dynamic texts in the visualization see
'Dynamic Language Switching' Ä Chapter 1.4.3.8.3 “Dynamic language switching” on page 709

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US710

'Configuration of Dynamic Language Switching' Ä Chapter 1.4.3.8.4 “Configuration of dynamic
language switching” on page 709

The basic file must be available in XML format (<file name>.xml). In this file texts are assigned
to identifiers(which are a combination of a prefix and a ID). In case of normal texts and tootip
texts these combinations can be entered in the configuration of a visualization element, in order
to get displayed the respective text in online mode. In case of an alarm table the prefix and ID
are given by the "path" of the alarm group in the alarm configuration (prefix) and the line number
of the text definition in the alarm group configuration table (ID).

Example picture showing prefix and ID in an alarm configuration:

In the header section of the file a default language and a default font assigned to a language
can be defined. See an example of an description file at the end of this page.
The descriptions in the XML file are enclosed by tag <dynamic-text> and <\dynamic_text> which
have to be entered at the beginning resp. end of the file.
The language files for dynamic texts (as of program version V2.3.4.0) can be created in Unicode
(UTF-16) or ANSI (ISO-8859-1). This is to be defined via the encoding syntax at the beginning
of the XML file, e.g. " <?xml version='1.0' encoding='UTF-16'?>". For the preconditions for the
usage of unicode-able fonts, see 'Language Switching' Ä Chapter 1.4.3.8 “Language switching”
on page 706.

To facilitate the creation of the language file the standard installation provides
some Excel macros.

Primary formats of the XML file, which do not use the
<dynamic_text>\<\dynamic_text> tags or the header section, will be supported
further on.

The header section starts with <header> and is closed with <\header>. If you want to define
a default language, use entry <default-language>. A default font which is assigned to a cer-
tain language, can be defined via entry <default-font>. These entries are optional. If they are
missing, the dynamic text in the visualization will be displayed according to the local configura-
tion settings of the visualization.

Structure of the
file:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 711

<header>

<default-language><language></default-lan-
guage>

Default language; that means that if there is
no text entry available for the currently set lan-
guage, that text will be used which is found
within the same text entry for the default lan-
guage. If also for the default language no text
is found, "<PREFIX> <ID>" will be displayed.
If multiple XML files are used, thus providing
multiple headers, only that header section will
be regarded, which is read at last. So it is rea-
sonable to use only one header section ! The
language token must correspond which one of
that used in the text entries (see below).
Note: In online mode the default language
can be set explicitly via a visualization ele-
ment configured with command INTERN LAN-
GUAGE DEFAULT in category Input, Execute
program.

<default-font> Default font for <language>: The given font
(e.g. "Arial" will automatically be used for all
elements, which display dynamic texts in <lan-
guage>. The language token must correspond
which one of that used in the text entries (see
below).
For the preconditions for the usage of uni-
code-able fonts please see 'Language Switch-
ing' Ä Chapter 1.4.3.8 “Language switching”
on page 706.

<language><language></language>

<font-name></font-name>

</default-font>

<default-font> Further default fonts for other languages

 <language>......

</default-font>

</header>

The list of the assignments of the Prefix-ID combinations to texts must start with <text list> and
end with </text list>. The particular text entries each start with <text prefix> and end with <\text>.
A text entry which is assigned to a Prefix-ID-combination must contain the following lines:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US712

<text prefix>= "<PREFIX> id="<ID>" "PREFIX" corresponds to the <PREFIX>
used in the visualization element configuration
(category Text or Tooltip); in case of an mes-
sage text used in an alarm table the path of
the alarm group within the alarm configuration
starting at node "System" must be specified,
e.g. "System/Alarmgroup_xy"
 "ID" corresponds to the entry in category 'Var-
iables', Textdisplay or Tooltip-display; in case
of an of an message text used in an alarm
table the number of the line which defines
that text in the 'Alarm groups' must be speci-
fied Ä Chapter 1.4.1.4.2.4 “Alarm groups”
on page 368.

<language> <!CDATA[<TEXT>]]</language> Use any string as an 'language' identifier (e.g.
"english"). This identifier then will be displayed
in the 'Settings' dialog, category Language of
the visualization element in the selection list
at 'Language'; instead of "TEXT" insert any
text which then will be displayed instead of the
above defined ID-prefix-combination in the
visualization element.

</text>

For each prefix-ID-combination at least for 1 language a text entry must be available. E.g. see
in the file example shown below: <deutsch> indicates the start of the german version of a text,
</deutsch> terminates the text.
Dynamic texts on the one hand can serve to display Texts in different languages, but of course
on the other hand they also can be used to change the content of a text (same language)
display dynamically.

You want to have two visualization elements, one for visualizing the current machine identifica-
tion, the other for visualizing an error message according to a currently given error number:
1. Define in PLC_PRG the following variables: ivar of type INT, defining the current machine

identification; errnum of type INT defining the current error number.
2. Configure a visualization element for displaying the current machine identification:

- In category 'Text'’ in the text field enter: "%<Maschine>"
- In category 'Variables' at Textdisplay" enter: "PLC_PRG.ivar"

3. Configure another visualization element for displaying the error message for the currently
occurred error:
- In category 'Text' in the text field enter: "%<Error>"
- In category 'Variables' at 'Textdisplay' enter: "PLC_PRG.errnum"

4. Create a XML file, e.g. with name dynamictextsample.xml, according to the syntax
described above, which should look as followed for the current example: Sample XML
file for dynamic texts Ä “Sample XML file for dynamic texts” on page 714

5. In the visualization open dialog 'Settings', category Language: Activate option 'Dynamic
Texts'; Add file dynamictextsample.xml, now available on your computer, to the file list.

6. Go online with the project.
7. In the visualization settings set language to "deutsch". Set PLC_PRG.ivar to "1" and

PLC_PRG.errnum to "4711". Now in the visualization elements the following texts should
be displayed: "Vorschub" resp. "Fehler an Position 4711". The texts will be displayed in
Arial 13.

8. Set PLC_PRG.ivar to "2" and PLC_PRG.errnum to "2000". The texts will change to "Bes-
chleunigung" and "Das ist ein Fehlertext über mehrere Zeilen".

Example:

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 713

codesysenglish.chm::/mainchapters/Alarm_groups.htm

9. In the visualization settings change the language to "english". Now the following texts will
be displayed:
"Acceleration" and "This is a error text over more than one line".

<dynamic-text>
 <header>
 <default-language>deutsch</default-language>
 <default-font>
 <language>english</language>
 <font-name>Arial</font-name>
 <font-color>0,0,0</font-color>
 <font-height>-13</font-height>
 <font-weight>700</font-weight>
 <font-italic>false</font-italic>
 <font-underline>false</font-underline>
 <font-strike-out>false</font-strike-out>
 <font-char-set>0</font-char-set>
 </default-font>
 </header>
 <text-list>
 <text prefix="ERROR" id="4711">
 <english>Error at position 4711</english>
 </text>
 <text prefix="ERROR" id="815">
 <english>Error at position 815</english>
 </text>
 <text prefix="ERROR" id="2000">
 <english>
 <![CDATA[
 This is a error text over more than
 one line
]]>
 </english>
 </text>
 <text prefix="MASCHINE" id="1">
 <english>
 <![CDATA[Feed rate
]]>
 </english>
 </text>
 <text prefix="MASCHINE" id="2">
 <english>
 <![CDATA[Acceleration
]]>
 </english>
 </text>
 </text-list>
</dynamic-text>

1.4.3.8.6 Calling up language-dependent online help via a visualization element
The calling of a different Help file with a visualization element can be tied in with the language
currently entered for the visualization. For this purpose, the command INTERN HELP must be
entered for this element in the configuration dialog in category 'Input' at the location 'Execute
program', and a [Visu-Helpfiles] section must be present in the codesys.ini-file. Below this,
the corresponding help files must be assigned to the languages available for selection in the
visualization.

Sample XML file
for dynamic
texts

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US714

[Visu-Helpfiles]
German=C:\PROGRAMME\HELP\<hilfedatei_german>.chm
English=C:\PROGRAMME\HELP\<hilfedatei_english>.chm

Example

1.4.3.9 Visualization in online mode
1.4.3.9.1 Overview

Regard the following items concerning a visualization in online mode:
● Order of evaluation:

– Dynamically defined element properties (by variables) will overwrite the (static) base
settings defined by options in the configuration dialogs.

– If an element property is defined by a "normal" project variable as well as by the com-
ponent of a structure variable (programmability), then primarily the value of the project
variable will be regarded.

– A visualization can be configured in that way that in online mode it can be operated
solely by inputs via keyboard. This is an important feature especially for using the
visualization with CODESYS HMI, as web visualization.

● Before a download of the project regard the current setting of option 'Prevent download
of visualization files' in the target settings. This concerns all files which are used in the
current visualization. Visualization files are only downloaded for web visualization and can
be bitmaps, language files and for web visualization also XML description files.

● The configuration settings for Display, Frame and Language can also be edited in online
mode.

● As long as a visualization "reference" is not configured explicitly, the particular elements
of the reference in online mode will react on inputs like those of the original visualization
("mother" of the references).

● When you switch the language ('Extras' 'Settings') this will only effect the display in online
mode.

● A visualization can be printed in online mode.
● If a visualization is used as target visualization, information on user entries via mouse-clicks

can be scanned with the help of special interface functions and thus be used in the project.

You can find descriptions on the online usage of some visualization elements,
like e.g. Trend or Table, in the help page on the configuration of the respective
element.

1.4.3.9.2 Operation over the keyboard
In order to get independent from the mouse or a touch screen, it is useful to configure a
visualization in a way that allows pure keyboard operation:
Per default the following key (combinations) will work in online mode anyway (no special config-
uration necessary):
● Pressing the [Tabulator] key selects the first element in the element list for which an input

is configured. Each subsequent pressing of the key moves one to the next element in the
list. Within tables you will jump to the next table field. Pressing the key while keeping the
[Shift] key depressed selects the previous element. Depending on the target a simplified
input handling may be possible.

● The [arrow] keys can be used to change from a selected element to a neighbouring one in
any direction.

● The [Space bar] is used to execute an activity on the selected visualization element. If the
element is one which has a text output variable or if it is a table field, a text input field will be
opened which displays the text contents of the variable resp. the field. Pressing the [Enter]
key writes in this value.

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 715

Additional key (combinations) for the online operation can be defined in the configuration dialog
'Keyboard usage'. There also the keys [Tab], [Space] and [Enter] can get assigned another
functions than the above described standards.
The individual elements of references behave in Online mode identically to the corresponding
ones in the visualization that is referenced. They will therefore react the same way as individual
elements to inputs and operation by mouse and keyboard; the display of tooltips in references is
also element-dependent. When processing the element list, as for instance when jumping from
one input element to the next using the tabulator, the processing of all individual elements of a
reference proceeds from the location of the reference in the element list before jumping to the
next element of the list.

Operation over the keyboard in online mode is of greatest significance, if the
visualization should be used with CODESYS HMI or web visualization. In the
web visualization a specific setting in webvisu.htm allows to keep effective the
operation over the keyboard even if currently an entry field is opened.

1.4.3.9.3 'File' 'Print'
'File' 'Print'is used to print out the contents of the visualization window in online mode. Visualiza-
tions which stretch over the border of the window can lead to inconsistencies particularly when
there are moving elements in the visualization.

1.4.3.9.4 Access protection for multi-client operations
Due to the fact that it is possible to connect multiple visualization clients to one PLC (target and
web visualization), multiple clients might access data in the PLC at the same time. If this is not
desired, an access protection can be defined by certain INTERn commands, so that always only
one client can write the data on the PLC.
The following INTERN commands are available for restricting the write access to one client:

REQUESTWRITEACCESS The client requests write access on the visual-
ization.
Using the system variable CurrentWriteAcces-
sClientId the client then can check whether
it has got write access. This implicit variable
stores the identification (ID) of the client which
currently has write access. Each client has an
unique ID "CurrentClientID".Thus the following
expression can be used to allow a certain
input on a visualization:
CurrentWriteAccessClientId = CurrentClientId
Example: The expression could be used in the
configuration of an element to define its visi-
bility : If the expression is TRUE, i.e. the client
has write access, then the element is visible,
i.e. allows input.
The web server will check at each write
request, whether the requesting client cur-
rently has write access.

RELEASEWRITEACCESS The client deallocates its write access.

GLOBALRELEASEWRITEACCESS The write access is deallocated client-inde-
pendently.

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US716

If during monitoring it is detected that the client which has currently write access is not con-
nected to the PLC any longer, variable CurrentWriteAccessClientId will be set to "-1", which
means, that no client at all has write access. This also can be done via the application.

1.4.3.10 Visualizations in libraries
Visualizations can also be stored in libraries and thus be made available to projects in the form
of library POUs. They can be inserted as references or they can be called up via the command
„Zoom to vis." in the input configuration of another visualization which is part of the project.

Visualizations used in a project must have unique names. It can be problematic
if for instance a visualization from a library is called or referenced which has the
same name as one present in the project. Because, in processing references or
visualization calls in the program, first the visualizations in the project, and only
thereafter the ones in the loaded libraries will be implemented.

1.4.3.11 System variables
The following implicitely created system variables can be used to program a visualization:

Implicitely
generated
variable

Data type

Function Cur-
rently
usable
in
HMI

Cur-
rently
usable
in
Simula-
tion

Cur-
rently
usable
in
Target
Visu

Cur-
rently
usable
in
Web-
Visu

Current-
Visu

String[40] Name of the currently opened
visualization. If the name gets
changed, a change to another
visualization will be done.
Note: With compiler versions
< V2.3.7.0 the name string
MUST be defined in capital
letters. With compiler versions
as from V2.3.7.0 the string
can be defined in small letters
IF the library SysLibStr.lib is
included in the project.
Depending on the target
system this variable can be
activated/deactivated in the
Target Settings dialog, cate-
gory Visualization.

x x x x

Cur-
rentCaller

String[40] Name of the previously
opened visualization. Is used
for the ZOOMTOCALLER
functionality. Only set and
modified in TargetVisu.

- - x -

Curren-
tLanguage

String[40] Currently set language, avail-
able in the language file. The
language. Only set and modi-
fied in TargetVisu.

- - x -

CurrentU-
serLevel *

INT Currently set user level 0..7. x x x x

Automatic deal-
location of write
access:

Implicit varia-
bles

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 717

Implicitely
generated
variable

Data type

Function Cur-
rently
usable
in
HMI

Cur-
rently
usable
in
Simula-
tion

Cur-
rently
usable
in
Target
Visu

Cur-
rently
usable
in
Web-
Visu

Current-
Pass-
words[0 ..
7] *

ARRAY
[0..7]
of
String[20]

All passwords which are
defined in "Usergroup pass-
words".

x x x x

CurrentWri-
teAcces-
sClientId

DWORD ID of the visualization client
which in a multi-client opera-
tion currently has the write
access on the PLC data

- - x x

Current-
ClientId

DWORD ID of the current visualization
client

- - x x

The implicit variables of a target visualization can be declared as remanent variables Ä Chapter
1.4.1.3.9.7 “Remanent variables” on page 302:
For this purpose the variables must be declared explicitly as global variables. This declaration
MUST be done in the topmost (alphabetic order) global variables list in folder 'Global Variables'
in the Resources tab Ä Chapter 1.4.1.4.1.2 “Global variables” on page 357. If the declaration is
placed in another global variable list, a compile error will occur.

VAR_GLOBAL RETAIN
 VisuDoExecuteUserlevelInit : BOOL := TRUE;
 CurrentUserLevel : INT := 0;
 CurrentPasswords : ARRAY[0..7] OF STRING[20] := 'a','b','c','d','e','f','g','h';
END_VAR

Example:

* Regard for the variables CurrentUserLevel, CurrentPasswords[...]: Those must be of the same
type (normal, RETAIN, PERSISTENT...)! If they are defined as remanent variables, additionally
a variable "VisuDoExecuteUserlevelInit" of type BOOL must be declared as a RETAIN vari-
able in the global variables list, initialized with TRUE (" VisuDoExecuteUserlevelInit : BOOL :=
TRUE;").

1.4.3.12 Possible key combinations for the particular visualization variants
The table below shows all possible key combinations which are supported for keyboard usage
in the particular visualization variants.
The following abbreviations are used:
● C for CODESYS / CODESYS HMI
● TV for target visualization
● WV for web visualization
If an abbreviation is available in a column, the referring visualization variant supports the
corresponding key combination.

Implicit varia-
bles as rema-
nent variables:

PLC Automation with V2 CPUs
Programming with CODESYS > Visualization

2022/01/203ADR010582, 3, en_US718

Table 47: Comments for the particular lines
 no modifier Shift Ctrl Shift+Ctrl Comment
VK_TAB C C C C K4

VK_RETURN C / TV C / TV C / TV C / TV

VK_SPACE C / WV C / WV C / WV C / WV K4; K5

VK_ESCAPE C / TV / WV C / TV / WV K3

VK_INSERT C / TV C / TV C / TV C / TV

VK_DELETE C / TV C / TV C / TV C / TV

VK_HOME C / TV / WV C / TV / WV C / TV / WV C / TV / WV

VK_END C / TV / WV C / TV / WV C / TV / WV C / TV / WV

VK_PRIOR C / TV / WV C / TV / WV C / TV / WV C / TV / WV

VK_NEXT C / TV / WV C / TV / WV C / TV / WV C / TV / WV

VK_LEFT C / TV / WV C / TV / WV C / TV / WV C / TV / WV

VK_RIGHT C / TV / WV C / TV / WV C / TV / WV C / TV / WV

VK_UP C / TV / WV C / TV / WV C / TV / WV C / TV / WV

VK_DOWN C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F1 C / TV / WV C / TV / WV C / TV / WV C / TV / WV K1

F2 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F3 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F4 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F5 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F6 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F7 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F8 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F9 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F10 C / TV C / TV C / TV C / TV K2

F11 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F12 C / WV C / WV C / WV C / WV

0 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

1 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

2 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

3 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

4 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

5 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

6 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

7 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

8 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

9 C / TV / WV C / TV / WV C / TV / WV C / TV / WV

A C / TV / WV C / TV / WV C / TV / WV C / TV / WV

B C / TV / WV C / TV / WV C / TV / WV C / TV / WV

C C / TV / WV C / TV / WV C / TV / WV C / TV / WV

D C / TV / WV C / TV / WV C / TV / WV C / TV / WV

PLC Automation with V2 CPUs

Programming with CODESYS > Visualization

2022/01/20 3ADR010582, 3, en_US 719

 no modifier Shift Ctrl Shift+Ctrl Comment
E C / TV / WV C / TV / WV C / TV / WV C / TV / WV

F C / TV / WV C / TV / WV C / TV / WV C / TV / WV

G C / TV / WV C / TV / WV C / TV / WV C / TV / WV

H C / TV / WV C / TV / WV C / TV / WV C / TV / WV

I C / TV / WV C / TV / WV C / TV / WV C / TV / WV

J C / TV / WV C / TV / WV C / TV / WV C / TV / WV

K C / TV / WV C / TV / WV C / TV / WV C / TV / WV

L C / TV / WV C / TV / WV C / TV / WV C / TV / WV

M C / TV / WV C / TV / WV C / TV / WV C / TV / WV

N C / TV / WV C / TV / WV C / TV / WV C / TV / WV

O C / TV / WV C / TV / WV C / TV / WV C / TV / WV

P C / TV / WV C / TV / WV C / TV / WV C / TV / WV

Q C / TV / WV C / TV / WV C / TV / WV C / TV / WV

R C / TV / WV C / TV / WV C / TV / WV C / TV / WV

S C / TV / WV C / TV / WV C / TV / WV C / TV / WV

T C / TV / WV C / TV / WV C / TV / WV C / TV / WV

U C / TV / WV C / TV / WV C / TV / WV C / TV / WV

V C / TV / WV C / TV / WV C / TV / WV C / TV / WV

W C / TV / WV C / TV / WV C / TV / WV C / TV / WV

X C / TV / WV C / TV / WV C / TV / WV C / TV / WV

Y C / TV / WV C / TV / WV C / TV / WV C / TV / WV

Z C / TV / WV C / TV / WV C / TV / WV C / TV / WV

VK_NUMPAD
0

C / TV / WV C / TV / WV

VK_NUMPAD
1

C / TV / WV C / TV / WV

K1: Additionally, the online help will be displayed
K2: In the web visualization and the IExplorer the File Menu will be focused
K3: Ctrl/Esc opens the start menu, Shift/Ctrl/Esc opens the Taskmanager
K4: Tab and Space have a different function in the target visualization
K5: Shift/Space opens the applet configuration

1.4.4 HMI
1.4.4.1 Overview

CODESYS HMI is a runtime system for the execution of visualizations which have been created
with CODESYS. If a PLC program contains appropriate visualizations, those will be displayed
in fullscreen mode after having started CODESYS HMI and the user can operate the control
and watch functions, which are contained in the program by mouse-clicks and keyboard. This
is possible, even if the Automation Builder project has got a read protection. The user has no
possibility to edit the program, menues and function bars are not available, it is a pure operating
version.

PLC Automation with V2 CPUs
Programming with CODESYS > HMI

2022/01/203ADR010582, 3, en_US720

Thus the main control and watch functions of the project must be assigned to visualization
elements which can be operated in online mode. For this purpose special input possibilities for
CODESYS HMI are available in the configuration dialog of a visualization element Ä Chapter
1.4.3.5.30 “Special input possibilities for operating versions” on page 695.

1.4.4.2 Installation, start and operation
CODESYS HMI can be installed with the standard Automation Builder setup. If no valid license
is available, a time-limited demo version is available.

CODESYS HMI (CoDeSysHMI.exe) is started by a command line:
In each case at least the desired Automation Builder project has to be given in the command
line. If no further parameters are set there, CODESYS HMI automatically will start with a
visualization POU named PLC_VISU (if existant in the project) and on that target or simulation
mode, which was set when the project had been saved last.
Additionally as well the known command line and command file commands as the following
special parameters can be used:
● "/simulation" resp. "/target"

Per default it will be started in that mode which was set when the project was saved last.
Using the parameter "/simulation" resp. "/target" in the command line it can be set explicitely
whether the project should run in simulation mode or on the target.

● /visu <visualization POU>
If the project contains a visualization POU named PLC_VISU, it will start automatically with
this one. If another POU should be the entrance, it has to be set in the command line with
"/visu <name of visualization POU>".

● /visudownload
Overrides the download lock: If the user tries to log in with a project, which is different to that
on the PLC, per default a download of the new project (dialog) can be initiated. If however
there is an entry "visudownload=0" in the codesys.ini file, then no download is possible. This
lock can be overridden by the command line parameter "/visudownload".

● /visucompactload
This parameter can be used for optimization at starting a project for which no download is
required. If a download gets necessary anyway, e.g. effected by parameter "/visudownload",
"/visucompactload" will be ignored.

D:\PROGRAMME\CoDeSysHMI /simulation D:\PROJECTS\PROJECT.PRO /visu
overview
The project project.pro will start in simulation mode and with the visualization POU 'overview'.

Example for a
command line

Paths containing spaces must be bordered by quotation marks (").

The project will start in full screen mode with the entrance POU.
CODESYS HMI can be operated corresponding to the functions of the visualization elements
via keyboard and mouse. If there is no visualization element configured with a corresponding
function, CODESYS HMI at any time can be terminated by pressing [Alt] + [F4].

1.4.5 Web visualization
1.4.5.1 Overview

The web visualization is a target specific application of a visualization.

Installation

Start and opera-
tion

PLC Automation with V2 CPUs

Programming with CODESYS > Web visualization

2022/01/20 3ADR010582, 3, en_US 721

CODESYS can create XML descriptions of the visualization objects and download them to the
PLC. There a web server will provide the PLC data in XML format too and thus can create a
continuously updated visualization which can be opened in the web browser of any computer
which is connected via Internet, independently from the target platform (e.g. useful for remote
maintenance purposes).

Regard the Restrictions and Special Features when programming for a web
visualization.

The web server can connect dynamically to several controllers if configured appropriately.
Visualization elements can be configured in a way that they will effect a connection change to
another target system.

CODESYS Programmming
System

Data

Web Server

Browser

Runtime System

XML description Applet
XML description

Data

Before a download regard the current setting of option 'Prevent download of
visualization files' in the target settings. This concerns all files which are in the
directory for visualization files!

1.4.5.2 Preconditions
In order to make a visualization created in CODESYS available as web visualization, the
following preconditions must be fulfilled:
● the target system must support the functionality; that means that in the target settings the

option 'web visualization' must be activated. If defined in the target file, this can be done by
the user in the 'General' target settings.

● A correctly configured web server must be started. (see below)
● In order to get the web visualization displayed on a computer, a Web browser (IE-Explorer

oder Netscape) is required.

PLC Automation with V2 CPUs
Programming with CODESYS > Web visualization

2022/01/203ADR010582, 3, en_US722

● Operating system: Windows NT/2000, Windows CE, Linux, RTE
● Regard when using a HTTP-Proxy-Server: If the communication within the Internet browser

is done via a HTTP-Proxy-Server, the monitoring of the visualization data might cause
problems. If "USEFIXSOCKETCONNECTION" in WebVisu.htm is set TRUE, the telegram
format used for the process data communication between applet and web server will not
match the HTTP standard. In this case the HTTP Proxy will not forward the telegrams to the
web server.
A workaround is to configure a SOCKS-Proxy:.Clients behind a firewall which want to
establish a connection to an external server, instead have to connect to a SOCKS-Proxy.
This Proxy-Server checks whether the client is authorized to communicate with an external
server and forwards the requests transparently to the server.
The SOCKS protocol is an Internet-Proxy protocol, allowing client-server applications to
transparently use the services of a firewall. SOCKS is an abbreviation for "SOCKets".

Before downloading the project regard the current setting of option 'Prevent
download of visualization files' in the target settings. This concerns all files
which are used in the current visualization. Those can be bitmaps, language
files and for web visualization also XML description files.

1.4.5.3 Editing the WebVisu.htm file
During installation of Automation Builder the file WebVisu.htm (base-HTML-page for the web
visualization) gets copied to the subdirectory "visu" in the installation directory. This is the basic
html-page for the web visualization. Before it gets downloaded to the target system together
with the web visualization project, it can be edited in a text editor in order to change the
behavior of the web visualization:
Webvisu.htm per default contains the following:
<HTML>

<HEAD>

 <TITLE>Applet HTML Page</TITLE>

</HEAD>

<BODY>

<APPLET CODEBASE=. CODE=webvisu/WebVisu.class
archive="webvisu.jar,minml.jar" name="WebVisu" width="1600"
height="1200">

<param name="STARTVISU" value="PLC_VISU">

<param name="UPDATETIME" value="100">

<param name="USECURRENTVISU" value="FALSE">

</APPLET>

</BODY>

</HTML>

The following parameters are of meaning for an adaption of the behavior of the web visualiza-
tion:

PLC Automation with V2 CPUs

Programming with CODESYS > Web visualization

2022/01/20 3ADR010582, 3, en_US 723

width, height Definition of the size of the screen. Regard
the possibility to make visible this size already
during creating a visualization (Target Set-
tings: Display width/height in pixel).

STARTVISU Definition of the start POU (Default:
PLC_VISU)

UPDATETIME Definition of the monitoring interval (ms)

USECURRENTVISU Definition whether an automatic change to
another visualization will be done, as soon as
the system variable 'CurrentVisu' is changed
by the PLC program. For information on
implicit (system) variables in the visualization
see 'Implicit Variables' Ä Chapter 1.4.3.11
“System variables” on page 717).

Optionally the file can be extended by the following entries in the APPLET definition part:

<param name="USEFIXSOCKETCONNEC-
TION" value="FALSE or TRUE">

If this parameter is TRUE, a fix socket con-
nection will be used for monitoring; if it is
FALSE or if the entry is missing at all, for each
monitoring request a new socket will be used.
Default: FALSE.
Attention: If parameter USEURLCONNEC-
TION (see below) is used, USEFIXSOCKET-
CONNECTION may not be set TRUE.

<param name="FORCEDLOAD"
value="Comma-separated list of visualization
names">

The visualizations specified here will be
loaded already when the web visualization is
loaded, not just when they are opened for the
first time. Thus time is saved at later changes
of visualizations, because then the data not
have to be transferred first by the web server.
Examples:
<param name="FORCEDLOAD"
value="VISU_1, VISU_2, VISU_3 ">
<param name="FORCEDLOAD"
value="TREND">

<param name="COMPRESSEDFILES"
value="FALSE or TRUE">

The files to be transferred for the web visu-
alization to the web server can be provided
in a packed format ("<filename>_<extension
original format>.zip"). See 'Target settings in
category visualization' Ä Chapter 1.4.1.4.7.3
“Target settings in category visualization”
on page 388.
If parameter "COMPRESSEDFILES" is set
"TRUE", the web visualization first will try
to load from the web server all needed
files which have got appended the extension
".zip"and to unzip those. If the request for a
zip-file fails, it will be tried to load the original
file.
If parameter "COMPRESSEDFILES" is not
available or is configured with value FALSE,
any available zip-files will be ignored.

PLC Automation with V2 CPUs
Programming with CODESYS > Web visualization

2022/01/203ADR010582, 3, en_US724

<param name="USEURLCONNECTION"
value="URL">

If this parameter is available, the communica-
tion will be done via the specified URL-con-
nection. Per default a simple socket connec-
tion is used.
Attention: If parameter USEFIXSOCKETCON-
NECTION (see above) is set TRUE, USE-
FIXSOCKETCONNECTION may not be used
additionally.
Example:
<param name="USEURLCONNEC-
TION" value="http://192.168.100.19:8080/
webvisu.htm"

<param name= "PLCSTATEINTERVAL"
value="Time interval for cyclic status
requests">

The status of the PLC will be requested
according to this time interval (milliseconds).
Default: 2000. See also: Status check, Auto-
Reload, File error ini.xml.

<param name="FORCEDLOAD"
value="comma-separated list of visualization
names">

The visualizations specified here will be
loaded already when the web visualization is
loaded, not just when they are opened for the
first time. Thus time is saved at later changes
of visualizations, because then the data not
have to be transferred first by the web server.
Examples:
<param name="FORCEDLOAD"
value="VISU_1, VISU_2, VISU_3 ">
<param name="FORCEDLOAD"
value="TREND">

<param name="COMPRESSEDFILES"
value="FALSE or TRUE">

The files to be transferred for the web visu-
alization to the web server can be provided
in a packed format ("<filename>_<extension
original format>.zip"). See 'Target settings in
category visualization' Ä Chapter 1.4.1.4.7.3
“Target settings in category visualization”
on page 388.
If parameter "COMPRESSEDFILES" is set
TRUE, the web visualization first will try
to load from the web server all needed
files which have got appended the extension
".zip"and to unzip those. If the request for a
zip-file fails, it will be tried to load the original
file.
If parameter "COMPRESSEDFILES" is not
available or is configured with value FALSE,
any available zip-files will be ignored.

<param name="SELECTION" value="Line
width|RED|GREEN|BLUE">

Here the line width and color for the display of
the current selection can be defined. Syntax:
LINEWIDTH|RED|GREEN|BLUE; Example:
"4|0|0|255"

<param name="ERROR_SENSITIVITY"
value="Number of trials to get a file trans-
ferred">

This parameter defines, how many trials will
be done to get a visualization file transferred
from the web server, before an applet error
will appear.

PLC Automation with V2 CPUs

Programming with CODESYS > Web visualization

2022/01/20 3ADR010582, 3, en_US 725

<param name="KEYPADINDIALOGS"
value="FALSE or TRUE">

If a touch screen is used for working with the
web visualization, this parameter should be
set TRUE in order to get an input possibility
in any case for each dialog; if applicable via
numpad/keypad.

<param name="KEYBOARDUSAGEFROM-
DIALOGS" value="FALSE or TRUE">

If this parameter is set TRUE, the keyboard
usage is always active, even if a modal dialog
- like e.g. the numpad - is currently opened.

<param name="WRITEACCESSLOCK"
value="FALSE or TRUE">

This parameter only should be set TRUE,
if the web server supports multi-client pro-
cessing and if an access lock for various cli-
ents is desired. Concerning access control in
multi-client operation please see 'Access pro-
tection for multi-client operations' Ä Chapter
1.4.3.9.4 “Access protection for multi-client
operations” on page 716.

<param name="DEFAULTENCODING"
value="FALSE or TRUE">

If this parameter is set TRUE and the lan-
guage switching is done via ASCII language
files, the default encoding - currently set in the
system - will be used for the interpretation of
the language file.

<param name="ENCODINGSTRING"
value="encoding string">

If the default encoding of the system is not set
as desired, you can define here the desired
encoding by entering the appropriate string.
Examples for encoding strings:
German: "ISO-8859-1"
Russian: "ISO-8859-5"
Japanese: "MS932"

<param name="PLCSTATEINTERVAL"
value="Zykluszeit">

Cycle time in milliseconds, according to which
the web client will check the PLC status. It
will be checked whether the PLC is in Start or
Stop status and whether a download has been
done.

<param name="ALARMUPDATEBLOCKSIZE"
value="Number of alarm states to be updated
per cycle">

This parameter can be set in order to change
the update of the alarm states. Due to the
fact that not all alarm states can be updated
within one cycle, it might be useful to exactly
defined the number of alarms which should be
updated per cycle. This number can be speci-
fied as a numeric value.

<param name="SUPPORTTOOLTIPSINA-
LARMTABLE" value="TRUE oder FALSE">

If this parameter is set TRUE, the tooltip func-
tionality in the alarm table will be activated.
This means: If any text entry in the alarm table
cannot be displayed completely, a tooltip will
be available showing the complete text string
as soon as the mouse pointer is moved on the
respective table cell.

<param name="TOOLTIPFONT"
value="Schrifttyp|Schriftgröße">

This parameter serves to define the font for all
tooltips.
Syntax: Font|Size; Example: "Arial|11".

<param name="FILEOPENSAVEDIALOG-
FONT" value="Schrifttyp|Schriftgröße ">

This parameter serves to define the font for
the File-Open-dialog.
Syntax: Font|Size; Example: "Arial|11".

PLC Automation with V2 CPUs
Programming with CODESYS > Web visualization

2022/01/203ADR010582, 3, en_US726

<param name="ALARMTABLEFONT"
value="NAME|HEIGHT|WEIGHT|CHARSET|
ITALIC|HORZ_ALIGN|VERT_ALIGN">

This parameter serves to define the font for
the alarm table.
Syntax: NAME|HEIGHT|WEIGHT|CHARSET|
ITALIC|HORZ_ALIGN|VERT_ALIGN
Example: "Arial|11|0|0|false|left|center".

<param name="USECURRENTLANGUAGE"
value="TRUE oder FALSE">

If this parameter is set TRUE, the current
language setting always will be synchronized
between web and target visualization (via
implicit variable CurrentLanguage); i.e. at a
language switch caused by an input in one of
the both visualization types each in the other
type the language will be switched too.
The visualization currently is not included in
this match.

1.4.5.4 Status check, auto-reload, file error_ini.xml
Status changes of the PLC or the visualization project are notified as messages in an
error_ini.xml file. Usually in this case communication errors, start/stop of the PLC, breakpoint
states, new download etc. will be reported in message boxes. The ini-file however also might
define error messages like "page cannot be displayed", "too many variables to be monitored" or
the like. Also as a reaction on a download or online change of the project an automatic reload of
the web visualization might be defined.
The time interval for a cyclic status check can be defined in the file WebVisu.htm (PLCSTATEIN-
TERVAL).

A communication failure during the monitoring of the web visualization will not
be dumped as an error message, but will be displayed in the status line of the
web browser.

1.4.5.5 Preparing a web visualization
● Create the visualization(s) for your PLC program as usual in CODESYS. If you want a

certain visualization to be called as starting object, then name it 'PLC_VISU'. It will be
loaded automatically as soon as the visualization is called via the Internet. Regard the
effects of the currently active target settings, category Visualization.

● For visualization objects, which should not be part of the web version of the visualization,
deactivate option web visualization' in the dialog 'Object' 'Properties' in category 'Visualiza-
tion'.

● Regard the possibility to use visualization elements for the purpose of switching between
several controllers, to which the web server then will connect automatically.

● If needed, modify the basic html-page Ä Chapter 1.4.5.3 “Editing the WebVisu.htm file”
on page 723. For example instead of PLC_VISU another visualization can be defined as
start page of the web visualization.

● Perform command 'Project' 'Clean all', then 'Project' 'Build'. Before downloading the project
regard the current setting of option in the target settings Ä Chapter 1.4.1.4.7.3 “Target
settings in category visualization” on page 388. This concerns all files which are used in the
current visualization. Those can be bitmaps, language files and for web visualization also
XML description files.

● Log in to the target system ('Project' 'Online' 'Login') and start the project on the PLC.

PLC Automation with V2 CPUs

Programming with CODESYS > Web visualization

2022/01/20 3ADR010582, 3, en_US 727

1.4.5.6 Configuration and start of the web server
● The web server must be available as an appropriate executable file (*.exe) for the used

target system. It also can be installed and started as a sevice. The following command line
parameters can be used for this purpose when webserver.exe is started:
– i = web server gets installed as a service
– u = web server service gets uninstalled
– s = web server service gets started
– e = web server service gets terminated

● The configuration of the server can be done by a configuration file or - restricted usable - by
parameters added in the command line when calling the server-exe. The definitions given
by a configuration file will overwrite those of the command line.
The possible parameters:

webserver-port-nr Port, on which the web server
expects requests of the client
(web browser)

Default: 80

target-port-nr Port of the runtime system Default: 1200

target-ip-address IP address of the runtime
system

Default: localhost

use-file-upload-dir If this flag is set to TRUE,
additionally the file-upload-
directory (see below, file-
upload-dir) must be defined,
where the *.xml, *.bmp, *.jpg,
etc. files of the web visualiza-
tion are stored on the target
system and from where they
are uploaded to the browser.

Default:false

file-upload-dir Directory for the web visuali-
zation files

Default:""

use-intel-byte-order Type of byte-order (true or
false): if "false, the data will
get swapped (Motorola Byte-
Order).

Default: true

The following entries refer to the use of a description file for the PLCHandler in order to be
able to use the MultiPLC-functionality. If these entries are missing, automatically the TCP/IP-
connection to the above specified target system will be used.

plc-description-file Path of the ini-file for the
PLCHandler, describing the
communication parameters for
all PLCs (controllers) to which
the web server then can con-
nect via Gateway/PLCHan-
dler. (Per default the ini-file is
in the same directory as web
server.exe).
If the visualization (web client)
via INTERN-command CON-
NECT_TO tells to which PLC
a connection should be estab-
lished, this connection will
be built automatically by the
server and will be maintained
until the next change.

Default: ""

PLC Automation with V2 CPUs
Programming with CODESYS > Web visualization

2022/01/203ADR010582, 3, en_US728

plc-entries Section containing the entries
<plc-entry> for the various
PLCs

 Default: ""

plc-entry Entry for a PLC, contains PLC
name and directory

 Default: ""

plc-name Name of the PLC, as defined
in the PLCHandler.ini-file

 Default: ""

plc-directory Directory of the PLC files; can
be defined absolutely or rela-
tively to the file-upload direc-
tory (see above).
Example: For the example
configuration shown below
a definition ".\FD" for
the plc-directory results in
the following location: "C:\Pro-
gramme\codesysV23\FD"

 Default: ""

If you define a "file-upload" directory, where the controller can store the visuali-
zation download files, then the visualization files will be automatically updated
at each download. The advantage of this upload-directory is that the controller
is not involved and thus not strained. The web server gets the files directly from
the directory and by this the data transfer is much quicker. This is especially of
impact in case of a big amount of data.

A configuration file for the web server must be available in XML-format and it must be named
"webserver_conf.xml". It must be found in the directory where the webserver-exe is. If no
configuration file is available, the above mentioned default settings will be used (if not changed
by parameters added to the call of the server in a command line.)

PLC Automation with V2 CPUs

Programming with CODESYS > Web visualization

2022/01/20 3ADR010582, 3, en_US 729

<webserver-configuration>
 <webserver-port-nr> 8080 </webserver-port-nr>
 <target-port-nr> 1200 </target-port-nr>
 <target-ip-address> localhost </target-ip-address>
 <use-file-upload-dir> true </use-file-upload-dir>
 <file-upload-dir> C:\Programme\CoDeSysV23\ </file-upload-dir>
 <use-intel-byte-order> true </use-intel-byte-order>
 <plc-description-file> PlcHandler.ini </plc-description-file>
 <plc-entries>
 <plc-entry>
 <plc-name> MASTER </plc-name>
 <plc-directory> .\MASTER </plc-directory>
 </plc-entry>
 <plc-entry>
 <plc-name> FD </plc-name>
 <plc-directory> .\FD </plc-directory>
 </plc-entry>
 <plc-entry>
 <plc-name> DL </plc-name>
 <plc-directory> .\DL </plc-directory>
 </plc-entry>
 </plc-entries>
</webserver-configuration>

Example con-
figuration in
the web-
server_conf.xm
l file

A call in a command line must use the following syntax:
WebServer [webserver-Port-nr] [target-port-nr] [target-IP-address] |
[file-upload-dir]
Only these parameters can be used in a command line. The others described above, con-
cerning byte-order and multiPLC-functionality must come via the configuration file.
Thus a call corresponding to the above shown configuration example would look like follows,
whereby the settings for <plc-description-file> and <plc-entries> must be available in a configu-
ration file:
> webserver 8080 1200 localhost c:\Programme\codesysV23

The parameter settings in the command line are without any effect, if there is a
valid configuration file available.

1.4.5.7 Calling a web visualization via internet
Insert the following address in the browser:
http://<IP-Adresse of the web server>:<Port of the web server>/
webvisu.htm

http://localhost:8080/webvisu.htmExample:

WebVisu is the default HTML-file. It contains a <applet> tag which will start the WebVisu-Applet
so that the desired start page of the visualization will be displayed. Now you can start to operate
the visualization.

PLC Automation with V2 CPUs
Programming with CODESYS > Web visualization

2022/01/203ADR010582, 3, en_US730

If the browser accepts cookies (if necessary, activate this option) the current
language setting for dynamic texts will be stored and at the next call of the web
visualization will be re-used automatically. If the stored language is not available
in the newly opened visualization, the default language of this visualization will
be used. If no default language is defined, the visualization texts will not be
translated until the language gets switched explicitly.

1.4.5.8 Restrictions and special features
Table 48: INTERN commands
PRINT Printout of the current visualization is not sup-

ported for web visualization.

Execute external program This command for the execution of an external
program is not supported for web visualiza-
tion.

LANGUAGEDIALOG

The command for calling the configuration
dialog containing the category 'Language' is
not supported for web visualization.

EXITPROGRAM

The command for exiting the program is not
supported for web visualization. Can be real-
ized via command INTERN LINK.

TRACE The command for opening the Sampling Trace
window is not supported for web visualization.
This function will be taken by the Trend ele-
ment.

SAVEPROJECT The command for saving the project is not
supported for web visualization.

Ä Chapter 1.4.3.5.30 “Special input possibilities for operating versions” on page 695

Table 49: Accessing variables
Dynamic indexing within an array Ä Chapter
1.4.1.8.2.1 “ARRAY” on page 445

"Array1[Index].a" is not possible, however
"Array1[10].a" is possible.

Replacing placeholders containing an expres-
sion

Placeholder: abc + 5
Replacement: PLC_PRG.n + 500
Should result in PLC_PRG.n + 500 + 5, this
however is not possible in the web visualiza-
tion.

Pointer variables Ä Chapter 1.4.1.8.2.3
“Pointer” on page 447

Pointer variables like PLC_PRG.pdw2^ cannot
be monitored.

Table 50: Others
Transparent bitmaps Transparent bitmaps currently are not sup-

ported.

PLC Automation with V2 CPUs

Programming with CODESYS > Web visualization

2022/01/20 3ADR010582, 3, en_US 731

Table 51: Alarm handling
Actions Action 'Print' currently is not supported.

Settings for sorting (history) The sorting within the alarm table, displayed
via button 'History', always is according to
date. The settings as done in the configuration
of the alarm table element are not regarded.

IEC operators Ä Chapter 1.4.1.6 “IEC opera-
tors and additional, norm-extending functions”
on page 407

The following IEC operators currently are not
supported by the web visualization:
Arithmetic operators:
● MOVE
● INDEXOF
● SIZEOF
Bitstring operators:
● XOR
Bitshift operators:
● SHL
● SHR
● ROL
● ROR
Selection operators:
● LIMIT
● MUX
Comparison operators:
● EQ
● NE

All address operators
All calling operators
All conversion operators
Numeric operators:
● SQRT
● LN
● LOG
● EXP
● ASIN
● ACOS
● ATAN
● EXPT

The following features are only suported by the web visualization:

PLC Automation with V2 CPUs
Programming with CODESYS > Web visualization

2022/01/203ADR010582, 3, en_US732

Table 52: INTERN commands
INTERN LINK Via "INTERN LINK <URL>" a change to

another web page can be defined.
Example: "INTERN LINK http://www.3s-soft-
ware.com"
"INTERN LINK <webaddress file>" opens a
PDF file, which must be available on the
server.
Example: "INTERN LINK http://localhost:8080/
test.pdf "
"INTERN LINK <Email address>" opens a
window for sending an Email.
Example: "INTERN LINK mailto:support@3s-
software.com"

INTERN CONNECT_TO <PLC-Name>|<Start-
Visu>

The target PLC can be changed if the web
server is configured appropriately with the
connection parameters for multiple PLCs (see
'Configuration and start of the web server'
Ä Chapter 1.4.5.6 “Configuration and start of
the web server” on page 728).
PLC-Name: Name of the PLC, as defined in
the ini file of the PLCHandler.
Start-Visu: Name of the visualization which
should be displayed at start of the web visuali-
zation.
As soon as the web server gets the request
for a PLC-change, it will automatically estab-
lish the connection to the respective PLC.

Ä Chapter 1.4.3.5.30 “Special input possibilities for operating versions” on page 695

If the browser accepts cookies (if necessary, activate this option) the current language setting
for dynamic texts will be stored and at the next call of the web visualization will be re-used auto-
matically. See the note in 'Calling a web-visualization via internet' Ä Chapter 1.4.5.7 “Calling a
web visualization via internet” on page 730.

If a HTTP-Proxy-Server is used, additionally a SOCKS-Proxy-Server might be necessary in
order to avoid monitoring problems. See 'Preconditions' Ä Chapter 1.4.5.2 “Preconditions”
on page 722.

1.4.6 License manager
1.4.6.1 Overview

The License Manager is available to handle the licenses for modules, as well as licenses for
modules for which an appropriate license information file is provided, on your computer. You
can create a project and provide it as a licensed library. The Licensing Manager will be installed
automatically with any module, which requires a license Ä Chapter 1.4.6.2 “Creating a licensed
library” on page 734.

Language for
dynamic texts

Using a HTTP-
proxy-server

The license
manager

PLC Automation with V2 CPUs

Programming with CODESYS > License manager

2022/01/20 3ADR010582, 3, en_US 733

1.4.6.2 Creating a licensed library
A project can be saved as a library. If you want to create a licensed library you have to add
the appropriate license information. For this perform the command “File è Save as”, choose
data type 'Internal Library' or 'External Library' and press button [Edit license info]Ä Chapter
1.4.1.2.3.6 “'File' 'Save as'” on page 224.
In the dialog “Edit Licensing Information” enter the information described below. The license
information will be added to the “Project Info”Ä Chapter 1.4.1.2.3.34 “'Project' 'Project info'”
on page 246.
When later on the library will be included in a project, the license information can be checked
up in the object properties dialog of the library in the“library manager” Ä Chapter 1.4.1.4.3.1
“Overview” on page 371.

Fig. 12: Edit licensing information

Name Enter a name for the library module which is used to represent it in the
Licensing Manager. This input is mandatory.

Vendor-ID A manufacturer identifier, depending on the manufacturer specific licensing
management tool.

Targets Enter here the target ID(s) of the target system(s) for which the license should
be valid. You can enter multiple IDs separated by a semicolon or as a range.
Example: "12;15-19;21"; herewith the IDs 12,15,16,17,18,19,21 are entered.

Licensing via
phone / mail

Insert here the phone number resp. email address of the license provider.
These inputs are mandatory.

Optional infor-
mation

In the right window you can enter a text referring to the item currently marked in
the left window: “Description”, “Manufacturer”, “Vendor”, “Pricing information”

PLC Automation with V2 CPUs
Programming with CODESYS > License manager

2022/01/203ADR010582, 3, en_US734

It is reasonable to protect a library, which has been provided with licensing
information, by a passwordÄ Chapter 1.4.1.2.2.10 “Passwords” on page 211. If
you are going to save the project without password you will be pointed to that by
a message box.

The licensing information of a library is stored internally with the library and will
be registered on the computer automatically as soon as the library is included
in a project. The license information of modules which are not provided must be
provided in a separate description file in compatible XML format, which can be
read by the Licensing Manager.

1.5 Libraries and solutions
1.5.1 Information on libraries

When upgrading Automation Builder or an existing project, new AC500 V2 system libraries are
installed automatically. Older library versions will be removed as coexistence of a new library
version and an older library version is not possible. Check the available library version in the
Library Manager.

Usually, when upgrading Automation Builder or an existing project, new AC500
V2 system libraries are installed automatically and older library versions are
removed.

As an exception, for the CANopen device CM598-CN both library versions
are available in the Library Manager due to compatibility reasons. However,
coexistence of a new library version and an older library version is not possible.
In order to avoid compile errors remove the older library version.

Ä Chapter 1.2.17 “Converting an AC500 V2 project to an AC500 V3 project” on page 67

Target change from AC500 V2 to AC500 V3
After a target change from AC500 V2 to AC500 V3 the customer libraries have to be converted
manually using the Library Converter . For further information see Ä Chapter 1.6.5.1.6 “Later
change-over of a target system” on page 5782.
Some Standard CODESYS libraries are automatically converted during the target change.

1.5.2 Reference to CODESYS (V2)
Note that CODESYS libraries are used. For further information see Ä Chapter 1.4.1 “Develop-
ment system” on page 145.

1.5.3 Error messages of the AC500 V2 function block libraries
1.5.3.1 0000hex...0FFFhex - telegram error

DEC HEX Error description
0 0000 No error

1 0001 COM_MOD_MAST: Error message from slave ILLEGAL FUNCTION
ETH_MOD_MAST:Error message from slave ILLEGAL FUNCTION

System libraries

Customer libra-
ries

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 735

DEC HEX Error description
2 0002 COM_MOD_MAST: Error message from slave ILLEGAL DATA ADDRESS

ETH_MOD_MAST: Error message from slave ILLEGAL DATA ADDRESS

3 0003 COM_MOD_MAST: Error message from slave ILLEGAL DATA VALUE
ETH_MOD_MAST: Error message from slave ILLEGAL DATA VALUE

4 0004 COM_MOD_MAST: Error message from slave SLAVE DEVICE FAILURE
ETH_MOD_MAST: Error message from slave SLAVE DEVICE FAILURE

5 0005 COM_MOD_MAST: Error message from slave ACKNOWLEDGE
ETH_MOD_MAST: Error message from slave ACKNOWLEDGE

6 0006 COM_MOD_MAST: Error message from slave SLAVE DEVICE BUSY
ETH_MOD_MAST: Error message from slave SLAVE DEVICE BUSY

8 0008 COM_MOD_MAST: Error message from slave MEMORY PARITY ERROR
ETH_MOD_MAST: Error message from slave MEMORY PARITY ERROR

9 0009 COM_MOD_MAST: Error message from slave SEE SLAVE DESCRIPTION
ETH_MOD_MAST: Error message from slave SEE SLAVE DESCRIPTION

10 000A COM_MOD_MAST: Error message from slave GATEWAY PATH UNAVAIL-
ABLE
ETH_MOD_MAST: Error message from slave GATEWAY PATH UNAVAIL-
ABLE

11 000B COM_MOD_MAST: Error message from slave GATEWAY TARGET DEVICE
FAILED TO RESPOND
ETH_MOD_MAST: Error message from slave GATEWAY TARGET DEVICE
FAILED TO RESPOND

4095 0FFF FLASH_READ, FLASH_WRITE FLASH_DEL while ERR=FALSE: Block exe-
cution is in process

1.5.3.2 1000hex...1FFFhex - device error

DEC HEX Error description
4097 1001 Device does not exist

4098 1002 Command not supported by the device. The function is not supported by the
device firmware/hardware. Block library newer than the device firmware.
FC..: No high-speed counter available at the given module.

4100 1004 Error operating mode.
FC..: Operating mode "0" -> No counter set in the PLC configuration.

4101 1005 Invalid status
FLASH_READ: Block is not written yet
FLASH_WRITE: Block was already written
RETAIN..: No program loaded
Library PROFINET IO: PNIO_WRITE, PNIO_READ: Internal error. Restart the
PLC.

4117 1015 Format error
SD..: File cannot be read because of an invalid format. Data could not be read
or not be read completely.

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US736

DEC HEX Error description
4119 1017 Incorrect length

PERSISTENT..: Data have an incorrect length
RETAIN..: Data have an incorrect length

4120 1018 Checksum error

4122 101A FC..: Internal error (e.g. no CS31 Adr parameter found, wrong size of CS31
Adr)
HA..: Internal error (e.g. null pointer received, wrong return value of internal
function, no entry in configuration found)

4123 101B Device access error
Flash..: Resources are not available
HA..: Remote CPU failure: Other CPU is off or out of order
PERSISTENT..: Data could not be copied, access error or no data do exist
RETAIN..: Data could not be copied, access error or no data do exist
SD..: Access to the memory card is not possible (e.g. memory exhausted, file
already opened, etc.

4124 101C Incorrect number
PERSISTENT..: Because of the current CPU parameters, data are loaded
only partly

4127 101F Access protection
SD..: Memory card is write protected

4128 1020 Error when opening
SD..: Error when opening a file stored on the memory card

4129 1021 Not found
FC..: CS31 Bus Module not found
EtherCAT Modul not found
HA_CS31_CONTROL: Own CI590-CS31-HA slave failure (missing module)
HA_CS31_DIAG: One or more CI590-CS31-HA slave(s) is/are inactive
HA_CS31_DIAG_VIA_CM574-RS: One or more CI590 are inactive
SD..: The searched sector could not be found in the file
TASK_INFO: Unknown task

4130 1022 End reached
SD..: Section end or end of file reached
PERSISTENT..: Because of the current CPU parameters, data are not loaded

4131 1023 Reading error
FLASH..: Reading error in data segment: Incorrect checksum

4132 1024 Writing error
FLASH..: Block cannot be programmed
SD..: File could not be deleted or written

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 737

DEC HEX Error description
4137 1029 FC..: Wrong configuration (e.g. no CM574-RS configured on specified slot)

HA..: Remote CI590-CS31-HA slave failure (missing module)

8191 1FFF Not ready
Flash..: The command is already executed by an other instance
SD..: Command cannot be executed. Another instance is already active.

1.5.3.3 2000hex...2FFFhex - interface error

DEC HEX Error description
8193 2001 Invalid interface, Communication Module number or slot ID

COM: Interface is not configured in the "free mode"
HA: Wrong COM number at input COM
ETH-MOD-MAST: Invalid interface or slot ID

8194 2002 Command not supported by the interface. The function is not supported by the
device firmware. Block library newer than the device firmware.

8195 2003 Invalid interface or Communication Module type. Block is not suitable for this
type.

8197 2005 HA..: CS31 Bus failure

8198 2006 Fault on both local and remote CPU.

8211 2013 Timeout
COM_MOD_MAST: Slave did not respond within the specified time
HA..: No Ethernet link, Error in DPRAM communication between CM574-RS
and AC500 CPUs.
ECAT_COE_READ, ECAT_COE_Write: Response timeout occurs

8212 2014 Framing error (incorrect transmission rate, number of stop bits and/or bits per
character)

8213 2015 Parity error
HA: Remote CS31 slave sync error. Difference in digital/ analog output buffer
of PLC A and B

8214 2016 Idle error
COM..: Character timeout occurred

8215 2017 Invalid length
COM_MOD_MAST: Invalid data length received
COM_REC: Received more data than expected

8216 2018 Checksum error

8217 2019 Handshake error

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US738

DEC HEX Error description
8218 201A Service failed

COM_REC: Unknown error message of the interface
COM_SET_PROT: Interface hardware not accessible. Initialization already
failed during system start-up.
COM_MOD_SLV_SET_ADDR..: Internal error (e.g. wrong return value of
internal function, null pointer received)
CS31..: Internal error (e.g. CS31 communication failed)
FC..: Internal error (e.g. null pointer received, wrong return value of internal
function, no entry in config found)
HA..: Internal error (e.g. null pointer received, wrong return value of internal
function, no entry in configuration found)

8219 201B Access error
HA..: Remote CS31 Bus failure: Other CPUs' CS31 Bus is out of order
IO..: Module number does not exist

8220 201C Incorrect number (quantity)
COM_SET_PROT: Invalid protocol index. Index is not supported by the device
firmware.
COM_MOD_SLV_SET_ADDR..: Invalid protocol index.
HA..: Numbers of CI590-CS31-HA devices configured in line A and line B are
different
IO..: Invalid module number

8223 201F Access denied
COM..: Access to the interface is not possible at present. Automation Builder,
OPC or another program is logged in via the interface.

8226 2022 COM_MOD_SLV_SET_ADDR..: Wrong configuration (No protocols config-
ured).
FC..: Wrong configuration (e.g. no Automation Builder configuration, no CS31
configured, no CS31 modules found).
HA..: Overflow of HA_DATA reference table

8233 2029 ● HA_CS31_CONTROL:
– CI590-CS31-HA slave configuration not complete
– CI590-CS31-HA slaves in Bus1 and Bus2 are mix-wired
– Remote CI590-CS31-HA Failure
– CS31 Master Cross Wired / No CS31 configuration / No submodules

on CS31 bus
● HA_CS31_DIAG/ HA_CS31_DIAG_VIA_CM574-RS

– CI590-CS31-HA slaves in line A and line B are mix-wired.

8234 202A HA: configuration error:
● Wrong CM574-RS communication
● CM574-RS COM interface is not configured for shared communication
● CM574-RS not added to Communication Module slot
● Wrong configuration of DIAG blocks

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 739

1.5.3.4 3000hex...3FFFhex - protocol error

DEC HEX Error description
12289 3001 Unknown protocol or protocol not configured.

MqttClient: The Network Connection has been made but the MQTT service is
unavailable on the specified port.

12290 3002 Command not supported by the protocol. The function is not supported by the
device firmware. Block library newer than the device firmware.

12291 3003 Another protocol is configured.
FC_DC551: The selected interface (COMx) is not set to the CS31 protocol.
COM_MOD_SLV_SET_ADDR..: The selected interface (COMx) is not set to
the Multi protocol.
COM_MOD_SLV_SET_ADDR..: Wrong protocol index (No Modbus protocol
on specified index).
HA: No CS31 protocol at COM.
BACnet B-ASC: Multiple function block instances, one instance allowed only.

12292 3004 Operating mode error
COM_MOD_MAST: Invalid operating mode (master/slave).

12293 3005 Protocol status error
Fieldbus Communication Module .._SYS_DIAG: Master is not in the
OPERATE state.
ETH_SMTP_EMAIL_SEND: Internal error (ulHandle wrong).
BACnet B-ASC: No device object instantiated.

12307 3013 IEC..: ACTCON timeout
ETH_SMTP_EMAIL_SEND: Server timeout
MqttClient: The timeout value for the communication has been exceeded.

12308 3014 IEC..: NACK received

12309 3015 ETH_SMTP_EMAIL_SEND: Syntax error in mail address

12310 3016 IEC..: Timeout

12311 3017 Incorrect length
ARC..: Buffer is full
CAN2..: Total length of all messages too high
IEC..: Queue overrun
ETH_UDP..: Buffer is full.
MqttClient: Received topic or payload is too long.

12313 3019 IEC..: ACTERM timeout
Wait answer
ETH_SMTP_EMAIL_SEND: Could not connect to server. Not reachable or
does not answer.

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US740

DEC HEX Error description
12314 301A Execution failed

COM_SET_PROT: Initialization of the protocol failed
IEC..: Send failed due to queue deleted
COM_MOD_SLV_SET_ADDR..: Internal error (e.g. null pointer received,
wrong return value of internal function)
ETH_SMTP_EMAIL_SEND: Internal error. Mail not sent. (e.g. out of
resources)
ETH_ICMP_PING: Target Host did not answer the ping echo request before
the specified timeout
MqttClient: MQTT broker did not answer the ping. MQTT client has passed
the KeepAlive or MQTT broker is unreachable.

12315 301B Access error
ARC..: Buffer does not exist / is not specified
CAN2..: Buffer does not exist / is not specified
ETH_UDP..: Buffer does not exist / is not specified
IEC..: Protocol access error
IO..: There is no module in the selected slot

12316 301C Wrong number
IO..: Invalid module number > max.

12319 301F Access denied
COM..: Access to the interface is not possible at present. Automation Builder,
OPC or another program is logged in via the interface.
MqttClient: The Client identifier is correct UTF-8 but not allowed by the Server.

12320 3020 Error when opening
ARC..: Error during protocol initialization. Protocol not yet ready.
CAN2..: Error during protocol initialization. Protocol not yet ready.
IEC..: Data type mismatch for this PIN when data arrived.
ETH_UDP..: Error during protocol initialization. Protocol not yet ready.
ETH_SMTP_EMAIL_SEND:
● File for attachment cannot be opened
● Server not ready (wrong port configured?)
MqttClient: The Server does not support the level of the MQTT protocol
requested by the Client.

12321 3021 ETH_SMTP_EMAIL_SEND: File for attachment not found
CPU_PROD_ENTRY_READ: Entry not found

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 741

DEC HEX Error description
12325 3025 Address error

COM_MOD_MAST: Receive telegram does not contain the expected register
address.
ETH_MOD_MAST: Cannot connect to server (IP address) OR response tele-
gram contains wrong UNIT_ID (must be the same as in request).
ETH_SMTP_EMAIL_SEND: Internal error (Could not bind sockets).
ETH_UDP_REC: Wrong INDEX for connection.
ETH_UDP_SEND: Wrong INDEX for connection or IP Destination does not
contain a valid IP address.
MqttClient: Connection refused, maybe the IP address is malformed.

12326 3026 Function error
COM_MOD_MAST: The received FCT does not correspond to the sent FCT.

12327 3027 Invalid value
COM_MOD_MAST: Receive telegram contains an unexpected value.
MqttClient: Network error on MqttSubscribe/MqttUnsubscribe. Maybe the topic
is not valid.

12328 3028 ETH_SMTP_EMAIL_SEND: Out of sockets. Mail not sent (resource starva-
tion).
ETH_ICMP_PING: Could not create internal Task (not enough resources).
BACnet B-ASC: Protocol task start failed.

12329 3029 HA..: CI590-CS31-HA slave configuration is not complete.

12331 302B Unspecified error
MqttClient: Internal library returned an unspecified error.

12333 302D No connection, sending not possible due to no connection, either closed or
not established yet
MqttClient: No connection to an MQTT Broker.

12540 30FC ETH_SMTP_EMAIL_SEND: Mailbox unavailable or not found on target
server. SMTP error by server.

12788 31F4 ETH_SMTP_EMAIL_SEND: Syntax Error. SMTP error by server.

12789 31F5 Syntax error in parameters or arguments.

12790 31F6 Command not implemented. SMTP error by server.

12791 31F7 The SMTP server has encountered a bad sequence of commands, or it
requires an authentication.

12823 3217 ETH_SMTP_EMAIL_SEND: Wrong user login and/or password. Check config-
uration. SMTP Error by server.
MqttClient: Authentication failed: Bad username, password OR client id.

12838 3226 ETH_SMTP_EMAIL_SEND

12839 3227 ETH_SMTP_EMAIL_SEND: Mailbox unavailable or not found on target
server. SMTP Error by server.

12840 3228 ETH_SMTP_EMAIL_SEND: Exceeded mailbox storage on target server.
SMTP Error by server.

12841 3229 ETH_SMTP_EMAIL_SEND: Mailbox name not allowed. SMTP Error by
server.

12848 3230 MqttClient: Error on TLS handshake.

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US742

DEC HEX Error description
12849 3231 MqttClient: Server certificate not valid. Check if PLC date has been set cor-

rectly.

12850 3232 MqttClient: Server certificate format is not formatted as PEM.

12851 3233 MqttClient: Server certificate has expired.

12852 3234 MqttClient: Client certificate not valid. Check if PLC date has been set cor-
rectly.

12853 3235 MqttClient: Client certificate or client key format is not formatted as PEM.

12854 3236 MqttClient: Client certificate has expired.

16383 3FFF Not ready. Resources currently not available.
COM_MOD_MAST: Transmission is not possible at the moment. Another
instance of the function block is already transmitting.
COM_SEND: Transmission is not possible at the moment. Another instance of
the function block is already transmitting.
BACnet B-ASC: No memory for BACnet objects.

1.5.3.5 4000hex...4FFFhex - block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.3.6 5000hex...5FFFhex - request error

DEC HEX Error description
20482 5002 The request is not supported (e.g. in the simulation mode of the Automation

Builder).

20485 5005 Invalid internal state -> function block probably called in invalid manner/
sequence

20499 5013 Timeout error
ECAT_COE_READ, ECAT_COE_Write: Request timeout occurs

20503 5017 Incorrect length
ARC..: Invalid data length
CAN2..: Invalid DLC in message
ETH_UDP..: Invalid data length
ECAT_COE_READ, ECAT_COE_Write: Request/ Response length invalid

20504 5018 Traceability data is corrupted.

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 743

DEC HEX Error description
20507 501B Access error

COM_MOD_MAST: Invalid memory address DATA or DATA + NB. At least
one datum is outside of the access range of the user program. The range
includes different flag ranges.
ETH_MOD_MAST: Invalid memory address DATA or DATA + NB. At least one
datum is outside of the access range of the user program. The range includes
different flag ranges.

20508 501C Invalid number (quantity)
CAN2A_SEND: Invalid number of messages at input NUM
COM_MOD_MAST: Invalid number of data at NB (0 or more than permitted).
ETH_MOD_MAST: Invalid number of data at NB (0 or more than per-
mitted).20515

20513 5021 IO_PROD_ENTRY_READ: I/O Module not found: input MODULE invalid

20515 5023 Failed to read traceability data from I/O Module.

20517 5025 Address error
ARC..: Invalid IP address
CAN2..: Invalid identifier in message
COM_MOD_MAST: Invalid slave address. Broadcast not permitted in connec-
tion with the selected function code.
ETH_MOD_MAST: Invalid slave address. Broadcast not permitted in connec-
tion with the selected function code.
ETH_UDP..: Invalid IP address.

20518 5026 Function error
COM_MOD_MAST: Invalid function code FCT.
ETH_MOD_MAST: Invalid function code FCT.

20735 50FF DIAG..: Simulation mode

24575 5FFF Operation pending / busy -> wait and try again later

1.5.3.7 6000hex...6FFFhex - communication module errors

DEC HEX Error description
24577 6001 EtherCAT: Invalid command received

PNIO: Creating a TLR-timer-packet in RPC task failed due to insufficient
memory

24578 6002 EtherCAT: No link exists OR the watchdog expired
CAN..: Service was rejected by the node with SDO abortion. Index/subindex
not valid or no access to the specified node.
DNM..: Resource not available or invalid class ID
DPM../DPV1..: Resource not available. Free buffer memory in slave is not
sufficient for the requested service.
PNIO: Generic RPC-error code or not enough memory

24579 6003 EtherCAT: Error during reading the bus configuration OR the requested
watchdog time is too small.
DPM../DPV1..: Requested service (e.g. DPV1) is not active in the slave.

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US744

DEC HEX Error description
24580 6004 Communication Module does not support DPRAM message communication

function blocks OR There is no receive function block active in IEC project of
Communication Module.
EtherCAT: Error during processing the bus configuration OR The requested
watchdog time is too large.

24581 6005 EtherCAT: Existing bus does not match configured bus OR Error during reset
(resetting watchdog).

24582 6006 EtherCAT: Not all slaves are available OR Error during reset (cleanup
dynamic resources)
DPM../DPV1..: Slave address not configured

24583 6007 EtherCAT: Error during reset (stopping the master) OR master is in critical
error state, reset required.

24584 6008 EtherCAT: Error during reset (deinitializing the master) OR error activating the
watchdog.
DNM..: Service not available in module. Read/write function not supported by
the selected class.

24585 6009 EtherCAT: Error during reset (cleanup the dynamic resources) OR size of
configured input data is larger than cyclic DPM input data size.
DNM..: Attribute invalid or not supported
DPM../DPV1..: No data received from slave

24586 600A EtherCAT: Master is in critical error state. Reset required OR size of config-
ured output data is larger than DPM data output size.

24587 600B EtherCAT: The requested bus cycle time is invalid
DNM..: Request is already in progress

24588 600C EtherCAT: Invalid parameter for broken slave behavior.
DNM..: Conflict of the object status

24589 600D EtherCAT: Master is in wrong internal state

24590 600E EtherCAT: The watchdog expired
DNM..: Attribute cannot be set or writing is not permitted

24591 600F EtherCAT: Invalid SlaveID was used for CoE
DNM..: Permission check faulty or access denied

24592 6010 EtherCAT: No available resources for CoE Transfer
DNM..: Status conflict. Device prohibits execution

24593 6011 EtherCAT: Internal error during CoE usage
CAN..: No response from the selected node
DNM..: No response from the selected device
DPM../DPV1..: No response received from slave.

24594 6012 EtherCAT: Invalid index on slave requested
DPM../DPV1..: Master not in logical "token ring".
PNIO: Internal error inside Communication Module's firmware

24595 6013 EtherCAT: Invalid bus communication state for CoE-usage
CAN..: Selected node is not ready for operation
DNM..: Not enough receive data

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 745

DEC HEX Error description
24596 6014 EtherCAT: Frame with CoE data is lost

CAN..: Local resources are not available. Requested bus parameters are not
available. Communication Module is not configured.
DNM..: Local resources are not available. Requested bus parameters are not
available. Communication Module is not configured.
PNIO: Internal error inside Communication Module's firmware

24597 6015 EtherCAT: Timeout during CoE service
CAN..: Parameter error
DNM..: Parameter error

24598 6016 EtherCAT: Slave is not addressable (not on bus or power down)
DNM..: Object does not exist

24599 6017 EtherCAT: Invalid list type requested
Other Communication Modules: Received data length too big. Internal buffer
too small.

24600 6018 EtherCAT: Data in slave response is to large for confirmation packet.
PNIO: Internal error inside Communication Module's firmware

24601 6019 EtherCAT: Invalid access mask selected (during GetEntryDesc)
DPM../DPV1..: Unexpected reaction of slave or reaction not in accordance
with standard.

24602 601A EtherCAT: Slave Working Counter error during CoE service
PNIO: Another request is already running
ETH2 not supported on AC500 CPU with Ethernet

24603 601B EtherCAT: The service is already in use

24604 601C EtherCAT: Command is not usable in this communication state

24605 601D EtherCAT: Distributed Clocks must be activated for this command

24606 601E EtherCAT: The scan is already running. It cannot be started twice at the same
time

24607 601F EtherCAT: Timeout during bus scan, but at least one link is established

24608 6020 EtherCAT: The bus scan was not started before or it is not finished yet

24609 6021 EtherCAT: The requested slave is invalid

24610 6022 EtherCAT: Internal error during CoE usage

24612 6024 PNIO: Internal error inside Communication Module's firmware

24615 6027 EtherCAT: Internal error of SDO protocol

24616 6028 EtherCAT: Internal error of SDO protocol

24617 6029 EtherCAT: Internal error of SDO protocol

24618 602A EtherCAT: Internal error of SDO protocol

24619 602B EtherCAT: Internal error of SDO protocol

24620 602C EtherCAT: Internal error of SDO protocol

24621 602D EtherCAT: Not enough memory

24622 602E EtherCAT: Selected object could not be accessed

24623 602F EtherCAT: Selected object is write only

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US746

DEC HEX Error description
24624 6030 EtherCAT: Selected object is read only

CAN..: Function timeout
DNM..: Device not configured
PNIO: Internal error inside Communication Module's firmware

24625 6031 EtherCAT: Selected object does not exist
PNIO: Internal error inside Communication Module's firmware

24626 6032 EtherCAT: PDO mapping failed
DNM..: Format error in the received data
ETH_UDP..: TCP/UDP task not available or IP task not ready.
PNIO: Internal error inside Communication Module's firmware

24627 6033 EtherCAT: Selceted object is to large to be mapped to PDO
CAN..: Maximum buffer size of the receive data exceeded
ETH_UDP..: Internal task with configuration data not available
PNIO: The ALPMR protocol-machine corresponding to the index in request
packet is invalid

24628 6034 EtherCAT: General parameter error occured
CAN..: Function not available. Code unknown.
DNM..: Code unknown
ETH_MOD..: Invalid parameter for "ServerConnection"
ETH_UDP..: No MAC address available
PNIO: The ALPMR protocol-machine is invalid for the current request

24629 6035 EtherCAT: Internal device error occured
CAN..: Unknown area. Buffer exceeded.
DNM..: Overflow of buffer length
ETH_MOD..: Invalid parameter for "Task Timeout"
ETH_UDP..: Waiting for warm start performed by the application

24630 6036 EtherCAT: Hardware error occured
CAN..: Unknown function in HOST message or function still active
DNM..: Other service still active
ETH_MOD..: Invalid parameter for "OBM Timeout"
ETH_UDP..: Unknown flag in start parameters
DPM../DPV1..: Slave denied access to the requested data

24631 6037 EtherCAT: Invalid data type
CAN..: Parameter error
DNM..: Parameter error or MAC ID beyond the valid range
ETH_MOD..: Invalid parameter for "Mode"
ETH_UDP..: Invalid IP address in start parameters
PNIO: The index of ALPMR protocol-machine is invalid

24632 6038 EtherCAT: Invalid data type
ETH_MOD..: Invalid parameter for "Send Timeout"
ETH_UDP..: Invalid subnet mask in start parameters

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 747

DEC HEX Error description
24633 6039 EtherCAT: Invalid data type

CAN..: Sequence error
DNM..: Sequence error or one MAC ID was multiple used in one network
ETH_MOD..: Invalid parameter for "Connect Timeout"
ETH_UDP..: Invalid gateway IP in start parameters

24634 603A EtherCAT: Invalid sub-index
ETH_MOD..: Invalid parameter for "Close Timeout".

24635 603B EtherCAT: Invalid parameter value
CAN..: Data error
DNM..: Data error
ETH_MOD..: Invalid parameter for "Swab"
ETH_UDP..: Unknown device type

24636 603C EtherCAT: Invalid parameter value
CAN..: Node address configured twice
DNM..: Display of total number of data sets incorrect
ETH_MOD..: TCP task not ready
ETH_UDP..: Access to IP address in the specified source failed

24637 603D EtherCAT: Invalid parameter value
CAN..: ADD table incorrect
DNM..: ADD table incorrect
ETH_MOD..: PLC task not ready
ETH_UDP..: Initialization of the driver layer failed

24638 603E EtherCAT: Invalid parameter value
CAN..: Total length of the node parameters incorrect
DNM..: Size of the I/O configuration table incorrect
ETH_MOD..: Error during initialization
ETH_UDP..: No source specified for IP address (BOOTP, DHCP, IP address
parameter)

24639 603F EtherCAT: Internal error of SDO protocol
CAN..: Transmission type unknown
DNM..: I/O configuration does not match with the ADD table

24640 6040 EtherCAT: Internal device error occured
CAN..: Length of the PDO-cfg file too big
DNM..: Parameter size incorrct or channel/handler already in use
PNIO: Internal error inside Communication Module's firmware

24641 6041 EtherCAT: Internal device error occured
CAN..: Unknown transmission rate
DNM..: Number of defined inputs in the ADD table does not match with the
I/O configuration
PNIO: Internal error inside Communication Module's firmware

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US748

DEC HEX Error description
24642 6042 EtherCAT: Internal device error occured

CAN..: COB-ID SYNC beyond the valid range
DNM..: Number of defined outputs in the ADD table does not match with the
I/O

24643 6043 EtherCAT: Internal device error occured
CAN..: Value of the synchronization timer invalid
DNM..: Unknown data type in the I/O configuration

24644 6044 EtherCAT: Unknown SDO protocol error
CAN..: Input offset of the PDOs too big
DNM..: Defined data type of an I/O module does not match with the defined
data size

24645 6045 CAN..: Output offset of the PDOs too big
DNM..: The configured output address of an I/O module is not within the
permitted address range of 3584 bytes

24646 6046 CAN..: Inconsistency between the PDO and the ADD table
DNM..: The configured input address of an I/O module is not within the per-
mitted address range of 3584 bytes

24647 6047 CAN..: Length of the ADD table inconsistent
DNM..: Unknown connection type

24648 6048 CAN..: Total data length inconsistent
DNM..: Several identical connections defined

24649 6049 CAN..: COB-ID Emergency beyond the permitted range
DNM..: The configured value of the "Exp_Packet_Rate" of a connection is
smaller than the value of the "Prod_Inhibit_Time"

24650 604A CAN..: COM-ID Node Guard beyond the permitted range
DNM..: Inconsistent parameter field "DNM_PRED_MSTSL_CFG_DATA"

24651 604B CAN..: Configured PDO length greater than 8
DNM..: Device could not perform "Duplicate_MAC-ID check". Incorrect trans-
mission rate or no connection to the device possible.

24652 604C CAN..: Number of defined objects in SDO data too big
DNM..: Value of "usRecFragTimer" beyond the permitted range

24657 6051 PNIO: The current bus state is OFF and no frames can be sent

24659 6053 PNIO: The state of APMS protocol-machine is invalid for the current request

24660 6054 PNIO: APMS was not able to get an Edd_Frame buffer for sending a packet

24661 6055 PNIO: An error occurred while APMS was trying to send an Edd_Frame

24662 6056 PNIO: Device not reachable (DEV_NAME is not projected)

24663 6057 PNIO: Insufficient memory for APMS_send_req_Date() to allocate a timer-
indication packet

24672 6060 PNIO: The acyclic service failed. The I/O module answered with an error
code. See output STATUS (EtherCAT status) for details.

24679 6067 PNIO: The maximum amount of data supported by this service is exceeded.

24686 606E ETH_UDP..: Timeout has occurred

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 749

DEC HEX Error description
24687 606F ETH_MOD..: Unknown send or receive telegram

ETH_UDP..: Invalid timeout parameter

24688 6070 ETH_MOD..: TCP responds with an error
ETH_UDP..: Invalid socket

24689 6071 ETH_MOD..: No corresponding socket found
ETH_UDP..: Command cannot be executed in the current socket state

24690 6072 ETH_MOD..: Command with invalid value

24691 6073 ETH_MOD..: TCP task status error
ETH_UDP..: No access to target IP address

24692 6074 ETH_UDP..: Invalid option parameter

24693 6075 ETH_MOD..: No free socket found
ETH_UDP..: Invalid command parameter

24694 6076 ETH_MOD..: TCP command is directed to an unknown socket
ETH_UDP..: Invalid IP address or no access to address
HA..: Wrong IP address configured

24695 6077 ETH_MOD..: Time for a client job is over
ETH_UDP..: Invalid port number or port not available

24696 6078 ETH_MOD..: Socket has been closed unexpectedly
ETH_UDP..: Connection closed

24697 6079 ETH_MOD..: Not-Ready flag has been set by the user
ETH_UDP..: Connection reset

24698 607A ETH_MOD..: OMB task cannot open socket
ETH_UDP..: Invalid protocol

24699 607B ETH_MOD..: Watchdog event in PLC task, only in I/O mode
ETH_UDP..: No socket available

24700 607C ETH_MOD..: TCP task in configuration state
ETH_UDP..: Invalid MAC address

24701 607D ETH_MOD..: PLC task not initialized

24702 607E ETH_MOD..: Server socket was closed without response from the device

24703 607F ETH_MOD_MAST.

24705 6081 DPM../DPV1..: DPV1 not in "OPEN" state

24706 6082 ETH_UDP..: Invalid mode parameter
DPM../DPV1..: Invalid parameters received from slave. Communication
stopped.

24707 6083 ETH_UDP..: Maximum data length exceeded or ARP cache full
DPM../DPV1..: Service still active. Parallel operation is not possible

24708 6084 ETH_UDP..: Maximum number of messages exceeded
DPM../DPV1..: Data length too high for the reserved buffer

24709 6085 ETH_UDP..: Maximum number of IP multicast groups exceeded
DPM../DPV1..: Wrong parameter

24710 6086 ETH_UDP..: ARP input not found in ARP cache

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US750

DEC HEX Error description
24725 6095 ETH_UDP..: Invalid message response received

24727 6097 ETH_MOD..: Invalid message length
ETH_UDP..: Invalid message length

24728 6098 CAN..: Unknown message command
DNM..: Unknown message command
ETH_MOD..: Unknown message command
ETH_UDP..: Unknown message command

24730 609A DPM../DPV1..: Invalid message command

24732 609C ETH_UDP..: Sequence error during transmission in Sequence Message Mode

24734 609E ETH_UDP..: Command cannot be executed or command is currently exe-
cuted

24736 60A0 ETH_MOD..: Error in telegram header

24737 60A1 CAN..: Node address beyond the permitted range
DNM..: Device address beyond the permitted range
ETH_MOD..: Invalid address detected in the telegram
DPM../DPV1..: Invalid slave address

24738 60A2 CAN..: Invalid address range
DNM..: Invalid address range

24739 60A3 CAN..: Data buffer overflow
DNM..: Data buffer overflow
ETH_MOD..: Invalid data address

24741 60A5 CAN..: Incorrect data counter
DNM..: Incorrect data counter
ETH_MOD..: Invalid data counter

24742 60A6 CAN..: Unknown data type
DNM..: Unknown data type

24743 60A7 CAN..: Unknown function
DNM..: Unknown function
ETH_MOD..: OBM task received an error in the response of the TCP task

24776 60C8 CAN..: Communication Module is not configured
DNM..: Communication Module is not configured
ETH_UDP..: Task not initialized

24778 60CA ETH_MOD..: OBM task does not have a segment from RCS

24779 60CB ETH_MOD..: Unknown or invalid sender specified with the command

24786 60D2 ETH_UDP..: No configuration data available

24788 60D4 ETH_UDP..: Error while reading the configuration data

24789 60D5 ETH_UDP..: Error while creating the diagnosis structure

24794 60DA ETH_UDP..: Not enough memory available

24832 6100 PNIO: Generic RPC-error code. See output STATUS (PROFINET-status) for
details.

24847 610F ETH_MOD_MAST: Wrong MBAP header received

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 751

DEC HEX Error description
24848 6110 ETH_MOD..: Invalid Unit Identifier received

24850 6112 ETH_MOD_MAST: Invalid MBAP header Length value

25088 6200 PNIO: Internal error inside Communication Module's firmware

25089 6201 PNIO: Internal error inside Communication Module's firmware

26117 6605 PNIO: Internal error inside Communication Module's firmware

26118 6606 PNIO: Internal error inside Communication Module's firmware

26119 6607 PNIO: Internal error inside Communication Module's firmware

Abbreviations
RPC Remote Procedure Call

CMCTL Controller Context Management

APMS Acyclic Protocol-Machine sender

APMR Acyclic Protocol-Machine receiver

1.5.3.8 7000hex...7FFFhex - product libraries
Table 53: Drives library
Dec Hex Error description
28672 7000 Any activity was NOT completed within an appropiate TIME

28673 7001 Read or write parameter could not be completed

28674 7002 A parameter at the function block is out of the possible range. This does not refer
to the parameter range which is allowed for the drive but just to the 32-bit integer
which is used for internal calculation

28675 7003 The field bus connection is faulty

28677 7005 Wrong PPO type

28678 7006 Wrong or no adapter type could be detected

28679 7007 Drive type does not match to function block

28680 7008 Function aborted

28681 7009 Error while reading scaling parameter for REF1

28682 700A Wrong parameter number at read/write parameter

28683 700B COM interface differs from others on same LINE_TOKEN variable

28684 700C Profile type error

28685 700D Function block Read_Parameters has been executed with error

28686 700E Function block Write_Parameters has been executed with error

28687 700F No connection to communication block, or error in communication block

28688 7010 Error at reading the drives communication profile value

28689 7011 Drive communication profile can not be used with this function block

28690 7012 PROFINET or PROFIBUS write packet size exceed 240 byte data limit

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US752

Table 54: Solar library
Dec Hex Error description
28928 7100 ALARM: Limit exceeded. System has moved more than POS_DEG_LIMIT dis-

tance without any moving command.

28929 7101 ALARM: Timeout. The system has not reached POS_DEG_LIMIT within the toler-
ance time (3 * t POS_TIME_LIMIT [ms]).

28930 7102 ALARM: Limit at wrong side reached. System has reached POS_DEG_LIMIT
distance in the opposite DIR to actual movement order.

28931 7103 ALARM: Low Limit exceeded. Tracker position is less than VIRTUAL_LIMIT_MIN.

28932 7104 High Limit exceeded. Tracker position is more than VIRTUAL_LIMIT_MAX.

28933 7105 Warning: Interlocking. Try to move BACKWARD while STOP_BWD input is set.

28934 7106 Warning: Interlocking. Try to move FORWARD while STOP_FWD input is set.

28935 7107 Warning: Interlocking. Both STOP_BWD and STOP_FWD input are set.

Table 55: Data logger library
Dec Hex Error description
29184 7200 zLOG_ERROR_NO_TYPE_SPECIFIED

29185 7201 zLOG_ERROR_LENGTH_BOOL_EXCEEDED

29186 7202 zLOG_ERROR_LENGTH_BYTE_EXCEEDED

29187 7203 zLOG_ERROR_LENGTH_INT_EXCEEDED

29188 7204 zLOG_ERROR_LENGTH_WORD_EXCEEDED

29189 7205 zLOG_ERROR_LENGTH_DINT_EXCEEDED

29190 7206 zLOG_ERROR_LENGTH_DWORD_EXCEEDED

29191 7207 zLOG_ERROR_LENGTH_REAL_EXCEEDED

29195 720B zLOG_ERROR_OPEN_ERR

29196 720C zLOG_ERROR_GETPOS_ERR

29197 720D zLOG_ERROR_SETPOS_ERR

29198 720E zLOG_ERROR_WRITE_ERR

29199 720F zLOG_ERROR_READ_ERR

29200 7210 zLOG_ERROR_CLOSE_ERR

29201 7211 zLOG_ERROR_GETSIZE_ERR

29202 7212 zLOG_ERROR_FLUSH_ERR

29205 7215 zLOG_ERROR_MAX_NUMBER_OF_FILES_EXCEEDED

29206 7216 zLOG_ERROR_MAX_NUMBER_OF_DATASETS_PRO_FILE

29207 7217 EXCEEDED zLOG_ERROR_FILE_WRITE_FAILED

29208 7218 zLOG_ERROR_FILE_READ_FAILED

29210 721A zLOG_ERROR_CREATE_DIRECTORY

29211 721B zLOG_ERROR_FILE_MOVE

29212 721C zLOG_ERROR_NO_CSV_FOUND_IN_DATASET

29213 721D zLOG_ERROR_DELETE_ACTUAL_FILE

29214 721E zLOG_ERROR_FORMAT_DISK1

29215 721F zLOG_ERROR_FORMAT_DISK2

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 753

Dec Hex Error description
29216 7220 zLOG_ERROR_DELETE_ACTUAL_FILES_NO_FILE_FOUND

29217 7221 zLOG_ERROR_DELETE_SAVE_FILES_NO_FILE_FOUND

29218 7222 zLOG_ERROR_ILLEGAL_MODE

29219 7223 zLOG_ERROR_ILLEGAL_DESIGNATION_ON_DISK1

29220 7224 zLOG_ERROR_ILLEGAL_DESIGNATION_ON_DISK2

29221 7225 zLOG_ERROR_FORMAT_NOT_SUPPORTED

29222 7226 zLOG_ERROR_MODE3_AND_DISK2_EXTENTION_TRUE_NOT_ALLOWED

29230 722E zLOG_ERROR_29230_TIMEOUT_DIRECTORY_CREATE_FILE_MOVE

29231 722F zLOG_ERROR_RESERVE

29232 7230 zLOG_ERROR_TIMEOUT_DISK_FORMAT

29233 7231 zLOG_ERROR_TIMEOUT_FILE_DELETE

29234 7232 zLOG_ERROR_TIMEOUT_WRITE_DATASET_IN_FILE

29235 7233 zLOG_ERROR_TIMEOUT_READ_DATASET_IN_CASE_OF_CONNECT

29236 7234 zLOG_ERROR_TIMEOUT_WRITE_DATASET_IN_CASE_OF_CONNECT

29237 7235 zLOG_ERROR_TIMEOUT_READ_DATASET_IN_CASE_OF_NOT_CONNECT

29238 7236 zLOG_ERROR_TIMEOUT_IEC60870_COMMUNICATION

Table 56: Temperature control library
Dec Hex Error description
29312 7280 Fault (TuneFault): "Tuning failed": outputs disabled, see Tune_Status

Remedy: Check for tune set point and currrent temperatur

29313 7281 Fault (TC_Fault_1): "Bad Thermocouple reading": outputs disabled.
Remedy: Bad Thermocouple reading: outputs disabled

29314 7282 Fault (TC_Fault_2): "Plausibility check not passed": outputs disabled.
Remedy: Check for inverted connection of Thermocouple.

29315 7283 Fault (HighHighTempFalt): "HighHigh temperature alarm": outputs disabled.
Remedy
● Check for defective cooling device.
● Check for correct setting of HIGHHIGH_TEMP and SET_TEMP.

29316 7284 Fault (LowLowTempFault): "LowLow temperature alarm": outputs disabled.
Remedy
● Check for defective heating device.
● Check for correct setting of LOWLOW_TEMP and SET_TEMP.

29319 7287 High temperature alarm

29320 7288 Low temperature alarm

29321 7289 High deviation alarm

29330 7292 Zone_size and zone_index are not assigned

29335 7297 No group function block call possible: internal Group function call for
TECT_TEMP_CONTROL or TECT_PWM8 failed.

29336 7298 TimeOut of one operation state.

29337 7299 Read data failed: no correct format of data items.

PLC Automation with V2 CPUs
Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/203ADR010582, 3, en_US754

Dec Hex Error description
29322 728A Low deviation alarm

29323 728B Fault: (NoHighHighLowLow): "No plausible HighHigh or LowLow limit is defined"
Remedy: Check the HighHighTemp and low low temp.

29324 728C Fault (WrongLimits): "No plausible wrong limits defined"
Remedy: Check the defined limits.

29325 728D Heat and Cool are not enabled: Monitoring only.

29326 728E Faut (NoAutoTune): "AutoTune cannot be started"
Remedy: Process in Manual mode or Heat is not enabled

29327 728F Fault (NoPIDProcess): "PID process cannot be started"
Remedy: Process in Manual mode or no KS, TU, TG parameters are accepted.

29328 7290 Fault (Improper setting of HigHigh and High): HighHigh and High limits are not set
correctly. Values are not taken by process/ADR_ZONEDATA.
Remedy: Check parameter settings.

29329 7291 Fault (Improper setting of LowLow and Low): LowLow and Low limits are not set
correct. Values are not taken by process/ADR_ZONEDATA.
Remedy: Check parameter settings.

29330 7292 Fault (No assignment for zone index and size): Zone_size and zone_index are not
assigned.
Remedy: Check parameter settings.

29335 7297 Fault (No Group function possible):no Group function block call possible: internal
Group function call for TECT_TEMP_CONTROL or TECT_PWM8 failed.

29336 7298 TimeOut of one operation state.

29337 7299 Fault (Reading failed):Read data failed: no correct format of data items.
Remedy: Check parameter settings.

29338 729A Fault (Incomplete log saving): Restart of the EN is required since last log saving is
not complete

29339 729B Fault (Less zone data available in RECIPE file than requested):Mismatch in
number of zones declared and zone data in recipe.
Remedy: Check the zone data in CSV file and Num_of_zones declared in
RECIPE.

Table 57: CMS/FM502 library
Dec Hex Error description
29440 7300 Invalid file format.

29445 7305 Number of channels > 1, not supported by this version of library.

29440 7300 Invalid RIFF Chunk ID

29441 7301 Invalid WAV Chunk ID

29442 7302 Invalid FMT Chunk ID

29443 7303 Invalid DATA Chunk ID

29444 7304 Invalid LABL Chunk ID

29445 7305 Number of channels >1 , not supported by this version of library.

29504 7340 No Channel activated

29505 7341 Internal Error (Start)

PLC Automation with V2 CPUs

Libraries and solutions > Error messages of the AC500 V2 function block libraries

2022/01/20 3ADR010582, 3, en_US 755

Dec Hex Error description
29506 7342 Internal Error (Poll)

29507 7343 Internal Error (Finish)

29508 7344 Not possible because of measurement running

29519 734F No Measurement possible. Device in Failure Loop.

29520 7350 Comunication Timeout to FM502

29521 7351 Internal File Error

29522 7352 Plausibility Check of Configuration wrong

29569 7381 Error in memory allocation to the input signal, due to insufficient memory available.

29571 7383 Wrong intermediate variable value

29572 7384 Error during reading wave file - check wave file for format compatibility.

29573 7385 Could not open indicated wave file.

1.5.4 Standard function block libraries AC500
1.5.4.1 ARCNET library

Library file name: ARCNET_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The use of the function blocks presupposes that the ARCNET Communication Module is config-
ured in the ARCNET data exchange mode.

1.5.4.1.1 Function blocks
ARC_INFO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US756

Parameter Value
Included in library ARCNET_AC500_V12.lib

Available as of firmware V1.2

Type Function block with historical values

Group General

Using the ARC_INFO function block, various status information about the ARCNET processing
can be read. This information can only be read if in the "ARCNET data exchange".

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN

SLOT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 757

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_BY displays the filling level of the receive buffer in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_DS displays the filling level of the receive buffer in data
sets.

DONE

ERR

ERNO

LEVR_BY

LEVR_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US758

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSH_BY displays the filling level of the high priority send
buffer in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSH_DS displays the filling level of the high priority send
buffer in data sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSL_BY displays the filling level of the low priority send buffer
in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSL_DS displays the filling level of the low priority send buffer
in data sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSTO_DS displays the filling level of the timeout buffer in
data sets.

Data type Default value Range Unit
DWORD - - -

NUMR_BC outputs the number of broadcasts (data packets to all stations) which were received
by this station.

Data type Default value Range Unit
DWORD - - -

At output NUMR_REJ, the number of data sets is displayed which were discarded during
reception due to a full receive buffer. Data sets are only discarded if this is set accordingly within
the PLC configuration of the ARCNET processing.

Data type Default value Range Unit
DWORD - - -

At output NUMR_OWR, the number of data sets is displayed which were overwritten during
reception due to a full receive buffer. Data sets are only overwritten in the receive buffer, if this is
set accordingly within the PLC configuration of the ARCNET processing.

LEVSH_BY

LEVSH_DS

LEVSL_BY

LEVSL_DS

LEVSTO_DS

NUMR_BC

NUMR_REJ

NUMR_OWR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 759

Data type Default value Range Unit
DWORD - - -

NUMR_INV outputs the number of telegrams which were received faulty by this station.

Function call in ST

Info (EN := Info_EN,
 SLOT := Info_SLOT;

Info_DONE := Info.DONE;
Info_ERR := Info.ERR;
Info_ERNO := Info.ERNO;
Info_LEVR_BY := Info.LEVR_BY;
Info_LEVR_DS := Info.LEVR_DS;
Info_LEVSH_BY := Info.LEVSH_BY;
Info_LEVSH_DS := Info.LEVSH_DS;
Info_LEVSL_BY := Info.LEVSL_BY;
Info_LEVSL_DS := Info.LEVSL_DS;
Info_LEVSTO_DS := Info.LEVSTO_DS;

Info_NUMR_BC := Info.NUMR_BC;
Info_NUMR_REJ := Info.NUMR_REJ;
Info_NUMR_OWR := Info.NUMR_OWR;
Info_NUMR_INV := Info.NUMR_INV;

ARC_MAP

Parameter Value
Included in library ARCNET_AC500_V12.lib

Available as of firmware V1.3

Type Function block without historical values

Group General

The function block ARC_MAP provides information about the ARCNET network map. The
output MAP shows the status of every node. If the node is active, a "1" is shown at the
corresponding output array. (Each possible node has an own byte at the array; e. g. nodes 2
and 3 are active -> array of Byte [2] = 1 and array of byte [3] = 1, the others have the value 0).

NUMR_INV

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US760

Every node of the ARCNET map is checked by the RTS for about 210 ms. So the complete
cycle time for the whole map takes about 255*210 ms (If the map consists of 255 nodes. If the
network consists of 5 nodes it takes about 1s).

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

SLOT

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 761

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
ARRAY - - -

As long as EN = TRUE and at least 2 nodes are active (a network consists of min 2 nodes),
output array [1..255] of BYTE shows the status information of the network map.

Function call in ST
MAP (EN := MAP_EN,
SLOT := MAP_SLOT);
MAP_DONE := MAP.DONE;
MAP_ERR := MAP.ERR;
MAP_ERNO := MAP.ERNO;
MAP_MAP := MAP.MAP;

ARC_OWN_NODE

Parameter Value
Included in library ARCNET_AC500_V12.lib

Available as of firmware V1.2

Type Function block without historical values

Group General

ERR

ERNO

MAP

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US762

Prior to setting into operation an AC500 Communication Module, it must be configured using the
system configuration of the Control Builder. One of the parameters of an ARCNET Communica-
tion Module is its own NODE_ID. Using the function block ARC_NODE_ID, the latest configured
NODE ID of the device at SLOT can be read. If no ARCNET Communication Module is installed
at SLOT, the corresponding error is generated and output at ERR and ERNO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

SLOT

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 763

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

Output NODE_ID displays the own NODE ID of the Communication Module.

Function call in ST
ARC_OWN_NODE(EN := OwnNode_EN, SLOT := OwnNode_SLOT);

OwnNode_DONE := OwnNode.DONE;
OwnNode_ERR := OwnNode.ERR;
OwnNode_ERNO := OwnNode.ERNO;
 OwnNode_IP_ADR := OwnNode.NODE_ID;

ARC_REC

Parameter Value
Included in library ARCNET_AC500_V12.lib

Available as of firmware V1.2

Type Function block with historical values

Group Data

ERR

ERNO

NODE_ID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US764

The operating system reads the received ARCNET data packets from the ARCNET Communi-
cation Module and stores them in the receive buffer. The buffer size is determined using the
Ä Chapter 1.6.5.2.3.6 “Parameters of PM5x1-ARCNET (onboard ARCNET)” on page 5846
of the CPU. The data packets are stored with variable lengths. For example, a data packet
consisting of 16 bytes of user data occupies exactly 22 bytes in the receive buffer (4 bytes for
the NODE ID of the sending device, 2 bytes for the packet length and 16 bytes of user data).
Using the ARC_REC function block, exactly one data packet is read. The user data are
stored in the configured memory area (DATA). The NODE ID of the sending device and
the data packet length are supplied at the outputs NODE_ID and LEN. DONE = TRUE and
ERR = FALSE indicate that the reading process was successful. If an error was detected
during Function Block processing, the error is additionally indicated at the outputs ERR and
ERNO. Furthermore, the function block provides information about the receive buffer filling level
displayed in bytes (LEVR_BY) and data records (LEVR_DS).
Before the ARC_REC function block can read data packets from the receive buffer, the setting
"ARCNET data exchange" must have been selected in the Ä Chapter 1.6.5.2.3.6 “Parameters
of PM5x1-ARCNET (onboard ARCNET)” on page 5846 of the CPU.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
DATA must be the address of a variable of the type ARRAY or STRUCT.

EN

SLOT

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 765

CAUTION: Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

Output NODE_ID displays the own NODE ID of the Communication Module.

Data type Default value Range Unit
WORD - - byte

Output LEN displays the length of the received data package in bytes.

DONE

ERR

ERNO

NODE_ID

LEN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US766

Data type Default value Range Unit
WORD - - -

Output LEV_BY displays the filling level of the receive buffer in bytes. The displayed value is
updated as long as EN is TRUE and applies to the input values read with the rising edge at
input EN.
One data packet occupies output LEN + 6 bytes in the receive buffer (4 bytes for the NODE ID
of the sending device, 2 bytes for the specification of the length).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

Function call in ST
REC (EN := Rec_EN,
 SLOT := Rec_SLOT,
 DATA := ADR(Rec_DATA));

REC_DONE := Rec.DONE;
REC_ERR := Rec.ERR;
REC_ERNO := Rec.ERNO;
REC_NODE_ID := Rec.NODE_ID;
REC_LEN := Rec.LEN;
REC_LEVR_BY := Rec.LEV_BY;
REC_LEVR_DS := Rec.LEV_DS;

ARC_SEND

Parameter Value
Included in library ARCNET_AC500_V12.lib

Available as of firmware V1.2

Type Function block with historical values

Group Data

LEV_BY

LEV_DS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 767

The function block ARC_SEND is used to transmit data packets via the ARCNET Communica-
tion Module. The specified packages are stored in the transmit buffer which is selected by input
PRIO. From there, the operating system hands over the data packets to the ARCNET Commu-
nication Module in order to transmit them to the target address specified at input NODE_ID.
The transmit buffer size is determined using the PLC Configuration of the Control Builder. Using
input TOUT, the timeout period can be specified. If TOUT <> 0, the ARCNET data exchange
is automatically performed with receive acknowledgement. If TOUT = 0, no acknowledgement
is expected. Output DONE indicates that the specified data packets has been stored in the
transmit buffer or that an error occurred during Function Block processing. If an error was
detected during Function Block processing, the error is additionally indicated at the outputs ERR
and ERNO. In case of an error, the data packet has to be transmitted again.
Before the ARC_SEND function block can store data packets in the receive buffer, the setting
"ARCNET data exchange" must have been selected in the Ä Chapter 1.6.5.2.3.6 “Parameters
of PM5x1-ARCNET (onboard ARCNET)” on page 5846 of the CPU.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - - -

Output NODE_ID displays the own NODE ID of the Communication Module.

EN

SLOT

NODE_ID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US768

Data type Default value Range Unit
BOOL - - -

Input PRIO is used to specify the transmit priority of the data packet.
The following applies:
PRIO = FALSE
The specified data packet has low priority. Thus, it is stored in the low priority transmit buffer. All
outputs refer to this buffer.
PRIO = TRUE
The specified data packet has high priority. Thus, it is stored in the high priority transmit buffer.
All outputs refer to this buffer.

Data type Default value Range Unit
WORD 200ms - -

Using input TOUT, the timeout period can be specified. If TOUT <> 0, the ARCNET data
exchange is automatically performed with receive acknowledgement. If a data packet cannot be
transmitted within this period (no acknowledge telegram is received), transmission is aborted
and the package is lost.
In this case, some distinctive bytes of the data packet (see also the PLC configuration of the
Control Builder) are stored to the timeout buffer and can then be read using the function block
ARC_STO.
If TOUT = 0, no acknowledgement is expected.
The following applies:
TOUT = 0 means: Default value for TOUT, given by PLC configuration, is used.
Data exchange without receive acknowledgement. No data are written to the timeout buffer.
TOUT <> 0:
Data exchange with receive acknowledgement. Each transmitted data record is acknowledged
by the recipient. If no acknowledge telegram is received within the set timeout period (in ms),
the data are written to the timeout buffer.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
DATA must be the address of a variable of the type ARRAY or STRUCT.
CAUTION: Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Data type Default value Range Unit
WORD - - byte

Output LEN displays the length of the received data package in bytes.

PRIO

TOUT

DATA

LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 769

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output LEV_BY displays the filling level of the receive buffer in bytes. The displayed value is
updated as long as EN is TRUE and applies to the input values read with the rising edge at
input EN.
One data packet occupies output LEN + 6 bytes in the receive buffer (4 bytes for the NODE ID
of the sending device, 2 bytes for the specification of the length).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

DONE

ERR

ERNO

LEV_BY

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US770

Function call in ST
Send (EN := Send_EN,
 SLOT := Send_SLOT,
 NODE_ID := Send_NODE_ID,
 PRIO := Send_PRIO,
 TOUT := Send_TOUT,
 DATA := ADR(Send_DATA),
 LEN := Send_LEN);

Send_DONE := Send.DONE;
Send_ERR := Send.ERR;
Send_ERNO := Send.ERNO;
Send_LEV_BY := Send.LEV_BY;
Send_LEV_DS := Send.LEV_DS;

ARC_STATE

Parameter Value
Included in library ARCNET_AC500_V12.lib

Available as of firmware V1.3

Type Function block without historical values

Group General

The function block ARC_STATE is used to get general status information about the ARCNET
network. With this FB you get
● the number of reconfigurations (whole number and caused by this device),
● the number of excessive NAKs
● the number of broadcasts
● the number of discards
● the number of the next node ID.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 771

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

EN

SLOT

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US772

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Total number of reconfigurations

Data type Default value Range Unit
DWORD - - -

Number of reconfigurations caused by this device

Data type Default value Range Unit
DWORD - - -

Total number of excessive NAKs.

Data type Default value Range Unit
DWORD - - -

Data type Default value Range Unit
DWORD - - -

Total number of receipts discarded due to no matching destination handle found.

Data type Default value Range Unit
BYTE - - -

Next node ID.

ERR

ERNO

NUM_RECONF

NUM_MY_RECO
NF

NUM_EXC_NAK

NUM_BROAD-
CAST

NUM_DISCARD

NEXT_NODE_ID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 773

Function call in ST
STATE (EN := STATE_EN,
SLOT := STATE_SLOT);

STATE_DONE := STATE.DONE;
STATE_ERR := STATE.ERR;
STATE_ERNO := STATE.ERNO;
STATE_NUM_RECONF := STATE.NUM_RECONF;
STATE_NUM_MY_RECONF:= STATE.NUM_MY_RECONF;
STATE_NUM_EXC_NAK := STATE.NUM_EXC_NAK;
STATE_NUM_BROADCAST:= STATE.NUM_BROADCAST;
STATE_NUM_DISCARD:= STATE.NUM_DISCARD;
STATE_NEXT_NODE_ID:= STATE.NEXT_NODE_ID;

ARC_STO

Parameter Value
Included in library ARCNET_AC500_V12.lib

Available as of firmware V1.2

Type Function block with historical values

Group Data

During the transmission of a data packet, the success of the transmission is monitored by an
adjustable timeout period. When this time is exceeded, distinctive information of the data packet
is stored in the timeout buffer.
These are:
● the NODE ID of the receiver (4 bytes)
● the length of the involved data packet
● header data of the involved data set.
The length of the timeout buffer as well as the number of user data to be stored can be
set for the ARCNET processing in the PLC configuration of the Control Builder. The buffer
is constructed as a circular buffer (FIFO). If the buffer is full, the oldest entry in the buffer is
overwritten. If the ARC_STO function block is enabled by EN = TRUE, it checks whether a data
packet is stored in the buffer and provides the user with the above mentioned information as
of the variable given at input DATA. At the outputs NODE_ID and LEN, the NODE ID and the
original length of the telegram, which could not be sent, are available.
Before the ARC_STO function block can be used, the setting "ARCNET data exchange" has to
be selected. Additionally, the input TOUT of the ARC_SEND function block must be >0.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US774

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
DATA must be the address of a variable of the type ARRAY or STRUCT.
CAUTION: Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

EN

SLOT

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 775

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

Output NODE_ID displays the own NODE ID of the Communication Module.

Data type Default value Range Unit
WORD - - byte

Output LEN displays the length of the received data package in bytes.

Data type Default value Range Unit
WORD - - -

DONE

ERR

ERNO

NODE_ID

LEN

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US776

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

Function call in ST
Sto (EN := Sto_EN,
 SLOT := Sto_SLOT,
 DATA := ADR(Sto_DATA));

Sto_DONE := Sto.DONE;
Sto_ERR := Sto.ERR;
Sto_ERNO := Sto.ERNO;
Sto_NODE_ID := Sto.NODE_ID;
Sto_LEN := Sto.LEN;
Sto_LEV_DS := Sto.LEV_DS;

1.5.4.2 Extended ARCNET library
Library file name: ARCNET_Ext_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The use of the function blocks presupposes that the ARCNET Communication Module is config-
ured in the ARCNET data exchange mode.

1.5.4.2.1 ARC_7F_REC_SWAP

Parameter Value
Included in library ARCNETExt_AC500_V12.lib

Available as of firmware V1.2

Type Function block with historical values

Group Data

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 777

The operating system reads the received ARCNET data packets from the ARCNET Communi-
cation Module and stores them in the receive buffer. The buffer size is determined using the
Ä Chapter 1.6.5.2.3.6 “Parameters of PM5x1-ARCNET (onboard ARCNET)” on page 5846
of the CPU. The data packets are stored with variable lengths. For example, a data packet
consisting of 16 bytes of user data occupies exactly 22 bytes in the receive buffer (4 bytes for
the NODE ID of the sending device, 2 bytes for the packet length and 16 bytes of user data).
Using the ARC_7F_REC_SWAP function block, exactly one data packet is read. The user
data are stored in the configured memory area (DATA). The NODE ID of the sending device
and the data packet length are supplied at the outputs NODE_ID and LEN. DONE = TRUE
and ERR = FALSE indicate that the reading process was successful. If an error was detected
during Function Block processing, the error is additionally indicated at the outputs ERR and
ERNO. Furthermore, the function block provides information about the receive buffer filling level
displayed in bytes (LEVR_BY) and data records (LEVR_DS).
Before the ARC_REC function block can read data packets from the receive buffer, the setting
"ARCNET data exchange" must have been selected in the Ä Chapter 1.6.5.2.3.6 “Parameters
of PM5x1-ARCNET (onboard ARCNET)” on page 5846 of the CPU.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
DATA must be the address of a variable of the type ARRAY or STRUCT.

EN

SLOT

DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US778

CAUTION: Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

Output NODE_ID displays the own NODE ID of the Communication Module.

Data type Default value Range Unit
WORD - - byte

Output LEN displays the length of the received data package in bytes.

DONE

ERR

ERNO

NODE_ID

LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 779

Data type Default value Range Unit
WORD - - -

Output LEV_BY displays the filling level of the receive buffer in bytes. The displayed value is
updated as long as EN is TRUE and applies to the input values read with the rising edge at
input EN.
One data packet occupies output LEN + 6 bytes in the receive buffer (4 bytes for the NODE ID
of the sending device, 2 bytes for the specification of the length).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

1.5.4.2.2 ARC_7F_SEND_SWAP

Parameter Value
Included in library ASCII_AC500_V12.lib

Available as of firmware V1.2

Type Function block with historical values

Group Data

The function block ARC_7F_SEND_SWAP is used to transmit data packets via the ARCNET
Communication Module. The specified packages are stored in the transmit buffer which is
selected by input PRIO. From there, the operating system hands over the data packet to
the ARCNET Communication Module in order to transmit them to the target address speci-
fied at input NODE_ID. The transmit buffer size is determined using the PLC Configuration
Ä Chapter 1.6.5.2.3.6 “Parameters of PM5x1-ARCNET (onboard ARCNET)” on page 5846 of
the Automation Builder. Using input TOUT, the timeout period can be specified. If TOUT <>
0, the ARCNET data exchange is automatically performed with receive acknowledgement. If
TOUT = 0, no acknowledgement is expected. Output DONE indicates that the specified data
packet has been stored in the transmit buffer or that an error occurred during Function Block
processing. If an error was detected during Function Block processing, the error is additionally
indicated at the outputs ERR and ERNO. In case of an error, the data packet has to be
transmitted again.

LEV_BY

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US780

Before the ARC_SEND function block can store data packets in the receive buffer, the setting
"ARCNET data exchange" must have been selected in the Ä Chapter 1.6.5.2.3.6 “Parameters
of PM5x1-ARCNET (onboard ARCNET)” on page 5846 of the CPU.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - - -

Output NODE_ID displays the own NODE ID of the Communication Module.

Data type Default value Range Unit
BOOL - - -

Input PRIO is used to specify the transmit priority of the data packet.
The following applies:
PRIO = FALSE
The specified data packet has low priority. Thus, it is stored in the low priority transmit buffer. All
outputs refer to this buffer.

EN

SLOT

NODE_ID

PRIO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 781

PRIO = TRUE
The specified data packet has high priority. Thus, it is stored in the high priority transmit buffer.
All outputs refer to this buffer.

Data type Default value Range Unit
WORD 200ms - -

Using input TOUT, the timeout period can be specified. If TOUT <> 0, the ARCNET data
exchange is automatically performed with receive acknowledgement. If a data packet cannot be
transmitted within this period (no acknowledge telegram is received), transmission is aborted
and the package is lost.
In this case, some distinctive bytes of the data packet (see also the PLC configuration of the
Control Builder) are stored to the timeout buffer and can then be read using the function block
ARC_STO.
If TOUT = 0, no acknowledgement is expected.
The following applies:
TOUT = 0 means: Default value for TOUT, given by PLC configuration, is used.
Data exchange without receive acknowledgement. No data are written to the timeout buffer.
TOUT <> 0:
Data exchange with receive acknowledgement. Each transmitted data record is acknowledged
by the recipient. If no acknowledge telegram is received within the set timeout period (in ms),
the data are written to the timeout buffer.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
DATA must be the address of a variable of the type ARRAY or STRUCT.
CAUTION: Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Data type Default value Range Unit
WORD - - byte

Output LEN displays the length of the received data package in bytes.

Output description

TOUT

DATA

LEN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US782

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output LEV_BY displays the filling level of the receive buffer in bytes. The displayed value is
updated as long as EN is TRUE and applies to the input values read with the rising edge at
input EN.
One data packet occupies output LEN + 6 bytes in the receive buffer (4 bytes for the NODE ID
of the sending device, 2 bytes for the specification of the length).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

1.5.4.3 ASCII communication library
Library file name: ASCII_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

There is no particular function block available for setting the communication interfaces in trans-
mitting and receiving direction. This is done in the configuration within CODESYS.

DONE

ERR

ERNO

LEV_BY

LEV_DS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 783

1.5.4.3.1 Function blocks
COM_REC

Parameter Value
Included in library ASCII_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

Group ASCII communication

The function block COM_REC is used for receiving data via a serial interface in "free mode".
The number of COM_REC function blocks within a project as well as their distribution (i.e.
assignment) to different user tasks is not restricted. However, it has to be observed that the
function blocks are mutually interlocked, i.e. it must be ensured that only one function block is
active at the same time. To avoid the loss of telegram parts and to prevent that telegrams are
evaluated incorrectly or not at all, a change of activity between two COM_REC function blocks
should only occur if the function block to be deactivated has signalized the termination of the
receive process by setting DONE = TRUE and if the received telegram has been evaluated. It
is essential to ensure that all function block instances are inactive prior to initiating an activity
change. Thus, it is strongly recommended to use only one COM_REC function block within a
project. This way, any responsibility conflicts can be avoided.
With a FALSE -> TRUE edge at function block input EN, the function block checks the input
values. If they are valid, the function block reads the receiving buffer of the corresponding
COMx interface one-time.
By specifying the length of the memory address for the received data, the format of the telegram
is not restricted in any way. The length of the received data block is limited to a maximum of 256
bytes and is output at LEN.

During project planning it has to be observed that enough free memory space
is reserved starting at address DATA for storing the received data (e.g. ARRAY
[1..256] OF BYTE).

If a valid received telegram is available in the memory area starting at DATA, this is always
indicated by DONE = TRUE.
The inputs can neither be duplicated nor negated/inverted.

Possible receive errors are detected by the function block and indicated by ERR = TRUE. In this
case, an error number is output at ERNO. The function block recognizes overflow, parity and
framing errors. In this case, the communication parameters (transmission rate, char length, no.
of stop bits, parity) of the communication partners have to be checked.

There is no particular function block available for setting the times in transmitting and receiving
direction. This is done in AC500 controller configuration.

Receive error

Times

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US784

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - - -

At the COM input, the number of the serial interface is specified.
COM = 1: COM1
COM = 2: COM2

Data type Default value Range Unit
DWORD - - -

At input DATA, the start address for storing the received data is specified using an ADR
operator. Received data can be stored in the operand area as well as in variables. Some
peculiarities have to be observed when receiving binary values.
When using IEC bit operands as storage address, only operands are allowed which end with
".0" (e.g. %QX62.0 allowed, %QX62.1 forbidden).
When storing a received telegram within the IEC bit operand area, it has to be observed that a
received byte describes 8 bit operands. However, if a received telegram is stored to a Boolean
variable, this variable is considered as FALSE if the byte has the value 0 and TRUE for all other
values of the byte.

Output description

EN

COM

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 785

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

LEN outputs the length of the received data (in bytes) including end character (if contained).
LEN is only valid if DONE = TRUE. LEN has always to be considered together with output ERR.

Function call in ST
REC_COM
(EN := EN_COM_REC,
COM := COM_COM_REC,
DATA := ADR(DATA_COM_REC));
DONE_COM_REC := REC_COM.DONE;
ERR_COM_REC := REC_COM.ERR;
ERNO_COM_REC := REC_COM.ERNO;
LEN_COM_REC := REC_COM.LEN;

COM_SEND

DONE

ERR

ERNO

LEN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US786

Parameter Value
Included in library ASCII_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

Group ASCII communication

The function block COM_SEND is used for sending data via a serial interface. The number of
COM_SEND function blocks in a project as well as their usage in (i.e. assignment to) different
user tasks is not restricted. Transmission is triggered by a FALSE > TRUE edge at input EN.
By specifying the length of the memory address for the data to be transmitted, the format of the
telegram is not restricted in any way.
The length of the data block to be transmitted is not limited. It is recommended to write only
data blocks up to a maximal size of 256 bytes into the transmit buffer, since data can only be
transmitted if enough free memory space is available for the transmit buffer. If required, longer
telegrams can be generated by using several COM_SEND function blocks following each other
immediately without considering their individual DONE outputs.
The inputs can neither be duplicated nor negated/inverted.

The maximum length of a transmit telegram can be controlled by evaluating the output DONE.
DONE = TRUE indicates an empty transmit buffer. If a transmission is only triggered if DONE
= TRUE, one single telegram will be sent per COM_SEND. Theoretically, endless data streams
can be generated by ignoring DONE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - - -

At the COM input, the number of the serial interface is specified.

Telegram length

EN

COM

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 787

COM = 1: COM1
COM = 2: COM2

Data type Default value Range Unit
DWORD - - -

At input DATA, the start address for storing the received data is specified using an ADR
operator. Received data can be stored in the operand area as well as in variables. Some
peculiarities have to be observed when receiving binary values.
When using IEC bit operands as storage address, only operands are allowed which end with
".0" (e.g. %QX62.0 allowed, %QX62.1 forbidden).
When storing a received telegram within the IEC bit operand area, it has to be observed that a
received byte describes 8 bit operands. However, if a received telegram is stored to a Boolean
variable, this variable is considered as FALSE if the byte has the value 0 and TRUE for all other
values of the byte.

Data type Default value Range Unit
WORD - - -

LEN outputs the length of the received data (in bytes) including end character (if contained).
LEN is only valid if DONE = TRUE. LEN has always to be considered together with output ERR.

Data type Default value Range Unit
BYTE - - -

Number of end characters to be attached: 0, 1, 2 means none, one or two.
The inputs LEN and END_LEN have to be smaller than 256! Otherwise, an error will occur.

Data type Default value Range Unit
WORD - - -

At input END_CH, the value of the telegram end character(s) must be specified which has
(have) to be attached to the actual transmit data. END_CH is considered if input END_LEN of
the COM_SEND function block is not 0. END_CH is applied with a FALSE > TRUE edge at EN.
If required, the end character can vary within each telegram.
If, for example, a CR/LF shall be attached to a telegram, the value of END_CH is as follows:
16#0D0A and END_LEN: 2.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

DATA

LEN

END_LEN

END_CH

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US788

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
SEND_COM
(EN := EN_COM_SEND,
COM := COM_COM_SEND,
DATA := ADR(DATA_COM_SEND),
LEN := LEN_COM_SEND,
END_CH := END_CH_COM_SEND,
END_LEN := END_LEN_COM_SEND);

DONE_COM_SEND := SEND_COM.DONE;

ERR_COM_SEND := SEND_COM.ERR;
ERNO_COM_SEND := SEND_COM.ERNO;

1.5.4.4 CAA_File library
Library file name: CAA_File.lib
The IEC61131 library CAA_FILE provides function blocks for accessing directories and files.
File access is only supported in binary mode.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

For usage of CAA_File Library, CPU firmware V2.1 or higher is needed.
CAA_File.lib requires the following additional libraries:
● CAA_ASYNCMAN.lib
● CAA_CALLBACK.lib
● CAA_TICK.lib
● CAA_TICKUTIL.lib
● CAA_TYPES.lib
Most input values of the function blocks are stored in local internal variables. This does not
apply for the contents of memory structures where a pointer is passed on as an input e.g.
pBuffer of FILE_Read or FILE_Write.

Differing from Standard ABB Libraries CAA function blocks set EITHER xDone
(i.e. function block finished without error) OR xError (i.e. function block finished
with error)!

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 789

1.5.4.4.1 Characteristics
CAA_FILENAME which is described in CAA_Types.lib should be usable for library CAA_File.lib
in the following way:
● Separators in paths in CAA_FILENAME is the back-slash ("\").
● Only absolute paths are allowed to use for file operation: drivename\directory\file.ext
● File and directory names have to be in standard DOS 8.3 notation without \ / : * ? "< > |
● Directory and file names may not contain whitespaces and are not case-sensitive.

Available drives for the use with this library are:
● Userdisk
● Memory card
● Flash disk – only on PM592-ETH (PLC with internal mass storage)
● SRAM Disk – only PM57x, PM58x, PM59x

Restrictions for the use of the drives are:
● Maximum file names: 8.3 filenames, e.g.: abcdefgh.123
● Maximum total path length: 255 characters
● Maximum file size: 4 GB -1 Byte
● Maximum number of simultaneous user handles (directories + files): 6 (PM55x) or 12

(PM57x,PM58x,PM59x)
● Maximum number of files in the root directory is limited (depends on memory location).

A reset operation is executed if any user calls any online reset command or downloads a new
application into the PLC. All file handles which are opened during execution of IEC application
using FILE_Open and FILE_DirOpen will be closed after application reset. This assures that all
handles opened by the user application will be closed and returned to the system. Please note
that the application is not reset in case of a stop or an online change operation, so any file
handle in IEC application is kept opened.
If a CAA_File function block is in BUSY state at the moment when reset command is executed
the behavior of this function block is the following:
● If the request to file system which is executed by the function block is not yet processed by

file system, the function block will be aborted. This means that the file operation will not be
executed at all.

● If the file operation is already started and the corresponding function block does not support
an abort command, the file operation will be finished and after that the corresponding file
handle will be closed.

● If the file operation is already started and the corresponding function block supports an abort
command (i.e. FILE_Write, FILE_Read, FILE_Copy) the file operation is aborted and after
that the corresponding file handle is closed. Please refer to the description of abort for each
function block for further details.

There are 2 function blocks in CAA_File.lib which use ADR operator to pass parameter from
IEC application to function block. During design and maintenance of IEC application which uses
these function block it is necessary to consider behavior of these function blocks during online
changes.
Example of a simple program:

Behavior of
CAA_File on
reset

Usage of
CAA_File func-
tion blocks and
online changes

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US790

As known during online change variables in IEC application could be relocated to different
memory position. In the example, variable byaMessage could be relocated as well. All file
operations which are invoked by CAA_File function block are executed in separate low priority
task and pointer to read buffer (byaMessage in the example) is saved in context of this task
during all file operation.
It means that if operation FILE_Write is not finished before online change some data could be
lost or damaged, because pointer to buffer which is used for execution of file operation is not
valid anymore.
The following recommendation could be done how to use FILE_Write and FILE_Read function
block to avoid any problems after online change:
● Global variable or variable which is declared inside POU Program is only relocated if size of

variable is changed. Any variable which is declared in POU function block is relocated even
if data structure of function block is changed, e.g. any new variable is added to function
block, any variable is deleted etc. So it is recommended to use for read/write buffer global
variables and keep their size constant during online change or use variables which are
declared in function block, but keep the structure of function block data unalterable.

● If any variable in application is relocated during online change the following message
appears

Please check if any variable in your project which is used as write or read buffer does not
present in this list. If variable is nevertheless here please check that xBusy output of appropriate
function block is set to FALSE. If so, then online change is absolutely safe, otherwise you may
meet the problems which are described above and it is recommended to avoid online change
and postpone it for a while, till xBusy will not be set to TRUE.

● Ensure that the file/directory handle is returned to the system (with FILE_Close/FILE_Dir-
CLose) before discarding the local variable holding it.

● You cannot open a file with write access simultaneously.
● Only a successfully call to FILE_Close or FILE_Flush updates a file’s representation (i.e.

size & content) on a device completely and definitely.
● All outputs of all function blocks will be invalidated, if xExecute is set to FALSE, thus they

have to be read previously.

Implementation
notes for
CAA_File.lib

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 791

● Differing from Standard ABB libraries, CAA function blocks set EITHER xDone (i.e. FB
finished without error) OR xError (i.e. FB finished with error).

● The path separator is a single backslash („\“), not a double backslash („\\“) or a forward
slash („/“).

● Both pointer and data contents handed over to read/write function blocks have to be stable
during operation!

● CAA_File.lib works in binary mode, thus it reads and writes bytewise. There is no automatic
null-termination of the data of any kind, i.e. everything is a byte array: You hand over the
starting address of the array and the number of bytes you want to have read/written from/to
the array with the given starting address. The interpretation of the read data is up to the user
application.

● Files and directory handles are only auto-closed in case of a application download or reset.
A stop or online change of the IEC application does NOT close any file handles.

CAA_File.lib requires the additional library CAA_AsyncMan.lib. This library provides the means
to handle all CAA_File.lib function blocks completely asynchronous. For each call to a CAA_File
function block a so called "job" will be created. One task handles the job requests sent by the
IEC application for each file I/O module in the AC500 PLC. These tasks run with a low priority,
so the available file throughput depends on the other tasks running on the PLC - i.e. If the PLC
is already completely busy doing communication, handling I/O Modules or calculation IEC tasks,
the file operations might not be carried out. If a file I/O module is currently busy with an ongoing
job request, new requests are queued and executed in a FIFO (“first in, first out”) manner.

Thus to understand the AC500’s file access system behavior the user has to keep in mind that:
● Every file operation is done asynchronously in a separate worker task.
● There is one worker task per I/O module (e.g. userdisk, memory card,…).
● The worker tasks have a low priority and thus might be blocked by other PLC processes.
● Each worker task has a FIFO-queue for the incoming jobs (i.e. triggered function blocks) for

its I/O module.
● Most jobs cannot be interrupted or aborted once they are started (exceptions see function

block descriptions).
These aspects result in the danger of priority inversion:

Notes on
CAA_AsyncMan
.lib

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US792

If a low priority task already triggered a file access job and another task with higher priority tries
to access the same I/O module, the task with higher priority still will have to wait for the task with
low priority to complete its job, i.e. the task priorities are inverted.
CAA_AsyncMan.lib can handle a maximum of 20 active function blocks in parallel. In this
context, "active" means function block instances triggered via a rising edge and not yet reset
by a falling edge on their input xExecute. If this limit is exceeded, additional triggered function
blocks will return with undefined errors (e.g. "Invalid error 5802").

1.5.4.4.2 Function blocks
Error messages

If a function block returns an "invalid" (i.e. internal) error code which is not listed
here, check for a possible version mismatch between PLC firmware and the
CAA File Libraries. If the function block is supported definitely by the firmware
version in the PLC, the IEC application might have too many active function
blocks in parallel (maximum number is 20).

Function blocks of CAA_File.lib can return the following error codes:

Value Error Name Description
0 FILE_NO_ERROR No error

5101 FILE_TIME_OUT Time limit exceeded

5102 FILE_ABORT Order has been aborted by activating input xAbort

5103 FILE_HANDLE_INVALID Invalid handle

5104 FILE_NOT_EXIST Directory or file does not exist

5105 FILE_EXIST Directory or file already exists

5106 FILE_NO_MORE_ENTRIES No further entries are available

5107 FILE_NOT_EMPTY File or directory is not empty

5108 FILE_READ_ONLY_CAA Drive, file or directory is write-protected

5109 FILE_WRONG_PARAMETER Wrong parameter(s) at function block

5110 FILE_ERROR_UNKNOWN Unknown error

5111 FILE_WRITE_INCOMPLETE Not all data has been written

5112 FILE_NOT_IMPLEMENTED Function not supported

5113 FILE_NO_RESSOURCES No file handles or user tasks available (too many files
open or tasks accessing file system)

5114 FILE_NO_SPACE Volume is full

5115 FILE_NO_DEVICE Cannot open disk or no valid disk present

5151 FILE_CANT_BE_OPENED File/directory could not be accessed to execute oper-
ation

5152 FILE_ERROR_OTHER Internal or not further specified error

5153 FILE_SOURCE_CANT_BE_O
PENED

Source file could not be opened to execute required
operation

5154 FILE_DEST_CANT_BE_OPE
NED

Destination file could not be opened to execute
required operation

5155 FILE_CANT_WRITE Data could not be written to destination file

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 793

Value Error Name Description
5156 FILE_CANT_READ Data could not be read from source file

5157 FILE_CON-
FIRM_FORMAT_OPERATION

Formatting operation has not been confirmed at xEn-
able before activating the function block with xExe-
cute.

FILE_ArchiveAddFile

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Archive Services

FILE_ArchiveAddFile adds a file to an archive. If the archive does not exist a new one is
created. The file is always added to the archive in uppercase.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

xExecute

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US794

Data type Default value Range Unit
CAA_FILENAME - - -

Input sFileName specifies an absolute file name which has to be added to archive. The file
name appears in archive in uppercase.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sZipArchiveName specifies archive name to unpack.

Data type Default value Range Unit
FILE_PACK_MODE - - -

Input ePackMode specifies the mode how a file is packed into archive.

FILE_MODE Description
FILE_PACK_OVERWRITE If file in archive already exists it is allowed to

overwrite it.

FILE_PACK_WITHOUT_PATH If this mode is defined then the file will be
packed only with its name, otherwise absolute
file name is saved in the archive.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

sFileName

sZipArchive-
Name

ePackMode

xDone

xBusy

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 795

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_ArchiveClose

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Archive Services

FILE_ArchiveClose closes archive. After this operation archive is again available again for
packing operation (FILE_ArchiveAddFile).

Input description

Data type Default value Range Unit
BOOL - - -

xError

eError

xExecute

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US796

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

Input hArchive specifies archive handle which has to be closed.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

hArchive

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 797

FILE_ArchiveList

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Archive Services

FILE_ArchiveList returns current file entry in archive. If the function block cannot find any further
entries the error message FILE_NO_MORE_ENTRIES is generated. The functionality is similar
to the function block FILE_DirList but instead of directory archive is accessed.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

Input hArchive specifies archive handle which has to be closed.

Data type Default value Range Unit
CAA_FILENAME - - -

xExecute

hArchive

sFileName

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US798

Input sFileName specifies an absolute file name which has to be added to archive. The file
name appears in archive in uppercase.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 799

FILE_ArchiveOpen

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Archive Services

FILE_ArchiveOpen opens an archive and returns the archive handle. Afterwards it is possible
to iterate over all files in archive. If archive is opened using this function block all unpack oper-
ations (FILE_ArchiveUnpackFile, FILE_ArchiveUnpackFile) could be executed on this archive.
Packing operation (FILE_ArchiveAddFile) is not allowed. Archive must be closed first to execute
packing operation.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sZipArchiveName specifies archive name to unpack.

xExecute

sZipArchive-
Name

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US800

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_ArchiveUnpack

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 801

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Archive Services

FILE_ArchiveUnpack unpacks an archive. Function block iterates over all files in archive and
unpacks each one. If it is not possible to unpack file error is generated but function block tries
to unpack other files in archive. Function block returns error which corresponds to the last failed
sub-operation. Only files which are stored with names with 8.3 format could be unpacked.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sZipArchiveName specifies archive name to unpack.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sDestDirName specifies name of destination directory, where archive has to be unpacked.

Data type Default value Range Unit
FILE_UNPACK_MOD
E

- - -

Input eUnpackMode specifies the mode for archive unpacking operation.

xExecute

sZipArchive-
Name

sDestDirName

eUnpackMode

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US802

FILE_MODE Description
FILE_UNPACK_USE_ABSO-
LUTE_PATH_SAVED_IN_ARCHIVE

If this mode is defined then path to direc-
tory is saved in archive. That means sDest-
DirName is ignored and files are extracted in
saved archive directory path, otherwise files
are extracted to directory which is specified
using sDestDirName. Destination drive name
has to be always available in the specified
path, i.e. path has to be absolute. If mode is
defined but path for any file is not available in
archive then this file is not extracted.

FILE_UNPACK_OVERWRITE If any file in destination directory already
exists it is allowed to overwrite it. Input is set
to FALSE when only new files are added to
destination directory.

FILE_UNPACK_CREATE_DIRS If destination directory does not exist it
will be automatically created. If mode is
not set and destination directory does
not exist function block returns error.
Destination directory could be defined in
archive itself if FILE_UNPACK_USE_ABSO-
LUTE_PATH_SAVED_IN_ARCHIVE is set.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

xDone

xBusy

xError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 803

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_ArchiveUnpackFile

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Archive Services

FILE_ArchiveUnpackFile unpacks a specific file from an archive. The function block finds the file
with name specified by end user and unpacks it to the destination directory sDestDirName. Only
files which are stored with names with 8.3 format can be unpacked.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

eError

xExecute

sZipArchive-
Name

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US804

Input sZipArchiveName specifies archive name to unpack.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sDestDirName specifies name of destination directory, where archive has to be unpacked.

Data type Default value Range Unit
FILE_UNPACK_MOD
E

- - -

Input eUnpackMode specifies the mode for archive unpacking operation.

FILE_MODE Description
FILE_UNPACK_USE_ABSO-
LUTE_PATH_SAVED_IN_ARCHIVE

If this mode is defined then path to direc-
tory is saved in archive. That means sDest-
DirName is ignored and files are extracted in
saved archive directory path, otherwise files
are extracted to directory which is specified
using sDestDirName. Destination drive name
has to be always available in the specified
path, i.e. path has to be absolute. If mode is
defined but path for any file is not available in
archive then this file is not extracted.

FILE_UNPACK_OVERWRITE If any file in destination directory already
exists it is allowed to overwrite it. Input is set
to FALSE when only new files are added to
destination directory.

FILE_UNPACK_CREATE_DIRS If destination directory does not exist it
will be automatically created. If mode is
not set and destination directory does
not exist function block returns error.
Destination directory could be defined in
archive itself if FILE_UNPACK_USE_ABSO-
LUTE_PATH_SAVED_IN_ARCHIVE is set.

Output description

Data type Default value Range Unit
BOOL - - -

sDestDirName

eUnpackMode

xDone

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 805

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_Close

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_Close terminates the file access, i.e. closes the file. If an operation (FILE_Read,
FILE_Write, FILE_GetPos, FILE_SetPos) which uses the file handle to be closed is ongoing,
it will be aborted before closing file.

Without a correct FILE_Close written data can be lost!

xBusy

xError

eError

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US806

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

File handle retrieved with CAA_Open.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

xExecute

hFile

xDone

xBusy

xError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 807

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_Copy

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_Copy copies a file. The target file is created or - if already existing - overwritten. During
the operation a temporary file with the extension .tmp is created. If the copying is aborted by the
user the .tmp file will remain on the device.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

eError

xExecute

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US808

Data type Default value Range Unit
BOOL - - -

Input xAbort stops the Function Block's processing without waiting for it to finish.

Data type Default value Range Unit
UDINT - - -

Input udiTimeOut defines the time out in microseconds for the function block to wait on the
operation to be finished. A value of 0 means no time out.

Data type Default value Range Unit
CAA_FILENAME - - -

Absolute Path of destination.

Data type Default value Range Unit
CAA_FILENAME - - -

Absolute Path of source.

Data type Default value Range Unit
BOOL - - -

If input xOverwrite is set to TRUE, the target file will be overwritten, if it exists. Otherwise an
error is raised.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

xAbort

udiTimeOut

sFileNameDest

sFileName-
Source

xOverWrite

xDone

xBusy

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 809

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
CAA_SIZE - - -

Output szSize is set to the number of bytes copied.

Data type Default value Range Unit
BOOL - - -

Output xAborted is set if the function block has been aborted.

FILE_Delete

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_Delete deletes a file. This is not possible if the file is open via FILE_Open.

xError

eError

szSize

xAborted

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US810

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sFileName specifies an absolute file name which has to be added to archive. The file
name appears in archive in uppercase.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

xExecute

sFileName

xDone

xBusy

xError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 811

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_DirClose

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Directory

FILE_DirClose closes the access on the specified directory.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

Input hDir sets the handle of the directory to close.

eError

xExecute

hDir

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US812

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_DirCreate

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 813

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Directory

FILE_DirCreate creates a directory. If the directory already exists, an error is generated.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

At input sDirName the absolute path and directory name of the new directory has to be speci-
fied.

Data type Default value Range Unit
BOOL - - -

If input xParent = TRUE the full path specified at sDirName is created if it is not existing.

This input is not supported on the AC500 PLCs.

xExecute

sDirName

xParent

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US814

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_DirList

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 815

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Directory

FILE_DirList reads directory or file properties. The function block needs a valid handle which
identifies the directory as a transfer parameter. The information is written to structure deDirEntry
of type FILE_DIR_ENTRY. If the function block cannot find any further entries the error mes-
sage FILE_NO_MORE_ENTRIES is generated and the entries in the structure deDirEntry are
deleted.
If FILE_DirList is called for an empty volume (e.g. just formatted), an empty file is returned
which represents the volume entry of the device. Calling the function block again delivers an
error return with code FILE_NO_MORE_ENTRIES.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

Input hDir sets the handle of the directory to close.

Output description

xExecute

hDir

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US816

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
FILE_DIR_ENTRY - - -

Output deDirEntry is filled with the information on the read directory or file entry:

FILE_DIR_ENTRY
Element Type Description
sEntry CAA_FILENAME Name of the directory or file

szSize CAA_SIZE File size

xDirectory BOOL Directory or file:
TRUE => Directory
FALSE => File

xExclusive BOOL Access mode on file:
TRUE => exclusive access on the file
FALSE => multiple access on this file possible

dtLastModification DT Date and time of last modification

xDone

xBusy

xError

eError

deDirEntry

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 817

FILE_DirOpen

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Directory

FILE_DirOpen opens a directory which entries (files and sub-directories) should be read with
the help of the function block FILE_DirList. The return value is a handle.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

At input sDirName the absolute path and directory name of the new directory has to be speci-
fied.

xExecute

sDirName

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US818

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
CAA_HANDLE - - -

Input hDir sets the handle of the directory to close.

xDone

xBusy

xError

eError

hDir

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 819

FILE_DirRemove

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Directory

FILE_DirRemove deletes a directory. The directory cannot be deleted if it is opened via
FILE_DirOpen or if it is not empty.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
BOOL - - -

Input xAbort stops the Function Block's processing without waiting for it to finish.

Data type Default value Range Unit
UDINT - - -

xExecute

xAbort

udiTimeOut

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US820

Input udiTimeOut defines the time out in microseconds for the function block to wait on the
operation to be finished. A value of 0 means no time out.

Data type Default value Range Unit
CAA_FILENAME - - -

At input sDirName the absolute path and directory name of the new directory has to be speci-
fied.

Data type Default value Range Unit
BOOL - - -

If Input xRecursive is set all files and sub-directories within the directory specified at sDirName
will be deleted.

This input is not supported on the AC500 PLCs.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

sDirName

xRecursive

xDone

xBusy

xError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 821

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
BOOL - - -

Output xAborted is set if the function block has been aborted.

FILE_Rename

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_Rename modifies the file name. This does not work if the file is open via FILE_Open. The
function block cannot be used to move files or directories!

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

eError

xAborted

xExecute

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US822

Data type Default value Range Unit
CAA_FILENAME - - -

Absolute Path with current file name.

Data type Default value Range Unit
CAA_FILENAME - - -

Absolute Path with new file name.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

sFileNameOld

sFileNameNew

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 823

FILE_DiskFormat

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.3

Type Function block with historical values

Group Storage Device Services

This function block formats a storage device, i.e. erasing all content on it and writing a new,
clean file system to it.

CAUTION!
The format protection (see Ä Chapter 1.6.5.4.3 “AC500-specific PLC browser
commands” on page 6222) is automatically unlocked and all data on the device
will be lost!

The function block "FILE_DiskFormat" can format the "sramdisk", "userdisk"
and "flashdisk".

It is not possible to format the "sdcard".

See also AC500 CPU Storage Devices for hints on memory location maintenance.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

xExecute

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US824

Data type Default value Range Unit
BOOL - - -

This input must be TRUE before the function block may be triggered via xExecute (i.e. "are you
sure"-flag).

Data type Default value Range Unit
CAA_FILENAME - - -

Name of storage device to format (e.g. "sramdisk" or "userdisk\").

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

xEnable

sDiskName

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 825

FILE_DiskStatus

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.3

Type Function block with historical values

Group Storage Device Services

This function block retrieves information about a storage device.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

Name of storage device to format (e.g. "sramdisk" or "userdisk\").

Data type Default value Range Unit
CAA_FILENAME - - -

Name of storage device to format (e.g. "sramdisk" or "userdisk\").

xExecute

sDiskName

sDiskName

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US826

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
FILE_DISK_STATUS - - -

Output dcDiskStatus contains all available information about the storage device:
Free, used and total available space on the device, block size, cluster size, total cluster count
and the device condition. The meaning of the decive conditions DC_GREEN, DC_YELLOW,
DC_RED is storage device specific as shown in the following table:

xDone

xDone

xBusy

xError

eError

dcDiskStatus

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 827

state userdisk flashdisk SRAM disk memory card
GREEN userdisk ready flashdisk ready SRAM disk ready memory card

ready

YELLOW - threshold
exceeded

- -

RED userdisk not
ready

flashdisk is read
only

SRAM disk not
ready

memory card not
ready

To optimize the usage of a storage device try to fit your read/write operation's
sizes and file sizes with the device's block and/or cluster sizes.

See also AC500 CPU Storage Devices for hints on memory location maintenance.

FILE_EOF

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_EOF sets xEOF to TRUE if the current offset is equal to the end of the file. If the end of
the file has not yet been reached, FALSE is returned.

Input description

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US828

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

File handle retrieved with CAA_Open.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
BOOL - - -

xExecute

hFile

xDone

xBusy

xError

eError

xEOF

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 829

Output xEOF is set if the current position of the file stream pointer is the end of the file.

FILE_Flush

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_Flush flushes data from the file system cache to the disk for the file with given file handle
hFile. Calling this Function Block guarantees that data will be stored on the disk.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

File handle retrieved with CAA_Open.

xExecute

hFile

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US830

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_GetPos

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 831

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_GetPos returns the offset position of the file stream pointer currently set in the file. The file
must be opened via FILE_Open.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

File handle retrieved with CAA_Open.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

xExecute

hFile

xDone

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US832

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
UDINT - - -

Output udiPos is set to the current offset position i.e. number of bytes from the start of the file.

FILE_GetSize

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_GetSize returns the size of the file specified by sFileName. If the file is still open, it must
be flushed or closed to get the actual size.

xBusy

xError

eError

udiPos

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 833

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sFileName specifies an absolute file name which has to be added to archive. The file
name appears in archive in uppercase.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

xExecute

sFileName

xDone

xBusy

xError

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US834

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
CAA_SIZE - - -

Output szSize is set to the number of bytes copied.

FILE_GetTime

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_GetTime returns date and time of the last modification of the file specified by sFileName.

Input description

eError

szSize

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 835

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sFileName specifies an absolute file name which has to be added to archive. The file
name appears in archive in uppercase.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

xExecute

sFileName

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US836

Data type Default value Range Unit
DT - - -

Output dtLastModification is set to the date and time of the last file modification (e.g.
dt#2006-05-08-00:00:00).

FILE_Move

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.3

Type Function block with historical values

Group File

This function block moves a file. The target file is created or - if already existent - overwritten.
During the operation a temporary file with the extension .tmp is created. If the moving is aborted
by the user the .tmp-file will remain on the device.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

dtLastModifica-
tion

xExecute

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 837

Data type Default value Range Unit
BOOL - - -

Input xAbort stops the Function Block's processing without waiting for it to finish.

Data type Default value Range Unit
UDINT - - -

Input udiTimeOut defines the time out in microseconds for the function block to wait on the
operation to be finished. A value of 0 means no time out.

Data type Default value Range Unit
CAA_FILENAME - - -

Absolute Path of destination.

Data type Default value Range Unit
CAA_FILENAME - - -

Absolute Path of source.

Data type Default value Range Unit
BOOL - - -

If input xOverwrite is set to TRUE, the target file will be overwritten, if it exists. Otherwise an
error is raised.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

xAbort

udiTimeOut

sFileNameDest

sFileName-
Source

xOverWrite

xDone

xBusy

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US838

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
CAA_SIZE - - -

Output szSize is set to the number of bytes copied.

Data type Default value Range Unit
BOOL - - -

Output xAborted is set if the function block has been aborted.

FILE_Open

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

xError

eError

szSize

xAborted

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 839

FILE_Open retrieves a file handle from the drive’s file system for further file operations. This
function block opens an already existing file or creates a new one depending on the set
FILE_MODE at input eFileMode. The return value is a file handle which can be used as an input
hFile in the function blocks FILE_Read, FILE_Write, FILE_GetPos, FILE_SetPos, FILE_EOF
and FILE_Close.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

Input sFileName specifies an absolute file name which has to be added to archive. The file
name appears in archive in uppercase.

Data type Default value Range Unit
FILE_MODE - - -

Input eFileMode determines the opening mode for the file.
"File lock" describes, if a file can be opened again, while it is still opened in one of the modi.
"File size" defines how the file size is treated by the open-operation. "File pointer" describes the
initial position of the pointer into the file after the open operation.

FILE_MODE Description
FILE_MWRITE "write only" - write data to a file.

File lock: Cannot be reopened in any other
mode.
File size: File is createdor existing file content
is deleted.
File pointer: At beginning of file.

FILE_MREAD "read only" - read data from a file.
File lock: Can be reopened in read-mode.
File size: Unchanged, no writing possible.
File pointer: At beginning of file.

xExecute

sFileName

eFileMode

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US840

FILE_MODE Description
FILE_MRDWR "read and write" - read and write data to a file.

File lock: Cannot be reopened in any other
mode.
File size: File is created or existing file content
is deleted.
File pointer: At beginning of file.

FILE_MAPPD "append to a file" - read and write to a file.
File lock: File can be reopened in read mode.
File size: File is created (if not existing),
existing file content kept.
File pointer: At end of file.

Data type Default value Range Unit
BOOL - - -

Additional input for file access mode.

This input is not supported on the AC500 PLCs.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

xEclusive

xDone

xBusy

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 841

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
CAA_HANDLE - - -

File handle retrieved with CAA_Open.

FILE_Read

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_Read reads the file which was previously opened via FILE_Open. If less characters can
be read than specified in szBuffer, the function block returns an active xDone and indicates the
current number of characters in szSize. The size of the target memory structure for the bytes to
be read and the number of bytes to be read will not be checked.
The stability of the pointer on the data structures and their contents must be guaranteed if
online change is executed. If pointer to data structure is changed during online changes opera-
tion could lead to damage of application data.

xError

eError

hFile

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US842

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
BOOL - - -

Input xAbort stops the Function Block's processing without waiting for it to finish.

Data type Default value Range Unit
UDINT - - -

Input udiTimeOut defines the time out in microseconds for the function block to wait on the
operation to be finished. A value of 0 means no time out.

Data type Default value Range Unit
CAA_HANDLE - - -

File handle retrieved with CAA_Open.

Data type Default value Range Unit
CAA_PVOID - - -

Target address of the buffer where read data will be copied to; can be retrieved via operator
ADR.

Data type Default value Range Unit
CAA_SIZE - - -

xExecute

xAbort

udiTimeOut

hFile

pBuffer

szBuffer

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 843

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
CAA_SIZE - - -

Output szSize is set to the number of bytes copied.

Data type Default value Range Unit
BOOL - - -

Output xAborted is set if the function block has been aborted.

xDone

xBusy

xError

eError

szSize

xAborted

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US844

FILE_DirRename

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group Directory

FILE_DirRename modifies the directory name. This does not work if the directory is opened via
FILE_DirOpen. The function block cannot be used to move directories!

CAA_DirRename only supported on the flash disk!

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_FILENAME - - -

At input sDirNameOld the absolute path with current directory name is set.

xExecute

sDirNameOld

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 845

Data type Default value Range Unit
CAA_FILENAME - - -

At input sDirNameNew the absolute path with new directory name is set.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

sDirNameNew

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US846

FILE_SetPos

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_SetPos sets the offset position in bytes of the file stream in the file counting from the
beginning of the file. The file must be opened via FILE_Open. If the new position would place
the file stream pointer outside the file, an error is returned and the position is not changed.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
CAA_HANDLE - - -

File handle retrieved with CAA_Open.

Data type Default value Range Unit
UDINT - - -

Output udiPos is set to the current offset position i.e. number of bytes from the start of the file.

xExecute

hFile

udiPos

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 847

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

FILE_Write

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US848

Parameter Value
Included in library CAA_File.lib

Available as of firmware V2.1

Type Function block with historical values

Group File

FILE_Write writes data into the file which was previously opened via FILE_Open. The contents
of the memory area indicated by pointer pBuffer should not be modified during the write action!
The size of the structure of the memory containing the bytes to be written as well as the number
of bytes to be written will not be checked. The stability of the pointer on the data structures and
their contents must be guaranteed if online change is executed. If pointer to data structure is
changed during online changes operation could lead to file damage.
For performance reasons the file system buffers written data. In effect only flushing or closing a
file updates its representation on the device completely.

Without a correct FILE_Close written data will be lost!

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated via a positive edge at this input.

Data type Default value Range Unit
BOOL - - -

Input xAbort stops the Function Block's processing without waiting for it to finish.

Data type Default value Range Unit
UDINT - - -

Input udiTimeOut defines the time out in microseconds for the function block to wait on the
operation to be finished. A value of 0 means no time out.

xExecute

xAbort

udiTimeOut

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 849

Data type Default value Range Unit
CAA_HANDLE - - -

File handle retrieved with CAA_Open.

Data type Default value Range Unit
CAA_PVOID - - -

Target address of the buffer where read data will be copied to; can be retrieved via operator
ADR.

Data type Default value Range Unit
CAA_SIZE - - -

Output szSize is set to the number of bytes copied.

Output description

Data type Default value Range Unit
BOOL - - -

If Output xDone changes to TRUE, the function block has finished its processing without an
error and all other outputs become valid.

Data type Default value Range Unit
BOOL - - -

Output xBusy signals if a function block has been triggered and is TRUE as long it is pro-
cessing.

Data type Default value Range Unit
BOOL - - -

Output xError is set if the function block finished and an error occurred during the Function
Block processing. If xError is TRUE the error code can be read from output eError.

Data type Default value Range Unit
FILE_ERROR - - -

hFile

pBuffer

szSize

xDone

xBusy

xError

eError

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US850

Output eError is set if an error occurred during the function block processing. For error codes,
see 'Error Messages of the CAA_File function blocks' Ä Chapter 1.5.4.4.2.1 “Error messages”
on page 793.

Data type Default value Range Unit
BOOL - - -

Output xAborted is set if the function block has been aborted.

1.5.4.4.3 Data types

Data type Base type Description Note
CAA_FILENAME STRING(256) Used for file names

and paths

FILE_ERROR INT Error codes of
CAA_File.lib function
blocks

See Error messages
Ä Chapter 1.5.4.4.2.1
“Error messages”
on page 793

FILE_PACK_MODE DWORD Options for packing
data to an archive

FILE_PACK_WITHOU
T_PATH
FILE_PACK_OVER-
WRITE

CAA_HANDLE DWORD File / directory handle
for function block
operations

-

FILE_UNPACK_MOD
E

DWORD Options for unpacking
data from an archive

FILE_UNPACK_USE_
ABSO-
LUTE_PATH_SAVED
_IN_ARCHIVE
FILE_UNPACK_OVE
RWRITE
FILE_UNPACK_CRE
ATE_DIRS

CAA_SIZE UDINT File size type In Bytes

FILE_DIR_ENTRY STRUCT Structure with infor-
mation about directory
entry

For details, see func-
tion block FILE_Dir-
List Ä Chapter
1.5.4.4.2.13
“FILE_DirList”
on page 815

FILE_DISK_STATUS STRUCT Structure with infor-
mation about status

For details, see func-
tion block FILE_Dis-
kStatus Ä Chapter
1.5.4.4.2.18
“FILE_DiskStatus”
on page 826

FILE_MODE ENUM Mode for opening
a file with function
block FILE_OPEN
Ä Chapter
1.5.4.4.2.25
“FILE_Open”
on page 839

FILE_MWRITE
FILE_MREAD
FILE_MRDWR
FILE_MAPPD

xAborted

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 851

Data type Base type Description Note
FILE_ATTRIB ENUM File attribute FILE_ARCHIVE

FILE_HIDDEN
FILE_NORMAL
FILE_READONLY

FILE_DISK_CONDI-
TION

ENUM State of storage
device

For details, see func-
tion block FILE_Dis-
kStatus Ä Chapter
1.5.4.4.2.18
“FILE_DiskStatus”
on page 826

1.5.4.5 Camswitch library
Library file name: CAMSWITCH_AC500_Vx.lib

Following libraries are needed:
● CODESYS 2.3.9.3 or later
● SysExt_AC500_V10.lib or later
● SysLibTime.lib Version 2.4.0.6 or later

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The MC function blocks represent additional functionality. They are not required for normal
EtherCAT operation.
The MC function blocks functionalities are used exclusively by CI511-ETHCAT and CI512-
ETHCAT.

System require-
ments

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US852

Fig. 13: Relation of the data types for the cam switch

1.5.4.5.1 Function blocks
MC_CamSwitch_DC

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 853

Parameter Value
Included in library CAMSWITCH_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group Group/Subgroup

Input description
MC_CamSwitch_DC provides the possibility to switch a cam on/off at projected positions. The
position is given by an encoder, which must be available, if the cam switch functionality is to be
used.
The switch-on-position and the switch-off-position are individually changeable online. Further
more a compensation time in both directions can be added to the switch position. Compensa-
tion is applied to both switch-on-position and switch-off-position.
The actual state of the cam can also be monitored with the output “state”.

Data type Default value Range Unit
BOOL - - -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
WORD - - -

The value of FirstOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
WORD - - -

The value of LastOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all LastOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).

Enable

FirstOnPosition

LastOnPosition

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US854

LastOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

If FirstOnPosition is smaller than LastOnPosition, the cam is switched on
between the values of FirstOnPosition and LastOnPosition of the same turn.

If FirstOnPosition is greater than LastOnPosition, the cam is switched on
between the values of FirstOnPosition of the actual turn and LastOnPosition
of the next turn.

If FirstOnPosition is equal to LastOnPosition, the cam is switched on for one
interrupt cycle.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Compensation

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 855

Data type Default value Range Unit
WORD - - -

Number of the cam; the parameter cam_To_Track[0..31] must be used to map the cam to the
available digital outputs. A configuration tool must be used for setting the cam_To_Track.

Data type Default value Range Unit
DWORD - - -

See data type CSDC_REF_TYPE.

Ouput description

Data type Default value Range Unit
BOOL - - -

Parameters (FirstOnPosition, LastOnPosition, Compensation) are transferred during active is
TRUE.

Data type Default value Range Unit
DWORD - - bit

The 32 bits of state correspond to the states of 32 cams of a CI51x-ETHCAT Module. If a bit is
set, the corresponding cam is on, otherwise the cam is off.

Data type Default value Range Unit
BOOL - - -

The output ERR=TRUE indicates that the communication to the device is not working properly.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.

CamNumber

csdc

Active

State

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US856

Function call in ST
cs1.in_csdc := ADR(CI512_INPUTS_CAM_STATE);
cs1.out_csdc := ADR(CI512_OUTPUTS_CAM_RELEASE);

CAM1 (
cscd := cs1,
FirstOnPosition := CAM1_FirstOnPosition,
LastOnPosition := CAM1_LastOnPosition,
Compensation := CAM1_Compensation,
CamNumber := CAM1_CamNumber);

CAM1_Active := CamSwitch.active;
CAM1_State := CamSwitch.state;
CAM1_Error := CamSwitch.error;
CAM1_ErrorID := CamSwitch.error_id;

PS_DigitalPLS

Parameter Value
Included in library CAMSWITCH_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group Group/Subgroup

Input description

PS_DigitalPLS provides the possibility to control all the cams on an ABB CI51x-ECAT.
The switch-on and switch-off-position of each cam and the compensation time of each cam
can be set individually via the input Switches. The position of the reference axis is given by an
encoder, which must be available, if the cam switch functionality is to be used.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 857

The switch-on position and the switch-off-position can be changed individually online. Further-
more, a compensation time in both directions can be added to the switch position. Compensa-
tion is applied to both switch-on-position and switch-off-position.
Individual cam can be disabled by clearing the corresponding bit in the EnableMask.
The actual state of the cams can also be monitored with the output “State”.

Data type Default value Range Unit
BOOL - - -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
DWORD - - -

The 32 bits of EnableMask correspond to the 32 cams of a CI51x-ETHCAT device. Setting a bit
will enable the corresponding cam.

Data type Default value Range Unit
DWORD - - -

See data type CSDC_REF_TYPE.

Data type Default value Range Unit
ARRAY - 1...32 -

See data type DIGPLS_REF_TYPE.

If FirstOnPosition is smaller than LastOnPosition, the cam is switched on
between the values of FirstOnPosition and LastOnPosition of the same turn.

If FirstOnPosition is greater than LastOnPosition, the cam is switched on
between the values of FirstOnPosition of the actual turn and LastOnPosition
of the next turn.

Enable

EnableMask

csdc

Switches OF
DIGPLS_REF_T
YPE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US858

If FirstOnPosition is equal to LastOnPosition, the cam is switched on for one
interrupt cycle.

The POU PS_DigitalPLS automatically truncates FirstOnPosition and LastOnPosition to the
resolution of the circle without notice. For example, all FirstOnPosition/LastOnPosition which are
greater than 36000 will be limited to 36000 (given that the default resolution of CI51x-ETHCAT
cam is used).
The parameters FirstOnPosition, LastOnPosition and Compensation can be changed at any
time. They will be immediately valid after sending to the CI51x-ETHCAT via the POU.

Output description

Data type Default value Range Unit
BOOL - - -

The output ERR=TRUE indicates that the communication to the device is not working properly.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.

Data type Default value Range Unit
BOOL - - -

Error

ErrorID

InOperation

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 859

TRUE if the POU is running.

Data type Default value Range Unit
DWORD - - bit

The 32 bits of state correspond to the states of 32 cams of a CI51x-ETHCAT Module. If a bit is
set, the corresponding cam is on, otherwise the cam is off.

Function call in ST
cs1.in_csdc := ADR(CI512_INPUTS_CAM_STATE);
cs1.out_csdc := ADR(CI512_OUTPUTS_CAM_RELEASE);

PLS1 (
Enable := PLS1_Enable,
EnableMask := PLS1_EnableMask,
cscd := cs1,
Switches := PLS1_Switches);

PLS1_Error := PLS1.Error;
PLS1_ErrorID := PLS1.ErrorID;
PLS1_InOperation := PLS1.InOperation;
PLS1_State := PLS1.State;

1.5.4.5.2 Data types
CSDC_REF_TYPE

The library contains the data type CSDC_REF_TYPE to facilitate access to the process data
image of the I/O module, on which the cams are located. This data type is declared as follows:
TYPE CSDC_REF_TYPE :
STRUCT
number : INT;
name : STRING;
in_csdc : POINTER TO CSDC_IN;
out_csdc : POINTER TO CSDC_OUT;
END_STRUCT
END_TYPE

Data type Default value Range Unit
INT - - -

Can optionally be used to identify the EtherCAT slave.

Data type Default value Range Unit
INT - - -

Can optionally be used to identify the EtherCAT slave.

State

number

name

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US860

Data type Default value Range Unit
DWORD - - -

in_csdc is the address of the first element of the input data. For the CI51x-ETHCAT it shall be
initialized with the address of the parameter CAM_state (see type CSDC_IN_TYPE Ä Chapter
1.5.4.5.2.2 “CSDC_IN_TYPE” on page 861).

Data type Default value Range Unit
DWORD - - -

out_csdc is the address of the first element of the output data. For the CI51x-ETHCAT it shall
be initialized with the address of the parameter CAM_release (see type CSDC_OUT_TYPE
Ä Chapter 1.5.4.5.2.3 “CSDC_OUT_TYPE” on page 861).

CSDC_IN_TYPE
The library contains the data type CSDC_IN_TYPE, which contains all the parameters needed
to realize the cam switch function. POU accesses to the required inputs in the process data
image of the I/O module are performed with these parameters.
The application program shall not access the elements of this structure, so no detail descrip-
tions of the structure elements are given.

Function call in ST
TYPE CSDC_IN_TYPE :
(*declaration of I/O-structures for CS-device*)
STRUCT
CAM_state : DWORD;
CAM_track : WORD;
QUIT_mux : BYTE;
END_STRUCT
END_TYPE

CSDC_OUT_TYPE
The library contains the data type CSDC_OUT_TYPE, which contains all the parameters
needed to realize the cam switch function. Accesses to the required outputs in the process
data image of the I/O module are performed with these parameters.
Application program shall not access the elements of this structure, so no detail descriptions of
the structure elements are given.
TYPE CSDC_OUT_TYPE :
STRUCT
CAM_release : DWORD;
CAM_mux : BYTE;
reserve : BYTE;
CAM_On_Position : WORD;
CAM_Off_Position : WORD;
CAM_Comp_Time : WORD;
END_STRUCT
END_TYPE

in_csdc

out_csdc

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 861

DIGPLS_REF_TYPE
Data type DIGPLS_REF_TYPE describes a cam.

Data type Default value Range Unit
REAL - - µs

Position of the referenced axis where the cam is switched off.

Data type Default value Range Unit
INT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Function call in ST
TYPE DIGPLS_REF_TYPE :
STRUCT
FirstOnPosition : REAL;
LastOnPosition : REAL
Compensation : INT;
END_STRUCT
END_TYPE

1.5.4.6 Extended camswitch library
Library file name: MCX_AC500_Vx.lib

All function blocks follow the same basic rules which are as follows:
● The “Enable” enables the cam switch. It will be switched off immediately with Enable =

FALSE and the respective output will be switched off.
● Every function block has to be assigned to a certain cam switch by specifying the number at

input CamNumber. CamNumber runs from 1..32.
● Every function block has to be assigned to a certain device. This is done by “csdc” which

holds addresses of the devices process image
● The “active” output indicates that the specific function block communicates with the device.

A complete pulse ensures the data has been transferred
● The “state” output indicates that the cam switch is “on” which means the output of the cam is

on.

LastOnPosition

Compensation

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US862

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

Following system requirements have to be fulfilled:
● CODESYS 2.3.9.3 or later
● SysExt_AC500_V10.lib or later
● SysLibTime.lib Version 2.4.0.6 or later

● Compensation time
– The time is given in a resolution of µs, but the best achievable resolution is the cycle-

time of the device (200 µs with 32 cams)
– For times larger then 32767, the resolution will be increased internally. The user gives

still a us-time in a DINT-value
– Times which are larger then 524 ms will be transferred with a resolution of 512 µs. A

compensation time up to 8 s could be reached.
● Best achievable resolution is cycle-time of the device (80 µs / 100 µs / 200 µs).

1.5.4.6.1 Architecture
The device has 8 inputs, 8 combined input/outputs (dc) and 8 outputs.
The cam controller holds up to 32 cams which could be assigned to the 8 outputs and 8 DCs.
Several cams might be assigned to the same output. The BinaryReference and BinaryShift are
assigned to the 8 digital inputs or to the 8 DCs. The inputs and outputs are numbered from 0 to
15, where 0..7 is a DC, the function decides if it is to be used as input or outputs, numbers 8..15
are inputs and outputs and it depends on the function if for example the input 8 or output 8 is
used.

 DC (number) Input
(number)

 Output
(number)

1.0 0 2.0 8 3.0 8

1.1 1 2.1 9 3.1 9

1.2 2 2.2 10 3.2 10

System require-
ments

Restrictions

Identification of
binary inputs
and outputs

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 863

 DC (number) Input
(number)

 Output
(number)

1.3 3 2.3 11 3.3 11

1.4 4 2.4 12 3.4 12

1.5 5 2.5 13 3.5 13

1.6 6 2.6 14 3.6 14

1.7 7 2.7 15 3.7 15

1.8 2.8

1.9 2.9

The following view shows the general architecture and possible assignments of different cams.
The general rules are:
● Output-cams are cams which are able to directly switch an output. They may be used as

stand-alone Cam-Switch or may be combined with a trigger-cam. In this case, not just a
position but the respective trigger event will release the cam.

● The output-cams are:
– CamSwitchSimple (Type 0)
– PulseSwitch (Type 1)
– CamSwitchTimed (Type 2)
– CamSwitchComfort (Type 3)
– CamSwitchMulti (Type 6)
– CamSwitchTimeTime (Type 7) (no stand-alone)
– CamSwitchMultiTime (Type 9)

● The trigger-cams are
– CamShift (Type 4)
– Different blocks refer to cams with different types. The type is defined by the parameteri-

zation of the cam.
– The output-cams are assigned to a binary output (by parameterization).
– The trigger-cams are assigned to a binary input (by parameterization).
– Trigger-cams are connected to output-cams by programming of the function block in

PLC program.
– The BinaryReference is assigned to a binary input (by parameterization).
– The Puls-Switch is assigned to a binary output (by parameterization).
– The logic is assigned to a cam and modifies the output which belongs to this cam.
– BinaryShift (Type 5), refer to picture.

Fig. 14: BinaryShift (Type 5)

Architecture
and possible
composition

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US864

1.5.4.6.2 Controller
The device is based on the CI512-ETH and offers an cam controller functionality with the same
basic functions. The configuration concerning EtherCAT communication and the usage from
AC500 PLC is basically the same. The common features are
● Up to 32 cam switches with free assignment to the binary outputs
● Dynamic compensation for delay times
● Scan time from 80 µs to 200 µs
A number of additional features is available. The new features are accessible by defining a type
for every cam (Parameterization) and by using a dedicated function block which relates to the
cam and to the type defined. The respective functionality is explained in detail in the function
block's documentation. The features of the different cam-types include:
● Different compensation times for on- and off- switching
● MXC_CamSwitchComfort_dc, MCX_CamSwitchMulti_dc
● Cams which work for a configurable numbers of revolutions
● MCX_CamSwitchMulti_dc, MCX_CamSwitchMultiTimed_dc
● Cams which are switched on for a certain time instead of certain position range.
● MCX_CamSwitchTimed_dc, MCX_CamSwitchMultiTimed_dc
● Cams which are triggered by binary inputs, by a combination of input and Cam or by

combination of input and time.
● Trigger
● MCX_CamShift_dc, MCX_BinaryShift_dc
● Triggered
● MCX_CamSwitchSimple_dc, MCX_CamSwitchComfort_dc, MCX_CamSwitchTimed_dc,

MCX_CamSwitchMulti_dc, MCX_camSwitchTimeTimed_dc, MCX_CamSwitchMulti-
Timed_dc

● A cam which produces a certain frequency according to the velocity
● MCX_PulseSwitch_dc
● A cam which delivers information about binary inputs according to the position
● MCX_BinaryReference_dc
● A certain logic function which might be connected to the cam.
● MCX_CamLogic_dc

1.5.4.6.3 Visualization
For each of the MCX… function block, the library provides an integrated visualization element.
In the configuration of these visualization elements, the placeholder has to be configured with
the name of the function block's instance. The visualization looks for example as follows:

The values for all inputs and outputs and as well the name of the instance are shown.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 865

1.5.4.6.4 How to create cscd
1. Create a variable of type CSDCX_REF_TYPE
2. Write the address of the 1. input (process image) of the device to csdc.in_csdc
3. Write the address of the 1. output (process image) of the device to csdc.out_csdc

1.5.4.6.5 How to configure a cam
Every cam has 2 main parameters which need to be configured. This is done by the respective
bus configuration tool. The parameters will be transferred by SDO during start up. (X runs from
00 to 31)
● camToTrackX 0..15
● connects the cam switch to an input or output, (input or output is determined by the type of

cam switch)
● camTypeX 0..9
● selects the type of cam switch
All other data for a single cam switch is transferred by the respective function block

1.5.4.6.6 Hysteresis
● The PulseSwitch has an individually defined hysteresis per cam, applied to the On- and

Off-Position.
● All other Cams have a common hysteresis, defined as parameter, which is applied to the

„OnPosition”. The hysteresis would be just in use when the encoder would turn backwards
or on standstill. Then it will prevent a jitter on the output.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US866

1.5.4.6.7 Function blocks
CS_calculateVelocity

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
CS_CalculateVelocity is necessary to execute some pre-calculations which are needed for the
MC_CamSwitchSimple_c. It needs the actual position and the time related to this position to
calculate the velocity. In addition, the position and velocity are transferred to the units which are
used from MC_CamSwitchSimple_c.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 867

Data type Default value Range Unit
DWORD - - -

At input ActEncoderPosition, the position value of the encoder has to be given. It mus be a
binary value.

Data type Default value Range Unit
DWORD - - -

At input ActEncoderTime, the time value related to the ActEncoderPosition has to be given. The
resolution is nanoseconds.

Data type Default value Range Unit
WORD - - -

When the position should be used as it is, the value for resolution should be set to 0. Otherwise,
resolution gives the value which is used to display 1 revolution.
For example, when to encoder provides 10 bits per revolution, the encoder value (ActEncoder-
Position) would run from 0..1023.
● With resolution=360, the value would be converted to a 1° resolution and the positions for

MC_CamSwitchSimple_c could run from 0..259.
● With resolution=0, the positions for MC_CamSwitchSimple_c could run from 0..1023.

Data type Default value Range Unit
DWORD - - -

At input Zero Shift, an offset to adjust the value of ActEncoderPosition, can be specified.

Data type Default value Range Unit
WORD - - -

ActEncoderPo-
sition

ActEncoderTime

Resolution

ZeroShift

EncoderBitRe-
solution

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US868

Number of bits which hold the relevant position for 1 revolution (8..32)
This parameter allows to adjust the calculation to different encoder resolutions. The encoder
might deliver a single turn or multi turn value. The only requirement is to have a binary value
which means 1 revolution should match 2n increments. n is then the value for EncoderBitReso-
lution.

Data type Default value Range Unit
WORD - - -

At input waitTime the minimum time to wait between 2 calculations of velocity [µs] has to be
specified.

Data type Default value Range Unit
WORD - - -

At input waitInc the minimum distance to wait between 2 calculations of velocity has to be
specified.
When the velocity is low or the time between 2 measurements is very short, the velocity calcula-
tion with velocity = position/time will be imprecise. Therefore it is possible to give a minimum
position distance (waitInc) and a minimum time distance (waitTime) which should be exceeded
to perform a new calculation. The calculation will be executed when at least 1 of the 2 limits was
exceeded. In addition, the velocity will be a average of 4 calculations.

Output description

Data type Default value Range Unit
BOOL - - -

Function block has been executed at least once.

waitTime

waitInc

Done

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 869

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

Data type Default value Range Unit
DWORD - - -

Actual position based on resolution.

Data type Default value Range Unit
DINT - - -

Actual velocity based on resolution and normalised with 0x10000.

MCX_CamSwitchSimple_c

Error

ErrorID

ActualPosition

ActualVelocity

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US870

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
MC_CamSwitchSimple_c provides the possibility to switch a cam on/off at projected positions.
The position is given by a function block of type CS_calculateVelocity. This function block has
to be executed every cycle and by the same task as the MC_CamSwitchSimple_c. MC_CamS-
witchSimple_c could be used several times, there are no special hardware requirements.
The switch-on-position and the switch-off-position are individually changeable online. Further
more a compensation time in both directions can be added to the switch position. Compensa-
tion is applied to both switch-on-position and switch-off-position.

The compensation time makes the switch a “dynamic” switch. The position where to switch on
and off is calculated according to the actual velocity, in a way that the output occurs a certain
time before (negative compensation) or after (positive compensation) the position has been
reached. The time is given at the input compensation, the distance is calculated. The accuracy
of time to be reached depends on the stability of velocity, which means just on a constant
velocity, the time will be correct.
Distance = velocity * compensation;
The switch will be switched on at “FirstOnPosition + distance” and switched off at “FirstOffPosi-
tion + distance”. While switched on, no new calculation of distance will be done.
The actual state of the cam can also be monitored with the output “state”.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 871

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
WORD - - -

The value of FirstOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
WORD - - -

The value of FirstOffPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOffPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOffPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

– If FirstOnPosition is smaller than FirstOffPosition, the cam is switched on
between the values of FirstOnPosition and FirstOffPosition of the same turn.

– If FirstOnPosition is greater than FirstOffPosition, the cam is switched on
between the values of FirstOnPosition of the actual turn and FirstOffPosition
of the next turn.

– If FirstOnPosition is equal to FirstOffPosition, the cam is switched on for one
device cycle.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

Enable

FirstOnPosition

FirstOffPosition

Compensation

fbCalc CS_Cal-
culateVelocity

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US872

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

active

state

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 873

MCX_BinaryReference_DC

Read a Captured Position

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group Camswitch Extended

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description

MCX_BinaryReference_dc provides the possibility to read the encoder position related to an
edge on a binary input. The master position is given by an encoder, which must be available, if
the cam switch functionality is to be used.
The values for getBinary and Mode_On_Off are individually changeable online.
The function block is related to a binary input. It saves the actual encoder position as refPosition
when an edge of the binary input has been received. Accuracy would be best when the cam is
configured at a low number. The output refNum is counted up for each trigger, so this would also
provide an information when more edges are triggered then could be transferred to the PLC.
● Mode_Off_On=FALSE
● a negative edge is used as trigger
● Mode_Off_On=TRUE
● a positive edge is used as trigger
The refPosition can be
● getBinary=TRUE
● the binary value as directly received from the encoder
● getBinary=FALSE
● the angle-value (position is converted by the angle resolution)
The values are transferred multiplexed, so it may take some time to receive them.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US874

The actual state of the binary input can also be monitored with the output "state".

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

getBinary selects if a binary value or angle value should be triggered.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Mode_off_on selects if a positive or negative edge will be used as trigger.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

Output description

Enable

getBinary

Mode_Off_On

CamNumber

csdc

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 875

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

Data type Default value Range Unit
WORD - 0...255 -

refNum returns the number of different positions which already have been captured. It counts
from 0..255 and starts at 0 again. A change of refNum indicates that a new position has been
captured. When the change is >1, it indicates how many positions had been captured since the
last call of the function block.

Data type Default value Range Unit
DWORD - - -

Output refPosition returns the captured position.

active

state

Error

ErrorID

refNum

refPosition

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US876

MCX_BinaryShift_DC

Create a Trigger to a Cam by a Binary Input

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group Camswitch Extended

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
MCX_BinaryShift_dc provides the possibility to start a cam switch related to a binary input.
The BinaryShift observes a binary input. When a positive (Mode_Off_On=TRUE) or negative
(Mode_Off_On=FALSE) edge is received, the associated cam is started. It is then shifted by a
certain distance or time. The following characteristics apply to the BinaryShift:
● Used to create a trigger to some kind of "žShiftedCam"
● Is edge triggered
● "ShiftedCam" might be
● Common, comfort, timed, multi, multi-timed
● Time-timed (just valid with shift)
The values for Mode_Off_On and OnCompensation are individually changeable online.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 877

The example shows how a BinaryShift and a CamSwitchTimed would work together:
● Mode_Off_On=TRUE, therefore a positive edge is evaluated. The CamSwitchTimed is

triggered in relation to the received edge.
● After the positive edge on a binary input was received, the connected CamSwitchTimed

would be triggered. The output "level" will be increased by 1
● When the encoder moved a distance of 1000 (FirstOnPosition of CamSwitchTimed), the

output of the cam will be switched on. It will stay on for 100 ms. The output "level" of the
BinaryShift will be decreased by 1.

● When additional positive edges are received outside before the distance of 1000 was
moved, the respective actions are queued. This is possible for up to 15 actions.

The actual state of the cam can also be monitored with the output "state". It will show the cam,
not the binary input.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
BOOL - - -

Input Clear deletes the already triggered, but not yet executed cam switches.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Mode_off_on selects if a positive or negative edge will be used as trigger.

Data type Default value Range Unit
WORD - - -

Input ShiftedCamNumber selects the number of the cam which has to be triggered, runs from
1..32.

Data type Default value Range Unit
DINT - - µs

Enable

Clear

Mode_Off_On

ShiftedCam-
Number

OnCompensa-
tion

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US878

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

CamNumber

csdc

active

state

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 879

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

Data type Default value Range Unit
BYTE - - -

Output Level return the number of trigger actions which are queued.

MCX_CamLogic_DC

Interconnection to a Cam.

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group Camswitch Extended

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Error

ErrorID

Level

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US880

Input description
MCX_CamLogic_dc provides the possibility to add some logical (boolean) interconnection to
a cam result. Usually, the binary output is switched on when the cam is switched on. Several
cams could be configured to use the same binary output. This will result in an OR-connection
of the cam-states to switch on the binary output. The cam state will correspond to the binary
output. When other logic operations are necessary, the MCX_CamLogic_dc could be used. It
will allow to:
● Switch on/off the output corresponding to the cam state
● Switch on/off the output corresponding to the inverted cam state
● Switch on/off the output corresponding to a positve/negative edge of the cam state
● Directly set or reset the logic. This will subsequently set or reset of the binary output.
Up to 16 MCX_CamLogic_dc are available. It is not necessary to have a configuration to use
them, but just to use the number 1..16 to select the respective logic. The logic is connected to
the cam by the input CoCamNumber.
The boolean operation which is executed matches the following diagram:

● ON=TRUE will directly set the output
● OFF=TRUE will directly reset the output
● With V0=TRUE, the cam state is enabled to set the output
● With S0=TRUE, the positive state will set the output
● With S0=FALSE, the negative state will set the output
● With V1=TRUE, the cam edge is enabled to set the output
● With S1=TRUE, the positive edge will set the output
● With S0=FALSE, the negative edge will set the output
● The reset part works accordingly
● When set and reset are active, the reset dominates

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 881

When several cams are configured to use the same output, they either all of them should have
a logic block or none of them should. In case they all have a logic block, all SET-results will be
connected by boolean OR and all RESET results will be connected by boolean OR. Afterwards,
the operation will be executed with the OR results.
The inputs V0, V1, V2, V3, ON and OFF are transferred immediately and will be effective
immediately, while the S0, S1, S2 and S3 are transferred multiplexed with other parameters
(from other function block).
The actual state of the logic can also be monitored with the output "state". It will show the logics
result, not the binary output.

Data type Default value Range Unit
BOOL - - -

Input ON activates the set path of MCX_CamLogic_dc and set the binary output subsequently.

Data type Default value Range Unit
BOOL - - -

Inputs V0, V1, V2, V3 select the condition to enable the respective path.

Data type Default value Range Unit
BOOL - - -

Inputs S0, S1, S2, S3 select positive (TRUE) or negative (FALSE) signal for the respective
path.

Data type Default value Range Unit
BOOL - - -

Input OFF activates the reset path of MCX_CamLogic_dc and reset the binary output subse-
quently.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type Default value Range Unit
WORD - 1...16 -

Number of the logic block: Each number should just be used once. An additional configuration is
not required.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

ON

S0, S1, S2, S3
(select)

V0, V1, V2,
V3 (select)

OFF

CoCamNumber

LogicNumber

csdc

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US882

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

MCX_CamShift_DC

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

active

state

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 883

Parameter Value
Type Function block with historical values

Group Group/Subgroup

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
MCX_CamShift_dc provides the possibility to start a cam switch related to a "supervisor" cam in
relation with a binary input. The CamShift observes a binary input during the length of the cam.
Depending on the result, the associated cam is started. It is then "shifted" by a certain distance
or time. The following characteristics apply to the CamShift:
● Used to create a trigger to some kind of "ShiftedCam"
● Is edge or level triggered
● "ShiftedCam" might be
● Common, comfort, timed, multi, multi-timed
● Time-timed (just valid with shift)
The values for Mode_Edge_Stable, Mode_Off_On, Mode_Fixed, FirstOnPosition, FirstOffPosi-
tion, OnCompensation and OffCompensation are individually changeable online.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US884

The example shows how a Cam and a CamSwitchTimed would work together:
● Mode_Edge_stable=FALSE, therefore a edge is evaluated
● Mode_Off_On=TRUE, therefore a positive signal is evaluated
● Two examples are shown, with Mode_Fixed=FALSE first: The CamswitchTimed is triggered

in relation to the received edge.
With Mode_Fixed=TRUE, it is related to the end of Cam1.
● After the positive edge on a binary input was received, the connected CamSwitchTimed

would be triggered. The output "level" will be increased by 1. It is not necessary to receive
an edge during the length of the cam, a high signal right from the beginning would do the
same.

● When the encoder moved a distance of 1000 (FirstOnPosition), the output of the cam will be
switched on. It will stay on for 100 ms. The output "level" of the CamShift will be decreased
by 1.

● When additional positive edges are received outside the length of Cam1, these are ignored.
When Cam1 will be switched on before the distance of 1000 was moved, the respective
actions are queued. This is possible for up to 15 actions.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 885

The 2nd example shows the result when Mode_Edge_Stable=TRUE is used (Mode_Fixed in
this case is "don't care"). The binary input has to be high during the length of Cam1, otherwise
the ShiftedCam will not be started.
The actual state of the cam can also be monitored with the output "state". It will show the Cam,
not the binary input.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
BOOL - - -

Input Clear deletes the already triggered, but not yet executed cam switches.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Mode_Edge_Stable selects whether an edge signal or a stable signal is to be used as trigger
(FALSE= edge).
If mode_edge_stable=TRUE, the binary signal must be stable during the range of the trigger-
cam, otherwise the shifted cam will not be released.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Mode_off_on selects if a positive or negative edge will be used as trigger.

Data type Default value Range Unit
BOOL - - -

Mode_Fixed selects if an action is triggered in relation to the binary signal or to the end of the
cam.
When Mode_Fixed=TRUE, the end of the cam is the reference point. When
Mode_Fixed=FALSE, the binary signal is the reference point The shifted cam is started with
its own FirstOnPosition as a distance from the reference point. Mode_Fixed=FALSE is only valid
with Mode_Edge_Stable=FALSE.

Mode_Edge_Stable Mode_Fixed Reference Point
FALSE FALSE Binary signal

FALSE TRUE Cam

TRUE Don't care Cam

Data type Default value Range Unit
WORD - - -

Enable

Clear

Mode_Edge_Sta
ble

Mode_Off_On

Mode_Fixed

ShiftedCam-
Number

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US886

Input ShiftedCamNumber selects the number of the cam which has to be triggered, runs from
1..32.

Data type Default value Range Unit
WORD - - -

The value of FirstOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
WORD - - -

The value of FirstOffPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOffPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOffPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

– If FirstOnPosition is smaller than FirstOffPosition, the cam is switched on
between the values of FirstOnPosition and FirstOffPosition of the same turn.

– If FirstOnPosition is greater than FirstOffPosition, the cam is switched on
between the values of FirstOnPosition of the actual turn and FirstOffPosition
of the next turn.

– If FirstOnPosition is equal to FirstOffPosition, the cam is switched on for one
device cycle.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with OffCompensation:
● If OffCompensation is positive, the switch action will be delayed by the value of OffCompen-

sation.
● If OffCompensation is negative, the switch action will be brought forward by the value of

OffCompensation.

Data type Default value Range Unit
WORD - 1...32 -

FirstOnPosition

FirstOffPosition

OnCompensa-
tion

OffCompensa-
tion

CamNumber

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 887

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

csdc

active

state

Error

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US888

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

Data type Default value Range Unit
BYTE - - -

Output Level return the number of trigger actions which are queued.

MCX_CamSwitchComfort_DC

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group Group/Subgroup

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
MCX_CamSwitchComfort_dc provides the possibility to switch a cam on/off at projected posi-
tions. The position is given by an encoder, which must be available, if the cam switch function-
ality is to be used.
The switch-on-position and the switch-off-position are individually changeable online. Further
more a compensation time in both directions can be added to the switch position.

ErrorID

Level

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 889

The compensation time makes the switch a "dynamic" switch. The position where to switch on
and off is calculated according to the actual velocity, in a way that the output occurs a certain
time before (negative compensation) or after (positive compensation) the position has been
reached. The time is given at the input compensation, the distance is calculated. The accuracy
of time to be reached depends on the stability of velocity, which means just on a constant
velocity, the time will be correct.
OnDistance = velocity * OnCompensation;
OffDistance = velocity * OffCompensation;
The switch will be switched on at "FirstOnPosition + distance" and switched off at "FirstOffPosi-
tion + distance". While switched on, no new calculation of distance will be done.
On different times for OnCompensation and OffCompensation, the time to be switched on will
be increased or decreased. For example, with a positive OnCompensation and a negative
OffCompensation, the time to be switched on will be smaller. The minimum time will be a single
device cycle (200 µs), the maximum will be a full revolution with a single cycle off.
The actual state of the cam can also be monitored with the output "state".

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
WORD - - -

The value of FirstOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
WORD - - -

The value of FirstOffPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOffPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOffPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Enable

FirstOnPosition

FirstOffPosition

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US890

– If FirstOnPosition is smaller than FirstOffPosition, the cam is switched on
between the values of FirstOnPosition and FirstOffPosition of the same turn.

– If FirstOnPosition is greater than FirstOffPosition, the cam is switched on
between the values of FirstOnPosition of the actual turn and FirstOffPosition
of the next turn.

– If FirstOnPosition is equal to FirstOffPosition, the cam is switched on for one
device cycle.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with OffCompensation:
● If OffCompensation is positive, the switch action will be delayed by the value of OffCompen-

sation.
● If OffCompensation is negative, the switch action will be brought forward by the value of

OffCompensation.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

OnCompensa-
tion

OffCompensa-
tion

CamNumber

ErrorID

CamNumber

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 891

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

active

state

Error

ErrorID

csdc

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US892

MCX_CamSwitchMulti_DC

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
MCX_CamSwitchMulti_dc provides the possibility to switch a cam on/off at projected positions.
The position is given by an encoder, which must be available, if the cam switch functionality is to
be used.
The switch-on-position and the on-range are individually changeable online. Further more a
different compensation time in both directions can be added to the switch position.
The compensation time makes the switch a "dynamic" switch. The position where to switch on
and off is calculated according to the actual velocity, in a way that the output occurs a certain
time before (negative compensation) or after (positive compensation) the position has been
reached. The time is given at the input compensation, the distance is calculated. The accuracy
of time to be reached depends on the stability of velocity, which means just on a constant
velocity, the time will be correct.
OnDistance = velocity * OnCompensation;
OffDistance = velocity * OffCompensation;
The switch will be switched on at "FirstOnPosition + OnDistance" and switched off at "FirstOff-
Position + OnRange + OffDistance". While switched on, no new calculation of distance will be
done.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 893

CamSwitchMulti matches the CamSwitchComfort with an additional information about revolu-
tions. It might switch a cam a distance of several revolutions ahead. The OnDistance and
OffDistance might as well cover a distance of several revolutions. OnRange must not be larger
then 1 revolution. With revolutions=0, the behavior will be the same as MCX_CamSwitchCom-
fort_dc.

"Revolutions" inside the device start from counting up 0 at power on, therefore, even with a
single-turn encoder, the "multi" could be used. The revolutions do not match the revolutions
counting of a connected multi-turn encoder, it has just a relative value.
Connected with a "…shift", (BinaryShift or CamShift) it will trigger a cam several revolutions
ahead.
On different values for OnCompensation and OffCompensation, the time to be switched on will
be increased or decreased. For example, with OnCompensation >0 and OffCompensation <0,
the Cam will be switched on later and switched off earlier, so the angle to be switched on is
decreased. The minimum time will be a single device cycle (200 µs), the maximum will be a
number of revolutions according to the input "revolution+1", with a single cycle off.
The actual state of the cam can also be monitored with the output "state".

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US894

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
WORD - - -

The value of FirstOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Data type Default value Range Unit
WORD - - -

The value of OnRange is automatically truncated to the resolution of the circle without notice.
For example, all OnRange greater than 36000 will be limited to 36000 (given if the default
resolution of CI51x-ETHCAT cam is used).
OnRange can be changed at any time. It will be immediately valid after sending to the CI51x-
ETHCAT via the POU.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with OffCompensation:
● If OffCompensation is positive, the switch action will be delayed by the value of OffCompen-

sation.
● If OffCompensation is negative, the switch action will be brought forward by the value of

OffCompensation.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type: CSDCX_REF_TYPE

Enable

FirstOnPosition

OnCompensa-
tion

OnRange

OffCompensa-
tion

CamNumber

csdc

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 895

The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.

active

state

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US896

ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

MCX_CamSwitchMultiTimed_DC

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
MCX_CamSwitchMultiTimed_dc provides the possibility to switch a cam on a projected position
and off after a projected time. The position is given by an encoder, which must be available, if
the cam switch functionality is to be used.
The switch-on-position and the time are individually changeable online. Further more a com-
pensation time in both directions can be added to the switch-on-position.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 897

The compensation time makes the switch a "dynamic" switch. The position where to switch on
and off is calculated according to the actual velocity, in a way that the output occurs a certain
time before (negative compensation) or after (positive compensation) the position was reached.
The time is given at the input compensation, the distance is calculated. The accuracy of time
to be reached depends on the stability of velocity, which means just on a constant velocity, the
time will be correct.
Distance = velocity * compensation;
The switch will be switched on at "FirstOnPosition + distance" and switched after the time
OnTime elapsed. The time is given in us. The accuracy of time is 200 µs.
CamSwitchMultiTimed matches the CamSwitchTimed with an additional information about revo-
lutions. With revolutions=0, the behavior will be as MCX_CamSwitchTimed_dc. With revolutions
> 0, the switching will leave out the respective number of revolutions.
"Revolutions" inside the device start from counting up 0 at power on, therefore, even with a
single-turn encoder, the "multi" could be used. The revolutions do not match the revolutions
counting of a connected multi-turn encoder, it has just a relative value.
Connected with a "…shift", (BinaryShift or CamShift) it will trigger a cam several revolutions
ahead.
The actual state of the cam can also be monitored with the output "state".

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
WORD - - -

Enable

FirstOnPosition

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US898

The value of FirstOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Data type Default value Range Unit
DWORD - 0...10 s µs

OnTime gives the duration to switch on the cam. Time will be evaluated with an accuracy of 200
µs (microseconds).
OnTime can be changed at any time. It will be immediately valid after sending to the CI51x-
ETHCAT via the POU.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

OnCompensa-
tion

OnTime

CamNumber

csdc

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 899

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

active

state

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US900

MCX_CamSwitchSimple_DC

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
MCX_CamSwitchSimple_dc provides the possibility to switch a cam on/off at projected posi-
tions. The position is given by an encoder, which must be available, if the cam switch function-
ality is to be used.
The switch-on-position and the switch-off-position are individually changeable online. Further
more a compensation time in both directions can be added to the switch position. Compensa-
tion is applied to both switch-on-position and switch-off-position.

The compensation time makes the switch a "dynamic" switch. The position where to switch on
and off is calculated according to the actual velocity, in a way that the output occurs a certain
time before (negative compensation) or after (positive compensation) the position has been
reached. The time is given at the input compensation, the distance is calculated. The accuracy
of time to be reached depends on the stability of velocity, which means just on a constant
velocity, the time will be correct.
Distance = velocity * compensation;

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 901

The switch will be switched on at "FirstOnPosition + distance" and switched off at "FirstOffPosi-
tion + distance". While switched on, no new calculation of distance will be done.
The actual state of the cam can also be monitored with the output "state".

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
WORD - - -

The value of FirstOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
WORD - - -

The value of FirstOffPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOffPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOffPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Enable

FirstOnPosition

FirstOffPosition

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US902

– If FirstOnPosition is smaller than FirstOffPosition, the cam is switched on
between the values of FirstOnPosition and FirstOffPosition of the same turn.

– If FirstOnPosition is greater than FirstOffPosition, the cam is switched on
between the values of FirstOnPosition of the actual turn and FirstOffPosition
of the next turn.

– If FirstOnPosition is equal to FirstOffPosition, the cam is switched on for one
device cycle.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

Compensation

CamNumber

csdc

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 903

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

active

state

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US904

MCX_CamSwitchTimed_DC

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Input description
MCX_CamSwitchTimed_dc provides the possibility to switch a cam on/off at projected positions.
The position is given by an encoder, which must be available, if the cam switch functionality is to
be used.
The switch-on-position and the switch-off-position are individually changeable online. Further
more a compensation time in both directions can be added to the switch position. Compensa-
tion is applied to both switch-on-position and switch-off-position.

The compensation time makes the switch a "dynamic" switch. The position where to switch on
and off is calculated according to the actual velocity, in a way that the output occurs a certain
time before (negative compensation) or after (positive compensation) the position has been
reached. The time is given at the input compensation, the distance is calculated. The accuracy
of time to be reached depends on the stability of velocity, which means just on a constant
velocity, the time will be correct.
Distance = velocity * compensation;

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 905

The switch will be switched on at "FirstOnPosition + distance" and switched off at "FirstOffPosi-
tion + distance". While switched on, no new calculation of distance will be done.
The actual state of the cam can also be monitored with the output "state".

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
WORD - - -

The value of FirstOnPosition is automatically truncated to the resolution of the circle without
notice. For example, all FirstOnPosition greater than 36000 will be limited to 36000 (given if the
default resolution of CI51x-ETHCAT cam is used).
FirstOnPosition can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
DINT - - µs

The switch action is rescheduled with Compensation:
● If Compensation is positive, the switch action will be delayed by the value of Compensation.
● If Compensation is negative, the switch action will be brought forward by the value of

Compensation.

Data type Default value Range Unit
DWORD - 0...10 s µs

Enable

FirstOnPosition

OnCompensa-
tion

OnTime

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US906

OnTime gives the duration to switch on the cam. Time will be evaluated with an accuracy of 200
µs (microseconds).
OnTime can be changed at any time. It will be immediately valid after sending to the CI51x-
ETHCAT via the POU.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

CamNumber

csdc

active

state

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 907

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

MCX_PulseSwitch_DC

Parameter Value
Included in library MCX_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Available for CI511-ETHCAT
and CI512-ETHCAT

With device index C0 and above

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US908

Input description
MCX_PulseSwitch_dc provides the possibility to generate a pulse train according to the master
position; the frequency is proportional to the velocity of the master. The master position is given
by an encoder, which must be available, if the cam switch functionality is to be used.
The values for CyclePeriod, Hysteresis and Offset are angle-values. They are individually
changeable online.

CyclePeriod is a fraction of 1 revolution (at maximum 1 revolution).The PulseSwitch will be
switched on when the position is between CyclePeriod/2 and CyclePeriod “ Hysteresis (shown
green). The PulseSwitch will be switched off when the position is between 0 and CyclePeriod/2
“ Hysteresis (shown red). It will not be changed otherwise, this prevents a toggling of the output
in case the encoder stopped close to the switching position.
For example, when 1 revolution is 360° and CyclePeriod is 10°, it will be switched on for 5° and
switched off for 5°, in total 36 pulses will be generated per revolution.
Several MCX_PulseSwitche_dc may be used to generate coordinated outputs, delayed by
offset to each other.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 909

The actual state of the cam can also be monitored with the output "state".

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The function block is activated with Enable TRUE. With Enable=FALSE, the respective cam will
be switched off immediately.

Data type Default value Range Unit
WORD - - -

Number of encoder pulses for one pulsewith-period. The value of CyclePeriod is automatically
truncated to the resolution of the circle without notice. For example, all CyclePeriod greater than
36000 will be limited to 36000 (given if the default resolution of CI51x-ETHCAT cam is used).
CyclePeriod can be changed at any time. It will be immediately valid after sending to the
CI51x-ETHCAT via the POU.

Data type Default value Range Unit
WORD - - -

The value of Hysteresis is automatically truncated to the resolution of the circle without notice.
For example, all Hysteresis greater than 36000 will be limited to 36000 (given if the default
resolution of CI51x-ETHCAT cam is used).
Hysteresis can be changed at any time. It will be immediately valid after sending to the CI51x-
ETHCAT via the POU.

Data type Default value Range Unit
WORD - - -

Enable

CyclePeriod

Hysteresis

Offset

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US910

The value of Offset is automatically truncated to the resolution of the circle without notice. For
example, all Offset greater than 36000 will be limited to 36000 (given if the default resolution of
CI51x-ETHCAT cam is used).
Offset can be changed at any time. It will be immediately valid after sending to the CI51x-
ETHCAT via the POU.

Data type Default value Range Unit
WORD - 1...32 -

Number of the cam: this number runs from 1..32. The parameter cam_To_Track[0..31] must
be used to map the cam to the available digital outputs. A configuration tool must be used for
setting the cam_To_Track.

Data type: CSDCX_REF_TYPE
The 2 elements in_csdc and out_csdc of csdc must be initialized with the beginning address of
the input data area and the output data area to facilitate proper function of the cam.

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Parameters (getBinary, Mode_On_Off) are transferred during active is TRUE.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The parameter State shows the actual cam state. If State is TRUE, the cam is on. If State is
FALSE, the cam is off.

CamNumber

csdc

active

state

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 911

Data type Default value Range Unit
BOOL - TRUE / FALSE -

The output ERR signals any fault detected during the processing of the function block. This
output always has to be checked in conjunction with the DONE output. If DONE is TRUE and
ERR is TRUE, a processing fault was detected. The value of the ERNO output provides the
according error number.

Data type Default value Range Unit
WORD - - -

ErrorID is 1 if communication an error occurred.
ErrorID is 2 if a wrong parameter value is applied to the function block.
ErrorID is 3 if a wrong cam type is configured in the device CI51x-ETHCAT.

1.5.4.6.8 Visualization
For each of the MCX… function block, the library provides an integrated visualization element.
In the configuration of these visualization elements, the placeholder has to be configured with
the name of the function block's instance. The visualization looks for example as follows:

The values for all inputs and outputs and as well the name of the instance are shown.

1.5.4.7 CANopen library
Library file name: CANopen_AC500_Vx.lib
The library CANopen_AC500_Vx.lib is intended to be used with the CANopen master communi-
cation module.
Beside the cyclic IO communication, which is configured in the CANopen master configuration
and controlled by the runtime system, additional features are implemented in the CANopen
master. This library provides the possibility to use these features within a PLC application. With
the contained function blocks the following functionality can be realized:
● sending and receiving of raw CAN telegrams (11bit and 29bit identifiers)
● reading of diagnosis information
● controlling of the NMT state machine of a CANopen node
● reading and writing of service data objects (SDOs)
● resetting of internal error counters
● reading of handshake error counters of synchronous IO update
● deactivating or activating of a CANopen node.

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US912

Additional system libraries are required by this library:
● CANopen_CME_AC500_V25.lib
● CANopen_CMN_AC500_V25.lib
● CMN_AC500_V24.lib
● SysExt_AC500_V10.lib
The CANopen library and the required system libraries will be automatically added to the PLC
application when a CANopen master communication module is configured in the PLC configura-
tion.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

1.5.4.7.1 Function blocks
CAN2A_INFO

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

The function block CAN2A_INFO outputs information concerning the status of the CAN 2.0A
communication.

Input description
Using the function block CAN2A_INFO, various status information about the CAN 2.0A commu-
nication can be read.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 913

The function block CAN2A_INFO outputs information concerning the status of the CAN 2.0A
communication.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

The function block CAN2A_INFO outputs information concerning the status of the CAN 2.0A
communication.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

SLOT

EN

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US914

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output NUM_SEND displays the number of transmitted CAN 2.0B telegrams. The value can be
reset to 0 using the online functions "Reset" or "Reset (cold)". Stopping the PLC via the keypad
or the online function "STOP" does not influence the output. In this case, the values are kept.

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the number of received CAN 2.0B telegrams, regardless of whether
a corresponding buffer has been set via the PLC configuration or not. The value can be reset to
0 using the online functions "Reset" or "Reset (cold)". Stopping the PLC via the keypad or the
online function "STOP" does not influence the output. In this case, the values are kept.

Data type Default value Range Unit
DWORD - - -

Output NUM_REJ displays the number of CAN 2.0B telegrams rejected due to a full receive
buffer. The value can be reset to 0 using the online functions "Reset" or "Reset (cold)". Stopping
the PLC via the keypad or the online function "STOP" does not influence the output. In this
case, the values are kept. Whether incoming telegrams are generally discarded in case of a full
receive buffer or the oldest entry stored in the buffer is always overwritten by a new telegram
can be set using the controller configuration.

Data type Default value Range Unit
DWORD - - -

Output NUM_OWR displays the number of CAN 2.0B telegrams overwritten by a new incoming
telegram due to a full receive buffer. The value can be reset to 0 using the online functions
"Reset" or "Reset (cold)". Stopping the PLC via the keypad or the online function "STOP" does
not influence the output. In this case, the values are kept. Whether incoming telegrams are
generally discarded in case of a full receive buffer or the oldest entry stored in the buffer is
always overwritten by a new telegram can be set using the controller configuration.

ERR

ERNO

NUM_SEND

NUM_REC

NUM_REJ

NUM_OWR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 915

Data type Default value Range Unit
DWORD - - -

Output NUM_INV displays the number of received CAN 2.0B telegrams that could not be
assigned to any buffer defined in the controller configuration. The value can be reset to 0 using
the online functions "Reset" or "Reset (cold)". Stopping the PLC via the keypad or the online
function "STOP" does not influence the output. In this case, the values are kept.

Function call in ST
Info2a (EN := Info2a_EN,
 SLOT := Info2a_SLOT);

Info2a_DONE := Info2a.DONE;
Info2a_ERR := Info2a.ERR;
Info2a_ERNO := Info2a.ERNO;
Info2a_NUM_SEND := Info2a.NUM_SEND;
Info2a_NUM_REC := Info2a.NUM_REC;
Info2a_NUM_REJ := Info2a.NUM_REJ;
Info2a_NUM_OWR := Info2a.NUM_OWR;
Info2a_NUM_INV := Info2a.NUM_INV;

CAN2A_REC

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

With CAN2A_REC, CAN telegrams with 11 bit identifiers (base frame format or CAN2.0A) can
be received.
Each identifier to be received needs a configured receive buffer.
Identifiers without configured receive buffer won´t be considered.

NUM_INV

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US916

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input ID is used to specify the identifier of the CAN 2.0B telegrams to be read from the buffer. If
no buffer has been specified for the selected identifier using the controller configuration, this is
indicated accordingly at the function block outputs.

Data type Default value Range Unit
DWORD - - -

The input DATA is used to provide the pointer to data structure of the object which is to be
written.

EN

SLOT

ID

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 917

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output NUM displays the number of CAN 2.0A telegrams not yet read from the buffer of the
selected identifier. Stopping the PLC using the keypad or the online functions "STOP", "Reset"
or "Reset (cold)" does not influence the output value.

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the number of received CAN 2.0B telegrams, regardless of whether
a corresponding buffer has been set via the PLC configuration or not. The value can be reset to
0 using the online functions "Reset" or "Reset (cold)". Stopping the PLC via the keypad or the
online function "STOP" does not influence the output. In this case, the values are kept.

DONE

ERR

ERNO

NUM

NUM_REC

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US918

Data type Default value Range Unit
DWORD - - -

Output NUM_REJ displays the number of CAN 2.0B telegrams rejected due to a full receive
buffer. The value can be reset to 0 using the online functions "Reset" or "Reset (cold)". Stopping
the PLC via the keypad or the online function "STOP" does not influence the output. In this
case, the values are kept. Whether incoming telegrams are generally discarded in case of a full
receive buffer or the oldest entry stored in the buffer is always overwritten by a new telegram
can be set using the controller configuration.

Data type Default value Range Unit
DWORD - - -

Output NUM_OWR displays the number of CAN 2.0B telegrams overwritten by a new incoming
telegram due to a full receive buffer. The value can be reset to 0 using the online functions
"Reset" or "Reset (cold)". Stopping the PLC via the keypad or the online function "STOP" does
not influence the output. In this case, the values are kept. Whether incoming telegrams are
generally discarded in case of a full receive buffer or the oldest entry stored in the buffer is
always overwritten by a new telegram can be set using the controller configuration.

Function call in ST
Rec2a (EN := Rec2a_EN,
 SLOT := Rec2a_SLOT,
 ID := Rec2a_ID,
 DATA := ADR(Rec2a_DATA));

Rec2a_DONE := Rec2a.DONE;
Rec2a_ERR := Rec2a.ERR;
Rec2a_ERNO := Rec2a.ERNO;
Rec2a_NUM := Rec2a.NUM;
Rec2a_NUM_REC := Rec2a.NUM_REC;
Rec2a_NUM_REJ := Rec2a.NUM_REJ;
Rec2a_NUM_OWR := Rec2a.NUM_OWR;

CAN2A_SEND

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

NUM_REJ

NUM_OWR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 919

Using CAN2A_SEND, CAN telegrams with 11 bit identifiers according to CAN 2.0A can be
transmitted.
Every time a FALSE->TRUE edge is applied to input EN, CAN2A_SEND reads the data at
its inputs and sends a corresponding request message to the Communication Module. Further
FALSE->TRUE edges at input EN are ignored until the processing of the active requests is
completed. The completion of the request processing is indicated by DONE = TRUE and
ERR = FALSE. A possibly occurring error is indicated by output ERR = TRUE.
The function block is able to transmit several telegrams to the Communication Module within
one event. The Communication Module in turn transmits these telegrams sequentially via the
bus.
When the function block is used with the Communication Module CM578-CAN the total length
is 254 bytes. Thus, the maximum number of simultaneously transmitted telegrams depends on
the sum of the individual telegram lengths. If all telegrams to be transmitted do not contain
any other data than the 2 header bytes (identifier, RTR and DLC; Data Length Code DLC =
0), up to 127 telegrams can be transmitted at the same time (2 x 127 = 254). However, if all
telegrams contain the maximum 8 bytes of data, only up to 25 telegrams can be transmitted to
the Communication Module simultaneously ((2 + 8) x 25 = 250).
When the function block is used with the Communication Module CM598-CN the number of
frames which can be sent at once is limited to 16.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US920

Data type Default value Range Unit
BYTE - - -

Input NUM is used to specify the number of valid telegrams to be transmitted and stored starting
at address DATA.
When the function block is used with the Communication Module CM578-CN, the upper limit
of input NUM depends on the total length of all telegrams. The total length is calculated by
the function block from the data length codes (DLC) of the individual telegrams and must not
exceed 254 bytes. Otherwise an error message is generated. In such cases, the number of
telegrams to be transmitted has to be chosen correspondingly that the total length does not
exceed 254.
When the function block is used with the Communication Module CM598-CN the upper limit of
input NUM is 16.

Data type Default value Range Unit
DWORD - - -

The input DATA is used to provide the pointer to data structure of the object which is to be
written.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

NUM

DATA

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 921

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
Send2a (EN := Send2a_EN,
 SLOT := Send2a_SLOT,
 NUM := Send2a_NUM,
 DATA := ADR(Send2a_DATA));

Send2a_DONE := Send2a.DONE;
Send2a_ERR := Send2a.ERR;
Send2a_ERNO := Send2a.ERNO;

CAN2B_INFO

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

The function block CAN2B_INFO outputs information concerning the status of the CAN 2.0B
communication.

Input description
Using CAN2B_INFO, various status information about the CAN 2.0B communication can be
read.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US922

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

SLOT

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 923

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output NUM_SEND displays the number of transmitted CAN 2.0B telegrams. The value can be
reset to 0 using the online functions "Reset" or "Reset (cold)". Stopping the PLC via the keypad
or the online function "STOP" does not influence the output. In this case, the values are kept.

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the number of received CAN 2.0B telegrams, regardless of whether
a corresponding buffer has been set via the PLC configuration or not. The value can be reset to
0 using the online functions "Reset" or "Reset (cold)". Stopping the PLC via the keypad or the
online function "STOP" does not influence the output. In this case, the values are kept.

Data type Default value Range Unit
DWORD - - -

Output NUM_REJ displays the number of CAN 2.0B telegrams rejected due to a full receive
buffer. The value can be reset to 0 using the online functions "Reset" or "Reset (cold)". Stopping
the PLC via the keypad or the online function "STOP" does not influence the output. In this
case, the values are kept. Whether incoming telegrams are generally discarded in case of a full
receive buffer or the oldest entry stored in the buffer is always overwritten by a new telegram
can be set using the controller configuration.

Data type Default value Range Unit
DWORD - - -

Output NUM_OWR displays the number of CAN 2.0B telegrams overwritten by a new incoming
telegram due to a full receive buffer. The value can be reset to 0 using the online functions
"Reset" or "Reset (cold)". Stopping the PLC via the keypad or the online function "STOP" does
not influence the output. In this case, the values are kept. Whether incoming telegrams are
generally discarded in case of a full receive buffer or the oldest entry stored in the buffer is
always overwritten by a new telegram can be set using the controller configuration.

Data type Default value Range Unit
DWORD - - -

ERR

ERNO

NUM_SEND

NUM_REC

NUM_REJ

NUM_OWR

NUM_INV

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US924

Output NUM_INV displays the number of received CAN 2.0B telegrams that could not be
assigned to any buffer defined in the controller configuration. The value can be reset to 0 using
the online functions "Reset" or "Reset (cold)". Stopping the PLC via the keypad or the online
function "STOP" does not influence the output. In this case, the values are kept.

Function call in ST
Info2b (EN := Info2b_EN,
 SLOT := Info2b_SLOT);

Info2b_DONE := Info2b.DONE;
Info2b_ERR := Info2b.ERR;
Info2b_ERNO := Info2b.ERNO;
Info2b_NUM_SEND := Info2b.NUM_SEND;
Info2b_NUM_REC := Info2b.NUM_REC;
Info2b_NUM_REJ := Info2b.NUM_REJ;
Info2b_NUM_OWR := Info2b.NUM_OWR;
Info2b_NUM_INV := Info2b.NUM_INV;

CAN2B_REC

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

With CAN2B_REC, CAN telegrams with 29 bit identifiers (extended frame format or CAN2.0B)
can be received.
In the configuration the "extended" format" must be activated and the ID filter has to be parame-
terized accordingly. In addition each identifier to be received needs a configured receive buffer.
Identifiers without configured receive buffer won´t be considered.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 925

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input ID is used to specify the identifier of the CAN 2.0B telegrams to be read from the buffer. If
no buffer has been specified for the selected identifier using the controller configuration, this is
indicated accordingly at the function block outputs.

Data type Default value Range Unit
DWORD - - -

The input DATA is used to provide the pointer to data structure of the object which is to be
written.

EN

SLOT

ID

DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US926

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output NUM displays the number of CAN 2.0A telegrams not yet read from the buffer of the
selected identifier. Stopping the PLC using the keypad or the online functions "STOP", "Reset"
or "Reset (cold)" does not influence the output value.

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the number of received CAN 2.0B telegrams, regardless of whether
a corresponding buffer has been set via the PLC configuration or not. The value can be reset to
0 using the online functions "Reset" or "Reset (cold)". Stopping the PLC via the keypad or the
online function "STOP" does not influence the output. In this case, the values are kept.

DONE

ERR

ERNO

NUM

NUM_REC

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 927

Data type Default value Range Unit
DWORD - - -

Output NUM_REJ displays the number of CAN 2.0B telegrams rejected due to a full receive
buffer. The value can be reset to 0 using the online functions "Reset" or "Reset (cold)". Stopping
the PLC via the keypad or the online function "STOP" does not influence the output. In this
case, the values are kept. Whether incoming telegrams are generally discarded in case of a full
receive buffer or the oldest entry stored in the buffer is always overwritten by a new telegram
can be set using the controller configuration.

Data type Default value Range Unit
DWORD - - -

Output NUM_OWR displays the number of CAN 2.0B telegrams overwritten by a new incoming
telegram due to a full receive buffer. The value can be reset to 0 using the online functions
"Reset" or "Reset (cold)". Stopping the PLC via the keypad or the online function "STOP" does
not influence the output. In this case, the values are kept. Whether incoming telegrams are
generally discarded in case of a full receive buffer or the oldest entry stored in the buffer is
always overwritten by a new telegram can be set using the controller configuration.

Function call in ST
Rec2b (EN := Rec2b_EN,
 SLOT := Rec2b_SLOT,
 ID := Rec2b_ID,
 DATA := ADR(Rec2b_DATA));

Rec2b_DONE := Rec2b.DONE;
Rec2b_ERR := Rec2b.ERR;
Rec2b_ERNO := Rec2b.ERNO;
Rec2b_NUM := Rec2b.NUM;
Rec2b_NUM_REC := Rec2b.NUM_REC;
Rec2b_NUM_REJ := Rec2b.NUM_REJ;
Rec2b_NUM_OWR := Rec2b.NUM_OWR;

CAN2B_SEND

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5:3

Type Function block with historical values

NUM_REJ

NUM_OWR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US928

Using CAN2B_SEND, CAN telegrams with 29 bit identifiers according to CAN 2.0B can be
transmitted.
Every time a FALSE->TRUE edge is applied to input EN, CAN2B_SEND reads the data at
its inputs and sends a corresponding request message to the Communication Module. Further
FALSE->TRUE edges at input EN are ignored until the processing of the active requests is
completed. The completion of the request processing is indicated by DONE = TRUE and
ERR = FALSE. A possibly occurring error is indicated by output ERR = TRUE.
Only one CAN 2.0B can be sent with each transmission.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

The input DATA is used to provide the pointer to data structure of the object which is to be
written.

EN

SLOT

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 929

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
Send2b (EN := Send2b_EN,
 SLOT := Send2b_SLOT,
 DATA := ADR(Send2b_DATA));

Send2b_DONE := Send2b.DONE;
Send2b_ERR := Send2b.ERR;
Send2b_ERNO := Send2b.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US930

CANOM_NMT

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

CANOM_NMT can be used to control the NMT state machine of one specific or all slaves.

Input description
CANOM_NMT can be used to control the NMT state machine of one specific or all slaves.
Every time a FALSE->TRUE edge is applied to input EN, CANOM_NMT reads the data at its
inputs and sends a corresponding request message to the Communication Module. Further
FALSE->TRUE edges at input EN are ignored until the processing of the active requests is
completed. The completion of the request processing is indicated by DONE = TRUE.
Normally, control of the slave operating states is performed by the automatic control of the
CANopen Communication Module used as NMT master. However, for special applications it can
be required to change the state of a specific slave 'manually'. This functionality can be achieved
using CANOM_NMT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 931

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 1...127 -

The Input NODE specifies the node ID of the slave.

Data type Default value Range Unit
BYTE - - -

At input NMT_CMD, the NMT command to be sent is specified. The following NMT commands
are defined:

NMT command Constant Meaning
1 CANOM_NMT_CMD_START Start remote node (slave)

2 CANOM_NMT_CMD_STOP Stop remote node (slave)

128 CANOM_NMT_CMD_ENTER_PREOP Enter pre-operational: Set slave to pre-
operational mode

129 CANOM_NMT_CMD_RESET_NODE Reset node (slave)

130 CANOM_NMT_CMD__RESET_COM Reset communication

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SLOT

NODE

NMT_CMD

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US932

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
Nmt(EN := Nmt_EN,
 SLOT := Nmt_SLOT,
 NODE := Nmt_NODE,
 NMT_CMD := Nmt_NMT_CMD);

Nmt_DONE := Nmt.DONE;
Nmt_ERR := Nmt.ERR;
Nmt_ERNO := Nmt.ERNO;

CANOM_NODE_DIAG

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

Using the function block CANOM_NODE_DIAG, diagnosis data of the individual slaves can be
requested.
Every time a FALSE->TRUE edge is applied at input EN, CANOM_NODE_DIAG reads the
data at its inputs and sends a corresponding request message to the Communication Module.
Further FALSE->TRUE edges at input EN are ignored until the processing of the active requests
is completed. The completion of the request processing is indicated by DONE = TRUE.

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 933

The function block CANOM_NODE_DIAG is not supported by the Communica-
tion Module CM598-CAN. For the Communication Module CM598-CAN should
be used the function block CANOM_NODE_DIAG_EXT.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 1...127 -

The Input NODE specifies the node ID of the slave.

EN

SLOT

NODE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US934

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
CANOM_NODES-
TATUS_1_TYPE

- - -

The output STATE_1 provides diagnosis flags of the specified device.

Data type Default value Range Unit
WORD - - -

Output INFO provides additional information according to the CiA specification from the object
16#1000.

DONE

ERR

ERNO

STATE_1

INFO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 935

Data type Default value Range Unit
WORD - - -

Output PROFILE provides the profile number according to the CiA specification from the object
16#1000.

Data type Default value Range Unit
BYTE - - -

Output STATE provides the current operating condition of the relevant slave. STATE is only valid
if DONE = TRUE and ERR = FALSE.
The following table describes the possible values of STATE and their meanings as specified in
the CANopen specification.

STATE Description
1 Disconnected

2 Connecting

3 Preparing

4 Prepared

5 Operational

127 Pre-Operational

Data type Default value Range Unit
BYTE - - -

ONL_ERR outputs a value describing possibly existing communication errors between the
master Communication Module and the slave. ONL_ERR is only valid if DONE = TRUE and
ERR = FALSE.
The error identifiers of ONL_ERR correspond to the IDs of output CANOM_ERR.EVENT of the
function block CANOM_STATE. They are described in the table provided in the CANOM_STATE
Function Block description.

Data type Default value Range Unit
BYTE 0 0 ... 5 -

NUM_EMCY provides the number of emergency messages contained in EMCY_DATA.

Data type Default value Range Unit
ARRAY OF
CANOM_EMCY_TYP
E

- 1 ... 5 -

EMCY_DATA outputs the up to 5 buffered emergency messages of the slave. The number of
valid messages is output by NUM_EMCY.
EMCY_DATA is only valid if DONE = TRUE and ERR = FALSE.
The structure of the type CANOM_EMCY_TYPE is defined in the CANopen library.

PROFILE

STATE

ONL_ERR

NUM_EMCY

EMCY_DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US936

Function call in ST
NodeDiag(EN := NodeDiag_EN,
 SLOT := NodeDiag_SLOT,
 NODE := NodeDiag_NODE;

NodeDiag_DONE := NodeDiag.DONE;
NodeDiag_ERR := NodeDiag.ERR;
NodeDiag_ERNO := NodeDiag.ERNO;
NodeDiag_STATE_1 := NodeDiag.STATE_1;
NodeDiag_INFO := NodeDiag.INFO;
NodeDiag_PROFILE := NodeDiag.PROFILE;
NodeDiag_STATE := NodeDiag.STATE;
NodeDiag_ONL_ERR := NodeDiag.ONL_ERR;
NodeDiag_NUM_EMCY := NodeDiag.NUM_EMCY;
NodeDiag_EMCY_DATA := NodeDiag.EMCY_DATA;

CANOM_NODE_DIAG_EXT

The function block CANOM_NODE_DIAG_EXT reads the diagnosis data of a slave.

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 937

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 1...127 -

The Input NODE specifies the node ID of the slave.

EN

SLOT

NODE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US938

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
CANOM_NODE_FLA
GS_TYPE

- - -

Output NODE_FLAGS provides diagnosis flags of the specified device.

Data type Default value Range Unit
DWORD 0 - -

Output DIAG_INFO provides the last diagnosis info of the specific device.
The output can have the following values:

DONE

ERR

ERNO

NODE_FLAGS

DIAG_INFO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 939

Value Description
16#40420053 State of Node was not handled

16#C042004B Connection to Node is lost

16#C042004D Error of heartbeat protocol

16#C042004C Error of guarding protocol

16#C042004A Node is in an unexpected state

16#4042004E Heartbeat protocol was started for the node

16#C0420027 Timeout exceeded during SDO transfer

16#C0420028 Error occurred during SDO transfer

16#C0420054 The device type of node is not equal to configured value

16#C042004F Unexpected bootup message from the node was received

16#40420055 Emergency message from node was received

Data type Default value Range Unit
DWORD 0 - -

Output ADD_INFO provides additional information.

Data type Default value Range Unit
DWORD 0 - -

Output DEV_TYPE provides the device type according to the CiA specification from the object
16#1000.

Data type Default value Range Unit
DWORD 0 - -

Output NMT_STATE provides the current NMT state of the specified CANopen device. The
output can have the following values:

Value Constant Description
16#0000000
0

CANOM_NODE_NMT_STATE_UNKNOWN Node NMT State is unknown

16#0000000
1

CANOM_NODE_NMT_STATE_INITIALISING Node NMT State INITIAL-
ISING

16#0000000
2

CANOM_NODE_NMT_STATE_STOPPED Node NMT State STOPPED

16#0000000
3

CANOM_NODE_NMT_STATE_OPERA-
TIONAL

Node NMT State OPERA-
TIONAL

16#0000000
4

CANOM_NODE_NMT_STATE_PRE_OPERA-
TIONAL

Node NMT State
PRE_OPERATIONAL

16#0000000
5

CANOM_NODE_NMT_STATE_RESET_APPLI
CATION

Node NMT State
RESET_APPLICATION

16#0000000
6

CANOM_NODE_NMT_STATE_RESET_COM
M

Node NMT State
RESET_COMM

ADD_INFO

DEV_TYPE

NMT_STATE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US940

Data type Default value Range Unit
BYTE 0 0 ... 5 -

NUM_EMCY provides the number of emergency messages contained in EMCY_DATA.

Data type Default value Range Unit
ARRAY OF
CANOM_EMCY_TYP
E

- 1 ... 5 -

EMCY_DATA outputs the up to 5 buffered emergency messages of the slave. The number of
valid messages is output by NUM_EMCY.
EMCY_DATA is only valid if DONE = TRUE and ERR = FALSE.
The structure of the type CANOM_EMCY_TYPE is defined in the CANopen library.

Function call in ST
NodeDiagExt(EN := NodeDiagExt_EN,
 SLOT := NodeDiagExt_SLOT,
 NODE := NodeDiagExt_NODE;

NodeDiagExt_DONE := NodeDiagExt.DONE;
NodeDiagExt_ERR := NodeDiagExt.ERR;
NodeDiagExt_ERNO := NodeDiagExt.ERNO;
NodeDiagExt_NodeFlags := NodeDiagExt.NodeFlags;
NodeDiagExt_DiagInfo := NodeDiagExt.DIAG_INFO;
NodeDiagExt_AddInfo := NodeDiagExt.ADD_INFO;
NodeDiagExt_DevType := NodeDiagExt.DEV_TYPE;
NodeDiagExt_ONL_ERR := NodeDiagExt.DEV_TYPE_VALID;
NodeDiagExt_NMTState := NodeDiagExt.NMT_STATE;
NodeDiagExt_NUM_EMCY := NodeDiagExt.NUM_EMCY;
NodeDiagExt_EMCY_DATA := NodeDiagExt.EMCY_DATA;

CANOM_RES_ERR

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

The function block CANOM_RES_ERR can be used to reset various internal error indications
and counters of the Communication Module.

NUM_EMCY

EMCY_DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 941

The function block CANOM_RES_ERR is not supported by the Communication
Module CM598-CAN.

Input description
Using the function block CANOM_RES_ERR it is possible to reset the following Communication
Module internal error indications and error counters output via the function block CANOM_STAT:
● STATE_BITS.EVENT
● STATE_BITS.TIMEOUT
● BUS_ERR
● BUS_OFF
● TOUT_ERR
● LOST_REC
For explanations of the error indications please refer to the description of the function block
CANOM_STATE Ä Chapter 1.5.4.7.1.14 “CANOM_STATE ” on page 952.
The reset is initiated by a FALSE->TRUE edge at input EN.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US942

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
ResErr(EN := ResErr_EN,
 SLOT := ResErr_SLOT);

ResErr_DONE := ResErr.DONE;
ResErr_ERR := ResErr.ERR;
ResErr_ERNO := ResErr.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 943

CANOM_SDO_READ

The function block CANOM_SDO_READ can be used to read individual service data objects
(SDOs) from a slave.

In the library CANopen_AC500_V25.lib the function block
CANOM_SDO_READ was extended with the input OBJ_LEN.

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

Using the function block CANOM_SDO_READ it is possible to read service data objects (SDOs)
from a slave.
Every time a FALSE->TRUE edge is applied to input EN, CANOM_SDO_READ reads the
data at its inputs and sends a corresponding request message to the Communication Module.
Further FALSE->TRUE edges at input EN are ignored until the processing of the active requests
is completed. The completion of the request processing is indicated by DONE = TRUE.
The CANopen object model is defined in the communication profile and device profile specifica-
tions (see also System Technology of the CANopen Communication Modules). Furthermore, the
device-specific objects are explained in the corresponding device description of the slave.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US944

Input description

Fig. 15: CANOM_SDO_READ

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 1...127 -

The Input NODE specifies the node ID of the slave.

Data type Default value Range Unit
WORD - - -

Input OBJ_IDX is used to specify the object index of the object which is to be written.

Data type Default value Range Unit
BYTE - - -

Input SUB_IDX is used to specify the sub index of the object which is to be written.

EN

SLOT

NODE

OBJ_IDX

SUB_IDX

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 945

Data type Default value Range Unit
DWORD - - -

The input DATA is used to provide the pointer to data structure of the object which is to be
written.

Data type Default value Range Unit
BYTE 0 0 ... 247 Number of Bytes

Input OBJ_LEN is used to specify the length of the object to be read from the CANopen slave.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

If the slave answered the SDO message with an abort message, the transmitted error code is
output at SDO_ERR. The value output at SDO_ERR is only valid if DONE = TRUE, ERR =
TRUE and ERNO = 6003hex (24579dec).

DATA

OBJ_LEN

DONE

ERR

ERNO

SDO_ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US946

Data type Default value Range Unit
BYTE - - -

Input DATA_LEN is used to specify the size of the data structure which is provided at Input
DATA.

Function call in ST
SdoRead (EN := SdoRead_EN,
 SLOT := SdoRead_SLOT,
 NODE := SdoRead_NODE,
 OBJ_IDX := SdoRead_OBJ_IDX
 SUB_IDX := SdoRead_SUB_IDX
 DATA := ADR(SdoRead_DATA);

SdoRead_DONE := SdoRead.DONE;
SdoRead_ERR := SdoRead.ERR;
SdoRead_ERNO := SdoRead.ERNO;
SdoRead_SDO_ERR := SdoRead.SDO_ERR;
SdoRead_DATA_LEN := SdoRead.DATA_LEN;

CANOM_SDO_WRITE

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

The function block CANOM_SDO_WRITE provides write access to the Object Directory of a
CANopen slave using the SDO protocol.

DATA_LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 947

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 1...127 -

The Input NODE specifies the node ID of the slave.

Data type Default value Range Unit
WORD - - -

Input OBJ_IDX is used to specify the object index of the object which is to be written.

Data type Default value Range Unit
BYTE - - -

Input SUB_IDX is used to specify the sub index of the object which is to be written.

Data type Default value Range Unit
DWORD - - -

EN

SLOT

NODE

OBJ_IDX

SUB_IDX

DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US948

The input DATA is used to provide the pointer to data structure of the object which is to be
written.

Data type Default value Range Unit
BYTE - - -

Input DATA_LEN is used to specify the size of the data structure which is provided at Input
DATA.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

If the slave answered the SDO message with an abort message, the transmitted error code is
output at SDO_ERR. The value output at SDO_ERR is only valid if DONE = TRUE, ERR =
TRUE and ERNO = 6003hex (24579dec).

DATA_LEN

DONE

ERR

ERNO

SDO_ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 949

Function call in ST
SdoWrite (EN := SdoWrite_EN,
 SLOT := SdoWrite_SLOT,
 NODE := SdoWrite_NODE,
 OBJ_IDX := SdoWrite_OBJ_IDX,
 SUB_IDX := SdoWrite_SUB_IDX,
 DATA := ADR(SdoWrite_DATA,
 DATA_LEN := ADR(SdoWrite_DATA_LEN);

SdoWrite_DONE := SdoWrite.DONE;
SdoWrite_ERR := SdoWrite.ERR;
SdoWrite_ERNO := SdoWrite.ERNO;
SdoWrite_SDO_ERR := SdoWrite.SDO_ERR;

CANOM_SET_NODE_MODE

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

Using the function block CANOM_SET_NODE_MODE, one specific CANopen node can be
deactivated or activated.
Every time a FALSE -> TRUE edge is applied to input EN, CANOM_SET_NODE_MODE reads
the data at its inputs and sends a corresponding request message to the Communication
Module.
Further FALSE -> TRUE edges at input EN are ignored until the processing of the active
requests is completed. The completion of the request processing is indicated by DONE =
TRUE.
All configured CANopen nodes are activated by default and are controlled by the CANopen
Communication Module used as NMT master. However, for special applications it can be
required to deactivate or activate one specific CANopen node 'manually'. This functionality can
be achieved using CANOM_SET_NODE_MODE.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US950

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1...127 -

The Input NODE specifies the node ID of the slave.

Data type Default value Range Unit
BYTE - - -

At input MODE, the mode of the CANopen node is specified. The following modes are defined:

NMT
com-
mand

Constant Meaning

1 CANOM_NODE_MODE_ACTIVATE Activate remote node (slave)

2 CANOM_NODE_MODE_DEACTIVATE Deactivate remote node (slave)

Output description

EN

NODE

MODE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 951

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
SetNodeMode(EN := SetNodeMode_EN,
 SLOT := SetNodeMode_SLOT,
 NODE := SetNodeMode_NODE,
 MODE := SetNodeMode_MODE);

SetNodeMode_DONE := SetNodeMode.DONE;
SetNodeMode_ERR := SetNodeMode.ERR;
SetNodeMode_ERNO := SetNodeMode.ERNO;

CANOM_STATE

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US952

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

The function block CANOM_STATE outputs the status of a CANopen Communication Module.
The outputs provide information about the communication status and error events.
CANOM_STATE is active if input EN = TRUE. If the function block is active and if no errors
occurred during Function Block processing, the current values are permanently displayed at the
outputs.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN

SLOT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 953

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
CANOM_STATE_BIT
S_TYPE

- - -

The Output STATE_BITS provides error or diagnosis flags of the CANopen Communication
Module.
Some of them can be reset using the function block CANOM_RES_ERR Ä Chapter
1.5.4.7.1.10 “CANOM_RES_ERR” on page 941.

Data type Default value Range Unit
BYTE - - -

DONE

ERR

ERNO

STATE_BITS

CANOM_STATE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US954

CANOM_STATE outputs the general communication state of the CANopen master. The fol-
lowing states are defined:

State Meaning
Dec Hex
0 00 OFFLINE

64 40 STOP

128 80 CLEAR

192 C0 OPERATE

CANOM_STATE = OFFLINE
If CANOM_STATE is set to OFFLINE, the CANopen Communication Module performs an initiali-
zation. After the initialization phase is completed, the Communication Module changes to STOP
state.
CANOM_STATE = STOP
If CANOM_STATE has the value STOP, the Communication Module is completely initialized. In
this state the Communication Module is ready to receive configuration data. There is no data
exchange with the slaves. The Communication Module has this state if no user program is
running.
CANOM_STATE = CLEAR
If the user program is started, the Communication Module changes from STOP to CLEAR and
starts to establish the connections defined during configuration. When the setup has been com-
pleted successfully, the Communication Module moves to OPERATE state. If an error occurs
during parameterization, the Communication Module changes back to STOP state.
CANOM_STATE = OPERATE
Normally, the Communication Module is in OPERATE state while a user program is running. In
this state the master exchanges I/O data with the slaves. If an error occurs during this process
and if ‘Auto Clear Mode’ has been selected during configuration, the Communication Module
changes back to CLEAR state and tries to establish the connections again. If ‘Auto Clear Mode’
has not been selected during configuration, the Communication Module remains in OPERATE
state in case of an error. If the user program is stopped, the Communication Module also
changes back to STOP state.
CANOM_STATE is only valid, if EN = TRUE and ERR = FALSE.

Data type Default value Range Unit
CANOM_COM_ERR_
TYPE

- - -

The Output COM_ERR provides detailed information to the corresponding output STATE_BITS.
The element Address contains the node address of the faulty device and the element Event the
error code.
If several errors occur simultaneously, the output contains the error of the device with the lowest
address.
COM_ERR can be reset using the function block CANOM_RES_ERR Ä Chapter 1.5.4.7.1.10
“CANOM_RES_ERR” on page 941.

Data type Default value Range Unit
WORD - - -

COM_ERR

BUS_ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 955

BUS_ERR outputs the number of occurred bus errors. A bus error occurs if the internal
error frame counter exceeds a specific value. BUS_ERR is only valid if EN = TRUE and
ERR = FALSE.
BUS_ERR can be reset using the function block CANOM_RES_ERR Ä Chapter 1.5.4.7.1.10
“CANOM_RES_ERR” on page 941.

Data type Default value Range Unit
WORD - - -

BUS_OFF outputs how often the Communication Module has been excluded from bus activities.
An exclusion from the bus activities is performed, if an overflow of the internal error frame
counter occurs. The Communication Module is automatically re-initialized after each overflow.
BUS_OFF is only valid, if EN = TRUE and ERR = FALSE.
BUS_OFF can be reset using the function block CANOM_RES_ERR Ä Chapter 1.5.4.7.1.10
“CANOM_RES_ERR” on page 941.

Data type Default value Range Unit
WORD - - -

TOUT_ERR outputs the number of telegrams that could not be transmitted successfully. The
transmission of a telegram is considered as failed, if it could not be transmitted within 20 ms, for
instance because the communication partner could not be contacted via the bus. TOUT_ERR is
only valid, if EN = TRUE and ERR = FALSE.
TOUT_ERR can be reset using the function block CANOM_RES_ERR.

Data type Default value Range Unit
WORD - - -

LOST_REC outputs the number of received telegrams that were rejected because they could
not be processed successfully due to a CAN chip overload. LOST_REC is only valid, if
EN = TRUE and ERR = FALSE.
LOST_REC can be reset using the function block CANOM_RES_ERR Ä Chapter 1.5.4.7.1.10
“CANOM_RES_ERR” on page 941.

Function call in ST
State (EN := State_EN,
 SLOT := State_SLOT);

State_DONE := State.DONE;
State_ERR := State.ERR;
State_ERNO := State.ERNO;
State_STATE_BITS := State.STATE_BITS;
State_CANOM_STATE := State.CANOM_STATE;
State_CANOM_ERR := State.CANOM_ERR;
State_BUS_ERR := State.BUS_ERR;
State_BUS_OFF := State.BUS_OFF;
State_TOUT_ERR := State.TOUT_ERR;
State_LOST_ERR := State.LOST_ERR;

BUS_OFF

TOUT_ERR

LOST_REC

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US956

CANOM_SYS_DIAG

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

The function block CANOM_SYS_DIAG outputs a bitfield as a state survey of all slaves (nodes)
at output NODE. Three different survey types can be selected via input TYP.
The function block CANOM_SYS_DIAG outputs different status surveys of all slaves. Three
survey types can be selected:
● configuration survey
● operational survey
● diagnosis survey

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 957

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - - -

The input TYP is used to select the type of status survey displayed at output NODE.
TYP = 1 Configuration survey
Output NODE displays which slaves are successfully connected to the master (TRUE). Please
note that the master only establishes connections to slaves that have been announced to the
master during the definition of the configuration data.
TYP = 2 Operational survey
Output NODE displays which slaves are error-free and in operation. A slave can only be
announced as operational if it has been configured in the master. The operational survey can
only be requested if the Communication Module is in OPERATE state.
TYP = 3 Diagnosis survey
Output NODE indicates which slaves report a diagnosis. The diagnosis survey can only be
requested if the Communication Module is in OPERATE state.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

SLOT

TYP

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US958

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
ARRAY OF BOOL - 0 ... 127 -

NODE outputs the status survey as a bitfield. Each individual bit within this field represents one
slave. The index number corresponds to the slave's node address. If a bit is set to TRUE, the
state selected using TYP applies to the corresponding slave.
If e.g. TYP = 1 is selected and NODE[2] = TRUE, the slave with this node address was
successfully configured by the master and is currently in operation. If NODE[2] = FALSE, the
configuration of the specific slave has not yet been completed or the slave is not part of the
master's configuration data.
If TYP = 3, NODE[2] = TRUE for example means that the slave with the node address
2 has received an emergency message or that the diagnosis indication of the slave has
changed. In this case, a diagnosis description can be requested using the function block
CANOM_NODE_DIAG Ä Chapter 1.5.4.7.1.8 “CANOM_NODE_DIAG” on page 933.
The at "NODE" output bitfield is only valid, if DONE = TRUE and ERR = FALSE.

Function call in ST
SysDiag(EN := SysDiag_EN,
 SLOT := SysDiag_SLOT,
 TYP := SysDiag_TYP);

SysDiag_DONE := SysDiag.DONE;
SysDiag_ERR := SysDiag.ERR;
SysDiag_ERNO := SysDiag.ERNO;
SysDiag_NODE := SysDiag.NODE;

CANOM_SYNC

Parameter Value
Included in library CANopen_AC500_V25.lib

Available as of firmware V2.5.3

Type Function block with historical values

ERNO

NODE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 959

CANOM_SYNC is used to read the handshakes error counters of synchronous IO update mode.
The counter ERR_IN_CNT will be set by the CANopen Master, when the IEC task was not
started within the current bus cycle. And when the IEC task was not finished within the current
bus cycle it will set the counter ERR_OUT_CNT.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

EN

SLOT

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US960

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - 0 ... 255 -

At Output ERR_IN_CNT the number of input handshake errors are provided.

Data type Default value Range Unit
BYTE - 0 ... 255 -

At Output ERR_OUT_CNT the number of output handshake errors are provided.

Function call in ST
CANSync (EN :=xCANSync_EN,
 SLOT :=byCANSync_SLOT);

xCANSync_DONE := CANSync.DONE;
xCANSync_ERR := CANSync.ERR;
byCANSync_ERNO := CANSync.ERNO;
byCANSync_ERR_IN_CNT := CANSync.ERR_IN_CNT;
byCANSync_ERR_OUT_CNT := CANSync.ERR_OUT_CNT;

1.5.4.7.2 Structures group CAN

Group: CAN
CAN2A_MESSAGE_TYPE Telegram structure according to CAN 2.0A

CAN2B_MESSAGE_TYPE Telegram structure according to CAN 2.0B

CAN2A_MESSAGE_TYPE
The library contains one general data type CAN2A_MESSAGE_TYPE to describe a CAN 2.0 A
telegram with an 11 bit identifier. This data type is declared as follows:

ERR

ERNO

ERR_IN_CNT

ERR_OUT_CNT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 961

TYPE CAN2A_MESSAGE_TYPE:
STRUCT
 ID: WORD;
 RTR: BOOL;
 DLC: BYTE;
 DATA: ARRAY [1 ... 8] OF BYTE;
END_STRUCT
END_TYPE

Data type Default value Range Unit
WORD - 0 ... 2047 -

ID contains the general 11 bit identifier.

Data type Default value Range Unit
BOOL - - -

RTR (remote transmission request) contains the RTR bit in the telegram header.

Data type Default value Range Unit
BYTE - - -

DLC (data length code) contains the data length code in the telegram header and specifies the
valid length in bytes for the user data following in DATA. Valid values for DLC are 0 to 8.

DATA (ARRAY[1..8] OF BYTE) contains the telegram data (if available). A CAN telegram can
contain 0 to 8 bytes of data. The actual data length of a telegram is described by the data length
code (DLC) contained in the telegram header. In DATA, only the first bytes are valid as specified
by the DLC.

CAN2B_MESSAGE_TYPE
The library contains one general data type CAN2B_MESSAGE_TYPE to describe a CAN 2.0 B
telegram with a 29 bit identifier. This data type is declared as follows:
TYPE CAN2B_MESSAGE_TYPE:
STRUCT
 ID: DWORD;
 RTR: BOOL;
 DLC: BYTE;
 DATA: ARRAY [1..8] OF BYTE;
END_STRUCT
END_TYPE

Data type Default value Range Unit
DWORD - - -

ID contains the general 29 bit identifier, its range of values reaches from 0 to 536870911 (16#0
to 16# 1FFFFFFF).

Data type Default value Range Unit
BOOL - - -

ID

RTR

DLC

DATA

ID

RTR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US962

RTR (remote transmission request) contains the RTR bit in the telegram header.

Data type Default value Range Unit
BYTE - - -

DLC (data length code) contains the data length code in the telegram header and specifies the
valid length in bytes for the user data following in DATA. Valid values for DLC are 0 to 8.

DATA (ARRAY[1..8] OF BYTE) contains the telegram data (if available). A CAN telegram can
contain 0 to 8 bytes of data. The actual data length of a telegram is described by the data length
code (DLC) contained in the telegram header. In DATA, only the first bytes are valid as specified
by the DLC.

1.5.4.7.3 Structures Group CANopen

Group: CANopen
CANOM_COM_ERR_TYPE Communication error

CANOM_EMCY_TYPE Emergency telegram

CANOM_NODESTATUS_1_TYPE Node diagnosis

CANOM_STATE_BITS_TYPE Bits for Communication Module state descrip-
tion

CANOM_NODE_FLAGS_TYPE Diagnosis flags of a CANopen Device

CANOM_COM_ERR_TYPE
Using CANOM_ERR, it is possible to locate communication errors more precisely. The output
CANOM_ERR is represented as a structure of the type CANOM_COM_ERR_TYPE. In the
CANopen library this data type is declared as follows:
TYPE CANOM_COM_ERR_TYPE:
STRUCT
 ADDRESS: BYTE;
 EVENT: BYTE;
END_STRUCT
END_TYPE

The output CANOM_ERR is not supported by the Communication Module
CM598-CAN.

ADDRESS
In case of an error, ADDRESS contains the node address of the faulty device. If ADDRESS has
the value 255, the error is located in the Communication Module itself.

Data type Default value Range Unit
BYTE - - -

EVENT
In case of an error, EVENT contains the error causing event. The event refers to a single node
address (ADDRESS <> 255) or the Communication Module itself (ADDRESS = 255).

DLC

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 963

ADDRESS <> 255 Error at subscribers with node address ADDRESS

Event Description Error source Cause / Remedy
30 Slave monitoring

timeout
Slave Check connection and

node address of the
slave

31 Slave aborted opera-
tional mode

Slave Reset slave

32 Sequence error in
node guarding pro-
tocol

Slave Reset slave

33 No response to con-
figured remote frame
PDO

Slave Check whether slave
remote frames are
supported

34 No slave response
during configuration

Slave Check whether the
slave is connected
and ready for opera-
tion

35 Actual device profile
of the slave differs
from the configured
device profile

Configuration Check the profile sup-
ported by the slave

36 Actual device type of
the slave differs from
the configured device
type

Configuration Check the services
supported by the
slave

37 Unknown SDO
response received

Slave Slave does not meet
the CiA protocol spec-
ifications

38 Length indicator of
a received SDO
response is not equal
to 8

Slave Slave does not meet
the CiA protocol spec-
ifications

39 Slave is not pro-
cessed. It is in the
STOP state.

Configuration/ Com-
munication Module

Deactivate the 'Auto
Clear Mode'

ADDRESS = 255 Communication Module error

Event Description Error source Cause / Remedy
52 Unknown process

data handshake mode
Configuration Contact customer

support

56 Invalid data transfer
rate

Configuration Contact customer
support

60 Node address config-
ured twice

Configuration / other
device

Check node
addresses of all
devices specified in
configuration data

210 No configuration data Configuration / Com-
munication Module

Load configuration
data into Communica-
tion Module

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US964

Event Description Error source Cause / Remedy
212 Error while reading

database
Configuration / Com-
munication Module

Load configuration
data into Communica-
tion Module again,
contact customer sup-
port

220 Watchdog error Controller Contact customer
support

Data type Default value Range Unit
BYTE - - -

CANOM_EMCY_TYPE
The data type CANOM_EMCY_TYPE corresponds to the format of the emergency telegram
described in the CANopen communication profile and is defined as follows:
TYPE CANOM_EMCY_TYPE:
STRUCT
 ERROR_CODE: WORD;
 ERROR_REG: BYTE;
 ERROR_DATA: ARRAY[1...5] OF BYTE;
END_STRUCT
END_TYPE
ERROR_CODE

Data type Default value Range Unit
WORD - - -

For the emergency object the emergency error codes described in the following table are
defined in the CANopen communication profile.

Emergency error code Description / Error cause
Decimal Hexadecimal
00000...00255 0000...00FF Error on reset or no error

04096...04351 1000...10FF General error

08192...08447 2000...20FF Current error

08448...08703 2100...21FF - error on the device input side

08704...08959 2200...22FF - error inside the device

08960...09215 2300...23FF - error on the device output
side

12288...12543 3000...30FF Voltage error

12544...12799 3100...31FF - supply voltage error

12800...13055 3200...32FF - error inside the device

13056...13311 3300...33FF - error on the device output
side

16384...16639 4000...40FF Temperature error

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 965

Emergency error code Description / Error cause
Decimal Hexadecimal
16640...16895 4100...41FF - ambient temperature

16896...17151 4200...42FF - temperature inside the
device

20480...20735 5000...50FF Hardware error in the device

24576...24831 6000...60FF Software error in the device

24832...25087 6100...61FF - device-internal software

25088...25343 6200...62FF - application software

25344...25599 6300...63FF Data

28672...28927 7000...70FF Error in additional modules

32768...33023 8000...80FF - monitoring

33024...33279 8100...81FF - communication

36864...37119 9000...90FF External error

61440...61695 F000...F0FF Error of additional functions

65280...65535 FF00...FFFF Device-specific errors

ERROR_REG

Data type Default value Range Unit
BYTE - - -

The variable ERROR_REG displays the error register value (object 1001 hex) of the slave. This
value is transmitted by the slave as a part of the emergency message.
ERROR_DATA

Data type Default value Range Unit
ARRAY OF BYTE - 1 ... 5 -

If applicable, ERROR_DATA is used to output manufacturer-specific error information trans-
mitted by the slave as part of the emergency message. For detailed information about the
meaning of these data please refer to the particular device documentation.

CANOM_NODESTATUS_1_TYPE
The structure CANOM_NODESTATUS_1_TYPE is declared as follows in the CANopen library:
TYPE CANOM_NODESTATUS_1_TYPE:
STRUCT
 NO_RESPONSE: BOOL;
 EMCY_OVF: BOOL;
 PRM_FAULT: BOOL;
 GUARD_ACT: BOOL;
 reserved1: BOOL;
 reserved2: BOOL;
 reserved3: BOOL;
 DEACTIVATED: BOOL;
END_STRUCT
END_TYPE
NO_RESPONSE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US966

Data type Default value Range Unit
BOOL - - -

If this bit is set, the slave with the node number specified at function block input NODE does not
respond to the master requests. Normally NO_RESPONSE should be set to FALSE.
EMCY_OVF

Data type Default value Range Unit
BOOL - - -

This bit is set by the Communication Module, if more emergency messages were received from
the called slave than the buffer can store (refer to function block outputs NUM_EMCY and
EMCY_DATA).
PRM_FAULT

Data type Default value Range Unit
BOOL - - -

This bit is set, if the nominal slave configuration defined in the master differs from the actual
slave configuration.
GUARD_ACT

Data type Default value Range Unit
BOOL - - -

This bit is set by the Communication Module, if the node guarding protocol for this slave is
active. This is only a status indication. The active node guarding protocol between the master
and the slave is not synonymous with a node guarding error.
reserved1

Data type Default value Range Unit
BOOL - - -

reserved2

Data type Default value Range Unit
BOOL - - -

reserved3

Data type Default value Range Unit
BOOL - - -

DEACTIVATED

Data type Default value Range Unit
BOOL - - -

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 967

This bit is set to TRUE, if the slave defined in the configuration data of the master is deactivated
and not processed.

CANOM_STATE_BITS_TYPE
The structure STATE_BITS consists of six boolean variables displaying different communication
states. In the CANopen library, the data type CANOM_STATE_BITS_TYPE is defined as fol-
lows:
TYPE CANOM_STATE_BITS_TYPE:
STRUCT
 CTRL: BOOL;
 AUTO_CLR: BOOL;
 NO_EXCH: BOOL;
 FATAL: BOOL;
 EVENT: BOOL;
 reserved1: BOOL;
 TIMEOUT: BOOL;
 reserved2: BOOL;
END_STRUCT
END_TYPE
CTRL

Data type Default value Range Unit
BOOL - - -

If this bit is TRUE, a parameter setting error occurred. During normal operation, CTRL should be
FALSE. If this is not the case, the parameter and configuration data have to be checked.
AUTO_CLR
If AUTO_CLR is set to TRUE, the Communication Module stopped data exchange with
all slaves due to communication errors and changed back to CLEAR state (see also
CANOM_STATE).

Data type Default value Range Unit
BOOL - - -

NO_EXCH
This bit is set to TRUE, if no exchange of process data can be performed with one or several
slaves. The error can be caused by the configuration data or the slaves themselves.

Data type Default value Range Unit
BOOL - - -

FATAL
If FATAL is set to TRUE, no communication via CANopen is possible due to a fatal internal error.

Data type Default value Range Unit
BOOL - - -

EVENT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US968

EVENT is set to TRUE, if the Communication Module detects transmission errors. The number
of occurring transmission errors is displayed at the corresponding outputs BUS_ERR and
BUS_OFF. If the EVENT bit is set to TRUE, reset is only possible via the function block
CANOM_RES_ERR Ä Chapter 1.5.4.7.1.10 “CANOM_RES_ERR” on page 941.

Data type Default value Range Unit
BOOL - - -

reserved1
This bit is reserved and currently not in use.

Data type Default value Range Unit
BOOL - - -

TIMEOUT
If TIMEOUT is set to TRUE, transmission of at least one telegram failed. The transmission of
this telegram was aborted and its content is lost. TIMEOUT = TRUE is an indication that the
communication partner could not be contacted via the bus. The number of failed transmissions
is displayed at output TOUT_ERR. If the TIMEOUT bit is set to TRUE, reset is only possible
using the function block CANOM_RES_ERR Ä Chapter 1.5.4.7.1.10 “CANOM_RES_ERR”
on page 941.

Data type Default value Range Unit
BOOL - - -

reserved2
This bit is reserved and currently not in use.

Data type Default value Range Unit
BOOL - - -

CANOM_NODE_FLAGS_TYPE
The data type CANOM_NODE_FLAGS_TYPE has the following structure:
TYPE CANOM_NODE_FLAGS_TYPE :
STRUCT
 xSDO_TIMEOUT: BOOL:=False;
 xSDO_ERROR: BOOL:=False;
 CFG_DEFAULT: BOOL:=False;
 xHARTBEAT_STARTED: BOOL:=False;
 xGUARD_ERROR: BOOL:=False;
 xCON_LOST: BOOL:=False;
 xHARTBEAT_ERROR: BOOL:=False;
 xUNEXPECTED_STATE: BOOL:=False;
 xEMCY_RECEIVED: BOOL:=False;
 xEMCY_BUFF_OVER: BOOL:=False;
 xBOOTUP: BOOL:=False;
 xUNEXPECTED_BOOTUP: BOOL:=False;

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 969

 xINVALID_PARAMETER: BOOL:=False;
 xSTATE_NOT_HANDLED: BOOL:=False;
 xDEACTIVATED: BOOL:=False;
END STRUCT
END TYPE

Timeout during SDO transfer occured.

Data type Default value Range Unit
BOOL - - -

Error during SDO transfer occured.

Data type Default value Range Unit
BOOL - - -

Configuration default occured.

Data type Default value Range Unit
BOOL - - -

Hartbeat protocol is started.

Data type Default value Range Unit
BOOL - - -

A guarding message has been lost

Data type Default value Range Unit
BOOL - - -

Node guarding has been lost.

Data type Default value Range Unit
BOOL - - -

Error in hartbeat protocol recognized.

Data type Default value Range Unit
BOOL - - -

xSDO_TIMEOUT

xSDO_ERROR:

CFG_DEFAULT

xHART-
BEAT_STARTED

xGUARD_ERRO
R

xCON_LOST

xHART-
BEAT_ERROR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US970

Node is in unexpected NMT state

Data type Default value Range Unit
BOOL - - -

Emergency telegram received.

Data type Default value Range Unit
BOOL - - -

Emergency buffer overflow occured.

Data type Default value Range Unit
BOOL - - -

Expected boot-up message from node received.

Data type Default value Range Unit
BOOL - - -

Unexpected boot-up message from node received.

Data type Default value Range Unit
BOOL - - -

Parameter set of node is invalid.

Data type Default value Range Unit
BOOL - - -

At least one state has been omitted during the initialization sequence of the node.

Data type Default value Range Unit
BOOL - - -

Node is deactivated and not handled by the master.

xUNEX-
PECTED_STATE

xEMCY_RECEIV
ED

xEMCY_BUFF_
OVER

xBOOTUP

xUNEX-
PECTED_BOOT
UP

xIN-
VALID_PARAM-
ETER

xSTATE_NOT_H
ANDLED

xDEACTIVATED

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 971

Data type Default value Range Unit
BOOL - - -

1.5.4.8 CD522 library
Library file name: CD522_AC500_Vx.lib
The CD522 library contains all function blocks necessary for using the function module CD522.
Once a CD522 has been added to the configuration, the library is automatically included with
the next compilation of the project.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The function blocks are available in AC500 control systems with a runtime system of version
V1.0.2 or higher and S500 I/O modules (DC551) with firmware version V1.11 or higher.

1.5.4.8.1 Function blocks
CD522_32BIT_ENCODER

Parameter Value
Included in library CD522_AC500_V13.lib

Available from CD522 firm-
ware

V2.1

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Type Function block with historical values

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US972

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function encoder of module CD522, different operating modes
are available. The function block CD522_32BIT_ENCODER should be used with one of these
operating modes:

Operating Mode 11 "Incremental encoder"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x1 count, with possibility of touch/catch value, RPI
function, set and reset actions.

Operating Mode 12 "Incremental encoder X2"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x2 count, with possibility of touch/catch value, RPI
function, set and reset actions.

Operating Mode 13 "Incremental encoder X4"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x4 count, with possibility of touch/catch value, RPI
function, set and reset actions.

The module CD522 provides 2 encoder functions for relative positioning with 3 signals. 2 signals
are used for rotation discrimination and pulse count, identified by A0 and B0 for counter0 and
A1 and B1 for counter1. The third one is used in multi-turn encoder to count the number of
rotation (mechanical zero), identified by Z0 for counter0 and Z1 for counter1.
The rotation is identified with a shift angle (90°) between A and B signal. In the module CD522,
the clockwise rotation is identified with A signal in advance to B (see figure below).

Clockwise rotation - A signal ahead from B
signal

Counter-clockwise rotation - A signal late
from B signal

Clockwise rotation in CD522 module Counter-clockwise rotation in CD522 module

Depending on which kind of operating mode is specified, the counting procedure will be x1,
x2 or x4 count. Basically the x1 counting mode is used (mode 11). The encoder module
discriminates the rotating way and count one pulse for each rising edge of the A signal.
With clockwise rotation, function block CD522_32BIT_ENCODER counts downwards.
With counter-clockwise rotation, function block CD522_32BIT_ENCODER counts upwards.
In order to increase resolution, the x2 counting mode can be specified (mode 12). The encoder
module counts one pulse on each rising edge of A signal and one pulse on each rising edge of
B signal.
The resolution could be multiplied by 4, using the x4 counting mode (mode 13). The encoder
module counts a pulse on both rising and falling edge of A signal and B signal.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 973

Input description

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
integer (CNT_TOUCH). The touch/catch operation could be settled on rising or falling edge
depending on parameter EDGE_TOUCH (see figure below).

Fig. 16: Procedure and associated counting value with A signal

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.

The RPI (Reference Point Initialization) is used to synchronize the counter value with the
mechanical zero reference based on signal Z.

EN_TOUCH

RPI procedure

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US974

RPI procedure is enabled with control bit (EN_RPI). If this control bit is set, the module checks
for the Z signal. When the signal appears, the set value is copied in the current counter value
and RDY_RPI is set (see figure below).

Fig. 17: RPI operation

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CNT_NUM contains the counter number in the module:
● CNT_NUM = 0 is related to input A0, B0, Z0
● CNT_NUM = 1 is related to input A1, B1, Z1

Data type Default value Range Unit
BOOL - - -

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and the pulses are lost.

EN

CNT_NUM

EN_CNT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 975

If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.
Input EN_CNT corresponds to bit 0 in "control byte".

Data type Default value Range Unit
BOOL - - -

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at input I3 (for counters 0-A and 0-B)) or I11 (for counters
1-A and 1-B) causes the function block to store the actual counter value ACT1 and ACT2 and to
display this value at output CNT_TOUCH1 and CNT_TOUCH2.

The next measurement is again initiated by a rising edge at input EN_TOUCH.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Input EN_TOUCH corresponds to bit 6 in "control byte".

Only one function may be enabled at a time, either the RPI (reference point indicator) or
TOUCH (touch trigger measurement). If both functions are enabled simultaneously or if the
execution of one function is not yet completed when enabling the other function, a RPI function
will have a higher priority than TOUCH.

Data type Default value Range Unit
BOOL - - -

If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of input I3 (for
counter 0) or I11 (for counter 1).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of input I3 (for
counter 0) or I11 (for counter 1).
Input EDGE_TOUCH corresponds to bit 7 in "control byte".

Data type Default value Range Unit
BOOL - - -

A rising edge at input EN_RPI enables a reference point initiator measurement. If input EN_RPI
= TRUE, a rising edge at inputs I3, I4, I5, I6 or I7 (for counter 0) or I11, I12, I13 (for counter 1)
validates the counter value capture and the counter reset during the capture.

EN_TOUCH

EDGE_TOUCH

EN_RPI

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US976

Input EN_RPI corresponds to bit 4 in "control byte".

Only one function may be enabled at a time, either the RPI (reference point indicator) or
TOUCH (touch trigger measurement). If both functions are enabled simultaneously or if the
execution of one function is not yet completed when enabling the other function, a RPI function
will have a higher priority than TOUCH.

Data type Default value Range Unit
BOOL - - -

If set input RESET=TRUE, the counter takes the values 0 to transfer it to output ACT. As long
as input RESET=TRUE, no pulses are counted because the counter is always overwritten by
the value 0.
A rising edge at input I3, I4, I5, I6 or I7 (for counter 0) or I11, I12, I13, I14 or I15 (for counter 1)
causes the function block to reset the value at output ACT.

Input EN_RESET corresponds to bit 2 in "control byte".

Data type Default value Range Unit
BOOL - - -

If set input SET=TRUE, the counter takes the values from input START_VALUE to transfer it to
output ACT. As long as input SET=TRUE, no pulses are counted because the counter is always
overwritten by the input START_VALUE.
A rising edge at input I3, I4, I5,I6 or I7 (for counter 0) or I11, I12, I13,I14 or I15 (for counter 1)
causes the function block to store the START_VALUE value and to display this value at output
ACT.

RESET

SET_START

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 977

Input EN_SET corresponds to bit 1 in "control byte".

Data type Default value Range Unit
BOOL - - -

If set input SET_END=TRUE, the counter is set to the value specified at input END_VALUE.

Data type Default value Range Unit
DINT - - -

The counter can be set to a start value. This value must be applied to the input START_VALUE.
If input SET=TRUE, counter takes this value.
Input START_VALUE corresponds to counter settings (DWORD) of CD522.

Data type Default value Range Unit
DINT - - -

If the counter reaches the planned input END_VALUE, the binary output CF is set to TRUE and
the value is stored.
Input END_VALUE corresponds to counter settings (DWORD) of CD522.

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

SET_END

START_VALUE

END_VALUE

ADR_IN

ADR_OUT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US978

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DINT - - -

The current counter value (actual value) can be retrieved at any time using the output ACT of
the function block.
Output ACT corresponds to input DWORD in "32bit counter".

Data type Default value Range Unit
BOOL - - -

DONE

ERR

ERNO

ACT

CF

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 979

If the zero crossover indicator CF=TRUE, this output indicates the sign of the actual counter
value ACT. It is set to FALSE when counter value ACT is less than or equal to zero. It is set to
TRUE otherwise.
This information is validated when input B is set to TRUE.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The output RDY_TOUCH is set to TRUE when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Output RDY_TOUCH corresponds to input bit 2 in "state byte".

Data type Default value Range Unit
BOOL - - -

The output RDY_RPI is set to TRUE when the RPI operation is done. If input EN_RPI is set to
FALSE, the output RDY_RPI is set to FALSE.
Output RDY_RPI corresponds to input bit 6 in state byte.

Data type Default value Range Unit
BOOL - - -

The overflow is specified at the output OFL.
The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648. Any exceeding or falling below of this value (depending to up
and down use) will set OFL to TRUE.

RDY_TOUCH

RDY_RPI

OFL

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US980

Fig. 18: Detection for output OFL

Output OFL corresponds to input bit 3 in state byte.

Data type Default value Range Unit
BOOL - - -

The output SET_IN is set to TRUE if one of the inputs is configured as SET input.
Output SET_IN corresponds to input bit 4 in "state byte".

Data type Default value Range Unit
BOOL - - -

The output RESET_IN is set to TRUE if one of the inputs is configured as RESET input.
Output RESET_IN corresponds to input bit 5 in "state byte".

Data type Default value Range Unit
DINT 0 - -

The output CNT_TOUCH displays the result of the catch/touch trigger measurement.
Output CNT_TOUCH corresponds to input DWORD in "TOUCH counter value".

SET_IN

RESET_IN

CNT_TOUCH

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 981

Function call in ST
CD522_32BITENCODER (EN :=CD522_32BITENCODER_EN,
 EN_CNT :=CD522_32BITENCODER_EN_CNT,
 CNT_NUM :=CD522_32BITENCODER_CNT_NUM,
 EN_TOUCH :=CD522_32BITENCODER_EN_TOUCH,
 EDGE_TOUCH :=CD522_32BITENCODER_EDGE_TOUCH,
 EN_RPI :=CD522_32BITENCODER_EN_RPI,
 RESET :=CD522_32BITENCODER_RESET,
 SET_START :=CD522_32BITENCODER_SET_START,
 SET_END := CD522_32BITENCONDER_SET_END,
 START_VALUE :=CD522_32BITENCODER_START_VALUE,
 END_VALUE :=CD522_32BITENCODER_EN_VALUE,
 ADR_IN := ADR(CD522_32BITENCODER_ADR_IN),
 ADR_OUT := ADR(CD522_32BITENCODER_ADR_OUT));

CD522_32BITENCODER_DONE :=CD522_32BITENCODER.DONE;
CD522_32BITENCODER_ERR :=CD522_32BITENCODER.ERR;
CD522_32BITENCODER_ERNO :=CD522_32BITENCODER.ERNO;
CD522_32BITENCODER_ACT :=CD522_32BITENCODER.ACT;
CD522_32BITENCODER_CF :=CD522_32BITENCODER.CF
CD522_32BITENCODER_RDY_TOUCH := CD522_32BITENCODER.RDY_TOUCH;
CD522_32BITENCODER_RDY_RPI := CD522_32BITENCODER.RDY_RPI;
CD522_32BITENCODER_OFL :=CD522_32BITENCODER.OFL;
CD522_32BITENCODER_SET_IN :=CD522_32BITENCODER.SET_IN;
CD522_32BITENCODER_RESET_IN :=CD522_32BITENCODER.RESET_IN;
CD522_32BITENCODER_CNT_TOUCH :=CD522_32BITENCODER.CNT_TOUCH;

CD522_32BIT_CNT

Parameter Value
Included in library CD522_AC500_V13.lib

Available from CD522 firm-
ware

V2.1

Available from runtime
system:

V1.0.2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US982

Parameter Value
Available from S500 I/O
modules (DC551) firmware

V1.11

Type Function block with historical values

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_32BIT_CNT should be used with one of these oper-
ating modes:

Operating Mode 1 "Up/Down counter (A)"

Should be specified in PLC Configuration, parameter "mode counter" in order to use one
up/down 32-bit counter on input A (dynamic changes) with set and reset input operation, end
value reached indicator, touch/catch value and overflow flag.

Operating Mode 2 "Up/Down counter with release input (B)"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
up/down 32-bit counter with enable input. Counting is valid when input B is TRUE. Dynamic
up/down count possibility, with set and reset input operation, end value reached indicator,
touch/catch value and overflow flag.

Operating Mode 5 "Up/Down dynamic set (B)/rising edge"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one up/
down 32-bit counter with set and reset input, end value reached indicator, touch/catch value
and overflow flag. Additional function to mode 1 is the dynamic set input (B) on rising edge of
physical.

Operating Mode 6 "Up/Down dynamic set (B)/falling edge"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one up/
down 32-bit counter with set and reset input, end value reached indicator, touch/catch value
and overflow flag. Additional function to mode 1 is the dynamic set input (B) on falling edge of
physical.

The module CD522 provides 2 Up/Down 32-bit counter functions. A signal used for pulse count
is identified by A0 for counter 0 and A1 for counter 1. Another signal used for enable or dynamic
set is identified by B0 for counter 0 and B1 for counter 1.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 983

Input description

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
integer (CNT_TOUCH). The touch/catch operation could be settled on rising or falling edge
depending on parameter EDGE_TOUCH (see figure below).

Fig. 19: Procedure and associated counting value with A signal

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.

EN_TOUCH

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US984

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CNT_NUM contains the counter number in the module:
● CNT_NUM = 0 is related to input A0, B0, Z0
● CNT_NUM = 1 is related to input A1, B1, Z1

Data type Default value Range Unit
BOOL - - -

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and the pulses are lost.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.
Input EN_CNT corresponds to bit 0 in "control byte".

Data type Default value Range Unit
BOOL - - -

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at input I3 (for counters 0-A and 0-B)) or I11 (for counters
1-A and 1-B) causes the function block to store the actual counter value ACT1 and ACT2 and to
display this value at output CNT_TOUCH1 and CNT_TOUCH2.

The next measurement is again initiated by a rising edge at input EN_TOUCH.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Input EN_TOUCH corresponds to bit 6 in "control byte".

EN

CNT_NUM

EN_COUNT

EN_TOUCH

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 985

Data type Default value Range Unit
BOOL - - -

If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of input I3 (for
counters 0-A and 0-B) or I11 (for counters 1-A and 1-B).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of input I3 (for
counters 0-A and 0-B) or I11 (for counters 1-A and 1-B).
Input EDGE_TOUCH corresponds to bit 7 in "control byte".

Data type Default value Range Unit
BOOL - - -

At input UD, the counting selection is set for up/down counting mode:
UD=FALSE: count up
UD=TRUE: count down
Input UD corresponds to output bit 5 in "control byte".

Data type Default value Range Unit
BOOL - - -

If set input RESET=TRUE, the counter takes the values 0 to transfer it to output ACT. As long
as input RESET=TRUE, no pulses are counted because the counter is always overwritten by
the value 0.
A rising edge at input I3, I4, I5, I6 or I7 (for counter 0) or I11, I12, I13, I14 or I15 (for counter 1)
causes the function block to reset the value at output ACT.

Input EN_RESET corresponds to bit 2 in "control byte".

Data type Default value Range Unit
BOOL - - -

If set input SET=TRUE, the counter takes the values from input START_VALUE to transfer it to
output ACT. As long as input SET=TRUE, no pulses are counted because the counter is always
overwritten by the input START_VALUE.
A rising edge at input I3, I4, I5,I6 or I7 (for counter 0) or I11, I12, I13,I14 or I15 (for counter 1)
causes the function block to store the START_VALUE value and to display this value at output
ACT.

EDGE_TOUCH

UD

RESET

SET_START

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US986

Input EN_SET corresponds to bit 1 in "control byte".

Data type Default value Range Unit
BOOL - - -

If set input SET_END=TRUE, the counter is set to the value specified at input END_VALUE.

Data type Default value Range Unit
DINT - - -

The counter can be set to a start value. This value must be applied to the input START_VALUE.
If input SET=TRUE, counter takes this value.
Input START_VALUE corresponds to counter settings (DWORD) of CD522.

Data type Default value Range Unit
DINT - - -

If the counter reaches the planned input END_VALUE, the binary output CF is set to TRUE and
the value is stored.
Input END_VALUE corresponds to counter settings (DWORD) of CD522.

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

SET_END

START_VALUE

END_VALUE

ADR_IN

ADR_OUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 987

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
INT 0 - -

DONE

ERR

ERNO

ACT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US988

The current counter value (actual value) can be retrieved at any time using the output ACT of
the function block.
Output ACT corresponds to input low word in "32bit counter".

Data type Default value Range Unit
DINT 0 - -

The output CNT_TOUCH displays the result of the catch/touch trigger measurement.
Output CNT_TOUCH corresponds to input DWORD in "TOUCH counter value".

Data type Default value Range Unit
BOOL - - -

If the zero crossover indicator CF=TRUE, this output indicates the sign of the actual counter
value ACT. It is set to FALSE when counter value ACT is less than or equal to zero. It is set to
TRUE otherwise.
This information is validated when input B is set to TRUE.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The output RDY_TOUCH is set to TRUE when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Output RDY_TOUCH corresponds to input bit 2 in "state byte".

Data type Default value Range Unit
BOOL - - -

The overflow is specified at the output OFL.
The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648. Any exceeding or falling below of this value (depending to up
and down use) will set OFL to TRUE.

CNT_TOUCH

CF

RDY_TOUCH

OFL

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 989

Fig. 20: Detection for output OFL

Output OFL corresponds to input bit 3 in state byte.

Data type Default value Range Unit
BOOL - - -

The output SET_IN is set to TRUE if one of the inputs is configured as SET input.
Output SET_IN corresponds to input bit 4 in "state byte".

Data type Default value Range Unit
BOOL - - -

The output RESET_IN is set to TRUE if one of the inputs is configured as RESET input.
Output RESET_IN corresponds to input bit 5 in "state byte".

Function call in ST
CD522_32BITCNT (EN := CD522_32BITCNT_EN,
 CNT_NUM := CD522_32BITCNT_CNT_NUM,
 EN_CNT := CD522_32BITCNT_EN_CNT,
 EN_TOUCH := CD522_32BITCNT_EN_TOUCH,
 EDGE_TOUCH := CD522_32BITCNT_EDGE_TOUCH,
 UD := CD522_32BITCNT_UD,
 RESET := CD522_32BITCNT_RESET,
 SET_START := CD522_32BITCNT_SET_START,
 SET_END := CD522_32BITCNT_SET_END,

SET_IN

RESET_IN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US990

 START_VALUE := CD522_32BITCNT_START_VALUE,
 END_VALUE := CD522_32BITCNT_END_VALUE,
 ADR_IN := ADR(CD522_32BITCNT_ADR_IN),
 ADR_OUT := ADR(CD522_32BITCNT_ADR_OUT));

CD522_32BITCNT_DONE :=CD522_32BITCNT.DONE;
CD522_32BITCNT_ERR :=CD522_32BITCNT.ERR;
CD522_32BITCNT_ERNO :=CD522_32BITCNT.ERNO;
CD522_32BITCNT_ACT :=CD522_32BITCNT.ACT;
CD522_32BITCNT_CNT_TOUCH :=CD522_32BITCNT.CNT_TOUCH;
CD522_32BITCNT_CF :=CD522_32BITCNT.CF;
CD522_32BITCNT_RDY_TOUCH :=CD522_32BITCNT.RDY_TOUCH;
CD522_32BITCNT_OFL :=CD522_32BITCNT.OFL;
CD522_32BITCNT_SET_IN :=CD522_32BITCNT.SET_IN;
CD522_32BITCNT_RESET_IN :=CD522_32BITCNT.RESET_IN;

CD522_16BIT_CNT

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_16BIT_CNT should be used with one of these oper-
ating modes:

Operating Mode 8 "Up/Down with release (B), 0 cross detec-
tion"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
up/down 16 bit counter (in range of -32768 to 32767) with enable input and zero crossover
detection (CF). Counting is valid when input B is TRUE. With set and reset input operation and
touch/catch value.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 991

The module CD522 provides 2 Up/Down 16 bit counter functions. A signal used for pulse count
is identified by A0 for counter 0 and A1 for counter 1. Another signal used for enable or dynamic
set is identified by B0 for counter 0 and B1 for counter 1.

Parameter Value
Included in library CD522_AC500_V13.lib

Available from CD522 firm-
ware

V2.1

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Type Function block with historical values

Input description

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
integer (CNT_TOUCH). The touch/catch operation could be settled on rising or falling edge
depending on parameter EDGE_TOUCH (see figure below).

EN_TOUCH

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US992

Fig. 21: Procedure and associated counting value with A signal

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CNT_NUM contains the counter number in the module:
● CNT_NUM = 0 is related to input A0, B0, Z0
● CNT_NUM = 1 is related to input A1, B1, Z1

Data type Default value Range Unit
BOOL - - -

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and the pulses are lost.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.
Input EN_CNT corresponds to bit 0 in "control byte".

EN

CNT_NUM

EN_COUNT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 993

Data type Default value Range Unit
BOOL - - -

At input UD, the counting selection is set for up/down counting mode:
UD=FALSE: count up
UD=TRUE: count down
Input UD corresponds to output bit 5 in "control byte".

Data type Default value Range Unit
BOOL - - -

If set input RESET=TRUE, the counter takes the values 0 to transfer it to output ACT. As long
as input RESET=TRUE, no pulses are counted because the counter is always overwritten by
the value 0.
A rising edge at input I3, I4, I5, I6 or I7 (for counter 0) or I11, I12, I13, I14 or I15 (for counter 1)
causes the function block to reset the value at output ACT.

Input EN_RESET corresponds to bit 2 in "control byte".

Data type Default value Range Unit
BOOL - - -

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at input I3 (for counters 0-A and 0-B)) or I11 (for counters
1-A and 1-B) causes the function block to store the actual counter value ACT1 and ACT2 and to
display this value at output CNT_TOUCH1 and CNT_TOUCH2.

The next measurement is again initiated by a rising edge at input EN_TOUCH.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Input EN_TOUCH corresponds to bit 6 in "control byte".

UD

RESET

EN_TOUCH

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US994

Data type Default value Range Unit
BOOL - - -

If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of input I3 (for
counters 0-A and 0-B) or I11 (for counters 1-A and 1-B).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of input I3 (for
counters 0-A and 0-B) or I11 (for counters 1-A and 1-B).
Input EDGE_TOUCH corresponds to bit 7 in "control byte".

Data type Default value Range Unit
BOOL - - -

If set input SET=TRUE, the counter takes the values from input START_VALUE to transfer it to
output ACT. As long as input SET=TRUE, no pulses are counted because the counter is always
overwritten by the input START_VALUE.
A rising edge at input I3, I4, I5,I6 or I7 (for counter 0) or I11, I12, I13,I14 or I15 (for counter 1)
causes the function block to store the START_VALUE value and to display this value at output
ACT.

Input EN_SET corresponds to bit 1 in "control byte".

Data type Default value Range Unit
INT - - -

The counter can be set to a start value. This value must be applied to the input CNT_SET.
If input SET=TRUE, counter takes this value.
Input START_VALUE corresponds to output low word in "counter settings".

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.

EDGE_TOUCH

SET

CNT_SET

ADR_IN

ADR_OUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 995

Example (for counter 0):

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL - - -

DONE

ERR

ERNO

CF

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US996

If the zero crossover indicator CF=TRUE, this output indicates the sign of the actual counter
value ACT. It is set to FALSE when counter value ACT is less than or equal to zero. It is set to
TRUE otherwise.
This information is validated when input B is set to TRUE.

Data type Default value Range Unit
BOOL - - -

The output SET_IN is set to TRUE if one of the inputs is configured as SET input.
Output SET_IN corresponds to input bit 4 in "state byte".

Data type Default value Range Unit
BOOL - - -

The output RESET_IN is set to TRUE if one of the inputs is configured as RESET input.
Output RESET_IN corresponds to input bit 5 in "state byte".

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The output RDY_TOUCH is set to TRUE when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Output RDY_TOUCH corresponds to input bit 2 in "state byte".

Data type Default value Range Unit
INT 0 - -

The current counter value (actual value) can be retrieved at any time using the output ACT of
the function block.
Output ACT corresponds to input low word in "32bit counter".

Data type Default value Range Unit
INT - - -

The output CNT_TOUCH displays the result of the catch/touch trigger measurement.
Output CNT_TOUCH corresponds to input low word in "TOUCH counter value".

Function call in ST
CD522_16BITCNT (EN:=CD522_16BITCNT_EN,
 CNT_NUM:=CD522_16BITCNT_CNT_NUM,
 EN_CNT:=CD522_16BITCNT_EN_CNT,
 UD:=CD522_16BITCNT_UD,
 RESET:= CD522_16BITCNT_RESET,
 EN_TOUCH:=CD522_16BITCNT_EN_TOUCH,
 EDGE_TOUCH:=CD522_16BITCNT_EDGE_TOUCH,
 SET:= CD522_16BITCNT_SET,
 CNT_SET:= CD522_16BITCNT_CNT_SET,
 ADR_IN:= ADR(CD522_16BITCNT_ADR_IN),
 ADR_OUT:= ADR(CD522_16BITCNT_ADR_OUT));

SET_IN

RESET_IN

RDY_TOUCH

ACT

CNT_TOUCH

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 997

CD522_16BITCNT_DONE := CD522_16BITCNT.DONE;
CD522_16BITCNT_ERR := CD522_16BITCNT.ERR;
CD522_16BITCNT_ERNO := CD522_16BITCNT.ERNO;
CD522_16BITCNT_CF := CD522_16BITCNT.CF;
CD522_16BITCNT_SET_IN := CD522_16BITCNT.SET_IN;
CD522_16BITCNT_RESET_IN := CD522_16BITCNT.RESET_IN;
CD522_16BITCNT_RDY_TOUCH := CD522_16BITCNT.RDY_TOUCH;
CD522_16BITCNT_ACT := CD522_16BITCNT.ACT;
CD522_16BITCNT_CNT_TOUCH := CD522_16BITCNT.CNT_TOUCH;

CD522_16BIT_2CNT

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_16BIT_2CNT should be used with one of these oper-
ating modes:

Operating Mode 3 "Up/Down counters (A,B)"

Should be specified in PLC Configuration, parameter "mode counter" in order to use 2 Up/
Down 16 bit counter (on rising edge count) functions, with separate up/down, reset operation
and overflow flag.

Operating Mode 4 "Up/Down (A, B on falling edges)"

Should be specified in PLC Configuration, parameter mode counter in order to use two Up/
Down 16 bit counter functions (with A on rising edge count and B on falling edge count), With
separate up/down, reset operation and overflow flag.

The module CD522 provides 4 Up/Down 16 bit counter functions. A signal used for pulse count
is identified by A0 and B0 for counter A and A1 and B1 for counter B.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US998

Parameter Value
Included in library CD522_AC500_V13.lib

Available from CD522 firm-
ware

V2.1

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Type Function block with historical values

Input description

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
integer (CNT_TOUCH). The touch/catch operation could be settled on rising or falling edge
depending on parameter EDGE_TOUCH (see figure below).

EN_TOUCH

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 999

Fig. 22: Procedure and associated counting value with A signal

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CNT_NUM contains the counter number in the module:
● CNT_NUM = 0 is related to input A0, B0, Z0
● CNT_NUM = 1 is related to input A1, B1, Z1

Data type Default value Range Unit
BOOL - - -

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and the pulses are lost.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.
Input EN_CNT corresponds to bit 0 in "control byte".

EN

CNT_NUM

EN_CNT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1000

Data type Default value Range Unit
BOOL - - -

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at input I3 (for counters 0-A and 0-B)) or I11 (for counters
1-A and 1-B) causes the function block to store the actual counter value ACT1 and ACT2 and to
display this value at output CNT_TOUCH1 and CNT_TOUCH2.

The next measurement is again initiated by a rising edge at input EN_TOUCH.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Input EN_TOUCH corresponds to bit 6 in "control byte".

Data type Default value Range Unit
BOOL - - -

If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of input I3 (for
counters 0-A and 0-B) or I11 (for counters 1-A and 1-B).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of input I3 (for
counters 0-A and 0-B) or I11 (for counters 1-A and 1-B).
Input EDGE_TOUCH corresponds to bit 7 in "control byte".

Data type Default value Range Unit
BOOL - - -

At input UD1, the counting selection is set for up/down counting mode for counter A:
UD1=FALSE: count up
UD1=TRUE: count down
Input UD1 corresponds to output bit 3 in control byte.

Data type Default value Range Unit
BOOL - - -

At input UD2, the counting selection is set for up/down counting mode for counter B:
UD2=FALSE: count up
UD2=TRUE: count down
Input UD2 corresponds to output bit 5 in control byte.

EN_TOUCH

EDGE_TOUCH

UD1

UD2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1001

Data type Default value Range Unit
BOOL - - -

If set input RESET1=TRUE, the counter A takes the values 0 to transfer it to output ACT1. As
long as input RESET1=TRUE, no pulses are counted because the counter is always overwritten
by the value 0.
A rising edge at input I3, I4, I5, I6 or I7 (for counter 0-A) or I11, I12, I13, I14 or I15 (for counter
1-A) causes the function block to reset the value at output ACT1.

Input EN_RESET1 corresponds to bit 2 in "control byte".

Data type Default value Range Unit
BOOL - - -

If set input RESET2=TRUE, the counter takes B the values 0 to transfer it to output ACT2. As
long as input RESET2=TRUE, no pulses are counted because the counter is always overwritten
by the value 0.
A rising edge at input I3, I4, I5, I6 or I7 (for counter 0-B) or I11, I12, I13, I14 or I15 (for counter
1-B) causes the function block to reset the value at output ACT2.

Input EN_RESET2 corresponds to bit 3 in "control byte".

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

RESET1

RESET2

ADR_IN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1002

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

ADR_OUT

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1003

Data type Default value Range Unit
INT - - -

The current counter value (actual value) from counter A can be retrieved at any time using the
output ACT1 of the function block.
Output ACT1 corresponds to input high word in 32bit counter.

Data type Default value Range Unit
INT - - -

The current counter value (actual value) from counter B can be retrieved at any time using the
output ACT2 of the function block.
Output ACT2 corresponds to input low word in 32bit counter.

Data type Default value Range Unit
INT - - -

The output CNT_TOUCH1 displays the result of the catch/touch trigger measurement for
counter A.
Output CNT_TOUCH1 corresponds to input high word in TOUCH counter value.

Data type Default value Range Unit
INT - - -

The output CNT_TOUCH2 displays the result of the catch/touch trigger measurement for
counter B.
Output CNT_TOUCH2 corresponds to input low word in TOUCH counter value.

Data type Default value Range Unit
BOOL - - -

The overflow from counter A is specified at the output OFL1.
The counter operates as infinite counter. It is set to TRUE when an overflow occurs, i. e. the
counter value ACT1 goes up to value 16#FFFF= -1. Any exceeding or falling below of this value
(depending to up use and down use) will set OFL1=TRUE. The output OFL1 is reset when the
configuration is changed and if counter value ACT1 is set or reset.
Output OFL1 corresponds to input bit 3 in state byte.

Data type Default value Range Unit
BOOL - - -

The overflow from counter B is specified at the output OFL2.
The counter operates as infinite counter. It is set to TRUE when an overflow occurs, i. e. the
counter value ACT2 goes up to value 16#FFFF= -1. Any exceeding or falling below of this value
(depending to up use and down use) will set OFL2=TRUE. The output OFL2 is reset when the
configuration is changed and if counter value ACT2 is set or reset.
Output OFL2 corresponds to input bit 4 in state byte.

ACT1

ACT2

CNT_TOUCH1

CNT_TOUCH2

OFL2

OFL2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1004

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The output RDY_TOUCH is set to TRUE when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Output RDY_TOUCH corresponds to input bit 2 in "state byte".

Data type Default value Range Unit
BOOL - - -

The output RESET_IN1 is set to TRUE if one of the inputs is configured as RESET input for
counter A.
Output RESET_IN1 corresponds to input bit 5 in "state byte".

Data type Default value Range Unit
BOOL - - -

The output RESET_IN2 is set to TRUE if one of the inputs is configured as RESET input for
counter B.
Output RESET_IN2 corresponds to input bit 7 in "state byte".

Function call in ST
CD522_16BIT2CNT (EN:=CD522_16BIT2CNT_EN,
 CNT_NUM:= CD522_16BIT2CNT_CNT_NUM,
 EN_CNT:=CD522_16BIT2CNT_EN_CNT,
 EN_TOUCH:=CD522_16BIT2CNT_EN_TOUCH,
 EDGE_TOUCH:=CD522_16BIT2CNT_EDGE_TOUCH,
 UD1:=CD522_16BIT2CNT_UD1,
 UD2:= CD522_16BIT2CNT_UD2,
 RESET1:=CD522_16BIT2CNT_RESET1,
 RESET2:=CD522_16BIT2CNT_RESET_IN1,
 ADR_IN:= ADR(CD522_16BIT2CNT_ADR_IN),
 ADR_OUT:= ADR(CD522_16BIT2CNT_ADR_OUT));

CD522_16BIT2CNT_DONE := CD522_16BIT2CNT.DONE;
CD522_16BIT2CNT_ERR := CD522_16BIT2CNT.ERR;
CD522_16BIT2CNT_ERNO := CD522_16BIT2CNT.ERNO;
CD522_16BIT2CNT_ACT1 := CD522_16BIT2CNT.ACT1;
CD522_16BIT2CNT_ACT2 := CD522_16BIT2CNT.ACT2;
CD522_16BIT2CNT_CNT_TOUCH1 := CD522_16BIT2CNT.CNT_TOUCH1;
CD522_16BIT2CNT_CNT_TOUCH2 := CD522_16BIT2CNT.CNT_TOUCH2;
CD522_16BIT2CNT_OFL1 := CD522_16BIT2CNT.OFL1;
CD522_16BIT2CNT_OFL2 := CD522_16BIT2CNT.OFL2;
CD522_16BIT2CNT_ RDY_TOUCH := CD522_16BIT2CNT.RDY_TOUCH;
CD522_16BIT2CNT_RESET_IN1 := CD522_16BIT2CNT.RESET_IN1;
CD522_16BIT2CNT_RESET_IN2 := CD522_16BIT2CNT.RESET_IN2;

RDY_TOUCH

RESET_IN1

RESET_IN2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1005

CD522_SSI_CNT

Parameter Value
Included in library CD522_AC500_V13.lib

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Available from CD522 firm-
ware

V2.1

Type Function block with historical values

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_SSI_CNT should be used with one of these operating
modes:

Operating Mode 14 "SSI, absolute encoder"

Should be specified in PLC Configuration; parameter mode counter in order to use absolute
encoder with SSI interface.

The module CD522 provides 2 SSI absolute encoder functions. There is an interface for abso-
lute angle and linear encoders (displacement measurement systems).
It allows the transmission of absolute position information through a serial data transfer.
The transmission is based on synchronous serial communication. The device sends a clock
signal to the encoder and synchronously,the encoder returns the positioning data from the most
significant to the less significant bit.
The synchronization for a new data stream is based on time without clock pulse. This quiet time
depends on the encoder.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1006

Fig. 23: Chronogram with data organization with the clock pulse

The resolution of the encoder device (see technical data from manufacturer) can be set with
configuration, number of bits, etc. in PLC configuration, parameter SSI resolution in bit:

The trace B of module CD522 is switched as output signal (differential). On the rising edge of
the signal, the sensor shifts a new value, starting from the most significant bit.
The clock frequency can be set to 200 kHz, 500 kHz, and 1 MHz Should be specified in PLC
Configuration, parameter SSI frequency:

NOTICE!
Risk of malfunctions!
The clock frequency is only an approximately value.
Do not use the clock frequency for any other purposes, e.g. time measure-
ments.

The complete read sequence is launched regularly by the module CD522. The interval between
each sequence can be set from 1 ms to 255 ms in PLC Configuration, parameter SSI polling
time:

Touch operation is valid with SSI sensor. The goal of touch operation is to synchronize sensors
with the same hardware signal. In the SSI mode the management is different depending on the
reading procedure is running or not.
If the reading procedure has already started while the touch signal becomes active, the reading
procedure finishes normally and the last read value is stored in the touch register.

SSI polling time
definition

SSI and touch/
catch operation

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1007

If the reading procedure has not started, the encoder is in the interval between 2 measure-
ments. The reading procedure is started one time more and the result of the last reading is
stored in the touch register.

SSI and Touch/Catch Operation: see EN_TOUCH Ä “EN_TOUCH” on page 1009.
Overflow Operation: see OFL Ä “OFL” on page 989.

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1008

When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CNT_NUM contains the counter number in the module:
● CNT_NUM = 0 is related to input A0, B0, Z0
● CNT_NUM = 1 is related to input A1, B1, Z1

Data type Default value Range Unit
BOOL - - -

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and the pulses are lost.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.
Input EN_CNT corresponds to bit 0 in "control byte".

Data type Default value Range Unit
BOOL - - -

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(NTOUCH), when the pre-determined edge occurs; the current counter value is stored in the
touch value double word. In the same time, the status NTOUCH is set to TRUE.
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at input I3 (for counters 0-A and 0-B)) or I11 (for counters
1-A and 1-B) causes the function block to store the actual counter value ACT1 and ACT2 and to
display this value at output CNT_TOUCH1 and CNT_TOUCH2.

The next measurement is again initiated by a rising edge at input EN_TOUCH.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Input EN_TOUCH corresponds to bit 6 in "control byte".

Data type Default value Range Unit
BOOL - - -

If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of input I3 (for
counter 0) or I11 (for counter 1).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of input I3 (for
counter 0) or I11 (for counter 1).

CNT_NUM

EN_CNT

EN_TOUCH

EDGE_TOUCH

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1009

Input EDGE_TOUCH corresponds to bit 7 in "control byte".

Data type Default value Range Unit
BOOL - - -

If EN_GRAY=TRUE, the actual value will be calculated from GRAY code.

Data type Default value Range Unit
BOOL - - -

If EN_BCD=TRUE, the actual value will be calculated from BCD code.

Data type Default value Range Unit
BOOL - - -

If set input SET_END=TRUE, the counter is set to the value specified at input END_VALUE.

Data type Default value Range Unit
DWORD - - -

If the counter reaches the planned input END_VALUE (read while SET_END is set to TRUE),
the outputs configured as ENDV is set to TRUE.

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

EN_GRAY

EN_BCD

SET_END

END_VALUE

ADR_IN

ADR_OUT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1010

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
INT 0 - -

The current counter value (actual value) can be retrieved at any time using the output ACT of
the function block.
Output ACT corresponds to input low word in "32bit counter".

Data type Default value Range Unit
DWORD - - -

The output CNT_TOUCH displays the result of the catch/touch trigger measurement.
Output CNT_TOUCH corresponds to input DWORD in "TOUCH counter value".

DONE

ERR

ERNO

ACT

CNT_TOUCH

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1011

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The output RDY_TOUCH is set to TRUE when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.
Output RDY_TOUCH corresponds to input bit 2 in "state byte".

Data type Default value Range Unit
BOOL - - -

The output SET_IN is set to TRUE if one of the inputs is configured as SET input.
Output SET_IN corresponds to input bit 4 in "state byte".

Data type Default value Range Unit
BOOL - - -

The output RESET_IN is set to TRUE if one of the inputs is configured as RESET input.
Output RESET_IN corresponds to input bit 5 in "state byte".

Function call in ST
CD522SSICNT (EN := CD522CNTSSI_EN,
 CNT_NUM := CD522SSICNT_CNT_NUM,
 EN_CNT := CD522COUNTSSI_EN_CNT,
 EN_TOUCH := CD522CNTSSI_EN_TOUCH,
 EDGE_TOUCH := CD522CNTSSI_EDGE_TOUCH,
 EN_GRAY := CD522CNTSSI_EN_GRAY,
 EN_BCD := CD522CNTSSI_EN_BCD,
 SET_END := CD522CNTSSI_SET_END,
 END_VALUE := CD522CNTSSI_END_VALUE,
 ADR_IN := ADR(CD522CNTSSI_ADR_IN),
 ADR_OUT := ADR(CD522CNTSSI_ADR_OUT));

CD522SSICNT_DONE := CD522SSICNT.DONE;
CD522SSICNT_ERR := CD522SSICNT.ERR;
CD522SSICNT_ERNO := CD522SSICNT.ERNO;
CD522SSICNT_ACT := CD522SSICNT.ACT;
CD522SSICNT_CNT_TOUCH := CD522SSICNT.CNT_TOUCH;
CD522SSICNT_RDY_TOUCH := CD522SSICNT.RDY_TOUCH;
CD522SSICNT_SET_IN := CD522SSICNT.SET_IN;
CD522SSICNT_RESET_IN := CD522SSICNT.RESET_IN;

RDY_TOUCH

SET_IN

RESET_IN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1012

CD522_PWM_OUT

Parameter Value
Included in library CD522_AC500_V13.lib

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Available from CD522 firm-
ware

V2.1

Type Function block with historical values

The module CD522 can be used to control one output pulsing signal (Max= 100 KHz) with an
adjustable duty cycle (ON/OFF ratio, max=100%). The PWM operating mode is configured in
Automation Builder.

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added in I/O bus configuration.
The module CD522 provides two independent outputs which can be used in PWM mode (O0
and O1). Both have the same specification and can work separately.
The function block CD522_PWM_OUT should be used to control with input EN_PWM, configure
the frequency with input FREQ and the input duty cycle DUTY_CYCLE of PWM outputs (pulse-
width modulator).

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1013

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CHN_NUM contains the channel number managed by the function block:
● CHN_NUM = 0: the output O0 is managed
● CHN_NUM = 1: the output O1 is managed

Data type Default value Range Unit
BOOL - - -

If EN_PWM = TRUE, the pulse-width modulator is enabled. If EN_PWM = FALSE, no pulse-
width modulation is performed.
Input EN_PWM corresponds to output bit 7 in "control byte".

Data type Default value Range Unit
DWORD - 1 ... 100 KHz

Input FREQ is used to specify the frequency of output. The frequency can be set from 1 to 100
KHz.
The duty cycle is fixed (50 %).
The frequency value is defined with a double word (DWORD), but the internal communication
with CD522 is realized with WORD type. For frequencies greater than 65535 Hz (word limita-
tion) an additional bit is internally used as multiplier. Thus, for such frequencies the resolution
becomes 10 Hz.
The additional multiplier bit is the bit 0 of "control byte". If bit 0 of "control byte"=TRUE, the
frequency multiplier x10 is enabled.

EN

CHN_NUM

EN_PWM

FREQ

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1014

Data type Default value Range Unit
WORD - 1 ... 100 KHz

The input DUTY_CYCLE is used to specify the percentage of time set to TRUE. The duty cycle
is from 0.0 to 100.0 (0 % to 100 %); the value is written without dot. That means, for example,
for 75.8 % the value written will be 758. The max. value authorized will be 1000 to specify a duty
cycle = 100 %.
On fast outputs O0 and O1, the brightness of the yellow LED depends on the value of duty
cycle specified (from 0 to 100 %).
If the written value is greater than 1000 or less than 0, an error code will be displayed in ERR
and ERNO outputs and the red error LED CH-ERR1 will flash. The last entered valid value will
be used or the value '0' if no value has been entered before.
Input DUTY_CYCLE corresponds to output word "PWM Duty cycle/pulse".

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

Output description

DUTY_CYCLE

ADR_IN

ADR_OUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1015

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
CD522PWMOUT (EN := CD522PWMOUT_EN,
 CHN_NUM := CD522PWMOUT_CHN_NUM,
 FREQ := CD522PWMOUT_FREQ,
 DUTY_CYCLE := CD522PWMOUT_DUTY_CYCLE,
 ADR_IN := ADR(CD522PWMOUT_ADR_IN),
 ADR_OUT := ADR(CD522PWMOUT_ADR_OUT));

CD522PWMOUT_DONE := CD522PWMOUT.DONE;
CD522PWMOUT_ERR := CD522PWMOUT.ERR;
CD522PWMOUT_ERNO := CD522PWMOUT.ERNO;

CD522_PULSE_OUT

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1016

Parameter Value
Included in library CD522_AC500_V13.lib

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Available from CD522 firm-
ware

V2.1

Type Function block with historical values

The module CD522 can be used to control one output pulses signals with a fixed duty cycle
(ON/OFF ratio 50 %) and number of pulses sent with a fixed frequency (can be modified) .The
PULSE operating mode is configured in PLC Configuration using module parameters:

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed by using input and output oper-
ands. These necessary operands are created and reserved automatically, when one CD522
module is added into the I/O bus configuration.
The module CD522 provides two independents outputs used in PULSE mode (O0 and O1).
Both have the same specification and can work separately.
The function block CD522_PULSE_OUT should be used to control the pulse output, with input
EN_FREQ, configure the frequency with input FREQ and the number of pulses with input NUM.
The number of pulses sent can be displayed in percentage (from 0 % to 100%).
On the fast outputs O0 or O1, the brightness of yellow LED depends on the number of pulse
emitted (from 0 and 100%), When the value 100% is obtained, the yellow LED status is off.

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1017

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CHN_NUM contains the channel number managed by the function block:
● CHN_NUM = 0: the output O0 is managed
● CHN_NUM = 1: the output O1 is managed

Data type Default value Range Unit
BOOL - - -

If EN_FREQ=TRUE, the frequency output is enabled. If EN_FREQ = FALSE, no frequency
output is performed.
Input EN_FREQ corresponds to output bit 7 in "control byte".

Data type Default value Range Unit
WORD - 0 ... 15 Khz

The input FREQ is used to specify the frequency of output pulse.
The input FREQ corresponds to output word "PWM Frequency".

Data type Default value Range Unit
WORD - - -

The input NUM is used to specify the number of pulses to be sent. The number is from 1 to
65535 pulses.
The input NUM corresponds to output word "PWM Frequency".

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

EN

CHN_NUM

EN_FREQ

FREQ

NUM

ADR_IN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1018

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL - - -

ADR_OUT

DONE

ERR

ERNO

RDY_PULSE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1019

The output RDY_PULSE is set to TRUE when all pulses have been sent.

Data type Default value Range Unit
BYTE - - %

The output ACT_PULSE return the percentage of pulses sent, from 0 to 100 %.
100 % is obtained only when the totality of pulses has been sent.
On the fast outputs O0 or O1, the brightness of the yellow LED depends on the number of pulse
emitted (from 0 to 100 %), When the value 100 % is obtained, the yellow LED status is off.
Output ACT_PULSE corresponds to input byte in "state byte Sx %pulse".

Function call in ST
CD522PULSEOUT (EN := CD522PULSEOUT_EN,
 CHN_NUM := CD522PULSEOUT_CHN_NUM,
 EN_FREQ := CD522PULSEOUT_EN_FREQ,
 FREQ := CD522PULSEOUT_FREQ,
 NUM := CD522PULSEOUT_NUM,
 ADR_IN := ADR(CD522PULSEOUT_ADR_IN),
 ADR_OUT := ADR(CD522PULSEOUT_ADR_OUT));

CD522PULSEOUT_DONE := CD522PULSEOUT.DONE;
CD522PULSEOUT_ERR := CD522PULSEOUT.ERR;
CD522PULSEOUT_ERNO := CD522PULSEOUT.ERNO;
CD522PULSEOUT_RDY_PULSE := CD522PULSEOUT.RDY_PULSE;
CD522PULSEOUT_ACT_PULSE := CD522PULSEOUT.ACT_PULSE;

CD522_FREQ_OUT

Parameter Value
Included in library CD522_AC500_V13.lib

Available from CD522 firm-
ware

V2.1

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Type Function block with historical values

ACT_PULSE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1020

The module CD522 can be used to control one output pulses signals with an fixed duty cycle
(ON/OFF ratio 50 %).The PWM operating mode is configured in PLC Configuration using
module parameters:

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added in I/O bus configuration.
The module CD522 provides two independent outputs which can be used in PWM mode (O0
and O1). Both have the same specification and can work separately.
The function block CD522_FREQ_OUT should be used to control with input EN_FREQ and
configure the frequency with input FREQ of frequency outputs (1 kHz to 100 kHz).

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CHN_NUM contains the channel number managed by the function block:
● CHN_NUM = 0: the output O0 is managed
● CHN_NUM = 1: the output O1 is managed

EN

CHN_NUM

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1021

Data type Default value Range Unit
BOOL - - -

If EN_FREQ=TRUE, the frequency output is enabled. If EN_FREQ = FALSE, no frequency
output is performed.
Input EN_FREQ corresponds to output bit 7 in "control byte".

Data type Default value Range Unit
DWORD - 1 ... 100 KHz

Input FREQ is used to specify the frequency of output. The frequency can be set from 1 to 100
KHz.
The duty cycle is fixed (50 %).
The frequency value is defined with a double word (DWORD), but the internal communication
with CD522 is realized with WORD type. For frequencies greater than 65535 Hz (word limita-
tion) an additional bit is internally used as multiplier. Thus, for such frequencies the resolution
becomes 10 Hz.
The additional multiplier bit is the bit 0 of "control byte". If bit 0 of "control byte"=TRUE, the
frequency multiplier x10 is enabled.

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

EN_FREQ

FREQ

ADR_IN

ADR_OUT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1022

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
CD522FREQOUT (EN:= CD522FREQOUT_EN,
 CHN_NUM:= CD522FREQOUT_CHN_NUM,
 EN_FREQ:= CD522FREQOUT_EN_FREQ,
 FREQ:= CD522FREQOUT_FREQ,
 ADR_IN:= ADR(CD522FREQOUT_ADR_IN),
 ADR_OUT:= ADR(CD522FREQOUT_ADR_OUT));

CD522FREQOUT_DONE := CD522FREQOUT.DONE;
CD522FREQOUT_ERR := CD522FREQOUT.ERR;
CD522FREQOUT_ERNO := CD522FREQOUT.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1023

CD522_FREQ_SCAN

Parameter Value
Included in library CD522_AC500_V13.lib

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Available from CD522 firm-
ware

V2.1

Type Function block with historical values

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_FREQ_SCAN should be used with one of these
operating modes:

Operating Mode 15 "Time frequency meter (Z)"
Should be specified in PLC Configuration with the parameter mode counter.

The module CD522 provides 2 channels (Z0 and Z1) which can be used to measure times,
frequencies and rotational speeds with a resolution of 1 µs. Both have the same specification
and can work separately.
The function block CD522_FREQ_SCAN should be used to control with input EN_CNT, con-
figure the capture on falling edge with input EN_0 or rising edge with input EN_1 of signal,
and the specification of the mode of the measurement (time, frequency and Rpm) with input
EN_FREQ.
The table shows values measured according to configuration input parameters and this example
of timing.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1024

NOTICE!
Risk of malfunctions!
Never use the time measurement (bit EN_FREQ=FALSE) mode if the CD522 is
connected to a CS31 communication interface module, e. g. CI592.

Depending on the input parameters of function block, the result of time measurement can be
measured in time in µs, frequency in Hz or speed of rotation in rotation per minute.

EN_0 EN_1 EN_FRE
Q

Type 1 2 3 4

FALSE FALSE TRUE No meas-
urement

0 0 0 0

FALSE TRUE TRUE Between
2 falling
edges

 350

TRUE FALSE TRUE Between
2 rising
edges

 500 450

TRUE TRUE TRUE Between
any 2
edges

300 200 150 300

FALSE FALSE FALSE No meas-
urement

0 0 0 0

FALSE TRUE FALSE Between
the rising
edge and
the subse-
quent
falling
edge

300 150

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1025

EN_0 EN_1 EN_FRE
Q

Type 1 2 3 4

TRUE FALSE FALSE Between
the falling
edge and
the subse-
quent
rising
edge

 200 300

TRUE TRUE FALSE Between
any 2
edges

300 200 150 300

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
WORD - - -

CNT_NUM contains the counter number in the module:
● CNT_NUM = 0 is related to input A0, B0, Z0
● CNT_NUM = 1 is related to input A1, B1, Z1

Data type Default value Range Unit
BOOL - - -

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and the pulses are lost.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.
Input EN_CNT corresponds to bit 0 in "control byte".

Data type Default value Range Unit
BOOL - - -

If EN_0=TRUE, the time frequency measurement will be captured on the falling edge of signal.
Input EN_0 corresponds to output bit 1 in control byte.

EN

CNT_NUM

EN_CNT

EN_0

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1026

Data type Default value Range Unit
BOOL - TRUE/FALSE -

If EN_1=TRUE, the time frequency measurement will be capture on rising edge of signal.
Input EN_1 corresponds to output bit 2 in control byte.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

If EN_FREQ=FALSE, the time frequency measurement will be specified in time mode and
displayed on output DUR (in µs).
If EN_FREQ= TRUE, the time frequency measurement will be specified in frequency and rpm
modes and displayed on output FREQ (in Hz) and RPM (in rotation per minute).
Input EN_FREQ corresponds to output bit 3 in control byte.

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

EN_1

EN_FREQ

ADR_IN

ADR_OUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1027

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL - - -

If output NEW=TRUE, a new timing value is available.
Output NEW corresponds to input bit 6 in state byte.

Data type Default value Range Unit
DWORD - - -

The output DUR is used for display the result of timing measurement. If the input
EN_FREQ=FALSE, measured time is in µs.
Output DUR corresponds to input word Counter low word.

DONE

ERR

ERNO

NEW

DUR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1028

Data type Default value Range Unit
WORD - - -

The output FREQ is used for display the result of time measurement. If the input
EN_FREQ=TRUE, measured frequency is in Hz.
Output FREQ corresponds to input word Counter high word.

Data type Default value Range Unit
WORD - - -

The output RPM is used for display the result of timing measurement. If the input EN_FREQ=
TRUE, measured speed of rotation is in rpm (rotations per minute).
Output RPM corresponds to input word Counter low word.

Function call in ST
CD522FREQSCAN (EN:=CD522FREQSCAN_EN,
 CNT_NUM:= CD522FREQSCAN_CNT_NUM,
 EN_CNT:= CD522FREQSCAN_EN_CNT,
 EN_0:=CD522FREQSCAN_EN_0,
 EN_1:=CD522FREQSCAN_EN_1,
 EN_FREQ:=CD522FREQSCAN_EN_FREQ,
 ADR_IN:= ADR(CD522FREQSCAN_ADR_IN),
 ADR_OUT:= ADR(CD522FREQSCAN_ADR_OUT));

CD522FREQSCAN_DONE := CD522FREQSCAN.DONE;
CD522FREQSCAN_ERR := CD522FREQSCAN.ERR;
CD522FREQSCAN_ERNO := CD522FREQSCAN.ERNO;
CD522FREQSCAN_NEW := CD522FREQSCAN.NEW;
CD522FREQSCAN_DUR := CD522FREQSCAN.DUR;
CD522FREQSCAN_FREQ := CD522FREQSCAN.FREQ;
CD522FREQSCAN_RPM := CD522FREQSCAN.RPM;

FREQ

RPM

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1029

CD522_READ_INPUT

Parameter Value
Included in library CD522_AC500_V13.lib

Available from CD522 firm-
ware

V2.1

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Type Function block with historical values

The function block is used to read binary inputs from CD522. The output parameter INPUT_xx
of the function block refers to the respective input channel xx on CD522.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1030

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1031

When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

At ADR_IN input (POINTER TO structCD522counterin), the address of the first input data from
the structure of counter input of CD522 should be connected. The use of an ADR operator is
needed. If input ADR_IN is not connected, then the outputs DONE=FALSE and ERR= TRUE.
Example (for counter 0):

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

ADR_IN

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1032

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL - - -

MUSS HIER WAS STEHEN???????

Function call in ST
CD522READINPUT (EN:=CD522_READINPUT_EN,

 ADR_IN:= ADR(CD522_READINPUT_ADR_IN));

CD522_READINPUT_DONE := CD522_READINPUT.DONE;
CD522_READINPUT_ERR := CD522_READINPUT.ERR;
CD522_READINPUT_ERNO := CD522_READINPUT.ERNO;
CD522_READINPUT_INPUT_A0 := CD522_READINPUT.INPUT_A0
CD522_READINPUT_INPUT_B0 := CD522_READINPUT.INPUT_B0
CD522_READINPUT_INPUT_Z0 := CD522_READINPUT.INPUT_Z0
CD522_READINPUT_INPUT_I3 := CD522_READINPUT.INPUT_I3
CD522_READINPUT_INPUT_C4 := CD522_READINPUT.INPUT_C4
CD522_READINPUT_INPUT_C5 := CD522_READINPUT.INPUT_C5
CD522_READINPUT_INPUT_C6 := CD522_READINPUT.INPUT_C6
CD522_READINPUT_INPUT_C7 := CD522_READINPUT.INPUT_C7
CD522_READINPUT_INPUT_A1 := CD522_READINPUT.INPUT_A1
CD522_READINPUT_INPUT_B1 := CD522_READINPUT.INPUT_B1
CD522_READINPUT_INPUT_Z1 := CD522_READINPUT.INPUT_Z1
CD522_READINPUT_INPUT_I11 := CD522_READINPUT.INPUT_I11
CD522_READINPUT_INPUT_C12 := CD522_READINPUT.INPUT_C12
CD522_READINPUT_INPUT_C13 := CD522_READINPUT.INPUT_C13
CD522_READINPUT_INPUT_C14 := CD522_READINPUT.INPUT_C14
CD522_READINPUT_INPUT_C15 := CD522_READINPUT.INPUT_C15

ERNO

INPUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1033

CD522_WRITE_OUTPUT

Parameter Value
Included in library CD522_AC500_V13.lib

Available from CD522 firm-
ware

V2.1

Available from runtime
system:

V1.0.2

Available from S500 I/O
modules (DC551) firmware

V1.11

Type Function block with historical values

The function block is used to write binary outputs from CD522. The input parameter
OUTPUT_xx of the function block refers to the respective input channel xx on CD522.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1034

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
BOOL - - -

At ADR_OUT input (POINTER TO structCD522counterout), the address of the first output data
from the structure of counter output of CD522 should be connected. The use of an ADR
operator is needed. If input ADR_OUT is not connected, then the outputs DONE=FALSE and
ERR= TRUE.
Example (for counter 0):

EN

OUTPUT

ADR_OUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1035

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
CD522WRITEOUTPUT (EN:=CD522_WRITEOUTPUT_EN,
 OUTPUT_O0:= CD522_WRITEOUTPUT_OUTPUT_O0,
 OUTPUT_O1:= CD522_WRITEOUTPUT_OUTPUT_O1,
 OUTPUT_C4:= CD522_WRITEOUTPUT_OUTPUT_C4,
 OUTPUT_C5:= CD522_WRITEOUTPUT_OUTPUT_C5,
 OUTPUT_C6:= CD522_WRITEOUTPUT_OUTPUT_C6,
 OUTPUT_C7:= CD522_WRITEOUTPUT_OUTPUT_C7,
 OUTPUT_C12:= CD522_WRITEOUTPUT_OUTPUT_C12,
 OUTPUT_C13:= CD522_WRITEOUTPUT_OUTPUT_C13,
 OUTPUT_C14:= CD522_WRITEOUTPUT_OUTPUT_C14,
 OUTPUT_C15:= CD522_WRITEOUTPUT_OUTPUT_C15,
 ADR_OUT:= ADR(CD522_WRITEOUTPUT_ADR_OUT));

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1036

CD522_WRITEOUTPUT_DONE := CD522_WRITEOUTPUT.DONE;
CD522_WRITEOUTPUT_ERR := CD522_WRITEOUTPUT.ERR;
CD522_WRITEOUTPUT_ERNO := CD522_WRITEOUTPUT.ERNO;

1.5.4.9 Counter library
Library file name: Counter_AC500_Vx.lib
The Counter Library contains function blocks that simplify the use of the fast counters of the
S500 I/O modules on the I/O bus of the CPU and the fast counters inside CS31 communication
interface modules respectively.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The function blocks are available in AC500 control systems with runtime system version V2.0.0
or higher and S500 I/O modules with firmware version V1.3 or higher.

1.5.4.9.1 Function blocks
CNT_DC551

Parameter Value
Included in library Counter_AC500_V20.lib

Available as of runtime
system

V2.0.0

Available as of CS31 com-
munucation interface module
firmware

V1.3, V2.0

Remark V1.3 at DC551-CS31, V2.0 at CI590-CS31-HA and CI592-
CS31

Type Function block with historical values

Function block CNT_DC551 is used to control the fast counter of the CS31 communucation
interface modules (e. g. DC551-CS31, CI590-CS31-HA and CI592-CS31).
The operating modes of the fast counters are described in Ä Chapter 1.6.2.6.1.2.10 “Fast
counter” on page 4351.
To activate the fast counter in CS31 communucation interface modules, the address switch of
the CS31 communucation interface modules must be set to a value in the range between 70
and 99. Then, the actual module address is the set address minus 70, i.e. it is in a range
between 0 and 29.
Data exchange between CPU and high-speed counter is done using input/output data. The
following is required for the counter:
- 2 bytes digital inputs for status bytes 0 and 1
- 4 words analog inputs for 2 actual value double words of counters 1 and 2
- 2 bytes digital outputs for control bytes of counters 1 and 2
- 8 words analog outputs for 4 start/end value double words of counters 1 and 2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1037

Thus, 1 CS31 communucation interface module with activated fast counter (without S500
expansion modules) occupies 2 CS31 software modules:
Module 1: digital module with digital inputs (3 bytes) and digital outputs (4 bytes)
Module 2: analog module with analog inputs (8 words) and analog outputs (4 words)
The address of the modules corresponds to the address set at the DC551 minus 70.

CAUTION!
The high-speed counters of the S500 communication interface modules are not
available if they are connected to CS31 communication interface modules. They
are only available after connecting the modules to the I/O Bus of the AC500
CPU.

The function block CNT_DC551 has an integrated visualization visuCNT_DC551 that can be
used to control all function block functions in parallel to the user program, if input EN_VISU =
TRUE Ä Chapter 1.5.4.9.2 “Visualization” on page 1064.

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable pulse counting for input CH, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and a corresponding error is displayed at output
ERR/ERNO.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1038

Data type Default value Range Unit
BYTE - 0 ... 29 -

At input MODULE_ADR, the address set at the CS31 communucation interface module is
entered.

Data type Default value Range Unit
BYTE - - -

At input COM, the number of the serial interface is specified to which the CS31 communucation
interface module is connected.
Valid values are 0 and 1 for COM1 and 2 for COM2 (only CM574-RS).

Data type Default value Range Unit
BOOL - TRUE/FALSE -

If input EN_VISU = TRUE, it is also possible to control the function block inputs (except SLOT,
COM, MODULE_ADR, EN and EN_VISU) via the integrated visualization of the function block.
If input EN_VISU = FALSE, control via the visualization is disabled and the labelling of the
corresponding control elements is displayed in gray. The actual values are always displayed
Ä Chapter 1.5.4.9.2 “Visualization” on page 1064.

Data type Default value Range Unit
BOOL - - -

If input EN1 = TRUE, pulse counting of counter 1 is enabled. If EN1 = FALSE, no pulse counting
is performed and the pulses are lost.
Input EN1 corresponds to bit 1 in control byte 0.

Data type Default value Range Unit
BOOL - - -

At input UD1, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD1 = FALSE → counter 1 counts up
UD1 = TRUE → counter 1 counts down
If input SET1 = TRUE, the counter takes this value.
Input UD1 corresponds to bit 0 in control byte 0.

Data type Default value Range Unit
BOOL - - -

Input EN_OUT1 is used to select the output control mode for the operating modes with direct
output activation (modes 1 and 2).
Only for fast counter operating modes 1 and 2:
If EN_OUT1 = FALSE, the related digital output DO acts as an output indicating "end value
reached" of the fast counter.
If EN_OUT1 = TRUE, the related digital output DO can be used as normal digital output.

MODULE_ADR

COM

EN_VISU

EN1

UD1

EN_OUT1

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1039

The value change of EN_OUT1 is only effective when EN = TRUE.
Input EN_OUT1 corresponds to bit 3 in control byte 0.

Data type Default value Range Unit
BOOL - - -

If set input SET1 = TRUE, the counter takes the values from the inputs UD1, START1 and
END1.
As long as input SET1 = TRUE, no pulses are counted because the counter is always over-
written by the start value START1.
Input SET1 corresponds to bit 2 in control byte 0.

Data type Default value Range Unit
DWORD - - -

At input START1, the start value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.
Input START1 corresponds to the analog outputs 0 (bit 16..31) and 1 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
DWORD - - -

At input END1, the end value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.
Input END1 corresponds to the analog outputs 2 (bit 16..31) and 3 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
BOOL - - -

At input UD2, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD2 = FALSE → counter 2 counts up
UD2 = TRUE → counter 2 counts down
If input SET2 = TRUE, the counter takes this value.
Input UD2 corresponds to bit 0 in control byte 1.

Data type Default value Range Unit
BOOL - - -

Input EN_OUT2 is reserved. A variable with the value FALSE has to be applied.
Input EN_OUT2 corresponds to bit 3 in control byte 1.

SET1

START1

END1

UD2

EN_OUT2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1040

Data type Default value Range Unit
BOOL - - -

If set input SET2 = TRUE, the counter takes the values from the inputs UD2, START2 and
END2.
As long as input SET2 = TRUE, no pulses are counted because the counter is always over-
written by the start value START2.
Input SET2 corresponds to bit 2 in control byte 1.

Data type Default value Range Unit
DWORD - - -

At input START2, the start value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.
Input START2 corresponds to the analog outputs 4 (bit 16..31) and 5 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
DWORD - - -

At input END2, the end value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.
Input END2 corresponds to the analog outputs 6 (bit 16..31) and 7 (bit 0..15) of the CS31
communucation interface module.

Output description

SET2

START2

END2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1041

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output STATE indicates the current mode of fast counter. The mode of fast counter (0-10) can
be configured in the channel parameter of the PLC configuration (please refer to fast counter
mode in system technology chapter 9.3).

Data type Default value Range Unit
BOOL - - -

If counter 1 has reached the programmed end value (input END1), output CF1 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET1), CF1 is set to
FALSE.
Output CF1 corresponds to bit 0 in status byte 0.

Data type Default value Range Unit
DWORD - - -

At output ACT1, the actual value = counter reading of counter 1 is output as double word.
Output ACT1 corresponds to the analog inputs 0 (bit 16..31) and 1 (bit 0..15).

Data type Default value Range Unit
BOOL - - -

If counter 2 has reached the programmed end value (input END2), output CF2 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET2), CF2 is set to
FALSE.
Output CF2 corresponds to bit 0 in status byte 1.

DONE

ERR

ERNO

STATE

CF1

ACT1

CF2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1042

Data type Default value Range Unit
DWORD - - -

At output ACT2, the actual value = counter reading of counter 2 is output as double word.
Output ACT2 corresponds to the analog inputs 2 (bit 16..31) and 3 (bit 0..15).

Function call in ST
CntDC551 (EN := CntDC551_EN
 MODULE_ADR := CntDC551_MODULE_ADR,
 COM := CntDC551_COM,
 EN_VISU := CntDC551_EN_VISU,
 EN1 := CntDC551_EN1,
 UD1 := CntDC551_UD1,
 EN_OUT1 := CntDC551_EN_OUT1,
 SET1 := CntDC551_SET1,
 START1 := CntDC551_START1,
 END1 := CntDC551_END1,
 EN2 := CntDC551_EN2,
 UD2 := CntDC551_UD2,
 EN_OUT2 := CntDC551_EN_OUT2,
 SET2 := CntDC551_SET2,
 START2 := CntDC551_START2,
 END2 := CntDC551_END2);

CntDC551_DONE := CntDC551.DONE;
CntDC551_ERR := CntDC551.ERR;
CntDC551_ERNO := CntDC551.ERNO;
CntDC551_CF1 := CntDC551.CF1;
CntDC551_ACT1 := CntDC551.ACT1;
CntDC551_CF2 := CntDC551.CF2;
CntDC551_Act2 := CntCS31.ACT2;

CNT_IO

Function block CNT_IO is used to control the fast counter of the digital S500 I/O Devices.

ACT2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1043

The fast counter which is integrated in CPUs PM55x and PM56x (onboard I/Os)
can only be managed by function block ONB_IO_CNT Ä Chapter 1.5.4.25.1.1
“ONB_IO_CNT” on page 1734 (and not by CNT_IO).

Parameter Value
Included in library Counter_AC500_V20.lib

Available as of runtime
system

V2.0

Available as of S500 I/O
module firmware:

V1.3

Type Function block with historical values

Function block CNT_IO is used to control the fast counter of the digital S500 I/O Modules.
The operating modes of the fast counters are described in Ä Chapter 1.6.2.6.1.2.10 “Fast
counter” on page 4351.
To activate the fast counter of a digital S500 I/O module, the parameter "High-speed counter" of
the I/O module must be set to the desired counting mode in the control system configuration.
Data exchange between CPU and high-speed counter is done using input/output data. The
following is required for the counter:
- 2 bytes digital inputs for status bytes 0 and 1
- 4 words analog inputs for 2 actual value double words of counters 1 and 2
- 2 bytes digital outputs for control bytes of counters 1 and 2
- 8 words analog outputs for 4 start/end value double words of counters 1 and 2

CAUTION!
The high-speed counters of the digital S500 I/O devices are only available when
connected to the I/O bus of the AC500 CPUs. If connected to the CS31 bus (e.
g. with DC551-CS31 or CI590-CS31-HA) no fast counters are available.

The function block CNT_IO has an integrated visualization visuCNT_IO that can be used to
control all function block functions in parallel to the user program, if input EN_VISU = TRUE.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1044

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable pulse counting for input CH, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and a corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
BYTE - 1 ... 10 -

At input MODULE, the module number of the digital S500 I/O module on the I/O bus of the
AC500 CPU is specified. The first module with number 1 is the module directly right to the CPU.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

If input EN_VISU = TRUE, it is also possible to control the function block inputs (except SLOT,
COM, MODULE_ADR, EN and EN_VISU) via the integrated visualization of the function block.
If input EN_VISU = FALSE, control via the visualization is disabled and the labelling of the
corresponding control elements is displayed in gray. The actual values are always displayed
Ä Chapter 1.5.4.9.2 “Visualization” on page 1064.

Data type Default value Range Unit
BOOL - - -

If input EN1 = TRUE, pulse counting of counter 1 is enabled. If EN1 = FALSE, no pulse counting
is performed and the pulses are lost.
Input EN1 corresponds to bit 1 in control byte 0.

EN

Module

EN_VISU

EN1

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1045

Data type Default value Range Unit
BOOL - - -

At input UD1, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD1 = FALSE → counter 1 counts up
UD1 = TRUE → counter 1 counts down
If input SET1 = TRUE, the counter takes this value.
Input UD1 corresponds to bit 0 in control byte 0.

Data type Default value Range Unit
BOOL - - -

Input EN_OUT1 is used to select the output control mode for the operating modes with direct
output activation (modes 1 and 2).
Only for fast counter operating modes 1 and 2:
If EN_OUT1 = FALSE, the related digital output DO acts as an output indicating "end value
reached" of the fast counter.
If EN_OUT1 = TRUE, the related digital output DO can be used as normal digital output.
The value change of EN_OUT1 is only effective when EN = TRUE.
Input EN_OUT1 corresponds to bit 3 in control byte 0.

Data type Default value Range Unit
BOOL - - -

If set input SET1 = TRUE, the counter takes the values from the inputs UD1, START1 and
END1.
As long as input SET1 = TRUE, no pulses are counted because the counter is always over-
written by the start value START1.
Input SET1 corresponds to bit 2 in control byte 0.

Data type Default value Range Unit
DWORD - - -

At input START1, the start value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.
Input START1 corresponds to the analog outputs 0 (bit 16..31) and 1 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
DWORD - - -

At input END1, the end value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.
Input END1 corresponds to the analog outputs 2 (bit 16..31) and 3 (bit 0..15) of the CS31
communucation interface module.

UD1

EN_OUT1

SET1

START1

END1

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1046

Data type Default value Range Unit
BOOL - - -

At input UD2, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD2 = FALSE → counter 2 counts up
UD2 = TRUE → counter 2 counts down
If input SET2 = TRUE, the counter takes this value.
Input UD2 corresponds to bit 0 in control byte 1.

Data type Default value Range Unit
BOOL - - -

Input EN_OUT2 is reserved. A variable with the value FALSE has to be applied.
Input EN_OUT2 corresponds to bit 3 in control byte 1.

Data type Default value Range Unit
BOOL - - -

If set input SET2 = TRUE, the counter takes the values from the inputs UD2, START2 and
END2.
As long as input SET2 = TRUE, no pulses are counted because the counter is always over-
written by the start value START2.
Input SET2 corresponds to bit 2 in control byte 1.

Data type Default value Range Unit
DWORD - - -

At input START2, the start value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.
Input START2 corresponds to the analog outputs 4 (bit 16..31) and 5 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
DWORD - - -

At input END2, the end value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.
Input END2 corresponds to the analog outputs 6 (bit 16..31) and 7 (bit 0..15) of the CS31
communucation interface module.

UD2

EN_OUT2

SET2

START2

END2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1047

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output STATE indicates the current mode of fast counter. The mode of fast counter (0-10) can
be configured in the channel parameter of the PLC configuration (please refer to fast counter
mode in system technology chapter 9.3).

Data type Default value Range Unit
BOOL - - -

DONE

ERR

ERNO

STATE

CF1

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1048

If counter 1 has reached the programmed end value (input END1), output CF1 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET1), CF1 is set to
FALSE.
Output CF1 corresponds to bit 0 in status byte 0.

Data type Default value Range Unit
DWORD - - -

At output ACT1, the actual value = counter reading of counter 1 is output as double word.
Output ACT1 corresponds to the analog inputs 0 (bit 16..31) and 1 (bit 0..15).

Data type Default value Range Unit
BOOL - - -

If counter 2 has reached the programmed end value (input END2), output CF2 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET2), CF2 is set to
FALSE.
Output CF2 corresponds to bit 0 in status byte 1.

Data type Default value Range Unit
DWORD - - -

At output ACT2, the actual value = counter reading of counter 2 is output as double word.
Output ACT2 corresponds to the analog inputs 2 (bit 16..31) and 3 (bit 0..15).

Function call in ST
CntIO (EN := CntIO_EN
 MODULE := CntIO_MODULE,
 EN_VISU := CntIO_EN_VISU,
 EN1 := CntIO_EN1,
 UD1 := CntIO_UD1,
 EN_OUT1 := CntIO_EN_OUT1,
 SET1 := CntIO_SET1,
 START1 := CntIO_START1,
 END1 := CntIO_END1,
 EN2 := CntIO_EN2,
 UD2 := CntIO_UD2,
 EN_OUT2 := CntIO_EN_OUT2,
 SET2 := CntIO_SET2,
 START2 := CntIO_START2,
 END2 := CntIO_END2);

CntIO_DONE := CntIO.DONE;
CntIO_ERR := CntIO.ERR;
CntIO_ERNO := CntIO.ERNO;
CntIO_CF1 := CntIO.CF1;
CntIO_ACT1 := CntIO.ACT1;
CntIO_CF2 := CntIO.CF2;
CntIO_Act2 := CntIO.ACT2;

ACT1

CF2

ACT2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1049

CNT_IO_EXT

The fast counter which is integrated in CPUs PM55x and PM56x (onboard I/Os)
can only be managed by function block ONB_IO_CNT Ä Chapter 1.5.4.25.1.1
“ONB_IO_CNT” on page 1734 (and not by CNT_IO_EXT).

Parameter Value
Included in library Counter_AC500_V20.lib

Available as of runtime
system

V2.0

Available as of S500 I/O
module firmware:

V1.3

Type Function block with historical values

Function block CNT_IO_EXT is used to control the fast counter of the digital S500 I/O Modules.
The operating modes of the fast counters are described in Ä Chapter 1.6.2.6.1.2.10 “Fast
counter” on page 4351.
To activate the fast counter of a digital S500 I/O module, the parameter "fast counter" of the I/O
module must be set to the desired counting mode in the control system configuration.
Data exchange between CPU and fast counter is done using input/output data. The following is
required for the counter:
- 2 bytes digital inputs for status bytes 0 and 1
- 4 words analog inputs for 2 actual value double words of counters 1 and 2
- 2 bytes digital outputs for control bytes of counters 1 and 2
- 8 words analog outputs for 4 start/end value double words of counters 1 and 2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1050

CAUTION!
The high-speed counters of the digital S500 I/O devices are only available when
connected to the I/O bus of the AC500 CPUs. If connected to the CS31 bus (e.
g. with DC551-CS31 or CI590-CS31-HA) no fast counters are available.

The function block CNT_IO_EXT has an integrated visualization visuCNT_IO_EXT that can be
used to control all function block functions in parallel to the user program, if input EN_VISU =
TRUE.

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable pulse counting for input CH, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and a corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
BYTE - 1 ... 10 -

At input BUS_TYPE, the user can selected between counters on I/O bus and CAN bus. The
value 0 is default and means I/O bus. The value 1 means CAN bus.

EN

BUS_TYPE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1051

Data type Default value Range Unit
BYTE 0 0 ... 10 -

At input MODE the operating mode of the fast counter must be assigned. Value 0: no counter
active. Value 1…10 specifies special counter modes. The operating modes of the fast counters
are described in detail in a separate chapter Ä Chapter 1.5.4.9.2 “Visualization” on page 1064.

Data type Default value Range Unit
POINTER_TO_BYTE 0 0 … 4294967295 -

Pointer to inputs of the fast counter. Use the ADR operator and the symbolic name of the
counters input data in the module I/O-mapping. Example: ADR(CntInData)

Data type Default value Range Unit
POINTER_TO_BYTE 0 0 … 4294967295 -

Pointer to outputs of the fast counter. Use the ADR operator and the symbolic name of the
counters output data in the module I/O-mapping. Example: ADR(CntOutData)

Data type Default value Range Unit
BOOL - TRUE/FALSE -

If input EN_VISU = TRUE, it is also possible to control the function block inputs (except SLOT,
COM, MODULE_ADR, EN and EN_VISU) via the integrated visualization of the function block.
If input EN_VISU = FALSE, control via the visualization is disabled and the labelling of the
corresponding control elements is displayed in gray. The actual values are always displayed
Ä Chapter 1.5.4.9.2 “Visualization” on page 1064.

Data type Default value Range Unit
BOOL - - -

If input EN1 = TRUE, pulse counting of counter 1 is enabled. If EN1 = FALSE, no pulse counting
is performed and the pulses are lost.
Input EN1 corresponds to bit 1 in control byte 0.

Data type Default value Range Unit
BOOL - - -

At input UD1, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD1 = FALSE → counter 1 counts up
UD1 = TRUE → counter 1 counts down
If input SET1 = TRUE, the counter takes this value.
Input UD1 corresponds to bit 0 in control byte 0.

Data type Default value Range Unit
BOOL - - -

MODE

ADR_INPUTS

ADR_OUTPUTS

EN_VISU

EN1

UD1

EN_OUT1

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1052

Input EN_OUT1 is used to select the output control mode for the operating modes with direct
output activation (modes 1 and 2).
Only for fast counter operating modes 1 and 2:
If EN_OUT1 = FALSE, the related digital output DO acts as an output indicating "end value
reached" of the fast counter.
If EN_OUT1 = TRUE, the related digital output DO can be used as normal digital output.
The value change of EN_OUT1 is only effective when EN = TRUE.
Input EN_OUT1 corresponds to bit 3 in control byte 0.

Data type Default value Range Unit
BOOL - - -

If set input SET1 = TRUE, the counter takes the values from the inputs UD1, START1 and
END1.
As long as input SET1 = TRUE, no pulses are counted because the counter is always over-
written by the start value START1.
Input SET1 corresponds to bit 2 in control byte 0.

Data type Default value Range Unit
DWORD - - -

At input START1, the start value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.
Input START1 corresponds to the analog outputs 0 (bit 16..31) and 1 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
DWORD - - -

At input END1, the end value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.
Input END1 corresponds to the analog outputs 2 (bit 16..31) and 3 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

If input EN2 = TRUE, pulse counting of counter 2 is enabled. No pulse counting, if EN2 =
FALSE.
Input EN2 corresponds to bit 1 in control byte 1

Data type Default value Range Unit
BOOL - - -

At input UD2, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:

SET1

START1

END1

EN2

UD2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1053

UD2 = FALSE → counter 2 counts up
UD2 = TRUE → counter 2 counts down
If input SET2 = TRUE, the counter takes this value.
Input UD2 corresponds to bit 0 in control byte 1.

Data type Default value Range Unit
BOOL - - -

Input EN_OUT2 is reserved. A variable with the value FALSE has to be applied.
Input EN_OUT2 corresponds to bit 3 in control byte 1.

Data type Default value Range Unit
BOOL - - -

If set input SET2 = TRUE, the counter takes the values from the inputs UD2, START2 and
END2.
As long as input SET2 = TRUE, no pulses are counted because the counter is always over-
written by the start value START2.
Input SET2 corresponds to bit 2 in control byte 1.

Data type Default value Range Unit
DWORD - - -

At input START2, the start value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.
Input START2 corresponds to the analog outputs 4 (bit 16..31) and 5 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
DWORD - - -

At input END2, the end value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.
Input END2 corresponds to the analog outputs 6 (bit 16..31) and 7 (bit 0..15) of the CS31
communucation interface module.

EN_OUT2

SET2

START2

END2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1054

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

DONE

ERR

ERNO

STATE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1055

Output STATE indicates the current mode of fast counter. The mode of fast counter (0-10) can
be configured in the channel parameter of the PLC configuration (please refer to fast counter
mode in system technology chapter 9.3).

Data type Default value Range Unit
BOOL - - -

If counter 1 has reached the programmed end value (input END1), output CF1 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET1), CF1 is set to
FALSE.
Output CF1 corresponds to bit 0 in status byte 0.

Data type Default value Range Unit
DWORD - - -

At output ACT1, the actual value = counter reading of counter 1 is output as double word.
Output ACT1 corresponds to the analog inputs 0 (bit 16..31) and 1 (bit 0..15).

Data type Default value Range Unit
BOOL - - -

If counter 2 has reached the programmed end value (input END2), output CF2 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET2), CF2 is set to
FALSE.
Output CF2 corresponds to bit 0 in status byte 1.

Data type Default value Range Unit
DWORD - - -

At output ACT2, the actual value = counter reading of counter 2 is output as double word.
Output ACT2 corresponds to the analog inputs 2 (bit 16..31) and 3 (bit 0..15).

Function call in ST
CntIoExt (EN := CntIO_EN
 BUS_TYPE := CntIoExt_BUS_TYPE,
 MODE := CntIoExt_MODE,
 ADR_INPUTS := CntIoExt_ADR_INPUTS,
 ADR_OUTPUTS := CntIoExt_ADR_OUTPUTS
 EN_VISU := CntIoExt_EN_VISU,
 EN1 := CntIoExt_EN1,
 UD1 := CntIoExt_UD1,
 EN_OUT1 := CntIoExt_EN_OUT1,
 SET1 := CntIoExt_SET1,
 START1 := CntIoExt_START1,
 END1 := CntIoExt_END1,
 EN2 := CntIoExt_EN2,
 UD2 := CntIoExt_UD2,
 EN_OUT2 := CntIoExt_EN_OUT2,
 SET2 := CntIoExt_SET2,
 START2 := CntIoExt_START2,
 END2 := CntIoExt_END2);

CF1

ACT1

CF2

ACT2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1056

Cnt_IoExt_DONE := Cnt_IoExt.DONE;
Cnt_IoExt_ERR := Cnt_IoExt.ERR;
Cnt_IoExt_ERNO := Cnt_IoExt.ERNO;
Cnt_IoExt_CF1 := Cnt_IoExt.CF1;
Cnt_IoExt_ACT1 := Cnt_IoExt.ACT1;
Cnt_IoExt_CF2 := Cnt_IoExt.CF2;
Cnt_IoExt_Act2 := Cnt_IoExt.ACT2;

CNT_CS31_EXT

Parameter Value
Included in library Counter_AC500_V20.lib

Available as of runtime
system

V2.0.0

Available as of CS31 com-
munucation interface module
firmware

V1.3, V2.0

Remark V1.3 at DC551-CS31, V2.0 at CI590-CS31-HA and CI592-
CS31

Type Function block with historical values

Function block CNT_CS31_EXT is used to control the fast counter in CS31 communication
interface modules (e. g. DC551-CS31, CI590-CS31-HA and CI592-CS31).
Function block CNT_CS31_EXT is derived from CNT_DC551 and works very similar to it.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1057

As of firmware version 2.0 it is possible to configure and access the serial ports of a CM574-RS
through the configuration of the AC500 CPU. Because CM574-RS can be installed into 1 of the
4 possible Communication Module slots, this function block has an additional input (SLOT) to
give the position where the CM574 is installed. If COM1 of an AC500 CPU should be used, or if
the user program which is using this function block is located in the CM574-RS, this input must
have the value 0.
All other functions are the same as in CNT_DC551.

This function block can be used only with a configuration done by ABB Control
Builder Plus.

The operating modes of the fast counters are described in Ä Chapter 1.6.2.6.1.2.10 “Fast
counter” on page 4351.
To activate the fast counter in CS31 communication interface modules, the address switch of
the CS31 communication interface modules must be set to a value in the range between 70 and
99. Then, the actual module address is the set address minus 70, i.e. it is in a range between 0
and 29.
Data exchange between CPU and high-speed counter is done using input/output data. The
following is required for the counter:
- 2 bytes digital inputs for status bytes 0 and 1
- 4 words analog inputs for 2 actual value double words of counters 1 and 2
- 2 bytes digital outputs for control bytes of counters 1 and 2
- 8 words analog outputs for 4 start/end value double words of counters 1 and 2
Thus, 1 CS31 communication interface module with activated fast counter (without S500 com-
munication interface modules) occupies 2 CS31 software modules:
Module 1: digital module with digital inputs (3 bytes) and digital outputs (4 bytes)
Module 2: analog module with analog inputs (8 words) and analog outputs (4 words)
The address of the modules corresponds to the address set at the DC551 minus 70.

CAUTION!
The high-speed counters of the S500 communication interface modules are not
available if they are connected to CS31 communication interface modules. They
are only available after connecting the modules to the I/O Bus of the AC500
CPU.

The function block CNT_DC551 has an integrated visualization visuCNT_CS31 that can be
used to control all function block functions in parallel to the user program, if input EN_VISU =
TRUE.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1058

Input description

Data type Default value Range Unit
BOOL - - -

In order to enable pulse counting for input CH, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.
When calling the function block the first time, the inputs are checked for validity and plausibility.
If this is not the case, processing is aborted and a corresponding error is displayed at output
ERR/ERNO.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 0 ... 29 -

At input MODULE_ADR, the address set at the CS31 communucation interface module is
entered.

Data type Default value Range Unit
BYTE - - -

EN

SLOT

MODULE_ADR

COM

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1059

At input COM, the number of the serial interface is specified to which the CS31 communucation
interface module is connected.
Valid values are 0 and 1 for COM1 and 2 for COM2 (only CM574-RS).

Data type Default value Range Unit
BOOL - TRUE/FALSE -

If input EN_VISU = TRUE, it is also possible to control the function block inputs (except SLOT,
COM, MODULE_ADR, EN and EN_VISU) via the integrated visualization of the function block.
If input EN_VISU = FALSE, control via the visualization is disabled and the labelling of the
corresponding control elements is displayed in gray. The actual values are always displayed
Ä Chapter 1.5.4.9.2 “Visualization” on page 1064.

Data type Default value Range Unit
BOOL - - -

If input EN1 = TRUE, pulse counting of counter 1 is enabled. If EN1 = FALSE, no pulse counting
is performed and the pulses are lost.
Input EN1 corresponds to bit 1 in control byte 0.

Data type Default value Range Unit
BOOL - - -

At input UD1, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD1 = FALSE → counter 1 counts up
UD1 = TRUE → counter 1 counts down
If input SET1 = TRUE, the counter takes this value.
Input UD1 corresponds to bit 0 in control byte 0.

Data type Default value Range Unit
BOOL - - -

Input EN_OUT1 is used to select the output control mode for the operating modes with direct
output activation (modes 1 and 2).
Only for fast counter operating modes 1 and 2:
If EN_OUT1 = FALSE, the related digital output DO acts as an output indicating "end value
reached" of the fast counter.
If EN_OUT1 = TRUE, the related digital output DO can be used as normal digital output.
The value change of EN_OUT1 is only effective when EN = TRUE.
Input EN_OUT1 corresponds to bit 3 in control byte 0.

Data type Default value Range Unit
BOOL - - -

If set input SET1 = TRUE, the counter takes the values from the inputs UD1, START1 and
END1.

EN_VISU

EN1

UD1

EN_OUT1

SET1

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1060

As long as input SET1 = TRUE, no pulses are counted because the counter is always over-
written by the start value START1.
Input SET1 corresponds to bit 2 in control byte 0.

Data type Default value Range Unit
DWORD - - -

At input START1, the start value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.
Input START1 corresponds to the analog outputs 0 (bit 16..31) and 1 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
DWORD - - -

At input END1, the end value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.
Input END1 corresponds to the analog outputs 2 (bit 16..31) and 3 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
BOOL - - -

At input UD2, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD2 = FALSE → counter 2 counts up
UD2 = TRUE → counter 2 counts down
If input SET2 = TRUE, the counter takes this value.
Input UD2 corresponds to bit 0 in control byte 1.

Data type Default value Range Unit
BOOL - - -

Input EN_OUT2 is reserved. A variable with the value FALSE has to be applied.
Input EN_OUT2 corresponds to bit 3 in control byte 1.

Data type Default value Range Unit
BOOL - - -

If set input SET2 = TRUE, the counter takes the values from the inputs UD2, START2 and
END2.
As long as input SET2 = TRUE, no pulses are counted because the counter is always over-
written by the start value START2.
Input SET2 corresponds to bit 2 in control byte 1.

START1

END1

UD2

EN_OUT2

SET2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1061

Data type Default value Range Unit
DWORD - - -

At input START2, the start value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.
Input START2 corresponds to the analog outputs 4 (bit 16..31) and 5 (bit 0..15) of the CS31
communucation interface module.

Data type Default value Range Unit
DWORD - - -

At input END2, the end value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.
Input END2 corresponds to the analog outputs 6 (bit 16..31) and 7 (bit 0..15) of the CS31
communucation interface module.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

START2

END2

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1062

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output STATE indicates the current mode of fast counter. The mode of fast counter (0-10) can
be configured in the channel parameter of the PLC configuration (please refer to fast counter
mode in system technology chapter 9.3).

Data type Default value Range Unit
BOOL - - -

If counter 1 has reached the programmed end value (input END1), output CF1 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET1), CF1 is set to
FALSE.
Output CF1 corresponds to bit 0 in status byte 0.

Data type Default value Range Unit
DWORD - - -

At output ACT1, the actual value = counter reading of counter 1 is output as double word.
Output ACT1 corresponds to the analog inputs 0 (bit 16..31) and 1 (bit 0..15).

Data type Default value Range Unit
BOOL - - -

If counter 2 has reached the programmed end value (input END2), output CF2 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET2), CF2 is set to
FALSE.
Output CF2 corresponds to bit 0 in status byte 1.

Data type Default value Range Unit
DWORD - - -

At output ACT2, the actual value = counter reading of counter 2 is output as double word.
Output ACT2 corresponds to the analog inputs 2 (bit 16..31) and 3 (bit 0..15).

ERR

ERNO

STATE

CF1

ACT1

CF2

ACT2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1063

Function call in ST
CntCS31ext (EN := CntCS31ext_EN,
SLOT := CntCS31ext_SLOT,
 MODULE_ADR := CntCS31ext_MODULE_ADR,
 COM := CntCS31ext_COM,
 EN_VISU := CntCS31ext_EN_VISU,
 EN1 := CntCS31ext_EN1,
 UD1 := CntCS31ext_UD1,
 EN_OUT1 := CntCS31ext_EN_OUT1,
 SET1 := CntCS31ext_SET1,
 START1 := CntCS31ext_START1,
 END1 := CntCS31ext_END1,
 EN2 := CntCS31ext_EN2,
 UD2 := CntCS31ext_UD2,
 EN_OUT2 := CntCS31ext_EN_OUT2,
 SET2 := CntCS31ext_SET2,
 START2 := CntCS31ext_START2,
 END2 := CntCS31ext_END2);

CntCS31ext_DONE := CntCS31ext.DONE;
CntCS31ext_ERR := CntCS31ext.ERR;
CntCS31ext_ERNO := CntCS31ext.ERNO;
CntCS31ext_CF1 := CntCS31ext.CF1;
CntCS31ext_ACT1 := CntCS31ext.ACT1;
CntCS31ext_CF2 := CntCS31ext.CF2;
CntCS31ext_Act2 := CntCS31ext.ACT2;

1.5.4.9.2 Visualization
The visualization can be used to display the function block outputs. If the input EN_VISU of a
function block is TRUE, it is also possible to control the inputs from the visualization. In order
to allow the control of function block inputs from the program as well as from the visualization,
these inputs are declared as VAR_IN_OUT and therefore have to be provided with variables
accordingly. These inputs must not be provided with direct constants.
Proceed as follows to integrate the visualization into a project:
● Create a new visualization using Visualizations / Insert Object (e.g. visuTestCntIO).
● Insert a visualization using
● In the appearing dialog, select the corresponding visualization for the function block:

● Then, the visualization integrated just now has to be configured. Highlight the visualization
with a left mouse click. Then click the right mouse button and select the function "Con-
figure..." from the context menu.

● The configuration of the visualization is done in the appearing dialog. It is recommended to
set the frame to "Fixed". This way, the original width-to-height ratio and font size are kept.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1064

● Now the visualization has to be linked to the function block instance. This is done in a
dialog, opened after clicking the button "Placeholder".

● In the "Replacement" column of this dialog, the function block instance can either be
entered directly or selected by pressing <F2>.

● By clicking <OK> the dialogs are closed. After this, the inserted visualization has to be
adapted to the correct size.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1065

Fig. 24: Offline mode.

Fig. 25: Online mode, example for operating mode 1.

If an error occurred during function block processing, the error number is displayed in the top
right until EN becomes FALSE.
If input EN_VISU = FALSE, the inputs cannot be modified using the visualization. The corre-
sponding control elements are then displayed in gray:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1066

1.5.4.10 CS31 library
Library file name: CS31_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The function blocks of the CS31 library can only be called, if the serial interface
COM1 is configured as "CS31 bus master".

1.5.4.10.1 Function blocks
CS31CO

The function block is used to configure the AC31 remote modules. The function block can
both send configuration parameters to the remote modules and also scan their currently set
configuration.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1067

Parameter Value
Included in library CS31_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

Group Group/Subgroup

The function block is used to configure the AC31 remote modules. The function block can
both send configuration parameters to the remote modules and also scan their currently set
configuration.
Apart from configuration of the AC31 remote modules, the function block can also process
further jobs Ä “A1...A7” on page 1070.
Enable for processing a job once is triggered by a FALSE/TRUE edge at input FREI.
The required job identification is specified at input CODE.
The parameters required for the job are planned at the inputs D1 ... D8.
Status messages are signalized at the outputs RDY, OK and ERR.
The response data of the job are available at the outputs A1 ... A7.
It may take several PLC cycles to process the job.

Input description

Data type Default value Range Unit
BOOL - - -

Processing of the function block is controlled via input FREI.
FREI = FALSE:
All function block outputs are set to the value "FALSE". However, this is not valid, if a job is
currently being processed, i. e. processing of a job which is currently being processed, is not
affected by FREI = FALSE.
FREI = FALSE/TRUE edge:
Processing of the job is enabled. Input FREI is no longer evaluated during processing of the job.
FREI = TRUE:

FREI

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1068

The function block is not processed, i. e. it no longer changes its outputs. However, this is not
valid, if a job is currently being processed.

Data type Default value Range Unit
BYTE - 0 ... 63 -

Group number with which the remote module is addressed by the PLC program.
Example:
On binary input E 12,08, "12" is the group number and "08" is the channel number.

Data type Default value Range Unit
BYTE - - -

The identification of the job to be executed is specified at input CODE Ä “A1...A7”
on page 1070.

Data type Default value Range Unit
BYTE - - -

The parameters required for the job are preset at the inputs D1 ... D8. The number of
parameters depends on the job to be executed. There are also jobs requiring no parameters
Ä “A1...A7” on page 1070.

Data type Default value Range Unit
BOOL - - -

The output RDY indicates that processing of the job currently being processed is completed.
This output does not indicate whether processing of the job was successful or not. The output
RDY has therefore always to be considered together with the output OK.
RDY = TRUE and OK = TRUE:
Processing of the job is completed without errors. A new job can be started with a FALSE/TRUE
edge at input FREI.
RDY = TRUE and OK = FALSE:
During processing of the job an error has been detected. ERR is set to TRUE. A new job can be
started with a FALSE/TRUE edge at input FREI.
RDY = FALSE
Processing of an enabled job has not yet been completed (job is still running) or output RDY
has been reset with FREI = FALSE.

Data type Default value Range Unit
BOOL - - -

Output OK indicates whether the job has been handled successfully or whether an error has
been detected during processing. In case of an error, OK ist set to FALSE and ERR is set to
TRUE. The output OK is not valid until the job has been completed, i. e. if RDY = TRUE.
The following applies:
If RDY = TRUE and
OK = TRUE: The job has been processed successfully.

GRN

CODE

D1...D8

RDY

OK

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1069

OK = FALSE: During processing of the job an error has been detected.

Data type Default value Range Unit
BOOL - - -

Output ERR indicates whether an error has occurred during processing of the function block.
This output always has to be considered together with the outputs RDY and OK. If RDY is
TRUE, OK is FALSE and ERR is TRUE, an error occurred.

Output description

Data type Default value Range Unit
BOOL - - -

After completion of job processing, the response is available at the outputs A1 ... A7. The
number of response parameters depends on the job performed is described below.
List of jobs
Processing a job consists of:
● transferring the job
● supplying the OK response or not-OK response
The OK response is described in connection with the corresponding job.
The not-OK response of the individual jobs always looks as follows:
The following basically applies for the not-OK response:
RDY: TRUE
OK: FALSE
ERR:TRUE
A1...A7: 0
Updating of the maximum number of remote modules detected
The input word EW 07,15 contains, amongst other things, the maximum number of remote
modules detected in the past. The actual number of remote modules which exist at the moment
may be less. This command is used to update this value. The modules which exist are counted
and the value is stored. The user can inquire this value in the PLC program (EW 07,15, bit
8...15).

ERR

A1...A7

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1070

- Job
GRN:
CODE:
D1...D8:

255 (Master PLC with bus)
132
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring the open-circuit monitoring of an input to determine whether it is activated or
deactivated

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
32
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
47. Open-circuit monitoring ON
32. Open-circuit monitoring OFF
0

Inquiring the open-circuit monitoring of an output to determine whether it is activated or
deactivated

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
33
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
47. Open-circuit monitoring ON
32. Open-circuit monitoring OFF
0

Deactivating or activating the open-circuit monitoring of an input

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1071

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
224. Open-circuit monitoring ON
160. Open-circuit monitoring OFF
Channel number
Not used

- OK response RDY:
OK:
A1...A7:

TRUE
TRUE
0

Deactivating or activating the open-circuit monitoring of an output

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
225. Open-circuit monitoring ON
161. Open-circuit monitoring OFF
Channel number
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring a channel to determine whether it is configured as input or input/output

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
34
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
34. Input
35. Input/output
0

Configuration of a channel as input or input/output

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1072

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
162. Input
163. Input/output
Channel number
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring the input delay of a channel

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
38
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
Input delay
2. 2 ms
4. 4 ms
:
:
30. 30 ms
32. 32 ms
0

Setting the input delay of a channel

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1073

- Job
GRN:
CODE:
D1:
D2:

Group number 0...63
166
Channel number
Input delay
2. 2 ms
4. 4 ms
:
:
30. 30 ms
32. 32 ms

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Acknowledging errors on remote module
This command can be used to reset the error messages registered on the selected remote
module. A reset is possible only if the cause of the error is no longer operative.

- Job
GRN:
CODE:
D1:
D2:
D3...D8:

Group number 0...63
232
Lowest channel number on the module:
0. Lowest channel number on the
module is 0 (<7)
8. Lowest channel number on the
module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Wort: odd number (1, 3, 5)
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Acknowledging errors on remote module and resetting configuration values to default
setting

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1074

In addition to the job "Acknowledging errors on remote module", all configurable settings are
reset to the default setting.

- Job
GRN:
CODE:
D1:
D2:
D3...D8:

Group number 0...63
233
First channel number on the module:
0. First channel number on the module
is 0 (<7)
8. First channel number on the module
is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Wort: odd number (1, 3, 5)
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring the configuration of an analog input

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
42
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
50. Input 0...20 mA
49. Input 4...20 mA
0

Inquiring the configuration of an analog output

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1075

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
43
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
50. Output 0...20 mA
49. Output 4...20 mA
51. Output +10 V
0

Configuration of an analog input

- Job
GRN:
CODE:
D1:
D2:
D3...D8:

Group number 0...63
170
Channel number
50. Input 0...20 mA
49. Input 4...20 mA
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Configuration of an analog output

- Job
GRN:
CODE:
D1:
D2:
D3...D8:

Group number 0...63
171
Channel number
50. Output 0...20 mA
49. Output 4...20 mA
51. Output +10 V
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring the bus configuration
The bus interface of the Master PLC has a list which stores specific data of the remote modules.
The remote modules are numbered in this list in the order in which they can be found on the
CS31 bus. The internal number of the modules must be specified with this command. The
response to this command is the group number stored under this number and status information
on the corresponding module.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1076

- Job
GRN:
CODE:
D1:
D2...D8:

Not evaluated
80
Number from the module list (1...31)
Not used

- OK response
RDY:
OK:
A1:
A2:
A3:
A4...A7:

TRUE
TRUE
Status of the remote module:
Bits 0...3: Number of process data
bytes (binary module) or words (word
module), which the module sends to
the master.
Bits 4...7: Number of process data
bytes (binary module) or words (word
module), which the master sends to
the module
Group number
Bit 0: 0. Lowest channel number <7
1. Lowest channel number >7
Bit 1: 0. Binary module
1. Word module
0

Read 1 ... 6 bytes

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1077

- Job
GRN:
CODE:
D1:
D2:
D3:
D4:
D5...D8:

Group number 0...63
49. Read 1 byte
50. Read 2 bytes
51. Read 3 bytes
52. Read 4 bytes
53. Read 5 bytes
54. Read 6 bytes
First channel number on the module:
0. First channel number on the
module is 0 (<7)
1. First channel number on the
module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Word: odd number (1, 3, 5)
Byte start address (Low Byte)
Byte start address (High Byte)
Not used

- OK response
RDY:
OK:
A1:
A2:
A3:
A4.
A5:
A6:
A7:

TRUE
TRUE
Value of the 1st byte
Value of the 2nd byte or 0
Value of the 3rd byte or 0
Value of the 4th byte or 0
Value of the 5th byte or 0
Value of the 6th byte or 0
0

Read 1 bit from 1 byte

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1078

- Job
GRN:
CODE:
D1:
D2:
D3:
D4:
D5:
D6...D8:

Group number 0...63
63
First channel number of the module:
0. First channel number of the
module is 0 (<7)
1. First channel number of the
module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Word: odd number (1, 3, 5)
Byte start address (Low Byte)
Byte start address (High Byte)
Bit position within the byte 0...7
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
Bit value (0 or 1)
0

Write 1...4 bytes

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1079

- Job
GRN:
CODE:
D1:
D2:
D3:
D4:
D5:
D6:
D7:
D8:

Group number 0...63
65. Write 1 byte
66. Write 2 bytes
67. Write 3 bytes
68. Write 4 bytes
First channel number on the
module:
0. First channel number on
the module is 0 (<7)
1. First channel number on
the module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Word: odd number (1, 3, 5)
Byte start address (Low Byte)
Byte start address (High Byte)
Value of the 1st byte
Value of the 2nd byte or not
used
Value of the 3rd byte or not
used
Value of the 4th byte or not
used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Write 1 bit of 1 byte

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1080

- Job
GRN:
CODE:
D1:
D2:
D3:
D4:
D5:
D6:
D7...D8:

Group number 0...63
79
First channel number on the
module:
0. First channel number on
the module is 0 (<7)
1. First channel number on
the module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Word: odd number (1, 3, 5)
Byte start address (Low Byte)
Byte start address (High Byte)
Bit position within the byte
0...7
Bit value (0 or 1)
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Function call in ST
CS31CO1(FREI := CSCO_FREI,
GRN := CSCO_GRN,CODE := CSCO_CODE,
D1 := CSCO_D1, D2 := CSCO_D2, D3 := CSCO_D3,
D4 := CSCO_D4, D5 := CSCO_D5, D6 := CSCO_D6,
D7 := CSCO_D7, D8 := CSCO_D8);

CSCO_OK:=CS31CO1.OK;
CSCO_ERR:=CS31CO1.ERR;
CSCO_A1:=CS31CO1.A1;
CSCO_A2:=CS31CO1.A2;
CSCO_A3:=CS31CO1.A3;
CSCO_A4:=CS31CO1.A4;
CSCO_A5:=CS31CO1.A5;
CSCO_A6:=CS31CO1.A6;
CSCO_A7:=CS31CO1.A7;
CSCO_RDY:=CS31CO1.RDY;

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1081

CS31CO_EXT

Function block CS31CO_EXT is used to configure the AC31 Modules. The function block can
send configuration parameters to the AC31 Modules and scan their currently set configuration.

Parameter Value
Included in library CS31_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Group/Subgroup

Function block CS31CO_EXT is used to configure the AC31 Modules. The function block can
send configuration parameters to the AC31 Modules and scan their currently set configuration.
Apart from configuration of the AC31 remote modules, the function block can also process
further jobs Ä “A1...A7” on page 1070.
Enable for processing a job once is triggered by a FALSE/TRUE edge at input FREI.
The communication port the CS31 Master is connected to is specified at input COM.
The required job identification is specified at input CODE.
The parameters required for the job are planned at the inputs D1 ... D8.
Status messages are signalized at the outputs RDY, OK and ERR.
The response data of the job are available at the outputs A1 ... A7.
It may take several PLC cycles to process the job.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1082

Input description

Data type Default value Range Unit
BOOL - - -

Processing of the function block is controlled via input FREI.
FREI = FALSE:
All function block outputs are set to the value "FALSE". However, this is not valid, if a job is
currently being processed, i. e. processing of a job which is currently being processed, is not
affected by FREI = FALSE.
FREI = FALSE/TRUE edge:
Processing of the job is enabled. Input FREI is no longer evaluated during processing of the job.
FREI = TRUE:
The function block is not processed, i. e. it no longer changes its outputs. However, this is not
valid, if a job is currently being processed.

Data type Default value Range Unit
BYTE - - -

Reserved for future extensions.

Data type Default value Range Unit
BYTE - - -

Communication Port to which the CS31 Bus Module is connected.

Data type Default value Range Unit
BYTE - 0 ... 63 -

Group number with which the remote module is addressed by the PLC program.
Example:
On binary input E 12,08, "12" is the group number and "08" is the channel number.

FREI

SLOT

COM

GRN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1083

Data type Default value Range Unit
BYTE - - -

The identification of the job to be executed is specified at input CODE Ä “A1...A7”
on page 1085.

Data type Default value Range Unit
BYTE - - -

The parameters required for the job are preset at the inputs D1 ... D8. The number of
parameters depends on the job to be executed. There are also jobs requiring no parameters
Ä “A1...A7” on page 1085.

Output description

Data type Default value Range Unit
BOOL - - -

The output RDY indicates that processing of the job currently being processed is completed.
This output does not indicate whether processing of the job was successful or not. The output
RDY has therefore always to be considered together with the output OK.
RDY = TRUE and OK = TRUE:
Processing of the job is completed without errors. A new job can be started with a FALSE/TRUE
edge at input FREI.
RDY = TRUE and OK = FALSE:
During processing of the job an error has been detected. ERR is set to TRUE. A new job can be
started with a FALSE/TRUE edge at input FREI.
RDY = FALSE
Processing of an enabled job has not yet been completed (job is still running) or output RDY
has been reset with FREI = FALSE.

CODE

D1...D8

RDY

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1084

Data type Default value Range Unit
BOOL - - -

Output OK indicates whether the job has been handled successfully or whether an error has
been detected during processing. In case of an error, OK ist set to FALSE and ERR is set to
TRUE. The output OK is not valid until the job has been completed, i. e. if RDY = TRUE.
The following applies:
If RDY = TRUE and
OK = TRUE: The job has been processed successfully.
OK = FALSE: During processing of the job an error has been detected.

Data type Default value Range Unit
BOOL - - -

Output ERR indicates whether an error has occurred during processing of the function block.
This output always has to be considered together with the outputs RDY and OK. If RDY is
TRUE, OK is FALSE and ERR is TRUE, an error occurred.

Data type Default value Range Unit
BOOL - - -

After completion of job processing, the response is available at the outputs A1 ... A7. The
number of response parameters depends on the job performed is described below.
List of jobs
Processing a job consists of:
● transferring the job
● supplying the OK response or not-OK response
The OK response is described in connection with the corresponding job.
The not-OK response of the individual jobs always looks as follows:
The following basically applies for the not-OK response:
RDY: TRUE
OK: FALSE
ERR:TRUE
A1...A7: 0
Updating of the maximum number of remote modules detected
The input word EW 07,15 contains, amongst other things, the maximum number of remote
modules detected in the past. The actual number of remote modules which exist at the moment
may be less. This command is used to update this value. The modules which exist are counted
and the value is stored. The user can inquire this value in the PLC program (EW 07,15, bit
8...15).

OK

ERR

A1...A7

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1085

- Job
GRN:
CODE:
D1...D8:

255 (Master PLC with bus)
132
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring the open-circuit monitoring of an input to determine whether it is activated or
deactivated

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
32
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
47. Open-circuit monitoring ON
32. Open-circuit monitoring OFF
0

Inquiring the open-circuit monitoring of an output to determine whether it is activated or
deactivated

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
33
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
47. Open-circuit monitoring ON
32. Open-circuit monitoring OFF
0

Deactivating or activating the open-circuit monitoring of an input

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1086

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
224. Open-circuit monitoring ON
160. Open-circuit monitoring OFF
Channel number
Not used

- OK response RDY:
OK:
A1...A7:

TRUE
TRUE
0

Deactivating or activating the open-circuit monitoring of an output

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
225. Open-circuit monitoring ON
161. Open-circuit monitoring OFF
Channel number
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring a channel to determine whether it is configured as input or input/output

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
34
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
34. Input
35. Input/output
0

Configuration of a channel as input or input/output

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1087

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
162. Input
163. Input/output
Channel number
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring the input delay of a channel

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
38
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
Input delay
2. 2 ms
4. 4 ms
:
:
30. 30 ms
32. 32 ms
0

Setting the input delay of a channel

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1088

- Job
GRN:
CODE:
D1:
D2:

Group number 0...63
166
Channel number
Input delay
2. 2 ms
4. 4 ms
:
:
30. 30 ms
32. 32 ms

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Acknowledging errors on remote module
This command can be used to reset the error messages registered on the selected remote
module. A reset is possible only if the cause of the error is no longer operative.

- Job
GRN:
CODE:
D1:
D2:
D3...D8:

Group number 0...63
232
Lowest channel number on the module:
0. Lowest channel number on the
module is 0 (<7)
8. Lowest channel number on the
module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Wort: odd number (1, 3, 5)
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Acknowledging errors on remote module and resetting configuration values to default
setting

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1089

In addition to the job "Acknowledging errors on remote module", all configurable settings are
reset to the default setting.

- Job
GRN:
CODE:
D1:
D2:
D3...D8:

Group number 0...63
233
First channel number on the module:
0. First channel number on the module
is 0 (<7)
8. First channel number on the module
is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Wort: odd number (1, 3, 5)
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring the configuration of an analog input

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
42
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
50. Input 0...20 mA
49. Input 4...20 mA
0

Inquiring the configuration of an analog output

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1090

- Job
GRN:
CODE:
D1:
D2...D8:

Group number 0...63
43
Channel number
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
50. Output 0...20 mA
49. Output 4...20 mA
51. Output +10 V
0

Configuration of an analog input

- Job
GRN:
CODE:
D1:
D2:
D3...D8:

Group number 0...63
170
Channel number
50. Input 0...20 mA
49. Input 4...20 mA
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Configuration of an analog output

- Job
GRN:
CODE:
D1:
D2:
D3...D8:

Group number 0...63
171
Channel number
50. Output 0...20 mA
49. Output 4...20 mA
51. Output +10 V
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Inquiring the bus configuration
The bus interface of the Master PLC has a list which stores specific data of the remote modules.
The remote modules are numbered in this list in the order in which they can be found on the
CS31 bus. The internal number of the modules must be specified with this command. The
response to this command is the group number stored under this number and status information
on the corresponding module.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1091

- Job
GRN:
CODE:
D1:
D2...D8:

Not evaluated
80
Number from the module list (1...31)
Not used

- OK response
RDY:
OK:
A1:
A2:
A3:
A4...A7:

TRUE
TRUE
Status of the remote module:
Bits 0...3: Number of process data
bytes (binary module) or words (word
module), which the module sends to
the master.
Bits 4...7: Number of process data
bytes (binary module) or words (word
module), which the master sends to
the module
Group number
Bit 0: 0. Lowest channel number <7
1. Lowest channel number >7
Bit 1: 0. Binary module
1. Word module
0

Read 1 ... 6 bytes

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1092

- Job
GRN:
CODE:
D1:
D2:
D3:
D4:
D5...D8:

Group number 0...63
49. Read 1 byte
50. Read 2 bytes
51. Read 3 bytes
52. Read 4 bytes
53. Read 5 bytes
54. Read 6 bytes
First channel number on the module:
0. First channel number on the
module is 0 (<7)
1. First channel number on the
module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Word: odd number (1, 3, 5)
Byte start address (Low Byte)
Byte start address (High Byte)
Not used

- OK response
RDY:
OK:
A1:
A2:
A3:
A4.
A5:
A6:
A7:

TRUE
TRUE
Value of the 1st byte
Value of the 2nd byte or 0
Value of the 3rd byte or 0
Value of the 4th byte or 0
Value of the 5th byte or 0
Value of the 6th byte or 0
0

Read 1 bit from 1 byte

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1093

- Job
GRN:
CODE:
D1:
D2:
D3:
D4:
D5:
D6...D8:

Group number 0...63
63
First channel number of the module:
0. First channel number of the
module is 0 (<7)
1. First channel number of the
module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Word: odd number (1, 3, 5)
Byte start address (Low Byte)
Byte start address (High Byte)
Bit position within the byte 0...7
Not used

- OK response
RDY:
OK:
A1:
A2...A7:

TRUE
TRUE
Bit value (0 or 1)
0

Write 1...4 bytes

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1094

- Job
GRN:
CODE:
D1:
D2:
D3:
D4:
D5:
D6:
D7:
D8:

Group number 0...63
65. Write 1 byte
66. Write 2 bytes
67. Write 3 bytes
68. Write 4 bytes
First channel number on the
module:
0. First channel number on
the module is 0 (<7)
1. First channel number on
the module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Word: odd number (1, 3, 5)
Byte start address (Low Byte)
Byte start address (High Byte)
Value of the 1st byte
Value of the 2nd byte or not
used
Value of the 3rd byte or not
used
Value of the 4th byte or not
used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Write 1 bit of 1 byte

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1095

- Job
GRN:
CODE:
D1:
D2:
D3:
D4:
D5:
D6:
D7...D8:

Group number 0...63
79
First channel number on the
module:
0. First channel number on
the module is 0 (<7)
1. First channel number on
the module is 8 (>7)
Module type:
0. Binary input
1. Analog input
2. Binary output
3. Analog output
4. Binary input/output
5. Analog input/output
Note:
Bit: even number (0, 2, 4)
Word: odd number (1, 3, 5)
Byte start address (Low Byte)
Byte start address (High Byte)
Bit position within the byte
0...7
Bit value (0 or 1)
Not used

- OK response
RDY:
OK:
A1...A7:

TRUE
TRUE
0

Function call in ST
CS31COEXT (FREI := CS31COEXT_FREI,
 GRN := CS31COEXT_GRN,
 CODE := CS31COEXT_CODE,
 D1 := CS31COEXT_D1,
 D2 := CS31COEXT_D2,
 D3 := CS31COEXT_D3,
 D4 := CS31COEXT_D4,
 D5 := CS31COEXT_D5,
 D6 := CS31COEXT_D6,
 D7 := CS31COEXT_D7,
 D8 := CS31COEXT_D8);

CS31COEXT_OK :=CS31COEXT.OK;
CS31COEXT_ERR :=CS31COEXT.ERR;
CS31COEXT_A1 :=CS31COEXT.A1;
CS31COEXT_A2 :=CS31COEXT.A2;
CS31COEXT_A3 :=CS31COEXT.A3;

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1096

CS31COEXT_A4 :=CS31COEXT.A4;
CS31COEXT_A5 :=CS31COEXT.A5;
CS31COEXT_A6 :=CS31COEXT.A6;
CS31COEXT_A7 :=CS31COEXT.A7;
CS31COEXT_RDY :=CS31COEXT.RDY;

CS31QU

This function block allows to acknowledge automatically error messages of AC31 remote
modules. Error messages are stored on the AC31 remote modules until they are acknowledged.
Even if the error has been removed, the error message is still pending on the module until
acknowledgement and is also signalized to the PLC until the message is acknowledged.
Processing of the function block is enabled with a TRUE signal at input FREI, and the function
block then acknowledges AC31 errors continuously.
It may take several PLC cycles to acknowledge an error on an AC31 module.
If the function block is enabled, it constantly checks whether an AC31 error of class 3 or 4 has
occurred and acknowledges this error.

The function block acknowledges the error on the AC31 remote module which signalizes the
error and also clears the error message on the PLC, i.e. the error flag M 255,13 is reset and
LED FK3 is deactivated.
Example of a FK3 error:
A remote module is disconnected from the CS31 bus.

The function block acknowledges the error on the AC31 remote module which signalizes the
error and also clears the error message on the PLC, i.e. the error flag M 255,14 is reset.
Example of a FK4 error:
A remote module signalizes an open circuit.

Parameter Value
Included in library CS31_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

Group Group/Subgroup

Function call in ST
CS31QU1(FREI := CSQU_FREI);

An AC31 error
of class 3 has
occurred:

An AC31 error
of class 4 has
occurred:

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1097

CS31QU_EXT

Function block CS31QU_EXT allows to acknowledge automatically error messages of AC31
Modules.

Parameter Value
Included in library CS31_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Group/Subgroup

This function block allows to acknowledge automatically error messages of AC31 remote
modules. Error messages are stored on the AC31 remote modules until they are acknowledged.
Even if the error has been removed, the error message is still pending on the module until
acknowledgement and is also signalized to the PLC until the message is acknowledged.
Processing of the function block is enabled with a TRUE signal at input FREI, and the function
block then acknowledges AC31 errors continuously.
It may take several PLC cycles to acknowledge an error on an AC31 module.
If the function block is enabled, it constantly checks whether an AC31 error of class 3 or 4 has
occurred and acknowledges this error.

Input description

Data type Default value Range Unit
BOOL - - -

Processing of the function block is controlled via input FREI.
FREI = FALSE:
All function block outputs are set to the value "FALSE". However, this is not valid, if a job is
currently being processed, i. e. processing of a job which is currently being processed, is not
affected by FREI = FALSE.
FREI = FALSE/TRUE edge:

FREI

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1098

Processing of the job is enabled. Input FREI is no longer evaluated during processing of the job.
FREI = TRUE:
The function block is not processed, i. e. it no longer changes its outputs. However, this is not
valid, if a job is currently being processed.

Data type Default value Range Unit
BYTE - - -

Reserved for future extensions.

Data type Default value Range Unit
BYTE - - -

At input COM, the number of the serial interface of the CS31 Master (AC500 or CM574) is
specified.
Valid values: 0 and 1 for COM1, 2 for COM2 (CM574-RS only)

Output description

Data type Default value Range Unit
BOOL - - -

Output ERR indicates whether an error occurred during Function Block processing.

The function block acknowledges the error on the AC31 remote module which signalizes the
error and also clears the error message on the PLC, i.e. the error flag M 255,13 is reset and
LED FK3 is deactivated.
Example of a FK3 error:
A remote module is disconnected from the CS31 bus.

The function block acknowledges the error on the AC31 remote module which signalizes the
error and also clears the error message on the PLC, i.e. the error flag M 255,14 is reset.
Example of a FK4 error:
A remote module signalizes an open circuit.

SLOT

COM

ERR

An AC31 error
of class 3 has
occurred:

An AC31 error
of class 4 has
occurred:

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1099

Function call in ST
CS31QUEXT (FREI := CS31QUEXT_FREI,
 SLOT := CS31QUEXT_SLOT,
 COM := CS31QUEXT_COM);

CS31QUEXT_ERR := CS31QUEXT.ERR;

CS31_READ_VER

Function block CS31_READ_VER is used to read out the firmware version of CS31 Bus
Modules.

Parameter Value
Included in library CS31_AC500_V20.lib

Available as of firmware V2.0.0

Type Function block with historical values

Group Group/Subgroup

Function block CS31_READ_VER is used to readout the firmware version of CS31 communica-
tion interface module and of the Expansion Modules connected to them. The result is returned
in a structure of the type strFWVersion_CS31.
The structure strFWVersion_CS31 is composed as follows:

TYPE strFWVersion_CS31 :
STRUCT

 abyFW_BM: ARRAY[0..4] OF
BYTE;

(* 5 bytes: FW version of CS31 Bus
Module*)

 abyFW_Ext_1: ARRAY[0..3] OF
BYTE;

(* 4 bytes: FW version of Expansion
Module 1*)

 abyFW_Ext_2: ARRAY[0..3] OF
BYTE;

(* 4 bytes: FW version of Expansion
Module 2*)

 abyFW_Ext_3: ARRAY[0..3] OF
BYTE;

(* 4 bytes: FW version of Expansion
Module 3*)

 abyFW_Ext_4: ARRAY[0..3] OF
BYTE;

(* 4 bytes: FW version of Expansion
Module 4*)

 abyFW_Ext_5: ARRAY[0..3] OF
BYTE;

(* 4 bytes: FW version of Expansion
Module 5*)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1100

 abyFW_Ext_6: ARRAY[0..3] OF
BYTE;

(* 4 bytes: FW version of Expansion
Module 6*)

 abyFW_Ext_7: ARRAY[0..3] OF
BYTE;

(* 4 bytes: FW version of Expansion
Module 7*)

END_STRUCT
END_TYPE

Input description

Data type Default value Range Unit
BYTE - - -

Reserved for future extensions.

Data type Default value Range Unit
BYTE - - -

Communication Port to which the CS31 Bus Module is connected.

Data type Default value Range Unit
BYTE - 0 ... 99 -

Address of the CS31 Bus Module from which the firmware versions should be readout.

Data type Default value Range Unit
BOOL - - -

The function block is activated with a value transition from FALSE->TRUE at the variable EN.
Otherwise it remains disabled.
If the function block is activated the specified input values are used and the output values are
available at the function block outputs.

Data type Default value Range Unit
BOOL - - -

If input EN_VISU = TRUE, it is also possible to control the function block inputs (except EN
and EN_VISU) via the integrated visualization of the function block. If input EN_VISU = FALSE,
control via the visualization is disabled. The actual values are always displayed.

SLOT

COM

MODULE_ADR

EN

EN_VISU

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1101

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
strFWVersion_CS31 - - -

In the structure of this output value the firmware versions of the CS31 communication interface
module and its expansion modules is stored.

Function call in ST
CS31ReadVer (SLOT := CS31ReadVer_SLOT,
 COM := CS31ReadVer_COM,
 MODULE_ADR := CS31ReadVer_MODULE_ADR,
 EN := CS31ReadVer_EN,
 EN_VISU := CS31ReadVer_EN_VISU);

CS31ReadVer_DONE := CS31ReadVer.DONE;
CS31ReadVer_ERR := CS31ReadVer.ERR;
CS31ReadVer_ERNO := CS31ReadVer.ERNO;
CS31ReadVer_FW_VER := CS31ReadVer.FW_VER;

DONE

ERR

ERNO

FW_VER

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1102

1.5.4.11 DC541 library

1.5.4.11.1 DC541
Library file name: DC541_AC500_Vx.lib
This library contains all function blocks necessary for using DC541. The configuration of DC541
is done in PLC configuration.
Once DC541 has been added to the PLC configuration, the library is automatically included with
the next compilation of the project.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The function blocks are available in AC500 control systems with a runtime system of version
V1.1.2 or later.

Function blocks
DC541_32BIT_CNT

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.3

Available as of firmware
DC541

V1.1

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1103

Parameter Value
Type Function block with historical values

Group Counters

The 32-bit counter is a count up/count down counter with a directional discriminator. The
counter can be used in two counting modes:
● EN_UD = FALSE: Encoder mode

Connection of an incremental transmitter (track A / track B, offset by 90°)
It is possible to count signals up to approx. 60 kHz. This corresponds to a motor with
a rotational speed of 3.600 rpm and a transmitter with 1.000 pulses per rotation. Pulse
multiplication (x2 or x4) is not used.

● EN_UD = TRUE: Up / down mode
Up-/down counter
It is possible to count signals up to approx. 60 kHz. Count-up for signals on channel C1,
count-down for signals on channel C0.

The counter always uses the channels C0...C3 of the DC541:
● C0: Track A of the incremental transmitter.
● C1: Track B of the incremental transmitter.
● C2 and C3: Reference cam or touch trigger.
The counter can be used in two operating modes:
● Infinite counter (endless mode)
● Limiting counter (limit mode)

The operating mode is selected using input EN_LIM.
If EN_LIM = FALSE, the counter operates as an infinite counter (endless mode). An overflow
occurs corresponding to the 32 bit value at 16#FFFFFFFF = 4 294 967 295. In this mode, any
exceeding of the limit value LIM_MAX or falling below the limit value LIM_MIN is displayed at
the outputs MAX_LIM or MIN_LIM.
If EN_LIM = TRUE (limit mode), the counting range is between the limit values LIM_MIN and
LIM_MAX. In case of an overflow, i.e. if LIM_MAX is reached, the counter restarts again at
LIM_MIN.
The upper limit value LIM_MAX has to be higher than the lower limit value LIM_MIN. If the
lower limit value LIM_MIN is higher than the upper limit value LIM_MAX, a corresponding error
message is displayed at the outputs ERR/ERNO. In this case, the values for LIM_MIN and
LIM_MAX are not forwarded to the DC541. The difference between LIM_MAX and LIM_MIN has
to be at least twice the number (frequency) of counting pulses per DC541 cycle.

Number of counting pulses (frequency) = 40 kHz = 40000 increments/s = 40 increments/ms
Cycle time of the DC541 = 100 µs
LIM_MIN = 0
Number of counting pulses per DC541 cycle: 40 increments/ms = 4 increments/100 µs
LIM_MAX > 8

Example

Using input SET, the counter is set to the value CNT_SET. This value is kept as long as input
SET = TRUE.
If the reference point approach is enabled at input EN_REF, the counter is set to the value of
input CNT_SET when a rising edge occurs on channel C2 or C3.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1104

Using input EN_TOUCH, a touch trigger measurement is enabled. This means: With the rising
edge on channel C2 or C3, the counting value is stored and displayed at output CNT_TOUCH.
The validity of CNT_TOUCH is indicated by output RDY_TOUCH. This functionality can be used
to determine the counter value with regard to an external event. The results are increment
accurate.
Only one function may be enabled at a time, either the reference point approach or the touch
trigger measurement. If both functions are enabled simultaneously or if the execution of one
function is not yet completed when enabling the other function, a corresponding error message
is displayed at the outputs ERR/ERNO.
To initiate a new reference point approach or touch trigger measurement, a positive edge at the
corresponding enabling input is necessary.
If the zero track of an incremental transmitter is wired to channel C2 or C3, no touch trigger
measurement may be performed in the region of the reference cam!
The device DC541 must be configured as counting device (counter mode).
This function block has an integrated visualization which can be used to control all func-
tion block functions in parallel to the user program, if input EN_VISU = TRUE Ä Chapter
1.5.4.11.1.2 “Visualizations” on page 1154.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1105

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 0 for input C0 only -

This input is used to select the input for the counter. The device occupies the inputs C0...C3. If
an invalid value is entered at input CH or if the selected channel is not configured as a 32-bit
counter (32BIT_CNT), the function block is aborted.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

If EN_VISU input (enable input in visualization) is TRUE, it is possible to control the function
block inputs (except SLOT, CH and EN_VISU) via the integrated visualization of the function
block. If input EN_VISU = FALSE, control via the visualization is disabled and the labelling
of the corresponding control elements is displayed in gray. The actual values are always dis-
played.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

In order to enable pulse counting for input CH, input EN has to be continuously TRUE. The
function block is not processed if input EN = FALSE.
When the function block is called for the first time, the inputs are checked for validity and
plausibility and the corresponding device is checked for correct configuration in the operating
mode "counting mode". If this is not the case, processing is aborted.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

At a rising edge at this input, the counter is set to the value of input CNT_SET. Counting is
enabled after reset process to SET = TRUE.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

A rising edge at EN_REF input (enable reference) enables the reference point approach. If
EN_REF = TRUE, a rising edge at input C2 or C3 causes the actual value of the counter
CNT_ACT to be set to the value of input CNT_SET.
The next measurement is again initiated by a rising edge at input EN_REF.
Only one function may be enabled at a time, either the reference point approach or the touch
trigger measurement. If both functions are enabled simultaneously or if the execution of one
function is not yet completed when enabling the other function, the function block is aborted.

SLOT

CH (channel)

EN_VISU

EN (enable)

SET

EN_REF

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1106

Data type Default value Range Unit
BOOL - TRUE/FALSE -

A rising edge at EN_TOUCH input (enable touch trigger) enables a touch trigger measurement.
If input EN_TOUCH = TRUE, a rising edge at input C2 or C3 causes the function block to store
the actual counter value and to display this value at output CNT_TOUCH.
The next measurement is again initiated by a rising edge at input EN_TOUCH.
Only one function may be enabled at a time, either the reference point approach or the touch
trigger measurement. If both functions are enabled simultaneously or if the execution of one
function is not yet completed when enabling the other function, the function block is aborted.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The input EN_UD (enable up/down) is used to select the counting mode of the 32-bit counter.
EN_UD = FALSE: Connection of an incremental transmitter. Track A/B offset by 90°.
EN_UD = TRUE: Up/down counter. C1: count up, C0: count down.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Input EN_LIM (enable limit) is used to set the operating mode for the counter:
EN_LIM = FALSE: Infinite counter (endless mode).
EN_LIM = TRUE: Limiting counter (limit mode).
Switching between the operating modes can be done during running operation. And it is pos-
sible to change the upper limit value LIM_MAX and the lower limit value LIM_MIN during run-
ning operation. LIM_MAX has to be higher than LIM_MIN. If LIM_MIN is higher than LIM_MAX,
an error is displayed.
In case of a rising edge at input EN_LIM (transition from endless mode to limit mode), the
present counter value can change depending on the values of LIM_MIN and LIM_MAX.

Present counter value Changed counter value
ACT_CNT < LIM_MIN ACT_CNT := LIM_MIN

LIM_MIN £ ACT_CNT £ LIM_MAX ACT_CNT := ACT_CNT (no change)

ACT_CNT > LIM_MAX ACT_CNT := LIM_MIN

Data type Default value Range Unit
DWORD - - -

LIM_MAX (limit maximum) is used to set the upper limit value for the counter. LIM_MAX has to
be higher than the lower limit value LIM_MIN. If LIM_MIN is higher than LIM_MAX, an error is
displayed.

Data type Default value Range Unit
DWORD - - -

EN_TOUCH

EN_UD

EN_LIM

LIM_MAX

LIM_MIN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1107

LIM_MIN (limit minimum) is used to set the lower limit value for the counter. The upper limit
value LIM_MAX has to be higher than LIM_MIN. If LIM_MIN is higher than LIM_MAX, an error is
displayed.

Data type Default value Range Unit
DWORD - - -

CNT_SET (counter set) is used to adjust the counter set value.
If input SET = TRUE, the counter is set to the value of input CNT_SET and remains at this value
as long as input SET = TRUE. Counting is enabled again with the occurrence of the falling edge
at input SET.
In case of a reference point approch (EN_REF = TRUE), the rising edge on channel C2 causes
the actual value of the counter (ACT_CNT) to be adjusted to the set value CNT_SET.
A FALSE -> TRUE edge at input EN activates the status polling. If the value at input SLOT
is not valid, processing is aborted and an error is displayed. The function block outputs are
updated as long as input EN = TRUE. The function block processing has been completed
successfully, if output DONE changes to TRUE. During the processing of a request, state
changes at input EN are recognized but not evaluated.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

CNT_SET

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1108

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 58: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

Data type Default value Range Unit
BOOL - TRUE / FALSE -

RDY_REF (ready reference) displays the ready message of the reference point approach.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

RDY_TOUCH (ready message touch trigger) displays the ready message of the touch trigger
measurement.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

In the infinite counter operating mode (endless mode), MAX_LIM indicates whether the actual
counter value is higher than the value set at input LIM_MAX.
In the limiting counter operating mode (limit mode), output MAX_LIM is FALSE.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

In the infinite counter operating mode (endless mode), output MIN_LIM indicates whether the
actual counter value is lower than the value set at input LIM_MIN.
In the limiting counter operating mode (limit mode), output MIN_LIM is FALSE.

ERR

ERNO

RDY_REF

RDY_TOUCH

MAX_LIM

MIN_LIM

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1109

Data type Default value Range Unit
DWORD - - -

CNT_ACT (counter actual) displays the actual counter value of the count up counter.

Data type Default value Range Unit
DWORD - - -

Output CNT_TOUCH (counter touch trigger) displays the result of the touch trigger measure-
ment, i.e. the actual counter value at the moment of the occurrence of the rising edge at input
C2 after initiation of a touch trigger measurement by a rising edge at input EN_TOUCH.

Function call in ST
DC541Cnt32Bit (SLOT := DC541Cnt32Bit_SLOT,
 CH := DC541Cnt32Bit_CH,
 EN_VISU := DC541Cnt32Bit_EN_VISU,
 EN := DC541Cnt32Bit_EN,
 SET := DC541Cnt32Bit_SET,
 EN_REF := DC541Cnt32Bit_EN_REF,
 EN_TOUCH:= DC541Cnt32Bit_EN_TOUCH,
 EN_UD := DC541Cnt32Bit_EN_UD,
 EN_LIM := DC541Cnt32Bit_EN_LIM,
 LIM_MAX := DC541Cnt32Bit_LIM_MAX,
 LIM_MIN := DC541Cnt32Bit_LIM_MIN,
 CNT_SET := DC541Cnt32Bit_CNT_SET);

DC541Cnt32Bit_DONE := DC541Cnt32Bit.DONE;
DC541Cnt32Bit_ERR := DC541Cnt32Bit.ERR;
DC541Cnt32Bit_ERNO := DC541Cnt32Bit.ERNO;
DC541Cnt32Bit_RDY_REF := DC541Cnt32Bit.RDY_REF;
DC541Cnt32Bit_RDY_TOUCH := DC541Cnt32Bit.RDY_TOUCH;
DC541Cnt32Bit_MAX_LIM := DC541Cnt32Bit.MAX_LIM;
DC541Cnt32Bit_MIN_LIM := DC541Cnt32Bit.MIN_LIM;
DC541Cnt32Bit_CNT_ACT := DC541Cnt32Bit.CNT_ACT;
DC541Cnt32Bit_CNT_TOUCH := DC541Cnt32Bit.CNT_TOUCH;

CNT_ACT

CNT_TOUCH

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1110

DC541_FREQ

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.3, DC541 firmware: V1.2

Type Function block with historical values

Group Counters

The function block DC541_FREQ is used to measure times, frequencies and rotational speeds
with a resolution of 100 µs.
It is able to measure frequencies from 0 to 2000 Hz (2 kHz). In order to obtain a precise meas-
urement of frequencies > 50 Hz, a correspondingly high accuracy setting has to be chosen. It is
recommended to use an accuracy of PREC = 1000, i.e. 0.001.
This function block has to be called cyclically, one time per second at least.
The inputs EN_0, EN_1 and EN_FREQ are used to determine the edges to be measured. If
input EN_FREQ = TRUE, the frequency and the rotational speed are calculated in addition to
the time measurement.

EN_0 EN_1 EN_FREQ Edges measured FREQ/RPM
FALSE FALSE TRUE No measurement is performed. yes

FALSE TRUE TRUE Measurement of time between two
rising edges.

yes

TRUE FALSE TRUE Measurement of time between two
falling edges.

yes

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1111

EN_0 EN_1 EN_FREQ Edges measured FREQ/RPM
TRUE TRUE TRUE Measurement of time between any

two edges.
yes

FALSE FALSE FALSE No measurement is performed. no

FALSE TRUE FALSE Measurement of time between the
falling edge and the subsequent
rising edge.

no

TRUE FALSE FALSE Measurement of time between the
rising edge and the subsequent
falling edge.

no

TRUE TRUE FALSE Measurement of time between any
two edges.

no

Different time measurement results depending on the values applied to the inputs EN_0, EN_1
and EN_FREQ.

EN_0 EN_1 EN_FREQ Time measurement (duration DUR) [µs]
1 2 3 4

FALSE FALSE TRUE 0 0 0 0

FALSE TRUE TRUE - 500 - 450

TRUE FALSE TRUE - - 350 -

TRUE TRUE TRUE 300 200 150 300

FALSE FALSE FALSE 0 0 0 0

FALSE TRUE FALSE 300 - 150 -

TRUE FALSE FALSE - 200 - 300

TRUE TRUE FALSE 300 200 150 300

Example

The output NEW indicates that new measurement results are available.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1112

The device DC541 must be configured as counting device (counter mode). Channel CH must be
configured for frequency measurement.
This function block has an integrated visualization which can be used to control all func-
tion block functions in parallel to the user program, if input EN_VISU = TRUE Ä Chapter
1.5.4.11.1.2 “Visualizations” on page 1154.

Input description

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 0-7 for the inputs C0-

C7
-

CH is used to select the channel for time and frequency measurement. If an invalid value is
specified at input CH or if the selected channel is not configured as frequency measurement,
the function flock is aborted with DONE = ERR = TRUE and an error is displayed.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

If EN_VISU input (enable input in visualization) is TRUE, it is possible to control the function
block inputs (except SLOT, CH and EN_VISU) via the integrated visualization of the function
block. If input EN_VISU = FALSE, control via the visualization is disabled and the labelling
of the corresponding control elements is displayed in gray. The actual values are always dis-
played.

SLOT

CH (channel)

EN_VISU

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1113

Data type Default value Range Unit
BOOL - TRUE / FALSE -

In order to enable pulse counting for input CH, input EN has to be continuously TRUE. The
function block is not processed if input EN = FALSE.
When the function block is called for the first time, the inputs are checked for validity and
plausibility and the corresponding device is checked for correct configuration in the operating
mode "counting mode". If this is not the case, processing is aborted.

Data type Default value Range Unit
BOOL - - -

This input is used to determine whether falling edges are considered for measurement:
EN_0 = TRUE: Measurement considers falling edges.
EN_0 = FALSE: Measurement does not consider falling edges.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

If EN_1=TRUE, the time frequency measurement will be capture on rising edge of signal.
Input EN_1 corresponds to output bit 2 in control byte.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

EN_FREQ = FALSE: Measurement of time between positive or negative edges
EN_FREQ = TRUE: Measurement of time between edges and calculation of frequency and
speed of rotation

Data type Default value Range Unit
WORD - - -

PREC (precision) input is used to specify the demanded accuracy of the measurement.
PREC = 10 corresponds to an accuracy of 0.1 (one tenth)
PREC = 100 corresponds to an accuracy of 0.01 (one hundredth)
PREC = 1000 corresponds to an accuracy of 0.001 (one thousandth)
Depending on the cycle time and the demanded accuracy, the DC541 extends its measuring
time and counts multiple pulses. This setting is only used in the frequency measurement oper-
ating mode (EN_FREQ = TRUE). Then, the displayed measurement values correspond to the
measured average value. This reduces jitter and latency effects resulting in improved accuracy.

EN (enable)

EN_0 (enable 0)

EN_1

EN_FREQ

PREC

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1114

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 59: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1115

Data type Default value Range Unit
BOOL - - -

Output indicates that new measurement results are available.
NEW = TRUE: New measurement results are available.
NEW = FALSE: No new measurement results are available.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SUBST (substitute) output indicates whether the output values are based on new measurement
values or calculated using substitute values. Without the substitute value, the function block
would still display a short time and a high speed of rotation in case of a decrease of the
frequency, since no new measurement is initiated without a new signal edge. If SUBST = TRUE,
the extended distance between the edges is extrapolated. PREC > 0 is an assumption for the
calculation using a substitute value.
SUBST = FALSE: New measurement values.
SUBST = TRUE: Calculation using substitute values.

Data type Default value Range Unit
DWORD - - µs

DUR (duration) output displays the measured time.

Data type Default value Range Unit
LREAL - - Hz

If input EN_FREQ = TRUE, output FREQ displays the frequency calculated from the measured
time.
If input EN_FREQ = FALSE, output FREQ = 0.

Data type Default value Range Unit
LREAL - - rpm

If input EN_FREQ = TRUE, output RPM (revolutions per minute) displays the speed of rotation
calculated from the measured time.
If input EN_FREQ = FALSE, output RPM =0.

Function call in ST
DC541Freq(SLOT := DC541Freq_SLOT,
 CH := DC541Freq_CH,
 EN_VISU := DC541Freq_EN_VISU,
 EN := DC541Freq_EN,
 EN_0 := DC541Freq_EN_0,
 EN_1 := DC541Freq_EN_1,
 EN_FREQ := DC541Freq_EN_FREQ,
 PREC := DC541Freq_PREC);

DC541Freq_DONE := DC541Freq.DONE;

NEW

SUBST

DUR

FREQ (fre-
quency)

RPM

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1116

DC541Freq_ERR := DC541Freq.ERR;
DC541Freq_ERNO := DC541Freq.ERNO;
DC541Freq_NEW := DC541Freq.NEW;
DC541Freq_SUBST := DC541Freq.SUBST;
DC541Freq_DUR := DC541Freq.DUR;
DC541Freq_FREQ := DC541Freq.FREQ;
DC541Freq_RPM := DC541Freq.RPM;

DC541_FREQ_FAST

Parameter Value
Included in library DC541_AC500_V12.lib

Available as of firmware V1.2, DC541 firmware: V1.3

Type Function block with historical values

Group Counters

The function block DC541_FREQ_FAST is used to measure times, frequencies and rotational
speeds with a resolution of 1 µs.
It is able to measure frequencies from 0-50000 Hz (50 kHz).
The function block works like DC541_FREQ, but it reaches a resolution of 1us Ä Chapter
1.5.4.11.1.1.2 “DC541_FREQ” on page 1111.
Restrictions:
● The function block is only allowed once per DC541 and only for channel 0.
● It occupies the resources of the first 4 inputs, which cannot be used for other purposes.
● The inputs C0..C3 must be connected in parallel.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1117

DC541
8DC
Input

24VDC
Output
24VDC

0.5A

UP 24VDC
100W

1.0 C0

1.1 C1

1.2 C2

1.3 C3

1.4 C4

1.5 C5

1.6 C6

1.7 C7

1.8 UP

1.9 ZP

CH-ERR1

This function block has to be called cyclically, one time per second at least.
It always measures the time and frequency from one positive edge to the next positive edge.
The output NEW indicates that new measurement results are available.
The device DC541 must be configured as counting device (counter mode). Channel CH must be
configured for frequency measurement.
The function block has an integrated visualization which can be used to control all function block
functions in parallel to the user program, if input EN_VISU = TRUE Ä Chapter 1.5.4.11.1.2
“Visualizations” on page 1154.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1118

Input description

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 0-7 for the inputs C0-

C7
-

CH is used to select the channel for time and frequency measurement. If an invalid value is
specified at input CH or if the selected channel is not configured as frequency measurement,
the function flock is aborted with DONE = ERR = TRUE and an error is displayed.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

If EN_VISU input (enable input in visualization) is TRUE, it is possible to control the function
block inputs (except SLOT, CH and EN_VISU) via the integrated visualization of the function
block. If input EN_VISU = FALSE, control via the visualization is disabled and the labelling
of the corresponding control elements is displayed in gray. The actual values are always dis-
played.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

In order to enable pulse counting for input CH, input EN has to be continuously TRUE. The
function block is not processed if input EN = FALSE.
When the function block is called for the first time, the inputs are checked for validity and
plausibility and the corresponding device is checked for correct configuration in the operating
mode "counting mode". If this is not the case, processing is aborted.

SLOT

CH (channel)

EN_VISU

EN (enable)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1119

Data type Default value Range Unit
WORD - - -

PREC (precision) input is used to specify the demanded accuracy of the measurement.
PREC = 10 corresponds to an accuracy of 0.1 (one tenth)
PREC = 100 corresponds to an accuracy of 0.01 (one hundredth)
PREC = 1000 corresponds to an accuracy of 0.001 (one thousandth)
Depending on the cycle time and the demanded accuracy, the DC541 extends its measuring
time and counts multiple pulses. This setting is only used in the frequency measurement oper-
ating mode (EN_FREQ = TRUE). Then, the displayed measurement values correspond to the
measured average value. This reduces jitter and latency effects resulting in improved accuracy.

As the resolution for measuring is 1 µs, the precision corresponds directly to the measuring time
in µs. For times < 100 µs, the device will just calculate the values as fast as possible, which
will be the cycle time of the device, around 100 µs. For higher precision, the device will use
the pulses per measuring time. It will measure the pulses and the time, with the time on a 1µs
resolution.

1000 µs

Measurement

f = 3/1100 µs = 2727 Hz

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

PREC

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1120

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 60: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

Data type Default value Range Unit
BOOL - - -

Output indicates that new measurement results are available.
NEW = TRUE: New measurement results are available.
NEW = FALSE: No new measurement results are available.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SUBST (substitute) output indicates whether the output values are based on new measurement
values or calculated using substitute values. Without the substitute value, the function block
would still display a short time and a high speed of rotation in case of a decrease of the
frequency, since no new measurement is initiated without a new signal edge. If SUBST = TRUE,
the extended distance between the edges is extrapolated. PREC > 0 is an assumption for the
calculation using a substitute value.
SUBST = FALSE: New measurement values.
SUBST = TRUE: Calculation using substitute values.

ERR

ERNO

NEW

SUBST

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1121

Data type Default value Range Unit
DWORD - - µs

DUR (duration) output displays the measured time.

Data type Default value Range Unit
LREAL - - Hz

If input EN_FREQ = TRUE, output FREQ displays the frequency calculated from the measured
time.
If input EN_FREQ = FALSE, output FREQ = 0.

Data type Default value Range Unit
LREAL - - rpm

If input EN_FREQ = TRUE, output RPM (revolutions per minute) displays the speed of rotation
calculated from the measured time.
If input EN_FREQ = FALSE, output RPM =0.

Function call in ST
DC541FreqFast(SLOT := DC541FreqFast_SLOT,
 CH := DC541FreqFast_CH,
 EN_VISU := DC541FreqFast_EN_VISU,
 EN := DC541FreqFast_EN,
 EN_0 := DC541FreqFast_EN_0,
 EN_1 := DC541FreqFast_EN_1,
 EN_FREQ := DC541FreqFast_EN_FREQ,
 PREC := DC541FreqFast_PREC);

DC541FreqFast_DONE := DC541FreqFast.DONE;
DC541FreqFast_ERR := DC541FreqFast.ERR;
DC541FreqFast_ERNO := DC541FreqFast.ERNO;
DC541FreqFast_NEW := DC541FreqFast.NEW;
DC541FreqFast_SUBST := DC541FreqFast.SUBST;
DC541FreqFast_DUR := DC541FreqFast.DUR;
DC541FreqFast_FREQ := DC541FreqFast.FREQ;
DC541FreqFast_RPM := DC541FreqFast.RPM;

DUR

FREQ (fre-
quency)

RPM

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1122

DC541_FREQ_OUT

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.3, DC541 firmware: V1.2

Type Function block with historical values

Group Counters

The function block DC541_FREQ_OUT is used to output pulses with a fixed frequency on one
channel of the device DC541. It is able to output pulses with a frequency between 0.2 and 2.5
kHz. The pulse jitter depends on the cycle time of the DC541. The pulse length is always a
multiple of the cycle time of the DC541.
In case of a presetting of PULSE = 0, the output of pulses is infinite. The pulse output is started
with a positive edge at input START. The output is aborted if START = FALSE. A positive edge
at input STOP interrupts the pulse output. The output is continued if STOP = FALSE.
If input PULSE > 0, the function block outputs the number of pulses specified at input PULSE
with the frequency specified at input FREQ on the channel specified at input CH. After the
function block has output the number of pulses specified at PULSE, the output RDY becomes
TRUE.
The device DC541 must be configured as counting device (counter mode). Channel CH must be
configured for frequency output.
The function block has an integrated visualization which can be used to control all function block
functions in parallel to the user program, if input EN_VISU = TRUE.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1123

Input description

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 0-7 for the inputs C0-

C7
-

CH is used to select the channel for time and frequency measurement. If an invalid value is
specified at input CH or if the selected channel is not configured as frequency measurement,
the function flock is aborted with DONE = ERR = TRUE and an error is displayed.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

If EN_VISU input (enable input in visualization) is TRUE, it is possible to control the function
block inputs (except SLOT, CH and EN_VISU) via the integrated visualization of the function
block. If input EN_VISU = FALSE, control via the visualization is disabled and the labelling
of the corresponding control elements is displayed in gray. The actual values are always dis-
played.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

In order to enable pulse counting for input CH, input EN has to be continuously TRUE. The
function block is not processed if input EN = FALSE.
When the function block is called for the first time, the inputs are checked for validity and
plausibility and the corresponding device is checked for correct configuration in the operating
mode "counting mode". If this is not the case, processing is aborted.

Data type Default value Range Unit
BOOL - - -

SLOT

CH (channel)

EN_VISU

EN (enable)

START

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1124

A positive edge at input START starts the frequency output. The frequency output is aborted if
START = FALSE.

Data type Default value Range Unit
BOOL - - -

A positive edge at input STOP interrupts the frequency output. If a given number of pulses has
to be output, the counter continues counting if STOP = FALSE. The STOP is not synchronized
with the frequency.

Data type Default value Range Unit
LREAL - 0.2-2500.0 Hz

FREQ (frequency) input is used to preset the frequency to be output.

Data type Default value Range Unit
DWORD - - -

Input PULSE is used to determine whether frequency output shall be performed endless or only
for the specified number of pulses.
PULSE = 0: Endless output.
PULSE > 0: Output of the specified number of pulses.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

STOP

FREQ

PULSE

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1125

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 61: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

Data type Default value Range Unit
BOOL - - -

If PULSE > 0, output RDY becomes TRUE after the specified number of pulses has been
output.

Function call in ST
DC541FreqOut(SLOT := DC541FreqOut_SLOT,
 CH := DC541FreqOut_CH,
 EN_VISU := DC541FreqOut_EN_VISU,
 EN := DC541FreqOut_EN,
 START := DC541FreqOut_START,
 STOP := DC541FreqOut_STOP,
 FREQ := DC541FreqOut_FREQ,
 PULSE := DC541FreqOut_PULSE);

DC541FreqOut_DONE := DC541FreqOut.DONE;
DC541FreqOut_ERR := DC541FreqOut.ERR;
DC541FreqOut_ERNO := DC541FreqOut.ERNO;
DC541FreqOut_RDY := DC541FreqOut.RDY;

ERNO

RDY (ready)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1126

DC541_FWD_CNT

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.3, DC541 firmware: V1.1

Type Function block with historical values

Group Counters

The function block DC541_FWD_CNT provides a 32-bit count up counter which is able to count
a maximum frequency of 50 kHz at the inputs C0 and C1 or 5 kHz at the inputs C2-C7. In the
DC541, the counter is implemented as a 16 bit counter. The actual counter value ACT_CNT is
bulit inside the function block by adding the counter differences that occur within the individual
cycles. In order not to loose any counting pulses, the function block has to be called cyclically.
● Channel 0-1: 50 kHz max. -> 32767 / 50 = 655 ms
● Channel 2-7: 5 kHz max. -> 32767 / 5 = 6550 ms
Using the counter e.g. in a 100 ms task will prevent any loss of counting pulses.
Operating modes
● Infinite counter (endless mode)
● Limiting counter (limit mode)
The operating mode is selected at input EN_LIM.
If EN_LIM = FALSE, the counter operates as an infinite counter (endless mode). An overflow
occurs corresponding to the 32-bit value at 16#FFFFFFFF = 4 294 967 295. In this mode, any
exceeding of the limit value LIM_MAX or falling below the limit value LIM_MIN is displayed at
the outputs MAX_LIM or MIN_LIM.
If EN_LIM = TRUE (limit mode), the counting range is between the limit values LIM_MIN and
LIM_MAX. In case of an overflow, i.e. if LIM_MAX is reached, the counter restarts again at
LIM_MIN.
The upper limit value LIM_MAX has to be higher than the lower limit value LIM_MIN. If LIM_MIN
is higher than LIM_MAX, an error is displayed.
The device DC541 must be configured as counting device (counter mode).
The function block has an integrated visualization which can be used to control all function block
functions in parallel to the user program, if input EN_VISU = TRUE.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1127

Input description

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 0-7 for the inputs C0-

C7
-

CH is used to select the channel for time and frequency measurement. If an invalid value is
entered at input CH or if the selected channel is not configured as 32-bit count up counter
(FWD_CNT), the function flock is aborted with DONE = ERR = TRUE and an error is displayed.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

If EN_VISU input (enable input in visualization) is TRUE, it is possible to control the function
block inputs (except SLOT, CH and EN_VISU) via the integrated visualization of the function
block. If input EN_VISU = FALSE, control via the visualization is disabled and the labelling
of the corresponding control elements is displayed in gray. The actual values are always dis-
played.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

In order to enable pulse counting for input CH, input EN has to be continuously TRUE. The
function block is not processed if input EN = FALSE.
When the function block is called for the first time, the inputs are checked for validity and
plausibility and the corresponding device is checked for correct configuration in the operating
mode "counting mode". If this is not the case, processing is aborted.

SLOT

CH (channel)

EN_VISU

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1128

Data type Default value Range Unit
BOOL - TRUE/FALSE -

At a rising edge at this input, the counter is set to the value of input CNT_SET. Counting is
enabled after reset process to SET = TRUE.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Input EN_LIM (enable limit) is used to set the operating mode for the counter:
EN_LIM = FALSE: Infinite counter (endless mode).
EN_LIM = TRUE: Limiting counter (limit mode).
Switching between the operating modes can be done during running operation. And it is pos-
sible to change the upper limit value LIM_MAX and the lower limit value LIM_MIN during run-
ning operation. LIM_MAX has to be higher than LIM_MIN. If LIM_MIN is higher than LIM_MAX,
an error is displayed.
In case of a rising edge at input EN_LIM (transition from endless mode to limit mode), the
present counter value can change depending on the values of LIM_MIN and LIM_MAX.

Present counter value Changed counter value
ACT_CNT < LIM_MIN ACT_CNT := LIM_MIN

LIM_MIN £ ACT_CNT £ LIM_MAX ACT_CNT := ACT_CNT (no change)

ACT_CNT > LIM_MAX ACT_CNT := LIM_MIN

Data type Default value Range Unit
DWORD - - -

LIM_MAX (limit maximum) is used to set the upper limit value for the counter. LIM_MAX has to
be higher than the lower limit value LIM_MIN. If LIM_MIN is higher than LIM_MAX, an error is
displayed.

Data type Default value Range Unit
DWORD - - -

LIM_MIN (limit minimum) is used to set the lower limit value for the counter. The upper limit
value LIM_MAX has to be higher than LIM_MIN. If LIM_MIN is higher than LIM_MAX, an error is
displayed.

Data type Default value Range Unit
DWORD - - -

CNT_SET (counter set) is used to adjust the counter set value.
If input SET = TRUE, the counter is set to the value of input CNT_SET and remains at this value
as long as input SET = TRUE. Counting is enabled again with the occurrence of the falling edge
at input SET.
In case of a reference point approch (EN_REF = TRUE), the rising edge on channel C2 causes
the actual value of the counter (ACT_CNT) to be adjusted to the set value CNT_SET.

SET

EN_LIM

LIM_MAX

LIM_MIN

CNT_SET

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1129

A FALSE -> TRUE edge at input EN activates the status polling. If the value at input SLOT
is not valid, processing is aborted and an error is displayed. The function block outputs are
updated as long as input EN = TRUE. The function block processing has been completed
successfully, if output DONE changes to TRUE. During the processing of a request, state
changes at input EN are recognized but not evaluated.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 62: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1130

DEC HEX Error description
12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

Data type Default value Range Unit
BOOL - TRUE/FALSE -

In the infinite counter operating mode (endless mode), MAX_LIM indicates whether the actual
counter value is higher than the value set at input LIM_MAX.
In the limiting counter operating mode (limit mode), output MAX_LIM is FALSE.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

In the infinite counter operating mode (endless mode), output MIN_LIM indicates whether the
actual counter value is lower than the value set at input LIM_MIN.
In the limiting counter operating mode (limit mode), output MIN_LIM is FALSE.

Data type Default value Range Unit
DWORD - - -

CNT_ACT (counter actual) displays the actual counter value of the count up counter.

Function call in ST
DC541FwdCnt(SLOT := DC541FwdCnt_SLOT,
 CH := DC541FwdCnt_CH,
 EN_VISU := DC541FwdCnt_EN_VISU,
 EN := DC541FwdCnt_EN,
 SET := DC541FwdCnt_SET,
 EN_LIM := DC541FwdCnt_EN_LIM,
 LIM_MAX := DC541FwdCnt_LIM_MAX,
 LIM_MIN := DC541FwdCnt_LIM_MIN,
 CNT_SET := DC541FwdCnt_CNT_SET);

DC541FwdCnt_DONE := DC541FwdCnt.DONE;
DC541FwdCnt_ERR := DC541FwdCnt.ERR;
DC541FwdCnt_ERNO := DC541FwdCnt.ERNO;
DC541FwdCnt_RDY_REF := DC541FwdCnt.RDY_REF;
DC541FwdCnt_RDY_TOUCH := DC541FwdCnt.RDY_TOUCH;
DC541FwdCnt_MAX_LIM := DC541FwdCnt.MAX_LIM;
DC541FwdCnt_MIN_LIM := DC541FwdCnt.MIN_LIM;
DC541FwdCnt_CNT_ACT := DC541FwdCnt.CNT_ACT;

MAX_LIM

MIN_LIM

CNT_ACT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1131

DC541_GET_CFG

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.3, DC541 firmware: V1.1

Type Function block with historical values

Group Diagnosis

The function block DC541_GET_CFG is used to poll the actual configuration of the device
DC541. The information is displayed as long as input EN is TRUE. The displayed information
includes the operating mode and the cycle time of the device as well as the configuration of the
channels C0...C7.

Input description

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1132

Data type Default value Range Unit
BOOL - - -

A FALSE -> TRUE edge at input EN activates the status polling. If the value at input SLOT
is not valid, processing is aborted and an error is displayed. The function block outputs are
updated as long as input EN = TRUE. The function block processing has been completed
successfully, if output DONE changes to TRUE. During the processing of a request, state
changes at input EN are recognized but not evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN (enable)

SLOT

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1133

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 63: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

Data type Default value Range Unit
BYTE - - -

Output displays the actual operating mode of the device.

Parameter Value Operating mode
DC541_MODE_IO = 16#11 = 17 IO device (IO mode)

DC541_MODE_COUNT = 16#22 = 34 Counting device (counter
mode)

Data type Default value Range Unit
WORD - - µs

CYCLE (cycle time) output displays the cycle time of the device. The cycle time is set during the
device configuration and can have the following values depending on the channel configuration:

Parameter Description Value
IO device 50 µs

Counting device 1-2 functions 50 µs

 3-4 functions 100 µs

 5-8 functions 200 µs

"Functions"

 PWM Pulse-width modulator

 FREQ Time and frequency measurement

 FREQ_OUT Frequency output

 32BIT_CNT 32-bit counter

ERNO

MODE

CYCLE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1134

Parameter Description Value
 FWD_CNT 32-bit count up counter

 LIMIT Limit value monitoring for the 32-bit counter

Data type Default value Range Unit
BYTE - - -

The outputs display the current channel configuration of the channels C0...C7.

Table 64: MODE = DC541_MODE_IO = 16#11 = 17
CFGx Channel Function
0 0...7 Normal input

1 0...7 Normal output

255 0...7 Interrupt input

Table 65: MODE = DC541_MODE_COUNT = 16#22 = 34
CFGx Channel Function
0 0...7 Normal input

1 0...7 Normal output

2 0...7 Pulse-width modulator (PWM)

3 0...1 50 kHz count up counter
(FWD_CNT)

3 2...7 5 kHz count up counter
(FWD_CNT)

4 0...7 Time and frequency measure-
ment (FREQ)

5 4...7 Limit values for 32-bit counter
(LIMIT)

6 0 Up/down 32-bit counter (uses
channels 0...3). The channels
CFG1...CFG3 can be set as
desired.

7 0...7 Frequency output

Function call in ST
DC541GetCfg (EN := DC541GetCfg_EN,
 SLOT := DC541GetCfg_SLOT);

DC541GetCfg_DONE := DC541GetCfg.DONE;
DC541GetCfg_ERR := DC541GetCfg.ERR;
DC541GetCfg_ERNO := DC541GetCfg.ERNO;
DC541GetCfg_MODE := DC541GetCfg.DIAG;
DC541GetCfg_CYCLE := DC541GetCfg.CYCLE;
DC541GetCfg_CFG0 := DC541GetCfg.CFG0;
DC541GetCfg_CFG1 := DC541GetCfg.CFG1;
DC541GetCfg_CFG2 := DC541GetCfg.CFG2;

CFG0...CFG7

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1135

DC541GetCfg_CFG3 := DC541GetCfg.CFG3;
DC541GetCfg_CFG4 := DC541GetCfg.CFG4;
DC541GetCfg_CFG5 := DC541GetCfg.CFG5;
DC541GetCfg_CFG6 := DC541GetCfg.CFG6;
DC541GetCfg_CFG7 := DC541GetCfg.CFG7;

DC541_INT_IN

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.2, DC541 firmware: V1.0

Type Function block with historical values

Group IO

Using the function block DC541_INT_IN, the interrupt program can be polled which inputs
(C0...C7) triggered interrupts since the last function block calling. The corresponding outputs
IN0...IN1 are set to TRUE.
The function block DC541_INT_IN can only be used if the module is configured as I/O module.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1136

Input description

Data type Default value Range Unit
BOOL - - -

Input EN has to be continuously set to TRUE.
When the function block is called for the first time, input SLOT is checked for validity and the
corresponding device is checked for correct configuration in the operating mode "IO mode". If
this is not the case, processing is aborted and an error is displayed. The function block outputs
are updated as long as input EN = TRUE.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

EN (enable)

SLOT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1137

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 66: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

Data type Default value Range Unit
BOOL - - -

The outputs display which inputs (C0...C7) triggered an interrupt since the last function block
calling.

Function call in ST
DC541IntIn(EN := DC541IntIn_EN,
 SLOT := DC541IntIn_SLOT);

DC541IntIn_DONE := DC541IntIn.DONE;
DC541IntIn_ERR := DC541IntIn.ERR;
DC541IntIn_ERNO := DC541IntIn.ERNO;
DC541IntIn_IN0 := DC541IntIn.IN0;
DC541IntIn_IN1 := DC541IntIn.IN1;
DC541IntIn_IN2 := DC541IntIn.IN2;

DONE

ERR

ERNO

IN0...IN7

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1138

DC541IntIn_IN3 := DC541IntIn.IN3;
DC541IntIn_IN4 := DC541IntIn.IN4;
DC541IntIn_IN5 := DC541IntIn.IN5;
DC541IntIn_IN6 := DC541IntIn.IN6;
DC541IntIn_IN7 := DC541IntIn.IN7;

DC541_IO

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.2, DC541 firmware: V1.0

Type Function block with historical values

Group IO

The function block DC541_IO is used to read the "normal" inputs and to write the outputs of the
DC541. Reading and writing the inputs and outputs is performed as long as input EN is TRUE.
This function block can be used for both operating modes, i.e. when the device is configured as
I/O module and when it is configured as counting device (counter mode).

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1139

Input description

Data type Default value Range Unit
BOOL - - -

A FALSE -> TRUE edge at input EN activates the status polling. If the value at input SLOT
is not valid, processing is aborted and an error is displayed. The function block outputs are
updated as long as input EN = TRUE. The function block processing has been completed
successfully, if output DONE changes to TRUE. During the processing of a request, state
changes at input EN are recognized but not evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The inputs are used to specify the set status of the outputs C0...C7. Only channels that are
configured as outputs are currently written.

EN (enable)

SLOT

OUT0...OUT7

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1140

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 67: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1141

Data type Default value Range Unit
BOOL - - -

The outputs display the current status of the channels C0...C7.

Function call in ST
DC541Io (EN := DC541Io_EN,
 SLOT := DC541Io_SLOT,
 OUT0 := DC541Io_OUT0,
 OUT1 := DC541Io_OUT1,
 OUT2 := DC541Io_OUT2,
 OUT3 := DC541Io_OUT3,
 OUT4 := DC541Io_OUT4,
 OUT5 := DC541Io_OUT5,
 OUT6 := DC541Io_OUT6,
 OUT7 := DC541Io_OUT7);

DC541Io_DONE := DC541Io.DONE;
DC541Io_ERR := DC541Io.ERR;
DC541Io_ERNO := DC541Io.ERNO;
DC541Io_IN0 := DC541Io.IN0;
DC541Io_IN1 := DC541Io.IN1;
DC541Io_IN2 := DC541Io.IN2;
DC541Io_IN3 := DC541Io.IN3;
DC541Io_IN4 := DC541Io.IN4;
DC541Io_IN5 := DC541Io.IN5;
DC541Io_IN6 := DC541Io.IN6;
DC541Io_IN7 := DC541Io.IN7;

DC541_LIMIT

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.3, DC541 firmware: V1.1

Type Function block with historical values

Group Counters

IN0...IN7 (input
C0...C7)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1142

The function block DC541_LIMIT is used for limit value monitoring of the 32-bit counter. The
function block can be used to directly display various counting values of the 32-bit counter
(DC541_32BIT_CNT) via binary outputs. Using the input SIGNAL you can determine whether
the corresponding output is switched to FALSE or TRUE.
The time resolution of the function block is < 100 µs, i.e. the result is increment accurate up to a
frequency of 10 kHz.
The upper limit value LIM_MAX has to be higher than the lower limit value LIM_MIN. If the
lower limit value LIM_MIN is higher than the upper limit value LIM_MAX, an error message is
displayed.
The device DC541 must be configured as counting device (counter mode) and channel C0 as
32-bit counter.
The function block has an integrated visualization which can be used to control all function block
functions in parallel to the user program, if input EN_VISU is TRUE Ä Chapter 1.5.4.11.1.2
“Visualizations” on page 1154.

Input description

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - 4-7 for the outputs C4-

C7
-

Input CH is used to select the channel for the limit value monitoring. If an invalid value is
specified at input CH or if the selected channel is not configured as Limit Channel 0 or if
channel C0 is not configured as 32-bit counter, the function block is aborted with DONE = ERR
= TRUE and an error is displayed.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

SLOT

CH (channel)

EN_VISU

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1143

If EN_VISU input (enable input in visualization) is TRUE, it is possible to control the function
block inputs (except SLOT, CH and EN_VISU) via the integrated visualization of the function
block. If input EN_VISU = FALSE, control via the visualization is disabled and the labelling
of the corresponding control elements is displayed in gray. The actual values are always dis-
played.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

In order to enable pulse counting for input CH, input EN has to be continuously TRUE. The
function block is not processed if input EN = FALSE.
When the function block is called for the first time, the inputs are checked for validity and
plausibility and the corresponding device is checked for correct configuration in the operating
mode "counting mode". If this is not the case, processing is aborted.

Data type Default value Range Unit
BOOL - - -

Using the input SIGNAL you can determine whether the corresponding output CH is switched to
TRUE or FALSE.

Counter value of the 32-bit
counter DC541_32BIT_CNT /
ACT_CNT

Output CH when SIGNAL =
TRUE

Output CH when SIGNAL =
FALSE

ACT_CNT < LIM_MIN FALSE TRUE

LIM_MIN £ ACT_CNT £
LIM_MAX

TRUE FALSE

ACT_CNT > LIM_MAX FALSE TRUE

If SIGNAL is TRUE, the output CH is TRUE, if the counter value of the 32-bit counter is within
the range given by the limit values LIM_MIN and LIM_MAX. If the counter value is out of this
range, output CH is FALSE.
If SIGNAL is FALSE, the output CH is FALSE, if the counter value of the 32-bit counter is within
the range given by the limit values LIM_MIN and LIM_MAX. If the counter value is out of this
range, output CH is TRUE.

Data type Default value Range Unit
DWORD - - -

LIM_MAX (limit maximum) is used to set the upper limit value for the counter. LIM_MAX has to
be higher than the lower limit value LIM_MIN. If LIM_MIN is higher than LIM_MAX, an error is
displayed.

Data type Default value Range Unit
DWORD - - -

EN (enable)

SIGNAL

LIM_MAX

LIM_MIN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1144

LIM_MIN (limit minimum) is used to set the lower limit value for the counter. The upper limit
value LIM_MAX has to be higher than LIM_MIN. If LIM_MIN is higher than LIM_MAX, an error is
displayed.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 68: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1145

Function call in ST
DC541Limit (SLOT := DC541Limit_SLOT,
 CH := DC541Limit_CH,
 EN_VISU := DC541Limit_EN_VISU,
 EN := DC541Limit_EN,
 SIGNAL := DC541Limit_SIGNAL,
 LIM_MAX := DC541Limit_LIM_MAX,
 LIM_MIN := DC541Limit_LIM_MIN);

DC541Limit_DONE := DC541Limit.DONE;
DC541Limit_ERR := DC541Limit.ERR;
DC541Limit_ERNO := DC541Limit.ERNO;

DC541_PWM

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.3, DC541 firmware: V1.1

Type Function block with historical values

Group Counters

The function block DC541_PWM outputs a pulsed signal with an adjustable on-off ratio. The on
and off times are adjusted as 8 bit numbers.
The minimum switching time is specified at input CYCLE, i.e. if an output has been switched to
FALSE or TRUE by the PWM, this output remains in this state for at least this time (CYCLE µs).
The minimum time specified at input CYCLE must not be smaller than the cycle time of the
device DC541. Depending on its configuration, the cycle time of the DC541 can be 50, 100
or 200 µs. The cycle time can be polled using the function block Ä Chapter 1.5.4.11.1.1.6
“DC541_GET_CFG” on page 1132 (output CYCLE).

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1146

Table 69: Cycle time of DC541 = 50 µs
PULSE PAUSE CYCLE Result (x = number of cycles of the

DC541)
1 2 500 10 x TRUE / 20 x FALSE / 10 x

TRUE / 20 x FALSE / …
i.e. 500 µs = TRUE and 1000 µs =
FALSE

4 8 500 10 x TRUE / 20 x FALSE / 10 x
TRUE / 20 x FALSE / …
i.e. 500 µs = TRUE and 1000 µs =
FALSE
(as in example 1, i.e. ratio 1 : 2)

3 2 3000 90 x TRUE / 60 x FALSE / 90 x
TRUE / 60 x FALSE / …
i.e. 4500 µs = TRUE and 3000 µs =
FALSE

Table 70: Cycle time of DC541 = 100 µs
PULSE PAUSE CYCLE Result (x = number of cycles of the

DC541)
1 2 500 5 x TRUE / 10 x FALSE / 5 x TRUE /

10 x FALSE / …
i.e. 500 µs = TRUE and 1000 µs =
FALSE

4 8 500 5 x TRUE / 10 x FALSE / 5 x TRUE /
10 x FALSE / …
i.e. 500 µs = TRUE and 1000 µs =
FALSE
(as in example 1, i.e. ratio 1 : 2)

3 2 3000 45 x TRUE / 30 x FALSE / 45 x
TRUE / 30 x FALSE / …
i.e. 4500 µs = TRUE and 3000 µs =
FALSE

Examples

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1147

Table 71: Cycle time of DC541 = 200 µs
PULSE PAUSE CYCLE Result (x = number of cycles of the

DC541)
1 2 500 3 x TRUE / 6 x FALSE / 3 x TRUE / 6

x FALSE /...
i.e. 600 µs = TRUE, 1200 µs = FALSE

4 8 500 3 x TRUE / 6 x FALSE / 3 x TRUE / 6
x FALSE / ...
i.e. 600 µs = TRUE, 1200 µs = FALSE
(as in example 1, i.e. ratio 1 : 2)

3 2 3000 22 x TRUE / 15 x FALSE / 23 x
TRUE / 15 x FALSE / …
i.e. first 4400 µs = TRUE and 3000 µs
= FALSE and then
4600 µs = TRUE and 3000 µs =
FALSE

The device DC541 must be configured as counting device (counter mode).

Input description

Data type Default value Range Unit
BOOL - - -

Input EN has to be continuously set to TRUE.
When the function block is called for the first time, input SLOT is checked for validity and the
corresponding device is checked for correct configuration in the operating mode "IO mode". If
this is not the case, processing is aborted and an error is displayed. The function block outputs
are updated as long as input EN = TRUE.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN (enable)

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1148

Data type Default value Range Unit
BYTE - - -

Input is used to select the output to be pulsed.

Data type Default value Range Unit
BYTE - - -

Input is used to specify the ratio for the TRUE signal (on time ratio).

Data type Default value Range Unit
BYTE - - -

Input is used to specify the ratio for the FALSE signal (off time ratio).

Data type Default value Range Unit
WORD - - µs

Input CYCLE is used to specify the minimum switching time of the output. The output remains in
the TRUE or FALSE state for at least the time specified at CYCLE.
The minimum time specified at input CYCLE must not be smaller than the cycle time of the
device DC541. Depending on its configuration, the cycle time of the DC541 can be 50, 100
or 200 µs. The cycle time can be polled using the function block DC541_GET_CFG, output
CYCLE Ä Chapter 1.5.4.11.1.1.6 “DC541_GET_CFG” on page 1132.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.

CH (channel)

PULSE

PAUSE

CYCLE

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1149

It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 72: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

Function call in ST
DC541Pwm(EN := DC541Pwm_EN,
 SLOT := DC541Pwm_SLOT,
 CH := DC541Pwm_CH,
 PULSE := DC541Pwm_PULSE,
 PAUSE := DC541Pwm_PAUSE,
 CYCLE := DC541Pwm_CYCLE);

DC541Pwm_DONE := DC541Pwm.DONE;
DC541Pwm_ERR := DC541Pwm.ERR;
DC541Pwm_ERNO := DC541Pwm.ERNO;

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1150

DC541_STATE

Parameter Value
Included in library DC541_AC500_V11.lib

Available as of firmware V1.1.3, DC541 firmware: V1.1

Type Function block with historical values

Group Diagnosis

The function block DC541_STATE is used to poll the status of the device DC541. The informa-
tion is displayed as long as input EN is TRUE. The displayed information includes the device
diagnosis and the output status of the channels C0...C7.

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1151

Data type Default value Range Unit
BOOL - - -

A FALSE -> TRUE edge at input EN activates the status polling. If the value at input SLOT
is not valid, processing is aborted and an error is displayed. The function block outputs are
updated as long as input EN = TRUE. The function block processing has been completed
successfully, if output DONE changes to TRUE. During the processing of a request, state
changes at input EN are recognized but not evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN (enable)

SLOT

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1152

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 73: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

Data type Default value Range Unit
BYTE - 0

16#01 = 1 ->
Watchdog error

-

DIAG (diagnosis) output displays the diagnosis message of the DC541. If DIAG is 0, no diag-
nosis message is available. The following messages are possible:

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The outputs OV0...OV7 (overload C0...C7) display the current output status of the channels
C0...C7. If the respective bit is TRUE, the corresponding output cannot be switched e.g. due to
an overload or a short circuit.

Function call in ST
DC541State(EN := DC541State_EN,
 SLOT := DC541State_SLOT);

DC541State_DONE := DC541State.DONE;
DC541State_ERR := DC541State.ERR;
DC541State_ERNO := DC541State.ERNO;
DC541State_DIAG := DC541State.DIAG;
DC541State_OV0 := DC541State.OV0;
DC541State_OV1 := DC541State.OV1;
DC541State_OV2 := DC541State.OV2;
DC541State_OV3 := DC541State.OV3;
DC541State_OV4 := DC541State.OV4;
DC541State_OV5 := DC541State.OV5;
DC541State_OV6 := DC541State.OV6;
DC541State_OV7 := DC541State.OV7;

ERNO

DIAG

OV0...OV7

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1153

Visualizations
The visualization can be used to display the function block outputs. If the input EN_VISU
of a function block is TRUE, it is also possible to control the inputs from the visualization.
In order to allow the control of function block inputs from the program as well as from the
visualization, these inputs are declared as VAR_IN_OUT and consequently have to be provided
with variables. These inputs must not be provided with direct constants.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1154

Integrated visualization of function block DC541_32BIT_CNT

Fig. 26: Offline mode

Fig. 27: Online mode, EN_VISU = TRUE

If an error occurred during function block processing, the error number is displayed in the top
right until EN = FALSE.

Fig. 28: Online mode, EN_VISU = FALSE. The inputs cannot be modified using the visualiza-
tion.

Example visu-
alization
visuDC541_32
BIT_CNT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1155

1. In the Visualizations tab, add an object.
2. Click on .
3. Select the corresponding visualization for the function block.

1. Right-click on the visualization and select Configure.

2. Under Frame, we recommend to select Fixed to maintain the original width-to-height ratio
and font size.

3. Click the Placeholder button.
4. In column Replacement, enter the function block instance directly or press F2 to open the

input assistant.

Integrate a visu-
alization into a
project

Configure the
visualization

Link the visuali-
zation to the
function block
instance

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1156

5. Click OK to close all dialogs.
6. Adapt the visualization to the correct size.

1.5.4.11.2 DC541 dampener library
Library file name: DC541_DAMPENER_AC500_V13.lib
This library contains all function blocks necessary for using DC541 in DAMPENER-mode.
The configuration of DC541 is done in PLC configuration.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The function blocks are available in AC500 control systems with a runtime system of version
V1.3 or later.

Function blocks
DC541_DAMPENER

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1157

Parameter Value
Included in library DC541_DAMPENER_AC500_V13.lib

Available as of firmware V1.12

Type Function block with historical values

Available as of PLC runtime
system

V1.3

The function block DC541_DAMPENER transfers all values to control the DAMPENER function-
ality for DC541 device.
The Dampener-Mode is a modified PWM-Mode. If the device is configured as DAMPENER, all 8
outputs are controlled by the DAMPENER functionality.
All 8 outputs are switched on/off with the same frequency, but use a different time to switch on
a a different duration for being on. These values are specified by function block DC541_DAMP-
ENER with input parameters LIM_MINx and ON_DURx.
The following rule has to be applied:
● LIM_MINx < PERIOD
● ON_DURx < PERIOD
All input parameters can be continuously modified, the values are accepted immediately. The
following values are specified:
● Length for a single pulse PULSE_WIDTH in microseconds from 100 to 65535
● Number of pulses for a complete period: PERIOD 100 to 65535, every pulse as a

PULSE_WITDH length
The resulting frequency is then calculated as:
f = 1/ (PULSE_WIDTH*PERIOD) with a range from 1/ (100*100µs) = 100 Hz to 1/
(65535*65535µs) = 0.00023 Hz
The device uses an internal counter with a clock PULSE_WIDTH µs which counts from 0 to
PERIOD.
When the condition LIM_MINx = counter is reached, the output is switched on for ON_DURx
pulses.
In addition, it is possible to leave out up to 255 periods for a certain output by using
SKIP_PULSx input parameter.
The following example shows the different result with SKIP_PULS=0 and SKIP_PULS=1 and
otherwise identical values.

Fig. 29: SKIP_PULSE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1158

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE - - -

This input is used to select the slot (module number) of the DC541.
The slots are numbered consecutively from right to left. Slot 1 is the first slot on the left of the
CPU.

Data type Default value Range Unit
WORD - 100 ... 65535 µs

The input PULSE_WIDTH gives the time in microseconds which is used to increase the internal
counter by 1. Also, this gives the minimal time available for switching on a binary output. All
other times are a multiple of this time

EN

SLOT

PULSE_WIDTH

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1159

Data type Default value Range Unit
WORD - 100 to 65535 PULSE_WITDH

length

Period duration [in number of pulses], i.e. internal counter value is being set to 0 when this
value is reached.

Data type Default value Range Unit
WORD - - -

Lower limit for switching on, the respective binary output is switched on when internal counter
reaches this value.

Data type Default value Range Unit
WORD - - -

Duration [in number of pulses] for switching on the respective binary output.

Data type Default value Range Unit
WORD - - -

An optional number of periods to skip switching on the respective binary output

PERIOD

LIM_MIN

ON_DUR

SKIP_PULSE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1160

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1161

Data type Default value Range Unit
WORD 0 ³ 0 -

Output provides an error identifier if an invalid value was applied to an input. ERNO always has
to be considered together with the output ERR. The value output at ERNO is only valid if ERR is
TRUE.

Table 74: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

1.5.4.11.3 DC541 PWM library
Library file name: DC541_PWM_AC500_V22.lib
This library contains all function blocks necessary for using DC541 in PWM-mode.
The configuration of DC541 is done in PLC configuration.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The function blocks are available in AC500 control systems with a runtime system of version
V2.2 or later.

Function blocks
DC541_PWM_FAST

ERNO (error
number)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1162

Parameter Value
Included in library DC541_PWM_AC500_V22.lib

Available as of firmware V1.12

Type Function block with historical values

Available as of runtime
system

V2.2

The block DC541_DAMPENER transfers all values to control the PWM functionality for DC541
device.
If the device is configured in PWM-mode, all 8 outputs are controlled by PWM functionality
(Pulse-width Modulation).
All 8 outputs are switched on with the same frequency, at the same start time, but with different
duration.
The duration is adjusted with the block DC541_PWM_FAST with values for ON_DURx.
The following rule has to be applied:
● ON_DURx < PERIOD
All input parameters can be continuously modified, the values are accepted immediately.
The following values are specified:
● Minimal length for a single pulse PULSE_WIDTH in microseconds from 40 to 32767
● Number of pulses for a complete period: PERIOD 2 to 255
The resulting frequency is then calculated as:
f = 1/ (PULSE_WIDTH*PERIOD) with a range from 1/ /(2*4040 to 32767µs) = 12.5 kHz to
1/(255*32767µs) = 0.12 Hz
The device uses an internal counter with a clock PULSE_WIDTH µs which counts from 0 to
PERIOD.
When the condition ON_DURx = counter is reached, the respective output is switched on, off
otherwise.
All outputs with ON_DURx>0 are switched on at the same.

The following sequence would be achieved with:
● PULSE_WIDTH= 50, PERIOD=10, ON_DUR0=6 (SIGNAL0) and ON_DUR1=4 (SIGNAL1)

or
● PULSE_WIDTH= 100, PERIOD=5, ON_DUR0=3 and ON_DUR1=2

Fig. 30: SIGNAL_PWM

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1163

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE - - -

This input is used to select the slot (module number) of the DC541.
The slots are numbered consecutively from right to left. Slot 1 is the first slot on the left of the
CPU.

Data type Default value Range Unit
WORD - 100 ... 65535 µs

The input PULSE_WIDTH gives the time in microseconds which is used to increase the internal
counter by 1. Also, this gives the minimal time available for switching on a binary output. All
other times are a multiple of this time

Data type Default value Range Unit
WORD - 100 to 65535 PULSE_WITDH

length

Period duration [in number of pulses], i.e. internal counter value is being set to 0 when this
value is reached.

Data type Default value Range Unit
WORD - - -

Duration [in number of pulses] for switching on the respective binary output.

EN

SLOT

PULSE_WIDTH

PERIOD

ON_DUR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1164

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE.

Table 75: DC541 error numbers
DEC HEX Error description
8195 2003 Unknown/wrong communication module at communication module slot

12315 301B No access to channel, other function block might be using it

12316 301C Illegal channel number

12329 3029 Device is not configured

16385...16399
400x
4001...400F

Wrong value at function block input number x
x = 1...F

24586 600A Lifesign error from DC541

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1165

1.5.4.12 Diagnosis library
Library file name: Diag_AC500_V20.lib
The function blocks of the diagnosis library enable the direct access on the data of the AC500
diagnosis system.
The library is not loaded automatically into an AC500 project.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

1.5.4.12.1 Function blocks
CPU_DIAG

Parameter Value
Included in library Diag_AC500_V10.lib

Available as of firmware V1.0.2

Type Function block with historical values

Group -

Using the function block CPU_DIAG, the entries of the AC500 diagnosis system can be read
and displayed using the integrated visualization as plain text.
The instance diagCPU of the function block CPU_DIAG is declared in the global variables list
GL_AC500_Diagnosis. The integrated visualization of the function block accesses the variables
of this instance.
In order to include the function block into an AC500 project, it is only necessary to call the
function block instance. Example in ST:
diagCPU(EN := TRUE);
By means of the visualization Visu_CPU_Diag, navigation within the diagnosis buffer is possible
and upcoming diagnosis entries can be acknowledged.

Input description

Data type Default value Range Unit
BOOL

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1166

EN = TRUE enables the processing of the function block. With a FALSE -> TRUE edge at input
EN, the last five entries are read from the diagnosis buffer of the CPU.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
diagCPU(EN := diagCPU_EN);

diagCPU_DONE := diagCPU.DONE;
diagCPU_ERR := diagCPU.ERR;
diagCPU_ERNO := diagCPU.ERNO;

or:

diagCPU(EN := TRUE);

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1167

CPU_LOAD

Parameter Value
Included in library Diag_AC500_V10.lib

Available as of firmware V1.0.2

Type Function block with historical values

Group -

The function block CPU_LOAD outputs the CPU capacitiy utilization in [%].
The following is displayed:
current load
minimum load
maximum load
average (avg) load
The instance CPU of the function block CPU_LOAD is declared in the global variables list
GL_AC500_Diagnosis. The integrated visualization of the function block accesses the variables
of this instance.
In order to include the function block into an AC500 project, it is only necessary to call the
function block instance. Example in ST:
CPU(EN := TRUE);
The values are entered as 0.01% values into the internal structure strVisuData of the type
strCPU_LOAD in the instance CPU of the function block CPU_LOAD. To obtain the values in
[%], they have to be divided by 100. The structure is composed as follows:

TYPE strCPU_LOAD :

STRUCT

 Current : WORD; (* current value *)

 Avg : WORD; (* average value *)

 Minimum : WORD; (* minimum value *)

 Maximum : WORD; (* maximum value *)

 Counter : DWORD; (* counter *)

 Conf : WORD; (* bit 0 = 1 (1) -->
Update CPU_load *)

 (* bit 1 = 1 (2) -->
Heap check *)

END_STRUCT

END_TYPE

If the user program should have access to these values, this is done as follows:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1168

CPU.strVisuData.Variable.
In the following example, the value of the current CPU load is read and assigned to the variable
wCurrentCPULoad:

Using the visualization Visu_CPU_Load, the values are represented graphically Ä Chapter
1.5.4.12.2 “Visualizations” on page 1182.
The same values can also be polled using the PLC browser command "cpuload".

Input description

Data type Default value Range Unit
BOOL

EN = TRUE enables the processing of the function block. With a FALSE -> TRUE edge at input
EN, the last five entries are read from the diagnosis buffer of the CPU.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

EN

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1169

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
CPU(EN := CPU_EN);

CPU_DONE := CPU.DONE;
CPU_ERR := CPU.ERR;
CPU_ERNO := CPU.ERNO;

or:

CPU(EN := TRUE);

CS31_DIAG

Parameter Value
Included in library Diag_AC500_V10.lib

Available as of firmware V1.0.2

Type Function block with historical values

Group -

The function block CS31_DIAG provides the diagnosis data of the CS31 bus to the user.
The instance diagCS31 of the function block CS31_DIAG is declared in the global variables list
GL_AC500_Diagnosis. The integrated visualization of the function block accesses the variables
of this instance.
In order to include the function block into an AC500 project, it is only necessary to call the
function block instance. Example in ST:
diagCS31(EN := TRUE, COM := 1);
The read values are written into internal structures of the instance diagCS31.

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1170

Structure TYPE Assignment
strVisuData1 strCS31_DiagBus Diagnosis data of the CS31

master

strVisuData strCS31_DiagModule Diagnosis data of all 31 CS31
software modules
ARRAY[0..31] OF
strCS31_DiagOneModule

CS31Mod strCS31_DiagOneModule Diagnosis data of one CS31
software module

The structure strCS31_DiagBus is composed as follows:

TYPE strCS31_DiagBus :
(* STRUCT info about CS31 bus *)
STRUCT

 iCS31BusState : DINT; (* Bit 0=1 waiting for slave
Bit 1=1 initialization
Bit 4=1 I/O data exchange
:= 19 all modules at bus *)

 iNumberModule : DINT; (* current no. of CS31 software modules
on the CS31 bus *)

 iMaxNumberModule : DINT; (* max. number of modules at CS31 bus
since power ON *)

 iErrorSum : DINT; (* sum error counter *)

 ulCycleCount : DWORD; (* counter of CS31 bus cycles *)

 byStateDiag : BYTE; (* general bus diagnosis: 0=ok, 1=no
module on the bus *)

END_STRUCT
END_TYPE

The structure strCS31_DiagOneModule is composed as follows:

TYPE strCS31_DiagOneModule :
STRUCT

 dwScheduleCycle : DWORD; (* internal time *)

 byPhysicalAdress : BYTE; (* module address x 2 *)

 byCommState : BYTE; (* internal communication status:

 bySlaveType : BYTE; (* Slave type:

 00 = digital input
01 = analog input
02 = digital output
03 = analog output
04 = digital input/output
05 = analog input/output
06 = special module

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1171

 byInputBytes : BYTE; (* reported number of input bytes *)

 byOutputBytes : BYTE; (* reported number of output bytes *)

 byInputBytesConf : BYTE; (* configured number of input bytes
*)

 byOutputBytesConf : BYTE; (* configured number of output bytes
*)

 byModuleConf : BYTE; (* 1-PLC config, 3- ignore module *)

 byStateDiag : BYTE; (* Diagnostic Condition: each bit indi-
cates a diagnosis type)

 byStateDiag = 0 : no
diagnosis
Bit 0 (0x01, 1) : a device
that was present on the
bus has been discon-
nected from the bus.
Bit 1 (0x02, 2) : A con-
figured device or module
could not be found on the
bus
Bit 2 (0x04, 4) : A device
or module that is not con-
figured, was found on the
bus
Bit 3 (0x08, 8) : It
was noted a difference
between a configured
and reported I / O periph-
eral.
Bit 4 (0x10, 16) : A CS31
device (no device of the
S500 series) has a new
error message reported
(short circuit or internal
fault)
Bit 5 (0x20, 32) : A
CS31 device (no device
of the S500 series) has
reported a new error
message
Bit 6 (0x40, 64) : A CS31
device of the S500 series
has reported a new error
message.
Bit 7 (0x80, 128) : <not
used>

 byd1 : BYTE; (* internal variable *)

 usErrorCounter : WORD; (* Error counter for the module *)

 byDiagErr : BYTE; (* internal error number *)

 byDiagChannnel : BYTE; (* Channel in which the error has
been has occurred *)

 byd2 : BYTE; (* internal variable *)

 byd3 : BYTE; (* internal variable *)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1172

 pConfig : DWORD; (* internal variable *)

 END_STRUCT
END_TYPE

The structure strCS31_DiagModule contains an ARRAY[0..31], i.e. with 32 entries of the struc-
ture strCS31_DiagOneModule.
This way, the structures strVisuData1 and strVisuData provide access to all diagnosis data of
the CS31 bus.
If the user program should have access to these values, this is done as follows:
diagCS31.strVisuData1.Variable.
In the following example, the current number of CS31 modules is read and assigned to the
variable byActNumCS31Module:

The most important data are available in the visualization Visu_CS31_Diag of the function block
Ä Chapter 1.5.4.12.2 “Visualizations” on page 1182.

Input description

Data type Default value Range Unit
BOOL

EN = TRUE enables the processing of the function block. With a FALSE -> TRUE edge at input
EN, the last five entries are read from the diagnosis buffer of the CPU.

Data type Default value Range Unit
BYTE - - -

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

EN

COM

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1173

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
diagCS31(EN := diagCS31_EN, COM := diagCS31_COM);

diagCS31_DONE := diagCS31.DONE;
diagCS31_ERR := diagCS31.ERR;
diagCS31_ERNO := diagCS31.ERNO;

or:

diagCS31(EN := TRUE, COM := 1);

CS31_DIAG_EXT

Parameter Value
Included in library Diag_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group -

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1174

Function block CS31_DIAG provides the diagnosis data of the CS31 Bus to the user.
The read values are written into internal structures of the instance.

Structure TYPE Assignment
strVisuData1 strCS31_DiagBus Diagnosis data of the CS31

master

strVisuData strCS31_DiagModule Diagnosis data of all 31 CS31
software modules
ARRAY[0..31] OF
strCS31_DiagOneModule

CS31Mod strCS31_DiagOneModule Diagnosis data of one CS31
software module

The structure strCS31_DiagBus is composed as follows:

TYPE strCS31_DiagBus :
(* STRUCT info about CS31 bus *)
STRUCT

 iCS31BusState : DINT; (* Bit 0=1 waiting for slave
Bit 1=1 initialization
Bit 4=1 I/O data exchange
:= 19 all modules at bus *)

 iNumberModule : DINT; (* current no. of CS31 software
modules on the CS31 bus *)

 iMaxNumberModule : DINT; (* max. number of modules at CS31
bus since power ON *)

 iErrorSum : DINT; (* sum error counter *)

 ulCycleCount : DWORD; (* counter of CS31 bus cycles *)

 byStateDiag : BYTE; (* general bus diagnosis: 0=ok, 1=no
module on the bus *)

END_STRUCT
END_TYPE

The structure strCS31_DiagOneModule is composed as follows:

TYPE strCS31_DiagOneModule :
STRUCT

 dwScheduleCycle : DWORD; (* internal time *)

 byPhysicalAdress : BYTE; (* module address x 2 *)

 byStateDiag : BYTE; (* communication status:

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1175

 00 = OK
Bit 0=1 (1) module disconnected again
Bit 1=1 (2) module not available on bus
Bit 2=1 (4) unconfigured module on
bus
Bit 3=1 (8) difference in I/O range
Bit 4=1 (16) E4 – error message
Bit 5=1 (32)
Bit 6=1 (64) *)

 bySlaveType : BYTE; (* Slave type:

 00 = digital input
01 = analog input
02 = digital output
03 = analog output
04 = digital input/output
05 = analog input/output
06 = special module

 byInputBytes : BYTE; (* number of reported input bytes *)

 byOutputBytes : BYTE; (* number of reported output bytes *)

 byInputBytesConf : BYTE; (* number of input bytes in configuration *)

 byOutputBytesConf : BYTE; (* number of output bytes in configuration *)

 byModuleConf : BYTE; (* 1-PLC config, 3- ignore module *)

 byStateDiag : BYTE; (* internal flag *)

 byd1 : BYTE; (* internal flag *)

 usErrorCounter : WORD; (* single-error counter *)

 byDiagErr : BYTE; (* internal error number *)

 byDiagChannnel : BYTE; (* internal error channel *)

 byd2 : BYTE; (* internal flag *)

 byd3 : BYTE; (* internal flag *)

 pConfig : DWORD; (* internal flag *)

 END_STRUCT
END_TYPE

The structure strCS31_DiagModule contains an ARRAY[0..31], i.e. with 32 entries of the struc-
ture strCS31_DiagOneModule.
This way, the structures strVisuData1 and strVisuData provide access to all diagnosis data of
the CS31 bus.
If the user program should have access to these values, this is done as follows:
diagCS31ext.strVisuData1.Variable.
In the following example, the current number of CS31 modules is read and assigned to the
variable byActNumCS31Module:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1176

The most important data are available in the visualization Visu_CS31_Diag_EXT of the function
block Ä Chapter 1.5.4.12.2 “Visualizations” on page 1182.

Input description

Data type Default value Range Unit
BOOL

EN = TRUE enables the processing of the function block. With a FALSE -> TRUE edge at input
EN, the last five entries are read from the diagnosis buffer of the CPU.

Data type Default value Range Unit
BYTE - - -

Reserved for future extensions.

Data type Default value Range Unit
BYTE - - -

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

EN

SLOT

COM

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1177

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
diagCS31EXT (EN := diagCS31EXT_EN,
 SLOT := diagCS31EXT_SLOT,
 COM :=diagCS31EXT_COM);

diagCS31EXT_DONE := diagCS31EXT.DONE;
diagCS31EXT_ERR := diagCS31EXT.ERR;
diagCS31EXT_ERNO := diagCS31EXT.ERNO;

or:

diagCS31EXT (EN := TRUE,
 SLOT := 0,
 COM := 1);

FBP_DIAG

Parameter Value
Included in library Diag_AC500_V10.lib

Available as of firmware V1.0.2

Type Function block with historical values

Group -

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1178

The function block FBP_DIAG is used to output the diagnosis data of the FBP slave interface.
The instance diagFBP of the function block DIAG_FBP is declared in the global variables list
GL_AC500_Diagnosis. The integrated visualization of the function block accesses the variables
of this instance.
In order to include the function block into an AC500 project, it is only necessary to call the
function block instance. Example in ST:
diagFBP(EN := TRUE);
The read values are written into internal structures of the instance diagFBP.

Structure TYPE Assignment
strVisuData strFBP_Info Diagnosis data of the FBP

slave interface

strVisuData1 strFBP_Statistics Statistic data of the FBP slave
interface

The structure strFBP_Info is composed as follows:

TYPE strFBP_Info :
STRUCT

 pbyBinInputs : POINTER TO BYTE; (* internal variable *)

 pbyBinOutputs : POINTER TO BYTE; (* internal variable *)

 pbyAnaInputs : POINTER TO BYTE; (* internal variable *)

 pbyAnaOutputs : POINTER TO BYTE; (* internal variable *)

 pParameter : POINTER TO BYTE; (* internal variable *)

 apsModule : ARRAY[1..8] OF POINTER
TO strFBP_ModuleInfo;

(* submodule info *)

 usNumModules : WORD; (* number of modules *)

 usSizeParameters : WORD; (* parameter length in bytes *)

 usNumParameters : WORD; (* number of parameters *)

 usNumBinaryInputs : WORD; (* number of digital input bytes
*)

 usSizeBinaryInputs : WORD; (* length of digital input bytes
*)

 usNumBinaryOutputs : WORD; (* number of digital output
bytes *)

 usSizeBinaryOutputs : WORD; (* length of digital output bytes
*)

 usNumAnalogueInputs : WORD; (* number of analog input
words *)

 usSizeAnalogueInputs : WORD; (* length of analog inputs in
bytes *)

 usNumAnalogueOutputs : WORD; (* number of analog output
words *)

 usSizeAnalogueOutputs : WORD; (* length of analog outputs in
bytes *)

 ulBaudRate : DWORD; (* current baud rate *)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1179

 byBusAddress : BYTE; (* bus address reported to
FBP *)

 bySelectedTelegramType : BYTE; (* telegram type (acc. to FBP
spec) *)

 bySelectedBaudRate : BYTE; (* set baud rate (acc. to FBP
spec) *)

 byPrmFormat : BYTE; (* parameter format (acc. to
FBP spec) *)

END_STRUCT
END_TYPE

The structure strFBP_Statistics is composed as follows:

TYPE strFBP_Statistics :
STRUCT

 ulNumInitRequestsSent : DWORD; (* no. of Inits sent to FBP since config-
uration *)

 ulNumRec : DWORD; (* no. of telegrams received from FBP
since config *)

 ulNumSend : DWORD; (* no. of telegrams sent to FBP since
config *)

 ulNumRecErrors : DWORD; (* number of faulty telegrams since
config *)

 ulNumTimeouts : DWORD; (* number of timeouts since configura-
tion *)

 ulNumChecksumErrors : DWORD; (* number of telegrams with checksum
error *)

 ulNumInvalidRecs : DWORD; (* number of wrong/unknown tele-
grams *)

END_STRUCT
END_TYPE

If the user program should have access to these values, this is done as follows:
diagFBP.strVisuData.Variable.
In the following example, the FPB slave address is read and assigned to the variable byFBPAd-
dress:
diagFBP.strVisuData.byBusAddress---------------byFBPAddress
Using the visualization Visu_FBP_Diag, the values are represented graphically Ä Chapter
1.5.4.12.2 “Visualizations” on page 1182.

Input description

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1180

Data type Default value Range Unit
BOOL

EN = TRUE enables the processing of the function block. With a FALSE -> TRUE edge at input
EN, the last five entries are read from the diagnosis buffer of the CPU.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
diagFBP(EN := diagFBP_EN);

diagFBP_DONE := diagFBP.DONE;
diagFBP_ERR := diagFBP.ERR;
diagFBP_ERNO := diagFBP.ERNO;

or:

diagFBP(EN := TRUE);

EN

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1181

1.5.4.12.2 Visualizations

Group:
Visu_CPU_Diag Visualization of the CPU diagnosis

Visu_CPU_Load Visualization of the CPU load

Visu_CS31_Diag Visualization of the CS31 diagnosis

Visu_FBP_Diag Visualization of the FBP slave interface diag-
nosis

Proceed as follows to integrate the visualization into a project:
● Create a new visualization using Visualizations / Insert Object (e.g. visuCPUDiag).
● Insert a visualization using
● In the appearing dialog, select the corresponding visualization for the function block: e. g.

Visu_CPU_Diag

● Then, the visualization integrated just now has to be configured. Highlight the visualization
with a left mouse click. Then click the right mouse button and select the function "Con-
figure..." from the context menu.

● The configuration of the visualization is done in the appearing dialog. It is recommended to
set the frame to "Fixed". This way, the original width-to-height ratio and font size are kept.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1182

● By clicking on <OK> the dialogs are closed. After this, the inserted visualization has to be
adapted to the correct size.

In the visualization of the function block CPU_DIAG, the diagnosis messages shall be output
as language-dependent plain text. Proceed as follows to include the corresponding text file
"Errors.xml":
● Switch to the visualization editor.
● Select the menu item "Extras"/"Settings". In the appearing dialog, select the category "Lan-

guage", check "Dynamic texts" and enter "ERRORS.XML" as file name. Now, the desired
language can be selected in the field "Language".

● Then, the path has to be entered in order to find the language file "ERRORS.XML". Select
"Project"/"Options"/"Directories", go to "General"/"Visualization files" and enter the path
CoDeSys.exe. In case of a default installation, this is:
C:\Program Files\3S Software\CoDeSys V2.3 or C:\Programme\3S Software\CoDeSys
V2.3.
During installation of Automation Builder, the file ERRORS.XML is copied to this directory.

The following little example illustrates how to integrate diagnosis function blocks into a project
and how to operate them via a central visualization.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1183

In the same way as described for the function block CPU_DIAG, the visualizations for the func-
tion block CPU_LOAD (visuCPULoad), CS31_DIAG (visuCS31Diag) and FBP_DIAG (visuFBP-
Diag) have to be created.
By means of the visualization PLC_VISU, the individual visualizations can be launched and
enabled or disabled. For that purpose, the program "PLC_Diagnosis()" is included into the
AC500 project:
The program contains the following declarations and calls:
PROGRAM PLC_Diagnosis

VAR

bCPUEnable : BOOL := TRUE;
bCS31Enable : BOOL := FALSE;
bFBPEnable : BOOL := FALSE;
bCPUDiagEnable : BOOL := TRUE;

END_VAR

(* Call AC500 diagnosis *)
CPU(EN := bCPUEnable);
diagCPU(EN := bCPUDiagEnable);
diagCS31(EN := bCS31Enable, COM := 1);
diagFBP(EN := bFBPEnable);
In offline mode, the related visualization PLC_VISU looks as follows:

After enabling the CPU diagnosis and CPU load, PLC_VISU is displayed as follows in online
mode:

Using the buttons on the left side, the corresponding visualization is called. Clicking the
"Enable" buttons enables the processing of the related function blocks.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1184

The program "PLC_Diagnosis()" and the visualization PLC_VISU are contained in the export file
AC500_PLC_Diagnosis.exp and can be inserted into an AC500 project via Project/Import.

Integrated visualization of function block FBP_DIAG
The visualization Visu_FBP_Diag is part of the function block FBP_DIAG:

If input EN = TRUE, the values for the FBP diagnosis are read cyclically and entered into the
structures.
In online mode, the visualization appears, for example, as follows:

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1185

The visualization displays the number of modules that are connected to the FBP slave interface
in the PLC configuration.

Integrated visualization of function block CS31_DIAG_EXT
The visualization Visu_CS31_Diag_EXT is part of the function block CS31_DIAG_EXT:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1186

If input EN = TRUE, the values for the CS31 diagnosis are read cyclically and entered into the
structures.
In online mode, the visualization appears, for example, as follows:

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1187

Integrated visualization of function block CS31_DIAG
The visualization Visu_CS31_Diag is part of the function block CS31_DIAG:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1188

If input EN = TRUE, the values for the CS31 diagnosis are read cyclically and entered into the
structures.
In online mode, the visualization appears, for example, as follows:

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1189

Integrated visualization of function block CPU_LOAD
The visualization Visu_CPU_Load is part of the function block CPU_LOAD:

If input EN = TRUE, the CPU load values in [%] are cyclically output in a numerical and
graphical (bar display) representation. Pressing the button <Reset> resets the values.
The button <HEAP check> checks the internal HEAP memory of the CPU. While the HEAP
check is activated, no load values are calculated and output.
In online mode, the visualization appears, for example, as follows:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1190

Integrated visualization of function block CPU_DIAG

This section describes how to operate the visualization.
The following is output for each diagnosis entry:

- current error number "No."

- time stamps for errror Come / Gone / Acknowledge

- "Error number"

- short text and error text taken from "ERRORS.XML"

In the upper area, the last diagnosis entry is displayed. This entry can be acknowledged by
pressing the button <Ack / Quit>.
In the middle, the last 5 diagnosis entries are displayed after a FALSE/TRUE edge. The buttons
on the left allow to navigate within the diagnosis buffer:

- <Ack / Quit> - acknowledges the diagnosis entry displayed
next to the button

- arrow up - next entry

- arrow down - previous entry

- double arrow up - 5 entries forward

- double arrow down - 5 entries back

- Newest - 5 entries back starting with the latest entry

- Oldest - 5 entries forward starting with the oldest
entry

Using the buttons below the diagnosis entries, errors can be acknowledged:

- <ACK all> - acknowledges all errors

- <ACK E1> - acknowledges E1 errors (fatal errors)

- <ACK E2> - acknowledges E2 errors (severe errors)

- <ACK E3> - acknowledges E3 errors (minor error)

- <ACK E4> - acknowledges E4 errors (warnings)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1191

When acknowlegding errors, the function blocks DIAG_ACK and DIAG_ACK_ALL of the library
SysInt_AC500_V10.lib are called.
If no diagnosis entries exist, the visualization in online mode looks as follows:

Remark: The PLC real-time clock (RTC) is not set in the example.
If errors exist, the visualization could, for example, appear as follows:

1.5.4.12.3 Structures

Group: Type_CPU_Diagnosis
AC500_Diag_Entry Structure of an AC500 diagnosis entry

strCPU_LOAD Structure of the CPU load

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1192

Group: Type_CS31_Diagnosis
strCS31_DiagBus Diagnosis structure of CS31 master

strCS31_DiagModule Diagnosis structure of all modules

strCS31_DiagOneModule Diagnosis structure of a slave at the CS31 bus

Group: Type_FBP_Diagnosis
strFBP_Info Diagnosis structure of the FBP slave interface

strFBP_ModuleInfo Diagnosis structure of a module of the FBP
slave interface

strFBP_Statistics Diagnosis structure with statistic values of the
FBP slave interface

1.5.4.12.4 Global variables lists

Variables list: GL_AC500_Diagnosis
Variable Type Description
CPU CPU_LOAD Instance of the function block

CPU load

diagCPU CPU_DIAG Instance of the function block
CPU diagnosis

diagCS31 CS31_DIAG Instance of the function block
CS31 diagnosis

diagFBP FBP_DIAG Instance of the function block
FBP slave diagnosis

Variables list: GL_Diag_Constant
Variable Type Description
wERNO_SIMULA-
TION_MODE

WORD 16#50FF = 20735 dec, error
number for simulation mode

1.5.4.13 Ethernet library
Library file name: Ethernet_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

Operating the controller as open Modbus on TCP/IP subscriber can be performed simultane-
ously with other protocols. When operated in this mode, the Ethernet Communication Module is
able to execute the functionality of several servers or several clients at the same time. Mixed
operation is also possible.
In order to operate the controller as open Modbus on TCP/IP server (slave), only the Communi-
cation Module has to be configured. An additional use of the open Modbus on TCP/IP function
blocks in the user program is not necessary.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1193

To operate the controller as open Modbus on TCP/IP client (master), the Communication
Module also has to be configured. In this case, one or more ETH_MODMAST function blocks
have to be configured in the user program additionally.
The ETH_MODMAST function block can be optionally operated in server mode as well as in
client mode or in mixed operation.

Table 76: Reserved ports
Port Reserved for
DEC HEX
32768 8000 Ethernet UDP/IP data exchange with AC31

header (ETH_UDP_xxx function blocks)

1200 04B0 TCP/IP gateway access

502 01F6 Open Modbus on TCP/IP

1.5.4.13.1 Function blocks
ETH_DNS_RESOLVE

The function block ETH_DNS_RESOLVE returns an IP address of a user-specified hostname
via a given DNS server.

The input SLOT is not considered by this function block.

Available as of runtime
system:

V2.1 Remark:

Included in library: Ethernet_AC500_V10.lib Only supported with onboard
Ethernet

Type Function block with historical
values

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1194

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

At input IP_ADR_SVR, the IP address of the DNS server to be used for resolving the hostname
is specified.

Data type Default value Range Unit
STRING Empty string - -

At input HOSTNAME, the domain of the host to be resolved to an IP address is specified. This
name is sent ot the DNS server, which answers with an IP address.

EN

SLOT

IP_ADR_SVR

HOSTNAME

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1195

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD Empty string - -

Output IP_ADR displays the resolved IP address of the hostname provided by the input HOST-
NAME. Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Function call in ST
DnsResolve (EN := DnsResolve_EN,
 SLOT := DnsResolve_SLOT,
 IP_ADR_SVR := DnsResolve_IP_ADR_SVR,
 HOSTNAME := DnsResolve_HOSTNAME);

DONE

ERR

ERNO

IP_ADR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1196

DnsResolve_DONE := DnsResolve.DONE;
DnsResolve_ERR := DnsResolve.ERR;
DnsResolve_ERNO := DnsResolve.ERNO;
DnsResolve_IP_ADR := DnsResolve.IP_ADR;

ETH_ICMP_PING

This function block only works on configured onboard Ethernet Modules, starting from CPU
firmware V2.1. If no onboard Ethernet Communication Module is installed at SLOT, the corre-
sponding error is generated and output at ERR and ERNO.

Available as of runtime
system:

V2.1 Remark:

Included in library: Ethernet_AC500_V10.lib Only supported on onboard
Ethernet communication
modules

Type Function block with historical
values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1197

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

At input IP_ADR, the IP address of the host to be pinged is specified.

Data type Default value Range Unit
WORD 5.000 - ms

At input TIMEOUT, the time to wait for an ICMP echo reply from the host is specified. After this
time has run out, an error will be set as output.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

SLOT

IP_ADR

TIMEOUT

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1198

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
Ping
 (EN := Ping_EN,
 SLOT := Ping_SLOT,
 IP_ADR := Ping_IP_ADR
 TIMEOUT := Ping_TIMEOUT)

Ping_DONE := Ping.DONE;
Ping_ERR := Ping.ERR;
Ping_ERNO := Ping.ERNO;

ETH_MOD_INFO

The function block ETH_MOD_INFO reads the status information of the open Modbus on
TCP/IP processing. It can be used for pure server (slave) or client (master) operation of the
controller as well as for mixed operation.

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1199

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

EN

SLOT

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1200

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

NUM_SRV (number of servers) output indicates the number of parallel server channels con-
figured with Automation Builder software. NUM_SRV is only valid if DONE = TRUE and
ERR = FALSE.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

RDY (ready) output indicates the readiness for operation of the open Modbus on TCP/IP
processing. If RDY = TRUE, the server processing as well as the client processing are ready for
operation. RDY is only valid if DONE = TRUE and ERR = FALSE.

Output STAT displays the current operating state of the open Modbus on TCP/IP processing.
STAT is only valid if DONE = TRUE and ERR = FALSE.

STAT Description
Decimal Hexadecimal
0 00 Processing not initialized

1 01 Processing initialized and running

2 02 Processing initialization in progress

3 03 Initialization error

4 04 Processing initialized and waiting for TCP task

Data type Default value Range Unit
DWORD - - -

The total number of errors detected by the Communication Module since last power up or reset.

ERR

ERNO

NUM_SRV

RDY

STAT

NUM_ERRS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1201

Data type Default value Range Unit
WORD - - -

LAST_ERR outputs the last error occurred on the Communication Module. The error message
encoding at output LAST_ERR applies to all Ethernet function blocks and is explained at the
beginning of the library descriptions.

The outputs gives the value which has been received directly from the Commu-
nication Module. To find this error code inside the list of error messages, the
value 0x6000 has to be added to the error value.

Function call in ST
ModInfo (EN := ModInfo_EN,
 SLOT := ModInfo_SLOT);

ModInfo_DONE := ModInfo.DONE;
ModInfo_ERR := ModInfo.ERR;
ModInfo_ERNO := ModInfo.ERNO;
ModInfo_NUM_SRV := ModInfo.NUM_SRV;
ModInfo_RDY := ModInfo.RDY;
ModInfo_STAT := ModInfo.STAT;
ModInfo_NUM_ERRS := ModInfo.NUM_ERRS;
ModInfo_LAST_ERR := ModInfo.LAST_ERR;

ETH_MOD_MAST

The ETH_MOD_MAST function block implements the open Modbus on TCP/IP client function-
ality for the Ethernet Communication Module specified at input SLOT. Depending on the con-
figuration of the Communication Module, several ETH_MOD_MAST function blocks can be
used in parallel. Prior to the use of ETH_MOD_MAST the Communication Module has to be
configured.
With each FALSE > TRUE edge at input EN, the function block ETH_MOD_MAST reads the
values at the inputs, generates a telegram according to the inputs and then sends this telegram
to the slave.

LAST_ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1202

Only a single instance per slave can be used with this function block.

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

At IP_ADR, the IP address of the server has to be specified to which the telegram should be
sent. Each byte in IP_ADR represents one octet of the address.

EN

SLOT

IP_ADR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1203

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
BYTE - - -

At input UNIT_ID, the address of the Modbus slave must be specified which is connected
serially to the Modbus server defined by IP_ADR. If no further slaves are connected, this input is
not used.

Data type Default value Range Unit
BYTE - - -

The function code of the request telegram is specified at input FCT.

01 or 02 Read n bits

03 or 04 Read n words

05 Write one bit (encoded in one word)

06 Write one word

07 Read 8 bit

15 Write n bits (encoded in one byte)

16 Write n words

22 Mask write

23 Read/write multiple words in one telegram

The max. telegram length for onboard Ethernet CPUs with function code 3/4 is
96 words.

The max. telegram length for onboard Ethernet CPUs with function code 15 is
1536 bits.

Data type Default value Range Unit
WORD - - -

The operand/register address in the slave from which data should be read or written is specified
at input ADDR.
The access to operands of AC500 devices in Modbus slave mode is defined via the Modbus
cross-reference list. Only operands that are listed in the cross-reference list may be used
(Ä Chapter 1.6.4.1.8 “Communication with Modbus RTU” on page 5467).
Only operands that are listed in the Modbus address list may be used. When accessing
other devices, ADDR is freely selectable. The valid ranges have to be gathered from the
corresponding device description.

UNIT_ID

FCT

ADDR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1204

Data type Default value Range Unit
DWORD Empty string - -

At input NB (number), the number of data to be written or read is specified. The unit of NB
depends on the selected function. For bit accesses the number of bits, for word and double
word accesses the number of words is specified at NB. The following restrictions apply to the
length:

FCT NBmax
Dec Hex Serial Modbus on TCP/IP
01 or 02 01 or 02 2000 bits 255 bits (up to firmware version

V01.33)
1800 bits (from firmware version
V01.41)
1536 bits (PM573/PM583 only)

03 or 04 03 or 04 125 words / 62
double words

125 words / 62 double words

05 05 1 bit 1 bit

06 06 1 word 1 word

07 07 8 bits 8 bits

15 0F 1968 bits 255 bits (up to firmware version
V01.33)
1800 bits (from firmware version
V01.41)
1536 bits (PM573/PM583 only)

16 10 123 words / 61
double words

123 words / 61 double words

22 16 Write: 1 word Write: 1 word

23 17 Read: 125
words / 62
double words
Write: 123
words / 61
double words

Read: 125 words / 62 double words
Write: 123 words / 61 double words

Data type Default value Range Unit
DWORD - - -

At input DATA, the address of the first operand in the master is specified, from which data are
copied/written to the slave or to which the data read by the slave should be stored. For this
purpose it is necessary that the operand type (e.g. bit) matches the selected function (e.g. FCT
1, read n bits).
If using Modbus function codes 22 or 23, the according data structures
COM_MOD_FCT22_TYPE Ä Chapter 1.5.4.22.2.1 “COM_MOD_FCT22_TYPE” on page 1702
or COM_MOD_FCT23_TYPE Ä Chapter 1.5.4.22.2.2 “COM_MOD_FCT23_TYPE”
on page 1703 must be defined and applied to DATA.

NB

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1205

Output description

Data type Default value Range Unit
BOOL - - -

Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type Default value Range Unit
BOOL - - -

Output ERR indicates whether an error occurred during Function Block processing. This output
always has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE,
an error occurred. In this case, the error number can be read at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
ModMast (EN := ModMast_EN,
 SLOT := ModMast_SLOT,
 IP_ADR := ModMast_IP_ADR,
 UNIT_ID := ModMast_UNIT_ID,
 FCT := ModMast_FCT,
 ADDR := ModMast_ADDR,
 NB := ModMast_NB,
 DATA := ADR(ModMast_DATA));

ModMast_DONE := ModMast.DONE;
ModMast_ERR := ModMast.ERR;

ModMast_ERNO := ModMast.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1206

ETH_OWN_IP

The function block ETH_OWN_IP outputs the IP address of the Communication Module
installed at slot SLOT. If no Ethernet Communication Module is installed at SLOT, the corre-
sponding error is generated and output at ERR and ERNO.

If using this function block in a loop (e.g. while), a sleep command must be
inserted.

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1207

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD Empty string - -

IP_ADR displays the IP address which should be set at the CPU / Communication Module.
Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

SLOT

DONE

ERR

ERNO

IP_ADR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1208

Function call in ST
OwnIp(EN := OwnIp_EN,
 SLOT := OwnIp_SLOT);

OwnIp_DONE := OwnIp.DONE;
OwnIp_ERR := OwnIp.ERR;
OwnIp_ERNO := OwnIp.ERNO;
OwnIp_IP_ADR := OwnIp.IP_ADR;

ETH_OWN_IP_INFO

The function block ETH_OWN_IP_INFO outputs the IP setup of the communication module
installed at slot SLOT.If no Ethernet communication module is installed at SLOT, the corre-
sponding error is generated and output at ERR and ERNO.

Available as of runtime system: V1.3

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1209

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

EN

SLOT

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1210

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD Empty string - -

IP_ADR displays the IP address which should be set at the CPU / Communication Module.
Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
DWORD Empty string - -

Output NETMASK displays the own netmask. Each byte in NETMASK represents one octet of
the address.

Netmask 255.255.255.0
NETMASK (hex) 16#FFFFFF00
NETMASK (dec) 4294967040

Example

Data type Default value Range Unit
DWORD Empty string - -

Output GATEWAY displays the IP address of the gateway. Each byte in GATEWAY represents
one octet of the address.

IP address 192.168.0.1
IP_ADR (hex) 16#C0A80001
IP_ADR (dec) 3232235521

Example

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output BOOTP indicates whether the BOOTP service is activated for the Communication
Module.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DHCP indicates whether the DHCP service is activated for the Communication Module.

IP_ADR

NETMASK

GATEWAY

BOOTP

DHCP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1211

Function call in ST
IpInfo(EN := IpInfo_EN,
 SLOT := IpInfo_SLOT);

IpInfo_DONE := IpInfo.DONE;
IpInfo_ERR := IpInfo.ERR;
IpInfo_ERNO := IpInfo.ERNO;
IpInfo_IP_ADR := IpInfo.IP_ADR;
IpInfo_NETMASK := IpInfo.NETMASK;
IpInfo_GATEWAY := IpInfo.GATEWAY;
IpInfo_BOOTP := IpInfo.BOOTP;
IpInfo_DHCP := IpInfo.DHCP;

ETH_OWN_IP_SET

Function block ETH_OWN_IP_SET is used to set
● IP address
● Subnet mask
● Gateway and
● some other parameters
at the CPU / Communication Module installed at slot SLOT.

The new IP configuration data will be available after the next reboot of the
CPU / Communication module. Use input REBOOT=TRUE to restart the CPU /
Communication Module immediately after changing the IP configuration data.

Available as of runtime system: V2.0

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1212

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD Empty string - -

IP_ADR displays the IP address which should be set at the CPU / Communication Module.
Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
DWORD Empty string - -

At input NETMASK, the subnet mask which should be set at the CPU / Communication Module
is specified. Each byte in NETMASK represents one octet of the address.

EN

SLOT

IP_ADR

NETMASK

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1213

Netmask 255.255.255.0
NETMASK (hex) 16#FFFFFF00
NETMASK (dec) 4294967040

Example

Data type Default value Range Unit
DWORD Empty string - -

At input GATEWAY, the default gateway which should be set at the CPU / Communication
Module is specified. Each byte in GATEWAY represents one octet of the address.

IP address 192.168.0.1
IP_ADR (hex) 16#C0A80001
IP_ADR (dec) 3232235521

Example

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output BOOTP indicates whether the BOOTP service is activated for the Communication
Module.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DHCP indicates whether the DHCP service is activated for the Communication Module.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

A TRUE signal at input REBOOT restarts the CPU / Communication Module after changing the
IP settings.

Output description

GATEWAY

BOOTP

DHCP

REBOOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1214

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
IPSet (EN := IPSet_EN,
 SLOT := IPSet_SLOT,
 IP_ADR := IPSet_IP_ADR,
 NETMASK := IPSet_NETMASK,
 GATEWAY := IPSet_GATEWAY,
 BOOTP := IPSet_BOOTP,
 DHCP := IPSet_DHCP,
 REBOOT := IPSet_REBOOT);

IPSet_DONE := IPSet.DONE;
IPSet_ERR := IPSet.ERR;
IPSet_ERNO := IPSet.ERNO;

ETH_SMTP_EMAIL_SEND

The function block ETH_SMTP_EMAIL_SEND uses a user-specified SMTP server to deliver an
email to given mailboxes.
This function block only works on configured onboard Ethernet Modules. If no onboard Ethernet
Communication Module is installed at SLOT, the corresponding error is generated and output at
ERR and ERNO.

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1215

Available as of runtime
system:

V2.1 Remark:

Included in library: Ethernet_AC500_V10.lib Only supported with onboard
Ethernet

Type Function block with historical
values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: ETH_EMAIL_DATA_TYPE (slot)
Input MAIL_INFO provides all necessary data to send an email via the data structure
ETH_EMAIL_DATA_TYPE.

EN

SLOT

MAIL_INFO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1216

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1217

ETH_UDP_INFO

The function block ETH_UDP_INFO reads the status information of the UDP/IP processing.

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1218

In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

SLOT

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1219

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_BY displays the filling level of the receive buffer in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_DS displays the filling level of the receive buffer in data
sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSH_BY displays the filling level of the high priority send
buffer in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSH_DS displays the filling level of the high priority send
buffer in data sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSL_BY displays the filling level of the low priority send buffer
in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSL_DS displays the filling level of the low priority send buffer
in data sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSTO_DS displays the filling level of the timeout buffer in
data sets.

Data type Default value Range Unit
DWORD - - -

LEVR_BY

LEVR_DS

LEVSH_BY

LEVSH_DS

LEVSL_BY

LEVSL_DS

LEVSTO_DS

NUMR_BC

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1220

NUMR_BC outputs the number of broadcasts (data packets to all stations) which were received
by this station.

Data type Default value Range Unit
DWORD Empty string - -

At output NUMR_REJ (number of receipts rejected), the number of data sets is displayed which
were discarded during reception due to a full receive buffer. Data sets are only discarded if this
is set accordingly within the configuration of the UDP/IP processing.

Data type Default value Range Unit
DWORD Empty string - -

At output NUMR_OWR (number of receipts overwritten), the number of data sets is displayed
which were overwritten during reception due to a full receive buffer. Data sets are only over-
written in the receive buffer, if this is set accordingly within the configuration of the UDP/IP
processing.

Data type Default value Range Unit
DWORD - - -

NUMR_INV outputs the number of telegrams which were received faulty by this station.

Function call in ST
Info (EN := Info_EN,
 SLOT := Info_SLOT)

Info_DONE := Info.DONE;
Info_ERR := Info.ERR;
Info_ERNO := Info.ERNO;
Info_LEVR_BY := Info.LEVR_BY;
Info_LEVR_DS := Info.LEVR_DS;
Info_LEVSH_BY := Info.LEVSH_BY;
Info_LEVSH_DS := Info.LEVSH_DS;
Info_LEVSL_BY := Info.LEVSL_BY;
Info_LEVSL_DS := Info.LEVSL_DS;

Info_LEVSTO_DS := Info.LEVSTO_DS;

Info_NUMR_BC := Info.NUMR_BC;
Info_NUMR_REJ := Info.NUMR_REJ;
Info_NUMR_OWR := Info.NUMR_OWR;
Info_NUMR_INV := Info.NUMR_INV;

NUMR_REJ

NUMR_OWR

NUMR_INV

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1221

ETH_UDP_REC

The operating system reads the received UDP/IP data packets from the Ethernet Communica-
tion Module and stores them in the receive buffer. The buffer size is determined using the PLC
configuration. The data packets are stored with variable lengths. For example, a data packet
consisting of 16 bytes of user data occupies exactly 22 bytes in the receive buffer (4 bytes for
the IP address of the sending device, 2 bytes for the packet length and 16 bytes of user data).
Using the ETH_UDP_REC function block, exactly one data packet is read. The user data are
stored in the configured memory area (DATA). The address of the sending device and the data
packet length are supplied at the outputs IP_ADR and LEN. DONE = TRUE and ERR = FALSE
indicate that the reading process was successful. If an error was detected during Function Block
processing, the error is additionally indicated at the outputs ERR and ERNO. Furthermore,
the function block provides information about the receive buffer filling level displayed in bytes
(LEVR_BY) and data records (LEVR_DS).

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1222

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
The address specified at DATA has to belong to a variable of the type ARRAY or STRUCT.

Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

SLOT

DATA

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1223

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD Empty string - -

Output IP_ADR displays the IP address of the sending device which transmitted the received
data package. Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
WORD - - -

Output LEN (length) displays the length of the received data package in bytes.

Data type Default value Range Unit
WORD - - -

Output LEV_BY displays the filling level of the receive buffer in bytes. The displayed value is
updated as long as EN is TRUE and applies to the input values read with the rising edge at
input EN.
One data packet occupies output LEN + 6 bytes in the receive buffer (4 bytes for the NODE ID
of the sending device, 2 bytes for the specification of the length).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

Function call in ST
REC (EN := Rec_EN,
 SLOT := Rec_SLOT,
 DATA := ADR(Rec_DATA));

REC_DONE := Rec.DONE;
REC_ERR := Rec.ERR;
REC_ERNO := Rec.ERNO;
REC_IP_ADR := Rec.IP_ADR;
REC_LEN := Rec.LEN;
REC_LEVR_BY := Rec.LEV_BY;
REC_LEVR_DS := Rec.LEV_DS;

IP_ADR

LEN

LEV_BY

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1224

ETH_UDP_SEND

The function block ETH_UDP_SEND is used to transmit data packets via the UDP/IP protocol of
the Ethernet Communication Module. The specified packages are stored in the transmit buffer
selected by input PRIO. From there, the operating system hands over the data packets to the
Ethernet Communication Module in order to transmit them to the target address specified at
input IP_ADR. The transmit buffer size is defined by the PLC configuration. Using input TOUT,
the timeout period can be specified. If TOUT <> 0, the UDP/IP data exchange is automatically
performed with receive acknowledgement. If TOUT = 0, no acknowledgement is expected.
Output DONE indicates that the specified data packet has been stored in the transmit buffer
or that an error occurred during Function Block processing. If an error was detected during
Function Block processing, the error is additionally indicated at the outputs ERR and ERNO. In
case of an error, the data packet has to be transmitted again.
The function block ETH_UDP_SEND cannot store data packets to the transmit buffer until the
Ethernet UDP/IP processing is set in the controller configuration (link to Controller configuration
of UDP/IP processing).

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1225

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

At this input, the IP address of the recipient is specified. Each byte in IP_ADR represents one
octet of the address.

IP address 192.15.24.2,
IP_ADR (hex) 16#C00F1802,
IP_ADR (dec) 3222214658

Example:

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Input PRIO (priority) is used to specify the transmit priority of the data packet.
The following applies:
If PRIO = FALSE the specified data packet has low priority. Thus, it is stored in the low priority
transmit buffer. All outputs refer to this buffer.
If PRIO = TRUE the specified data packet has high priority. Thus, it is stored in the high priority
transmit buffer. All outputs refer to this buffer.

Data type Default value Range Unit
WORD - - -

Using input TOUT (timeout), the timeout period can be specified. If TOUT <> 0, the UDP/IP data
exchange is automatically performed with receive acknowledgement. If a data packet cannot be
transmitted within this period (no acknowledge telegram is received), transmission is aborted
and the package is lost.
In this case, some distinctive bytes of the data packet (see Ä Chapter 1.6.5.3.7.1 “Contents of
the UDP protocol configuration” on page 6185) are stored to the timeout buffer and can then be
read using the function block ETH_UDP_STO.
If TOUT = 0, no acknowledgement is expected.
The following applies:
TOUT = 0:
Data exchange without receive acknowledgement. No data are written to the timeout buffer.
TOUT <> 0:

SLOT

IP_ADR

PRIO

TOUT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1226

Data exchange with receive acknowledgement. Each transmitted data record is acknowledged
by the recipient. If no acknowledge telegram is received within the set timeout period (in ms),
the data are written to the timeout buffer.

Data type Default value Range Unit
DWORD - - -

At input DATA, the address of the variable is specified the data of which are transmitted as user
data in this package. The address specified at DATA has to belong to a variable of the type
ARRAY or STRUCT.

Data type Default value Range Unit
WORD - 1...1464 -

At input LEN (length), the number of user data bytes is specified for the specified package.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DATA

LEN

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1227

Data type Default value Range Unit
WORD - - -

Output LEV_BY (level in bytes) displays the filling level (in bytes) of the transmit buffer. The
displayed value is updated as long as EN is TRUE and applies to the input values read with the
rising edge at input EN.
One data packet occupies output LEN + 8 bytes in the transmit buffer (4 bytes for the IP
address of the recipient, 2 bytes for the specification of the length and 2 bytes for the timeout
period).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level (in data records) of the transmit
buffer. The displayed value is updated as long as EN is TRUE and applies to the input values
read with the rising edge at input EN.

Function call in ST
Send (EN := Send_EN,
 SLOT := Send_SLOT,
 IP_ADR := Send_IP_ADR,
 PRIO := Send_PRIO,
 TOUT := Send_TOUT,
 DATA := ADR(Send_DATA),
 LEN := Send_LEN);

Send_DONE := Send.DONE;
Send_ERR := Send.ERR;
Send_ERNO := Send.ERNO;
Send_LEV_BY := Send.LEV_BY;
Send_LEV_DS := Send.LEV_DS;

ETH_UDP_STO

The ETH_UDP_STO function block reads lost data packets from the timeout data buffer and
stores the user data to the specified memory area.
During the transmission of a data packet, the success of the transmission is monitored by an
adjustable timeout period. When this time is exceeded, distinctive information of the data packet
are stored in the timeout buffer.
These are:
● the IP address of the receiver (4 bytes)
● header data of the data set (the number is specified with the controller configuration of the

UDP/IP processing).

LEV_BY

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1228

The buffer length can as well be set using the controller configuration of the UDP/IP processing.
The buffer is constructed as a circular buffer (FIFO). If the buffer is full, the oldest entry in the
buffer is overwritten. When a rising edge occurs at input EN, the ETH_UDP_STO function block
verifies whether a data packet is stored in the buffer and makes the information mentioned
above available for the user (starting at the variable specified at input DATA).
The function block ETH_UDP_STO cannot be used until the Ethernet UDP/IP processing is set
in the controller configuration (link to Controller configuration of UDP/IP processing) Additionally,
input TOUT of the transmit function block ETH_UDP_SEND must be <> 0.

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
The address specified at DATA has to belong to a variable of the type ARRAY or STRUCT.

EN

SLOT

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1229

Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

DONE

ERR

ERNO

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1230

Function call in ST
Sto (EN := Sto_EN,
 SLOT := Sto_SLOT,
 DATA := ADR(Sto_DATA));

Sto_DONE := Sto.DONE;
Sto_ERR := Sto.ERR;
Sto_ERNO := Sto.ERNO;
Sto_LEV_DS := Sto.LEV_DS;

ETH_UDP_STD_INFO

The function block ETH_UDP_STD_INFO reads the status information of the UDP/IP pro-
cessing.

Available as of runtime system: V1.3

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1231

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

EN

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1232

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_BY displays the filling level of the receive buffer in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_DS displays the filling level of the receive buffer in data
sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVS_BY (level of all send buffers in bytes) displays the filling
level of all send buffers in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVS_DS (level of all send buffers in data sets) displays the
filling level of all send buffers in data sets.

Data type Default value Range Unit
DWORD - - -

NUMR_BC outputs the number of broadcasts (data packets to all stations) which were received
by this station.

DONE

ERR

ERNO

LEVR_BY

LEVR_DS

LEVS_BY

LEVS_DS

NUMR_BC

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1233

Data type Default value Range Unit
DWORD Empty string - -

At output NUMR_REJ (number of receipts rejected), the number of data sets is displayed which
were discarded during reception due to a full receive buffer. Data sets are only discarded if this
is set accordingly within the configuration of the UDP/IP processing.

Data type Default value Range Unit
DWORD Empty string - -

At output NUMR_OWR (number of receipts overwritten), the number of data sets is displayed
which were overwritten during reception due to a full receive buffer. Data sets are only over-
written in the receive buffer, if this is set accordingly within the configuration of the UDP/IP
processing.

Data type Default value Range Unit
DWORD - - -

NUMR_INV outputs the number of telegrams which were received faulty by this station.

Function call in ST
Info (EN := Info_EN,
 SLOT := Info_SLOT)

Info_DONE := Info.DONE;
Info_ERR := Info.ERR;
Info_ERNO := Info.ERNO;
Info_LEVR_BY := Info.LEVR_BY;
Info_LEVR_DS := Info.LEVR_DS;
Info_LEVSH_BY := Info.LEVSH_BY;
Info_LEVSH_DS := Info.LEVSH_DS;
Info_LEVSL_BY := Info.LEVSL_BY;
Info_LEVSL_DS := Info.LEVSL_DS;

Info_LEVSTO_DS := Info.LEVSTO_DS;

Info_NUMR_BC := Info.NUMR_BC;
Info_NUMR_REJ := Info.NUMR_REJ;
Info_NUMR_OWR := Info.NUMR_OWR;
Info_NUMR_INV := Info.NUMR_INV;

NUMR_REJ

NUMR_OWR

NUMR_INV

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1234

ETH_UDP_STD_REC

The ETH_UDP_STD_REC function block reads the next data record from the UDP/IP receive
buffer and stores the user data to the configured memory area.
The operating system reads the received UDP/IP data packets from the Ethernet Communica-
tion Module and stores them in the receive buffer. The buffer size is determined using the PLC
configuration. The data packets are stored with variable lengths. For example, a data packet
consisting of 16 bytes of user data occupies exactly 22 bytes in the receive buffer (4 bytes for
the IP address of the sending device, 2 bytes for the packet length and 16 bytes of user data).
Using the ETH_UDP_STD_REC function block, exactly one data packet is read. The user data
are stored in the configured memory area (DATA). The address of the sending device and the
data packet length are supplied at the outputs IP_ADR_REMOTE, PORT_REMOTE and LEN.
DONE = TRUE and ERR = FALSE indicate that the reading process was successful. If an error
was detected during function block processing, the error is indicated at the outputs ERR and
ERNO. Furthermore, the function block provides information about the receive buffer filling level
displayed in bytes (LEV_BY) and data records (LEV_DS).

Available as of runtime system: V1.3

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1235

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - - -

Index of the standard UDP/IP connection corresponding to the PLC configuration, starting with
0. The function block only works on the connection that was selected by this input, and with
the parameters set in the PLC configuration, e.g. port, buffer size, behavior in case of buffer
overflow etc.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
The address specified at DATA has to belong to a variable of the type ARRAY or STRUCT.

Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SLOT

INDEX

DATA

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1236

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output IP_ADR_REM (IP address remote) displays the IP address of the sending device which
transmitted the received data package. Each byte in IP_ADR_REM represents one octet of the
address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
DWORD - - -

Output PORT_ADR_REM (remote port address) displays the UDP remote port address of the
sending device which transmitted the received data package.

Data type Default value Range Unit
WORD - - -

Output LEN (length) displays the length of the received data package in bytes.

Data type Default value Range Unit
WORD - - -

Output LEV_BY displays the filling level of the receive buffer in bytes. The displayed value is
updated as long as EN is TRUE and applies to the input values read with the rising edge at
input EN.
One data packet occupies output LEN + 6 bytes in the receive buffer (4 bytes for the NODE ID
of the sending device, 2 bytes for the specification of the length).

ERR

ERNO

IP_ADR_REM

PORT_
ADR_REM

LEN

LEV_BY

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1237

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

Function call in ST
REC (EN := Rec_EN,
 SLOT := Rec_SLOT,
 INDEX := Rec_INDEX,
 DATA := ADR(Rec_DATA));

REC_DONE := Rec.DONE;
REC_ERR := Rec.ERR;
REC_ERNO := Rec.ERNO;
REC_IP_ADR_REMOTE := Rec.IP_ADR_REMOTE;
REC_PORT_REMOTE := Rec.PORT_REMOTE;
REC_LEN := Rec.LEN;
REC_LEVR_BY := Rec.LEV_BY;
REC_LEVR_DS := Rec.LEV_DS;

ETH_UDP_STD_SEND

The function block ETH_UDP_STD_SEND is used to transmit data packets via the standard
UDP/IP protocol of the Ethernet Communication Module. The specified packages are stored
in the transmit buffer. From there, the operating system hands over the data packets to the
Ethernet Communication Module in order to transmit them to the target address specified at
input IP_ADR. The transmit buffer size is defined by the PLC configuration. Output DONE
indicates that the specified data packet has been stored in the transmit buffer or that an error
occurred during Function Block processing. If an error was detected during Function Block
processing, the error is additionally indicated at the outputs ERR and ERNO. In case of an error,
the data packet has to be transmitted again.
The function block ETH_UDP_STD_SEND cannot store data packets to the transmit buffer
until the Ethernet UDP/IP processing is set in the controller configuration (see also the PLC
configuration of the standard UDP/IP processing).

Available as of runtime system: V1.3

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1238

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - - -

Index of the standard UDP/IP connection corresponding to the PLC configuration, starting with
0. The function block only works on the connection that was selected by this input, and with
the parameters set in the PLC configuration, e.g. port, buffer size, behavior in case of buffer
overflow etc.

Data type Default value Range Unit
DWORD - - -

At this input, the IP address of the recipient is specified. Each byte in IP_ADR represents one
octet of the address.

IP address 192.15.24.2,
IP_ADR (hex) 16#C00F1802,
IP_ADR (dec) 3222214658

Example:

EN

SLOT

INDEX

IP_ADR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1239

Data type Default value Range Unit
WORD - - -

The target port of the receiver is specified here (port to send to).

Data type Default value Range Unit
DWORD - - -

At input DATA, the address of the variable is specified the data of which are transmitted as user
data in this package. The address specified at DATA has to belong to a variable of the type
ARRAY or STRUCT.

Data type Default value Range Unit
WORD - 1...1464 -

At input LEN (length), the number of user data bytes is specified for the specified package.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

PORT

DATA

LEN

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1240

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output LEV_BY (level in bytes) displays the filling level (in bytes) of the transmit buffer. The
displayed value is updated as long as EN is TRUE and applies to the input values read with the
rising edge at input EN.
One data packet occupies output LEN + 8 bytes in the transmit buffer (4 bytes for the IP
address of the recipient, 2 bytes for the specification of the length and 2 bytes for the timeout
period).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level (in data records) of the transmit
buffer. The displayed value is updated as long as EN is TRUE and applies to the input values
read with the rising edge at input EN.

Function call in ST
Send (EN := Send_EN,
 SLOT := Send_SLOT,
 INDEX := Send_INDEX,
 IP_ADR := Send_IP_ADR,
 PORT := Send_PORT,
 DATA := ADR(Send_DATA),
 LEN := Send_LEN);

Send_DONE := Send.DONE;
Send_ERR := Send.ERR;
Send_ERNO := Send.ERNO;
Send_LEV_BY := Send.LEV_BY;
Send_LEV_DS := Send.LEV_DS;

ETHx_DNS_RESOLVE

The function block ETHx_DNS_RESOLVE returns an IP address of a user-specified hostname
via a given DNS server. If no Ethernet device is installed at ETH, the corresponding error is
generated and output at ERR and ERNO.

LEV_BY

LEV_DS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1241

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Data type Default value Range Unit
STRING Empty string - -

At input HOSTNAME, the domain of the host to be resolved to an IP address is specified. This
name is sent ot the DNS server, which answers with an IP address.

EN

ETH BYTE
 (Ethernet
index number)

HOSTNAME

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1242

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD Empty string - -

Output IP_ADR displays the resolved IP address of the hostname provided by the input HOST-
NAME. Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Function call in ST
DNSResolve (EN := DNSResolve_EN,
 ETH := DNSResolve_ETH,
 IP_ADR_SVR := DNSResolve_IP_ADR_SVR,
 HOSTNAME := DNSResolve_HOSTNAME);

DONE

ERR

ERNO

IP_ADR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1243

DNSResolve_DONE := DnsResolve.DONE;
DNSResolve_ERR := DnsResolve.ERR;
DNSResolve_ERNO := DnsResolve.ERNO;
DNSResolve_IP_ADR := DnsResolve.IP_ADR;

ETHx_ICMP_PING

The function block ETHx_ICMP_PING returns whether a given host in the network answers to a
ping. If no Ethernet device is installed at ETH, the corresponding error is generated and output
at ERR and ERNO.

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1244

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Data type Default value Range Unit
DWORD - - -

At input IP_ADR, the IP address of the host to be pinged is specified.

Data type Default value Range Unit
WORD 5.000 - ms

At input TIMEOUT, the time to wait for an ICMP echo reply from the host is specified. After this
time has run out, an error will be set as output.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

ETH BYTE
 (Ethernet
index number)

IP_ADR

TIMEOUT

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1245

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
ICMPPing (EN := ICMPPing_EN,
 ETH := ICMPPing_ETH,
 IP_ADR := ICMPPing_IP_ADR
 TIMEOUT := ICMPPing_TIMEOUT)

ICMPPing_DONE := ICMPPing.DONE;
ICMPPing_ERR := ICMPPing.ERR;
ICMPPing_ERNO := ICMPPing.ERNO;

ETHx_MOD_INFO

The function block ETHx_MOD_INFO reads the status information of the open Modbus on
TCP/IP processing. It can be used for pure server (slave) or client (master) operation of the
controller as well as for mixed operation.

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1246

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

EN

ETH BYTE
 (Ethernet
index number)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1247

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

NUM_SRV (number of servers) output indicates the number of parallel server channels con-
figured with Automation Builder software. NUM_SRV is only valid if DONE = TRUE and
ERR = FALSE.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

RDY (ready) output indicates the readiness for operation of the open Modbus on TCP/IP
processing. If RDY = TRUE, the server processing as well as the client processing are ready for
operation. RDY is only valid if DONE = TRUE and ERR = FALSE.

DONE

ERR

ERNO

NUM_SRV

RDY

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1248

Output STAT displays the current operating state of the open Modbus on TCP/IP processing.
STAT is only valid if DONE = TRUE and ERR = FALSE.

STAT Description
Decimal Hexadecimal
0 00 Processing not initialized

1 01 Processing initialized and running

2 02 Processing initialization in progress

3 03 Initialization error

4 04 Processing initialized and waiting for TCP task

Data type Default value Range Unit
DWORD - - -

The total number of errors detected by the Communication Module since last power up or reset.

Data type Default value Range Unit
WORD - - -

LAST_ERR outputs the last error occurred on the Communication Module. The error message
encoding at output LAST_ERR applies to all Ethernet function blocks and is explained at the
beginning of the library descriptions.

The outputs gives the value which has been received directly from the Commu-
nication Module. To find this error code inside the list of error messages, the
value 0x6000 has to be added to the error value.

Function call in ST
MODInfo (EN := MODInfo_EN,
 ETH := MODInfo_ETH);

MODInfo_DONE := MODInfo.DONE;
MODInfo_ERR := MODInfo.ERR;
MODInfo_ERNO := MODInfo.ERNO;
MODInfo_NUM_SRV := MODInfo.NUM_SRV;
MODInfo_RDY := MODInfo.RDY;
MODInfo_STAT := MODInfo.STAT;
MODInfo_NUM_ERRS := MODInfo.NUM_ERRS;
MODInfo_LAST_ERR := MODInfo.LAST_ERR;

STAT

NUM_ERRS

LAST_ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1249

ETHx_MOD_MAST

The ETHx_MOD_MAST function block implements the open Modbus on TCP/IP client function-
ality for the Ethernet interface specified at input ETH. Depending on the configuration of the
Communication Module, several ETHx_MOD_MAST function blocks can be used in parallel.
Prior to the use of ETHx_MOD_MAST for an Ethernet interface it has to be configured accord-
ingly using Automation Builder.
With each FALSE > TRUE edge at input EN, the function block ETHx_MOD_MAST reads the
values at the inputs, generates a telegram according to the inputs and then sends this telegram
to the slave.

Only a single instance per slave can be used with this function block!

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1250

The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Data type Default value Range Unit
DWORD - - -

At IP_ADR, the IP address of the server has to be specified to which the telegram should be
sent. Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
BYTE - - -

At input UNIT_ID, the address of the Modbus slave must be specified which is connected
serially to the Modbus server defined by IP_ADR. If no further slaves are connected, this input is
not used.

Data type Default value Range Unit
BYTE - - -

The function code of the request telegram is specified at input FCT.

01 or 02 Read n bits

03 or 04 Read n words

05 Write one bit (encoded in one word)

06 Write one word

ETH BYTE
 (Ethernet
index number)

IP_ADR

UNIT_ID

FCT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1251

07 Read 8 bit

15 Write n bits (encoded in one byte)

16 Write n words

22 Mask write

23 Read/write multiple words in one telegram

The max. telegram length for onboard Ethernet CPUs with function code 3/4 is
96 words.

The max. telegram length for onboard Ethernet CPUs with function code 15 is
1536 bits.

Data type Default value Range Unit
WORD - - -

The operand/register address in the slave from which data should be read or written is specified
at input ADDR.
The access to operands of AC500 devices in Modbus slave mode is defined via the Modbus
cross-reference list. Only operands that are listed in the cross-reference list may be used
(Ä Chapter 1.6.4.1.8 “Communication with Modbus RTU” on page 5467).
Only operands that are listed in the Modbus address list may be used. When accessing
other devices, ADDR is freely selectable. The valid ranges have to be gathered from the
corresponding device description.

Data type Default value Range Unit
DWORD Empty string - -

At input NB (number), the number of data to be written or read is specified. The unit of NB
depends on the selected function. For bit accesses the number of bits, for word and double
word accesses the number of words is specified at NB. The following restrictions apply to the
length:

FCT NBmax
Dec Hex Serial Modbus on TCP/IP
01 or 02 01 or 02 2000 bits 255 bits (up to firmware version

V01.33)
1800 bits (from firmware version
V01.41)
1536 bits (PM573/PM583 only)

03 or 04 03 or 04 125 words / 62
double words

125 words / 62 double words

05 05 1 bit 1 bit

06 06 1 word 1 word

07 07 8 bits 8 bits

ADDR

NB

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1252

FCT NBmax
Dec Hex Serial Modbus on TCP/IP
15 0F 1968 bits 255 bits (up to firmware version

V01.33)
1800 bits (from firmware version
V01.41)
1536 bits (PM573/PM583 only)

16 10 123 words / 61
double words

123 words / 61 double words

22 16 Write: 1 word Write: 1 word

23 17 Read: 125
words / 62
double words
Write: 123
words / 61
double words

Read: 125 words / 62 double words
Write: 123 words / 61 double words

Data type Default value Range Unit
DWORD - - -

At input DATA, the address of the first operand in the master is specified, from which data are
copied/written to the slave or to which the data read by the slave should be stored. For this
purpose it is necessary that the operand type (e.g. bit) matches the selected function (e.g. FCT
1, read n bits).
If using Modbus function codes 22 or 23, the according data structures
COM_MOD_FCT22_TYPE Ä Chapter 1.5.4.22.2.1 “COM_MOD_FCT22_TYPE” on page 1702
or COM_MOD_FCT23_TYPE Ä Chapter 1.5.4.22.2.2 “COM_MOD_FCT23_TYPE”
on page 1703 must be defined and applied to DATA.

Output description

Data type Default value Range Unit
BOOL - - -

Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

DATA

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1253

Data type Default value Range Unit
BOOL - - -

Output ERR indicates whether an error occurred during Function Block processing. This output
always has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE,
an error occurred. In this case, the error number can be read at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
MODMast (EN := MODMast_EN,
 ETH := MODMast_ETH,
 IP_ADR := MODMast_IP_ADR,
 UNIT_ID := MODMast_UNIT_ID,
 FCT := MODMast_FCT,
 ADDR := MODMast_ADDR,
 NB := MODMast_NB,
 DATA := ADR(ModMast_DATA));

MODMast_DONE := MODMast.DONE;
MODMast_ERR := MODMast.ERR;

MODMast_ERNO := MODMast.ERNO;

ETHx_OWN_IP

The function block ETHx_OWN_IP outputs the IP address of the Communication Module
installed at input ETH.

Prior to commissioning an Ethernet interface, it has to be configured using Automation Builder
software. The IP address is one of the parameters of an Ethernet interface. Using the function
block ETHx_OWN_IP, the configured IP address of the device at input ETH can be read. If no
Ethernet device is installed at ETH, the corresponding error is generated and output at ERR and
ERNO.

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1254

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

EN

ETH BYTE
 (Ethernet
index number)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1255

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output IP_ADR displays the own IP address of the Communication Module. Each byte in
IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

DONE

ERR

ERNO

IP_ADR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1256

Function call in ST
OwnIp(EN := OwnIp_EN,
 ETH := OwnIp_ETH);

OwnIp_DONE := OwnIp.DONE;
OwnIp_ERR := OwnIp.ERR;
OwnIp_ERNO := OwnIp.ERNO;
OwnIp_IP_ADR := OwnIp.IP_ADR;

ETHx_OWN_IP_INFO

The function block ETHx_OWN_IP_INFO outputs the IP setup of the Communication Module
installed at interface specified by input ETH.

Prior to commissioning an Ethernet interface, it has to be configured using Automation Builder
software. Using the function block ETHx_OWN_IP_INFO, information about the IP setup of the
device at ETH can be read. If no Ethernet interface is installed at input ETH, the corresponding
error is generated and output at ERR and ERNO.

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1257

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

ETH BYTE
 (Ethernet
index number)

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1258

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD Empty string - -

IP_ADR displays the IP address which should be set at the CPU / Communication Module.
Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
DWORD Empty string - -

Output NETMASK displays the own netmask. Each byte in NETMASK represents one octet of
the address.

Netmask 255.255.255.0
NETMASK (hex) 16#FFFFFF00
NETMASK (dec) 4294967040

Example

Data type Default value Range Unit
DWORD Empty string - -

Output GATEWAY displays the IP address of the gateway. Each byte in GATEWAY represents
one octet of the address.

IP address 192.168.0.1
IP_ADR (hex) 16#C0A80001
IP_ADR (dec) 3232235521

Example

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output BOOTP indicates whether the BOOTP service is activated for the Communication
Module.

ERR

ERNO

IP_ADR

NETMASK

GATEWAY

BOOTP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1259

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DHCP indicates whether the DHCP service is activated for the Communication Module.

Function call in ST
OwnIPInfo(EN := OwnIPInfo_EN,
 ETH := OwnIPInfo_ETH);

OwnIPInfo_DONE := OwnIPInfo.DONE;
OwnIPInfo_ERR := OwnIPInfo.ERR;
OwnIPInfo_ERNO := OwnIPInfo.ERNO;
OwnIPInfo_IP_ADR := OwnIPInfo.IP_ADR;
OwnIPInfo_NETMASK := OwnIPInfo.NETMASK;
OwnIPInfo_GATEWAY := OwnIPInfo.GATEWAY;
OwnIPInfo_BOOTP := OwnIPInfo.BOOTP;
OwnIPInfo_DHCP := OwnIPInfo.DHCP;

ETHx_OWN_IP_SET

Function block ETH_OWN_IP_SET is used to set
● IP address
● Subnet mask
● Gateway and
● some other parameters
at the Ethernet interface installed at input ETH.

The new IP configuration data will be available after the next reboot of the
CPU / Communication module. Use input REBOOT=TRUE to restart the CPU /
Communication Module immediately after changing the IP configuration data.

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

DHCP

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1260

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Data type Default value Range Unit
DWORD Empty string - -

IP_ADR displays the IP address which should be set at the CPU / Communication Module.
Each byte in IP_ADR represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

EN

ETH BYTE
 (Ethernet
index number)

IP_ADR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1261

Data type Default value Range Unit
DWORD Empty string - -

At input NETMASK, the subnet mask which should be set at the CPU / Communication Module
is specified. Each byte in NETMASK represents one octet of the address.

Netmask 255.255.255.0
NETMASK (hex) 16#FFFFFF00
NETMASK (dec) 4294967040

Example

Data type Default value Range Unit
DWORD Empty string - -

At input GATEWAY, the default gateway which should be set at the CPU / Communication
Module is specified. Each byte in GATEWAY represents one octet of the address.

IP address 192.168.0.1
IP_ADR (hex) 16#C0A80001
IP_ADR (dec) 3232235521

Example

Data type Default value Range Unit
DWORD Empty string - -

Output GATEWAY displays the IP address of the gateway. Each byte in GATEWAY represents
one octet of the address.

IP address 192.168.0.1
IP_ADR (hex) 16#C0A80001
IP_ADR (dec) 3232235521

Example

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output BOOTP indicates whether the BOOTP service is activated for the Communication
Module.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DHCP indicates whether the DHCP service is activated for the Communication Module.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

A TRUE signal at input REBOOT restarts the CPU / Communication Module after changing the
IP settings.

NETMASK

GATEWAY

GATEWAY

BOOTP

DHCP

REBOOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1262

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
OwnIPSet (EN := OwnIPSet_EN,
 ETH := OwnIPSet_ETH,
 IP_ADR := OwnIPSet_IP_ADR,
 NETMASK := OwnIPSet_NETMASK,
 GATEWAY := OwnIPSet_GATEWAY,
 BOOTP := OwnIPSet_BOOTP,
 DHCP := OwnIPSet_DHCP,
 REBOOT := OwnIPSet_REBOOT);

OwnIPSet_DONE := OwnIPSet.DONE;
OwnIPSet_ERR := OwnIPSet.ERR;
OwnIPSet_ERNO := OwnIPSet.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1263

ETHx_SMTP_EMAIL_SEND

The function block ETHx_SMTP_EMAIL_SEND uses a user-specified SMTP server to deliver
an email to given mailboxes.

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type: ETH_EMAIL_DATA_TYPE (slot)
Input MAIL_INFO provides all necessary data to send an email via the data structure
ETH_EMAIL_DATA_TYPE.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

EN

MAIL_INFO

ETH BYTE
 (Ethernet
index number)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1264

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1265

Function call in ST
SMTPEmailSend (EN := SMTPEmailSend_EN,
 ETH := SMTPEmailSend_ETH,
 MAIL_INFO := SMTPEmailSend_MAIL_INFO)

SMTPEmailSend_DONE := SMTPEmailSend.DONE;
SMTPEmailSend_ERR := SMTPEmailSend.ERR;
SMTPEmailSend_ERNO := SMTPEmailSend.ERNO;

ETHx_UDP_INFO

The function block ETHx_UDP_INFO reads the status information of the UDP/IP processing.

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1266

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

EN

ETH BYTE
 (Ethernet
index number)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1267

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_BY displays the filling level of the receive buffer in bytes.

Data type Default value Range Unit
WORD - - -

DONE

ERR

ERNO

LEVR_BY

LEVR_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1268

As long as EN = TRUE, output LEVR_DS displays the filling level of the receive buffer in data
sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSH_BY displays the filling level of the high priority send
buffer in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSH_DS displays the filling level of the high priority send
buffer in data sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSL_BY displays the filling level of the low priority send buffer
in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSL_DS displays the filling level of the low priority send buffer
in data sets.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVSTO_DS displays the filling level of the timeout buffer in
data sets.

Data type Default value Range Unit
DWORD - - -

NUMR_BC outputs the number of broadcasts (data packets to all stations) which were received
by this station.

Data type Default value Range Unit
DWORD Empty string - -

At output NUMR_REJ (number of receipts rejected), the number of data sets is displayed which
were discarded during reception due to a full receive buffer. Data sets are only discarded if this
is set accordingly within the configuration of the UDP/IP processing.

Data type Default value Range Unit
DWORD - - -

LEVSH_BY

LEVSH_DS

LEVSL_BY

LEVSL_DS

LEVSTO_DS

NUMR_BC

NUMR_REJ

NUMR_INV

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1269

NUMR_INV outputs the number of telegrams which were received faulty by this station.

Function call in ST
UDPInfo (EN := UDPInfo_EN,
 ETH := UDPInfo_ETH)

UDPInfo_DONE := UDPInfo.DONE;
UDPInfo_ERR := UDPInfo.ERR;
UDPInfo_ERNO := UDPInfo.ERNO;
UDPInfo_LEVR_BY := UDPInfo.LEVR_BY;
UDPInfo_LEVR_DS := UDPInfo.LEVR_DS;
UDPInfo_LEVSH_BY := UDPInfo.LEVSH_BY;
UDPInfo_LEVSH_DS := UDPInfo.LEVSH_DS;
UDPInfo_LEVSL_BY := UDPInfo.LEVSL_BY;
UDPInfo_LEVSL_DS := UDPInfo.LEVSL_DS;
UDPInfo_LEVSTO_DS := UDPInfo.LEVSTO_DS;
UDPInfo_NUMR_BC := UDPInfo.NUMR_BC;
UDPInfo_NUMR_REJ := UDPInfo.NUMR_REJ;
UDPInfo_NUMR_OWR := UDPInfo.NUMR_OWR;
UDPInfo_NUMR_INV := UDPInfo.NUMR_INV;

ETHx_UDP_REC

The ETHx_UDP_REC function block reads the next data record from the UDP/IP receive buffer
and stores the user data to the configured memory area.

The operating system reads the received UDP/IP data packets from the Ethernet interface and
stores them in the receive buffer. The buffer size is determined using the PLC configuration. The
data packets are stored with variable lengths. For example, a data packet consisting of 16 bytes
of user data occupies exactly 22 bytes in the receive buffer (4 bytes for the IP address of the
sending device, 2 bytes for the packet length and 16 bytes of user data).
Using the ETHx_UDP_REC function block, exactly one data packet is read. The user data
are stored in the configured memory area (DATA). The address of the sending device and
the data packet length are supplied at the outputs IP_ADR_REM and LEN. DONE = TRUE
and ERR = FALSE indicate that the reading process was successful. If an error was detected
during Function Block processing, the error is additionally indicated at the outputs ERR and
ERNO. Furthermore, the function block provides information about the receive buffer filling level
displayed in bytes (LEVR_BY) and data records (LEVR_DS).

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1270

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
The address specified at DATA has to belong to a variable of the type ARRAY or STRUCT.

EN

ETH BYTE
 (Ethernet
index number)

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1271

Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output IP_ADR_REM (IP address remote) displays the IP address of the sending device which
transmitted the received data package. Each byte in IP_ADR_REM represents one octet of the
address.

DONE

ERR

ERNO

IP_ADR_REM

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1272

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
WORD - - -

Output LEN (length) displays the length of the received data package in bytes.

Data type Default value Range Unit
WORD - - -

Output LEV_BY displays the filling level of the receive buffer in bytes. The displayed value is
updated as long as EN is TRUE and applies to the input values read with the rising edge at
input EN.
One data packet occupies output LEN + 6 bytes in the receive buffer (4 bytes for the NODE ID
of the sending device, 2 bytes for the specification of the length).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

Function call in ST
UDPRec (EN := UDPRec_EN,
 ETH := UDPRec_ETH,
 DATA := ADR(UDPRec_DATA));

UDPRec_DONE := UDPRec.DONE;
UDPRec_ERR := UDPRec.ERR;
UDPRec_ERNO := UDPRec.ERNO;
UDPRec_IP_ADR_REM := UDPRec.IP_ADR_REM;
UDPRec_LEN := UDPRec.LEN;
UDPRec_LEVR_BY := UDPRec.LEV_BY;
UDPRec_LEVR_DS := UDPRec.LEV_DS;

LEN

LEV_BY

LEV_DS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1273

ETHx_UDP_SEND

The function block ETHx_UDP_SEND is used to transmit data packets via the UDP/IP protocol
of the Ethernet interface. The specified packages are stored in the transmit buffer selected by
input PRIO. From there, the operating system hands over the data packets to the Ethernet
interface in order to transmit them to the target address specified at input IP_ADR. The transmit
buffer size is defined by the PLC configuration. Using input TOUT, the timeout period can be
specified. If TOUT <> 0, the UDP/IP data exchange is automatically performed with receive
acknowledgement. If TOUT = 0, no acknowledgement is expected. Output DONE indicates that
the specified data packet has been stored in the transmit buffer or that an error occurred during
Function Block processing. If an error was detected during Function Block processing, the error
is additionally indicated at the outputs ERR and ERNO. In case of an error, the data packet has
to be transmitted again.
The function block ETHx_UDP_SEND cannot store data packets to the transmit buffer until the
Ethernet UDP/IP processing is set in the controller configuration.

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1274

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Input PRIO (priority) is used to specify the transmit priority of the data packet.
The following applies:
If PRIO = FALSE the specified data packet has low priority. Thus, it is stored in the low priority
transmit buffer. All outputs refer to this buffer.
If PRIO = TRUE the specified data packet has high priority. Thus, it is stored in the high priority
transmit buffer. All outputs refer to this buffer.

Data type Default value Range Unit
WORD - - -

Using input TOUT (timeout), the timeout period can be specified. If TOUT <> 0, the UDP/IP data
exchange is automatically performed with receive acknowledgement. If a data packet cannot be
transmitted within this period (no acknowledge telegram is received), transmission is aborted
and the package is lost.
In this case, some distinctive bytes of the data packet (see Ä Chapter 1.6.5.3.7.1 “Contents of
the UDP protocol configuration” on page 6185) are stored to the timeout buffer and can then be
read using the function block ETH_UDP_STO.
If TOUT = 0, no acknowledgement is expected.
The following applies:
TOUT = 0:
Data exchange without receive acknowledgement. No data are written to the timeout buffer.
TOUT <> 0:
Data exchange with receive acknowledgement. Each transmitted data record is acknowledged
by the recipient. If no acknowledge telegram is received within the set timeout period (in ms),
the data are written to the timeout buffer.

ETH BYTE
 (Ethernet
index number)

PRIO

TOUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1275

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
The address specified at DATA has to belong to a variable of the type ARRAY or STRUCT.

Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Data type Default value Range Unit
WORD - 1...1464 -

At input LEN (length), the number of user data bytes is specified for the specified package.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DATA

LEN

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1276

Data type Default value Range Unit
WORD - - -

Output LEV_BY (level in bytes) displays the filling level (in bytes) of the transmit buffer. The
displayed value is updated as long as EN is TRUE and applies to the input values read with the
rising edge at input EN.
One data packet occupies output LEN + 8 bytes in the transmit buffer (4 bytes for the IP
address of the recipient, 2 bytes for the specification of the length and 2 bytes for the timeout
period).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level (in data records) of the transmit
buffer. The displayed value is updated as long as EN is TRUE and applies to the input values
read with the rising edge at input EN.

Function call in ST
UDPSend (EN := UDPSend_EN,
 ETH := UDPSend_ETH,
 IP_ADR := UDPSend_IP_ADR,
 PRIO := UDPSend_PRIO,
 TOUT := UDPSend_TOUT,
 DATA := ADR(UDPSend_DATA),
 LEN := UDPSend_LEN);

UDPSend_DONE := UDPSend.DONE;
UDPSend_ERR := UDPSend.ERR;
UDPSend_ERNO := UDPSend.ERNO;
UDPSend_LEV_BY := UDPSend.LEV_BY;
UDPSend_LEV_DS := UDPSend.LEV_DS;

ETHx_UDP_STD_INFO

The function block ETHx_UDP_STD_INFO reads the status information of the UDP/IP pro-
cessing.

LEV_BY

LEV_DS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1277

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

EN

ETH BYTE
 (Ethernet
index number)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1278

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_BY displays the filling level of the receive buffer in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVR_DS displays the filling level of the receive buffer in data
sets.

DONE

ERR

ERNO

LEVR_BY

LEVR_DS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1279

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVS_BY (level of all send buffers in bytes) displays the filling
level of all send buffers in bytes.

Data type Default value Range Unit
WORD - - -

As long as EN = TRUE, output LEVS_DS (level of all send buffers in data sets) displays the
filling level of all send buffers in data sets.

Data type Default value Range Unit
DWORD - - -

NUMR_BC outputs the number of broadcasts (data packets to all stations) which were received
by this station.

Data type Default value Range Unit
DWORD Empty string - -

At output NUMR_REJ (number of receipts rejected), the number of data sets is displayed which
were discarded during reception due to a full receive buffer. Data sets are only discarded if this
is set accordingly within the configuration of the UDP/IP processing.

Data type Default value Range Unit
DWORD Empty string - -

At output NUMR_OWR (number of receipts overwritten), the number of data sets is displayed
which were overwritten during reception due to a full receive buffer. Data sets are only over-
written in the receive buffer, if this is set accordingly within the configuration of the UDP/IP
processing.

Data type Default value Range Unit
DWORD - - -

NUMR_INV outputs the number of telegrams which were received faulty by this station.

Function call in ST
UDPStd Info (EN := UDPStdInfo_EN,
 ETH := UDPStdInfo_ETH);

UDPStdInfo_DONE := UDPStdInfo.DONE;
UDPStdInfo_ERR := UDPStdInfo.ERR;
UDPStdInfo_ERNO := UDPStdInfo.ERNO;
UDPStdInfo_LEVR_BY := UDPStdInfo.LEVR_BY;
UDPStdInfo_LEVR_DS := UDPStdInfo.LEVR_DS;
UDPStdInfo_LEVS_BY := UDPStdInfo.LEVS_BY;

LEVS_BY

LEVS_DS

NUMR_BC

NUMR_REJ

NUMR_OWR

NUMR_INV

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1280

UDPStdInfo_LEVS_DS := UDPStdInfo.LEVS_DS;
UDPStdInfo_NUMR_BC := UDPStdInfo.NUMR_BC;
UDPStdInfo_NUMR_REJ := UDPStdInfo.NUMR_REJ;
UDPStdInfo_NUMR_OWR := UDPStdInfo.NUMR_OWR;
UDPStdInfo_NUMR_INV := UDPStdInfo.NUMR_INV;

ETHx_UDP_STD_REC

The ETHx_UDP_STD_REC function block reads the next data record from the UDP/IP receive
buffer and stores the user data to the configured memory area.

The operating system reads the received UDP/IP data packets from the Ethernet Communica-
tion Module and stores them in the receive buffer. The buffer size is determined using the PLC
configuration. The data packets are stored with variable lengths. For example, a data packet
consisting of 16 bytes of user data occupies exactly 22 bytes in the receive buffer (4 bytes for
the IP address of the sending device, 2 bytes for the packet length and 16 bytes of user data).
Using the ETHx_UDP_STD_REC function block, exactly one data packet is read. The user
data are stored in the configured memory area (DATA). The address of the sending device
and the data packet length are supplied at the outputs IP_ADR_REM, PORT_REM and LEN.
DONE = TRUE and ERR = FALSE indicate that the reading process was successful. If an error
was detected during Function Block processing, the error is indicated at the outputs ERR and
ERNO. Furthermore, the function block provides information about the receive buffer filling level
displayed in bytes (LEV_BY) and data records (LEV_DS).

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1281

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Data type Default value Range Unit
BYTE - - -

Index of the standard UDP/IP connection corresponding to the PLC configuration, starting with
0. The function block only works on the connection that was selected by this input, and with
the parameters set in the PLC configuration, e.g. port, buffer size, behavior in case of buffer
overflow etc.

Data type Default value Range Unit
DWORD - - -

EN

ETH BYTE
 (Ethernet
index number)

INDEX

DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1282

Input DATA is used to specify the address of the variable to which the user data shall be copied.
The address specified at DATA has to belong to a variable of the type ARRAY or STRUCT.

Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output IP_ADR_REM (IP address remote) displays the IP address of the sending device which
transmitted the received data package. Each byte in IP_ADR_REM represents one octet of the
address.

DONE

ERR

ERNO

IP_ADR_REM

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1283

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
DWORD - - -

Output PORT_ADR_REM (remote port address) displays the UDP remote port address of the
sending device which transmitted the received data package.

Data type Default value Range Unit
WORD - - -

Output LEN (length) displays the length of the received data package in bytes.

Data type Default value Range Unit
WORD - - -

Output LEV_BY displays the filling level of the receive buffer in bytes. The displayed value is
updated as long as EN is TRUE and applies to the input values read with the rising edge at
input EN.
One data packet occupies output LEN + 6 bytes in the receive buffer (4 bytes for the NODE ID
of the sending device, 2 bytes for the specification of the length).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

Function call in ST
UDPStdRec (EN := UDPStdRec_EN,
 ETH := UDPStdRec_ETH,
 INDEX := UDPStdRec_INDEX,
 DATA := ADR(UDPStdRec_DATA));

UDPStdRec_DONE := UDPStdRec.DONE;
UDPStdRec_ERR := UDPStdRec.ERR;
UDPStdRec_ERNO := UDPStdRec.ERNO;
UDPStdRec_IP_ADR_REM := UDPStdRec.IP_ADR_REM;
UDPStdRec_PORT_REM := UDPStdRec.PORT_REM;
UDPStdRec_LEN := UDPStdRec.LEN;
UDPStdRec_LEVR_BY := UDPStdRec.LEV_BY;
UDPStdRec_LEVR_DS := UDPStdRec.LEV_DS;

PORT_
ADR_REM

LEN

LEV_BY

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1284

ETHx_UDP_STD_SEND

The function block ETHx_UDP_STD_SEND is used to transmit data packets via the standard
UDP/IP protocol of the Ethernet interface. The specified packages are stored in the transmit
buffer. From there, the operating system hands over the data packets to the Ethernet interface
in order to transmit them to the target address specified at input IP_ADR_REM. The transmit
buffer size is defined by the PLC configuration. Output DONE indicates that the specified data
packet has been stored in the transmit buffer or that an error occurred during function block
processing. If an error was detected during function block processing, the error is additionally
indicated at the outputs ERR and ERNO. In case of an error, the data packet has to be
transmitted again.
The function block ETHx_UDP_STD_SEND cannot store data packets to the transmit buffer
until the Ethernet UDP/IP processing is set in the controller configuration (see also the PLC
configuration of the standard UDP/IP processing).

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1285

Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

Data type Default value Range Unit
BYTE - - -

Index of the standard UDP/IP connection corresponding to the PLC configuration, starting with
0. The function block only works on the connection that was selected by this input, and with
the parameters set in the PLC configuration, e.g. port, buffer size, behavior in case of buffer
overflow etc.

Data type Default value Range Unit
DWORD - - -

At this input, the IP address of the recipient is specified. Each byte in IP_ADR_REM (IP address
remote) represents one octet of the address.

IP address 192.15.24.2
IP_ADR (hex) 16#C00F1802
IP_ADR (dec) 3222214658

Example

Data type Default value Range Unit
WORD - - -

The target port of the receiver is specified here (port to send to).

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
The address specified at DATA has to belong to a variable of the type ARRAY or STRUCT.

ETH BYTE
 (Ethernet
index number)

INDEX

IP_ADR_REM

PORT

DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1286

Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Data type Default value Range Unit
WORD - 1...1464 -

At input LEN (length), the number of user data bytes is specified for the specified package.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

LEN

DONE

ERR

ERNO

LEV_BY

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1287

Output LEV_BY (level in bytes) displays the filling level (in bytes) of the transmit buffer. The
displayed value is updated as long as EN is TRUE and applies to the input values read with the
rising edge at input EN.
One data packet occupies output LEN + 8 bytes in the transmit buffer (4 bytes for the IP
address of the recipient, 2 bytes for the specification of the length and 2 bytes for the timeout
period).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level (in data records) of the transmit
buffer. The displayed value is updated as long as EN is TRUE and applies to the input values
read with the rising edge at input EN.

Function call in ST
UDPStdSend (EN := UDPStdSend_EN,
 ETH := UDPStdSend_ETH,
 INDEX := UDPStdSend_INDEX,
 IP_ADR := UDPStdSend_IP_ADR,
 PORT := UDPStdSend_PORT,
 DATA := ADR(UDPStdSend_DATA),
 LEN := UDPStdSend_LEN);

UDPStdSend_DONE := UDPStdSend.DONE;
UDPStdSend_ERR := UDPStdSend.ERR;
UDPStdSend_ERNO := UDPStdSend.ERNO;
UDPStdSend_LEV_BY := UDPStdSend.LEV_BY;

ETHx_UDP_STO

The ETHx_UDP_STO function block reads lost data packets from the timeout data buffer and
stores the user data to the specified memory area.

During the transmission of a data packet, the success of the transmission is monitored by an
adjustable timeout period. When this time is exceeded, distinctive information of the data packet
are stored in the timeout buffer.
These are:
● the IP address of the receiver (4 bytes)
● header data of the data set (the number is specified with the controller configuration of the

UDP/IP processing).

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1288

The buffer length can as well be set using the controller configuration of the UDP/IP processing.
The buffer is constructed as a circular buffer (FIFO). If the buffer is full, the oldest entry in the
buffer is overwritten. When a rising edge occurs at input EN, the ETHx_UDP_STO function
block verifies whether a data packet is stored in the buffer and makes the information mentioned
above available for the user (starting at the variable specified at input DATA).
The function block ETHx_UDP_STO cannot be used until the Ethernet UDP/IP processing
is set in the controller configuration. Additionally, input TOUT of the transmit function block
ETHx_UDP_SEND must be <> 0.

Available as of runtime system: V2.4

Included in library: Ethernet_AC500_V10.lib

Type Function block with historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input ETH, the Ethernet index number is specified. The assignment is as follows:

1 Ethernet interface at onboard Ethernet 1

2 Ethernet interface at onboard Ethernet 2

11 Ethernet interface at Communication Module slot 1 *)

21 Ethernet interface at Communication Module slot 2 *)

31 Ethernet interface at Communication Module slot 3 *)

41 Ethernet interface at Communication Module slot 4 *)

51 Ethernet interface at Communication Module slot 5 *)

61 Ethernet interface at Communication Module slot 6 *)

*) The Communication Modules are serially numbered from right to left, starting with module
number 1.

EN

ETH BYTE
 (Ethernet
index number)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1289

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable to which the user data shall be copied.
The address specified at DATA has to belong to a variable of the type ARRAY or STRUCT.

Set the variable size to the maximum expected amount of data in order to avoid
overlapping of memory areas.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output LEV_DS (level in data sets) displays the filling level of the receive buffer in data records.
The displayed value is updated as long as EN is TRUE and applies to the input values read with
the rising edge at input EN.

DATA

DONE

ERR

ERNO

LEV_DS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1290

Function call in ST
UDPStdSto (EN := UDPStdSto_EN,
 ETH := UDPStdSto_ETH,
 DATA := ADR(UDPStdSto_DATA));

UDPStdSto_DONE := UDPStdSto.DONE;
UDPStdSto_ERR := UDPStdSto.ERR;
UDPStdSto_ERNO := UDPStdSto.ERNO;
UDPStdSto_LEV_DS := UDPStdSto.LEV_DS;

IP_ADR_DWORD_TO_STRING

The function block IP_ADR_DWORD_TO_STRING converts an IP address given in the
DWORD format into an IP address in the STRING format.

The IP address of an Ethernet device can be represented in different ways. One of
the best known formats of an IP address is the STRING format, composed of four
numbers between 0 and 255, separated by dots (e.g. 192.15.24.2). The function block
IP_ADR_DWORD_TO_STRING converts an IP address given in the DWORD format into an
IP address in the STRING format.

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function

Input description

Data type Default value Range Unit
DWORD - - -

At input IP_ADR, the IP address of the host to be pinged is specified.

Output description
The output of the function block IP_ADR_DWORD_TO_STRING outputs the converted IP
address in STRING(16) format.

The following value is applied at function block input IP_ADR:
IP_ADR_WORD: (hex) 16#C00F1802 or
The converted value is displayed at the function block output:
IP_ADR_WORD: (dec) 3222214658
IP_ADR_STRING: '192.15.24.2'

Example:

IP_ADR

STRING(16)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1291

Function call in ST
IP_ADR_STRING := IP_ADR_DWORD_TO_STRING(IP_ADR_DWORD);

IP_ADR_STRING_TO_DWORD

The function block IP_ADR_STRING_TO_DWORD converts an IP address given in the
STRING format into an IP address in the DWORD format.

The IP address of an Ethernet device can be represented in different ways. One of
the best known formats of an IP address is the STRING format, composed of four
numbers between 0 and 255, separated by dots (e.g. 192.15.24.2). The function block
IP_ADR_STRING_TO_DWORD converts an IP address given in the STRING format into an
IP address in the DWORD format.

Available as of runtime system: V1.0

Included in library: Ethernet_AC500_V10.lib

Type Function

Input description
At input IP_ADR, the IP address in STRING(16) format is specified.

Output description
The output of the function block IP_ADR_STRING_TO_DWORD outputs the converted IP
address in DWORD format.

The following value is applied at function block input IP_ADR:
IP_ADR_STRING: '192.15.24.2'
The converted value is displayed at the function block output:
IP_ADR_WORD: (hex) 16#C00F1802 or
IP_ADR_WORD: (dec) 3222214658

Example:

Function call in ST
IP_ADR_DWORD := IP_ADR_STRING_TO_DWORD(IP_ADR_STRING);

IP_ADR

(Output)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1292

1.5.4.13.2 Structures
ETH_EMAIL_DATA_TYPE

This structure is used to supply the function block ETH_SMTP_EMAIL_SEND with all necessary
data to send an email via the SMTP server configured in the PLC.
The addresses and textual content of the email need to be created and defined by the user.
Only references (POINTER TO STRING) are used in the structure. The contents of this struc-
ture and the memory pointed to may not be changed during operation of the function block
ETH_SMTP_EMAIL_SEND.
At least one valid TO address is required for the function block ETH_SMTP_EMAIL_SEND to
work. Even if using CC and/or BCC at last one TO address must be defined.

Type and the content need to be created and defined by the user.

Available as of runtime
system:

V2.1 Remark:

Included in library: Ethernet_AC500_V10.lib

Visible variable Type Default value Description

psTOAddr POINTER TO
STRING(255)

0 Pointer to a
string containing
TO address(es) sepa-
rated by semicolon

psCCAddr POINTER TO
STRING(255)

0 Pointer to a
string containing
CC address(es) sepa-
rated by semicolon

psBCCAddr POINTER TO
STRING(255)

0 Pointer to a
string containing
BCC address(es) sep-
arated by semicolon

apsBody ARRAY[0..19] OF
POINTER TO
STRING(255)

0 Up to 20 pointers con-
taining text lines for
the email body

atsFiles ARRAY[0..9] OF
ETH_EMAIL_FILE_R
EF_TYPE

0 Up to 10 file attach-
ments to the email via
the ETH_EMAIL_FILE
_REF_TYPE structure

byPrio BYTE 0 Priority 0=normal,
1=very high, 2=high,
3=normal, 4=low,
5=very low

sSubject STRING(255) ’’ The subject of the
email

ETH_EMAIL_FILE_REF_TYPE
This structure is used to supply the function block ETH_SMTP_EMAIL_SEND with
a file attachment. The ETH_EMAIL_DATA_TYPE structure holds an array of 10
ETH_EMAIL_FILE_REF_TYPE structures, so up to 10 files can be attached to each email.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1293

The file name of an attachment can be different from the file name in the PLC's filesystem. The
variable psNameInMail only defines the name of the file inside the email, while psFilePath must
contain the full path including name of the file to be attached.

Type and the content need to be created and defined by the user.

Available as of runtime
system:

V2.1 Remark:

Included in library: Ethernet_AC500_V10.lib

Visible variable Type Default value Description

psNameInMail POINTER TO
STRING(255)

0 Pointer to a string
containing a name to
be used for the file in
the email. (Can differ
from the actual file
name in the PLC.)

psFilePath POINTER TO
STRING(255)

0 Pointer to a string
containing the full
path to the file to be
attached including the
file name

ETH_MOD_FCT22_TYPE
This structure is used to handle the Modbus function 22 with the function block
ETH_MOD_MAST Ä Chapter 1.5.4.13.1.4 “ETH_MOD_MAST” on page 1202. The structure
has to be used at the DATA input with an ADR(instance_of_struct) operator.

Modbus function 22 could only be used with CPUs with onboard Ethernet.

Type and the content need to be created and defined by the user.

Available as of runtime
system:

V2.2 Remark:

Included in library: Ethernet_AC500_V10.lib

Visible variable Type Default value Description

wAND_Mask WORD 0 AND mask

wOR_Mask WORD 0 OR mask

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1294

ETH_MOD_FCT23_TYPE
This structure is used to handle the Modbus function 23 with the function block
ETH_MOD_MAST Ä Chapter 1.5.4.13.1.4 “ETH_MOD_MAST” on page 1202. The structure
has to be used at the DATA input with an ADR(instance_of_struct) operator.

Modbus function 23 could only be used with CPUs with onboard Ethernet.

Type and the content need to be created and defined by the user.

Available as of runtime
system:

V2.2 Remark:

Included in library: Ethernet_AC500_V10.lib

Visible variable Type Default value Description

pByDataWrite POINTER TO BYTE 0 Pointer to buffer con-
taining data to write.
see FCT 16 input
DATA

pByDataRead POINTER TO BYTE 0 Pointer to buffer to
store data to read.
see FCT 03 input
DATA

wDataAddressRead WORD 0 Address of the data to
be read. see FCT 16
input ADDR

wNumDataUnitsRead WORD 0 Number of data units
to be read. see FCT
16 input NB

1.5.4.14 EtherCAT library
Library file name: EtherCAT_AC500_V13.lib
The library EtherCAT_AC500_V13.lib is intended to be used with the EtherCAT master commu-
nication module. Beside the cyclic IO communication, which is configured in the EtherCAT
master configuration and controlled by the runtime system, additional features are implemented
in the EtherCAT master. This library provides the possibility to use these features within a PLC
application. With the contained function blocks the following functionality can be realized:
● reading of diagnosis information
● reading and writing of service data objects (SDOs)
● reading of handshake error counters of synchronous IO update
Additional system libraries are required by this library:
● SysExt_AC500_V10.lib
● SysLibTime.lib
The EtherCAT library and the required system libraries will be automatically added to the
PLC application when an EtherCAT master communication module is configured in the PLC
configuration.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1295

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

1.5.4.14.1 Function blocks
ECAT_BUS_DIAG

Parameter Value
Included in library EtherCAT_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group DIAG

The function block ECAT_BUS_DIAG is used to read the status and to return status information
for each slave as well as the number of configured slaves and the number of active slaves of an
EtherCAT Master.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1296

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
UINT 0 1 ... 65535 byte

LEN (length) tells the function block how large the buffer in SLV_STATE is. For each slave 4
bytes are needed.

Data type Default value Range Unit
POINTER TO ARRAY
OF BYTE

0 - -

The address of the buffer is required in order to write the state of each slave Ä “STATE”
on page 1310. The size of the buffer is directly related to the number of slaves. A byte for
each slave is needed. In case the buffer is too small, an error will be returned. If the value of
LEN does not reflect correctly the size of the buffer, this might be overrun with unpredictable
consequences.

A master is configured with 20 slaves.
LEN and SLV_STATE should be configured as follows.
ECATBusDiag_LEN := 20;
ECATBusDiag_SLV_STATE: ARRAY [1..20] of BYTE;

Example

Output description

SLOT

LEN

SLV_STATE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1297

Data type Default value Range Unit
BOOL - - -

Output indicates the processing state of the function block. After completion or abortion of
processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be
considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error
number can be read at output ERNO.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD 0 0-256 -

The variable NUM_ACT_SLV (number of active slaves) contains the number of active slaves.
Active slaves exchange cyclic data with the master.

Data type Default value Range Unit
DWORD 0 0-256 -

NUM_CONF_SLV (number of configured slaves) contains the number of configured slaves
evaluated in the configuration file.

Function call in ST
ECAT_BUS_DIAG(
EN := ECATBusDiag_EN,
SLOT := ECATBusDiag_SLOT,
LEN := ECATBusDiag_LEN,
SLV_STATE:=ADR(ECATBusDiag_SLV_STATE);

ECATBusDiag_DONE := ECAT_BUS_DIAG.DONE;
ECATBusDiag_ERR := ECAT_BUS_DIAG.ERR;
ECATBusDiag_ERNO := ECAT_BUS_DIAG.ERNO;
ECATBusDiag_NUM_ACT_SLV := ECAT_BUS_DIAG.NUM_ACT_SLV;
ECATBusDiag_NUM_CONF_SLV:= ECAT_BUS_DIAG.NUM_CONF_SLV;

DONE

ERR

ERNO

NUM_ACT_SLV

NUM_CONF_
SLV

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1298

ECAT_COE_READ

Parameter Value
Included in library EtherCAT_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group CoE

The function block ECAT_COE_READ is used to read SD objects (SDOs) from a slave.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1299

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 1 ... 4294967295 -

NODE represents the EtherCAT address of the slave.

Data type Default value Range Unit
WORD 0 1 ... 65535 (depending

on the EtherCAT
slave)

-

Index of the object which should be read/written.

Data type Default value Range Unit
BYTE 0 1 ... 255 (depending

on the EtherCAT
slave)

-

Subindex of the object, which should be read/written.

Data type Default value Range Unit
UINT 0 1 ... 65535 byte

LEN (length) tells the function block how large the buffer in SLV_STATE is. For each slave 4
bytes are needed.

Data type Default value Range Unit
POINTER TO ARRAY
OF BYTE

0 - -

Address of the data buffer where the value of the object (Index: subindex) should be read. The
needed buffer depends on the queried object.

Data type Default value Range Unit
UINT 0 0-65535 ms

Timeout constraint for the function block. If this is exceeded, the function block returns with ERR
set to TRUE.

SLOT

NODE

IDX (index)

SUBIDX

LEN

DATA

TOUT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1300

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD 0 depending on the

EtherCAT slave
-

Output returns how many bytes were written into the buffer.

Function call in ST
ECAT_COE_READ(
EN := ECATCoeRead_EN,
SLOT := ECATCoeRead_SLOT,
LEN := ECATCoeRead_LEN,
NODE :=ECATCoeRead_NODE,
IDX :=ECATCoeRead_IDX,
SUBIDX:=ECATCoeRead_SUBIDX,
LEN :=ECATCoeRead_LEN,

DONE

ERR

ERNO

NUM_BYTE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1301

DATA :=ADR(ECATCoeRead_DATA),
TOUT :=ECATCoeRead_TOUT);

ECATCoeRead_DONE := ECAT_COE_READ.DONE;
ECATCoeRead_ERR := ECAT_COE_READ.ERR;
ECATCoeRead_ERNO := ECAT_COE_READ.ERNO;
ECATCoeRead_NUM_BYTE:= ECAT_COE_READ.NUM_BYTE;

ECAT_COE_WRITE

Parameter Value
Included in library EtherCAT_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group CoE

ECAT_COE_WRITE writes a value to an SD Object in a slave. This object is identified with the
pair Index:Subindex.

Input description

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1302

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 1 ... 4294967295 -

NODE represents the EtherCAT address of the slave.

Data type Default value Range Unit
WORD 0 1 ... 65535 (depending

on the EtherCAT
slave)

-

Index of the object which should be read/written.

Data type Default value Range Unit
BYTE 0 1 ... 255 (depending

on the EtherCAT
slave)

-

Subindex of the object, which should be read/written.

Data type Default value Range Unit
UINT 0 1 ... 65535 byte

LEN (length) tells the function block how large the buffer in SLV_STATE is. For each slave 4
bytes are needed.

Data type Default value Range Unit
POINTER TO ARRAY
OF BYTE

0 - -

Address of the data buffer where the value of the object (Index: subindex) should be written.
The needed buffer depends on the queried object.

EN

SLOT

NODE

IDX (index)

SUBIDX

LEN

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1303

Data type Default value Range Unit
UINT 0 0-65535 ms

Timeout constraint for the function block. If this is exceeded, the function block returns with ERR
set to TRUE.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
ECAT_COE_WRITE(
EN := ECATCoeWrite_EN,
SLOT := ECATCoeWrite_SLOT,
NODE := ECATCoeWrite_NODE,
IDX := ECATCoeWrite_IDX,
SUBIDX := ECATCoeWrite_SUBIDX,

TOUT

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1304

LEN := ECATCoeWrite_LEN,
DATA := ADR(ECATCoeWrite_DATA),
TOUT := ECATCoeWrite_TOUT);

ECATCoeWrite_DONE := ECAT_COE_WRITE.DONE;
ECATCoeWrite_ERR := ECAT_COE_WRITE.ERR;
ECATCoeWrite_ERNO := ECAT_COE_WRITE.ERNO;

ECAT_GET_DCLK_DEVI

Parameter Value
Included in library EtherCAT_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group DIAG

ECAT_GET_DCLK_DEVI returns the distributed clock deviation for the EtherCAT master and
for each slave individually.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1305

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
UINT 0 1 ... 65535 byte

LEN (length) tells the function block how large the buffer in SLV_STATE is. For each slave 4
bytes are needed.

Data type Default value Range Unit
POINTER TO ARRAY
OF DINT

0 - -

The Input SLV_DEVI (slave deviation) provides the address of an Arrary of DINT where the
distributed clock deviation of each slave is written to.
Each Element of the array has the range -2147483647... 2147483647 in unit ns.
The required size of the array is calculated as number of configured EtherCAT slaves multiplied
with the size of DINT (4 bytes).
The size of the assigned array is provided at the Input LEN. If Input LEN is too small, an error
will be returned.
If the value of LEN does not match with the assigned array, it can be overwritten. This will cause
unexpected behavior.

A system with a master and 5 slaves is configured.
ECAT_DCLK_DEVI_LEN := 20;
ECAT_DCLK_DEVI_SLV_DEVI: ARRAY [1..5] of DINT;

Example

Output description

SLOT

LEN

SLV_DEVI

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1306

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DINT 0 -2147483647...21474

83647
ns

DCLK_DEVI (distributed clock deviation) shows the broadcast system time difference.

Data type Default value Range Unit
DWORD 0 1-255 -

NUM_SLV shows the number of slaves for which the master has an deviation. In case the
function block reports an insufficient buffer, the value of NUM_SLV has to be compared with the
provided LEN value.

Function call in ST
ECAT_GET_DCLK_DEVI(
EN := ECATGetDclkDevi_EN,
SLOT := ECATGetDclkDevi_SLOT,
LEN := ECATGetDclkDevi_LEN,
SLV_DEVI:=ADR(ECATGetDclkDevi_SLV_DEVI);

ECATGetDclkDevi_DONE := ECAT_GET_DCLK_DEVI.DONE;
ECATGetDclkDevi_ERR := ECAT_GET_DCLK_DEVI.ERR;
ECATGetDclkDevi_ERNO := ECAT_GET_DCLK_DEVI.ERNO;
ECATGetDclkDevi_DCLK_DEVI:= ECAT_GET_DCLK_DEVI.DCLK_DEVI;
ECATGetDclkDevi_NUM_SLV := ECAT_GET_DCLK_DEVI.NUM_SLV;

DONE

ERR

ERNO

DCLK_DEVI

NUM_SLV

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1307

ECAT_SLV_DIAG

Available as of runtime system V1.3.0

Included in library EtherCAT_AC500_V13.lib

Function block Type Function block with historical values

With the function block ECAT_SLV_DIAG status and diagnosis information of an EtherCAT
slave can be read.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1308

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 1 ... 4294967295 -

NODE represents the EtherCAT address of the slave.

Data type Default value Range Unit
BOOL FALSE FALSE, TRUE -

The Input DIAG_S500_FORMAT specifies the format of the diagnosis data which is provided in
the buffer DIAG_DATA.
When DIAG_S500_FORMAT is TRUE the diagnosis data is in S500 Format. Otherwise it is in
emergency data structure.

Data type Default value Range Unit
POINTER TO BYTE 0 - -

The Input DIAG_DATA provides the pointer to buffer where the received diagnosis data is
copied to.
The size of the provided buffer depends on the data structure of the diagnosis data which is
specified with the Input DIAG_S500_FORMAT.
When the Input DIAG_S500_FORMAT is TRUE the buffer must have a size of at least 25 bytes.
The diagnosis data has the data type Array [1 ... 5] OF DIAGDATA.
TYPE DIAG_DATA :(*Error format for S500 slaves*) STRUCT
ERR_CLASS : BYTE :=0; (*error class*)
SLAVE_NR : BYTE :=0; (*slave number*)
MODULE_NR : BYTE :=0; (*module number*)
CHANNEL_NR : BYTE :=0; (*channel number*)
ERROR_NR : BYTE :=0; (*error number*)
END_STRUCT
END_TYPE
When the Input DIAG_S500_FORMAT is FALSE the buffer must have a size of at least 40
bytes.
The diagnosis data has the data type Array [1..5] OF ETHERCAT_MASTER_SLV_EMER-
GENCY_T.
TYPE ETHERCAT_MASTER_SLV_EMERGENCY_T: STRUCT
usErrorCode: WORD :=0;(*error code*)
bErrorRegister: BYTE :=0;(*error register*)
abErrorData : ARRAY [0..4]of BYTE :=5(0);(*error data*)
END_STRUCT
END_TYPE
The buffer should not be smaller than the sizes given for each format. Otherwise it will be
overwritten and causes unexpected behavior.

SLOT

NODE

DIAG_S500_
FORMAT

DIAG_DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1309

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Table 77: Current slave state
Data type Default value Range Unit
BYTE 16#FF 01: INIT

02: PREOP
04: SAFEOP
08: OPERATIONAL
254: unknown
255: no response

-

Data type Default value Range Unit
STRING empty string - -

DONE

ERR

ERNO

STATE

SLV_NAME

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1310

Output SLV_NAME provides the current slave name.

Data type Default value Range Unit
BOOL FALSE FALSE, TRUE -

Output BUF_OFL (buffer overflow) indicated whether there was overflow of the internal diag-
nosis buffer. In this case emergency messages were lost.

Data type Default value Range Unit
BYTE 0 0 ... 5 -

Output NUM_ERR provides the number of elements (Diagnosis messages) contained within the
buffer DIAG_DATA.

NUM_ERR returns the value of 3 and DIAG_S500_FORMAT was TRUE. This means that the
first 3 elements of DIAG_DATA contain relevant information.

Example 1

A NUM_ERR of 4 and DIAG_S500_FORMAT was FALSE means that DIAG_DATA has 32
relevant bytes (8 per error).

Example 2

Function call in ST
ECAT_SLV_DIAG(
EN := ECATSlvDiag_EN,
SLOT := ECATSlvDiag_SLOT,
SLV := ECATSlvDiag_SLV,
DIAG_S500_FORMAT := ECATSlvDiag_DIAG_S500_FORMAT,
DIAG_DATA :=ADR(ECATSlvDiag_DIAG_DATA));

ECATSlvDiag_DONE := ECAT_SLV_DIAG.DONE;
ECATSlvDiag_ERR := ECAT_SLV_DIAG.ERR;
ECATSlvDiag_ERNO := ECAT_SLV_DIAG.ERNO;
ECATSlvDiag_SLV_NAME := ECAT_SLV_DIAG.SLV_NAME;
ECATSlvDiag_BUF_OFL := ECAT_SLV_DIAG.BUF_OFL;
ECATSlvDiag_NUM_ERR := ECAT_SLV_DIAG.NUM_ERR;

ECAT_STATE

BUF_OFL

NUM_ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1311

Available as of runtime system V1.3.0

Included in library EtherCAT_AC500_V13.lib

Function block Type Function block with historical values

The function block ECAT_STATE is used to read the state and possible errors of an EtherCAT
fieldbus.
The function block ECAT_STATE returns the status of an EtherCAT Communication Module.
The function block also delivers - when present - a communication error and the number of
errors since power-up.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1312

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD 0 0...4 -

COMM_STATE returns the state of the field bus related to chosen master. The possible codes
for COMM_STATE are:
UNKNOWN 0x00000000
OFFLINE 0x00000001
STOP 0x00000002
IDLE 0x00000003
OPERATE 0x00000004

Data type Default value Range Unit
DWORD 0 - -

COMM_ERNO returns an error, if present, related to the communication channel. The possible
codes for COMM_ERNO are following:

DONE

ERR

ERNO

COMM_STATE

COMM_ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1313

SUCCESS 0x00000000
WATCHDOG TIMEOUT 0xC000000C
INITIALIZATION FAULT 0xC0000100
DATABASE ACCESS FAILED 0xC0000101
(General) CONFIGURATION FAULT 0xC0000120
INCONSISTENT DATA SET 0xC0000121
DATA SET MISMATCH 0xC0000122
INSUFFICIENT LICENSE 0xC0000123
PARAMETER ERROR 0xC0000124
INVALID NETWORK ADDRESS 0xC0000125
(General) NETWORK FAULT 0xC0000140
CONNECTION CLOSED 0xC0000141
CONNECTION TIMED OUT 0xC0000142
LONELY NETWORK 0xC0000143
DUPLICATE NODE 0xC0000144
CABLE DISCONNECT 0xC0000145
TLR_E_ETHERCAT_MASTER 0xC0650001
TLR_E_ETHERCAT_MASTER_NO_LINK 0xC0650002
TLR_E_ETHERCAT_MASTER_ERROR_READING_BUSCONFIG 0xC0650003
TLR_E_ETHERCAT_MASTER_ERROR_PARSING_BUSCONFIG 0xC0650004
TLR_E_ETHERCAT_MASTER_ERROR_BUSSCAN_FAILED 0xC0650005
TLR_E_ETHERCAT_MASTER_NOT_ALL_SLAVES_AVAIL 0xC0650006
TLR_E_ETHERCAT_MASTER_STOPMASTER_ERROR 0xC0650007
TLR_E_ETHERCAT_MASTER_DEINITMASTER_ERROR 0xC0650008
TLR_E_ETHERCAT_MASTER_CLEANUP_ERROR 0xC0650009
TLR_E_ETHERCAT_MASTER_CRITIAL_ERROR_STATE 0xC065000A
TLR_E_ETHERCAT_MASTER_INVALID_BUSCYCLETIME 0xC065000B
TLR_E_ETHERCAT_MASTER_INVALID_BROKEN_SLV_BEH_PARA 0xC065000C
TLR_E_ETHERCAT_MASTER_WRONG_INTERNAL_STATE 0xC065000D
TLR_E_ETHERCAT_MASTER_WATCHDOG_TIMEOUT_EXPIRED 0xC065000E
TLR_E_ETHERCAT_MASTER_COE_INVALID_SLAVEID 0xC065000F
TLR_E_ETHERCAT_MASTER_COE_NO_RESOURCE 0xC0650010
TLR_E_ETHERCAT_MASTER_COE_INTERNAL_ERROR 0xC0650011
TLR_E_ETHERCAT_MASTER_COE_INVALID_INDEX 0xC0650012
TLR_E_ETHERCAT_MASTER_COE_INVALID_COMM_STATE 0xC0650013
TLR_E_ETHERCAT_MASTER_COE_FRAME_LOST 0xC0650014
TLR_E_ETHERCAT_MASTER_COE_TIMEOUT 0xC0650015
TLR_E_ETHERCAT_MASTER_COE_SLAVE_NOT_ADDRESSABLE 0xC0650016
TLR_E_ETHERCAT_MASTER_COE_INVALID_LIST_TYPE 0xC0650017
TLR_E_ETHERCAT_MASTER_COE_SLAVE_RESPONSE_TOO_BIG 0xC0650018
TLR_E_ETHERCAT_MASTER_COE_INVALID_ACCESSBITMASK 0xC0650019
TLR_E_ETHERCAT_MASTER_COE_WKC_ERROR 0xC065001A
TLR_E_ETHERCAT_MASTER_SERVICE_IN_USE 0xC065001B
TLR_E_ETHERCAT_MASTER_INVALID_COMMUNICATION_STATE 0xC065001C
TLR_E_ETHERCAT_MASTER_DC_NOT_ACTIVATED 0xC065001D
TLR_E_ETHERCAT_MASTER_BUS_SCAN_CURRENTLY_RUNNING 0xC065001E
TLR_E_ETHERCAT_MASTER_BUS_SCAN_TIMEOUT 0xC065001F
TLR_E_ETHERCAT_MASTER_BUS_SCAN_NOT_READY_YET 0xC0650020
TLR_E_ETHERCAT_MASTER_BUS_SCAN_INVALID_SLAVE 0xC0650021

Data type Default value Range Unit
BYTE 0 0 ... 255 -

NUM_ERRS contains the number of errors since the power-up of the Communication Module.

NUM_ERRS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1314

Function call in ST
ECAT_STATE(
EN := ECATState_EN,
SLOT := ECATState_SLOT);

ECATState_DONE := ECAT_STATE.DONE;
ECATState_ERR := ECAT_STATE.ERR;
ECATState_ERNO := ECAT_STATE.ERNO;
ECATState_COMM_STATE := ECAT_STATE.COMM_STATE;
ECATState_COMM_ERNO := ECAT_STATE.COMM_ERNO;
ECATState_NUM_ERR := ECAT_STATE.NUM_ERR;

ECAT_SYNC

The function block ECAT_SYNC is used to synchronize an IEC task with the EtherCAT bus
cycle.
With the function block ECAT_SYNC the error counters ERR_IN_CNT and ERR_OUT_CNT can
be read.
The error counter ERR_IN_CNT is set, if the IEC task was not started within the current bus
cycle.
The error counter ERR_OUT_CNT is set, If the task was not finished within the current bus
cycle.

The function block ECAT_SYNC requires Communication Module firmware ver-
sion 2.4.11 or higher.

The function block ECAT_SYNC requires CPU firmware version 2.1.x or higher.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1315

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

SLOT

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1316

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE 0 0 ... 255 -

The variable ERR_IN_CNT (error input counter) contains the number of input errors.
The error counter ERR_IN_CNT will be incremented, if the synchronized IEC task was not
started within the current bus cycle.

Data type Default value Range Unit
BYTE 0 0 ... 255 -

The variable ERR_OUT_CNT (error output counter) contains the number of output errors.
The error counter ERR_OUT_CNT will be incremented, if the started task was not finished
within the current bus cycle.

Function call in ST
ECAT_SYNC(
EN := ECATSYNC_EN,
SLOT := ECATSYNC_SLOT);

ECATSYNC_DONE := ECAT_SYNC.DONE;
ECATSYNC_ERR := ECAT_SYNC.ERR;
ECATSYNC_ERNO := ECAT_SYNC.ERNO;
ECATSYNC_ERR_IN_CNT := ECAT_SYNC.ERR_IN_CNT;
ECATSYNC_ERR_OUT_CNT := ECAT_SYNC.ERR_OUT_CNT;

1.5.4.15 Extended EtherCAT library
Library file name: Ethercat_ext_AC500_Vx.lib
This library is used to control the EtherCAT network and the connected slave devices. It is also
used for diagnostics of the EtherCAT network and the connected slave devices.

ERR

ERNO

ERR_IN_CNT

ERR_OUT_CNT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1317

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The following libraries are required to use the function blocks of the EtherCAT
library:

– CMN_AC500_V24.lib (V 1.0.0)
– SysInt_AC500_V10.lib (V 1.4.3)

1.5.4.15.1 Function blocks
ECAT_SLV_SET_STATE

Table 78: General information
Available as of runtime system V2.4.3 and above

Available as of AB version V1.2 and above

Available as of CM579-EthCAT version V4.0.0 and above

Included in library EtherCAT_EXT_AC500_V25.lib

Type Function block with historical values.

ECAT_SLV_SET_STATE can be used to change state of the “EtherCAT State Machine” of an
EtherCAT slave. The direct state transitions are:
● INIT -> PREOP
● PREOP -> SAFEOP
● SAFEOP -> OP
● OP -> SAFEOP
● OP -> PREOP
● OP -> INIT
● SAFEOP -> PREOP
● SAFEOP -> INIT
● PREOP -> INIT
This POU allows direct state changes and state changes over intermediate states, e.g. for a
change from “init” to “Operational”.

Preconditions

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1318

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 1 ... 4294967295 -

NODE represents the EtherCAT address of the slave.

Data type Default value Range Unit
BYTE 0 1, 2, 4, 8 -

Possible target states of the slave:
● 1: INIT
● 2: PREOPERATIONAL
● 4: SAFEOPERATIONAL
● 8: OPERATIONAL

EN

SLOT

NODE

TARGET_STATE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1319

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

DONE

ERR

ERNO

ADD_ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1320

ECAT_SLV_GET_STATE

Table 79: General information
Available as of runtime system V2.4.3 and above

Available as of AB version V1.2 and above

Available as of CM579-EthCAT version V4.0.0 and above

Included in library EtherCAT_EXT_AC500_V25.lib

Type Function block with historical values.

The function block ECAT_SLV_GET_STATE can be used to change state of the “EtherCAT
State Machine” of an EtherCAT slave. If exists, the error of the last state change is also read
with this function block.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1321

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 1 ... 4294967295 -

NODE represents the EtherCAT address of the slave.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

SLOT

NODE

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1322

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

Data type Default value Range Unit
BYTE 0 1, 2, 4, 8 -

Output STATE provides the current state of the selected slave. The following values are pos-
sible:
● 1: INIT
● 2: PREOPERATIONAL
● 4: SAFEOPERATIONAL
● 8: OPERATIONAL

Data type Default value Range Unit
BYTE 0 1, 2, 4, 8 -

Output TARGET_STATE provides the target_value of the last target in
ECAT_SLV_SET_STATE. The following target values are possible:
● 1: INIT
● 2: PREOPERATIONAL
● 4: SAFEOPERATIONAL
● 8: OPERATIONAL

Data type Default value Range Unit
DWORD 0 - -

ACTIVATE_ERR shows the activation error reported by the slave.

ECAT_BUS_SET_STATE

Table 80: General information
Available as of runtime system V2.4.3 and above

Available as of AB version V1.2 and above

Available as of CM579-EthCAT version V4.0.0 and above

Included in library EtherCAT_EXT_AC500_V25.lib

Type Function block with historical values.

ADD_ERNO

STATE

TARGET_STATE

ACTIVATE_ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1323

ECAT_BUS_SET_STATE can be used to change the state of all connected and configured
EtherCAT slaves. All transition between the four states “Init”, “Pre-Operational”, “Safe Opera-
tional” and “Operational” are possible.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE, default value: 0, range: 1, 2, 4, 8
Target State of the bus. The following target states are possible:
● 1: INIT
● 2: PREOPERATIONAL
● 4: SAFEOPERATIONAL
● 8: OPERATIONAL

EN

SLOT

TARGET_STATE
(target state)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1324

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

ECAT_START_COM

DONE

ERR

ERNO

ADD_ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1325

Table 81: General information
Available as of runtime system V2.4.3 and above

Available as of AB version V1.2 and above

Available as of CM579-EthCAT version V4.0.0 and above

Included in library EtherCAT_EXT_AC500_V25.lib

Type Function block with historical values.

ECAT_START_COM can be used to start communication of the EtherCAT master. That means
the communication state of the master is changed from Stop to Operate. If execution of the
function block fails the master stays in the communication state Stop.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1326

The following figure demonstrates execution of ECAT_START_COM:

With execution start the bus communication is enabled. Communication state of the Master is
checked and it’s waited until the communication state is 'Operate'.
Execution of the function block was successful if the master was changed to the communication
state 'Operate'. If the master is not in this state within the specified timeout, execution of the
function block is failed and the bus communication is disabled again.

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1327

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 0 … 4294967295 ms

Value of timeout in ms.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN

SLOT

TOUT

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1328

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

ECAT_STOP_COM

Table 82: General information
Available as of runtime system V2.4.3 and above

Available as of AB version V1.2 and above

Available as of CM579-EthCAT version V4.0.0 and above

Included in library EtherCAT_EXT_AC500_V25.lib

Type Function block with historical values.

ECAT_STOP_COM can be used to start communication of the EtherCAT master. That means
the communication state of the master is changed from 'Operate' to 'Stop'. If execution of the
function block fails the master stays in the communication state 'Operate'.

ERNO

ADD_ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1329

The user is responsible for resetting EtherCAT related part of the PLC applica-
tion when the bus communication is restarted. At least the internal variables of
the sync task have to be reset.

The following figure demonstrates execution of ECAT_STOP_COM:

With execution start the bus communication is disabled. Communication state of the Master is
checked and it’s waited until the communication state is 'Stop'. If the master is in communication
state 'Stop' and the input RESET_IO is TRUE the IOs will be reset.
Execution of the function block was successful if the master was changed to the communication
state 'Stop' and no error occurred during IO reset. If the master is not in the communication
state 'Stop' within the specified timeout, the execution of the function block is failed.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1330

The IO reset function of ECAT_STOP_COM is not synchronized. That means
there is no notification when the reset is finished. ECAT_STOP_COM has an
internal waiting time of 1000 ms to ensure the IOs have been reset. If this time
is not sufficient it has to be waited an additional time before the communication
is re-started with the FB ECAT_START_COM.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

IO values will be reset if set to true.

Data type Default value Range Unit
DWORD 0 0 … 4294967295 ms

Value of timeout in ms.

EN

SLOT

RESET_IO

TOUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1331

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

DONE

ERR

ERNO

ADD_ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1332

ECAT_SOE_READ

Table 83: General information
Available as of runtime system V2.4.3 and above

Available as of AB version V1.2 and above

Available as of CM579-EthCAT version V4.0.0 and above

Included in library EtherCAT_EXT_AC500_V25.lib

Type Function block with historical values.

ECAT_SOE_READ can be used to read SERCOS II objects.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1333

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 1 ... 4294967295 -

NODE represents the EtherCAT address of the slave.

Data type Default value Range Unit
BYTE 0 - -

Drive number, starting with 0.

Data type Default value Range Unit
WORD 0 - -

SERCOS identification number of the object to be read.

Data type Default value Range Unit
BYTE 0 - -

The following values are allowed:
● 0x01: SOE_ELEMENT_FLAGS_DATASTATE
● 0x02: SOE_ELEMENT_FLAGS_NAME
● 0x04: SOE_ELEMENT_FLAGS_ATTRIBUTE
● 0x08: SOE_ELEMENT_FLAGS_UNIT
● 0x10: SOE_ELEMENT_FLAGS_MIN
● 0x20: SOE_ELEMENT_FLAGS_MAX
● 0x40: SOE_ELEMENT_FLAGS_VALUE

Data type Default value Range Unit
DWORD 0 - -

Maximal length of the data array.

SLOT

NODE

DRIVE_NR

SERCOS_ID

FLAG

MAX_LEN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1334

Data type Default value Range Unit
POINTER TO ARRAY
OF BYTE

- - -

Pointer to the receive Buffer.

Data type Default value Range Unit
DWORD 0 0 … 4294967295 ms

Value of timeout in ms.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DATA

TOUT

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1335

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

Data type Default value Range Unit
DWORD 0 - -

Length of the received data in bytes.

ECAT_SOE_WRITE

Table 84: General information
Available as of runtime system V2.4.3 and above

Available as of AB version V1.2 and above

Available as of CM579-EthCAT version V4.0.0 and above

Included in library EtherCAT_EXT_AC500_V25.lib

Type Function block with historical values.

The function block ECAT_SOE_WRITE can be used to write SERCOS II – objects.

It depends on the specific EtherCAT device which objects or attributes of
objects are writeable.

ADD_ERNO

LEN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1336

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 1 ... 4294967295 -

NODE represents the EtherCAT address of the slave.

Data type Default value Range Unit
BYTE 0 - -

Drive number, starting with 0.

Data type Default value Range Unit
WORD 0 - -

SERCOS identification number of the object to be write.

EN

SLOT

NODE

DRIVE_NR

SERCOS_ID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1337

Data type Default value Range Unit
BYTE 0 - -

The following values are allowed:
● 0x01: SOE_ELEMENT_FLAGS_DATASTATE
● 0x02: SOE_ELEMENT_FLAGS_NAME
● 0x04: SOE_ELEMENT_FLAGS_ATTRIBUTE
● 0x08: SOE_ELEMENT_FLAGS_UNIT
● 0x10: SOE_ELEMENT_FLAGS_MIN
● 0x20: SOE_ELEMENT_FLAGS_MAX
● 0x40: SOE_ELEMENT_FLAGS_VALUE

Data type Default value Range Unit
DWORD 0 0…1024 -

Length of the data array.

Data type Default value Range Unit
POINTER TO ARRAY
OF BYTE

- - -

Pointer to the receive Buffer.

Data type Default value Range Unit
DWORD 0 0 … 4294967295 ms

Value of timeout in ms.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

FLAG

LEN

DATA

TOUT

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1338

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

1.5.4.15.2 Global variables
Table 85: Communication states of the EtherCAT master
ECAT_MASTER_COM_STAT
E_UNKNOWN:

DWORD:=16#00000000; Communication State
"UNKNOWN" of the EtherCAT
master

ECAT_MASTER_COM_STAT
E_NOT_CONFIGURED:

DWORD:=16#00000001; Communication State "NOT
CONFIGURED" of the
EtherCAT master

ECAT_MASTER_COM_STAT
E_STOP:

DWORD:=16#00000002; Communication State "STOP"
of the EtherCAT master

ECAT_MASTER_COM_STAT
E_IDLE:

DWORD:=16#00000003; Communication State "IDLE"
of the EtherCAT master

ECAT_MASTER_COM_STAT
E_OPERATE:

DWORD:=16#00000004; Communication State
"OPERATE" of the EtherCAT
master

Table 86: Flags for the attribute selection of the SERCOS objects
ECAT_SOE_ELE-
MENT_FLAGS_DATASTATE:

BYTE := 16#01; State of the selected Sercos
ID

ECAT_SOE_ELE-
MENT_FLAGS_NAME:

BYTE := 16#02; Name of the selected Sercos
ID

ECAT_SOE_ELE-
MENT_FLAGS_ATTRIBUTE:

BYTE := 16#04; Attribute of the selected
Sercos ID

ECAT_SOE_ELE-
MENT_FLAGS_UNIT:

BYTE := 16#08; Unit of the selected Sercos ID

ERR

ERNO

ADD_ERNO

Communication
states

Flags for
SERCOS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1339

ECAT_SOE_ELE-
MENT_FLAGS_MIN:

BYTE := 16#10; Minimum value of the selected
Sercos ID

ECAT_SOE_ELE-
MENT_FLAGS_MAX:

BYTE := 16#20; Maximum value of the
selected Sercos ID

ECAT_SOE_ELE-
MENT_FLAGS_VALUE:

BYTE := 16#40; Current value of the selected
Sercos ID

Table 87: State values
ECAT_STATE_MACHINE_ST
ATE_INIT:

BYTE := 16#01; INIT state in the EtherCAT
state machine

ECAT_STATE_MACHINE_ST
ATE_PREOP:

BYTE := 16#02; PREOPERATIONAL state in
the EtherCAT state machine

ECAT_STATE_MACHINE_ST
ATE_SAFEOP:

BYTE := 16#04; SAFEOPERATIONAL state in
the EtherCAT state machine

ECAT_STATE_MACHINE_ST
ATE_OP:

BYTE := 16#08; OPERATIONAL state in the
EtherCAT state machine

1.5.4.16 External System library
Library file name: SysExt_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

1.5.4.16.1 Function blocks
BATT

Parameter Value
Included in library SysExt_AC500_V10.lib

Available as of firmware V1.0

Type Function

Group Battery

Using the function block BATT the charge state of the battery can be requested.

EtherCAT state
machine

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1340

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN. If the
function block is active, the charge state of the battery is available at the function block output.

Output description

Data type Default value Range Unit
BYTE - - -

The output of the function block BATT outputs the charge state of the battery. The following
values are possible at present:
0: Battery empty
20: Remaining battery charge below 20 %
100: Battery charge OK

Function call in ST
BATT_LOAD := BATT(BATT_EN);

CLOCK

Parameter Value
Included in library SysExt_AC500_V10.lib

Available as of firmware V1.0

EN

(Output)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1341

Parameter Value
Type Function block with historical values

Group Real-time clock

This function block allows to set and display the current time and date. The clock is set by
means of the set inputs for the time and date. The values available at the set inputs are read in
with the occurrence of a FALSE/TRUE edge at input SET. As long as a TRUE signal is present
at the EN input, the current date and time are displayed at the function block outputs.

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN. If the
function block is active, the current time and date are available at the outputs.

Data type Default value Range Unit
BOOL - - -

With an occurring FALSE/TRUE edge at input SET, the clock is set to the values available at the
time and date inputs.

Data type Default value Range Unit
BYTE - - -

Set input for the hours. The clock works in 24 hours mode, i.e. it changes from 23:59:59 h to
0:0:0 h.
Valid range of values: 0...23.

Data type Default value Range Unit
BYTE - - -

Set input for the minutes.
Valid range of values: 0...59.

EN

SET

HOUR_SET

MIN_SET

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1342

Data type Default value Range Unit
BYTE - - -

Set input for the seconds.
Valid range of values: 0...59.

Data type Default value Range Unit
WORD - - -

Set input for the year. Four-digit input, e.g. 2005.

Data type Default value Range Unit
BYTE - - -

Set input for the month.
Valid range of values: 1...12.

Data type Default value Range Unit
BYTE - - -

Set input for the day (which day of the month).
Valid range of values: 1...31.

Output description

Data type Default value Range Unit
BOOL - - -

Output ERR indicates whether an error occurred during Function Block processing.

Data type Default value Range Unit
BYTE - - -

Current value for the hours.

SEC_SET

YEAR_SET

MON_SET

DAY_SET

ERR

HOUR_ACT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1343

Data type Default value Range Unit
BYTE - - -

Current value for the minutes.

Data type Default value Range Unit
BYTE - - -

Current value for the seconds.

Data type Default value Range Unit
WORD - - -

Current value for the year.

Data type Default value Range Unit
BYTE - - -

Current value for the month.

Data type Default value Range Unit
BYTE - - -

Current value for the day.

Data type Default value Range Unit
BYTE - - -

Current value for the number of the day of week. 0 = Sunday, 1 = Monday, .., 6 = Saturday.

Function call in ST
Clock (EN := Clock_EN,
 SET := Clock_SET,
 HOUR_SET := Clock_HOUR_SET,
 MIN_SET := Clock_MIN_SET,
 SEC_SET := Clock_SEC_SET,
 YEAR_SET := Clock_YEAR_SET,
 MON_SET := Clock_MON_SET,
 DAY_SET := Clock_DAY_SET);

Clock_ERR := Clock.ERR;
Clock_HOUR_ACT := Clock.HOUR_ACT;
Clock_MIN_ACT := Clock.MIN_ACT;
Clock_SEC_ACT := Clock.SEC_ACT;
Clock_YEAR_ACT := Clock.YEAR_ACT;
Clock_MON_ACT := Clock.MON_ACT;
Clock_DAY_ACT := Clock.DAY_ACT;
Clock_W_DAY_ACT := Clock.W_DAY_ACT;

MIN_ACT

SEC_ACT

YEAR_ACT

MON_ACT

DAY_ACT

W_DAY_ACT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1344

CLOCK_DT

Parameter Value
Included in library SysExt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

Group Real-time clock

This function block allows to set and display the current time and date in the standardized "DT"
format. Setting of the clock is performed via set input "DT_SET". The value available at the set
input is read in with the occurrence of a FALSE/TRUE edge at input SET. As long as a TRUE
signal is present at the EN input, the current time and date are displayed in the standardized
"DT" format at function block output "DT_ACT".

Input description

Data type Default value Range Unit
BOOL - - -

The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN. If the
function block is active, the current time and date are available at the outputs.

Data type Default value Range Unit
BOOL - - -

With an occurring FALSE/TRUE edge at input SET, the clock is set to the values available at the
time and date inputs.

Data type Default value Range Unit
BYTE - - -

Set input for time and date in standardized "DT" format. The input for a "DT" value always has
to start with the preceding designation "DT#", followed by the date, a hyphen and the time.

EN

SET

DT_SET

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1345

Valid range of values: DT#1970-01-01-00:00:00 to DT#2106-02-06-06:28:15

Output description

Data type Default value Range Unit
BOOL - - -

Output ERR indicates whether an error occurred during Function Block processing.

Data type Default value Range Unit
BYTE - - -

Current value for date and time in standardized "DT" format.

Function call in ST
Clock (EN := ClockDt_EN,
 SET := ClockDt_SET,
 DT_SET := ClockDt_DT_SET);

ClockDt_ERR := ClockDt.ERR;
ClockDt_DT_ACT := ClockDt.DT_ACT;

1.5.4.17 FlexConf library
Library file name: FlexConf_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

Only one instance of the function blocks FLEXCONF_ID_READ and FLEX-
CONF_ID_WRITE are allowed.

ERR

DT_ACT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1346

1.5.4.17.1 Function blocks
FLEXCONF_ID_READ

Parameter Value
Included in library FlexConf_AC500_V24.lib

Available as of firmware V2.4

Type Function block with historical values

Group -

The function block FLEXCONF_ID_READ is used for reading the current settings of a flexible
configuration. The following parameters can be read:
● Current value of the FlexConfID
● Value of the FlexConfID in the configuration data
● Numbers of alternative configuration files of the currently loaded project

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1347

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

Output ID_ACTIVE returns the current value of the FlexConfID which has been determined
during booting of the PLC by reading from the configuration data file in the PLC's flash memory.
This value has been used to determine the configuration file of the current executed application.

Data type Default value Range Unit
BYTE - - -

Output ID_CFG returns the value of the FlexConfID which is stored in the configuration data file
in the PLC's flash memory. This value is applied when the PLC is rebooted.

Data type Default value Range Unit
BYTE - - -

DONE

ERR

ERNO

ID_ACTIVE

ID_CFG

FILE_NUM

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1348

Ouput FILE_NUM returns the number of alternative configuration files of the currently executed
application.

Function call in ST
FLEXCONF_ID_READ (EN := FLEXCONF_ID_READ_EN);

FLEXCONF_ID_READ_DONE := FLEXCONF_ID_READ.DONE;
FLEXCONF_ID_READ_ERR := FLEXCONF_ID_READ.ERR;
FLEXCONF_ID_READ_ERNO := FLEXCONF_ID_READ.ERNO;
FLEXCONF_ID_READ_ID_ACTIVE := FLEXCONF_ID_READ.ID_ACTIVE;
FLEXCONF_ID_READ_ID_CFG := FLEXCONF_ID_READ.ID_CFG;
FLEXCONF_ID_READ_ID_FILE_NUM := FLEXCONF_ID_READ.FILE_NUM;

FLEXCONF_ID_WRITE

Parameter Value
Included in library FlexConf_AC500_V24.lib

Available as of firmware V2.4

Type Function block with historical values

Group -

The function block FLEXCONF_ID_WRITE is used for writing the value of the FlexConfID to the
configuration data file in the PLC's flash memory. Optionally the PLC can be rebooted after the
value of the FlexConfID has been written.
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN. If the
function block is active, the current values are available at the outputs.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1349

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - - -

At input ID, the value of the FlexConfID which should be written to the configuration data has to
be has to be specified.

Data type Default value Range Unit
BOOL - - -

If this input is set to TRUE, the PLC will be rebooted after the FlexConfID has been written. If
this input is set to FALSE, the PLC will not be rebooted. In this case, the currently configuration
stays active until the CPU will be rebooted manually.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

ID

REBOOT

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1350

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
FLEXCONF_ID_WRITE (EN := FLEXCONF_ID_WRITE_EN,
 ID := FLEXCONF_ID_WRITE_ID,
 REBOOT := FLEXCONF_ID_WRITE_REBOOT);

FLEXCONF_ID_WRITE_DONE := FLEXCONF_ID_WRITE.DONE;
FLEXCONF_ID_WRITE_ERR := FLEXCONF_ID_WRITE.ERR;
FLEXCONF_ID_WRITE_ERNO := FLEXCONF_ID_WRITE.ERNO;

1.5.4.18 IEC60870 library
Library file name: IEC60870_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The library can only be executed with CPUs with onboard Ethernet and at least CPU firmware
V_2_0_0.

1.5.4.18.1 Information
The function blocks of the IEC60870 library allow link-ups to be made between AC500 CPUs
with onboard Ethernet and external systems. The link-up takes place via the internal Ethernet
interface of the CPU. The telecontrol protocol according to IEC60870-5 is used.
The CPU can work as both control station and substation. In control direction setpoints and
commands are set. In monitoring direction the control station sends status values, real values
and discrete values to the substation. Via general inquiry, the substation requests the control
station to send all status values, real values and discrete values. Otherwise, these values
are sent by the control station on a change-driven basis, cyclically or when triggered by an
application. Status values, real values and discrete values may contain timestamps. These are
filled in with the time of the process station when sent. The CPU can time-synchronize the
telecontrol link.
A module accepts the configuration of the physical interface (link layer) and the general protocol
parts (application layer), see PLC configuration in Control Builder Plus help.
Send and receive blocks are available for data exchange. These blocks exist for the
IEC60870-5 data types
● setpoint value
● command value
● double command value
● status value
● double status value
● real value and discrete value.
The inputs/outputs of the send and receive blocks are combined with the signals to be commu-
nicated.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1351

Data flow control
Each send or receive block can only process one data message. Ideally, new data are available
at each user task run-through or new data can be sent.
If the OV output (send block only) indicates TRUE, the block computes more quickly than the
data can be sent. If the receive block is not computed quickly enough and has thus not collected
all the data.
Alternatively, this block sends either cyclically or when the input value is changed. Ideally, the
topical data can be sent via the telecontrol link in connection with every user task run-through.

Data integrity of the IEC60870-5 protocol
With the IEC60870-5 protocol, a distinction is made between data transmission in the moni-
toring direction (status values, real values, discrete values) and in the control direction (com-
mands and setpoints).
All data transmissions are acknowledged from the link communication level by the receiver. This
acknowledgement is not sent to the sender of the data in every telecontrol link.
For data transmission in the control direction, additional acknowledgement (e.g. actterm) is
possible. These acknowledgements are not sent by every telecontrol link either. For safe data
transmission, it is necessary, in such cases, to configure data readback. The receiver then
sends the data received back to the sender via the corresponding send blocks.
Information in the monitoring direction is acknowledged by the receiver on the lowest communi-
cation level (link level) when received. This acknowledgement is generated by the telecontrol
head itself with some telecontrol heads. In the event of overload/overrun, a data message may
be lost. For data in the control direction, so-called actterm acknowledgement can be used. This
additional acknowledgement is sent back to the sender when the data have been executed in
the process. If data are to be sent in the monitoring direction with guaranteed transmission, it
is necessary to read back the sent value via another variable and, after observing a monitoring
time, resend in the event of an error.

Data transmission function blocks
Send blocks

On the basis of the communication protocol, it is sensible to restrict the data types at one send
block to one type. Therefore, there are five types of send blocks:
● send of status values
● commands
● real values
● setpoints
● discrete values.
These types are mapped to the IEC1131 data types BOOL, REAL and DINT.

The send blocks know three operating modes to send their data
● caused by request pin (SEND),
● send in connection with a change of data (AUTO), or
● cyclic send of data (CYCLE).

Operating
modes of the
send blocks

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1352

The SEND signal is evaluated on the rising edge. The RDY signal remains applied for one
computation cycle. If a rising edge is generated again at the SEND signal although no acknowl-
edgement has yet been received from the receiver, the OV pin is set in order to indicate that
an overrun has taken place. The evaluation of the receive acknowledgement is carried out
before the evaluation of whether transmission is to take place. This means, assuming that
there is an appropriately fast telecontrol link, that in connection with change-driven and cyclic
transmission, a transmission job can be sent in connection with every computation of the block.
In connection with send via the request pin it is possible to send only in connection with every
second computation (send takes place only with a rising edge).

Data are always sent when the value of the input variables changes. When changes take place,
there is an internal simulation that the SEND pin changed from 0 to 1.
In order to prevent unnecessarily frequent send in the event of mild fluctuations in the input
value, a threshold value can be configured for real values and setpoints. The input value is not
sent until it differs positively or negatively from the value last sent by more than the threshold
value.
If the input value changes again although no acknowledgement has yet been received from the
receiver, the OV pin is set in exactly the same way as in connection with send via the Request
pin. If an error occurs during send, the job is automatically retried until the value has been sent
without error.

The data are automatically sent after the expiry of a configurable cycle time (SCANDOWN).
This cycle time is indicated in multiples of the task cycle time in which the block is computed. In
this operating mode, an overrun error can occur if the transmission is faster than the response
time of the receiver. For setpoints, it is necessary to ensure that an acknowledgement is
generated by the receiver which is not sent until the setpoint is accepted. The send block is not
ready for transmission again until after this acknowledgement has been received.

Timestamps for data types with time associated to the data are generated when a data point
is being given to the underlying protocol. So for example on the rising edge of the SEND Pin.
For values where an explicit timestamp different from the actual time is required, a new group of
function blocks has been created all ending with the extension _ET.

All timestamps are only send at all if the correct IEC60870 data type with
timestamps has been configured.

Receive blocks
In receive direction, the jobs enter the device module via the interface. The device module
selects the correct receive block using the telecontrol address. To this end, during installation
the receive blocks pass their parameterised telecontrol addresses to the device module, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
The device module stores the data received and the receive blocks make the data available at
their output pins in connection with the next computation of the user task.

The AC500 will answer interrogation command only if some general requirements are met:
For the command C_IC_NA_1 (interrogation command) the common address is either the
broadcast address 255 255 or the defined station address and the qualifier of interrogation is
<20> station interrogation. The answer will encode the defined station address. See Ä Chapter
1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.

Send via
request pin

Change-driven
send of data

Cyclic send

Timestamps

Interrogation
command

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1353

1.5.4.18.2 Function blocks
IEC60870_GET_ADDRESS

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.2.x

Type Function block with historical values

Group General

The function block returns the address (GADU1, GADU2, IAD1, IAD2, IAD3) of the given
PINGROUP in string representation.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Pointer to a structure representing a pin group. Normally generated by the Control Builder Plus
and stored under the global variable list "Command (CONSTANT)".

Describes the desired output format of the address. The different formats can be accessed
through the FORMAT_MODE (ENUM). Following values are defined:

EN

PINGROUP

FORMAT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1354

DEC_ONE: Decimal value of the 40 bits representing the
address (default)

HEX_ASC: Hexadecimal value of each byte in ascending
order:
0xGADU1<SEP>0xGADU2<SEP>0xIAD1<SE
P>0xIAD2<SEP>0xIAD3

HEX_DESC: Hexadecimal value of each byte in
descending order:
0xGADU2<SEP>0xGADU1<SEP>0xIAD3<SE
P>0xIAD2<SEP>0xIAD1

DEC_ASC: Decimal value of each byte in ascending
order:
GADU1<SEP>GADU2<SEP>IAD1<SEP>IAD
2<SEP>IAD3

DEC_DESC: Decimal value of each byte in descending
order:
GADU2<SEP>GADU1<SEP>IAD3<SEP>IAD
2<SEP>IAD1

One character that is used to divide the single bytes of the address from each other. See the
above description of FORMAT where <SEP> represents this one character. Default is a blank.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

SEPARATOR

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1355

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Contains the string representations of the addresses for the given PINGROUP depending on
the selected FORMAT (ARRAY[0..MAX_DP] OF STRING(MAX_ADDR_STR)). Each array index
belongs to one data point. If only one data point exists only the first index [0] is set and all the
others contain empty strings.

Function call in ST
IEC60870_SEND_M_EI_NA_1
 EN := TRUE,
 PINGROUP := ADR(Measured_value),
 FORMAT := FORMAT_HEX_ASC,
 SEPARATOR := ‘;’
);

GET_ADDR_DONE := GET_ADDR.DONE;
GET_ADDR_ERR := GET_ADDR.ERR;
GET_ADDR_ERNO := GET_ADDR.ERNO;
GET_ADDR_ADDRESS := GET_ADDR.ADDRESS;

IEC60870_REC_C_DC

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

ERNO

ADDRESS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1356

Reception of data messages of the data type according to IEC 60870-5 C_DC_xx message,
sent by e.g. SEND_C_DC function block.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP (IEC60870_IntegratedTotal) the corresponding data point is set, which gets
received by this function block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

EN

PINGROUP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1357

Data type Default value Range Unit
INT - - -

Input EXEC_TIME (execution time) sets the execution time in cycles for a command.
EXEC_TIME = 0: Unlimited

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Value for ON; if IDLE_ON => OFF the function block is OFF.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

EXEC_TIME
 INT

IDLE_ON

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1358

A command was received if the output RDY = TRUE.

The received command depending on input IDLE_ON.
The output always has to be considered together with output RDY.

The received command depending on input IDLE_ON.
The output always has to be considered together with output RDY.

Valid timestamp was received when the output is TRUE.
The output always has to be considered together with output RDY.

If data with timestamp is received, the timestamp is given at this output.
The value is given if a valid timestamp was received and the output VALID_TIMESTAMP =
TRUE.

Value of the received timestamp in milliseconds. The value is given if a valid timestamp was
received and the output VALID_TIMESTAMP = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
PINGROUP := REC_PINGROUP,
EXEC_TIME := REC_EXEC_TIME,
IDLE_ON := REC_IDLE_ON);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;
REC_CMD_ON := REC.CMD_ON;
REC_CMD_OFF := REC.CMD_OFF;
REC_TIMESTAMP_VALID := REC.TIMESTAMP_VALID;
REC_TIMESTAMP := REC.TIMESTAMP;
REC_MSEC := REC.MSEC;
REC_OV := REC.OV;

RDY BOOL
 (ready)

CMD_ON
 BOOL (com-
mandon)

CMD_OFF
 BOOL (com-
mandoff)

TIME-
STAMP_VALID
 BOOL (time-
stampvalid)

TIMESTAMP
 DT (time-
stamp)

MSEC WORD
 (milliseconds)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1359

IEC60870_REC_C_SC

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Group/Subgroup

Reception of data messages of the data type according to IEC 60870-5 (C_SC_xx message).
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1360

In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pingroup of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC 60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pingroup can only be assigned to one defined function block! It is not possible
to use the pingroup twice (e.g. Send and Rec function blocks)!

Input EXEC_TIME sets the execution time in cycles for a command.
EXEC_TIME = 0: Unlimited

Input for positive (IDLE_CMD = TRUE) or negative (IDLE_CMD = FALSE) logic.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

PINGROUP
 IEC60870_Sin-
gleCommand
 (pingroup)

EXEC_TIME
 INT (execu-
tion time)

IDLE_CMD
 BOOL (idle
on)

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1361

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command was received if the output RDY = TRUE.

The received command depending on input IDLE_CMD.
The output always has to be considered together with output RDY.

Valid timestamp was received when the output is TRUE.
The output always has to be considered together with output RDY.

If data with timestamp is received, the timestamp is given at this output.
The value is given if a valid timestamp was received and the output VALID_TIMESTAMP =
TRUE.

Value of the received timestamp in milliseconds. The value is given if a valid timestamp was
received and the output VALID_TIMESTAMP = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
PINGROUP := REC_PINGROUP,
EXEC_TIME := REC_EXEC_TIME,
IDLE_CMD := REC_IDLE_CMD);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;

ERR

ERNO

RDY BOOL
 (ready)

CMD BOOL
 (command)

TIME-
STAMP_VALID
 BOOL (time-
stampvalid)

TIMESTAMP
 DT (time-
stamp)

MSEC WORD
 (milliseconds)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1362

REC_CMD := REC.CMD;
REC_TIMESTAMP_VALID := REC.TIMESTAMP_VALID;
REC_TIMESTAMP := REC.TIMESTAMP;
REC_MSEC := REC.MSEC;
REC_OV := REC.OV;

IEC60870_REC_C_SE

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Reception of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1363

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

EN

PINGROUP
 IEC60870_Set-
Point (pin
group)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1364

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The output OUT gives the received value as a floating point number.
The output always has to be considered together with output RDY.

Valid timestamp was received when the output is TRUE.
The output always has to be considered together with output RDY.

If data with timestamp is received, the timestamp is given at this output.
The value is given if a valid timestamp was received and the output VALID_TIMESTAMP =
TRUE.

DONE

ERR

ERNO

OUT REAL
 (output)

TIME-
STAMP_VALID
 BOOL (time-
stampvalid)

TIMESTAMP
 DT (time-
stamp)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1365

Value of the received timestamp in milliseconds. The value is given if a valid timestamp was
received and the output VALID_TIMESTAMP = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
PINGROUP := REC_PINGROUP);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;
REC_OUT := REC.OUT;
REC_TIMESTAMP_VALID := REC.TIMESTAMP_VALID;
REC_TIMESTAMP := REC.TIMESTAMP;
REC_MSEC := REC.MSEC;
REC_OV := REC.OV;

IEC60870_REC_M_DP

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Group/Subgroup

MSEC WORD
 (milliseconds)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1366

Reception of data messages of the data type according to IEC 60870-5 (M_DP_xx message).
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC 60870_DoubleCommand corresponds to the defined
data type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC 60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

EN

PINGROUP
 IEC60870_Dou-
blePointInfor-
mation (pin
group)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1367

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

The received ON information, if output INFO_ON = TRUE.
The output always has to be considered together with output RDY.

The received OFF information, if output INFO_OFF = TRUE.
The output always has to be considered together with output RDY.

DONE

ERR

ERNO

RDY BOOL
 (ready)

INFO_ON
 BOOL
 (infoon)

INFO_OFF
 BOOL
 (infooff)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1368

Valid timestamp was received when the output is TRUE.
The output always has to be considered together with output RDY.

If data with timestamp is received, the timestamp is given at this output.
The value is given if a valid timestamp was received and the output VALID_TIMESTAMP =
TRUE.

Value of the received timestamp in milliseconds. The value is given if a valid timestamp was
received and the output VALID_TIMESTAMP = TRUE.

Output IV displays the status/information of the data. If IV = TRUE, the data is invalid.
The output always has to be considered together with output RDY.

Output NT displays the status/information of the data. If NT = TRUE, the data is not topical/
actual.
The output always has to be considered together with output RDY.

Output SB displays the status/information of the data. If SB = TRUE, the data is substituted.
The output always has to be considered together with output RDY.

Output BL displays the status/information of the data. If BL = TRUE, the data is blocked.
The output always has to be considered together with output RDY.

Output REASON displays the cause of the transmission.
The output always has to be considered together with output RDY.
Reasons for transmission:

1 Periodic/cyclic

2 Background interrogation

3 Spontaneous

4 Initialised

5 Requested

6 Activation

7 Confirmation of activation

8 Deactivation

9 Confirmation of deactivation

10 Termination of activation

11 Return information, caused by a remote command

12 Return information, caused by a local command

20 Interrogated by general inquiry

TIME-
STAMP_VALID
 BOOL (time-
stampvalid)

TIMESTAMP
 DT (time-
stamp)

MSEC WORD
 (milliseconds)

IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

REASON BYTE
 (reason)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1369

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
PINGROUP := REC_PINGROUP);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;
REC_INFO_ON := REC.INFO_ON;
REC_INFO_OFF := REC.INFO_FF;
REC_TIMESTAMP_VALID := REC.TIMESTAMP_VALID;
REC_TIMESTAMP := REC.TIMESTAMP;
REC_MSEC := REC.MSEC;
REC_IV := REC.IV;
REC_NT := REC.NT;
REC_SB := REC.SB;
REC_BL := REC.BL;
REC_REASON := REC.REASON;
REC_OV := REC.OV;

IEC60870_REC_M_IT

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1370

Parameter Value
Included in library library.lib

IEC60870_AC500_V20.lib

Available as of firmware Vx.x.x
V2.0

Type Function block with historical values

Group Data

Reception of data messages of the data type according to IEC 60870-5 (M_DP_xx message).
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP (IEC60870_IntegratedTotal) the corresponding data point is set, which gets
received by this function block.

EN

PINGROUP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1371

The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1372

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

The output OUT gives the received value as a floating point number.
The output always has to be considered together with output RDY.

Valid timestamp was received when the output is TRUE.
The output always has to be considered together with output RDY.

If data with timestamp is received, the timestamp is given at this output.
The value is given if a valid timestamp was received and the output VALID_TIMESTAMP =
TRUE.

Value of the received timestamp in milliseconds. The value is given if a valid timestamp was
received and the output VALID_TIMESTAMP = TRUE.

Output SQ displays the sequence number.
The output always has to be considered together with output RDY.

Output IV displays the status/information of the data. If IV = TRUE, the data is invalid.
The output always has to be considered together with output RDY.

Output CA displays the status/information of the data. If CA = TRUE, the counter has been
preset since the last reading.
The output always has to be considered together with output RDY.

Output CY displays the status/informations of the data. If CY = TRUE, the transmission divided
into associated measurement periods.
The output always has to be considered together with output RDY.

Output REASON displays the cause of the transmission.
The output always has to be considered together with output RDY.
Reasons for transmission:

1 Periodic/cyclic

2 Background interrogation

3 Spontaneous

4 Initialised

ERNO

RDY BOOL
 (ready)

OUT REAL
 (output)

TIME-
STAMP_VALID
 BOOL (time-
stampvalid)

TIMESTAMP
 DT (time-
stamp)

MSEC WORD
 (milliseconds)

SQ BYTE
 (sequence)

IV BOOL
 (invalid)

CA BOOL
 (counter
adjusted)

CY BOOL
 (carry)

REASON BYTE
 (reason)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1373

5 Requested

6 Activation

7 Confirmation of activation

8 Deactivation

9 Confirmation of deactivation

10 Termination of activation

11 Return information, caused by a remote command

12 Return information, caused by a local command

20 Interrogated by general inquiry

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
PINGROUP := REC_PINGROUP);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;
REC_OUT := REC.OUT;
REC_TIMESTAMP_VALID := REC.TIMESTAMP_VALID;
REC_TIMESTAMP := REC.TIMESTAMP;
REC_MSEC := REC.MSEC;
REC_SQ := REC.SQ;
REC_IV := REC.IV;
REC_CA := REC.CA;
REC_CY := REC.CY;
REC_REASON := REC.REASON;
REC_OV := REC.OV;

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1374

IEC60870_REC_M_ME

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Reception of data messages of the data type according to IEC 60870-5 (M_DP_xx message).
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1375

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

EN

PINGROUP
 IEC60870_Mea
suredValue
 (pin group)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1376

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

The output OUT gives the received value as a floating point number.
The output always has to be considered together with output RDY.

DONE

ERR

ERNO

RDY BOOL
 (ready)

OUT REAL
 (output)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1377

Valid timestamp was received when the output is TRUE.
The output always has to be considered together with output RDY.

If data with timestamp is received, the timestamp is given at this output.
The value is given if a valid timestamp was received and the output VALID_TIMESTAMP =
TRUE.

Value of the received timestamp in milliseconds. The value is given if a valid timestamp was
received and the output VALID_TIMESTAMP = TRUE.

Output IV displays the status/information of the data. If IV = TRUE, the data is invalid.
The output always has to be considered together with output RDY.

Output NT displays the status/information of the data. If NT = TRUE, the data is not topical/
actual.
The output always has to be considered together with output RDY.

Output SB displays the status/information of the data. If SB = TRUE, the data is substituted.
The output always has to be considered together with output RDY.

Output BL displays the status/information of the data. If BL = TRUE, the data is blocked.
The output always has to be considered together with output RDY.

Output REASON displays the cause of the transmission.
The output always has to be considered together with output RDY.
Reasons for transmission:

1 Periodic/cyclic

2 Background interrogation

3 Spontaneous

4 Initialised

5 Requested

6 Activation

7 Confirmation of activation

8 Deactivation

9 Confirmation of deactivation

10 Termination of activation

11 Return information, caused by a remote command

12 Return information, caused by a local command

20 Interrogated by general inquiry

TIME-
STAMP_VALID
 BOOL (time-
stampvalid)

TIMESTAMP
 DT (time-
stamp)

MSEC WORD
 (milliseconds)

IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

REASON BYTE
 (reason)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1378

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
PINGROUP := REC_PINGROUP);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;
REC_OUT := REC.OUT;
REC_TIMESTAMP_VALID := REC.TIMESTAMP_VALID;
REC_TIMESTAMP := REC.TIMESTAMP;
REC_MSEC := REC.MSEC;
REC_IV := REC.IV;
REC_NT := REC.NT;
REC_SB := REC.SB;
REC_BL := REC.BL;
REC_REASON := REC.REASON;
REC_OV := REC.OV;

IEC60870_REC_M_ME_1

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1379

Reception of data messages of the data type according to IEC 60870-5 (M_DP_xx message).
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

EN

PINGROUP
 IEC60870_Mea
suredValue
 (pin group)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1380

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

The output OUT gives the received value as a floating point number.
The output always has to be considered together with output RDY.

DONE

ERR

ERNO

RDY BOOL
 (ready)

OUT REAL
 (output)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1381

Valid timestamp was received when the output is TRUE.
The output always has to be considered together with output RDY.

If data with timestamp is received, the timestamp is given at this output.
The value is given if a valid timestamp was received and the output VALID_TIMESTAMP =
TRUE.

Value of the received timestamp in milliseconds. The value is given if a valid timestamp was
received and the output VALID_TIMESTAMP = TRUE.

Output IV displays the status/information of the data. If IV = TRUE, the data is invalid.
The output always has to be considered together with output RDY.

Output NT displays the status/information of the data. If NT = TRUE, the data is not topical/
actual.
The output always has to be considered together with output RDY.

Output SB displays the status/information of the data. If SB = TRUE, the data is substituted.
The output always has to be considered together with output RDY.

Output BL displays the status/information of the data. If BL = TRUE, the data is blocked.
The output always has to be considered together with output RDY.

Output QOV displays the status/information of the data. If QOV = TRUE, the data signals an
overflow.
The output always has to be considered together with output RDY.

Output REASON displays the cause of the transmission.
The output always has to be considered together with output RDY.
Reasons for transmission:

1 Periodic/cyclic

2 Background interrogation

3 Spontaneous

4 Initialised

5 Requested

6 Activation

7 Confirmation of activation

8 Deactivation

9 Confirmation of deactivation

10 Termination of activation

11 Return information, caused by a remote command

TIME-
STAMP_VALID
 BOOL (time-
stampvalid)

TIMESTAMP
 DT (time-
stamp)

MSEC WORD
 (milliseconds)

IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

QOV BOOL
 (overflow)

REASON BYTE
 (reason)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1382

12 Return information, caused by a local command

20 Interrogated by general inquiry

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
 PINGROUP := REC_PINGROUP);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;
REC_OUT := REC.OUT;
REC_TIMESTAMP_VALID := REC.TIMESTAMP_VALID;
REC_TIMESTAMP := REC.TIMESTAMP;
REC_MSEC := REC.MSEC;
REC_IV := REC.IV;
REC_NT := REC.NT;
REC_SB := REC.SB;
REC_BL := REC.BL;
REC_QOV := REC.QOV;
REC_REASON := REC.REASON;
REC_OV := REC.OV;

IEC60870_REC_M_SP

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1383

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Reception of data messages of the data type according to IEC 60870-5 (M_DP_xx message).
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.

EN

PINGROUP
 IEC60870_Sin-
glePointInfor-
mation (pin
group)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1384

After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC 60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1385

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

The output OUT gives the received value as a floating point number.
The output always has to be considered together with output RDY.

Valid timestamp was received when the output is TRUE.
The output always has to be considered together with output RDY.

If data with timestamp is received, the timestamp is given at this output.
The value is given if a valid timestamp was received and the output VALID_TIMESTAMP =
TRUE.

Value of the received timestamp in milliseconds. The value is given if a valid timestamp was
received and the output VALID_TIMESTAMP = TRUE.

Output IV displays the status/information of the data. If IV = TRUE, the data is invalid.
The output always has to be considered together with output RDY.

Output NT displays the status/information of the data. If NT = TRUE, the data is not topical/
actual.
The output always has to be considered together with output RDY.

Output SB displays the status/information of the data. If SB = TRUE, the data is substituted.
The output always has to be considered together with output RDY.

Output BL displays the status/information of the data. If BL = TRUE, the data is blocked.
The output always has to be considered together with output RDY.

Output REASON displays the cause of the transmission.
The output always has to be considered together with output RDY.
Reasons for transmission:

1 Periodic/cyclic

2 Background interrogation

3 Spontaneous

4 Initialised

5 Requested

6 Activation

7 Confirmation of activation

RDY BOOL
 (ready)

OUT REAL
 (output)

TIME-
STAMP_VALID
 BOOL (time-
stampvalid)

TIMESTAMP
 DT (time-
stamp)

MSEC WORD
 (milliseconds)

IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

REASON BYTE
 (reason)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1386

8 Deactivation

9 Confirmation of deactivation

10 Termination of activation

11 Return information, caused by a remote command

12 Return information, caused by a local command

20 Interrogated by general inquiry

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
PINGROUP := REC_PINGROUP);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;
REC_OUT := REC.OUT;
REC_TIMESTAMP_VALID := REC.TIMESTAMP_VALID;
REC_TIMESTAMP := REC.TIMESTAMP;
REC_MSEC := REC.MSEC;
REC_IV := REC.IV;
REC_NT := REC.NT;
REC_SB := REC.SB;
REC_BL := REC.BL;
REC_REASON := REC.REASON;
REC_OV := REC.OV;

IEC60870_REC_P_ME

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1387

Parameter Value
Type Function block with historical values

Group Data

Reception of data messages of the data type according to IEC 60870-5 (M_IT_xx message).
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The data received are available at the corresponding output pins.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

EN

PINGROUP
 IEC60870_Mea
suredValue
 (pin group)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1388

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

The output OUT gives the received value as a floating point number.
The output always has to be considered together with output RDY.

Function call in ST
REC (EN := REC_EN,
PINGROUP := REC_PINGROUP);

REC_DONE := REC.DONE;
REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_RDY := REC.RDY;
REC_OUT := REC.OUT;

DONE

ERR

ERNO

RDY BOOL
 (ready)

OUT REAL
 (output)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1389

IEC60870_SEND_C_CI_NA_1

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1390

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

Start a send request on a rising edge.

Counter group (1...4) to poll; 5 means all groups.

Freeze the counter.

Reset the counter.

Timeout in ms until ACTERM is expected; 0 = infinite.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

CON
 IEC60870_5_10
4_Connection
 (connection)

SEND BOOL
 (send)

CNT_GROUP
 BYTE
 (counter
group)
CNT_FREEZE
 BOOL
 (counter
freeze)
CNT_RESET
 BOOL
 (counter reset)
TOUT WORD
 (timeout)

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1391

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
CON := SEND_CON,
SEND := SEND_SEND,
CNT_GROUP := SEND_CNT_GROUP,
CNT_FREEZE := SEND_SNT_FREEZE,
CNT_RESET := SEND_CNT_RESET,
TOUT := SEND_TOUT);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

IEC60870_SEND_C_CS_NA_1

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC60870-5.

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1392

The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

Start a send request on a rising edge.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

SEND BOOL
 (send)

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1393

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Function call in ST
SEND (EN := SEND_EN,
CON := SEND_CON,
SEND := SEND_SEND);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;

IEC60870_SEND_C_DC

ERR

ERNO

RDY BOOL
 (ready)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1394

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

EN

PINGROUP
 IEC60870_Dou-
bleCommand
 (pin group)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1395

The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec,
see Ä Chapter 1.6.5.3.2.3.4 “Data points” on page 6131).

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value Bit 1.

Input value Bit 2.

Timeout in ms until ACTERM is expected; 0 = infinite.

If input SHORT_EXEC = TRUE, short execution is enabled on controlled station.

If input LONG_EXEC = TRUE, long execution is enabled on controlled station.

If input PERSISTENT_EXEC = TRUE, persistent execution is enabled on controlled station.

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

CMD_ON
 BOOL (com-
mandon)
CMD_OFF
 BOOL (com-
mandoff)
TOUT WORD
 (timeout)

SHORT_EXEC
 BOOL (short-
execution)
LONG_EXEC
 BOOL (lon-
gexecution)
PERSIST_EXEC
 BOOL (persis-
tent execution)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1396

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

DONE

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1397

Function call in ST
SEND (EN := SEND_EN,
PINGROUP := SEND_PINGROUP,
EXEC_TIME := SEND_EXEC_TIME,
SEND := SEND_SEND,
CYCLE := SEND_CYCLE,
AUTO := SEND_AUTO,
SCANDOWN := SEND_SCANDOWN,
CMD_ON := SEND_CMD_ON,
CMD_OFF := SEND_CMD_OFF,
TOUT := SEND_TOUT,
SHORT_EXEC := SEND_SHORT_EXEC,
LONG_EXEC := SEND_LONG_EXEC,
PERSIST_EXEC := SEND_PERSIST_EXEC);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

IEC60870_SEND_C_IC_NA_1

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5 protocol.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1398

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

Start a send request on a rising edge.

Timeout in ms until ACTERM is expected; 0 = infinite.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

SEND BOOL
 (send)

TOUT WORD
 (timeout)

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1399

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
CON := SEND_CON,
SEND := SEND_SEND,
TOUT := SEND_TOUT);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

IEC60870_SEND_C_RP_NA_1

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1400

Parameter Value
Type Function block with historical values

Group System_Information

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

Start a send request on a rising edge.

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

SEND BOOL
 (send)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1401

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Function call in ST
SEND (EN := SEND_EN,
 CON := SEND_CON,
SEND := SEND_SEND);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;

DONE

ERR

ERNO

RDY BOOL
 (ready)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1402

IEC60870_SEND_C_SC

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1403

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec,
see Ä Chapter 1.6.5.3.2.3.4 “Data points” on page 6131.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value Bit 1.

Timeout in ms until ACTERM is expected; 0 = infinite.

If input SHORT_EXEC = TRUE, short execution is enabled on controlled station.

If input LONG_EXEC = TRUE, long execution is enabled on controlled station.

If input PERSISTENT_EXEC = TRUE, persistent execution is enabled on controlled station.

EN

PINGROUP
 IEC60870_Sin-
gleCommand
 (pin group)

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN BOOL
 (input)

TOUT WORD
 (timeout)

SHORT_EXEC
 BOOL (short-
execution)
LONG_EXEC
 BOOL (lon-
gexecution)
PERSIST_EXEC
 BOOL (persis-
tent execution)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1404

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

DONE

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1405

Function call in ST
SEND (EN := SEND_EN,
PINGROUP := SEND_PINGROUP,
EXEC_TIME := SEND_EXEC_TIME,
SEND := SEND_SEND,
CYCLE := SEND_CYCLE,
AUTO := SEND_AUTO,
SCANDOWN := SEND_SCANDOWN,
IN := SEND_IN,
TOUT := SEND_TOUT,
SHORT_EXEC := SEND_SHORT_EXEC,
LONG_EXEC := SEND_LONG_EXEC,
PERSIST_EXEC := SEND_PERSIST_EXEC);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

IEC60870_SEND_C_SE

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1406

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

EN

PINGROUP
 IEC60870_Set-
Point (pin
group)

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1407

Input value Bit 1.

Timeout in ms until ACTERM is expected; 0 = infinite.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

IN BOOL
 (input)

TOUT WORD
 (timeout)

DONE

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1408

Function call in ST
SEND (EN := SEND_EN,
PINGROUP := SEND_PINGROUP,
EXEC_TIME := SEND_EXEC_TIME,
SEND := SEND_SEND,
CYCLE := SEND_CYCLE,
AUTO := SEND_AUTO,
SCANDOWN := SEND_SCANDOWN,
IN := SEND_IN,
TOUT := SEND_TOUT);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

IEC60870_SEND_M_DP

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1409

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC 60870_DoubleCommand corresponds to the defined
data type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC 60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

EN

PINGROUP
 IEC60870_Dou-
blePointInfor-
mation (pin
group)

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1410

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value of bit 1.

Input value of bit 2.

Input IV sets the status/information of the data. If IV = TRUE, the data is invalid.

Input NT sets the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB sets the status/information of the data. If SB = TRUE, the data is substituted.

Input BL displays the status/information of the data. If BL = TRUE, the data is blocked.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.

SCANDOWN
 BYTE (scan-
down)

INFO_ON
 BOOL (infor-
mation on)
INFO_OFF
 BOOL (infor-
mation off)
IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1411

It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 INFO_ON := SEND_INFO_ON,
 INFO_OFF := SEND_INFO_OFF,
 IV := SEND_IV,
 NT := SEND_NT,
 SB := SEND_SB,
 BL := SEND_BL);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1412

IEC60870_SEND_M_DP_ET

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1413

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC 60870_DoubleCommand corresponds to the defined
data type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC 60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

EN

PINGROUP
 IEC60870_Dou-
blePointInfor-
mation (pin
group)

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1414

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value of bit 1.

Input value of bit 2.

Input IV sets the status/information of the data. If IV = TRUE, the data is invalid.

Input NT sets the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB sets the status/information of the data. If SB = TRUE, the data is substituted.

Input BL displays the status/information of the data. If BL = TRUE, the data is blocked.

TIMESTAMP which should be sent with the data.

Millisecond part of TIMESTAMP which should be sent with the data.

Output description

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

INFO_ON
 BOOL (infor-
mation on)
INFO_OFF
 BOOL (infor-
mation off)
IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

TIMESTAMP
 DT (time-
stamp)
MSEC WORD
 (milliseconds)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1415

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 INFO_ON := SEND_INFO_ON,
 INFO_OFF := SEND_INFO_OFF,
 IV := SEND_IV,
 NT := SEND_NT,
 SB := SEND_SB,
 BL := SEND_BL,
 TIMESTAMP := SEND_TIMESTAMP,
 MSEC := SEND_MSEC);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

DONE

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1416

IEC60870_SEND_M_EI_NA_1

Sending of data messages of the data type according to IEC 60870-5 protocol.

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group System_Information

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1417

After the declaration in Automation Builder the data type is available at the global variables
constants list.

Start a send request on a rising edge.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Function call in ST
SEND (EN := SEND_EN,
 CON := SEND_CON,
SEND := SEND_SEND);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;

SEND BOOL
 (send)

DONE

ERR

ERNO

RDY BOOL
 (ready)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1418

IEC60870_SEND_M_IT

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1419

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP (IEC60870_IntegratedTotal) the corresponding data point is set, which gets
received by this function block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

The input value.

EN

PINGROUP

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN BOOL
 (input)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1420

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Preset of discrete value. Output OPR receives the current discrete value on reset.
The output always has to be considered together with output RDY.

DONE

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

OPR DINT
 (opr)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1421

Relocated discrete value. Output OST receives the current discrete value on relocation.
The output always has to be considered together with output RDY.

The output QRS indicates a reset of the discrete value by changing from FALSE to TRUE.
The output always has to be considered together with output RDY.

Relocate discrete value.
The output QRS indicates a relocation of the discrete value by changing from FALSE to TRUE.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
PINGROUP := SEND_PINGROUP,
SEND := SEND_SEND,
CYCLE := SEND_CYCLE,
AUTO := SEND_AUTO,
SCANDOWN := SEND_SCANDOWN,
IN := SEND_IN);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;
SEND_OPR := SEND.OPR;
SEND_OST := SEND.OST;
SEND_QRS := SEND.QRS;
SEND_QST := SEND.QST;

IEC60870_SEND_M_IT_1

OST DINT
 (ost)

QRS BOOL
 (qrs)

QST BOOL
 (qst)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1422

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP (IEC60870_IntegratedTotal) the corresponding data point is set, which gets
received by this function block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

EN

PINGROUP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1423

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

The input value.

Input IV is the status/information of the data. If IV = TRUE, the data is invalid.

Input CA is the status/information of the data. If CA = TRUE, the counter has been preset since
the last reading.

Input CY is the status/informations of the data. If CY = TRUE, the transmission divided into
associated measurement periods.

Input SQ is the sequence number.

Output description

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN BOOL
 (input)

IV BOOL
 (invalid)

CA BOOL
 (counter
adjusted)

CY BOOL
 (carry)

SQ BYTE
 (sequence)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1424

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Preset of discrete value. Output OPR receives the current discrete value on reset.
The output always has to be considered together with output RDY.

Relocated discrete value. Output OST receives the current discrete value on relocation.
The output always has to be considered together with output RDY.

The output QRS indicates a reset of the discrete value by changing from FALSE to TRUE.
The output always has to be considered together with output RDY.

Relocate discrete value.
The output QRS indicates a relocation of the discrete value by changing from FALSE to TRUE.
The output always has to be considered together with output RDY.

DONE

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

OPR DINT
 (opr)

OST DINT
 (ost)

QRS BOOL
 (qrs)

QST BOOL
 (qst)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1425

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 IN := SEND_IN,
 IV := SEND_IV,
 CA := SEND_CA,
 CY := SEND_CY,
 SQ := SEND_SQ);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;
SEND_OPR := SEND.OPR;
SEND_OST := SEND.OST;
SEND_QRS := SEND.QRS;
SEND_QST := SEND.QST;

IEC60870_SEND_M_IT_1_ET

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1426

The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP (IEC60870_IntegratedTotal) the corresponding data point is set, which gets
received by this function block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

EN

PINGROUP

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1427

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

The input value.

Input IV is the status/information of the data. If IV = TRUE, the data is invalid.

Input CA is the status/information of the data. If CA = TRUE, the counter has been preset since
the last reading.

Input CY is the status/informations of the data. If CY = TRUE, the transmission divided into
associated measurement periods.

Input SQ is the sequence number.

TIMESTAMP which should be sent with the data.

Millisecond part of TIMESTAMP which should be sent with the data.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN BOOL
 (input)

IV BOOL
 (invalid)

CA BOOL
 (counter
adjusted)

CY BOOL
 (carry)

SQ BYTE
 (sequence)

TIMESTAMP
 DT (time-
stamp)
MSEC WORD
 (milliseconds)

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1428

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Preset of discrete value. Output OPR receives the current discrete value on reset.
The output always has to be considered together with output RDY.

Relocated discrete value. Output OST receives the current discrete value on relocation.
The output always has to be considered together with output RDY.

The output QRS indicates a reset of the discrete value by changing from FALSE to TRUE.
The output always has to be considered together with output RDY.

Relocate discrete value.
The output QRS indicates a relocation of the discrete value by changing from FALSE to TRUE.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 IN := SEND_IN,
 IV := SEND_IV,
 CA := SEND_CA,
 CY := SEND_CY,
 SQ := SEND_SQ,
 TIMESTAMP := SEND_TIMESTAMP,
 MSEC := SEND_MSEC);

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

OPR DINT
 (opr)

OST DINT
 (ost)

QRS BOOL
 (qrs)

QST BOOL
 (qst)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1429

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;
SEND_OPR := SEND.OPR;
SEND_OST := SEND.OST;
SEND_QRS := SEND.QRS;
SEND_QST := SEND.QST;

IEC60870_SEND_M_IT_16

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1430

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP (IEC60870_IntegratedTotal) the corresponding data point is set, which gets
received by this function block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

EN

PINGROUP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1431

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value for member 1 to 16.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN1 ... IN16
 DINT (input
1...16)

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1432

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 IN1 := SEND_IN1,
 IN2 := SEND_IN2,
 IN3 := SEND_IN3,
 IN4 := SEND_IN4,
 IN5 := SEND_IN5,
 IN6 := SEND_IN6,
 IN7 := SEND_IN7,
 IN8 := SEND_IN8,
 IN9 := SEND_IN9,
 IN10 := SEND_IN10,
 IN11 := SEND_IN11,
 IN12 := SEND_IN12,
 IN13 := SEND_IN13,
 IN14 := SEND_IN14,
 IN15 := SEND_IN15,
 IN16 := SEND_IN16);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1433

IEC60870_SEND_M_IT_16_ET

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1434

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP (IEC60870_IntegratedTotal) the corresponding data point is set, which gets
received by this function block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

EN

PINGROUP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1435

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value for member 1 to 16.

Input CA is the status/information of the data. If CA = TRUE, the counter has been preset since
the last reading.

Input CY is the status/informations of the data. If CY = TRUE, the transmission divided into
associated measurement periods.

Input SQ is the sequence number.

TIMESTAMP which should be sent with the data.

Millisecond part of TIMESTAMP which should be sent with the data.

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN1 ... IN16
 DINT (input
1...16)
CA BOOL
 (counter
adjusted)

CY BOOL
 (carry)

SQ BYTE
 (sequence)

TIMESTAMP
 DT (time-
stamp)
MSEC WORD
 (milliseconds)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1436

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1437

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 IN1 := SEND_IN1,
 IN2 := SEND_IN2,
 IN3 := SEND_IN3,
 IN4 := SEND_IN4,
 IN5 := SEND_IN5,
 IN6 := SEND_IN6,
 IN7 := SEND_IN7,
 IN8 := SEND_IN8,
 IN9 := SEND_IN9,
 IN10 := SEND_IN10,
 IN11 := SEND_IN11,
 IN12 := SEND_IN12,
 IN13 := SEND_IN13,
 IN14 := SEND_IN14,
 IN15 := SEND_IN15,
 IN16 := SEND_IN16,
 IV := SEND_IV,
 CA := SEND_CA,
 CY := SEND_CY,
 SQ := SEND_SQ,
 TIMESTAMP := SEND_TIMESTAMP,
 MSEC := SEND_MSEC);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1438

IEC60870_SEND_M_ME_1

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1439

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

EN

PINGROUP
 IEC60870_Mea
suredValue
 (pin group)

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1440

If UPDATE = TRUE, updates of threshold via control station are allowed.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value.

Input IV is the status/information of the data. If IV = TRUE, the data is invalid.

Input NT is the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB is the status/information of the data. If SB = TRUE, the data is substituted.

Input BL is the status/information of the data. If BL = TRUE, the data is blocked.

Input QOV is the status/information of the data. If QOV = TRUE, the data signals an overflow.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

UPDATE BOOL
 (update)

SCANDOWN
 BYTE (scan-
down)

IN REAL
 (input)

IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BYTE
 (substituted)

BL BYTE
 (blocked)

QOV BYTE
 (overflow/no
overflow)

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1441

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 UPDATE := SEND_UPDATE,
 SCANDOWN := SEND_SCANDOWN,
 IN := SEND_IN,
 IV := SEND_IV,
 NT := SEND_NT,
 SB := SEND_SB,
 BL := SEND_BL,
 QOV := SEND_QOV);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1442

IEC60870_SEND_M_ME_1_ET

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1443

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

EN

PINGROUP
 IEC60870_Mea
suredValue
 (pin group)

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1444

If input AUTO = TRUE, each input value change might trigger a sending process.

If UPDATE = TRUE, updates of threshold via control station are allowed.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value.

Input IV is the status/information of the data. If IV = TRUE, the data is invalid.

Input NT is the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB is the status/information of the data. If SB = TRUE, the data is substituted.

Input BL is the status/information of the data. If BL = TRUE, the data is blocked.

Input QOV is the status/information of the data. If QOV = TRUE, the data signals an overflow.

TIMESTAMP which should be sent with the data.

Millisecond part of TIMESTAMP which should be sent with the data.

Output description

AUTO BOOL
 (auto)

UPDATE BOOL
 (update)

SCANDOWN
 BYTE (scan-
down)

IN REAL
 (input)

IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BYTE
 (substituted)

BL BYTE
 (blocked)

QOV BYTE
 (overflow/no
overflow)
TIMESTAMP
 DT (time-
stamp)
MSEC WORD
 (milliseconds)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1445

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 UPDATE := SEND_UPDATE,
 SCANDOWN := SEND_SCANDOWN,
 IN := SEND_IN,
 IV := SEND_IV,
 NT := SEND_NT,
 SB := SEND_SB,
 BL := SEND_BL,
 QOV := SEND_QOV,
 TIMESTAMP := SEND_TIMESTAMP,
 MSEC := SEND_MSEC);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

DONE

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1446

IEC60870_SEND_M_ME_16

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1447

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

EN

PINGROUP
 IEC60870_Mea
suredValue
 (pin group)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1448

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

If UPDATE = TRUE, updates of threshold via control station are allowed.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value for member 1 to 16.

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

UPDATE BOOL
 (update)

SCANDOWN
 BYTE (scan-
down)

IN1 ... IN16
 REAL (input
1...16)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1449

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1450

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 UPDATE := SEND_UPDATE,
 SCANDOWN := SEND_SCANDOWN,
 IN1 := SEND_IN1,
 IN2 := SEND_IN2,
 IN3 := SEND_IN3,
 IN4 := SEND_IN4,
 IN5 := SEND_IN5,
 IN6 := SEND_IN6,
 IN7 := SEND_IN7,
 IN8 := SEND_IN8,
 IN9 := SEND_IN9,
 IN10 := SEND_IN10,
 IN11 := SEND_IN11,
 IN12 := SEND_IN12,
 IN13 := SEND_IN13,
 IN14 := SEND_IN14,
 IN15 := SEND_IN15,
 IN16 := SEND_IN16)

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1451

IEC60870_SEND_M_ME_16_ET

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1452

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

EN

PINGROUP
 IEC60870_Mea
suredValue
 (pin group)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1453

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

If UPDATE = TRUE, updates of threshold via control station are allowed.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value for member 1 to 16.

Input IV is the status/information of the data. If IV = TRUE, the data is invalid.

Input NT is the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB is the status/information of the data. If SB = TRUE, the data is substituted.

Input BL is the status/information of the data. If BL = TRUE, the data is blocked.

Input QOV is the status/information of the data. If QOV = TRUE, the data signals an overflow.

TIMESTAMP which should be sent with the data.

Millisecond part of TIMESTAMP which should be sent with the data.

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

UPDATE BOOL
 (update)

SCANDOWN
 BYTE (scan-
down)

IN1 ... IN16
 REAL (input
1...16)
IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BYTE
 (substituted)

BL BYTE
 (blocked)

QOV BYTE
 (overflow/no
overflow)
TIMESTAMP
 DT (time-
stamp)
MSEC WORD
 (milliseconds)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1454

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1455

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 UPDATE := SEND_UPDATE,
 SCANDOWN := SEND_SCANDOWN,
 IN1 := SEND_IN1,
 IN2 := SEND_IN2,
 IN3 := SEND_IN3,
 IN4 := SEND_IN4,
 IN5 := SEND_IN5,
 IN6 := SEND_IN6,
 IN7 := SEND_IN7,
 IN8 := SEND_IN8,
 IN9 := SEND_IN9,
 IN10 := SEND_IN10,
 IN11 := SEND_IN11,
 IN12 := SEND_IN12,
 IN13 := SEND_IN13,
 IN14 := SEND_IN14,
 IN15 := SEND_IN15,
 IN16 := SEND_IN16,
 IV := SEND_IV,
 NT := SEND_NT,
 SB := SEND_SB,
 BL := SEND_BL,
 QOV := SEND_QOV,
 TIMESTAMP := SEND_TIMESTAMP,
 MSEC := SEND_MSEC)

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1456

IEC60870_SEND_M_SP

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1457

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC 60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value.

Input IV sets the status/information of the data. If IV = TRUE, the data is invalid.

Input NT sets the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB sets the status/information of the data. If SB = TRUE, the data is substituted.

Input BL displays the status/information of the data. If BL = TRUE, the data is blocked.

EN

PINGROUP
 IEC60870_Sin-
glePointInfor-
mation (pin
group)

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN BOOL
 (input)

IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1458

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

The output variable DONE shows the processing state of the function block. It shows TRUE
when the processing ended or an error took place. This variable DONE should be checked
together with the variable ERR. If DONE and ERR are set to TRUE then the output ERNO
should be checked to see which error occurred.

ERR shows TRUE if the function block was terminated as a consequence of an error, or FALSE
if it ended normally.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

DONE

ERR

DONE BOOL
 (done)

ERR BOOL
 (error)

ERNO

RDY BOOL
 (ready)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1459

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

IEC60870_SEND_M_SP_1_ET

Sending of data messages of the data type according to IEC 60870-5 protocol.

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1460

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC 60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

EN

PINGROUP
 IEC60870_Sin-
glePointInfor-
mation (pin
group)

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1461

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value.

Input IV sets the status/information of the data. If IV = TRUE, the data is invalid.

Input NT sets the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB sets the status/information of the data. If SB = TRUE, the data is substituted.

Input BL displays the status/information of the data. If BL = TRUE, the data is blocked.

TIMESTAMP which should be sent with the data.

Millisecond part of TIMESTAMP which should be sent with the data.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

SCANDOWN
 BYTE (scan-
down)

IN BOOL
 (input)

IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

TIMESTAMP
 DT (time-
stamp)
MSEC WORD
 (milliseconds)

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1462

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 IN := SEND_IN,
 IV := SEND_IV,
 NT := SEND_NT,
 SB := SEND_SB,
 BL := SEND_BL,
 TIMESTAMP := SEND_TIMESTAMP,
 MSEC := SEND_MSEC);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1463

IEC60870_SEND_M_SP_16

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1464

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC 60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

EN

PINGROUP
 IEC60870_Sin-
glePointInfor-
mation (pin
group)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1465

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value for member 1 to 16.

Input IV sets the status/information of the data. If IV = TRUE, the data is invalid.

Input NT sets the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB sets the status/information of the data. If SB = TRUE, the data is substituted.

Input BL displays the status/information of the data. If BL = TRUE, the data is blocked.

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN1 ... IN16
 BOOL (input
1...16)
IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1466

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1467

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 IN1 := SEND_IN1,
 IN2 := SEND_IN2,
 IN3 := SEND_IN3,
 IN4 := SEND_IN4,
 IN5 := SEND_IN5,
 IN6 := SEND_IN6,
 IN7 := SEND_IN7,
 IN8 := SEND_IN8,
 IN9 := SEND_IN9,
 IN10 := SEND_IN10,
 IN11 := SEND_IN11,
 IN12 := SEND_IN12,
 IN13 := SEND_IN13,
 IN14 := SEND_IN14,
 IN15 := SEND_IN15,
 IN16 := SEND_IN16,
 IN := SEND_IN,
 IV := SEND_IV,
 NT := SEND_NT,
 SB := SEND_SB,
 BL := SEND_BL);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1468

IEC60870_SEND_M_SP_16_ET

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Data

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1469

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input PINGROUP the corresponding data point is set, which gets received by this function
block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec,
see Ä Chapter 1.6.5.3.2.3.4 “Data points” on page 6131).

EN

PINGROUP
 IEC60870_Sin-
glePointInfor-
mation (pin
group)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1470

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input CYCLE performs a cyclic send each scandown cycle.

If input AUTO = TRUE, each input value change might trigger a sending process.

Input SCANDOWN is valid when input CYCLE = TRUE.
On cyclic sending only send within each scandown cycle.

Input value for member 1 to 16.

Input IV sets the status/information of the data. If IV = TRUE, the data is invalid.

Input NT sets the status/information of the data. If NT = TRUE, the data is not topical/actual.

Input SB sets the status/information of the data. If SB = TRUE, the data is substituted.

Input BL displays the status/information of the data. If BL = TRUE, the data is blocked.

TIMESTAMP which should be sent with the data.

Millisecond part of TIMESTAMP which should be sent with the data.

SEND BOOL
 (send)

CYCLE BOOL
 (cycle)

AUTO BOOL
 (auto)

SCANDOWN
 BYTE (scan-
down)

IN1 ... IN16
 BOOL (input
1...16)
IV BOOL
 (invalid)

NT BOOL (not
topical)

SB BOOL
 (substituted)

BL BOOL
 (blocked)

TIMESTAMP
 DT (time-
stamp)
MSEC WORD
 (milliseconds)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1471

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1472

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
 PINGROUP := SEND_PINGROUP,
 SEND := SEND_SEND,
 CYCLE := SEND_CYCLE,
 AUTO := SEND_AUTO,
 SCANDOWN := SEND_SCANDOWN,
 IN1 := SEND_IN1,
 IN2 := SEND_IN2,
 IN3 := SEND_IN3,
 IN4 := SEND_IN4,
 IN5 := SEND_IN5,
 IN6 := SEND_IN6,
 IN7 := SEND_IN7,
 IN8 := SEND_IN8,
 IN9 := SEND_IN9,
 IN10 := SEND_IN10,
 IN11 := SEND_IN11,
 IN12 := SEND_IN12,
 IN13 := SEND_IN13,
 IN14 := SEND_IN14,
 IN15 := SEND_IN15,
 IN16 := SEND_IN16,
 IN := SEND_IN,
 IV := SEND_IV,
 NT := SEND_NT,
 SB := SEND_SB,
 BL := SEND_BL,
 TIMESTAMP := SEND_TIMESTAMP,
 MSEC := SEND_MSEC);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1473

IEC60870_SEND_P_ME

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Parameter_settings

Sending of data messages of the data type according to IEC 60870-5.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
The output RDY indicates the state of the transmission. When new data are received, this is
indicated by a change from FALSE to TRUE. This signal is applied for one computation cycle.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1474

At input PINGROUP (IEC60870_IntegratedTotal) the corresponding data point is set, which gets
received by this function block.
The pin group of the data type IEC60870_DoubleCommand corresponds to the defined data
type at the global address list due to the Control-/Substation in Automation Builder, see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.
The IEC60870 data is sent/recorded to the associated datapoint which is defined by the
address in Automation Builder (address datapoint send has to be the same as datapoint rec.

A pin group can only be assigned to one defined function block! It is not pos-
sible to use the pin group twice (e.g. Send and Rec function blocks)!

Start a send request on a rising edge.

Input value.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

PINGROUP

SEND BOOL
 (send)

IN REAL
 (input)

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1475

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command has been received if RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Function call in ST
SEND (EN := SEND_EN,
PINGROUP := SEND_PINGROUP,
SEND := SEND_SEND,
IN := SEND_IN);

SEND_DONE := SEND.DONE;
SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_RDY := SEND.RDY;
SEND_OV := SEND.OV;

IEC60870_SEND_DISABLE

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.6.2 and above

Type Function block with historical values

Group Data

IEC60870_SEND_DISABLE can be used to disable sending any data packets from a IEC
60870 station.
No data will be send in monitored direction on an active link any more if IEC60870_SEND_DIS-
ABLE has been executed with inputs EN=TRUE and ACTIVE=FALSE.

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1476

To select the IEC60870 connection on which no data will be sent any more, the connection
needs to be specified on input CON. On the SEND_DISABLED connection no inquiries will
be answered with data any more. The normal ACT_CON, ACT_TERM for an inquiry will
be still answered to fulfill the normal command state machine. The sending of data can be
enabled any time by executing the IEC60870_SEND_DISABLE function block with EN=TRUE,
CON=<desired connection> and ACTIVE=TRUE any time. From that point in time data will be
send again in monitored direction. This also applies for inquiries, read requests and background
scan data.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

If the function block gets executed with ACTIVE=FALSE the PLC will disable all IEC60870
connections.
If the function block gets executed with ACTIVE=TRUE the PLC will enable all IEC60870
connections if they were disabled before.

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

ACTIVE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1477

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
SEND_DISABLE (EN := SEND_DISABLE_EN,
CON := SEND_DISABLE_CON, ACTIVE := SEND_DISABLE_ACTIVE;)

SEND_DISABLE_DONE := SEND_DISABLE.DONE;
SEND_DISABLE_ERR := SEND_DISABLE.ERR;
SEND_DISABLE_ERNO := SEND_DISABLE.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1478

IEC60870_DISABLE

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.6.2 and above

Type Function block with historical values

Group Data

The function block IEC60870_DISABLE can be used to shut down all IEC60870 connections on
a PLC.
No further connections can be established after the function block IEC60870_DISABLE has
been executed with EN=TRUE and ACTIVE=FALSE.
All already established connections will be aborted. The PLC won’t answer any IEC60870-5-104
connections request any more.
When the IEC60870_DISABLE function block gets executed with EN=TRUE and
ACTIVE=TRUE the PLC will listen for new IEC60870-5-104 connections again, and also try
to establish connections again.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1479

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

If the function block gets executed with ACTIVE=FALSE the PLC will disable all IEC60870
connections.
If the function block gets executed with ACTIVE=TRUE the PLC will enable all IEC60870
connections if they were disabled before.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

ACTIVE

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1480

IEC60870_STATE

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group General

The function block IEC60870_STATE outputs statistically information from the IEC60870-5 pro-
tocol.
The function block has to enable to use it. Only if EN = TRUE the specific IEC 60870-5
functions can be activated and used.
For each cyclical processing of the module, the statistical outputs were updated. The actual
telecontrol communication via the hardware interface runs in the background independently of
the user task.
The data received are available at the corresponding output pins.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1481

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1482

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

If ACTIVE = TRUE, the communication is established and active.

DONE

ERR

ERNO

ACTIVE BOOL
 (active)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1483

Counter of data transmitted.

Counter of data received.

Counter of transmission/reception timeouts.

Counter of transmission/reception retries.

Counter of address errors.

Counter of frame errors.

Counter of data type errors.

Counter of protocol errors.

Counter of sequence errors.

Amount of established connections.

Last Global Address 1 with error.

Last Global Address 2 with error.

Last Global Address 1 with error.

Last Global Address 2 with error.

NUM_TX
 DWORD
 (number tx)
NUM_RX
 DWORD
 (number rx)
NUM_TOUT
 DWORD
 (number
timeout)
NUM_RETRYS
 DWORD
 (number
retries)
NUM_ADDR_ER
R DWORD
 (number
address error)
NUM_FRAME_E
RR DWORD
 (number fra-
meerror)
NUM_DTYPE_E
RR DWORD
 (number data
typeerror)
NUM_PROT_ER
R DWORD
 (number pro-
tocol error)
NUM_SEQ_ERR
 DWORD
 (number
sequence error)
NUM_CON
 DWORD
 (number con-
nection)
LAST_ERR_GA
DU1 BYTE
 (lasterror
global address
unit 1)
LAST_ERR_GA
DU2 BYTE
 (lasterror
global address
unit 2)
LAST_ERR_AD
DR1 BYTE
 (last local error
address unit 1)
LAST_ERR_AD
DR2 BYTE
 (last local error
address unit 2)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1484

Last Global Address 3 with error.

If REC_C_RP_NA_1 = TRUE, a reset process command has been received.

If REC_M_EI_NA_1 = TRUE, an init end has been received after a connection was established.

Function call in ST
STATE (EN := STATE_EN,
CON := STATE_PINGROUP);

STATE_DONE := STATE.DONE;
STATE_ERR := STATE.ERR;
STATE_ERNO := STATE.ERNO;
STATE_ACTIVE := STATE.ACTIVE;
STATE_NUM_TX := STATE.NUM_TX;
STATE_NUM_RX := STATE.NUM_RX;
STATE_NUM_TOUT := STATE.NUM_TOUT;
STATE_NUM_RETRYS := STATE.NUM_RETRYS;
STATE_NUM_ADDR_ERR := STATE.NUM_ADDR_ERR;
STATE_NUM_FRAME_ERR := STATE.NUM_FRAME_ERR;
STATE_NUM_DTYPE_ERR := STATE.NUM_DTYPE_ERR;
STATE_NUM_PROT_ERR := STATE.NUM_PROT_ERR;
STATE_NUM_SEQ_ERR := STATE.NUM_SEQ_ERR;
STATE_NUM_CON := STATE.NUM_CON;
STATE_LAST_ERR_GADU1 := STATE.LAST_ERR_GADU1;
STATE_LAST_ERR_GADU2 := STATE.LAST_ERR_GADU2;
STATE_LAST_ERR_ADDR1 := STATE.LAST_ERR_ADDR1;
STATE_LAST_ERR_ADDR2 := STATE.LAST_ERR_ADDR2;
STATE_LAST_ERR_ADDR3 := STATE.LAST_ERR_ADDR3;
STATE_REC_C_RP_NA_1 := STATE.REC_C_RP_NA_1;
STATE_REC_M_EI_NA_1 := STATE.REC_M_EI_NA_1;

IEC60870_BACKGROUND_SCAN

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.6.x

LAST_ERR_AD
DR3 BYTE
 (last local error
address unit 3)
REC_C_RP_NA_
1 BOOL
 (receive com-
mand reset
process)
REC_M_EI_NA_
1 BOOL
 (receive moni-
tored init end)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1485

Parameter Value
Type Function block with historical values

Group General

The background scan allows a monitoring station to report all monitored data without any
request.
The data will be sent with a defined delay, so also slow monitoring stations can be handled. The
data the monitored station needs to send must be stored within the protocol stack by utilizing
SEND_ function blocks without any active send reason.
Then on any event the monitored station may start the background scan by executing the
IEC60870_BACKGROUND_SCAN function block.
If an active connection exists, the monitored station will then send all monitored data to the
monitoring station with a send reason “background scan (2)”.
The data types being used are the same as for a general interrogation.
The receiving station must be able to handle the send reason. For AC500 this send reason is
supported since V2.6 and V3.0.
Also data send actively before will be resend by a background scan. If a monitored station
sends actively the monitoring station can only distinguish the received data by controlling the
send reason value.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

This input value denotes a wait time between sending each information object. This allows
overcoming any congestion on either the link or the opposite station. The time is given in ms.

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

WAIT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1486

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The output will be TRUE as long as a background scan is already running.

Function call in ST
IEC60870_BACKGROUND_SCAN
 EN := TRUE,
 CON := ADR(Measured_value),
 WAIT := FORMAT_HEX_ASC,
 SEPARATOR := ‘;’
);

BACKGROUND_SCAN_DONE := BACKGROUND_SCAN.DONE;
BACKGROUND_SCAN_ERR := BACKGROUND_SCAN.ERR;
BACKGROUND_SCAN_ERNO := BACKGROUND_SCAN.ERNO;
BACKGROUND_SCAN_BSY := BACKGROUND_SCAN.BSY;

DONE

ERR

ERNO

BSY (busy)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1487

IEC60870_REC_C_TS_NA_1

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group System Information

The test command within IEC60870-5 is used to test the whole loop from monitoring station to
the application on the monitored station.
For the AC500 this implies to have an IEC1131 action on receiving a test command in the user
application. So the test request must be received by the user application and must also be
answered by the user application.
The interface for this is build from 3 function blocks:
● IEC60870_SEND_C_TS_NA_1_ACT to request a test and verify if the correct response was

received.
2 function blocks on the tested end.
● IEC60870_REC_C_TS_NA_1 to receive an actual test request.
● IEC60870_SEND_C_TS_NA_1_ACTCON to answer an actual test request
For a successful test the testing station needs to request a test by sending a C_TS_NA_1 ACT
request to the tested station.
The tested station needs to detect the test request and answer by sending a C_TS_NA_1
ACTCON confirmation with the data received.
The protocol implementation will make sure the correct time stamps are being send, but for the
test sequence and address the tested station is responsible

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1488

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

Output description

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1489

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command was received if the output RDY = TRUE.

The requesting station may choose any value of TSC. The TSC in the response shall match the
request.

The following 5 outputs provide the address the testing station requested.

The tested station needs to answer with this address.

DONE

ERR

ERNO

RDY BOOL
 (ready)

TSC WORD
 (Test
Sequence
Counter)

GADU1
 (Common
Address of
ASDU Byte 1)
GADU2
 (Common
Address of
ASDU Byte 2)
IAD1 (Informa-
tion Object
Address Byte 1)
IAD2 (Informa-
tion Object
Address Byte 2)
IAD3 (Informa-
tion Object
Address Byte 3)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1490

Function call in ST
REC_C_TS_NA_1 (EN := REC_C_TS_NA_1_EN,
CON := REC_C_TS_NA_1_CON);

REC_C_TS_NA_1_DONE := REC_C_TS_NA_1.DONE;
REC_C_TS_NA_1_ERR := REC_C_TS_NA_1.ERR;
REC_C_TS_NA_1_ERNO := REC_C_TS_NA_1.ERNO;
REC_C_TS_NA_1_RDY := REC_C_TS_NA_1.RDY;
REC_C_TS_NA_1_TSC := REC_C_TS_NA_1.TSC;
REC_C_TS_NA_1_GADU1 := REC_C_TS_NA_1.GADU1;
REC_C_TS_NA_1_GADU2 := REC_C_TS_NA_1.GADU2;
REC_C_TS_NA_1_IAD1 := REC_C_TS_NA_1.IAD1;
REC_C_TS_NA_1_IAD2 := REC_C_TS_NA_1.IAD2;
REC_C_TS_NA_1_IAD3 := REC_C_TS_NA_1.IAD3;

IEC60870_SEND_C_RD_NA_1

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.6

Type Function block with historical values

Group Sytem Information

The read command C_RD_NA_1 is used to request data from a monitoring station.
Only monitored data can be requested.
The monitored station will answer a read command with a send of a monitored data type and
the send reason being “requested”.
The data that will be send is the last value provided to the protocol with either an active send
request, or an inactive send (no send reason active on execution of send function block).
Any data send by normal active sends can be used on the same data point as requested. To
detect the requested data, the send reason must be checked. See also background scan or
interrogation.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1491

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

A true in conjunction with EN being TRUE will send a C_RD_NA_1 requesting the information
object with the given address (GADU1 ,GADU2, IAD1, IAD2, IAD3)

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

SEND BOOL
 (send)

GADU1
 (Common
Address of
ASDU Byte 1)
GADU2
 (Common
Address of
ASDU Byte 2)
IAD1 (Informa-
tion Object
Address Byte 1)
IAD2 (Informa-
tion Object
Address Byte 2)
IAD3 (Informa-
tion Object
Address Byte 3)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1492

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
SEND_C_RD_NA_1 (EN := SEND_C_RD_NA_1CON_EN,
CON := SEND_C_RD_NA_1_CON, GADU1 :=
SEND_C_RD_NA_1_GADU1,
GADU2 := SEND_C_RD_NA_1_GADU2,
IAD1 := SEND_C_RD_NA_1_IAD1, IAD2 := SEND_C_RD_NA_1_IAD2,
IAD3 := SEND_C_RD_NA_1_IAD3;)

SEND_C_RD_NA_1_DONE := SEND_C_RD_NA_1.DONE;
SEND_C_RD_NA_1_ERR := SEND_C_RD_NA_1.ERR;
SEND_C_RD_NA_1_ERNO := SEND_C_RD_NA_1.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1493

IEC60870_SEND_C_TS_NA_1_ACT

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.6

Type Function block with historical values

Group System Information

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1494

While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

Start a send request on a rising edge.

Timeout in cycles until ACTERM is expected; 0 = infinite.

The requesting station may choose any value of TSC. The TSC in the response shall match the
request.

Output description

CON
 IEC60870_5_10
4_Connection
 (connection)

SEND BOOL
 (send)

TOUT WORD
 (timeout)

TSC WORD
 (Test
Sequence
Counter)
GADU1
 (Common
Address of
ASDU Byte 1)
GADU2
 (Common
Address of
ASDU Byte 2)
IAD1 (Informa-
tion Object
Address Byte 1)
IAD2 (Informa-
tion Object
Address Byte 2)
IAD3 (Informa-
tion Object
Address Byte 3)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1495

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command was send if the output RDY = TRUE.

The test sequence finished successful. The matching answer was received within the specified
timeout.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.
The output always has to be considered together with output RDY.

Received test sequence counter, this must match the requested TSC (Input)

Received adress must match the requested adress at input.

Received adress must match the requested adress at input.

Received adress must match the requested adress at input.

Received adress must match the requested adress at input.

Received adress must match the requested adress at input.

DONE

ERR

ERNO

RDY BOOL
 (ready)

SUC-
CESS BOOL
 (receive moni-
tored init end)
OV BOOL
 (overrun)

RTSC BOOL

RGADU1 BYTE

RGADU2 BYTE

RIAD1 BYTE

RIAD2 BYTE

RIAD3 BYTE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1496

Function call in ST
SEND_C_TS_NA_1_ACT (EN := SEND_C_TS_NA_1_ACT_EN,
CON := SEND_C_TS_NA_1_ACT_CON, SEND :=
SEND_C_TS_NA_1_ACT_SEND;
TOUT := SEND_C_TS_NA_1_ACT_TOUT,
 TSC := SEND_C_TS_NA_1_ACT_TSC, GADU1 := SEND_C_TS_NA_1_ACT_GADU1,
GADU2 := SEND_C_TS_NA_1_ACT_GADU2,
IAD1 := SEND_C_TS_NA_1_ACT_IAD1, IAD2 := SEND_C_TS_NA_1_ACT_IAD2,
IAD3 := SEND_C_TS_NA_1_ACT_IAD3;)

SEND_C_TS_NA_1_ACT_DONE := SEND_C_TS_NA_1_ACT.DONE;
SEND_C_TS_NA_1_ACT_ERR := SEND_C_TS_NA_1_ACT.ERR;
SEND_C_TS_NA_1_ACT_ERNO := SEND_C_TS_NA_1_ACT.ERNO;
SEND_C_TS_NA_1_ACT_TOUT := SEND_C_TS_NA_1_ACT.TOUT;
SEND_C_TS_NA_1_ACT_TSC := SEND_C_TS_NA_1_ACT.TSC;
SEND_C_TS_NA_1_ACT_GADU1 := SEND_C_TS_NA_1_ACT.GADU1;
SEND_C_TS_NA_1_ACT_GADU2 := SEND_C_TS_NA_1_ACT.GADU2;
SEND_C_TS_NA_1_ACT_IAD1 := SEND_C_TS_NA_1_ACT.IAD1;
SEND_C_TS_NA_1_ACT_IAD2 := SEND_C_TS_NA_1_ACT.IAD2;
SEND_C_TS_NA_1_ACT_IAD3 := SEND_C_TS_NA_1_ACT.IAD3;

IEC60870_SEND_C_TS_NA_1_ACTCON

Parameter Value
Included in library IEC60870_AC500_V20.lib

Available as of firmware V2.6

Type Function block with historical values

Group Sytem Information

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1497

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

At input CON the corresponding connection is set to gather information.
The data type of the type IEC60870_5_104_Connection corresponds to the defined Con-
trol-/Substation name in Automation Builder, see Ä Chapter 1.6.5.3.2.4.2 “Control station and
substation configuration” on page 6139.
After the declaration in Automation Builder the data type is available at the global variables
constants list.

Start a send request on a rising edge.

The following values should be connected to the associated Ä Chapter
1.5.4.18.2.39 “IEC60870_REC_C_TS_NA_1” on page 1488 function block.

The requesting station may choose any value of TSC. The TSC in the response shall match the
request.

EN

CON
 IEC60870_5_10
4_Connection
 (connection)

SEND BOOL
 (send)

TSC WORD
 (Test
Sequence
Counter)
GADU1
 (Common
Address of
ASDU Byte 1)
GADU2
 (Common
Address of
ASDU Byte 2)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1498

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

A command was send if the output RDY = TRUE.

Overrun was detected if the output OV = TRUE.
The output OV indicates by changing from FALSE to TRUE, that the transmission requests are
coming too fast, i.e. the task cycle time is configured as too fast.

IAD1 (Informa-
tion Object
Address Byte 1)
IAD2 (Informa-
tion Object
Address Byte 2)
IAD3 (Informa-
tion Object
Address Byte 3)

DONE

ERR

ERNO

RDY BOOL
 (ready)

OV BOOL
 (overrun)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1499

The output always has to be considered together with output RDY.

Function call in ST
SEND_C_TS_NA_1_ACT (EN := SEND_C_TS_NA_1_ACTCON_EN,
CON := SEND_C_TS_NA_1_ACTCON_CON, SEND :=
SEND_C_TS_NA_1_ACTCON_SEND,
 TSC := SEND_C_TS_NA_1_ACTCON_TSC, GADU1 :=
SEND_C_TS_NA_1_ACTCON_GADU1,
GADU2 := SEND_C_TS_NA_1_ACTCON_GADU2,
IAD1 := SEND_C_TS_NA_1_ACTCON_IAD1, IAD2 :=
SEND_C_TS_NA_1_ACTCON_IAD2,
IAD3 := SEND_C_TS_NA_1_ACTCON_IAD3;)

SEND_C_TS_NA_1_ACTCON_DONE := SEND_C_TS_NA_1_ACTCON.DONE;
SEND_C_TS_NA_1_ACTCON_ERR := SEND_C_TS_NA_1_ACTCON.ERR;
SEND_C_TS_NA_1_ACTCON_ERNO := SEND_C_TS_NA_1_ACTCON.ERNO;
SEND_C_TS_NA_1_ACTCON_TSC := SEND_C_TS_NA_1_ACTCON.TSC;
SEND_C_TS_NA_1_ACTCON_GADU1 := SEND_C_TS_NA_1_ACTCON.GADU1;
SEND_C_TS_NA_1_ACTCON_GADU2 := SEND_C_TS_NA_1_ACTCON.GADU2;
SEND_C_TS_NA_1_ACTCON_IAD1 := SEND_C_TS_NA_1_ACTCON.IAD1;
SEND_C_TS_NA_1_ACTCON_IAD2 := SEND_C_TS_NA_1_ACTCON.IAD2;
SEND_C_TS_NA_1_ACTCON_IAD3 := SEND_C_TS_NA_1_ACTCON.IAD3;

1.5.4.19 Internal system library
Library file name: SysInt_AC500_Vx.lib
The internal system library contains all generally applicable function blocks for the system,
i.e. function blocks for general system diagnosis functions or system information. The only
exception is the "Data Storage" subgroup which contains special FLASH and memory card
function blocks. Using these function blocks, data can be either stored to the Flash memory or
to the memory card, as desired.
When creating a new project, the library is automatically included to the project.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

1.5.4.19.1 Structure of the file USRDATXX.DAT on the memory card
Depending on the AC500 CPU type, the data are stored to the memory card in the following
directory:

Table 88: Example
AC500 CPU Directory File
PM591 ..\UserData\PM591\UserDat USRDATxx.dat

An memory card must be inserted in the AC500!

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1500

A maximum of 100 files (USRDAT0.DAT...USRDAT99.DAT) can be stored in one directory. Each
data file USRDATxx.dat can be divided into individual sectors, if necessary. The "sector label"
enclosed in square brackets (such as [Sector_01]<CR><LF>) indicates the start of the sector.
Within a sector, data are saved as data sets in ASCII format. The individual elements of a
data set are automatically separated by semicolon. Each data set is terminated with <CR><LF>
(0dhex, 0ahex).
This allows to directly import/export the data files from/to EXCEL. The data files can be viewed
and edited using a standard ASCII editor (such as Notepad).
When saving / loading the data files, the following rules have to be observed:
● Writing on a non-existent file creates that file prior to the first write access.
● Data sets within a sector must always have the same number of values.
● Data sets in different sectors can have a different number of values.
● The values of a data set must have the same data format (BYTE, WORD, INT,..).
● A sector can have data sets with different data format. (Warning: The user must know the

structure of the data when reading them.)
● The data sets are always appended to the end of the file when writing them.
● Searching for a "sector label" within a file is possible when reading it.
● Data sets can be read starting from a particular "sector label".
● A particular data set of a sector cannot be read or written.
● If you want to read each data set individually, a "sector label" must be inserted before each

data set.
● Reading and writing the data with help of the user program is done with the function blocks

SD_READ and SD_WRITE.
● The values of a data set must be available in variables successively arranged in the PLC

(e.g. ARRAY, STRING, %M area).
● A data file can be deleted with help of the PLC program.
● Individual data sets and/or sectors cannot be deleted with the user program. This has to be

done on the PC using an ASCII editor such as Notepad.

Data file USRDAT5.dat without sectors:
-> 5 data sets, each with 10 DINT values:
600462;430;506;469;409;465;466;474;476;-1327203
600477;446;521;484;425;480;482;490;491;-1327187
600493;461;537;499;440;496;497;505;507;-1327172
600508;477;552;515;456;511;513;521;522;-1327156
600524;492;568;530;471;527;528;536;538;-1327141

Data file
example 1

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1501

Data file USRDAT7.dat with sectors:
-> 3 sectors, each with 3 data sets and 10 DINT values per data set:
[Sector_01]
610439;10408;10483;10446;10387;10442;10444;10452;10453;-1317225
610455;10423;10499;10462;10402;10458;10460;10467;10469;-1317209
610476;10445;10520;10483;10424;10479;10481;10489;10490;-1317188
[Sector_02]
610570;10539;10614;10577;10518;10573;10575;10583;10584;-1317094
610585;10554;10630;10592;10533;10589;10591;10598;10600;-1317078
610602;10571;10646;10609;10550;10605;10607;10615;10616;-1317062
[Sector_03] 610701;10670;10746;10708;10649;10704;10706;10714;10715;-1316963
610717;10686;10761;10724;10665;10720;10722;10730;10731;-1316947
610739;10708;10783;10746;10686;10742;10744;10751;10753;-1316926
The sector name can consist of a maximum of 32 characters (including []).

Data file
example 2

1.5.4.19.2 Function blocks
BOOTPRG_HASH_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V2.3.0

Type Function block with historical values

The function block BOOTPRG_HASH_INFO reads the MD5 hash of the boot project.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1502

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1503

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

BOOTZIP_HASH (array [0..15] of byte) outputs the MD5 hash of the user program part of the
boot project (BOOT.ZIP file).

WEBZIP_HASH (array [0..15] of byte) outputs the MD5 hash of the webvisu part of the boot
project (WEB.ZIP file).

Function call in ST
Hash (EN := Hash_EN);

Hash_DONE := Hash.DONE;
Hash_ERR := Hash.ERR;
Hash_ERNO := Hash.ERNO;
Hash_BOOTZIP_HASH := Hash.BOOTZIP_HASH;
Hash.WEBZIP_HASH := Hash.WEBZIP_HASH;

BOOTPROJECT_HASH_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V2.3.2

Type Function block with historical values

ERNO

BOOTZIP_HASH

WEBZIP_HASH

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1504

The function block BOOTPROJECT_HASH_INFO reads the MD5 hash of different parts of the
boot project.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1505

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

PROJECT_HASH (array [0..15] of byte) outputs the MD5 hash of the whole boot project. It is
calculated from all the following MD5 sums.

BOOTZIP_HASH (array [0..15] of byte) outputs the MD5 hash of the user program code of the
boot project (BOOT.ZIP file).

DONE

ERR

ERNO

PROJECT_HAS
H

BOOTPRG_HAS
H

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1506

WEBVISU_HASH (array [0..15] of byte) outputs the MD5 hash of all web visualization files in
the boot project.

CONFIG_HASH (array [0..15] of byte) outputs the MD5 hash of PLC configuration in the boot
project.

SYMBOL_HASH (array [0..15] of byte) outputs the MD5 hash of the symbol file in the boot
project.

FLEXCONF_HASH (array [0..15] of byte) outputs the MD5 hash of the flexible configuration file
of the boot project.

ADD_FILES_HASH (array [0..15] of byte) outputs the MD5 hash of all additional files contained
in the boot project.

STATE outputs the validity of the hash outputs. It contains status bits for different states the
PLC can be in. These states affect whether the hashes at the outputs of this function block will
be valid or not and why. All the Status Bits are also shown at the other BOOL outputs of this
function block:
NO_BOOTPRG STATE.Bit0
ONL_CHANGE STATE.Bit1
DOWNLOAD STATE.Bit2
BOOTLOAD STATE.Bit3

Data type Default value Range Unit
BOOL - TRUE/FALSE -

NO_BOOTPRG is set to TRUE if no boot project has been found that could be hashed (STATE
Bit 0).

Data type Default value Range Unit
BOOL - TRUE/FALSE -

ONL_CHANGE is set to TRUE if an online change has been done since booting the PLC, so
the hashes are outdated (STATE Bit 1).

Data type Default value Range Unit
BOOL - TRUE/FALSE -

DOWNLOAD is set to TRUE if a project download has been done since booting the PLC, so the
hashes are outdated (STATE Bit 2).

Data type Default value Range Unit
BOOL - TRUE/FALSE -

DOWNLOAD is set to TRUE if a boot project download has been flashed since booting the PLC,
so the hashes are outdated (STATE Bit 3).

WEB-
VISU_HASH

CONFIG_HASH

SYMBOL_HASH

FLEX-
CONF_HASH

ADD_FILES_HA
SH

STATE BYTE

NO_BOOTPRG

ONL_CHANGE

DOWNLOAD

BOOTLOAD

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1507

Function call in ST
BOOTPROJECT_HASH_INFO (EN := Hash_EN);

Hash_DONE := BOOTPROJECT_HASH_INFO.DONE;
Hash_ERR := BOOTPROJECT_HASH_INFO.ERR;
Hash_ERNO := BOOTPROJECT_HASH_INFO.ERNO;
Hash_PROJECT_HASH := BOOTPROJECT_HASH_INFO.PROJECT_HASH;
Hash_BOOTPRG_HASH := BOOTPROJECT_HASH_INFO.BOOTPRG_HASH;
Hash_WEBVISU_HASH := BOOTPROJECT_HASH_INFO.WEBVISU_HASH;
Hash_CONFIG_HASH := BOOTPROJECT_HASH_INFO.CONFIG_HASH;
Hash_SYMBOL_HASH := BOOTPROJECT_HASH_INFO.SYMBOL_HASH;
Hash_FLEXCONF_HASH := BOOTPROJECT_HASH_INFO.FLEXCONF_HASH;
Hash_ADD_FILES_HASH := BOOTPROJECT_HASH_INFO.ADD_FILES_HASH;
Hash_STATE := BOOTPROJECT_HASH_INFO.STATE;
Hash_NO_BOOTPRG := BOOTPROJECT_HASH_INFO.NO_BOOTPRG;
Hash_ONL_CHANGE := BOOTPROJECT_HASH_INFO.ONL_CHANGE;
Hash_DOWNLOAD := BOOTPROJECT_HASH_INFO.DOWNLOAD;
Hash_BOOTLOAD := BOOTPROJECT_HASH_INFO.BOOTLOAD;

CPU_CONFIG_READ

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

The function block reads individual values of configuration data from the Flash memory. One
line consists of a pair of key values and is located within the section. The configuration data
stored in the Flash are like an ini file in their construction, like for example the sdcard.ini on the
memory card of the AC500.
Example for a line with an IP address in the section Common:
[Common]
IP_ADR=192.168.0.1
The procedure should be performed in three steps:
1. Initialization (ACT = FLASH_DATA_INIT) of the configuration data with a FALSE/TRUE

edge at input EN.
2. Reading (ACT = FLASH_DATA_READ) of the individual values (SECTION,

KEY_SEARCH, INDEX) with a FALSE/TRUE edge at input EN.
3. Cancel (ACT = FLASH_DATA_SKIP) the reading with a FALSE/TRUE edge at input EN.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1508

Input Description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type: STRING[20]
Section, within to search/read. A section has always to be specified, except for the initialization
step.

Data type: STRING[20]
If it is searched for the value of a known key, this must be specified at the input KEY_SEARCH.
The key is searched within the section which is specified at the input SECTION. In this case, the
input INDEX is ignored.

Data type: INT
The INDEX input is only evaluated, if the KEY_SEARCH input is 0.
With the INDEX input, a specified line of the configuration data within the section, specified at
input SECTION, is output.
If INDEX is unequal to 0, exactly this line number is output, if it exists. If INDEX equals 0 and if
there is no value at input KEY_SEARCH, the lines of the section (specified at input SECTION)
are output sequentially.
In the latter case each time the next line is read with every FALSE/TRUE edge at input EN as
long as the output EOS changes to TRUE and thus terminating the section.

Data type: FLASH_DATA_ACT_TYPE
With the ACT input, the function block can be set to initialize, read the configuration data or to
cancel the function block operation.

EN

SECTION

KEY_SEARCH

INDEX

ACT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1509

The input can be set to the following values:
● FLASH_DATA_INIT

With this input, the function block is initialized for processing of configuration data. The
configuration data is copied from the Flash to the RAM, where it can be processed until a
re-write into the Flash is performed via the SAVE input.
If ACT=FLASH_DATA_INIT, all the other inputs are ignored. If the initialization process is
performed, all the previous changes are discarded and the original configuration data is
copied from the Flash.

● FLASH_DATA_READ
Read data from RAM disk with the ACT = FLASH_DATA_READ.

● FLASH_DATA_SKIP
Skip current changes in RAM disk by using FLASH_DATA_SKIP at the input ACT.

Output Description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL

DONE

ERR

ERNO

EOS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1510

Output EOS (end of section) indicates whether the end of the section was reached while
searching sequentially. This output only must be evaluated, if a search is carried out with
INDEX=0 and KEY_SEARCH=0.

Data type: STRING[20]
Output KEY indicates the found key.

Data type: STRING[80]
Output VALUE indicates the value of the found key.

Function Call in ST
ConfigRead (EN := ConfigRead_EN,
 SECTION := ConfigRead_SECTION,
 KEY_SEARCH := ConfigRead_KEY_SEARCH,
 INDEX := ConfigRead_INDEX,
 ACT := ConfigRead_ACT);

ConfigRead_DONE := ConfigRead.DONE;
ConfigRead_DONE_ERR := ConfigRead.ERR;
ConfigRead_ERNO := ConfigRead.ERNO;
ConfigRead_EOS := ConfigRead.EOS;
ConfigRead_KEY := ConfigRead.KEY;
ConfigRead_VALUE := ConfigRead.VALUE;

CPU_CONFIG_WRITE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

The function block writes user-defined configuration data to the Flash memory. The configura-
tion data stored in the Flash are like an ini file in their construction, like for example the
sdcard.ini on the memory card of the AC500.
Example for a line with an IP address in the section Common:
[Common]
IP_ADR=192.168.0.1

KEY

VALUE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1511

The procedure should be performed in three steps:
1) Initialization (ACT = FLASH_DATA_INIT) of the configuration data with a FALSE/TRUE edge
at input EN.
2) Writing (ACT = FLASH_DATA_WRITE) of the individual values (SECTION, KEY, VALUE) with
a FALSE/TRUE edge at input EN. This step is repeated for each entry until all the desired data
has been written.
3) Transmit (ACT = FLASH_DATA_SAVE) the data into the Flash and ensuring a permanent
data storage in this way.
Only after the third step has been done, the data is stored in the Flash and will be non-volatile in
case of power-down.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Section to write to.

Key to be written.

Value of the key to be written.

Data type: FLASH_DATA_ACT_TYPE
With the ACT input, the function block can be set to initialize, write the configuration data or to
save, to skip or reset the function block operation. The input can be set to following values:
FLASH_DATA_INIT:
With this input, the function block is initialized for processing of configuration data. The configu-
ration data is copied from the Flash to the RAM, where it can be processed until a re-write into
the Flash is performed via the SAVE input. If ACT = FLASH_DATA_INIT, all the other inputs are
ignored. If the initialization process is performed, all the previous changes are discarded and the
original configuration data is copied from the Flash.

EN

SECTION

KEY

VALUE

ACT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1512

FLASH_DATA_WRITE:
Write data to RAM disk with the ACT = FLASH_DATA_WRITE.
FLASH_DATA_SAVE: Save data from RAM disk to Flash
Using ACT = FLASH_DATA_SAVE, all changes made at the configuration data are saved to
Flash. So they are stored non-volatile during power-down. If this step is not carried out, all
previous changes are lost. Since writing into the Flash takes some time, the save action should
be performed as the last step, after all of the desired values are written, modified or deleted.
FLASH_DATA_SKIP:
Skip current changes in RAM disk by using FLASH_DATA_SKIP at the input ACT.
FLASH_DATA_RES:
With this input, a reset function is carried out, which deletes all of the configuration data
completely.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1513

Function call in ST
ConfigWrite (EN := ConfigWrite_EN,
 SECTION := ConfigWrite_SECTION,
 KEY := ConfigWrite_KEY,
 VALUE := ConfigWrite_VALUE,
 ACT := ConfigWrite_ACT);

ConfigWrite_DONE := ConfigWrite.DONE;
ConfigWrite_ERR := ConfigWrite.ERR;
ConfigWrite_ERNO := ConfigWrite.ERNO;

CPU_PROD_ENTRY_READ

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

The function block reads one line from the production data in the Flash memory. One line
consists of a pair of key values and is located within a section.
The section name of the production data is called "Common". It consists of many keys with the
corresponding values, see table:

Production data Comment
Common Section Name Name of the section

BA_INST Key and value BA number

IDENT Key and value SAP identnumber

INDEX Key and value Index of the module

MAC Key and value MAC address of the CPU

MANUF_DATE Key and value Date of manufacture

MANUF_YEAR Key and value Manufacturing year

MANUF_PLACE Key and value Place where the PLC was pro-
duced

SERIAL_NR Key and value Serial number of the PLC

TYPE Key and value CPU type

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1514

The procedure should be performed in three steps:
1. Initialization (ACT = FLASH_DATA_INIT) of the production data with a FALSE/TRUE edge

at input EN.
2. Reading (ACT = FLASH_DATA_READ) of the individual values (SECTION,

KEY_SEARCH, INDEX) with a FALSE/TRUE edge at input EN.
3. Cancel (ACT = FLASH_DATA_SKIP) the reading with a FALSE/TRUE edge at input EN.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type: STRING[20]
Section, within to search/read. A section has always to be specified, except for the initialization
step.

Data type: STRING[20]
If it is searched for the value of a known key, this must be specified at the input KEY_SEARCH.
The key is searched within the section which is specified at the input SECTION. In this case, the
input INDEX is ignored.

Data type: INT
The INDEX input is only evaluated, if the KEY_SEARCH input is 0.
With the INDEX input, a specified line of the configuration data within the section, specified at
input SECTION, is output.
If INDEX is unequal to 0, exactly this line number is output, if it exists. If INDEX equals 0 and if
there is no value at input KEY_SEARCH, the lines of the section (specified at input SECTION)
are output sequentially.

EN

SECTION

KEY_SEARCH

INDEX

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1515

In the latter case each time the next line is read with every FALSE/TRUE edge at input EN as
long as the output EOS changes to TRUE and thus terminating the section.

Data type: FLASH_DATA_ACT_TYPE
With the ACT input the function block can be set to initialize, read the production data or to
cancel the function block operation. The input can be set to following values:
FLASH_DATA_INIT:
With this input, the function block is initialized for processing of production data. The production
data is copied from the Flash to the RAM, where it can be processed until a re-write into the
Flash is performed via the SAVE input. If ACT = FLASH_DATA_INIT, all the other inputs are
ignored. If the initialization process is performed, all the previous changes are discarded and the
original configuration data is copied from the Flash.
FLASH_DATA_READ:
Read data from RAM disk with the ACT = FLASH_DATA_READ.
FLASH_DATA_SKIP:
Skip current changes in RAM disk by using FLASH_DATA_SKIP at the input ACT.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

ACT

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1516

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
Output EOS (end of section) indicates whether the end of the section was reached while
searching sequentially. This output only must be evaluated, if a search is carried out with
INDEX=0 and KEY_SEARCH=0.

Data type: STRING[20]
Output KEY indicates the found key.

Data type: STRING[80]
Output VALUE indicates the value of the found key.

Function call in ST
CPU_PROD_ENTRY_READ(EN := EN_CPU_PROD_ENTRY_READ,
 SECTION := SECTION_CPU_PROD_ENTRY_READ,
 KEY_SEARCH := KEY_SEARCH_CPU_PROD_ENTRY_READ,
 INDEX := INDEX_CPU_PROD_ENTRY_READ,
 ACT := ACT_CPU_PROD_ENTRY_READ);

DONE_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.DONE;
ERR_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.ERR;
ERNO_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.ERNO;
EOS_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.EOS;
KEY_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.KEY;
VALUE_CPU_PROD_ENTRY_READ:= CPU_PROD_ENTRY_READ.VALUE;

DIAG_ACK

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

EOS

KEY

VALUE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1517

The function block DIAG_ACK can be used to acknowledge any error. Selection of the error to
be acknowledged is performed using a 32-bit code. If the error list contains several entries with
the selected error code number, acknowledgement is always performed for the oldest entry in
the list.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
DWORD - - -

At input CODE, the code number of the error to be acknowledged is specified. The code
number of an existing error can be read using the function block DIAG_GET or calculated
manually. The structure of the error coding is as follows:

31 30

0 0

29 28

x x

27 26

x x

25 24

x x

23 22

x x

21 20

x x

19 18

x x

17 16

x x

15 14

x x

13 12

x x

11 10

x x

9 8

x x

7 6

x x

5 4

x x

3 2

x x

1 0

x x

CLASS COMPONENT DEVICE MODULE CHANNEL ERROR

32 Bit –>

Bit 0 to 5 - Error number Valid range: 0...63

Bit 6 to 10 - Channel number Valid range: 0...31

Bit 11 to 15 - Module number Valid range: 0...31

Bit 16 to 23 - Device number Valid range: 0...255

Bit 24 to 27 - Component number Valid range: 0...15

Bit 28 to 29 - Error class Valid range: 1...4

Bit 30 to 31 - Reserved; both bits always must be zero.

Valid range: 16#3E9...16#3FFFFFFF

EN

CODE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1518

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
DiagAck(EN := DiagAck_EN,
 CODE := DiagAck_CODE);

DiagAck_DONE := DiagAck.DONE;
DiagAck_ERR := DiagAck.ERR;
DiagAck_ERNO := DiagAck.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1519

DIAG_ACK_ALL

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The function block DIAG_ACK_ALL can be used to acknowledge all errors of an error class
simultaneously. Selection of the error class, the errors of which are to be acknowledged, is done
using the input CLASS.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1...4 -

At input CLASS, the error class is specified, the errors of which are to be acknowledged.

EN

CLASS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1520

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
DiagAckAll(EN := DiagAckAll_EN,
 CLASS := DiagAckAll_CLASS);

DiagAckAll_DONE := DiagAckAll.DONE;
DiagAckAll_ERR := DiagAckAll.ERR;
DiagAckAll_ERNO := DiagAckAll.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1521

DIAG_CI5XX_DECODE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The function block decodes CI5XX diagnosis data to AC500 diagnosis system information.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1522

Data type Default value Range Unit
WORD 0 - -

Identifier of the diagnosis format to read from CI5XX.

Data type Default value Range Unit
DWORD 0 - -

Address to the memory where the diagnosis message should be read from.

Data type Default value Range Unit
WORD 0 - -

Length of the data to read from CI5XX in bytes. Depends on the ID. For available structures see
your CI5XX documentation.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

STRUCT_ID

DATA

DATA_LEN

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1523

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL FALSE - -

The output COME is the flag of standard AC500 diagnosis. It indicates that a diagnosis mes-
sages has appeared. For details see Ä Chapter 1.7.1 “The diagnosis system” on page 6365.

Data type Default value Range Unit
BOOL FALSE - -

The output GO is the flag of standard AC500 diagnosis. It indicates that a diagnosis messages
has disappeared. For details see Ä Chapter 1.7.1 “The diagnosis system” on page 6365.

Data type Default value Range Unit
BYTE 0 - -

The output CLASS indicates the severity of the diagnosis message. For details see Ä Chapter
1.7.1 “The diagnosis system” on page 6365.

Data type Default value Range Unit
BYTE 0 - -

The output MODULE shows the module the read error is assigned to.

Data type Default value Range Unit
BYTE 0 - -

The output CHANNEL shows the channel the read error is assigned to.

Data type Default value Range Unit
BYTE 0 - -

The outputs ERROR provides the error number of the read error.

ERNO

COME

GO

CLASS

MODULE

CHANNEL

ERROR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1524

DIAG_EVENT

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The function block DIAG_EVENT can be used to generate any error of component 15
(Ä Chapter 1.7.1.5 “Structure of error numbers” on page 6369). Each error can have three
possible states: 1) "Error has come" (COME), 2)"Error has gone" (GO) and 3) "Error has
been acknowledged". Using the function block DIAG_EVENT, errors of the states 1) and
2) can be generated. Error acknowledgement is done using the function blocks DIAG_ACK
Ä Chapter 1.5.4.19.2.6 “DIAG_ACK” on page 1517 or DIAG_ACK_ALL Ä Chapter 1.5.4.19.2.7
“DIAG_ACK_ALL” on page 1520 or using the Ä Chapter 1.7.1.5 “Structure of error numbers”
on page 6369 or directly using the display.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1525

Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Input COME is used to specify the status of the error to be generated. This input can be used in
combination with input GO.
COME = TRUE = "Error has come"

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Input GO is used to specify the status of the error to be generated. This input can be used in
combination with input COME.
GO = TRUE = "Error has gone"

Data type Default value Range Unit
BYTE - 1...4 -

At input CLASS, the error class is specified, the errors of which are to be acknowledged.

Data type Default value Range Unit
BYTE - 0...255 -

Input "DEVICE" is used to specify the device number the generated error should be assigned to.

Data type Default value Range Unit
BYTE - 0...31 -

Input "MODULE" is used to specify the module the generated error should be assigned to.

Data type Default value Range Unit
BYTE - 0...31 -

Input "CHANNEL" is used to specify the channel the generated error should be assigned to.

Data type Default value Range Unit
BYTE - 0...63 -

At input "ERROR", the error number to be generated is specified. In order to facilitate later
assignment of the errors, it is recommended to use the error numbers already defined. Please
refer to the corresponding chapter for a more detailed overview of possible system errors and
the used error numbers. If an error is not yet declared by an error number, it is recommended to
use a free error number.

COME

GO

CLASS

DEVICE

MODULE

CHANNEL

ERROR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1526

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
DiagEvent(EN := DiagEvent_EN,
 COME := DiagEvent_COME,
 GO := DiagEvent_GO,
 CLASS := DiagEvent_CLASS,
 DEVICE := DiagEvent_DEVICE,
 MODULE := DiagEvent_MODULE,
 CHANNEL := DiagEvent_CHANNEL,
 ERROR := DiagEvent_ERROR);

DiagEvent_DONE := DiagEvent.DONE;
DiagEvent_ERR := DiagEvent.ERR;
DiagEvent_ERNO := DiagEvent.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1527

DIAG_GET

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The function block "DIAG_GET" can be used to read an error of any error class. Each error can
only be read once. If this function block is used more than once for a specific error class, the
next error output is the oldest error that has not been read yet. If all errors were already read or
if there is no existing error available, this is accordingly indicated at output STATE.

Input description

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1528

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1...4 -

At input CLASS, the error class is specified, the errors of which are to be acknowledged.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN

CLASS

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1529

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

STATE outputs the current status of the read error. The error status is a combination of the
states "Error has come", "Error has gone" and "Error has been acknowledged". The following
status numbers are possible:

State Error come gone acknowledged

16#02 x

16#04 x

16#06 x x

16#08 x

16#0A x x

16#0C x x

16#0E x x x

16#F0 Alle errors read or no error available

Data type Default value Range Unit
BYTE - - -

"COMP" outputs the component number the read error is assigned to.

Data type Default value Range Unit
BYTE - - -

"DEVICE" outputs the device number the read error is assigned to.

Data type Default value Range Unit
BYTE - - -

"MODULE" outputs the module the read error is assigned to.

Data type Default value Range Unit
BYTE - - -

"CHANNEL" outputs the channel the read error is assigned to.

ERNO

STATE

COMP

DEVICE

MODULE

CHANNEL

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1530

Data type Default value Range Unit
BYTE - - -

"ERROR" outputs the error number of the read error.

Data type: DT
T_COME (time come) outputs the time stamp, when the read error occurred ("has come"). If no
time stamp is available for the error status "come" (see also the description of output STATE),
no value is written to this output. In this case, the output value remains at the default value
DT#1970-01-01-00:00.

Data type: DT
T_GO (time go) outputs the time stamp, when the read error "has gone". If no time stamp
is available for the error status "gone" (see also the description of output STATE), no
value is written to this output. In this case, the output value remains at the default value
DT#1970-01-01-00:00.

Data type: DT
T_ACK (time acknowledge) outputs the time stamp, when the read error was "acknowledged".
If no time stamp is available for the error status "acknowledged" (see also the description of
output STATE), no value is written to this output. In this case, the output value remains at the
default value DT#1970-01-01-00:00.

Data type Default value Range Unit
DWORD - - -

CODE outputs the code number of the read error. The structure of the error encoding is as
follows:

31 30

0 0

29 28

x x

27 26

x x

25 24

x x

23 22

x x

21 20

x x

19 18

x x

17 16

x x

15 14

x x

13 12

x x

11 10

x x

9 8

x x

7 6

x x

5 4

x x

3 2

x x

1 0

x x

CLASS COMPONENT DEVICE MODULE CHANNEL ERROR

32 Bit –>

Function call in ST
DiagGet(EN := DiagGet_EN,
 CLASS := DiagGet_CLASS);

DiagGet_DONE := DiagGet.DONE;
DiagGet_ERR := DiagGet.ERR;
DiagGet_ERNO := DiagGet.ERNO;
DiagGet_STATE := DiagGet.STATE;
DiagGet_COMP := DiagGet.COMP;
DiagGet_DEVICE := DiagGet.DEVICE;
DiagGet_MODULE := DiagGet.MODULE;
DiagGet_CHANNEL := DiagGet.CHANNEL;

ERROR

T_COME

T_GO

T_ACK

CODE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1531

DiagGet_ERROR := DiagGet.ERROR;
DiagGet_T_COME := DiagGet.T_COME;
DiagGet_T_GO := DiagGet.T_GO;
DiagGet_T_ACK := DiagGet.T_ACK;
DiagGet_CODE := DiagGet.CODE;

DIAG_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The function block DIAG_INFO can be used to display an overview of all errors that were not
read yet. The output is sorted according to the error classes E1 to E4. If at least one error
is present in any error class and if this error has not been read yet using the function block
DIAG_GET, this is displayed at the corresponding Ex output.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1532

Output description

Data type: BOOL
Operation done = TRUE, as long as EN = TRUE
Output DONE indicates the state of job processing. If the processing is finished, DONE is set to
TRUE.

Data type: BOOL
Output E1 is set to TRUE, if at least 1 error is present in error class 1 and if this error has not
been read yet using the function block DIAG_GET.
Consequently, if E1 is FALSE, either no errors are available in this error class or, if errors are
available, all errors of this class were already read.

Data type: BOOL
Output E2 is set to TRUE, if at least 1 error is present in error class 2 and if this error has not
been read yet using the function block DIAG_GET.
Consequently, if E2 is FALSE, either no errors are available in this error class or, if errors are
available, all errors of this class were already read.

Data type: BOOL
Output E3 is set to TRUE, if at least 1 error is present in error class 3 and if this error has not
been read yet using the function block DIAG_GET.
Consequently, if E3 is FALSE, either no errors are available in this error class or, if errors are
available, all errors of this class were already read.

Data type: BOOL
Output E4 is set to TRUE, if at least 1 error is present in error class 4 and if this error has not
been read yet using the function block DIAG_GET.
Consequently, if E4 is FALSE, either no errors are available in this error class or, if errors are
available, all errors of this class were already read.

DONE (done)

E1
(error class 1)

E2
(error class 2)

E3
(error class 3)

E4
(error class 4)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1533

Function call in ST
DiagInfo(EN := DiagInfo_EN);

DiagInfo_DONE := DiagInfo.DONE;
DiagInfo_E1 := DiagInfo.E1;
DiagInfo_E2 := DiagInfo.E2;
DiagInfo_E3 := DiagInfo.E3;
DiagInfo_E4 := DiagInfo.E4;

DIAG_INFO_NACK

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

The function block DIAG_INFO_NACK displays an overview of all errors that were not acknowl-
edged yet by buttons/display or function block DIAG_EVENT. The output is sorted according to
the error classes E1 to E4. If at least one error is present in any error class and if this error has
not been acknowledged yet, this is displayed at the corresponding Ex output.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1534

In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

Data type: BOOL
Operation done = TRUE, as long as EN = TRUE
Output DONE indicates the state of job processing. If the processing is finished, DONE is set to
TRUE.

Data type: BOOL
Output E1 is set to TRUE, if at least 1 error is present in error class 1 and if this error has not
been read yet using the function block DIAG_GET.
Consequently, if E1 is FALSE, either no errors are available in this error class or, if errors are
available, all errors of this class were already read.

Data type: BOOL
Output E2 is set to TRUE, if at least 1 error is present in error class 2 and if this error has not
been read yet using the function block DIAG_GET.
Consequently, if E2 is FALSE, either no errors are available in this error class or, if errors are
available, all errors of this class were already read.

Data type: BOOL
Output E3 is set to TRUE, if at least 1 error is present in error class 3 and if this error has not
been read yet using the function block DIAG_GET.
Consequently, if E3 is FALSE, either no errors are available in this error class or, if errors are
available, all errors of this class were already read.

Data type: BOOL
Output E4 is set to TRUE, if at least 1 error is present in error class 4 and if this error has not
been read yet using the function block DIAG_GET.
Consequently, if E4 is FALSE, either no errors are available in this error class or, if errors are
available, all errors of this class were already read.

DONE (done)

E1
(error class 1)

E2
(error class 2)

E3
(error class 3)

E4
(error class 4)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1535

Function call in ST
DiagInfo(EN := DiagInfo_EN);
DiagInfo_DONE := DiagInfo.DONE;
DiagInfo_E1 := DiagInfo.E1;
DiagInfo_E2 := DiagInfo.E2;
DiagInfo_E3 := DiagInfo.E3;
DiagInfo_E4 := DiagInfo.E4;

DIAG_RESET

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

Function block DIAG_RESET is used for resetting the diagnosis system of the CPU completely.

Input description

Data type: BOOL
The function block is activated by a TRUE at the input EN. A FALSE keeps the function
block deactivated. Is the function block activated, the values being present at the inputs are
processed and the output values are delivered.

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1536

Output description

Data type: BOOL
Operation done = TRUE, as long as EN = TRUE
Output DONE indicates the state of job processing. If the processing is finished, DONE is set to
TRUE.

Function call in ST
DiagReset(EN := DiagReset_EN);
DiagReset_DONE := DiagReset.DONE;

DPRAM_CM5XX_REC

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

The function block DPRAM_CM5XX_REC is used for receiving data from an CM5xx. This data
is stored in the configured memory area (DATA), i.e. the memory address for the received data
via ADR operator. The function block is triggered by a high signal at input EN. It remains active
until the input EN is set to FALSE. The slot number and the channel of the CM5xx are put
to the inputs SLOT and CH. The output DATA_LEN shows the length of the received data in
bytes. The successful data reception is indicated by DONE=TRUE and ERR=FALSE. If during
operation an error was detected, this is indicated at the outputs ERR and ERNO.

DONE (done)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1537

CAUTION!
The reception using the function function block DPRAM_CM5XX_REC is not
edge-triggered. The input EN must therefore be at TRUE as long as data has to
be received.

DPRAM message-based data exchange allows a maximum of 260 Bytes per
message to be sent or received.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input CH (channel), the addressed channel is specified.
Valid values: 1 and 2.

Data type: DWORD
At input DATA, the address of the variable is specified, of which the user data shall be received.
DATA must be the address of a variable of the type ARRAY or STRUCT.

EN

SLOT

CH (channel)

DATA (data)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1538

CAUTION!
Memory area overlapping
Avoid memory area overlappings by specifying the size of the variable to the
max. data expected.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

DATA_LEN (datalength) outputs the length of the received data in bytes. DATA_LEN is only
valid if DONE = TRUE.

DONE

ERR

ERNO

DATA_LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1539

Function call in ST
CM5xxRec (EN := CM5xxRec_EN,
 SLOT := CM5xxRec_SLOT,
 CH := CM5xxRec_CH,
 DATA := ADR(CM5xxRec_DATA),
 DONE => CM5xxRec_DONE,
 ERR => CM5xxRec_ERR,
 ERNO => CM5xxRec_ERNO,
 DATA_LEN => CM5xxRec_DATA_LEN);

CM5xxRec_DONE := CM5xxRec.DONE;
CM5xxRec_ERR := CM5xxRec.ERR;
CM5xxRec_ERNO := CM5xxRec.ERNO;
CM5xxRec_DATA_LEN := CM5xxRec.DATA_LEN;

DPRAM_CM5XX_SEND

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

The function block DPRAM_CM5XX_SEND is used for sending data to the CM5xx. This data
is provided in the configured memory area (DATA), i.e. the memory address for the data to be
sent via ADR operator. The function block is activateded by a high signal at input EN. It remains
active until the input EN is set to FALSE. The slot number and the channel of the CM5xx are put
to the inputs SLOT and CH. At the input DATA_LEN the length of the data to be sent is specified
in bytes. The successful data transmission is indicated by DONE=TRUE and ERR=FALSE. If
during operation an error was detected, this is indicated at the outputs ERR and ERNO.

Sending data with the function block DPRAM_CM5XX_SEND is edge-triggered,
i.e. that each sending process is triggered by a FALSE/TRUE edge at input EN.

DPRAM message-based data exchange allows a maximum of 260 Bytes per
message to be sent or received.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1540

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input CH (channel), the addressed channel is specified.
Valid values: 1 and 2.

Data type: DWORD
At input DATA, the address of the variable is specified, of which the user data shall be received.
DATA must be the address of a variable of the type ARRAY or STRUCT.

CAUTION!
Memory area overlapping
Avoid memory area overlappings by specifying the size of the variable to the
max. data expected.

Data type: DWORD
At input DATA_LEN the length of the data to be sent is specified in bytes.

Output description
Data type: BOOL
Output DONE indicates that data has been sent. The output must always be considered
together with the output ERR.
The following is valid:
DONE = TRUE and ERR = FALSE:
The sending process has been completed. A data set has been sent correctly.
DONE = TRUE and ERR = TRUE:
An error occurred while sending data. The error number is indicated at output ERNO.

EN

SLOT

CH (channel)

DATA (data)

DATA_LEN

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1541

Data type: BOOL
Output ERR indicates whether an error occurred during Function Block processing. This output
always has to be considered together with output DONE. If DONE is TRUE and ERR is TRUE,
an error occurred. In this case, the error number can be read at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
CM5xxSend (EN := CM5xxSend_EN,
 SLOT := CM5xxSend_SLOT,
 CH := CM5xxSend_CH,
 DATA := ADR(CM5xxSend_DATA),
 DATA_LEN := CM5xxSend_DATA_LEN,
 DONE => CM5xxSend_DONE,
 ERR => CM5xxSend_ERR,
 ERNO => CM5xxSend_ERNO);

CM5xxSend_DONE := CM5xxSend.DONE;
CM5xxSend_ERR := CM5xxSend.ERR;
CM5xxSend_ERNO := CM5xxSend.ERNO;

FLASH_DEL

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

This function block deletes a user data segment from the Flash. All data in this data segment
are lost after deletion.
Access to the Flash is only possible using the function blocks FLASH_DEL, FLASH_WRITE and
FLASH_READ.
The input SEG defines the data segment within the Flash. In the AC500, two segments with the
number 1 and 2 are reserved for the user, each providing 64 kB. Deleting a data segment within
the Flash may take several PLC cycles.

ERR (error)

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1542

A FALSE/TRUE edge at input EN triggers the deletion of the data segment once. Input EN will
not be evaluated again, until the delete operation is completed (DONE = TRUE).
After completion of the delete procedure, all function block outputs are updated. The deletion
was successful, if DONE = TRUE and ERR = FALSE. If the outputs show DONE = TRUE and
ERR = TRUE, the data segment could not be deleted.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type: BYTE
At input SEG, the number of the data segment in the Flash is specified. In the AC500, controller
two data segments are available for the user.
Valid values: 1 and 2 respectively

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

EN

SEG

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1543

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

The output ERNO indicates an error number (see Ä Chapter 1.5.3 “Error messages of the
AC500 V2 function block libraries” on page 735). This output has always to be considered
together with the outputs DONE and ERR.
The functions FLASH_DEL, FLASH_WRITE and FLASH_READ are executed in the back-
ground by the operating system. This procedures can take quite long time, since the PLC user
program is processed with priority. Output ERNO then indicates that the block execution is in
progress (0x0FFF).
During this phase, the outputs ERR and DONE are set to FALSE.
The inputs and outputs can neither be duplicated nor inverted.

Function call in ST
DEL_FLASH(EN := EN_FLASH_DEL,
SEG := SEG_FLASH_DEL);
DONE_FLASH_DEL := DEL_FLASH.DONE;
ERR_FLASH_DEL := DEL_FLASH.ERR;
ERNO_FLASH_DEL := DEL_FLASH.ERNO;

FLASH_READ

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The function block reads a data set from a data segment of the Flash and stores the read data
set beginning at the start flag defined by SM. The data of the data set have been previously
stored to the Flash using the function block FLASH_WRITE.

ERR

ERNO WORD
 (error number)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1544

Important note:
Access to the Flash is only possible using the function blocks FLASH_WRITE and
FLASH_READ.
NB function blocks are read starting at function block BNR within segment SEG and stored
starting at address SM.
Either 32 binary data or 16 word data or 8 double word data are read per function block.
One function block contains 34 bytes:
32 bytes of data
1 byte CRC checksum
1 byte "written identifier"
Reading a data set is triggered once by a FALSE/TRUE edge at input EN. If no error occurred
when reading the data, DONE is set to TRUE and the outputs ERR and ERNO are set to
FALSE. The data set is stored beginning at the defined start flag SM. Storing the data set can
take several PLC cycles.
If an error occurs during reading, DONE and ERR are both set to TRUE. The error type is
indicated at output ERNO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
WORD - 1 ... 1927 -

The number of the data set blocks is specified at input NB. Either 32 binary data or 16 word
data or 8 double word data are read per block.

EN

NB

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1545

- SM = ADR(%MW0.0) and NB = 1: Storing data from %MW0.0 to %MW0.15
(1 block = 16 word data)
- SM = ADR(%MW0.0) and NB = 2: Storing data from %MW0.0 to %MW0.31
(2 blocks = 32 word data)

Example:

Data type: BYTE
At input SEG, the number of the data segment in the Flash is specified. In the AC500, controller
two data segments are available for the user.
Valid values: 1 and 2 respectively

Data type Default value Range Unit
WORD - - -

The block number in the data segment is specified at input BNR. Valid values: 0...1926

Data type Default value Range Unit
DWORD - - -

At input SM (source memory), the address of the first variable for storing the data set is
specified using an ADR operator.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

SEG

BNR

SM

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1546

The output ERNO indicates an error number(see Ä Chapter 1.5.3 “Error messages of the
AC500 V2 function block libraries” on page 735). This output has always to be considered
together with the outputs DONE and ERR.
The functions FLASH_DEL, FLASH_WRITE and FLASH_READ are executed in the back-
ground by the operating system. This procedures can take quite long time, since the PLC user
program is processed with priority. Output ERNO then indicates that the block execution is in
progress (0x0FFF).
During this phase, the outputs ERR and DONE are set to FALSE.

The inputs and outputs can neither be duplicated nor inverted.
The following figure shows the structure of a Flash segment.

Byte: 1 | 2 3 | 4 5 | 6 29 | 30 31 | 32 33 34
Byte-
Offset

Block-
No.

Word 1 Word 2 Word 3 Word
15

Word
16

CRC Written
Identi-
fier

0 0

34 1

68 2

... ...

65450 1925

65484 1926

Function call in ST
READ_FLASH(EN := EN_FLASH_READ,
 NB := NB_FLASH_READ,
 SEG := SEG_FLASH_READ,
 BNR := BNR_FLASH_READ,
 SM := SM_FLASH_READ)
DONE_FLASH_READ := READ_FLASH.DONE;
ERR_FLASH_READ := READ_FLASH.ERR;
ERNO_FLASH_READ := READ_FLASH.ERNO;

FLASH_WRITE

ERNO WORD

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1547

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The function block writes a data set to a data segment in the Flash. For that purpose, two data
segments are available for the AC500. A delete operation (function block FLASH_DEL) always
deletes a complete data segment. A data segment consists of 1927 blocks (0 ... 1926). Each
block is composed of 34 bytes.
After a delete operation, data can be written only once to each of these 1927 data segment
blocks. If a block containing data is to be overwritten with new data, the entire data segment has
to be deleted first. In doing so, all data in this segment are lost.
Access to the Flash is only possible using the function blocks FLASH_DEL, FLASH_WRITE and
FLASH_READ.
NB blocks are read starting at address SM and stored in the segment SEG starting at block
BNR.
Either 32 binary data or 16 word data or 8 double word data are read per block.
One block contains 34 bytes:
32 bytes of data
1 byte CRC checksum
1 byte "written identifier"
(see figure at the end of this block description)
When a write operation of a data set is started (FALSE/TRUE edge at input EN), the data of the
data set must not be changed until the end of the write procedure (DONE = TRUE). Storing the
data set in the FLASH can take several PLC cycles.
With a FALSE/TRUE edge at input EN, the data set is written once. Until the storage procedure
has not been finished (DONE = TRUE), input EN will not be evaluated again.
After the write operation is completed, the block outputs DONE, ERR and ERNO are updated.
The storage was successful, if DONE = TRUE and ERR = FALSE. If DONE = TRUE and ERR =
TRUE, an error occurred. The error type is signalized at output ERNO.
A new FALSE/TRUE edge at input EN starts a new write operation. Since without a previous
deletion of the data segment no new data can be written to blocks which already contain data,
the input BNR must point to the next free block for the next write procedure.

Input description

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1548

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
WORD - 1 ... 1927 -

The number of the data set blocks is specified at input NB. Either 32 binary data or 16 word
data or 8 double word data are read per block.

- SM = ADR(%MW0.0) and NB = 1: Storing data from %MW0.0 to %MW0.15
(1 block = 16 word data)
- SM = ADR(%MW0.0) and NB = 2: Storing data from %MW0.0 to %MW0.31
(2 blocks = 32 word data)

Example:

Data type: BYTE
At input SEG, the number of the data segment in the Flash is specified. In the AC500, controller
two data segments are available for the user.
Valid values: 1 and 2 respectively

Data type Default value Range Unit
WORD - - -

The block number in the data segment is specified at input BNR. Valid values: 0...1926

Data type Default value Range Unit
DWORD - - -

At input SM (source memory), the address of the first variable for storing the data set is
specified using an ADR operator.

EN

NB

SEG

BNR

SM

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1549

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

The output ERNO indicates an error number(see Ä Chapter 1.5.3 “Error messages of the
AC500 V2 function block libraries” on page 735). This output has always to be considered
together with the outputs DONE and ERR.
The functions FLASH_DEL, FLASH_WRITE and FLASH_READ are executed in the back-
ground by the operating system. This procedures can take quite long time, since the PLC user
program is processed with priority. Output ERNO then indicates that the block execution is in
progress (0x0FFF).
During this phase, the outputs ERR and DONE are set to FALSE.

The inputs and outputs can neither be duplicated nor inverted.
The following figure shows the structure of a Flash segment.

Byte: 1 | 2 3 | 4 5 | 6 29 | 30 31 | 32 33 34
Byte-
Offset

Block-
No.

Word 1 Word 2 Word 3 Word
15

Word
16

CRC Written
Identi-
fier

0 0

34 1

68 2

... ...

DONE

ERR

ERNO WORD

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1550

Byte: 1 | 2 3 | 4 5 | 6 29 | 30 31 | 32 33 34
Byte-
Offset

Block-
No.

Word 1 Word 2 Word 3 Word
15

Word
16

CRC Written
Identi-
fier

65450 1925

65484 1926

Function call in ST

WRITE_FLASH(EN := EN_FLASH_WRITE,
 NB := NB_FLASH_WRITE,
 SEG := SEG_FLASH_WRITE,
 BNR := BNR_FLASH_WRITE,
 SM := SM_FLASH_WRITE)
DONE_FLASH_WRITE := WRITE_FLASH.DONE;
ERR_FLASH_WRITE := WRITE_FLASH.ERR;
ERNO_FLASH_WRITE := WRITE_FLASH.ERNO;

FPU_EXCEPTION_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Function block with historical values

The function block FPU_EXCEPTION_INFO reads information which has been stored during
an FPU exception. The reading operation takes 1 PLC cycle. If data are available, they are
provided by setting the outputs DONE = TRUE and ERR = FALSE. If several errors have
appeared up to the call of the function block, the last error is shown.

This function block only has to be used with CPUs which have an FPU. The
CPU parameter "Reaction on floating point exception" has to be set to "No
failure".

The following table represents an overview of the possible return values of the function block.

Function call in
ST

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1551

EXCEPT_ERR EXCEPT_TYPE EXCEPT_TEXT
FALSE 16#00 "No error"

TRUE 16#01 "Zero Divide"

TRUE 16#02 "Overflow"

TRUE 16#03 "Underflow"

TRUE 16#04 "Invalid"

TRUE 16#05 "Inexact"

TRUE 16#06 "Function"

The error "Function" occurs, if a result of a function (e.g. SQRT, LN or ACOS) cannot be
calculated.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1552

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output EXCEPT_ERR (exception error) indicates that an exception error has occurred in the
FPU.

Data type Default value Range Unit
BYTE - - -

Output EXCEPT_TYPE (exception type) indicates the type of the occurred exception error.

Output EXCEPT_TEXT (exception text) indicates in text form which exception error has
occurred.

Function call in ST
FpuInfo(EN := FpuInfo_EN);

FpuInfo_DONE := FpuInfo.DONE;
FpuInfo_ERR := FpuInfo.ERR;
FpuInfo_ERNO := FpuInfo.ERNO;
FpuInfo_EXCEPT_ERR := FpuInfo.EXCEPT_ERR;
FpuInfo_EXCEPT_TYPE := FpuInfo.EXCEPT_TYPE;
FpuInfo_EXCEPT_TEXT := FpuInfo.EXCEPT_TEXT;

DONE

ERR

ERNO

EXCEPT_ERR

EXCEPT_TYPE
 BYTE

EXCEPT_TEXT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1553

IO_PROD_ENTRY_READ

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V2.2.0

Type Function block with historical values

The function block reads production data from I/O modules.

This function block can be used only for I/O modules which are attached to the
local I/O bus master.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1554

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1...n* -

*) n is the max. number of I/O modules which can be attached to the local I/O bus master
Input MODULE selects the I/O module attached to the local I/O bus master. Valid values are
counted from left to right, starting with 1 as the first I/O module right to the CPU.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

MODULE

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1555

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Identification number.

Index number.

Type of the I/O module in plain text.

Calendar week when the I/O module has been manufactured.

Year when the I/O module has been manufactured.

Reserved for future extensions.

Factory, where the I/O module has been manufactured.

Serial number of the I/O module.

PLC_REBOOT

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

The function block reboots the PLC. Using the input DELAY, a delay can be specified how
long to wait until the new start. At the input WARMSTART it can be specified, whether only the
firmware shall be re-started or if a cold start shall be performed. A cold start has the same effect
as power-off/on.

IDENT_NUM

INDEX_NUM

IO_TYPE

MANU-
FACT_WEEK

MANU-
FACT_YEAR

BA_INST

FACTORY_ID

SERIAL_NUM

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1556

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
DWORD - - -

The value at the input DELAY (delay until reboot) specifies how much time will elapse until the
new start after the re-boot was triggered at the input EN.

Data type: BOOL
The input WARMSTART specifies how the PLC behaves in case of a new start. If WARMSTART
= TRUE, only the firmware of the PLC is started anew. If WARMSTART = FALSE, the new start
is equal to a cold start (like power off/on).

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

DELAY

WARMSTART

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1557

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
PLC_REBOOT(EN := EN_PLC_REBOOT,
 DELAY := DELAY_PLC_REBOOT,
 WARMSTART := WARMSTART_PLC_REBOOT);

DONE_PLC_REBOOT := PLC_REBOOT.DONE;
ERR_PLC_REBOOT := PLC_REBOOT.ERR;
ERNO_PLC_REBOOT := PLC_REBOOT.ERNO;

SD_READ

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The function block SD_READ reads a data set from a file on the memory card and stores the
read data set beginning at the start flag defined by ADRVAR.
In this context it has to be observed that the function blocks are mutually interlocked, i.e. it must
be ensured that only one function block is active at the same time.

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1558

The function block reads a data set in the file on the memory card:
...\UserData\PM5x1\UserDat\USRDATxx.DAT Ä Chapter 1.5.4.19.1 “Structure of the file USR-
DATXX.DAT on the memory card” on page 1500

Access to the memory card is only possible by using the function blocks SD_WRITE and
SD_READ.
The inputs ATTRIB, FILENO, FORMAT, ADRVAR and NVAR determine how many values
should be read from which file and in which format on the memory card as well as to which
target address they should be stored. Always a complete data set must be read.
Reading a data set from the memory card can take several PLC cycles.
With a FALSE/TRUE edge at input EN, the data set reading is triggered once. Input EN is not
evaluated again until the ready message DONE = TRUE is available, i.e. the state of EN is
ignored during reading.
After the read operation is completed, the function block outputs DONE, ERR and ERNO are
updated. Reading was successful, if DONE = TRUE and ERR = FALSE. If DONE = TRUE and
ERR = TRUE, an error occurred. The error type is signalized at output ERNO.
After reading a data set from the memory card, the function block outputs are valid for one
cycle. In the next cycle, the outputs DONE, ERR and ERNO are reset to zero. A new FALSE/
TRUE edge at input EN starts a new read operation.

To read user data from a data file without sectors from the memory card and write them to the
PLC, proceed as follows:
1. Insert the memory card.
2. Read a data set by calling the function block SD_READ with the following settings:

EN := TRUE (* FALSE/TRUE edge triggers reading *) ATTRIB := 2 (* open / read *)
FILENO := 0..99 (* number of file to be read *) SEG := address of the variable sector
name FORMAT := data format NVAR := number of data in the data set ADRVAR :=
address of the first variable to which data are to be stored.

3. 3. Further data sets can be read with the following settings after the completion message
(DONE=TRUE) is displayed. This process is started with a FALSE/TRUE edge at input
EN: EN := TRUE (* FALSE/TRUE edge triggers reading*) ATTRIB := 3 (* continue read *)
FILENO := 0..99 (* number of file to be read *) SEG := address of the variable sector
name FORMAT := data format NVAR := number of data in the data set ADRVAR :=
address of the first variable to which data are to be stored If an unexpected sector name
or the end of file (EOF) is detected during reading, an appropriate error message is
generated.

4. To read a further data set and to close the file afterwards, call the function block
SD_READ with the following settings after the completion message (output DONE=TRUE)
is displayed and start the process with a FALSE/TRUE edge at input EN: EN := TRUE (*
FALSE/TRUE edge triggers reading*) ATTRIB := 4 (* read / close *) FILENO := 0...99 (*
number of file to be read *) SEG := address of the variable sector name FORMAT := data
format NVAR := number of data in the data set ADRVAR := address of the first variable
to which data are to be stored If an unexpected sector name or the end of file (EOF) is
detected during reading, an appropriate error message is generated.

5. To close the file without reading it, call the function block SD_READ with the following set-
tings after the completion message (DONE=TRUE) and start the process with a FALSE/
TRUE edge at input EN: EN := TRUE (* FALSE/TRUE edge closes the file *) ATTRIB := 5
(* close *) FILENO := 0..99 (* number of file to be closed *)

To read user data from a data file with sectors from the memory card and write them to the PLC,
proceed as follows:

Reading
example 1:

Reading
example 2:

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1559

1. Insert the memory card.
2. Seek a sector label and read a data set by calling the function block SD_READ with the

following settings: EN := TRUE (* FALSE/TRUE edge triggers reading *) ATTRIB := 1 (*
open / seek / read *) FILENO := 0..99 (* number of the file to be read *) SEG := address
of the variable sector name FORMAT := data format NVAR := number of data in the data
set ADRVAR := address of the first variable to which data should be written The read
operation is finished successfully if output DONE = TRUE and output ERR = FALSE. A
seek error is indicated with ERR = TRUE and ERNO <> 0.

3. Further data sets can be read with the following settings after the completion message
(DONE=TRUE) is displayed. This process is started with a FALSE/TRUE edge at input
EN: EN := TRUE (* FALSE/TRUE edge triggers reading*) ATTRIB := 3 (* continue read *)
FILENO := 0..99 (* number of file to be read *) SEG := address of the variable sector
name FORMAT := data format NVAR := number of data in the data set ADRVAR :=
address of the first variable to which data are to be stored If an unexpected sector name
or the end of file (EOF) is detected during reading, an appropriate error message is
generated.

4. If you want to read further sectors / data sets, repeat steps 2 and 3.
5. To read a further data set and to close the file afterwards, call the function block

SD_READ with the following settings after the completion message (output DONE=TRUE)
is displayed and start the process with a FALSE/TRUE edge at input EN: EN := TRUE (*
FALSE/TRUE edge triggers reading*) ATTRIB := 4 (* read / close *) FILENO := 0..99 (*
number of file to be read *) SEG := address of the variable sector name FORMAT := data
format NVAR := number of data in the data set ADRVAR := address of the first variable
to which data are to be written If an unexpected sector name or the end of file (EOF) is
detected during reading, an appropriate error message is generated.

6. To close the file without reading it, call the function block SD_READ with the following set-
tings after the completion message (DONE=TRUE) and start the process with a FALSE/
TRUE edge at input EN: EN := TRUE (* FALSE/TRUE edge closes the file *) ATTRIB := 5
(* close *) FILENO := 0..99 (* number of file to be closed *)

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1560

Data type Default value Range Unit
BYTE - - -

At input ATTRIB (attribute), the function block operation (action) is specified.
Possible values:
1 - Open file, search sector, read data set (Open, Seek, Read), additionally needed inputs:
FILENO, SEG, FORMAT, NVAR, ADRVAR
2 - Open file, read data set (Open, Read), additionally needed inputs:
FILENO, FORMAT, NVAR, ADRVAR
3 - Read next data set (Read), additionally needed inputs:
FILENO, FORMAT, NVAR, ADRVAR
4 - Read data set, close file (Read, Close), additionally needed inputs:
FILENO, FORMAT, NVAR, ADRVAR
5 - Close file (Close), additionally needed inputs:
FILENO

Data type Default value Range Unit
DWORD - - -

At input SEG (segment), the start address of the segment label to be searched is specified. A
segment label must be enclosed in brackets "[...]".

[Values_Tab1]
[Temperature_12]
The length is limited to 32 characters.

Examples:

Data type Default value Range Unit
BYTE - 0...99 -

At input FILENO (filenumber), the number of the file is specified from which data are to be read.

Data type Default value Range Unit
BYTE - - -

Input Format is used to define the format of the data elements. All elements of one data set
must have the same format.
Valid data formats:
00 hex - 0 - BYTE
01 hex - 1 - CHAR
10 hex - 16 - WORD
11 hex - 17 - INT
20 hex - 32 - DWORD
21 hex - 33 - DINT

ATTRIB

SEG

FILENO

FORMAT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1561

Data type Default value Range Unit
WORD - - -

At input NVAR (number of variable), the number of elements of the data set to be read is
specified.

Data type Default value Range Unit
DWORD - - -

Input ADRVAR (address of variable) is used to specify the target start address of the data set.
The values of a data set are stored in variables successively arranged in the PLC (e.g. ARRAY,
STRING, %M area).

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

NVAR

ADRVAR

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1562

Function call in ST
READ_SD(EN := EN_SD_READ,
 ATTRIB := ATTRIB_SD_READ,
 FILENO := FILENO_SD_READ,
 SEG := SEG_SD_READ,
 FORMAT := FORMAT_SD_READ,
 NVAR := NVAR_SD_READ,
 ADRVAR := ADRVAR_SD_READ);
DONE_SD_READ := READ_SD.DONE;
ERR_SD_READ := READ_SD.ERR;
ERNO_SD_READ := READ_SD.ERNO;

SD_WRITE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The AC500 control system contains a memory card of the type "SD Memory Card" (in short
memory card) as external storage medium which is accessed by the PLC like a floppy disk
drive. The memory card is used to transfer data between a commercially available PC with
memory card interface and the AC500 control system.
Read and write accesses take quite long time, since they are handled in the background by the
internal file system of the operating system. When performing a write access, the current file is
always copied to a backup file.
In this context it has to be observed that the function blocks are mutually interlocked, i.e. it must
be ensured that only one function block is active at the same time.
The function block SD_WRITE writes a data set to a file USRDATxx.DAT on the memory card.

The function block writes a data set to a file on the memory card: ...\User-
Data\PM5x1\UserDat\USRDATxx.DAT (see also Structure of the file USRDATXX.DAT on the
memory card Ä Chapter 1.5.4.19.1 “Structure of the file USRDATXX.DAT on the memory card”
on page 1500)
Access to the memory card is only possible by using the function blocks SD_WRITE and
SD_READ.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1563

The inputs ATTRIB, FILENO, FORMAT, ADRVAR and NVAR determine how many values
should be written to which file and in which format on the memory card as well as from which
source address they should be read. To create a readable and EXCEL-compatible file, the
individual values are stored in ASCII format, automatically separated by a semicolon. The last
value is automatically terminated by a <CR><LF>.
When a write operation of a data set is started (FALSE/TRUE edge at input EN), the data of the
data set must not be changed until the end of the write procedure (DONE = TRUE). Storing a
data set on the memory card can take several PLC cycles.
Input EN is not evaluated again until the ready message DONE = TRUE is available, i.e. the
state of EN is ignored during writing.
After the write operation is completed, the function block outputs DONE, ERR and ERNO are
updated. The storage was successful, if DONE = TRUE and ERR = FALSE. If DONE = TRUE
and ERR = TRUE, an error occurred. The error type is signalized at output ERNO.
After storing a data set on the memory card, the function block outputs are valid for one cycle. In
the next cycle, the outputs DONE, ERR and ERNO are reset to zero. A new FALSE/TRUE edge
at input EN starts a new write operation.
Note: In case of a power failure during the write access, the file USRDATxx.DAT will be cor-
rupted. In order to backup at least the already stored data sets, the file USRDATxx.BAK has
to be copied from the SC Card prior to restarting the program. The file can be renamed to
USRDATxx.DAT on the PC and can then be used for further storage.

To store user data to the memory card in a data file without sectors, proceed as follows:

1. Insert the memory card.
2. Write a data set by calling the function block SD_WRITE with the following settings: EN :=

TRUE (* FALSE/TRUE edge triggers write operation *) ATTRIB := 2 (* write append *)
FILENO := 0..99 (* number of the file to be written *) SEG := address of the variable
sector name (* any *) FORMAT := data format NVAR := number of data in the data set
ADRVAR := address of the first variable to be written If no appropriate file can be found, it
will be created. The write process is successfully completed if output DONE = TRUE and
output ERR = FALSE. A write error is indicated with ERR = TRUE and ERNO <> 0.

3. Further data sets can be written with the same function block settings after the completion
message (output DONE=TRUE) is displayed. This process is started with a FALSE/TRUE
edge at input EN.

To store user data to the memory card in a data file with sectors, proceed as follows:

1. Insert the memory card.
2. Write the sector label by calling the function block SD_WRITE with the following settings:

EN := TRUE ATTRIB := 3 (* write sector *) FILENO := 0..99 (* number of the file to be
written *) SEG := address of the variable sector name If no appropriate file can be found, it
will be created. The sector is successfully written when the output DONE:=TRUE and the
output ERR:=FALSE. A write error is indicated with ERR = TRUE and ERNO <> 0.

3. Write a data set by calling the function block SD_WRITE with the following settings: EN :=
TRUE (* FALSE/TRUE edge triggers write operation *) ATTRIB := 2 (* write append *)
FILENO := 0..99 (* number of the file to be written *) SEG := address of the variable
sector name FORMAT := data format NVAR := number of data in the data set ADRVAR :=
address of the first variable to be written The write process is successfully completed if
output DONE = TRUE and output ERR = FALSE. A write error is indicated with ERR =
TRUE and ERNO <> 0.

4. Further data sets can be written with the same function block settings after the completion
message (output DONE=TRUE) is displayed. This process is started with a FALSE/TRUE
edge at input EN.

5. If you want to write further sectors and data sets, repeat steps 2...4. Note:

Writing example
1:

Writing example
2:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1564

The file USRDATxx.DAT is saved as USRDATxx.BAK for each write process and a "Open file /
Write file / Close file" procedure is performed.

To delete a data file from the memory card, proceed as follows:
1. Insert the memory card.
2. Call the function block SD_WRITE with the following settings: EN := TRUE ATTRIB := 1

(* delete *) FILENO := 0..99 (* number of the file to be deleted *) SEG, FORMAT, NVAR,
ADRVAR – any

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - - -

At input ATTRIB (attribute), the function block operation (action) is specified.
Possible values:
1 - Delete file (Delete), additionally needed inputs:
FILENO
2 - Write data set (Open(create), Write(append), Close), additionally needed inputs:
FILENO, FORMAT, NVAR, ADRVAR
3 - Write segment label (Open(create), Write(append), Close), additionally needed inputs:
FILENO, SEG

Deleting a file:

EN

ATTRIB

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1565

Data type Default value Range Unit
DWORD - - -

At input SEG (segment), the start address of the segment label to be searched is specified. A
segment label must be enclosed in brackets "[...]".

[Values_Tab1]
[Temperature_12]
The length is limited to 32 characters.

Examples:

Data type Default value Range Unit
BYTE - 0...99 -

At input FILENO, the number of the file is specified to which data are to be written or which
should be created or deleted respectively.

Data type Default value Range Unit
BYTE - - -

Input Format is used to define the format of the data elements. All elements of one data set
must have the same format.
Valid data formats:
00 hex - 0 - BYTE
01 hex - 1 - CHAR
10 hex - 16 - WORD
11 hex - 17 - INT
20 hex - 32 - DWORD
21 hex - 33 - DINT

Data type Default value Range Unit
WORD - - -

At input NVAR, the number of elements of a data set is specified.

Data type Default value Range Unit
DWORD - - -

Input ADRVAR is used to specify the start address of the data set. The values of a data set
must be available in variables successively stored in the PLC (e.g. ARRAY, STRING, %M area).

SEG

FILENO

FORMAT

NVAR

ADRVAR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1566

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
WRITE_SD(EN := EN_SD_WRITE,
 ATTRIB := ATTRIB_SD_WRITE,
 FILENO := FILENO_SD_WRITE,
 SEG := SEG_SD_WRITE,
 FORMAT := FORMAT_SD_WRITE,
 NVAR := NVAR_SD_WRITE,
 ADRVAR := ADRVAR_SD_WRITE);
DONE_SD_WRITE := WRITE_SD.DONE;
ERR_SD_WRITE := WRITE_SD.ERR;
ERNO_SD_WRITE := WRITE_SD.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1567

SLOT_CONFIG_READ

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

Function block SLOT_CONFIG_READ reads configuration data from flash of a Communication
Module in form of KEY/VALUE pairs. One line consists of a pair of key values and is located
within the section. The configuration data stored in the Flash are like an "ini" file in their
construction, like for example the sdcard.ini on the memory card of the AC500. Example for a
line with an IP address in the section Common:
[Common]
IP_ADR=192.168.0.1
The procedure should be performed in three steps:
1. Initialization (ACT = FLASH_DATA_INIT) of the configuration data with a FALSE/TRUE

edge at input EN.
2. Reading (ACT = FLASH_DATA_READ) of the individual values (SECTION,

KEY_SEARCH, INDEX) with a FALSE/TRUE edge at input EN.
3. Cancel (ACT = FLASH_DATA_SKIP) the reading with a FALSE/TRUE edge at input EN.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1568

The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: STRING[20]
Section, within to search/read. A section has always to be specified, except for the initialization
step.

Data type: STRING[20]
If it is searched for the value of a known key, this must be specified at the input KEY_SEARCH.
The key is searched within the section which is specified at the input SECTION. In this case, the
input INDEX is ignored.

Data type: INT
The INDEX input is only evaluated, if the KEY_SEARCH input is 0.
With the INDEX input, a specified line of the configuration data within the section, specified at
input SECTION, is output.
If INDEX is unequal to 0, exactly this line number is output, if it exists. If INDEX equals 0 and if
there is no value at input KEY_SEARCH, the lines of the section (specified at input SECTION)
are output sequentially.
In the latter case each time the next line is read with every FALSE/TRUE edge at input EN as
long as the output EOS changes to TRUE and thus terminating the section.

Data type: FLASH_DATA_ACT_TYPE
With the ACT input, the function block can be set to initialize, read the configuration data or to
cancel the function block operation.
The input can be set to the following values:
● FLASH_DATA_INIT

With this input, the function block is initialized for processing of configuration data. The
configuration data is copied from the Flash to the RAM, where it can be processed until a
re-write into the Flash is performed via the SAVE input.
If ACT=FLASH_DATA_INIT, all the other inputs are ignored. If the initialization process is
performed, all the previous changes are discarded and the original configuration data is
copied from the Flash.

● FLASH_DATA_READ
Read data from RAM disk with the ACT = FLASH_DATA_READ.

● FLASH_DATA_SKIP
Skip current changes in RAM disk by using FLASH_DATA_SKIP at the input ACT.

SLOT

SECTION

KEY_SEARCH

INDEX

ACT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1569

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The function blocks SLOT_CONFIG_READ, SLOT_CONFIG_WRITE and
SLOT_PROD_ENTRY_READ are executed in the background by the operating system. This
procedures can take quite a long time, since the PLC user program is processed with priority.
During this phase ERR=FALSE and DONE=FALSE.

Data type: BOOL
Output EOS (end of section) indicates whether the end of the section was reached while
searching sequentially. This output only must be evaluated, if a search is carried out with
INDEX=0 and KEY_SEARCH=0.

Data type: STRING[20]
Output KEY indicates the found key.

Data type: STRING[80]
Output VALUE indicates the value of the found key.

DONE

ERR

ERNO

EOS

KEY

VALUE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1570

Function call in ST
ConfigRead (EN := ConfigRead_EN,
SLOT := ConfigRead_SLOT,
SECTION := ConfigRead_SECTION,
KEY_SEARCH := ConfigRead_KEY_SEARCH,
INDEX := ConfigRead_INDEX,
ACT := ConfigRead_ACT);
ConfigRead_DONE := ConfigRead.DONE;
ConfigRead_DONE_ERR := ConfigRead.ERR;
ConfigRead_ERNO := ConfigRead.ERNO;
ConfigRead_EOS := ConfigRead.EOS;
ConfigRead_KEY := ConfigRead.KEY;
ConfigRead_VALUE := ConfigRead.VALUE;

SLOT_CONFIG_WRITE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

Function block SLOT_CONFIG_WRITE writes configuration data to the flash of a Communica-
tion Module in form of KEY/VALUE pairs. The configuration data stored in the Flash are like an
"ini" file in their construction, like for example the sdcard.ini on the memory card of the AC500.
Example for a line with an IP address in the section Common:
[Common]
IP_ADR=192.168.0.1
The procedure should be performed in three steps:
1. Initialization (ACT = FLASH_DATA_INIT) of the configuration data with a FALSE/TRUE

edge at input EN
2. Writing (ACT = FLASH_DATA_WRITE) of the individual values (SECTION, KEY, VALUE)

with a FALSE/TRUE edge at input EN
This step is repeated for each entry until all the desired data has been written.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1571

3. Transmit (ACT = FLASH_DATA_SAVE) the data into the Flash and ensuring a permanent
data storage in this way.
Only after the third step has been done, the data is stored in the Flash and will be
non-volatile in case of power-down.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: STRING[20]
Section to write to.

Data type: STRING[20]
Key to be written.

Data type: STRING[80]
Value of the key to be written.

Data type: FLASH_DATA_ACT_TYPE

EN

SLOT

SECTION

KEY
(key to write)

VALUE
(value to write)

ACT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1572

With the ACT (actual) input, the function block can be set to initialize, write the configuration
data or to save, to skip or reset the function block operation.
The input can be set to the following values:
● FLASH_DATA_INIT

With this input, the function block is initialized for processing of configuration data. The
configuration data is copied from the Flash to the RAM, where it can be processed until a
re-write into the Flash is performed via the SAVE input.
If ACT=FLASH_DATA_INIT, all the other inputs are ignored. If the initialization process is
performed, all the previous changes are discarded and the original configuration data is
copied from the Flash.

● FLASH_DATA_WRITE
Write data to a RAM disk with the ACT = FLASH_DATA_WRITE.

● FLASH_DATA_SKIP
Skip current changes in RAM disk by using FLASH_DATA_SKIP at the input ACT.

● FLASH_DATA_RES
With this input, a reset function is carried out, which deletes all of the configuration data
completely.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1573

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The functions SLOT_CONFIG_READ, SLOT_CONFIG_WRITE and
SLOT_PROD_ENTRY_READ are executed in the background by the operating system. This
procedures can take quite a long time, since the PLC user program is processed with priority.
During this phase ERR=FALSE and DONE=FALSE.

Function call in ST
ConfigWrite (EN := ConfigWrite_EN,
SLOT := ConfigWrite_SLOT,
SECTION := ConfigWrite_SECTION,
KEY := ConfigWrite_KEY,
VALUE := ConfigWrite_VALUE,
ACT := ConfigWrite_ACT);
ConfigWrite_DONE := ConfigWrite.DONE;
ConfigWrite_ERR := ConfigWrite.ERR;
ConfigWrite_ERNO := ConfigWrite.ERNO;

SLOT_PROD_ENTRY_READ

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function block with historical values

The function block reads one line from the production data in the Flash memory of a Communi-
cation Module.
One line consists of a pair of key values and is located within a section. The section name of the
production data is called "Common".
It consists of many keys with the corresponding values, see table:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1574

Production data Comment
Common Section Name Name of the section

BA_INST Key and value BA number

IDENT Key and value SAP identnumber

IDENT Key and value Index of the module

MAC Key and value MAC address of the CPU

MANUF_DATE Key and value Date of manufacture

MANUF_YEAR Key and value Manufacturing year

MANUF_PLACE Key and value Place where the PLC was produced

SERIAL_NR Key and value Serial number of the PLC

TYPE Key and value CPU type

The procedure should be performed in three steps:
1. Initialization (ACT = FLASH_DATA_INIT) of the production data with a FALSE/TRUE edge

at input EN.
2. Reading (ACT = FLASH_DATA_READ) of the individual values (SECTION,

KEY_SEARCH, INDEX) with a FALSE/TRUE edge at input EN.
3. Cancel (ACT = FLASH_DATA_SKIP) the reading with a FALSE/TRUE edge at input EN.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1575

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: STRING[20]
Section, within to search/read. A section has always to be specified, except for the initialization
step.

Data type: STRING[20]
If it is searched for the value of a known key, this must be specified at the input KEY_SEARCH.
The key is searched within the section which is specified at the input SECTION. In this case, the
input INDEX is ignored.

Data type: INT
The INDEX input is only evaluated, if the KEY_SEARCH input is 0.
With the INDEX input, a specified line of the configuration data within the section, specified at
input SECTION, is output.
If INDEX is unequal to 0, exactly this line number is output, if it exists. If INDEX equals 0 and if
there is no value at input KEY_SEARCH, the lines of the section (specified at input SECTION)
are output sequentially.
In the latter case each time the next line is read with every FALSE/TRUE edge at input EN as
long as the output EOS changes to TRUE and thus terminating the section.

Data type: FLASH_DATA_ACT_TYPE
With the ACT input, the function block can be set to initialize, read the configuration data or to
cancel the function block operation.
The input can be set to the following values:
● FLASH_DATA_INIT

With this input, the function block is initialized for processing of configuration data. The
configuration data is copied from the Flash to the RAM, where it can be processed until a
re-write into the Flash is performed via the SAVE input.
If ACT=FLASH_DATA_INIT, all the other inputs are ignored. If the initialization process is
performed, all the previous changes are discarded and the original configuration data is
copied from the Flash.

● FLASH_DATA_READ
Read data from RAM disk with the ACT = FLASH_DATA_READ.

● FLASH_DATA_SKIP
Skip current changes in RAM disk by using FLASH_DATA_SKIP at the input ACT.

SLOT

SECTION

KEY_SEARCH

INDEX

ACT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1576

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The functions CPU_CONFIG_READ, CPU_CONFIG_WRITE and CPU_PROD_ENTRY_READ
are executed in the background by the operating system. This procedures can take quite a long
time, since the PLC user program is processed with priority. During this phase ERR=FALSE and
DONE=FALSE.

Data type: BOOL
Output EOS (end of section) indicates whether the end of the section was reached while
searching sequentially. This output only must be evaluated, if a search is carried out with
INDEX=0 and KEY_SEARCH=0.

Data type: STRING[20]
Output KEY indicates the found key.

Data type: STRING[80]
Output VALUE indicates the value of the found key.

DONE

ERR

ERNO

EOS

KEY

VALUE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1577

Function call in ST
CPU_PROD_ENTRY_READ(EN := EN_CPU_PROD_ENTRY_READ,
SECTION := SECTION_CPU_PROD_ENTRY_READ,
KEY_SEARCH := KEY_SEARCH_CPU_PROD_ENTRY_READ,
INDEX := INDEX_CPU_PROD_ENTRY_READ,
ACT := ACT_CPU_PROD_ENTRY_READ);
DONE_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.DONE;
ERR_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.ERR;
ERNO_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.ERNO;
EOS_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.EOS;
KEY_CPU_PROD_ENTRY_READ := CPU_PROD_ENTRY_READ.KEY;
VALUE_CPU_PROD_ENTRY_READ:= CPU_PROD_ENTRY_READ.VALUE;

1.5.4.19.3 Programs
COM_SET_PROT

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V2.0

Type Program

With the function block COM_SET_PROT, the serial interfaces of the CPU can actively be set
on a predefined protocol or changed between several protocols from the user program.
The block COM_SET_PROT can be used for different functions:
● Switching between two different protocols, for example ASCII/Modbus
● Switching the interface parameters of a protocol, for example changing the transmission

rate
● Re-initialization of an interface protocol (for example, if an interface "hangs up")
● Switching between "Online access" and ASCII/Modbus/SysLibCom depending on the cur-

rent PLC mode, for example STOP=Online access, RUN=Modbus (or ASCII, SysLibCom).
In this case, the parameter "Enable login" does not have to be activated and the interface
can use other interface parameters than required for "Online access" (see the following
program example).

With the setting "COMx "“ Multi[SLOT]" in the configuration, several protocols can be predefined
per COM. Using the function block COM_SET_PROT, the user can switch between these
protocols from the user program. The rising edge (FALSE->TRUE) at the input EN activates the
protocol which was selected over the inputs COM and IDX.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1578

If the function block is used with a serial interface on which only one protocol was defined, the
interface is initialized newly and the protocol started again.
Other applications of the function block can be e.g. a change of the transmission rate or also a
RESET defined of a protocol.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - - -

At input COM (communication), the number of the serial input is defined.
COM = 1: COM1, COM = 2: COM2

Data type Default value Range Unit
BYTE - - -

The index number of the protocol, which is to be activated on the serial interface COM, is indi-
cated at the input IDX. The assignment of the index number to the individual protocols is carried
out in the configuration. If several protocols are defined in the setting "COMx "“ Multi[SLOT]",
the index number IDX = 0 corresponds to the protocol in the first place, and IDX = 1 corre-
sponds to the protocol in the second place. In all other cases, if only one protocol is defined per
interface, the index number IDX = 0 must be used.

EN

COM

IDX

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1579

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
COM_SET_PROT (EN := ComSetProtocol_EN,
 COM := ComSetProtocol_COM,
 IDX := ComSetProtocol_IDX);

ComSetProtocol_DONE := COM_SET_PROT.DONE;
ComSetProtocol_ERR := COM_SET_PROT.ERR;
ComSetProtocol_ERNO := COM_SET_PROT.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1580

CPU_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Program

The Program CPU_INFO reads the CPU type.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1581

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

CPU_TYPE outputs the type of the CPU.
The following values are possible:
Value CPU type

20 PM571
21 PM581
22 PM591
23 PM582
25 CM574
26 PM590
27 not used
28 not used
29 PM583-ETH
30 not used
31 PM554
32 PM564
33 PM554-ETH
34 PM564-ETH
35 SM560
36 PM572
37 PM573-ETH
38 PM592-ETH
39 not used
40 PM590-ETH
41 PM591-ETH
42 PM556-ETH
44 PM590-ARC
45 PM591-2ETH
46 PM595-4ETH-F (internal Communication Module via Communication
Module bus)
47 PM595-4ETH-M (internal Communication Module via Communication

DONE

ERR

ERNO

CPU_TYPE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1582

Module bus)
48 PM595-4ETH-F (internal Communication Module via PCIe)
49 PM595-4ETH-M (internal Communication Module via PCIe)
50 PM585-ETH
51 PM590-ARC-ETH

Function call in ST
CPU_INFO(EN := CpuInfo_EN);

CpuInfo_DONE := CPU_INFO.DONE;
CpuInfo_ERR := CPU_INFO.ERR;
CpuInfo_ERNO := CPU_INFO.ERNO;
CpuInfo_CPU_TYPE := CPU_INFO.CPU_TYPE;

INPUT_REFRESH

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Program

Program INPUT_REFRESH copys the IO input data image into the image area consistently.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1583

In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: DWORD
At input SOURCE, the address of the first data byte in the source IO area has to be specified.

Data type: BOOL
At input LEN, the number of bytes to be copied has to be specified.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type: BOOL
Output ERR indicates whether an error occurred during Function Block processing. This output
always has to be considered together with output DONE. If DONE is TRUE and ERR is TRUE,
an error occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input, or if an
error occurred during job processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.

SOURCE

LEN (length)

DONE

ERR (error)

ERNO (error
number)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1584

IO_DIAG

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

The Program IO_DIAG reads the diagnosis data of the I/O bus.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1585

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

NUM_CYCLES_TOTAL displays the total number of I/O bus cycles performed since system
start.

Data type Default value Range Unit
DWORD - - -

NUM_CYCLES_DEF displays the total number of defective I/O bus cycles occurred since
system start.

Data type Default value Range Unit
BYTE - - -

DONE

ERR

ERNO

NUM_CYCLES_
TOTAL

NUM_CYCLES_
DEF

NUM_DEF_SERI
ES_ACT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1586

NUM_DEF_SERIES_ACT displays the actual number of successively occurred defective I/O
bus cycles.

Data type Default value Range Unit
BYTE - - -

NUM_DEF_SERIES_MAX displays the maximum number of successively occurred defective
I/O bus cycles captured since system start.

Function call in ST
IO_DIAG (EN := IoDiag_EN);

IoDiag_DONE := IO_DIAG.DONE;
IoDiag_ERR := IO_DIAG.ERR;
IoDiag_ERNO := IO_DIAG.ERNO;
IoDiag_NUM_CYCLES_TOTAL := IO_DIAG.NUM_CYCLES_TOTAL;
IoDiag_NUM_CYCLES_DEF := IO_DIAG.NUM_CYCLES_DEF;
IoDiag_NUM_DEF_SERIES_ACT := IO_DIAG. NUM_DEF_SERIES_ACT;
IoDiag_NUM_DEF_SERIES_MAX := IO_DIAG. NUM_DEF_SERIES_MAX;

IO_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Program

The Program IO_INFO displays the number of devices connected to the I/O bus.

NUM_DEF_SERI
ES_MAX

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1587

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

EN

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1588

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

NUM_MODULES displays the number of devices connected to the I/O bus.

Function call in ST
IO_INFO (EN := IoInfo_EN);

IoInfo_DONE := IO_INFO.DONE;
IoInfo_ERR := IO_INFO.ERR;
IoInfo_ERNO := IO_INFO.ERNO;
IoInfo_NUM_ MODULES := IO_INFO.NUM_ MODULES;

IO_MODULE_DIAG

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Program

The Program IO_MODULE_DIAG reads the module diagnosis data of the I/O Bus.

NUM_MODULES
 BYTE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1589

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE - 1..10 -

Module position on bus.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

MODULE

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1590

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

NUM_CYCLES_DEF (number of cyclesdefective) displays the total number of defective I/O bus
cycles occurred for the selected module since system start.

Data type Default value Range Unit
BYTE - - -

NUM_DEF_SERIES_ACT (number of defective cycles in seriesactual) displays the actual
number of successive defective I/O bus cycles occurred for the selected module.

Data type Default value Range Unit
BYTE - - -

NUM_DEF_SERIES_MAX (number of defective cycles in seriesmaximal) displays the maximum
number of successive defective I/O bus cycles occurred for the selected module since system
start.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

FAILURE indicates that the maximum allowed number of successively occurring defective I/O
bus cycles has been exceeded. In this case the module has to be considered as failed. A failure
of one module results in a stop of the entire I/O bus.

Function call in ST
IO_MODULE_DIAG (EN := IoModuleDiag_EN,
 MODULE := IoModuleDiag_MODULE);

IoModuleDiag_DONE := IO_ MODULE_DIAG.DONE;
IoModuleDiag_ERR := IO_ MODULE_DIAG.ERR;
IoModuleDiag_ERNO := IO_ MODULE_DIAG.ERNO;

ERR

ERNO

NUM_CYCLES_
DEF

NUM_DEF_SERI
ES_ACT

NUM_DEF_SERI
ES_MAX

FAILURE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1591

IoModuleDiag_NUM_CYCLES_DEF := IO_ MODULE_DIAG.NUM_CYCLES_DEF;
IoModuleDiag_NUM_DEF_SERIES_ACT := IO_ MODULE_DIAG.
NUM_DEF_SERIES_ACT;
IoModuleDiag_NUM_DEF_SERIES_MAX:= IO_ MODULE_DIAG. NUM_DEF_SERIES_MAX;
IoModuleDiag_FAILURE := IO_ MODULE_DIAG.FAILURE;

IO_DRIVER_VERSION

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Program

The Program IO_DRIVER_VERSION reads the version of the I/O bus driver.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1592

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

IO_VERSION (I/O bus driver version) outputs the version of the I/O bus driver.
Example: IO_VERSION = 1000 -> V1.0.0.0

Function call in ST
IO_VERSION (EN := IoVersion_EN);

IoVersion_DONE := IO_VERSION.DONE;
IoVersion_ERR := IO_VERSION.ERR;
IoVersion_ERNO := IO_VERSION.ERNO;
IoVersion_IO_VERSION := IO_VERSION.IO_VERSION;

PERSISTENT_CLEAR

DONE

ERR

ERNO

IO_VERSION

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1593

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the function block PERSISTENT_CLEAR, all
data in the areas PERSISTENT or %R are deleted.
The use of the Program requires that a valid PERSISTENT area or %R area is set in the CPU.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1594

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
PERSISTENT_CLEAR (EN := PersistentClear_EN);

PersistentClear_DONE := PERSISTENT_CLEAR.DONE;
PersistentClear_ERR := PERSISTENT_CLEAR.ERR;
PersistentClear_ERNO := PERSISTENT_CLEAR.ERNO;

PERSISTENT_EXPORT

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the Program PERSISTENT_EXPORT, all data
in the areas PERSISTENT or %R are written from the RAM-DISC to the SD Card.
The use of the Program requires that a valid PERSISTENT area or %R area is set in the CPU.

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1595

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1596

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The number of written segments is available at output NUM.

Function call in ST
PERSISTENT_EXPORT (EN := PersistentExport_EN);

PersistentExport_DONE := PERSISTENT_EXPORT.DONE;
PersistentExport_ERR := PERSISTENT_EXPORT.ERR;
PersistentExport_ERNO := PERSISTENT_EXPORT.ERNO;
PersistentExport_NUM := PERSISTENT_EXPORT.NUM;

PERSISTENT_IMPORT

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the Program PERSISTENT_IMPORT, all data
in the areas PERSISTENT or %R are written from the memory card to the RAM-DISC.
The use of the Program requires that a valid PERSISTENT area or %R area is set in the CPU.

ERNO

NUM WORD
 (number of
areas)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1597

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1598

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The number of written segments is available at output NUM.

Function call in ST
PERSISTENT_IMPORT (EN := PersistentImport_EN);

PersistentImport_DONE := PERSISTENT_IMPORT.DONE;
PersistentImport_ERR := PERSISTENT_IMPORT.ERR;
PersistentImport_ERNO := PERSISTENT_IMPORT.ERNO;
PersistentImport_NUM := PERSISTENT_IMPORT.NUM;

PERSISTENT_RESTORE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the Program PERSISTENT_RESTORE, all
data in the areas PERSISTENT or %R are written from the RAM-DISC to the SRAM.
The use of the Program requires that a valid PERSISTENT area or %R area is set in the CPU.

Input description

ERNO

NUM WORD
 (number of
areas)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1599

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The number of written segments is available at output NUM.

EN

DONE

ERR

ERNO

NUM WORD
 (number of
areas)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1600

Function call in ST
PERSISTENT_RESTORE (EN := PersistentRestore_EN);

PersistentRestore_DONE := PERSISTENT_RESTORE.DONE;
PersistentRestore_ERR := PERSISTENT_RESTORE.ERR;
PersistentRestore_ERNO := PERSISTENT_RESTORE.ERNO;
PersistentRestore_NUM := PERSISTENT_RESTORE.NUM;

PERSISTENT_SAVE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the Program PERSISTENT_SAVE, all data in
the areas PERSISTENT or %R are written from the SRAM to the RAM-DISC.
The use of the Program requires that a valid PERSISTENT area or %R area is set in the PLC
Configuration of the CPU.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1601

Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

The number of written segments is available at output NUM.

Function call in ST
PERSISTENT_SAVE (EN := PersistentSave_EN);

PersistentSave_DONE := PERSISTENT_SAVE.DONE;
PersistentSave_ERR := PERSISTENT_SAVE.ERR;
PersistentSave_ERNO := PERSISTENT_SAVE.ERNO;
PersistentSave_NUM := PERSISTENT_SAVE.NUM;

DONE

ERR

ERNO

NUM WORD
 (number of
areas)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1602

OUTPUT_REFRESH

Program OUPUT_REFRESH copys the image area into the IO image consistently.

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Program

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BOOL
At input DEST, the address of the first data byte in the destination IO area has to be specified.

Data type: BOOL
At input LEN, the number of bytes to be copied has to be specified.

EN

DEST (destina-
tion)

LEN (length)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1603

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type: BOOL
Output ERR indicates whether an error occurred during Function Block processing. This output
always has to be considered together with output DONE. If DONE is TRUE and ERR is TRUE,
an error occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input, or if an
error occurred during job processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.

PM_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V2.2.0

Type Program

The Program PM_INFO reads the software version information of a PLC.

DONE

ERR (error)

ERNO (error
number)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1604

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1605

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output RTS_VERSION (runtime system version) delivers the version of the runtime system in
BCD code (e. g. 16#10 means version 1.0)

Data type Default value Range Unit
WORD - - -

Output DISP_VERSION (display version) delivers the version of the PLC display firmware (not
for AC500 eCo-CPUs) in BCD code (e. g. 16#10 means version 1.0).

Data type Default value Range Unit
WORD - - -

Output BOOT_VERSION (bootcode version) delivers the version of the PLC bootcode in BCD
code (e. g. 16#10 means version 1.0).

Data type Default value Range Unit
WORD - - -

Output ONBIO_VERSION (onboard IO version) delivers the version of the PLC onboard IOs
(AC500 eCo-CPUs only) in BCD code (e. g. 16#10 means version 1.0).

RETAIN_CLEAR

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the Program RETAIN_CLEAR, all data in the
retain area are deleted.

ERNO

RTS_VERSION

DISP_VERSION

BOOT_VER-
SION

ONBIO_VER-
SION

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1606

Retain variables are declared with the keyword RETAIN. These variables keep their values after
an uncontrolled abort as well as after a normal switch off/on of the control system (or with
the command 'online' 'reset'). At a new start of the program work is continued with the stored
values.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1607

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RETAIN_CLEAR (EN := RetainClear_EN);

RetainClear_DONE := RETAIN_CLEAR.DONE;
RetainClear_ERR := RETAIN_CLEAR.ERR;
RetainClear_ERNO := RETAIN_CLEAR.ERNO;

RETAIN_EXPORT

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the Program RETAIN_EXPORT, all data in the
retain area are written from the RAM-DISC to the memory card.
Retain variables are declared with the keyword RETAIN. These variables keep their values after
an uncontrolled abort as well as after a normal switch off/on of the control system (or with
the command 'online' 'reset'). At a new start of the program work is continued with the stored
values.

Input description

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1608

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RETAIN_EXPORT (EN := RetainExport_EN);

RetainExport_DONE := RETAIN_EXPORT.DONE;
RetainExport_ERR := RETAIN_EXPORT.ERR;
RetainExport_ERNO := RETAIN_EXPORT.ERNO;

EN

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1609

RETAIN_IMPORT

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the Program RETAIN_IMPORT, all data in the
retain area are written from the memory card to the RAM-DISC.
Retain variables are declared with the keyword RETAIN. These variables keep their values after
an uncontrolled abort as well as after a normal switch off/on of the control system (or with
the command 'online' 'reset'). At a new start of the program work is continued with the stored
values.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1610

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RETAIN_IMPORT (EN := RetainImport_EN);

RetainImport_DONE := RETAIN_IMPORT.DONE;
RetainImport_ERR := RETAIN_IMPORT.ERR;
RetainImport_ERNO := RETAIN_IMPORT.ERNO;

RETAIN_RESTORE

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1611

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1:2

Type Program

With a rising edge (False -> True) at input EN of the Program RETAIN_RESTORE, all data in
the retain area are written from the RAM-DISC to the SRAM.
Retain variables are declared with the keyword RETAIN. These variables keep their values after
an uncontrolled abort as well as after a normal switch off/on of the control system (or with
the command 'online' 'reset'). At a new start of the program work is continued with the stored
values.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1612

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RETAIN_RESTORE (EN := RetainRestore_EN);

RetainRestore_DONE := RETAIN_RESTORE.DONE;
RetainRestore_ERR := RETAIN_RESTORE.ERR;
RetainRestore_ERNO := RETAIN_RESTORE.ERNO;

RETAIN_SAVE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.2

Type Program

With a rising edge (False -> True) at input EN of the Program RETAIN_SAVE, all data in the
retain area are written from the SRAM to the RAM-DISC.
Retain variables are declared with the keyword RETAIN. These variables keep their values after
an uncontrolled abort as well as after a normal switch off/on of the control system (or with
the command 'online' 'reset'). At a new start of the program work is continued with the stored
values.

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1613

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1614

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RETAIN_SAVE (EN := RetainSave_EN);

RetainSave_DONE := RETAIN_SAVE.DONE;
RetainSave_ERR := RETAIN_SAVE.ERR;
RetainSave_ERNO := RETAIN_SAVE.ERNO;

RTS_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Program

The Program RTS_INFO reads the version of the CPU runtime system.

Input description

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1615

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

RTS_VERSION (RTSversion) outputs the version of the CPU runtime system. The upper BYTE
of the entry represents the main version, the lower BYTE represents the subversion of the
runtime system.

EN

DONE

ERR

ERNO

RTS_VERSION

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1616

Different data format display
Examples:

Runtime system ≤ V2.3.3 = RTS_VERSION 16#0233

Runtime system ≥ V2.4.0 = RTS_VERSION 16#2400

Data type Default value Range Unit
WORD - - -

DISP_VERSION (display version) outputs the software version of the display. The upper BYTE
of the entry represents the main version, the lower BYTE represents the subversion of the
display software.
Example: DISP_VERSION = 16#0110 -> V01.16

Function call in ST
RTS_INFO (EN := RtsInfo_EN);

RtsInfo_DONE := RTS_INFO.DONE;
RtsInfo_ERR := RTS_INFO.ERR;
RtsInfo_ERNO := RTS_INFO.ERNO;
RtsInfo_RTS_VERSION := RTS_INFO.RTS_VERSION;
RtsInfo_DISP_VERSION := RTS_INFO.DISP_VERSION;

SLOT_INFO

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Program

The Program SLOT_INFO reads information from the slot from the connected device (Commu-
nication module).

DISP_VERSION

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1617

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

EN

SLOT

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1618

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: STRING(24)
The output MODEL provides the type of the device which is connected to the selected slot. The
output is in plain text.

Data type: DATE
The output MAN_DATE (date of manufacture)provides the date of manufacture of the device
which is connected to the selected slot.

Data type Default value Range Unit
DWORD - - -

The output DEV_NO (device number) provides the manufacturer-specific number of the device
which is connected to the selected slot.

Data type Default value Range Unit
DWORD - - -

The output SER_NO (serial number) provides the serial number of the device which is con-
nected to the selected slot.

Data type: STRING(16)
The output FW_NAME (firmware name) provides the firmware name of the device which is
connected to the selected slot. The output is in plain text.

Data type: STRING(16)
The output FW_VER (firmware version) provides the firmware version of the device which is
connected to the selected slot. The output is in plain text.

ERR

ERNO

MODEL

MAN_DATE

DEV_NO

SER_NO

FW_NAME

FW_VER

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1619

Function call in ST
SLOT_INFO (EN := SlotInfo_EN, SLOT := SlotInfo_SLOT);

SlotInfo_DONE := SLOT_INFO.DONE;
SlotInfo_ERR := SLOT_INFO.ERR;
SlotInfo_ERNO := SLOT_INFO.ERNO;
SlotInfo_MODEL := SLOT_INFO.MODEL;
SlotInfo_MAN_DATE := SLOT_INFO.MAN_DATE;
SlotInfo_DEV_NO := SLOT_INFO.DEV_NO;
SlotInfo_SER_NO := SLOT_INFO.SER_NO;
SlotInfo_FW_NAME := SLOT_INFO.FW_NAME;
SlotInfo_FW_VER := SLOT_INFO.FW_VER;

TASK_INFO read number of completed task cycles

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Program

The Program TASK_INFO outputs the number of completed cycles for the task it is called in.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1620

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Output NUM_CYCLES displays a counter of the number of times the current task has com-
pleted a cycle. The number is reset to 0 on PLC STOP, download of new user program or reset
of the PLC.

Function call in ST
TaskInfo (EN := TaskInfo_EN);

TaskInfo_DONE := TaskInfo.DONE;
TaskInfo_ERR := TaskInfo.ERR;
TaskInfo_ERNO := TaskInfo.ERNO;
TaskInfo_NUM_CYCLES := TaskInfo.NUM_CYCLES;

DONE

ERR

ERNO

NUM_CYCLES
 DWORD
 (number of
cycles)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1621

1.5.4.19.4 Functions
DPRAM_CM5XX_GET_STATE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function

Function DPRAM_CM5XX_GET_STATE is used for getting value(s) in extended status from a
Communication Module.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1622

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input CH (channel), the addressed channel is specified.
Valid values: 1 and 2.

Data type: DWORD
At input DATA, the address of the variable is specified, of which the user data shall be received.
DATA must be the address of a variable of the type ARRAY or STRUCT.

CAUTION!
Memory area overlapping
Avoid memory area overlappings by specifying the size of the variable to the
max. data expected.

Data type: WORD
At input DATA_TYPE, the type of data has to be specified. The following allocation is used:
● 0 = Bit
● 1 = Byte
● 2 = Word
● 4 = DWord

Data type: DWORD
At input DATA_LEN, the length of the data which should be read has to be specified.

Data type: DWORD
At input OFFSET, the offset within the block in bytes has to be specified.

SLOT

CH (channel)

DATA (data)

DATA_TYPE
(data type)

DATA_LEN (data
length)

OFFSET (offset)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1623

DPRAM_CM5XX_SET_STATE

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.3.0

Type Function

Function DPRAM_CM5XX_SET_STATE is used for setting value(s) in extended status from a
Communication Module.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1624

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input CH (channel), the addressed channel is specified.
Valid values: 1 and 2.

Data type: DWORD
At input DATA, the address of the variable is specified, of which the user data shall be received.
DATA must be the address of a variable of the type ARRAY or STRUCT.

CAUTION!
Memory area overlapping
Avoid memory area overlappings by specifying the size of the variable to the
max. data expected.

Data type: WORD
At input DATA_TYPE, the type of data has to be specified. The following allocation is used:
● 0 = Bit
● 1 = Byte
● 2 = Word
● 4 = DWord

Data type: DWORD
At input DATA_LEN, the length of the data which should be read has to be specified.

Data type: DWORD
At input OFFSET, the offset within the block in bytes has to be specified.

SYS_TIME

SLOT

CH (channel)

DATA (data)

DATA_TYPE
(data type)

DATA_LEN (data
length)

OFFSET (offset)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1625

Parameter Value
Included in library SysInt_AC500_V10.lib

Available as of firmware V1.0

Type Function

The Function SYS_TIME outputs the system tick in milliseconds as a double word. The system
tick is provided with a resolution of a millisecond and also serves as a time basis for the PLC
application program and all time-dependent function blocks. After a PLC reset the system tick
always starts with 0. An overflow is reached after 49 days. After this, the counter restarts at 0.

Input description

The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.

Output description

The function block output delivers the system tick in ms.

Function call in ST
SysTime := SYS_TIME(SysTime_EN);

1.5.4.20 Extended internal system library
Library file name: SysIntExt_AC500_Vx.lib
The extended internal system library contains all function blocks that are generally applicable to
the system, i.e. function blocks for general system diagnosis functions or for system information.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

EN BOOL
 (enable)

(Output)
 DWORD

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1626

1.5.4.20.1 Function blocks
CPU_OWN_ADR

Parameter Value
Included in library SysIntExt_AC500_V13.lib

Available as of firmware V1.3

Type Function block with historical values

Group System information

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1627

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BYTE - - -

Output ADDR provides the current address value set with the rotary switch on the CM574-RS.

Function call in ST
OWN_ADR (EN := OWN_ADR_EN);
OWN_ADR_DONE := OWN_ADR.DONE;
OWN_ADR_ERR := OWN_ADR.ERR;
OWN_ADR _ERNO := OWN_ADR.ERNO;
OWN_ADR_MAP := OWN_ADR.ADDR;

DONE

ERR

ERNO

ADDR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1628

DPRAM_IO_COPY

Parameter Value
Included in library SysIntExt_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group DPRAM communication

This function block is used to copy IO data areas.
Using this function block it is possible to transfer for instance the inputs of the CS31 to the
CM574-RS outputs without occupying any PLC code.
To use this function block, symbolic names have to be assigned to each first byte, e.g. "Input1"
for %IB1000 = SOURCE and "Output1" for %QB0 = DEST.
If enabled, the function block first reads all IO data assigned from the I/O image into the image
area. Then it copies the image area to the assigned IO data. Input LEN specifies the number of
bytes to be copied. Output DONE = TRUE indicates that the operation is finished.
See also Ä Chapter 1.6.4.1.1 “Inputs, outputs and flags for AC500 V2 products” on page 5395
in the Multitasking System.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1629

Data type Default value Range Unit
DWORD - - -

Input SOURCE specifies the address of the first data byte of the IO area to be read.

Data type Default value Range Unit
DWORD - - -

Input DEST specifies the address of the first data byte of the destination IO area the data
should be copied to.

Data type Default value Range Unit
WORD - - -

Input LEN specifies the length (in bytes) of the data to be copied.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

SOURCE

DEST

LEN

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1630

Function call in ST
DPRAM_IO_COPY(EN:= IOcopy_EN,
 SOURCE:= IOcopy_SOURCE,
 DEST:= IOcopy_DEST,
 LEN:= IOcopy_LEN);
DPRAM_IO_COPY_DONE:= DPRAM_IO_COPY.DONE;
DPRAM_IO_COPY_ERR:= DPRAM_IO_COPY.ERR;
DPRAM_IO_COPY_ERNO:= DPRAM_IO_COPY.ERNO;

DPRAM_KP_GET_ADDR

Parameter Value
Included in library SysIntExt_AC500_V13.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group DPRAM communication

This function block is used to get the start address of DPRAM for KP-based Communication
Modules.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1631

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output ADDR returns the start address of the DPRAM. If KP has not been completely detected
yet, output ERNO will indicate busy state and set DONE to TRUE.

SLOT

DONE

ERR

ERNO

ADDR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1632

Function call in ST
KPGetAddr(EN:= KPGetAddr_EN,
 SLOT:= KPGetAddr_SLOT);

KPGetAddr_DONE:= KPGetAddr.DONE;
KPGetAddr_ERR := KPGetAddr.ERR;
KPGetAddr_ERNO:= KPGetAddr.ERNO;
KPGetAddr_ADDR:= KPGetAddr.ADDR;

DPRAM_PM5XX_REC

Parameter Value
Included in library SysIntExt_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group DPRAM communication

This function block is used to receive data from a AC500 CPU.
The data received are stored in the configured memory area, i.e. at the memory address
specified at input DATA via the ADR operator.
The function block is enabled by a TRUE signal at input EN. It remains active until input EN is
set to FALSE. The channel of the AC500 CPU is specified at input CH.
Output DATA_LEN displays the length of the received data in bytes. Successful data reception
is indicated by DONE = TRUE and ERR = FALSE. The outputs ERR and ERNO indicate
whether an error occurred during Function Block processing.

Data reception using the DPRAM_PM5XX_REC function block is not edge-trig-
gered. Therefore, input EN must be TRUE during data reception.

DPRAM message-based data exchange allows a maximum of 260 Bytes per
message to be sent or received.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1633

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE - - -

Input CH (channel) is used to specify the channel of the AC500 CPUs to be addressed.
Valid values: 1 and 2.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable the user data are to be copied to.
DATA must contain an address of a variable of the type ARRAY or STRUCT.

Specify the size of the variable according to the maximum amount of data
expected in order to avoid memory area overlapping.

Output description

EN

CH

DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1634

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - Byte

Output DATA_LEN displays the length of the received data. The output value at DATA_LEN is
only valid if DONE = TRUE.

Function call in ST
PM5xxRec (EN := PM5xxRec_EN,
CH := PM5xxRec_CH,
DATA := ADR(PM5xxRec_DATA),
DONE => PM5xxRec_DONE,
ERR => PM5xxRec_ERR,
ERNO => PM5xxRec_ERNO,
DATA_LEN => PM5xxRec_DATA_LEN);
PM5xxRec_DONE := PM5xxRec.DONE;
PM5xxRec_ERR := PM5xxRec.ERR;
PM5xxRec_ERNO := PM5xxRec.ERNO;
PM5xxRec_DATA_LEN := PM5xxRec.DATA_LEN;

DPRAM_PM5XX_SEND

DONE

ERR

ERNO

DATA_LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1635

Parameter Value
Included in library SysIntExt_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group DPRAM communication

This function block is used to send data to the AC500 CPU.
The data to be sent are provided in the configured memory area, i.e. at the memory address
specified at input DATA via the ADR operator.
The function block is enabled by a TRUE signal at input EN. It remains active until input EN
is set to FALSE. The channel of the AC500 CPU is specified at input CH. The data length (in
bytes) to be sent is specified at input DATA_LEN.
Successful data transfer is indicated by DONE = TRUE and ERR = FALSE. The outputs ERR
and ERNO indicate whether an error occurred during Function Block processing.

Sending data using the DPRAM_PM5XX_SEND function block is edge-trig-
gered, i.e. each sending process is initiated by a FALSE/TRUE edge at input
EN.

DPRAM message-based data exchange allows a maximum of 260 Bytes per
message to be sent or received.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1636

Data type Default value Range Unit
BYTE - - -

Input CH (channel) is used to specify the channel of the AC500 CPUs to be addressed.
Valid values: 1 and 2.

Data type Default value Range Unit
DWORD - - -

Input DATA is used to specify the address of the variable the user data are to be copied to.
DATA must contain an address of a variable of the type ARRAY or STRUCT.

Specify the size of the variable according to the maximum amount of data
expected in order to avoid memory area overlapping.

Data type Default value Range Unit
WORD - - Byte

Output DATA_LEN displays the length of the received data. The output value at DATA_LEN is
only valid if DONE = TRUE.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

CH

DATA

DATA_LEN

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1637

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
PM5xxSend (EN := PM5xxSend_EN,
SLOT := PM5xxSend_SLOT,
CH := PM5xxSend_CH,
DATA := ADR(PM5xxSend_DATA),
DATA_LEN := PM5xxSend_DATA_LEN,
DONE => PM5xxSend_DONE,
ERR => PM5xxSend_ERR,
ERNO => PM5xxSend_ERNO);
PM5xxSend_DONE := PM5xxSend.DONE;
PM5xxSend_ERR := PM5xxSend.ERR;
PM5xxSend_ERNO := PM5xxSend.ERNO;

LED_SET

Parameter Value
Included in library SysIntExt_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group LED

This function block is used to control the LED states of the AC500 PLCs. Using this function
block it is possible to access each LED on the AC500 PLC and to change its state and blinking
period.
Each LED has to be controlled individually.
The LED assignment depends on PLC type.
CM574:
1 : RUN LED
2 : ERROR LED
3 : COM1 Status LED
4 : COM2 Status LED

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1638

5 : READY LED
6 : STAT LED
PM57x, PM58x, PM59x:
1 : RUN LED
2 : ERROR LED
Eco:
1 : RUN LED
2 : ERROR LED
3 : COM1 Status LED
PM595:
1 : RUN LED (green only)
2 : ERROR LED (red only)
3 : CAN LED(green/red/orange)
8 : Batt State LED (green/red/orange)
9 : Function 1 LED (green/red/orange)
10 : Function 2 LED (green/red/orange)
11 : Function 3 LED (green/red/orange)
12 : Function 4 LED (green/red/orange)
13 : Function 5 LED (green/red/orange)
If the LED should be controlled by the runtime system again, just switch the MODE back to 0.
(MODE 0 = runtime system , MODE 1 = user program).

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
WORD - - -

Access control for the LED:

EN

Mode

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1639

MODE = 0 = runtime system
MODE = 1 = user program

Data type Default value Range Unit
WORD - - -

Input LED is used to specify the LED:
CM574:
1 : RUN LED
2 : ERROR LED
3 : COM1 Status LED
4 : COM2 Status LED
5 : READY LED
6 : STAT LED
PM57x, PM58x, PM59x:
1 : RUN LED
2 : ERROR LED
Eco:
1 : RUN LED
2 : ERROR LED
3 : COM1 Status LED
PM595:
1 : RUN LED (green only)
2 : ERROR LED (red only)
3 : CAN LED (green/red/orange)
8 : Batt State LED (green/red/orange)
9 : Function 1 LED (green/red/orange)
10 : Function 2 LED (green/red/orange)
11 : Function 3 LED (green/red/orange)
12 : Function 4 LED (green/red/orange)
13 : Function 5 LED (green/red/orange)

Data type Default value Range Unit
WORD - - -

Input VALUE is used to specify the static value of the LED. Only applicable if the LED is not in
mode = 0.
Following values are possible:
0 = LED off
1 = LED on (Default colour used if applicable)
2 = LED on, green (only at PM595)
3 = LED on, red (only at PM595)
4 = LED on, orange (only at PM595)

LED

VALUE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1640

Data type Default value Range Unit
DWORD - - ms

Input PERIOD is used to set the blinking period of the LED in ms.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
LedSet (EN := LedSet_EN,
MODE:= LedSet_MODE,
LED := LedSet_LED,
VALUE := LedSet_VALUE,
PERIOD := LedSet_PERIOD,
DONE => LedSet_DONE,
ERR => LedSet_ERR,
ERNO => LedSet_ERNO);
LedSet_DONE := LedSet.DONE;
LedSet_ERR := LedSet.ERR;
LedSet_ERNO := LedSet.ERNO;

PERIOD

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1641

1.5.4.21 JSON library

1.5.4.21.1 System technology
JSON is an acronym for “JavaScript Object Notation”. It is a compact data format that is often
used to transfer data between clients and a server (e. g. via MQTT). JSON has arisen from
JavaScript, whereby many implementations for several programming languages exist.
JSON embeds several data types as “values” into either “JSON OBJECTS” or “JSON
ARRAYS”.
In objects each value is identified by a key string, while arrays make values accessible via
indices.
JSON also allows the nesting of objects and arrays as values providing a recursive parent-child
hierarchy.
The possible types for a value are namely: “string”, “number”, “object” and “array”. Values can
also consist of the constants true, false and null.

The following figure displays the structure of JSON objects and arrays. Detailed information on
the JSON format is given at https://www.json.org.

The use of the JSON library allows creating and parsing of JSON strings without manual string
operations and detailed knowledge about JSON syntax. This reduces the risk of data transfer
errors, as syntax of JSON strings will always be correct.
To realize those benefits, there are functions implemented in the JSON library.
A detailed description for each function is given in the section Ä Chapter 1.5.4.21.2 “Function
block description” on page 1647.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1642

https://www.json.org

One JSON create and send use case could look like this:

1. Create an empty JSON object with the function block “JSONCREATEOBJECT”.

2. Add a sender ID with the function block “JSONADDINT”.

3. Add a telemetry value (i.e. "temperature":21.0) with the function block “JSONADDREAL”.

4. Serialize the created object into a string for sending with the function block
“JSONSERIALIZEOBJECT”

.

5. Send the JSON string for instance to a MQTT broker with the function block
“MQTTPUBLISH”.

Creating and
sending

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1643

6. If no longer needed, free the created JSON object.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1644

One JSON receive and parse use case could look like this:

1. Receive a JSON string for instance from a MQTT broker with the function block
“MQTTGETRECEIVEDPACKET”.

2. Parse the received string into a JSON object with the function block
“JSONPARSEOBJECTFROMSTRING”.

3. Get the ID of the sender with the function block “JSONGETINT”.

4. Get settings for the PLC (i.e. "frequency":2.7) with the function block JSONGETREAL.

5. If no longer needed, free the created JSON object.

Receiving and
parsing

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1645

Configuration in Automation Builder
For the JSON library no special configuration is needed.

Task configuration in CODESYS
All functions have to be called in tasks with cyclically processing.

Limitations
● Function calls are synchronous. Processing large objects might stall the execution of the

task.
● The maximum length of each JSON key is limited to 100 characters (see

“JSON_MAX_KEY_LEN” constant).
● The maximum recursion level for the nesting of JSON OBJECTS and JSON ARRAYS is

limited to a depth of 64.

Functions
The functions in this library can only be executed in RUN mode of the processor module, not in
simulation mode.

Standard
JSON library is based on [RFC 8259].

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1646

https://tools.ietf.org/html/rfc8259

1.5.4.21.2 Function block description

JSON object functions

JSONCREATEOBJECT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function “JSONCREATEOBJECT” creates an empty JSON OBJECT. This function allocates
memory for the new OBJECT. The new OBJECT reference is assigned to the given pointer.

Input description

Data type Default value Range Unit
POINTER TO
JSON_OBJ_REF

- - -

The pointer to a JSON OBJECT reference to assign the new OBJECT.
In case of any error, the data at the provided pointer stays unchanged.

General
information

JsonObjPtr

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1647

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONADDARRAY

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONADDARRAY nests a JSON ARRAY reference to a JSON OBJECT. The
given JSON ARRAY is not copied into the OBJECT, only meta information is added. The
JSON ARRAY will be identified under the provided key name. If the key value pair already
exists, the value gets replaced by the JSON ARRAY. Memory of the old value gets freed in the
replacement.

Input Description

JsonCreate
Object

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1648

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT to which the JSON ARRAY is added.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string by which the added JSON ARRAY is identified.

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY which gets inserted.

Output Description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONADDBOOL

JsonObj

KeyName

JsonArrayValue

JsonAddArray

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1649

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONADDBOOL adds a BOOLEAN value to a JSON OBJECT. The given BOO-
LEAN is copied into the OBJECT. The BOOLEAN will be identified under the provided key
name. If the key value pair already exists, the value gets replaced by the BOOLEAN. Memory of
the old value gets freed in the replacement.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT to which the BOOLEAN value is added.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string by which the added BOOLEAN is identified.

Data type Default value Range Unit
BOOL - - -

The BOOLEAN value which gets added.

Output description

General
information

JsonObj

KeyName

BoolValue

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1650

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONADDINT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONADDINT adds an INTEGER value to a JSON OBJECT. The given INTEGER
is copied into the OBJECT. The INTEGER will be identified under the provided key name. If the
key value pair already exists, the value gets replaced by the INTEGER. Memory of the old value
gets freed in the replacement.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT to which the INTEGER value is added.

JsonAddBool

General
information

JsonObj

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1651

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string by which the added INTEGER is identified.

Data type Default value Range Unit
DINT - - -

The INTEGER value which gets added. The input is DINT. In case an INT variable in CODESYS
is added the function INT_TO_DINT has to be used.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONADDOBJECT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

KeyName

IntegerValue

JsonAddInt

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1652

The function JSONADDOBJECT nests a JSON OBJECT reference to another JSON OBJECT.
The child JSON OBJECT is not copied into the parent JSON OBJECT, only meta information is
added. The child JSON OBJECT will be identified under the provided key name. If the key value
pair already exists, the value gets replaced by the new JSON OBJECT. Memory of the old value
gets freed in the replacement.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the parent JSON OBJECT to which the child JSON OBJECT is added.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string by which the added child JSON OBJECT is identified.

Data type Default value Range Unit
JSON_OBJ_REF - - -

The child JSON OBJECT which gets added.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JsonObj

KeyName

JsonObjValue

JsonAddObject

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1653

JSONADDREAL

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONADDREAL adds a REAL value to a JSON OBJECT. The given REAL is
copied into the OBJECT. The REAL will be identified under the provided key name. If the key
value pair already exists, the value gets replaced by the REAL. Memory of the old value gets
freed in the replacement.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT to which the REAL value is added.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string by which the added REAL is identified.

General
information

JsonObj

KeyName

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1654

Data type Default value Range Unit
LREAL - - -

The REAL value which gets added. The input is LREAL. In case a REAL variable in CODESYS
is added the function REAL_TO_LREAL has to be used.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONADDSTRING

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONADDSTRING adds a STRING value to a JSON OBJECT. The given STRING
is copied into an internal buffer of the OBJECT. The STRING will be identified under the
provided key name. If the key value pair already exists, the value gets replaced by the STRING.
Memory of the old value gets freed in the replacement. Different from the function figure,
STRING values are allowed to have any viable length, including STRING that are longer than
80 characters.

RealValue

JsonAddReal

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1655

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT to which the STRING value is added.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string by which the added STRING is identified.

Data type Default value Range Unit
POINTER TO
STRING(80)

- - -

The pointer to a STRING value which gets added.

Contrary to the figure the STRING value is not limited to 80 characters.

Strings of any viable length can be provided.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JsonObj

KeyName

StringValue

JsonAddString

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1656

JSONREMOVEENTRY

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONREMOVEENTRY removes a JSON value from a JSON OBJECT, that is
identified by the given key name. All memory used by that value is freed. If the entry contains a
JSON OBJECT or JSON ARRAY all contained recursive entries get freed as well.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT from which the value is removed.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string by which the removed JSON value is identified.

General
information

JsonObj

KeyName

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1657

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONSERIALIZEOBJECT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONSERIALIZEOBJECT serializes a JSON OBJECT into a given STRING buffer.
Different from the figure, the STRING buffer is allowed to have any viable length, including
STRINGS that are longer than 80 characters.

Input description

JsonRemove
Entry

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1658

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT which is serialized.

Data type Default value Range Unit
POINTER TO
STRING(80)

- - -

The pointer to a STRING buffer which is the target of the serialization.

Contrary to the figure the STRING buffer is not limited to 80 characters.

STRING buffers of any viable length can be provided.

No memory will be acquired so a target buffer has to be provided.

Data type Default value Range Unit
DWORD - - -

The StringLength parameter specifies the limit of the provided STRING buffer.
If the size of the STRING buffer is not sufficient to contain the JSON OBJECT representation,
the buffer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JsonObj

StringBuffer

StringLength

JsonSerialize
Object

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1659

JSONFREEOBJECT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONFREEOBJECT frees all memory used by a JSON OBJECT. All recursively
contained JSON OBJECTS and JSON ARRAYS are freed as well.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT which is freed. After the function returned without error,
this reference becomes invalid.

Output description

General
information

JsonObj

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1660

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONPARSEOBJECTFROMSTRING

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONPARSEOBJECTFROMSTRING parses a STRING, which represents a JSON
OBJECT and creates a corresponding OBJECT from it. The new OBJECT contains all values
from the STRING representation. The function expects a reference to a JSON OBJECT to
assign the new OBJECT.

Input description

Data type Default value Range Unit
POINTER TO
JSON_OBJ_REF

- - -

The pointer to a JSON OBJECT reference to assign the parsed OBJECT.
In case of any error, the data at the provided pointer stays unchanged.

JsonFreeObject

General
information

JsonObjPtr

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1661

Data type Default value Range Unit
POINTER TO
STRING(80)

- - -

JsonString is a pointer to a STRING representing a JSON OBJECT.

Contrary to the figure the STRING buffer is not limited to 80 characters.

Strings of any viable length can be provided.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONGETARRAY

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONGETARRAY gets a JSON ARRAY identified by a key name from a JSON
OBJECT. The ARRAY is not copied, only a reference is retrieved. This reference is assigned to
the given pointer.

JsonString

JsonParse
ObjectFrom
String

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1662

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT from which the JSON ARRAY is retrieved.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string which identifies the retrieved JSON ARRAY.

Data type Default value Range Unit
POINTER TO
JSON_ARR_REF

- - -

The pointer to a JSON ARRAY to assign the retrieved ARRAY reference.
In case of any error, the data at the provided pointer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JsonObj

KeyName

JsonArrayPtr

JsonGetArray

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1663

JSONGETBOOL

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONGETBOOL gets a BOOLEAN value identified by a key name from a JSON
OBJECT. The retrieved value is assigned to the given pointer.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT from which the BOOLEAN value is retrieved.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string by which identifies the retrieved BOOLEAN value.

Data type Default value Range Unit
POINTER TO BOOL - - -

The pointer to a BOOLEAN variable to assign the retrieved value.
In case of any error, the data at the provided pointer stays unchanged.

General
information

JsonObj

KeyName

BoolValue

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1664

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONGETINT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONGETINT gets an INTEGER value identified by a key name from a JSON
OBJECT. The retrieved value is assigned to the given pointer.

Input description

JsonGetBool

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1665

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT from which the INTEGER value is retrieved.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string which identifies the retrieved INTEGER value.

Data type Default value Range Unit
POINTER TO DINT - - -

The pointer to an INTEGER variable to assign the retrieved value. In CODESYS a DINT
variable has to be used.
In case of any error, the data at the provided pointer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONGETOBJECT

JsonObj

KeyName

IntegerValue

JsonGetInt

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1666

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONGETOBJECT gets a nested child JSON OBJECT identified by a key name
from a parent JSON OBJECT. The OBJECT is not copied, only a reference is retrieved. This
reference is assigned to the given pointer.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the parent JSON OBJECT from which the child JSON OBJECT is retrieved.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string which identifies the retrieved child JSON OBJECT.

Data type Default value Range Unit
POINTER TO
JSON_OBJ_REF

- - -

The pointer to a JSON OBJECT to assign the retrieved child OBJECT reference.
In case of any error, the data at the provided pointer stays unchanged.

General
information

JsonObj

KeyName

JsonObjPtr

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1667

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONGETREAL

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONGETREAL gets a REAL value identified by a key name from a JSON
OBJECT. The retrieved value is assigned to the given pointer.

Input description

JsonGetObject

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1668

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT from which the REAL value is retrieved.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string which identifies the retrieved REAL value.

Data type Default value Range Unit
POINTER TO LREAL - - -

The pointer to a REAL variable to assign the retrieved value. In CODESYS a LREAL variable
has to be used.
In case of any error, the data at the provided pointer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONGETSTRING

JsonObj

KeyName

RealValue

JsonGetReal

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1669

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONGETSTRING gets a STRING value identified by a key name from a JSON
OBJECT. The STRING value is copied to the given pointer.

Input description

Data type Default value Range Unit
JSON_OBJ_REF - - -

The reference to the JSON OBJECT from which the STRING value is retrieved.

Data type Default value Range Unit
STRING(JSON_
MAX_KEY_LEN)

- - -

The key string which identifies the retrieved STRING value.

Data type Default value Range Unit
POINTER TO
STRING(80)

- - -

The pointer to a STRING buffer to copy the retrieved value.

Contrary to the figure the STRING value is not limited to 80 characters.

STRING buffers of any viable length can be provided.

In case of any error, the data at the provided pointer stays unchanged.

General
information

JsonObj

KeyName

StringValue

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1670

Data type Default value Range Unit
DWORD - - -

The StringLength parameter specifies the limit of the provided STRING value.
If the size of the STRING value is not sufficient, it stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

StringLength

JsonGetString

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1671

JSON array functions

JSONCREATEARRAY

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function “JSONCREATEARRAY” creates an empty JSON ARRAY. This function allocates
memory for the new ARRAY. The new ARRAY reference is assigned to the given pointer.

Input description

Data type Default value Range Unit
POINTER TO
JSON_ARR_REF

- - -

The pointer to a JSON ARRAY reference to assign the new ARRAY.
In case of any error, the data at the provided pointer stays unchanged.

Output description

General
information

JsonArrayPtr

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1672

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYADDARRAY

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYADDARRAY nests a JSON ARRAY reference to another JSON
ARRAY. The child JSON ARRAY is not copied into the parent JSON ARRAY, only meta informa-
tion is appended. The child JSON ARRAY will be identified by the last index after insertion.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the parent JSON ARRAY to which the child JSON ARRAY is appended.

Data type Default value Range Unit
JSON_ARR_REF - - -

The child JSON ARRAY which gets appended.

JsonCreate
Array

General
information

JsonArray

JsonArrayValue

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1673

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYADDBOOL

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYADDBOOL adds a BOOLEAN value to a JSON ARRAY. The given
BOOLEAN is copied into the ARRAY. The BOOLEAN will be identified by the last index after
insertion.

Input description

JsonArrayAdd
Array

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1674

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY to which the BOOLEAN is appended.

Data type Default value Range Unit
BOOL - - -

The BOOLEAN value which gets appended.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYADDINT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYADDINT adds an INTEGER value to a JSON ARRAY. The given
INTEGER is copied into the ARRAY. The INTEGER will be identified under the provided key
name. If the key value pair already exists, the value gets replaced by the INTEGER. Memory of
the old value gets freed in the replacement.

JsonArray

BoolValue

JsonArrayAdd
Bool

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1675

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY to which the INTEGER is appended.

Data type Default value Range Unit
DINT - - -

The INTEGER value which gets appended. The input is DINT. In case an INT variable in
CODESYS is appended the function INT_TO_DINT has to be used.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYADDOBJECT

JsonArray

IntegerValue

JsonArrayAdd
Int

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1676

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYADDOBJECT nests a JSON OBJECT reference to a JSON ARRAY.
The JSON OBJECT is not copied into the JSON ARRAY, only meta information is appended.
The JSON OBJECT will be identified by the last index after insertion.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY to which the JSON OBJECT is appended.

Data type Default value Range Unit
JSON_OBJ_REF - - -

The JSON OBJECT reference which gets appended.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

General
information

JsonArray

JsonObjValue

JsonArrayAdd
Object

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1677

JSONARRAYADDREAL

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYADDREAL adds a REAL value to a JSON ARRAY. The given REAL
is copied into the ARRAY. The REAL will be identified by the last index after insertion.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY to which the REAL is appended.

Data type Default value Range Unit
LREAL - - -

The REAL value which gets appended. The input is LREAL. In case a REAL variable in
CODESYS is appended the function REAL_TO_LREAL has to be used.

General
information

JsonArray

RealValue

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1678

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYADDSTRING

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYADDSTRING adds a STRING value to a JSON ARRAY. The given
STRING is copied into an internal buffer of the ARRAY. The STRING will be identified by the last
index after insertion. Different from the function figure, STRING values are allowed to have any
viable length, including STRINGS that are longer than 80 characters.

Input description

JsonArrayAdd
Real

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1679

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY to which the STRING value is appended.

Data type Default value Range Unit
POINTER TO
STRING(80)

- - -

The pointer to a STRING value which gets appended.

Contrary to the figure the STRING value is not limited to 80 characters.

Strings of any viable length can be provided.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYREMOVEENTRY

JsonArray

StringValue

JsonArrayAdd
String

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1680

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYREMOVEENTRY removes a JSON value from a JSON ARRAY, that
is identified by the given key name. All memory used by that value is freed. If the entry contains
a JSON OBJECT or JSON ARRAY all contained recursive entries get freed as well.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY from which the value is removed.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

General
information

JsonArray

JsonArray
RemoveEntry

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1681

JSONSERIALIZEARRAY

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONSERIALIZEARRAY serializes a JSON ARRAY into a given STRING buffer.
Different from the figure, the STRING buffer is allowed to have any viable length, including
STRINGS that are longer than 80 characters.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY which is serialized.

General
information

JsonArray

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1682

Data type Default value Range Unit
POINTER TO
STRING(80)

- - -

The pointer to a STRING buffer which is the target of the serialization.

Contrary to the figure the STRING buffer is not limited to 80 characters.

STRING buffers of any viable length can be provided.

No memory will be acquired so a target buffer has to be provided.

Data type Default value Range Unit
DWORD - - -

The StringLength parameter specifies the limit of the provided STRING buffer.
If the size of the STRING buffer is not sufficient to contain the JSON ARRAY representation, the
buffer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONFREEARRAY

StringBuffer

StringLength

JsonSerialize
Object

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1683

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONFREEOBJECT frees all memory used by a JSON OBJECT. All recursively
contained JSON OBJECTS and JSON ARRAYS are freed as well.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY which is freed. After the function returned without error, this
reference becomes invalid.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

General
information

JsonArray

JsonFreeArray

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1684

JSONPARSEARRAYFROMSTRING

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONPARSEARRAYFROMSTRING parses a STRING, which represents a JSON
ARRAY and creates a corresponding ARRAY from it. The new ARRAY contains all values from
the STRING representation. The function expects a reference to a JSON ARRAY to assign the
new ARRAY.

Input description

Data type Default value Range Unit
POINTER TO
JSON_ARR_REF

- - -

The pointer to a JSON ARRAY reference to assign the parsed ARRAY.
In case of any error, the data at the provided pointer stays unchanged.

General
information

JsonArrayPtr

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1685

Data type Default value Range Unit
POINTER TO
STRING(80)

- - -

JsonString is a pointer to a STRING representing a JSON ARRAY.

Contrary to the figure the STRING buffer is not limited to 80 characters.

Strings of any viable length can be provided.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYGETARRAY

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

JsonString

JsonParse
ArrayFrom
String

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1686

The function JSONARRAYGETARRAY gets a nested child JSON ARRAY identified by an index
from a parent JSON ARRAY. The ARRAY is not copied, only a reference is retrieved. This
reference is assigned to the given pointer.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the parent JSON ARRAY from which the child JSON ARRAY is retrieved.

Data type Default value Range Unit
INT - - -

The index which identifies the retrieved child JSON ARRAY.

Data type Default value Range Unit
POINTER TO
JSON_ARR_REF

- - -

The pointer to a JSON ARRAY to assign the retrieved child ARRAY reference.
In case of any error, the data at the provided pointer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JsonArray

Index

JsonArrayPtr

JsonArrayGet
Array

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1687

JSONARRAYGETBOOL

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYGETBOOL gets a BOOLEAN value identified by an index from a
JSON ARRAY. The retrieved value is assigned to the given pointer.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY from which the BOOLEAN is retrieved.

Data type Default value Range Unit
INT - - -

The index which identifies the retrieved BOOLEAN value.

General
information

JsonArray

Index

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1688

Data type Default value Range Unit
POINTER TO BOOL - - -

The pointer to a BOOLEAN variable to assign the retrieved value.
In case of any error, the data at the provided pointer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYGETINT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYGETINT gets an INTEGER value identified by an index from a JSON
ARRAY. The retrieved value is assigned to the given pointer.

BoolValue

JsonArrayGet
Bool

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1689

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY from which the INTEGER value is retrieved.

Data type Default value Range Unit
INT - - -

The index which identifies the retrieved INTEGER value.

Data type Default value Range Unit
POINTER TO DINT - - -

The pointer to an INTEGER variable to assign the retrieved value. In CODESYS a DINT
variable has to be used.
In case of any error, the data at the provided pointer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JsonArray

Index

IntegerValue

JsonArrayGetInt

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1690

JSONARRAYGETOBJECT

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYGETOBJECT gets a JSON OBJECT identified by an index from a
JSON ARRAY. The OBJECT is not copied, only a reference is retrieved. This reference is
assigned to the given pointer.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY from which the JSON OBJECT is retrieved.

Data type Default value Range Unit
INT - - -

The index which identifies the retrieved JSON OBJECT.

General
information

JsonArray

Index

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1691

Data type Default value Range Unit
POINTER TO
JSON_OBJ_REF

- - -

The pointer to a JSON OBJECT to assign the retrieved OBJECT reference.
In case of any error, the data at the provided pointer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JSONARRAYGETREAL

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYGETREAL gets a REAL value identified by an index from a JSON
ARRAY. The retrieved value is assigned to the given pointer.

JsonObjPtr

JsonArrayGet
Object

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1692

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY from which the REAL is retrieved.

Data type Default value Range Unit
INT - - -

The index which identifies the retrieved REAL value.

Data type Default value Range Unit
POINTER TO LREAL - - -

The pointer to a REAL variable to assign the retrieved value. In CODESYS a LREAL variable
has to be used.
In case of any error, the data at the provided pointer stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

JsonArray

Index

RealValue

JsonArrayGet
Real

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1693

JSONARRAYGETSTRING

Parameter Value
Included in library JSON_AC500_V28.lib

Available as of firmware V2.8

Type Function

Group C interface

The function JSONARRAYGETSTRING gets a STRING value identified by an index from a
JSON ARRAY. The STRING value is copied to the given pointer.

Input description

Data type Default value Range Unit
JSON_ARR_REF - - -

The reference to the JSON ARRAY from which the STRING value is retrieved.

Data type Default value Range Unit
INT - - -

The index which identifies the retrieved STRING value.

General
information

JsonArray

Index

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1694

Data type Default value Range Unit
POINTER TO
STRING(80)

- - -

The pointer to a STRING buffer to copy the retrieved value.

Contrary to the figure the STRING value is not limited to 80 characters.

STRING buffers of any viable length can be provided.

In case of any error, the data at the provided pointer stays unchanged.

Data type Default value Range Unit
DWORD - - -

The StringLength parameter specifies the limit of the provided STRING value.
If the size of the STRING value is not sufficient, it stays unchanged.

Output description

Data type Default value Range Unit
JSON_ERROR_ID JSON_ERR_NO_ERR - -

Provides an error number from enumeration JSON_ERROR_ID if an error occurred while pro-
cessing the function.

StringValue

StringLength

JsonArrayGet
String

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1695

Structures and enumerations

JSON_ERROR_ID

Parameter Default
value

Description

JSON_ERR_NO_ERR 0 No error.

JSON_ERR_PARSE_ERR 16#3015 Error on parsing given STRING. STRING does
not represent a valid JSON OBJECT/ARRAY or
not enough memory is available.

JSON_ERR_STRING_LEN
_ERR

16#3017 Error on given STRING buffer. JSON serialization
or STRING value is longer than STRING length.

JSON_ERR_KEY_NOT_
EXISTING

16#301B Error on given key. The key does not exist in the
JSON OBJECT.

JSON_ERR_INDEX_NOT_
EXISTING

16#301C Error on given index. The index does not exist in
the JSON ARRAY.

JSON_ERR_TYPE_ERR 16#3027 Type mismatch of value at given key in JSON
OBJECT or at given index in JSON ARRAY.

JSON_ERR_MEM_ERR 16#3028 Error on allocating memory on JSON value crea-
tion or insertion.

JSON_OBJ_REF

Type name Data type Description
JSON_OBJ_REF DWORD Address handle for JSON OBJECTS.

JSON_ARR_REF

Type name Data type Description
JSON_ARR_REF DWORD Address handle for JSON ARRAYS.

Enumeration

Type

Type

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1696

Global variables

JSON_CONSTANTS

Parameter Data type Default
value

Description

JSON_MAX_KEY_LEN DWORD 100 Maximum size of a key string in a
JSON OBJECT.

Hardware
The JSON Library requires an suitable processor module.

The firmware of the processor module must be minimum FW 2.8.0.

The processor module must have an Ethernet connection.

The following processor modules can be used:

● PM556-TP-ETH
● PM566-TP-ETH

● PM573-ETH
● PM583-ETH
● PM585-ETH
● PM590-ETH
● PM591-ETH
● PM591-2ETH
● PM592-ETH
● PM595-4ETH

Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

1.5.4.22 Modbus library
Library file name: Modbus_AC500_Vx.lib

AC500-eCo

AC500

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1697

1.5.4.22.1 Function blocks
COM_MOD_MAST

Parameter Value
Included in library Modbus_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

Group Modbus

The function block COM_MOD_MAST realizes the Modbus master function for the Modbus
interface of the controller (COM1, COM2) specified at input COM.
For each interface, a separate COM_MOD_MAST function block must be used.
Prior to the use of COM_MOD_MAST for an interface, the particular interface has to be con-
figured via the controller configuration of the Control Builder (PS501) as the Modbus master
interface.
With each FALSE > TRUE edge at input EN, the function block COM_MOD_MAST reads the
values at the inputs, generates a telegram according to the inputs and sends this telegram to
the slave.

For detailed information on Modbus RTU, see Ä Chapter 1.6.4.1.8 “Communi-
cation with Modbus RTU” on page 5467.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1698

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - - -

At input COM, the Modbus interface number is specified.
COM = 1: COM1
COM = 2: COM2

Data type Default value Range Unit
BYTE - - -

At input SLAVE, the address of the slave to which the telegram shall be sent is specified.

Data type Default value Range Unit
BYTE - - -

The function code of the request telegram is specified at input FCT.

01 or 02 Read n bits

03 or 04 Read n words

05 Write one bit (encoded in one word)

06 Write one word

07 Read 8 bit

EN

COM

SLAVE

FCT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1699

15 Write n bits (encoded in one byte)

16 Write n words

22 Mask write

23 Read/write multiple words in one telegram

Data type Default value Range Unit
WORD - - ms

The telegram timeout in milliseconds (ms) is specified at input TIMEOUT.
If no response is received within the time interval specified in TIMEOUT, the procedure is
aborted and an error identifier is output.

Keeping the timeout depends on the cycle time of the task in which the MOD-
MAST function block is processed. The real time may deviate from the specifi-
cation in worst case by task cycle time - 1 ms.

Data type Default value Range Unit
WORD - - -

The operand/register address in the slave from which data should be read or written is specified
at input ADDR.
The access to operands of AC500 devices in Modbus slave mode is defined via the Modbus
cross-reference list. Only operands that are listed in the cross-reference list may be used
(Ä Chapter 1.6.4.1.8 “Communication with Modbus RTU” on page 5467).
Only operands that are listed in the Modbus address list may be used. When accessing
other devices, ADDR is freely selectable. The valid ranges have to be gathered from the
corresponding device description.

Data type Default value Range Unit
DWORD Empty string - -

At input NB (number), the number of data to be written or read is specified. The unit of NB
depends on the selected function. For bit accesses the number of bits, for word and double
word accesses the number of words is specified at NB. The following restrictions apply to the
length:

FCT NBmax
Dec Hex Serial Modbus on TCP/IP
01 or 02 01 or 02 2000 bits 255 bits (up to firmware version

V01.33)
1800 bits (from firmware version
V01.41)
1536 bits (PM573/PM583 only)

03 or 04 03 or 04 125 words / 62
double words

125 words / 62 double words

05 05 1 bit 1 bit

06 06 1 word 1 word

TIMEOUT

ADDR

NB

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1700

FCT NBmax
Dec Hex Serial Modbus on TCP/IP
07 07 8 bits 8 bits

15 0F 1968 bits 255 bits (up to firmware version
V01.33)
1800 bits (from firmware version
V01.41)
1536 bits (PM573/PM583 only)

16 10 123 words / 61
double words

123 words / 61 double words

22 16 Write: 1 word Write: 1 word

23 17 Read: 125
words / 62
double words
Write: 123
words / 61
double words

Read: 125 words / 62 double words
Write: 123 words / 61 double words

Data type Default value Range Unit
DWORD - - -

At input DATA, the address of the first operand in the master is specified, from which data are
copied/written to the slave or to which the data read by the slave should be stored. For this
purpose it is necessary that the operand type (e.g. bit) matches the selected function (e.g. FCT
1, read n bits).
If using Modbus function codes 22 or 23, the according data structures
COM_MOD_FCT22_TYPE Ä Chapter 1.5.4.22.2.1 “COM_MOD_FCT22_TYPE” on page 1702
or COM_MOD_FCT23_TYPE Ä Chapter 1.5.4.22.2.2 “COM_MOD_FCT23_TYPE”
on page 1703 must be defined and applied to DATA.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

DATA

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1701

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
ModMast (EN := ModMast_EN,
 COM := ModMast_COM,
 SLAVE := ModMast_SLAVE,
 FCT := ModMast_FCT,
 TIMEOUT := ModMast_TIMEOUT,
 ADDR := ModMast_ADDR,
 NB := ModMast_NB,
 DATA := ADR(ModMast_DATA));

ModMast_DONE := ModMast.DONE;
ModMast_ERR := ModMast.ERR;
ModMast_ERNO:= ModMast.ERNO;

1.5.4.22.2 Structures
COM_MOD_FCT22_TYPE

Parameter Value
Included in library Modbus_AC500_V10.lib

Available as of firmware V2.2

This structure is used to handle the Modbus function 22 with the function block
COM_MOD_MAST Ä Chapter 1.5.4.22.1.1 “COM_MOD_MAST” on page 1698. The structure
has to be used at the DATA input with an ADR(instance_of_struct) operator.

Type and the content need to be created and defined by the user.

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1702

Visible variable Type Default value Description
wAND_Mask WORD 0 AND mask

wOR_Mask WORD 0 OR mask

COM_MOD_FCT23_TYPE

Parameter Value
Included in library Modbus_AC500_V10.lib

Available as of firmware V2.2

This structure is used to handle the Modbus function 23 with the function block
COM_MOD_MAST Ä Chapter 1.5.4.22.1.1 “COM_MOD_MAST” on page 1698. The structure
has to be used at the DATA input with an ADR(instance_of_struct) operator.

Modbus function 23 could only be used with CPUs with onboard Ethernet.

Type and the content need to be created and defined by the user.

Visible variable Type Default value Description
pByDataWrite POINTER TO

BYTE
0 Pointer to buffer containing data to

write. Compare FCT 16 input DATA

pByDataRead POINTER TO
BYTE

0 Pointer to buffer to store data to
read. Compare FCT 03 input DATA

wDataAddress-
Read

WORD 0 Address of the data to be read.
Compare FCT 16 input ADDR

wNumDataUnits-
Read

WORD 0 Number of data units to be read.
Compare FCT 16 input NB

1.5.4.22.3 Programs
MODBUS_TO_STRING

Parameter Value
Included in library Modbus_AC500_V10.lib

Available as of firmware V1.0.2

Type Program

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1703

The Program MODBUS_TO_STRING converts data received or data to be send via Modbus to
a String.
It does not change the value of the data but swaps and aligns data correctly. So it finally just
rearranges the original data.
The output String is NULL-terminated. Any Byte in input data containing value ‘0’ is also set
to ‘\0’ in output String. In this case output String is shorter than NUM or variable referenced at
input ADR_STRING contains multiple strings with an overall length of NUM.
The Program MODBUS_TO_STRING can be used for Modbus Master as well as for Modbus
Slave.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
WORD - 0..65536 -

The input NUM specifies the number of Bytes contained in variable referenced at input
ADR_MODBUS to be converted and put to variable referenced at input ADR_STRING.

Data type Default value Range Unit
DWORD - - -

Input ADR_MODBUS specifies the start address of the Modbus payload to be converted.
The total length of the data is assumed to be NUM Bytes long. It may contain any values. The
value 0 is treated as string separator/terminator.

Data type Default value Range Unit
DWORD - - -

Input ADR_STRING specifies the start address of the String to contain the converted Modbus
payload.
The total size/length of this variable is assumed to be at least NUM characters.

EN

NUM

ADR_MODBUS

ADR_STRING

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1704

Since the input data may contain any values (even 0), after conversion ADR_STRING may
contain one String shorter than NUM or multiple ones of NUM characters overall length.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

STRING_TO_MODBUS

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1705

Parameter Value
Included in library Modbus_AC500_V10.lib

Available as of firmware V1.0.2

Type Program

The Program STRING_TO_MODBUS converts a String to data to be send via Modbus.
It does not change the value of the data but swaps and aligns data correctly. So it finally just
re-arranges the original String.
Any terminating character (‘\0’) in input String is also set to ‘0’ in output data.
Since Program converts NUM characters in any case (independent of any terminating charac-
ters in between) input data may contain multiple Strings in this case.
The Program STRING_TO_MODBUS can be used for Modbus Master as well as for Modbus
Slave.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
WORD - 0..65536 -

The input NUM specifies the number of Characters contained in variable referenced at input
ADR_STRING to be converted and put to variable referenced at input ADR_MODBUS.

Data type Default value Range Unit
DWORD - - -

Input ADR_STRING specifies the start address of the String(s) to contain the converted to
Modbus payload.
The total size/length of this variable is assumed to be NUM characters.

EN

NUM

ADR_STRING

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1706

Data type Default value Range Unit
DWORD - - -

Input ADR_MODBUS specifies the start address of the Modbus payload to contain the con-
verted input String(s).
The total size of the data is assumed to be at least NUM Bytes.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

1.5.4.23 Extended Modbus library
Library file name: MODBUS_Ext_AC500_Vx.lib

ADR_MODBUS

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1707

1.5.4.23.1 Function blocks
COM_MOD_SLV_SET_ADDR

Parameter Value
Included in library MODBUS_Ext_AC500_V10.lib

MODBUS_Ext_AC500_V20.lib

Available as of firmware V1.2.4 (MODBUS_Ext_AC500_V10.lib)
V2.0.0 (MODBUS_Ext_AC500_V20.lib)

Type Function block

Group Modbus

The function block allows to set the address of a Modbus slave in serial mode during run time
using the MULTI protocol.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1708

Data type Default value Range Unit
BYTE - - -

Input COM specifies the COM port where the MULTI protocol is configured.

Data type Default value Range Unit
BYTE - - -

Input IDX specifies the index of the sub-module that should be used for the Modbus communi-
cation.

Data type Default value Range Unit
BYTE - - -

Input ADDR specifies the address that should be set for the corresponding Modbus slave.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

COM

IDX

ADDR

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1709

1.5.4.24 MQTT client library

1.5.4.24.1 Function blocks
The function blocks in this library can only be executed in RUN mode of the processor module,
not in simulation mode.
MQTT client library is based on OASIS MQTT specification (v3.1.1).

For further information see Ä Chapter 1.6.5.3.4 “MQTT client protocol” on page 6178

MqttConnectWithCertBuffer

Parameter Value
Included in library ABB_MqttClient_AC500.lib

Available as of firmware V2.8

Type Function block with historical values

Group C interface

The function block MqttConnectWithCertBuffer establishes a connection to a MQTT broker. This
function block only has to be called once per connection. The input parameters of the function
block are used to access to the broker.
Comparing to function block MqttConnectWithCertFile it is possible to establish a TLS connec-
tion with certificates from buffer.
In this case copy the content of the certificate .pem file into a STRING variable. All line breaks
from the file must be replace with the ST specific line break character ‘$n’.

Each time a TLS connection is established to a broker, the AC500 calculates
some key pairs. For AC500-eCo PLCs, this calculation can take up to 7 sec-
onds. Hence, ensure correct configuration of your watchdog.

MQTT client
protocol

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1710

Input description

Data type Default value Range Unit
BOOL FALSE - -

A rising edge starts the operation, the output Busy goes to TRUE. In the first cycle all other
inputs are read and stored, afterwards they are ignored. A falling edge does not stop the
operation. After Done = TRUE or Error = TRUE and Execute = FALSE all outputs will be reset.

Data type Default value Range Unit
POINTER
TO MQTT_CONNEC-
TION

0 - -

Set a reference to the connection.
MQTT_CONNECTION is used for other function blocks to reference to the established connec-
tion.

Data type Default value Range Unit
STRING Empty string - -

Set the IP address of the MQTT Broker. The IP address needs to be a string like ‘192.168.0.1’.

Data type Default value Range Unit
WORD 8883 - -

Set the port number of the MQTT broker.

Data type Default value Range Unit
BOOL TRUE - -

Decide if using secure channel (TLS, Secure := TRUE) for communication.

Execute

Conn

IpAddress

Port

Secure

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1711

Data type Default value Range Unit
POINTER TO
STRING(MQTT_MAX
_PEM_CERT_LEN)

0 - -

Set server certificate in PEM format. Only necessary if using a TLS connection.
MQTT_MAX_PEM_CERT_LEN is an internal constant which is set to 3072.

Data type Default value Range Unit
POINTER TO
STRING(MQTT_MAX
_PEM_CERT_LEN)

0 - -

Set (optional) client certificate in PEM format. Only necessary if using a TLS connection.
MQTT_MAX_PEM_CERT_LEN is an internal constant which is set to 3072.

Data type Default value Range Unit
POINTER TO
STRING(MQTT_MAX
_PEM_CERT_LEN)

0 - -

Set (optional) client certificate in PEM format. Only necessary if using a TLS connection and if
using a client certificate. MQTT_MAX_PEM_CERT_LEN is an internal constant which is set to
3072.

Data type Default value Range Unit
POINTER TO
STRING(MQTT_MAX
_PEM_CERT_LEN)

0 - -

Set client identifier which is used to identify the client to the server. Only necessary if using a
TLS connection. MQTT_MAX_CLIENT_ID_LEN is an internal constant which is set to 250.

Data type Default value Range Unit
STRING(MQTT_MAX
_USERNAME_LEN)

Empty string - -

Set username for MQTT broker. MQTT_MAX_USERNAME_LEN is an internal constant which is
set to 250.

Data type Default value Range Unit
STRING(MQTT_MAX
_PASSWORD_LEN)

Empty string - -

Set password for MQTT broker. MQTT_MAX_PASSWORD_LEN is an internal constant which is
set to 250.

Data type Default value Range Unit
MQTT_MESSAGE - - -

Optional Last Will message.

ServerCert

ClientCert

ClientKey

ClientId

Username

Password

LastWill

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1712

Data type Default value Range Unit
WORD 600 - -

Time in seconds, which will be passed to the MQTT Broker and which is normally used by the
Broker to disconnect clients if no communication was made for 1,5 * KeepAlive.

Data type Default value Range Unit
WORD 30000 - Millisecond

Timeout for connect and all subsequent calls (ping, subscribe, unsubscribe, publish with QoS >
0).

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is completed without error (while outputs Busy and Error are FALSE). This output is
TRUE for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Operation is stopped with error (while outputs Busy and Done are FALSE). This output is TRUE
for at least one cycle or until Execute is set to FALSE.

KeepAlive

Timeout

Done

Busy

Error

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1713

Data type Default value Range Unit
MQTT_ERROR_ID MQTT_ERR_NO_ER

ROR
- -

Provides an error number from enumeration Ä “MQTT_ERROR_ID (Enum) ” on page 1729 if an
error occurred while processing the function block.

MqttConnectWithCertFile

Parameter Value
Included in library ABB_MqttClient_AC500.lib

Available as of firmware V2.8

Type Function block with historical values

Group C interface

The function block MqttConnectWithCertFile establishes a connection to a MQTT broker. This
function block only has to be called once per connection. The input parameters of the function
block are used to access to the broker.
Comparing to function block MqttConnectWithCertBuffer it is possible to establish a TLS con-
nection with certificates from file.
If your PLC does not have a persistent file storage like memory card or flash disk, consider
using MqttConnectWithCertBuffer.

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1714

Input description

Data type Default value Range Unit
BOOL FALSE - -

A rising edge starts the operation, the output Busy goes to TRUE. In the first cycle all other
inputs are read and stored, afterwards they are ignored. A falling edge does not stop the
operation. After Done = TRUE or Error = TRUE and Execute = FALSE all outputs will be reset.

Data type Default value Range Unit
POINTER
TO MQTT_CONNEC-
TION

0 - -

Set a reference to the connection.
MQTT_CONNECTION is used for other function blocks to reference to the established connec-
tion.

Data type Default value Range Unit
STRING Empty string - -

IP address of the MQTT Broker. The IP address needs to be a string like ‘192.168.0.1’.

Data type Default value Range Unit
WORD 8883 - -

Set the port number of the MQTT broker.

Data type Default value Range Unit
BOOL TRUE - -

Decide if using secure channel (TLS, Secure := TRUE) for communication.

Execute

Conn

IpAddress

Port

Secure

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1715

Data type Default value Range Unit
STRING(MQTT_MAX
_FILE_PATH_LEN)

Empty string - -

File name of server certificate in PEM format. Only necessary if using a TLS connection.

Data type Default value Range Unit
STRING(MQTT_MAX
_FILE_PATH_LEN)

Empty string - -

File name of client certificate in PEM format. Only necessary if using a TLS connection.

Data type Default value Range Unit
STRING(MQTT_MAX
_FILE_PATH_LEN)

Empty string - -

File name of client private key in PEM format (optional). Only necessary if using a TLS connec-
tion and if using a client certificate.

Data type Default value Range Unit
POINTER TO
STRING(MQTT_MAX
_PEM_CERT_LEN)

0 - -

Set client identifier which is used to identify the client to the server. Only necessary if using a
TLS connection. MQTT_MAX_CLIENT_ID_LEN is an internal constant which is set to 250.

Data type Default value Range Unit
STRING(MQTT_MAX
_USERNAME_LEN)

Empty string - -

Set username for MQTT broker. MQTT_MAX_USERNAME_LEN is an internal constant which is
set to 250.

Data type Default value Range Unit
STRING(MQTT_MAX
_PASSWORD_LEN)

Empty string - -

Set password for MQTT broker. MQTT_MAX_PASSWORD_LEN is an internal constant which is
set to 250.

Data type Default value Range Unit
MQTT_MESSAGE - - -

Optional Last Will message.

Data type Default value Range Unit
WORD 600 - -

ServerCert

ClientCert

ClientKey

ClientId

Username

Password

LastWill

KeepAlive

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1716

Time in seconds, which will be passed to the MQTT Broker and which is normally used by the
Broker to disconnect clients if no communication was made for 1,5 * KeepAlive.

Data type Default value Range Unit
WORD 30000 - Millisecond

Timeout for connect and all subsequent calls (ping, subscribe, unsubscribe, publish with QoS >
0).

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is completed without error (while outputs Busy and Error are FALSE). This output is
TRUE for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Operation is stopped with error (while outputs Busy and Done are FALSE). This output is TRUE
for at least one cycle or until Execute is set to FALSE.

Timeout

Done

Busy

Error

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1717

Data type Default value Range Unit
MQTT_ERROR_ID MQTT_ERR_NO_ER

ROR
- -

Provides an error number from enumeration Ä “MQTT_ERROR_ID (Enum) ” on page 1729 if an
error occurred while processing the function block.

MqttDisconnect

Parameter Value
Included in library ABB_MqttClient_AC500.lib

Available as of firmware V2.8

Type Function block with historical values

Group C interface

The function block MqttDisconnect is used to disconnect from the MQTT Broker. This function
block resets the used socket. In case of an error during the connection, the used socket will be
reset automatically.

Input description

Data type Default value Range Unit
BOOL FALSE - -

A rising edge starts the operation, the output Busy goes to TRUE. In the first cycle all other
inputs are read and stored, afterwards they are ignored. A falling edge does not stop the
operation. After Done = TRUE or Error = TRUE and Execute = FALSE all outputs will be reset.

ErrorID

Execute

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1718

Data type Default value Range Unit
POINTER
TO MQTT_CONNEC-
TION

0 - -

Pointer to a valid connection structure created by MqttConnect.

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is completed without error (while outputs Busy and Error are FALSE). This output is
TRUE for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Operation is stopped with error (while outputs Busy and Done are FALSE). This output is TRUE
for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
MQTT_ERROR_ID MQTT_ERR_NO_ER

ROR
- -

Provides an error number from enumeration Ä “MQTT_ERROR_ID (Enum) ” on page 1729 if an
error occurred while processing the function block.

Conn

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1719

MqttGetReceivedPacket

Parameter Value
Included in library ABB_MqttClient_AC500.lib

Available as of firmware V2.8

Type Function block with historical values

Group C interface

The function block MqttGetReceivedPacket returns the first packet received for any subscribed
topic. Done = TRUE with PayloadLen = 0 indicates that nothing new has been received since
the last call..

Input description

Data type Default value Range Unit
BOOL FALSE - -

A rising edge starts the operation, the output Busy goes to TRUE. In the first cycle all other
inputs are read and stored, afterwards they are ignored. A falling edge does not stop the
operation. After Done = TRUE or Error = TRUE and Execute = FALSE all outputs will be reset.

Data type Default value Range Unit
POINTER
TO MQTT_CONNEC-
TION

0 - -

Pointer to a valid connection structure created by MqttConnect.

Execute

Conn

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1720

Data type Default value Range Unit
POINTER TO BYTE 0 - -

Pointer to the data area where the received packet can be stored.

Data type Default value Range Unit
WORD 0 - -

Size of the data area where the received packet can be stored.

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is completed without error (while outputs Busy and Error are FALSE). This output is
TRUE for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Operation is stopped with error (while outputs Busy and Done are FALSE). This output is TRUE
for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
MQTT_ERROR_ID MQTT_ERR_NO_ER

ROR
- -

Provides an error number from enumeration Ä “MQTT_ERROR_ID (Enum) ” on page 1729 if an
error occurred while processing the function block.

Payload

MaxPayloadSize

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1721

Data type Default value Range Unit
STRING(MQTT_MAX
_TOPIC_LEN)

Empty string - -

Topic where the payload data belongs to.

Data type Default value Range Unit
STRING(MQTT_MAX
_TOPIC_LEN)

Empty string - -

Actual length of the payload.

MqttPing

Parameter Value
Included in library ABB_MqttClient_AC500.lib

Available as of firmware V2.8

Type Function block with historical values

Group C interface

MqttPing sends an MQTT Ping request to the broker and waits for the response packet. If
output Done is TRUE and output Error is FALSE, the client still reaches the broker.

Input description

Data type Default value Range Unit
BOOL FALSE - -

Topic

PayLoadLen

Execute

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1722

A rising edge starts the operation, the output Busy goes to TRUE. In the first cycle all other
inputs are read and stored, afterwards they are ignored. A falling edge does not stop the
operation. After Done = TRUE or Error = TRUE and Execute = FALSE all outputs will be reset.

Data type Default value Range Unit
POINTER
TO MQTT_CONNEC-
TION

0 - -

Pointer to a valid connection structure created by MqttConnect.

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is completed without error (while outputs Busy and Error are FALSE). This output is
TRUE for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Operation is stopped with error (while outputs Busy and Done are FALSE). This output is TRUE
for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
MQTT_ERROR_ID MQTT_ERR_NO_ER

ROR
- -

Provides an error number from enumeration Ä “MQTT_ERROR_ID (Enum) ” on page 1729 if an
error occurred while processing the function block.

Conn

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1723

MqttPublish

Parameter Value
Included in library ABB_MqttClient_AC500.lib

Available as of firmware V2.8

Type Function block with historical values

Group C interface

MqttPublish publishes a MQTT message to MQTT Broker. The properties of the message
(Topic, Payload, QOS, Retain Flag) can be set with the message input.
The Timeout that was set on the MqttConnect POUs is used when a QoS Level of 1 or 2 is set
for a message.
This means that this POU will wait for an answer from the broker until the Timeout is reached
when the message is either Q0s Level 1 or Level 2.
It will not wait for any answer when QoS Level is 0.
The application using this FB has to define if the message shall be re-published and how often
that shall be done.

Input description

Data type Default value Range Unit
BOOL FALSE - -

A rising edge starts the operation, the output Busy goes to TRUE. In the first cycle all other
inputs are read and stored, afterwards they are ignored. A falling edge does not stop the
operation. After Done = TRUE or Error = TRUE and Execute = FALSE all outputs will be reset.

Execute

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1724

Data type Default value Range Unit
POINTER
TO MQTT_CONNEC-
TION

0 - -

Pointer to a valid connection structure created by MqttConnect.

Data type Default value Range Unit
MQTT_MESSAGE See description of

MQTT_MESSAGE
- -

Defines the Message to be published.

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is completed without error (while outputs Busy and Error are FALSE). This output is
TRUE for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Operation is stopped with error (while outputs Busy and Done are FALSE). This output is TRUE
for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
MQTT_ERROR_ID MQTT_ERR_NO_ER

ROR
- -

Provides an error number from enumeration Ä “MQTT_ERROR_ID (Enum) ” on page 1729 if an
error occurred while processing the function block.

Conn

Message

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1725

MqttSubscribe

Parameter Value
Included in library ABB_MqttClient_AC500.lib

Available as of firmware V2.8

Type Function block with historical values

Group C interface

The function block MqttSubscribe is used to subscribe to a topic name like 'topic/name'. Wild-
card symbols (#/+).
It can be used for subscribing like city/# or city/+/temperature. If the connection between the
client and the broker is interrupted, the client needs to subscribe again to a topic after a new
connect.

Input description

Data type Default value Range Unit
BOOL FALSE - -

A rising edge starts the operation, the output Busy goes to TRUE. In the first cycle all other
inputs are read and stored, afterwards they are ignored. A falling edge does not stop the
operation. After Done = TRUE or Error = TRUE and Execute = FALSE all outputs will be reset.

Data type Default value Range Unit
POINTER
TO MQTT_CONNEC-
TION

0 - -

Pointer to a valid connection structure created by MqttConnect.

Execute

Conn

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1726

Data type Default value Range Unit
STRING(MQTT_MAX
_TOPIC_LEN)

Empty string - -

Set the Topic name as a string. The topic name must look like ‘topic/name’. Wildcard symbols
can also be used for subscribing (for example: ‘city/#’ or ‘city/+/temperature’). For further infor-
mation see the MQTT specification.

Data type Default value Range Unit
MQTT_QOS QOS_0 BASC_NORMAL,

BASC_REVERSE
-

This input is used to signal the server which is the highest QoS level which can be handled. Can
be reduced to relive the client from high network load.

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is completed without error (while outputs Busy and Error are FALSE). This output is
TRUE for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Operation is stopped with error (while outputs Busy and Done are FALSE). This output is TRUE
for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
MQTT_ERROR_ID MQTT_ERR_NO_ER

ROR
- -

Provides an error number from enumeration Ä “MQTT_ERROR_ID (Enum) ” on page 1729 if an
error occurred while processing the function block.

Topic

MaxQos

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1727

MqttUnsubscribe

Parameter Value
Included in library ABB_MqttClient_AC500.lib

Available as of firmware V2.8

Type Function block with historical values

Group C interface

The function block MqttUnsubscribe is used to unsubscribe from a topic name like 'topic/name'.
Wildcard symbols (#/+) can be used for subscribing like city/# or city/+/temperature

Input description

Data type Default value Range Unit
BOOL FALSE - -

A rising edge starts the operation, the output Busy goes to TRUE. In the first cycle all other
inputs are read and stored, afterwards they are ignored. A falling edge does not stop the
operation. After Done = TRUE or Error = TRUE and Execute = FALSE all outputs will be reset.

Data type Default value Range Unit
POINTER
TO MQTT_CONNEC-
TION

0 - -

Pointer to a valid connection structure created by MqttConnect.

Execute

Conn

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1728

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is completed without error (while outputs Busy and Error are FALSE). This output is
TRUE for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Operation is stopped with error (while outputs Busy and Done are FALSE). This output is TRUE
for at least one cycle or until Execute is set to FALSE.

Data type Default value Range Unit
MQTT_ERROR_ID MQTT_ERR_NO_ER

ROR
- -

Provides an error number from enumeration Ä “MQTT_ERROR_ID (Enum) ” on page 1729 if an
error occurred while processing the function block.

1.5.4.24.2 Structures and enumerations

Parameter Value Description
MQTT_ERR_NO_ERROR 0 No error.

MQTT_ERR_CONN_
SERVICE_UNAVAIL

16#3001 The Network Connection has been made
but the MQTT service is unavailable on the
specified port.

MQTT_ERR_COMMUNI-
CATION_TIMEOUT

16#3013 The timeout value for the communication
has been exceeded.

MQTT_ERR_REC_PACKE
T_TOO_LONG

16#3017 Received topic is too long.

MQTT_ERR_PING_NO_A
NSWER

16#301A The MQTT broker did not answer the ping.
MQTT client has passed the KeepAlive or
MQTT broker is unreachable.

MQTT_ERR_CONN_CLIE
NT_ID_NOT_ALLOWED

16#301F The Client identifier is correct UTF-8 but
not allowed by the Server.

Done

Busy

Error

ErrorID

MQTT_ERROR_I
D (Enum)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1729

Parameter Value Description
MQTT_ERR_CONN_
REFUSED_PROTOCOL

16#3020 The Server does not support the level
of the MQTT protocol requested by the
Client.

MQTT_ERR_CONN_REFU
SED_CONNECTION

16#3025 Connection refused, maybe the IP address
is malformed.

MQTT_ERR_UNSPECI-
FIED_ERROR

16#302B Internal library returned an unspecified
error.

MQTT_ERR_NET-
WORK_ERROR

16#302D General network error.

MQTT_ERR_CONN_AUTH
_FAILED

16#3217 Authentication failed: Bad username, pass-
word OR client id.

MQTT_ERR_CONN_TLS_
HANDSHAKE_FAILED

16#3230 Error on TLS handshake.

MQTT_ERR_CONN_SERV
ER_CERT_NOT_VALID

16#3231 Server certificate not valid. Check if PLC
date has been set correctly.

MQTT_ERR_CONN_SERV
ER_CERT_NOT_PEM

16#3232 Server certificate format is not formatted as
PEM.

MQTT_ERR_CONN_SERV
ER_CERT_EXPIRED

16#3233 Server certificate has expired.

MQTT_ERR_CONN_CLIE
NT_CERT_NOT_VALID

16#3234 Client certificate not valid. Check if PLC
date has been set correctly.

MQTT_ERR_CONN_CLIE
NT_CERT_NOT_PEM

16#3235 Client certificate or client key format is not
formatted as PEM.

MQTT_ERR_CONN_CLIE
NT_CERT_EXPIRED

16#3236 Client certificate has expired.

MQTT_ERR_INPUT_02_0 16#4020 Function block Input 02 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Parameter Conn of function block was
not set.

● MqttConnectWithCertFile (FB): Param-
eter Conn of function block was not
set.

● MqttGetReceivedPacket (FB): Param-
eter Conn of function block was not
set.

● MqttPublish (FB): Parameter Conn of
function block was not set.

● MqttSubscribe (FB): Parameter Conn
of function block was not set.

● MqttUnsubscribe (FB): Parameter
Conn of function block was not set.
MqttPing (FB): Parameter Conn of
function block was not set.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1730

Parameter Value Description
MQTT_ERR_INPUT_03_0 16#4030 Function block Input 03 error (error case

0), specific error depends on used function
block:
● MqttGetReceivedPacket (FB): Pointer

payload not initialized.
● MqttPublish (FB): Publish topic name

must not contain wildcard characters (+
or #).

● MqttSubscribe (FB): Topic is missing.
● MqttUnsubscribe (FB): Topic is

missing.

MQTT_ERR_INPUT_03_1 16#4031 Function block Input 03 error (error case
1), specific error depends on used function
block:
● MqttPublish (FB): Payload is not set in

MQTT_MESSAGE.

MQTT_ERR_INPUT_04_0 16#4040 Function block Input 04 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Check if Port number has been set cor-
rectly (0 is not accepted).

● MqttConnectWithCertFile (FB): Check
if Port number has been set correctly
(0 is not accepted).

MQTT_ERR_INPUT_06_0 16#4060 Function block Input 06 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Server

certificate file was not found.

MQTT_ERR_INPUT_07_0 16#4070 Function block Input 07 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Client

certificate file was not found.

MQTT_ERR_INPUT_08_0 16#4080 Function block Input 08 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Client

key file was not found.

MQTT_ERR_INPUT_12_0 16#4120 Function block Input 12 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Couldn't initialize Last Will message
because the topic is not set.

● MqttConnectWithCertFile (FB):
Couldn't initialize Last Will message
because the payload is not set.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1731

Parameter Value Description
MQTT_ERR_INPUT_12_1 16#4121 Function block Input 12 error (error case

1), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Couldn't initialize Last Will message
because the topic is not set.

● MqttConnectWithCertFile (FB):
Couldn't initialize Last Will message
because the payload is not set.

MQTT_ERR_FATAL_ERR
OR

16#5FFFF Fatal error state machine.

Parameter Value Description
QOS_0 - Fire and forget (At most once delivered).

QOS_1 - Simple acknowledgement (At least once delivered).

QOS_2 - Complex acknowledgement (Exactly once delivered).

This structure is used for messages which can be published or used for LastWill on MqttCon-
nect(FB).

Variable name Data type Default
value

Description

sTopic STRING(MQTT_M
AX_TOPIC_LEN)

Empty
string

Topic where this message belongs to.

pbyPayload POINTER TO
BYTE

0 Payload which should be sent.

dwLen DWORD 0 Length of the payload.

eQos MQTT_QOS QOS_0 Quality of Service level.

xRetainFlag BOOL FALSE True = message must be stored by the
server, False = server must not store
this message.

Internal data required by the library to operate. This structure allocates memory and it is used to
identify the MQTT connection you want to work with

Parameter Data type Range
abyConn Array MQTT_CLIENT_STRUCT_SIZE

abyTxBuf Array MQTT_TX_BUF_SIZE

abyRxBuf Array MQTT_RX_BUF_SIZE

abyMsgBuf Array MQTT_MSG_BUF_SIZE

MQTT_QOS
(Enum)

MQTT_MES-
SAGE

MQTT_CON-
NECTION

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1732

1.5.4.24.3 Global variables

Parameter Datatype Value Description
MQTT_MAX_IP_ADDRESS_L
EN

Word 15 Maximum length of the IP
address.

MQTT_MAX_PEM_KEY_LEN Word 2048 Maximum length of the PEM
key.

MQTT_MAX_PEM_CERT_LE
N

Word 3072 Maximum length of the PEM
certificate.

MQTT_MAX_FILE_PATH_LEN Word 255 Maximum length of the file path
to the certificate files.

MQTT_MAX_CLIENT_ID_LEN Word 250 Maximum length of the client
id.

MQTT_MAX_USER-
NAME_LEN

Word 250 Maximum length of the user-
name.

MQTT_MAX_PASS-
WORD_LEN

Word 250 Maximum length of the pass-
word.

MQTT_MAX_TOPIC_LEN Word 255 Maximum length of the topic.

MQTT_CLIENT_STRUCT_SIZ
E

Word 336 Size of the internal connection
structure representing the con-
nection state.

MQTT_TX_BUF_SIZE Word 1024 Size of the internally used
output buffer.

MQTT_RX_BUF_SIZE Word 1024 Size of the internally used input
buffer.

MQTT_MSG_BUF_SIZE Word 2148 Size of the internally used mes-
sage buffer.

1.5.4.25 Onboard IO library
Library file name: OnBoardIO_AC500_Vx.lib
The Onboard I/O Library contains all function blocks necessary for using the Onboard I/Os of
AC500 CPUs PM55x and PM56x.
The library is automatically included if a project has an processor module PM55x/PM56x.

MQTT_CON-
STANTS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1733

1.5.4.25.1 Function blocks
ONB_IO_CNT

Parameter Value
Included in library OnBoardIO_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group Counter_OBIO

The function block ONB_IO_CNT is used to control the fast counters which are integrated in
AC500 CPUs PM55x and PM56x.
The operating modes of the fast counters are described in detail in Ä Chapter 1.6.2.6.1.2.10
“Fast counter” on page 4351.
To activate the fast counters of AC500 CPUs PM55x and PM56x, the parameter "Fast Counter"
of the I/O module must be set to the desired counting mode in the control system configuration.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1734

The function block ONB_IO_CNT has an integrated visualization block that can be used to
control all block functions in parallel to the user program (if input EN_VISU = TRUE). A detailed
functional description of the visualization and how to integrate it can be found at the end of this
Function Block description.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1735

Data type Default value Range Unit
BYTE - - -

Input CHANNEL is used to select the input for the counter. Currently the only valid value is
0. The device occupies the inputs I0...I1. If an invalid value is entered at input CHANNEL
or if the selected channel is not configured as a counter, the function block is aborted with
DONE=ERR=TRUE and a corresponding error number at ERNO.
CHANNEL contains the channel number managed by the function block:
● CHANNEL = 0: the output O2 is managed
● CHANNEL = 1: the output O3 is managed

Data type Default value Range Unit
BOOL - - -

If input EN_VISU = TRUE, it is also possible to control the function block inputs (except
CHANNEL and EN_VISU) via the integrated visualization of the function block. If input
EN_VISU = FALSE, control via the visualization is disabled and the labelling of the corre-
sponding control elements is displayed in gray. The actual values are always displayed.

Data type Default value Range Unit
BOOL - - -

If input EN1 = TRUE, pulse counting of counter 1 is enabled. If EN1 = FALSE, no pulse counting
is performed and the pulses are lost.
Input EN1 corresponds to bit 1 in control byte 0.

Data type Default value Range Unit
BOOL - - -

At input UD1, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD1 = FALSE → counter 1 counts up
UD1 = TRUE → counter 1 counts down
If input SET1 = TRUE, the counter takes this value.
Input UD1 corresponds to bit 0 in control byte 0.

Data type Default value Range Unit
BOOL - - -

Input EN_OUT1 is used to enable/disable the output control for the operating modes with direct
output activation (modes 1 and 2).

The functionality of the input variable is not supported before Onboard I/O
firmware V1.04.

Only for fast counter operating modes 1 and 2:

CHANNEL

EN_VISU

EN1

UD1

EN_OUT1

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1736

If EN_OUT1 = FALSE, the related digital output DO acts as an output indicating "end value
reached" of the fast counter.
If EN_OUT1 = TRUE, the related digital output DO can be used as normal digital output.
The value change of EN_OUT1 is only effective when EN = TRUE.
Input EN_OUT1 corresponds to bit 3 in control byte 0.

Data type Default value Range Unit
BOOL - - -

If set input SET1 = TRUE, the counter takes the values from the inputs UD1, START1 and
END1.
As long as input SET1 = TRUE, no pulses are counted because the counter is always over-
written by the start value START1.
Input SET1 corresponds to bit 2 in control byte 0.

Data type Default value Range Unit
DWORD

At input START1, the start value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.

Data type Default value Range Unit
DWORD - - -

At input END1, the end value of counter 1 is entered.
If input SET1 = TRUE, counter 1 takes this value.

Data type Default value Range Unit
BOOL - - -

At input UD2, the counting direction is set for operating modes with up/down counters (modes
3...6).
The following applies:
UD2 = FALSE → counter 2 counts up
UD2 = TRUE → counter 2 counts down
If input SET2 = TRUE, the counter takes this value.
Input UD2 corresponds to bit 0 in control byte 1.

Data type Default value Range Unit
BOOL - - -

The functionality of the input variable is not supported before Onboard I/O
firmware V1.04.

Input EN_OUT2 is reserved. The value FALSE has to be applied.

SET1

START1

END1

UD2

EN_OUT2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1737

Input EN_OUT2 corresponds to bit 3 in control byte 1.

Data type Default value Range Unit
BOOL - - -

If set input SET2 = TRUE, the counter takes the values from the inputs UD2, START2 and
END2.
As long as input SET2 = TRUE, no pulses are counted because the counter is always over-
written by the start value START2.
Input SET2 corresponds to bit 2 in control byte 1.

Data type Default value Range Unit
DWORD - - -

At input START2, the start value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.

Data type Default value Range Unit
DWORD - - -

At input END2, the end value of counter 2 is entered.
If input SET2 = TRUE, counter 2 takes this value.

Output description

SET2

START2

END2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1738

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output STATE indicates the current mode of fast counter. The mode of fast counter (0-10) can
be configured in the channel parameter of the PLC configuration (please refer to fast counter
mode in system technology chapter 9.3).

Data type Default value Range Unit
BOOL - - -

If counter 1 has reached the programmed end value (input END1), output CF1 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET1), CF1 is set to
FALSE.
Output CF1 corresponds to bit 0 in status byte 0.

Data type Default value Range Unit
DWORD - - -

At output ACT1, the actual value = counter reading of counter 1 is output as double word.

Data type Default value Range Unit
BOOL - - -

If counter 2 has reached the programmed end value (input END2), output CF2 (end value
reached) is set to TRUE and stored. When setting the counter (via input SET2), CF2 is set to
FALSE.
Output CF2 corresponds to bit 0 in status byte 1.

DONE

ERR

ERNO

STATE

CF1

ACT1

CF2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1739

Data type Default value Range Unit
DWORD - - -

At output ACT2, the actual value = counter reading of counter 2 is output as double word.

Function call in ST
ONB_IO_CNT (EN := ONB_IO_CNT_EN,
CHANNEL := ONB_IO_CNT_CHANNEL,
EN_VISU := ONB_IO_CNT_EN_VISU,
EN1 := ONB_IO_CNT_EN1,
UD1 := ONB_IO_CNT_UD1,
EN_OUT1 := ONB_IO_CNT_EN_OUT1,
SET1 := ONB_IO_CNT_SET1,
START1 := ONB_IO_CNT_START1,
END1 := ONB_IO_CNT_END1,
EN2 := ONB_IO_CNT_EN2,
UD2 := ONB_IO_CNT_UD2,
EN_OUT2 := ONB_IO_CNT_EN_OUT2,
SET2 := ONB_IO_CNT_SET2,
START2 := ONB_IO_CNT_START2,
END2 := ONB_IO_CNT_END2);

ONB_IO_CNT_DONE := ONB_IO_CNT.DONE;
ONB_IO_CNT_ERR := ONB_IO_CNT.ERR;
ONB_IO_CNT_ERNO := ONB_IO_CNT.ERNO;
ONB_IO_CNT_STATE := ONB_IO_CNT.STATE;
ONB_IO_CNT_CF1 := ONB_IO_CNT.CF1;
ONB_IO_CNT_ACT1 := ONB_IO_CNT.ACT1;
ONB_IO_CNT_CF2 := ONB_IO_CNT.CF2;
ONB_IO_CNT_ACT2 := ONB_IO_CNT.ACT2;

ONB_IO_INT_IN

Parameter Value
Included in library OnBoardIO_AC500_V13.lib

Available as of firmware V1.3.0

ACT2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1740

Parameter Value
Type Function block with historical values

Group Interrupt_Input_OBIO

Using the function block ONB_IO_INT_IN, the interrupt program can be polled which inputs
(IN0...IN3) triggered interrupts since the last function block calling. The corresponding outputs
IN0...IN3 are set to TRUE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE - - -

Input CHANNEL is used to select the input for the counter. Currently the only valid value is
0. The device occupies the inputs I0...I1. If an invalid value is entered at input CHANNEL
or if the selected channel is not configured as a counter, the function block is aborted with
DONE=ERR=TRUE and a corresponding error number at ERNO.
CHANNEL contains the channel number managed by the function block:
● CHANNEL = 0: the output O2 is managed
● CHANNEL = 1: the output O3 is managed

EN

CHANNEL

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1741

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL - - -

The outputs IN0...IN7 display which inputs triggered an interrupt since the last function block
calling. 4 channels (I0..I3) of AC500-eCo Onboard I/O can be configured as interrupt inputs.
Therefore, IN0…IN3 will be used to display the status of interrupt inputs.

Data type Default value Range Unit
BOOL - - -

If interrupt pulse was lost, LOST=TRUE. Otherwise, LOST=FALSE.

DONE

ERR

ERNO

IN0...IN7

LOST

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1742

Function call in ST
ONB_IO_INT_IN (EN := ONB_IO_INT_IN_EN,
 CHANNEL := ONB_IO_INT_IN_CHANNEL);

ONB_IO_INT_IN_DONE := ONB_IO_INT_IN.DONE;
ONB_IO_INT_IN_ERR := ONB_IO_INT_IN.ERR;
ONB_IO_INT_IN_ERNO := ONB_IO_INT_IN.ERNO;
ONB_IO_INT_IN_IN0 := ONB_IO_INT_IN.IN0;
ONB_IO_INT_IN_IN1 := ONB_IO_INT_IN.IN1;
ONB_IO_INT_IN_IN2 := ONB_IO_INT_IN.IN2;
ONB_IO_INT_IN_IN3 := ONB_IO_INT_IN.IN3;
ONB_IO_INT_IN_IN4 := ONB_IO_INT_IN.IN4;
ONB_IO_INT_IN_IN5 := ONB_IO_INT_IN.IN5;
ONB_IO_INT_IN_IN6 := ONB_IO_INT_IN.IN6;
ONB_IO_INT_IN_IN7 := ONB_IO_INT_IN.IN7;
ONB_IO_INT_IN_LOST := ONB_IO_INT_IN.LOST;

ONB_IO_PWM_FREQ

Parameter Value
Included in library OnBoardIO_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group PWM_OBIO

The onboard digital outputs O2…O3 can be used to control output pulses signals with an
adjustable duty cycle (ON/OFF ratio).The PWM operating mode is configured in PLC Configura-
tion using channel parameters (see figure below).

After that, it is activated during the initialization phase (power-on, cold start, warm start).

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1743

The data exchange to and from the user program is performed using input and output operands.
These necessary operands are created and reserved automatically when target is set as CPU
PM55x or PM56x.
The CPU PM55x or PM56x provides 2 outputs which can be used in PWM mode (O2 and O3).
Both have the same specification and work with the same frequency. The duty time can be
adjusted independently.
The function block ONB_IO_PWM_FREQ should be used to control with input EN_PWM,
configure the frequency with input FREQ and the input duty cycle DUTY of PWM outputs
(pulse-width modulator).
The PWM function can be realized by using two function blocks:
● ONB_IO_PWM_FREQ (this function block)
● ONB_IO_PWM_TIME Ä Chapter 1.5.4.25.1.4 “ONB_IO_PWM_TIME” on page 1746

The frequency for both PWM channels must be the same. If both channels are
used, the frequency of the first PWM channel (CHANNEL=0) is valid for both
channels. The frequency input of the second channel (CHANNEL=1) must be
set to 0.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL - - -

If EN_PWM = TRUE, the pulse-width modulator is enabled. If EN_PWM = FALSE, no pulse-
width modulation is performed.
Input EN_PWM corresponds to output bit 7 in "control byte PWM x ".

Data type Default value Range Unit
BYTE - - -

EN

EN_PWM

CHANNEL

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1744

Input CHANNEL is used to select the input for the counter. Currently the only valid value is
0. The device occupies the inputs I0...I1. If an invalid value is entered at input CHANNEL
or if the selected channel is not configured as a counter, the function block is aborted with
DONE=ERR=TRUE and a corresponding error number at ERNO.
CHANNEL contains the channel number managed by the function block:
● CHANNEL = 0: the output O2 is managed
● CHANNEL = 1: the output O3 is managed

Data type Default value Range Unit
DWORD - 125 - 20000 Hz

The input FREQ is used to specify the frequency of PWM.
The frequency value is defined with a double word (DWORD), but the internal communication
is realized with WORD type. For frequencies greater than 65535, an additional bit is used
internally as a multiplier. Thus, for such frequencies the resolution becomes 10 Hz.
The additional multiplier bit is the bit 0..1 of "control byte PWM x ".
Input FREQ corresponds to output word "PWM x -Frequency/Cycle time".

Data type Default value Range Unit
WORD - 0.0 - 100.0 %

The input DUTY is used to specify the percentage of time set to TRUE. The duty cycle is from 0
to 1000 (0.0 % to 100.0 %); the value is written without dot. That means, for example, for 75.8
% the value written will be 758. The max. value authorized will be 1000 to specify a duty cycle =
100.0 %.
On fast outputs O2 and O3, the brightness of the yellow LED depends on the value of duty
cycle specified (from 0 to 100 %).

If the written value is greater than 1000, the value 1000 will be read. If the
written value is less than 0, the value 0 will be read. No error message will be
generated in these two cases. The last entered valid value will be used or the
value '0' if no value has been entered before.

Input DUTY corresponds to output word "PWM x - Duty cycle/Duty time".

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

FREQ

DUTY

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1745

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
ONB_IO_PWM_FREQ (EN := ONB_IO_PWM_FREQ_EN,
EN_PWM := ONB_IO_PWM_EN_PWM,
CHANNEL := ONB_IO_PWM_FREQ_CHANNEL,
FREQ := ONB_IO_PWM_FREQ_FREQ,
DUTY := ONB_IO_PWM_FREQ_DUTY);

ONB_IO_PWM_FREQ_DONE := ONB_IO_PWM_FREQ.DONE;
ONB_IO_PWM_FREQ_ERR := ONB_IO_PWM_FREQ.ERR;
ONB_IO_PWM_FREQ_ERNO := ONB_IO_PWM_FREQ.ERNO;

ONB_IO_PWM_TIME

Parameter Value
Included in library OnBoardIO_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group PWM_OBIO

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1746

The onboard digital outputs O2…O3 can be used to control output pulses signals with an
adjustable duty cycle (ON/OFF ratio).The PWM operating mode is configured in PLC Configura-
tion using channel parameters (see figure below).

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
These necessary operands are created and reserved automatically when target is set as CPU
PM55x or PM56x.
The CPU PM55x or PM56x provides two outputs which can be used in PWM mode (O2 and
O3). Both have the same specification and work with the same frequency. The duty time can be
adjusted independently.
The function block ONB_IO_PWM_TIME should be used to control with input EN_PWM, con-
figure the frequency with input CYCLE_TIME and the input CYCLE_DUTY of PWM outputs
(pulse-width modulator).
The PWM function can be realized by using two function blocks:
● ONB_IO_PWM_FREQ Ä Chapter 1.5.4.25.1.3 “ONB_IO_PWM_FREQ” on page 1743
● ONB_IO_PWM_TIME (this function block)

For PWM functionality two channels share the same frequency. With this by
using the second channel, frequency on its function block won't work. To
resolve this, enable the function block of the first channel and set the frequency.

The cycle time for both PWM channels must be the same. If both channels are
used, the cycle time of the first PWM channel (CHANNEL=0) is valid for both
channels. The cycle time input of the second channel (CHANNEL=1) must be
set to 0.

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1747

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL - - -

If EN_PWM = TRUE, the pulse-width modulator is enabled. If EN_PWM = FALSE, no pulse-
width modulation is performed.
Input EN_PWM corresponds to output bit 7 in "control byte PWM x ".

Data type Default value Range Unit
BYTE - - -

Input CHANNEL is used to select the input for the counter. Currently the only valid value is
0. The device occupies the inputs I0...I1. If an invalid value is entered at input CHANNEL
or if the selected channel is not configured as a counter, the function block is aborted with
DONE=ERR=TRUE and a corresponding error number at ERNO.
CHANNEL contains the channel number managed by the function block:
● CHANNEL = 0: the output O2 is managed
● CHANNEL = 1: the output O3 is managed

Data type Default value Range Unit
WORD - 50 µs (20 kHz) - 8000

µs (125 Hz)
µs (Hz)

The input CYCLE_TIME is used to specify the cycle time of PWM. The unit can be also set as
"ms" by configuring the input variable UNIT=TRUE.
Input CYCLE_TIME corresponds to output word "PWM x -Frequency/Cycle time".

Data type Default value Range Unit
WORD - - -

Input CYCLE_DUTY is used to preset the duty time for the output. The input CYCLE_DUTY is
used to specify the time of TRUE signal. By normal operation mode, the value of CYCLE_DUTY
should be smaller or equal to the value of CYCLE_TIME.
On fast outputs O2 and O3 the brightness of the yellow LED depends on the value of duty time
specified.
The last entered valid value will be used or the value '0' if no value has been entered before.
Input CYCLE_DUTY corresponds to output word "PWM x - Duty cycle/Duty time".

Data type Default value Range Unit
BOOL - - -

EN

EN_PWM

CHANNEL

CYCLE_TIME

CYCLE_DUTY

UNIT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1748

Input UNIT is used to preset the timebase for the PWM output. FALSE sets the timebase to µs
and TRUE to ms.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
ONB_IO_PWM_TIME (EN := ONB_IO_PWM_TIME_EN,
EN_PWM := ONB_IO_PWM_TIME_EN_PWM,
CHANNEL := ONB_IO_PWM_TIME_CHANNEL,
CYCLE_TIME := ONB_IO_PWM_TIME_CYCLE_TIME,
CYCLE_DUTY := ONB_IO_PWM_TIME_CYCLE_DUTY,
UNIT := ONB_IO_PWM_TIME_UNIT);

ONB_IO_PWM_TIME_DONE := ONB_IO_PWM_TIME.DONE;
ONB_IO_PWM_TIME_ERR := ONB_IO_PWM_TIME.ERR;
ONB_IO_PWM_TIME_ERNO := ONB_IO_PWM_TIME.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1749

1.5.4.26 PROFIBUS DP library
Library file name: PROFIBUS_AC500_Vx.lib
The PROFIBUS DP Communication Module in the AC500 controller series can solely be oper-
ated in operating mode DP master.
The function blocks provided by PROFIBUS DP library can be used to work with Com-
munication Module CM592-DP. Depending on the functionality runtime system or directly
the Communication Module is accessed. Required definitions are provided by the libraries
SysExt_AC500_V10.lib, PROFIBUS_CME_AC500_V25.lib, PROFIBUS_CMN_AC500_V25.lib
and CMN_AC500_V24.lib. The library is automatically included into the user program due to
Communication Module configuration.
Basically this library replaces the library PROFIBUS_AC500_V10.lib and provides function block
types with identical type names and input and output layouts. The function blocks act in com-
patible behavior for both Communication Module types. Thus description of the functionality
is valid regardless of the Communication Module type. Already existing user programs can
be reused without changes. However, CM592-DP uses different PROFIBUS protocol stack
implementations which acts different in a few details. If such differences are to be considered in
using the function blocks, this is described at the certain Function Block descriptions.

Neither the function blocks of the PROFIBUS DP library nor the PROFIBUS DP
communication can be run in simulation mode. The PROFIBUS DP communica-
tion only runs in the PLC mode RUN, but not in the modes Single Cycle, Step
and Breakpoint.

It is not necessary to include the library for normal cyclic data exchange via PROFIBUS DP.
The library contains additional function blocks which allow an easy handling of the PROFIBUS
DP Communication Module. Additionally, various data types are defined in this library. These
structures enable a clear presentation of data sets.

If you update an Automation Builder project from Automation Builder
Version 1.2 to a Automation Builder Version ³ 1.2, delete the
PROFIBUS_AC500_V10.lib from your CODESYS V2.3 project in advance.

1.5.4.26.1 Function blocks
DPM_CTRL

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1750

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Control

The function block DPM_CTRL implements thePROFIBUS DP function DDLM_Global_Control.
DDLM_Global_Control is a broadcast function.
Using global control commands, the output data of one, several or all slaves can be reset and
input or output data of slaves can be synchronized. The commands are selected by different
combinations of the outputs CLR_DATA, FREEZE / UNFREEZE and SYNC / UNSYNC. The
called slaves are selected using three parameters. First, during project planning, the slaves can
be divided into logical groups. Then, during run time, the slaves can be called individually or in
groups via the function block inputs SLV and GROUP_SLV.
Every time a FALSE → TRUE edge is applied to input EN, DPM_CTRL reads the data at its
inputs and sends a corresponding request message to the Communication Module. Further
FALSE → TRUE edges at input EN are ignored until the processing of the active requests is
finished. The completion of the request processing is indicated by DONE = TRUE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1751

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BYTE - - -

At input SLV the bus address of the DP slave is specified, to which a global control command
shall be sent.
With SLV = 0..126, a particular slave with the corresponding bus address is called directly,
independent of the group to which it was assigned during configuration and independent of the
value applied at function block input GROUP_SEL.
If SLV = 127 and GROUP_SEL = 0, all slaves are called simultaneously. The selection of
individual slave groups is done with SLV = 127 and a combination of GROUP_SEL and the
group assignment made during configuration. For that reason, the function block outputs SLV
and GROUP_SEL always have to be considered together with the group assignment made
during configuration.
For possible combinations see Possible combinations of global control commands.

Data type: BYTE
At input GROUP_SEL (slave group selection) the slave groups are selected, to which a global
control command shall be sent.
With SLV = 0..126, a particular slave with the corresponding bus address is called directly,
independent of the group assignment which was made during configuration and independent of
the value applied at function block input GROUP_SEL. If GROUP_SEL = 0 and SLV = 127, all
slaves are called simultaneously.
The selection of individual slave groups is done with SLV = 127 and a combination of
GROUP_SEL and the group assignment made during configuration. For that reason, the func-
tion block outputs SLV and GROUP_SEL always have to be considered together with the group
assignment made during configuration.
For possible combinations see Possible combinations of global control commands.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Using input CLR_DATA (clear data), the output data of slaves can be reset on site.
The called slave resets its outputs on-site to 0 when it receives a global control command with
CLR_DATA = TRUE.
If the CLR_DATA part of a command is FALSE, the outputs of the called slaves keep their
current state. Slaves which are not called ignore the entire command.
For possible combinations see Possible combinations of global control commands.

CLR_DATA is not supported on using function block DPM_CTRL with Commu-
nication Module of type CM592-DP.

SLOT

SLV

GROUP_SEL

CLR_DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1752

Data type: BOOL
When input UNFREEZE is TRUE, the synchronization mode for input data of the called slaves
is terminated, regardless of the current state of input FREEZE (TRUE or FALSE).
Then, the called slaves forward their input values directly to the master again. If the UNFREEZE
part of a command is FALSE, the called slaves keep their current state. The UNFREEZE
command is ignored, if the called slave is not in the FREEZE state. Slaves, which are not called,
ignore the entire command.
UNFREEZE always has to be considered together with FREEZE.
For possible combinations see Possible combinations of global control commands.

Data type: BOOL
When input FREEZE is TRUE and input UNFREEZE is FALSE at the same time, the called
slaves change to input data synchronization mode.
This mode is activated with the first FREEZE command. As a result, the called slaves simulta-
neously freeze the values currently applying at their local inputs and store them temporarily.
During the subsequent process data cycles, the temporarily stored input values are transmitted
to the master, regardless of possible changes of the input values in the mean time.
When another FREEZE command is received, the temporarily stored input values are updated,
i.e. the called slaves simultaneously store the present input values into an internal buffer once
again and then transmit these values to the master during the subsequent cycles.
FREEZE always has to be considered together with UNFREEZE.
For possible combinations see Possible combinations of global control commands.

Data type: BOOL
If input UNSYNC is TRUE, the synchronization mode for the output data of the called slaves is
terminated, regardless of the current state of input SYNC (TRUE or FALSE). From now on, the
called slaves immediately forward the output data received from the master to their own outputs
again.
If the UNSYNC part of a command is FALSE, the called slaves keep their current state. The
UNSYNC command is ignored, if the called slave is not in the SYNC state. Slaves which are not
called ignore the entire command.
UNSYNC always has to be considered together with SYNC.
For possible combinations see Possible combinations of global control commands.

Data type: BOOL
If input SYNC is TRUE and input UNSYNC is FALSE at the same time, the called slaves change
to output data synchronization mode.
This mode is activated with the first SYNC command. As a result, the called slaves freeze the
current states of their local outputs. The output data sent during the subsequent process data
cycles are first stored only locally in these slaves.
On reception of another SYNC command, the slaves then simultaneously apply these tempora-
rily stored values to their outputs. SYNC always has to be considered together with UNSYNC.
For possible combinations see Possible combinations of global control commands.

UNFREEZE

FREEZE

UNSYNC

SYNC

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1753

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
CTRL
 (EN := CTRL_EN,
 SLOT := CTRL_SLOT,
 SLV := CTRL_SLV,
 GROUP_SEL := CTRL_GROUP_SEL,
 CLR_DATA := CTRL_CLR_DATA,
 UNFREEZE := CTRL_UNFREEZE,
 FREEZE := CTRL_FREEZE,
 UNSYNC := CTRL_UNSYNC,
 SYNC := CTRL_SYNC);

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1754

CTRL_DONE := CTRL.DONE;
CTRL_ERR := CTRL.ERR;

SYSDIAG_ERNO:= SYSDIAG.ERNO;

Selection of the called slaves
Group assignment is part of the PROFIBUS DP slave configuration procedure and will be
loaded to the PROFIBUS DP master as part of the slave parameter set. As default a slave is not
connected to a specific group. This has to be done manually. The group assignment parameter
is coded of type byte and provides a bitfield. Each bit points to a certain group and several bits
can be set in parallel. Thus a slave can be assigned to multiple groups at the same time which
is limited to 8 groups in total.

G8 G7 G6 G5 G4 G3 G2 G1

7 6 5 4 3 2 1 0

For instance, if a slave is to be assigned to the groups 7 and 1, the master sends a byte with the
decimal value 65 (= binary value 01000001) to this slave.
The function block inputs SLV and GROUP_SEL specify which slaves are to be called by a
global control command during run time.
SLV = 0..126 calls only the slave with a bus address = SLV, independent of the group assign-
ment and of the value applied at input GROUP_SEL. All other slaves discard this telegram.
Applying SLV = 127 and GROUP_SEL = 0 calls all slaves connected to the bus, independent
of their group assignment. The group assignment defined during the configuration is only
considered by the slaves if they receive a global control command with SLV = 127 and
GROUP_SEL unequal to 0. In this case, each slave compares the GROUP_SEL value with
the group assignment byte received during parameterization. The slave accepts the command if
a bitwise collation of these two values delivers a result unequal to 0 and discards the command
if the collation delivers a value of 0. For instance, if a slave which is assigned to groups 1 and 7
(see above) receives a global control command with SLV = 127 and GROUP_SEL = 64 dec. (=
01000000 bin.), the command is also (among others) addressed to this slave.

Group assignment 0 1 0 0 0 0 0 1

GROUP_SEL AND 0 1 0 0 0 0 0 0

Result of the compar-
ison

 0 1 0 0 0 0 0 0

The following table shows the possible combinations of the three parameters SLV,
GROUP_SEL and group assignment and lists the slaves called with these combinations.

SLV GROUP_SEL Group assignment Called slaves

0...126 X X Only slave with bus address = SLV

127 0 X All slaves

127 1 - 255 1 - 255 Slaves, for which a bitwise collation
of group assignment and GROUP_SEL
delivers a value unequal to 0.

Group assignment does not have impact on cyclic data exchange.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1755

Possible combinations of global control commands
During the process data exchange, the master cyclically transmits the output data to the corre-
sponding slave, which applies these data immediately to its outputs. In return, a slave transmits
the values currently applied at its inputs to the master. During this process, the slaves are called
one after the other within one bus cycle of the master. As a result, a small time difference
appears between the points of time at which the individual slaves apply the received data at
their local outputs. In the same way, the points of time differ at which the acquisition of values at
the slave inputs and their transmission to the master takes place. A time-synchronization of the
inputs or outputs is achieved with the help of global commands. While a CLR_DATA causes all
called slaves to set their outputs to 0 once and at the same time, the combinations of SYNC /
UNSYNC or FREEZE / UNFREEZE must be considered together.
The following table shows the possible combinations within a global control command and
explains their effects.

CLR_ DATA SYNC UN-SYNC FREEZE UN-
FREEZE

Effect

1 X X X X All called slaves set their outputs
to 0

X 0 0 X X No effect to SYNC mode

X 0 1 X X SYNC mode for output data is
terminated

X 1 0 X X SYNC mode; the output data
received last are applied to the
outputs

X 1 1 X X SYNC mode for output data is
terminated

X X X 0 0 No effect to FREEZE mode

X X X 0 1 FREEZE mode for input data is
terminated

X X X 1 0

X X X 1 1

CLR_DATA is not supported on using function block DPM_CTRL with Commu-
nication Module of type CM592-DP.

DPM_READ_INPUT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1756

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Data

The function block DPM_READ_INPUT implements the acyclic PROFIBUS DP function
DDLM_RD_Inp which can be used to read input data of a slave. Using this function the master
can read also input data of slaves which are assigned to other masters. DPM_READ_INPUT
works outside the cyclic process data exchange.
Every time a FALSE → TRUE edge is applied to input EN, DPM_READ_INPUT reads the
data at its inputs and sends a corresponding request message to the Communication Module.
Further FALSE → TRUE edges at input EN are ignored until the processing of the active
requests is finished. The completion of the request processing is indicated by DONE = TRUE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input SLV the bus address of the DP slave is applied, the input data of which shall be read.

Data type: DWORD

EN

SLOT

SLV (slave)

DATA (data)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1757

At input DATA the address of the variable to be used to store the received input data is specified
via the address operator ADR.
The size of this variable must be big enough to store all input data of the slave (e.g. BYTE
array). Furthermore, the format (BYTE, WORD, etc.) of the slave inputs must be considered.
If the slave has mixed inputs of different types, it is recommended to first define a STRUCT data
type which represents an image of the slave's input structure (see I/O configuration of the slave)
and then to declare a variable of this type.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BYTE
Output DATA_LEN displays the length (in bytes) of the input data read by the slave.
DATA_LEN is only valid, if DONE is TRUE and ERR is FALSE. If DATA_LEN contains a value
X which is not 0, the function block has stored X bytes of input data in the variable specified at
DATA.

If DATA is a byte array with start index 1, the valid input data of the slave are contained in the
entries DATA[1] to DATA[X].

Example

DONE

ERR

ERNO

DATA_LEN (data
length)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1758

Function call in ST
READ_INPUT
 (EN := RAED_INPUT_EN,
 SLOT:= RAED_INPUT_SLOT,
 SLV := RAED_INPUT_SLV,
 DATA:= ADR(RAED_INPUT_DATA));

READ_INPUT_DONE:= READ_INPUT.DONE;
READ_INPUT_ERR := READ_INPUT.ERR;
SYSDIAG_ERNO := SYSDIAG.ERNO;
READ_INPUT_DATA_LEN:= READ_INPUT.DATA_LEN;

DPM_READ_OUTPUT

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Data

The function block DPM_READ_OUTPUT implements the acyclic PROFIBUS DP function
DDLM_RD_Outp which can be used to read output data of a slave. Using this function the
master can also read output data of slaves which are assigned to other masters. Write access
to output data of these slaves is not possible. DPM_READ_OUTPUT works outside the cyclic
process data exchange.
Every time a FALSE → TRUE edge is applied to input EN, DPM_READ_OUTPUT reads the
data at its inputs and sends a corresponding request message to the Communication Module.
Further FALSE → TRUE edges at input EN are ignored until the processing of the active
requests is finished. The completion of the request processing is indicated by DONE = TRUE.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1759

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input SLV the bus address of the DP slave is applied, the output data of which shall be read.

Data type: DWORD
At input DATA the address of the variable to be used to store the received output data is
specified via the address operator ADR.
The size of this variable must be big enough to store all output data of the slave (e.g. BYTE
array). Furthermore, the format (BYTE, WORD, etc.) of the slave outputs must be considered.
If the slave has mixed outputs of different types, it is recommended to first define a STRUCT
data type which represents an image of the slave's output structure (see I/O configuration of the
slave) and then to declare a variable of this type.

EN

SLOT

SLV (slave)

DATA (data)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1760

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BYTE
Output DATA_LEN displays the length (in bytes) of the output data read by the slave.
DATA_LEN is only valid, if DONE is TRUE and ERR is 0. If DATA_LEN contains a value X
which is not 0, the function block has stored X bytes of output data in the variable specified at
DATA.

If DATA is a byte array with start index 1, the valid output data of the slave are contained in the
entries DATA[1] to DATA[X].

Example

Function call in ST
READ_OUTPUT
 (EN := READ_OUTPUT_EN,
 SLOT := READ_OUTPUT_SLOT,
 SLV := READ_OUTPUT_SLV,
 DATA := ADR(READ_OUTPUT_DATA));

READ_OUTPUT_DONE:= READ_OUTPUT.DONE;

DONE

ERR

ERNO

DATA_LEN (data
length)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1761

READ_OUTPUT_ERR := READ_OUTPUT.ERR;
SYSDIAG_ERNO:= SYSDIAG.ERNO;
READ_OUTPUT_DATA_LEN:= READ_OUTPUT.DATA_LEN;

DPM_SET_PRM

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Parameter

The function block DPM_SET_PRM implements the PROFIBUS function DDLM_Set_Prm.
With function block DPM_SET_PRM the user parameter of a slave can be modified during
run time. The parameters are immediately sent to the slave. This slave parameter set is used
temporarily only. It is not taken into the corresponding slave parameter set stored in master con-
figuration. In case of restarting the PROFIBUS DP communication for any reason the master will
configure the slave using the parameter set defined in slave configuration data. The parameter
set written to the slave by using DPM_SET_PRM is lost in this case.
Format and length of the user parameters are slave-specific. Due to this, the function block
DPM_SET_PRM provides inputs where only the variable address and the length of the user
parameters to be sent must be specified. It is in the responsibility of the user that the data
comply with the requirements of the corresponding device regarding format and length (e.g. by
defining a structure).
Every time a FALSE → TRUE edge is applied to input EN, DPM_SET_PRM reads the data at
its inputs and sends a corresponding request message to the Communication Module. Further
FALSE → TRUE edges at input EN are ignored until the processing of the active requests is
finished. The completion of the request processing is indicated by DONE = TRUE.

Due to temporarily validity of salve parameters loaded by DPM_SET_PRM
Communication Module of type CM592-DP does not support this function.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1762

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input SLV the bus address of the DP slave is specified, to which the user parameters shall be
sent.
Valid addresses are values between 0 and 126.

Data type: DWORD
At input DATA the address of the variable from which onwards the parameters to be sent are
stored, is specified via the address operator ADR.
The data format and the length of the variable must correspond to the structure of the user
parameters of the slave. It is recommended to first define a STRUCT data type which repre-
sents an image of the slave's structure, and then to declare a variable of this type.
Please note that only the user parameters are to be specified at this point. The standard
parameters cannot be modified during run time. The standard parameter settings specified
during configuration are automatically completed by the function block.

Data type: BYTE
The input DATA_LEN informs the function block about the length (number of bytes) of the user
parameters to be transmitted.
The maximum length is 237 bytes.

EN

SLOT

SLV (slave)

DATA (data)

DATA_LEN (data
length)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1763

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
SETPRM
 (EN := SETPRM_EN,
 SLOT := SETPRM_SLOT,
 SLV := SETPRM_SLV,
 DATA := SETPRM_DATA,
 DATA_LEN := SETPRM_DATA_LEN);

SETPRM_DONE := SETPRM.DONE;
SETPRM_ERR := SETPRM.ERR;

SYSDIAG_ERNO:= SYSDIAG.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1764

DPM_SLV_DIAG

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Diagnosis

The function block DPM_SLV_DIAG implements the PROFIBUS DP function
DDLM_Slave_Diag.
Every time a FALSE → TRUE edge is applied to input EN, DPM_SLV_DIAG reads the data at
its inputs and sends a corresponding request message to the Communication Module. Further
FALSE → TRUE edges at input EN are ignored until the processing of the active requests is
finished.
The completion of the request processing is indicated by DONE = TRUE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1765

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input SLV the bus address of the DP slave is specified, for which diagnosis data are
requested.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

SLOT

SLV (slave)

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1766

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: STATIONSTATUS_1_TYPE
STAT_1 outputs the first octet of the DP slave diagnosis data.
STAT_1 is only valid, if DONE = TRUE and ERR = FALSE. The structure of the type STA-
TIONSTATUS_1_TYPE corresponds to the octet Stationstatus_1 defined in the standard as
described below.

Data type: STATIONSTATUS_2_TYPE
STAT_2 outputs the second octet of the DP slave diagnosis data.
STAT_2 is only valid, if DONE = TRUE and ERR = FALSE. The structure of the type STA-
TIONSTATUS_2_TYPE corresponds to the octet Stationstatus_2 defined in the standard as
described below.

Data type: STATIONSTATUS_3_TYPE
STAT_3 outputs the third octet of the DP slave diagnosis data.
STAT_3 is only valid, if DONE = TRUE and ERR = FALSE. The structure of the type STA-
TIONSTATUS_3_TYPE corresponds to the octet Stationstatus_3 defined in the standard as
described below.

Data type: BYTE
MSTR outputs the bus address of the DP master to which has done the configuration of this
slave.

MSTR is only valid, if DONE = TRUE and ERR = FALSE. Using the function block
DPM_SLV_DIAG, diagnosis data for all DP slaves can be polled which are connected to the
bus. If the diagnosis data are requested by a DP slave which was assigned to the PLC during
configuration, the PLC bus address is output at MSTR.
In multi-master systems it is possible that diagnosis data are also requested by DP slaves which
are assigned to other DP masters. In this case, MSTR outputs the bus address of the DP
master to which the requesting DP slave is assigned.

Data type Default value Range Unit
BYTE - - -

EXT_DIAG_LEN (extended diagnosis data length) outputs the number of valid bytes, following
in EXT_DIAG_DAT.
If EXT_DIAG_LEN = 0, no extended diagnosis data are available. Otherwise,
EXT_DIAG_DAT[1] to EXT_DIAG_DAT[EXT_DIAG_LEN] contain the extended diagnosis data
reported by the DP slave. EXT_DIAG_LEN is only valid, if DONE = TRUE and ERR = FALSE.

Data type: ARRAY[1..238] OF BYTE
At output EXT_DIAG_DAT (extended diagnosis data) the extended diagnosis data reported by
the DP slave are applied as a byte array.

ERNO

STAT_1 (station
status)

STAT_2 (station
status)

STAT_3 (station
status)

MSTR (master)

EXT_DIAG_LEN

EXT_DIAG_DAT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1767

The data in EXT_DIAG_DAT are only valid, if DONE = TRUE, ERR = FALSE and
EXT_DIAG_LEN > 0. The extended diagnosis data are structured according to the standard.
Since the meaning of these data strongly depends on the used devices, no automatic interpre-
tation by the function block is possible at this point.
The evaluation of the data must be performed by the user, with the aid of the particular device
description and the GSD file respectively. The general structure of the extended diagnosis data
(according to the standard) is described in Structure of DP slave diagnostic data.

Function call in ST
DIAG
 (EN := DIAG_EN,
 SLOT := DIAG_SLOT,
 SLV := DIAG_SLV);

DIAG_DONE := DIAG.DONE;
DIAG_ERR := DIAG.ERR;
DIAG_ERNO := DIAG.ERNO;
DIAG_STAT_1 := DIAG.STAT_1;
DIAG_STAT_2 := DIAG.STAT_2;
DIAG_STAT_3 := DIAG.STAT_3;
DIAG_MSTR := DIAG.MSTR;
DIAG_EXT_DIAG_LEN := DIAG.EXT_DIAG_LEN;
DIAG_EXT_DIAG_DAT := DIAG.EXT_DIAG_DAT;

Structure of DP slave diagnosis data
The function block DPM_SLV_DIAG divides the diagnosis data of a DP slave into sections and
applies them to the corresponding outputs. The structure of the DP slave diagnosis data is
prescribed by the standard as follows:

Octet 1 Stationstatus_1 Ä Chapter
1.5.4.26.1.5.4.1 “Stationstatus_1”
on page 1769

STAT_1

Octet 2 Stationstatus_2 Ä Chapter
1.5.4.26.1.5.4.2 “Stationstatus_2”
on page 1770

STAT_2

Octet 3 Stationstatus_3 Ä Chapter
1.5.4.26.1.5.4.3 “Stationstatus_3”
on page 1771

STAT_3

Octet 4 Master_Add Ä Chapter
1.5.4.26.1.5.4.4 “Master_Add”
on page 1771

MSTR

Octet 5 to 6 Ident_Number Ä Chapter
1.5.4.26.1.5.4.5 “Ident_Number”
on page 1771

Octet 7 to 244 Ext_Diag_Data Ä Chapter
1.5.4.26.1.5.4.6 “Ext_Diag_Data”
on page 1771

EXT_DIAG_DAT[1] to
EXT_DIAG_DAT[EXT_DIAG_LEN]

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1768

Stationstatus_1
The diagnostic byte Stationstatus_1 (defined within the standard) is output at STAT_1 of the
function block DPM_SLV_DIAG. It is represented as a structure of the data type STATION-
STATUS_1_TYPE.
Within the PROFIBUS DP library the structure STATIONSTATUS_1_TYPE is declared as fol-
lows:
TYPE STATIONSTATUS_1_TYPE:
STRUCT
 NON_EXISTENT: BOOL;
 NOT_READY: BOOL;
 CFG_FAULT: BOOL;
 EXT_DIAG: BOOL;
 NOT_SUPPORTED: BOOL;
 INVALID_RESPONSE: BOOL;
 PRM_FAULT: BOOL;
 MASTER_LOCK: BOOL;
END_STRUCT
END_TYPE

Data type: BOOL
If this bit is set, the PROFIBUS DP Communication Module has not found a DP slave at the bus
address applied at function block input SLV.

Data type: BOOL
This bit is set to TRUE by the DP slave if the DP slave is not ready for I/O data exchange.

Data type: BOOL
This bit is set to TRUE by the DP slave, if the configuration data (nominal configuration)
received from the DP master do not match the data stored in the DP slave (actual configura-
tion).

Data type: BOOL
If this bit is TRUE, extended diagnosis data are available in EXT_DIAG_DAT. If this bit is not set
(FALSE) and EXT_DIAG_LEN > 0, possibly a status message is available in EXT_DIAG_DAT.
The meaning of such a status message is device-dependent.

Data type: BOOL
This bit is set to TRUE by the DP slave, if an unsupported function was requested before.

Data type: BOOL
If this bit is TRUE, the PROFIBUS Communication Module has not received a plausible
response from the requested DP slave.

Data type: BOOL
The DP slave sets this bit to TRUE, if the parameter data received last were faulty.

Data type: BOOL
This bit is set to TRUE, if the DP slave is assigned to another DP master. In this case, MSTR
contains the bus address of this DP master.

STATION-
STATUS_1_TYP
E

NON_EXISTENT

NOT_READY

CFG_FAULT

EXT_DIAG

NOT_SUP-
PORTED

INVALID_RESP
ONSE

PRM_FAULT

MASTER_LOCK

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1769

Stationstatus_2
The diagnostic byte Stationstatus_2 (defined within the standard) is output at STAT_2 of the
function block DPM_SLV_DIAG. It is represented as a structure of the data type STATION-
STATUS_2_TYPE.
The structure STATIONSTATUS_2_TYPE is declared as follows in the PROFIBUS library:
TYPE STATIONSTATUS_2_TYPE:
STRUCT
 PRM_REQ: BOOL;
 STAT_DIAG: BOOL;
 DP_Slave: BOOL;
 WD_ON: BOOL;
 FREEZE_MODE: BOOL;
 SYNC_MODE: BOOL;
 reserved: BOOL;
 DEACTIVATED: BOOL;
END_STRUCT
END_TYPE

Data type: BOOL
This bit is set to TRUE by the DP slave, if reparameterization and reconfiguration of the slave is
required (e.g. when adding an additional I/O module). The bit remains set until reparameteriza-
tion is done.

Data type: BOOL
This bit is set to TRUE by the DP slave, if the slave has a static diagnosis. A DP slave with
static diagnosis is not ready for I/O data exchange.

Data type: BOOL
This bit is permanently set to TRUE.

Data type: BOOL
This bit is set to TRUE by the DP slave, if the slave response monitoring is active.

Data type: BOOL
This bit is set to TRUE by the DP slave, if the slave is currently running in Freeze mode.
SYNC_MODE BOOL

Data type: BOOL
This bit is set to TRUE by the DP slave, if the slave is currently running in Sync mode.

Data type: BOOL
This bit is reserved and currently not used.

Data type: BOOL
This bit is set to TRUE, if the DP slave is marked as non-active in the DP master's configuration
data and has been taken out of the cyclic I/O data exchange.

STATION-
STATUS_2_TYP
E

PRM_REQ

STAT_DIAG

DP_SLAVE

WD_ON

FREEZE_MODE

SYNC_MODE

reserved

DEACTIVATED

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1770

Stationstatus_3
The diagnostic byte Stationstatus_3 (defined within the standard) is output at STAT_3 of the
function block DPM_SLV_DIAG. It is represented as a structure of the data type STATION-
STATUS_3_TYPE.
The structure STATIONSTATUS_3_TYPE is declared as follows within the PROFIBUS DP
library:
TYPE STATIONSTATUS_3_TYPE:
STRUCT
 reserved0: BOOL;
 reserved1: BOOL;
 reserved2: BOOL;
 reserved3: BOOL;
 reserved4: BOOL;
 reserved5: BOOL;
 reserved6: BOOL;
 EXT_DIAG_OVERFLOW: BOOL;
END_STRUCT
END_TYPE

Master_Add
Data Type: BYTE
The DP slave enters the DP master's address into this octet by which it was parameterized (i.e.
to which it is assigned). If the DP slave was not yet parameterized by any DP master, MSTR is
set to 255.

Ident_Number
Here, the DP slave enters its identification number in the diagnosis telegram. The identification
number is assigned by the PNO (PROFIBUS DP Nutzerorganisation e.V. = PROFIBUS DP
user organization) for each device type. This number is a firm component of the GSD file. The
function block DPM_SLV_DIAG does not output the device identification number, because the
number is not necessary for evaluating the diagnosis data.

Ext_Diag_Data
Data Type: ARRAY [1..238] OF BYTE
The six bytes of standard diagnosis data described above have to be supported by each DP
slave. Optionally, a DP slave can additionally provide extended diagnosis data. This is the
case if a value greater than 6 is assigned to the item Max_Diag_Data_Len in the GSD file
of the DP slave. The format of the extended diagnosis is defined by the standard. Since the
extended diagnosis data are not static on the one side and can contain manufacturer-specific
entries on the other side, no automatic data evaluation can be performed by the function block
DM_SLV_DIAG.
The evaluation of extended diagnosis data must be performed by the user with the aid of the
GSD file for the particular DP slave and the description of the general data format given below.
The extended diagnosis data are divided into three parts (sections):
● device-related diagnosis
● module-related diagnosis
● channel-related diagnosis

STATION-
STATUS_3_TYP
E

MSTR

EXT_DIAG_DAT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1771

The device-related diagnosis section contains general diagnosis information, such as overtem-
perature or undervoltage. This section starts with a header byte, the highest two bits of which
are permanently set to 00. The lower six bits indicate the length of the following function block,
including the header byte itself.

0 0 L e n g t h

7 6 5 4 3 2 1 0

The device-related diagnosis data are defined by the manufacturer. For detailed information
about their meaning please refer to the particular device documentation.

The module-related diagnosis section contains diagnosis information, which can be assigned
directly to the particular I/O modules of the device. This section containing the module-related
diagnosis starts with a header byte, the highest two bits of which are permanently set to 01. The
lower six bits indicate the length of the following function block, including the header byte itself.

0 1 L e n g t h

7 6 5 4 3 2 1 0

In the following function block, one single bit is assigned to each module. The module index is
represented by the bit offset within the function block (please refer to the example). A bit which
is set to TRUE means that diagnosis is required for the related I/O module.

In the channel-related diagnosis section, the diagnosed channels and the cause for the diag-
nosis are entered in sequence. Each entry consists of three bytes and starts with a header byte,
the highest two bits of which are permanently set to 10. The lower six bits contain the index of
the module for which the following diagnosis was made.

1 0 M o d u l e

7 6 5 4 3 2 1 0

The lower six bits of the following byte contain the number of the channel which reports a
diagnosis. The highest two bits indicate whether the specific channel is an input channel, an
output channel or an I/O channel.

I O C h a n n l

7 6 5 4 3 2 1 0

The direction identifier in the bits 6 and 7 is encoded as follows:

0 0 Reserved

0 1 Input

1 0 Output

1 1 Input / Output

The third byte of each entry contains the channel type in its upper three bits and the error type
in the lower five bits.

Device-related
diagnosis

Module-related
diagnosis

Channel-related
diagnosis

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1772

C h n E r r o r

7 6 5 4 3 2 1 0

The channel type (channel width) is encoded as follows:

0 0 0 Reserved

0 0 1 Bit

0 1 0 2 bit

0 1 1 4 bit

1 0 0 Byte

1 0 1 Word

1 1 0 2 Word

1 1 1 Reserved

The encoding of the error type is as follows:

0 Reserved 0 0 0 0 0

1 Short circuit 0 0 0 0 1

2 Undervoltage 0 0 0 1 0

3 Overvoltage 0 0 0 1 1

4 Overload 0 0 1 0 0

5 Overtemperature 0 0 1 0 1

6 Cable brake 0 0 1 1 0

7 Upper limit exceeded 0 0 1 1 1

8 Lower limit exceeded 0 1 0 0 0

9 Error 0 1 0 0 1

10 Reserved 0 1 0 1 0

: : 0 1 x x x

15 Reserved 0 1 1 1 1

16 Manufacturer-specific 1 0 0 0 0

: : 1 x x x x

31 Manufacturer-specific 1 1 1 1 1

The valid length of the complete extended diagnosis data is indicated at output
EXT_DIAG_LEN of the function block DPM_SLV_DIAG. When evaluating the diagnosis,
only data have to be considered which are contained in the range EXT_DIAG_DAT[1] to
EXT_DIAG_DAT[EXT_DIAG_LEN].

Example for extended diagnosis data
EXT_DIAG_LEN = 15

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1773

 7 6 5 4 3 2 1 0

EXT_DIAG_
DAT[1]

0 0 0 0 0 1 0 0 Device-related
diagnosis; Length:
4 bytes incl.
header byte

EXT_DIAG_
DAT[2]

X x x X X x X X Device-related
diagnosis

EXT_DIAG_
DAT[3]

X x x X X x X X Length: 3 bytes

EXT_DIAG_
DAT[4]

X x x X X x X X Meaning of the
data is manufac-
turer-specific

EXT_DIAG_
DAT[5]

0 1 0 0 0 1 0 1 ID-related diag-
nosis; Length: 5
bytes incl. header
byte

EXT_DIAG_
DAT[6]

0 7 0 6 0 5 0 4 0 3 0 2 0 1 1 0 Module 0 with
diagnosis

EXT_DIAG_
DAT[7]

015 014 013 112 011 010 0 9 0 8 Module 12 with
diagnosis

EXT_DIAG_
DAT[8]

023 022 021 020 019 118 017 016 Module 18 with
diagnosis

EXT_DIAG_
DAT[9]

031 130 029 028 027 026 025 024 Module 30 with
diagnosis

EXT_DIAG_
DAT[10]

1 0 0 0 0 0 0 0 Channel-related
diagnosis module
0

EXT_DIAG_
DAT[11]

0 1 0 0 0 0 1 0 Channel 2, Input

EXT_DIAG_
DAT[12]

0 0 1 0 0 1 0 0 Overload, channel
organized bitwise

EXT_DIAG_
DAT[13]

1 0 0 0 1 1 0 0 Channel-related
diagnosis module
12

EXT_DIAG_
DAT[14]

1 0 0 0 0 1 1 0 Channel 6, Output

EXT_DIAG_
DAT[15]

1 0 1 0 0 1 1 1 Upper limit
exceeded,
channel organized
wordwise

Example program for evaluating extended diagnosis data
A detailed example program for the evaluation of extended diagnosis data can be found onABB
website under Download Application Examples.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1774

http://new.abb.com/plc/automationbuilder

DPM_STAT

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Diagnosis

The function block DPM_STAT outputs the current PROFIBUS DP Communication Module
status. DPM_STAT is active, if input EN = TRUE. While the function block is active, the current
values are permanently displayed at the outputs. The outputs provide information about the
communication state and error events.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1775

Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: DPM_STATE_BITS_TYPE

SLOT

DONE

ERR

ERNO

STATE_BITS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1776

The Output STATE_BITS provides error or diagnosis flags of the PROFIBUS DP Communica-
tion Module.

Data type: BYTE
At output DPM_STATE, the DP master state is output according to the standard. The following
states are defined:
OFFLINE 00HEX / 00DEC
STOP 40HEX / 64DEC
CLEAR 80HEX / 128DEC
OPERATE C0HEX / 192DEC
DPM_STATE = OFFLINE
The PROFIBUS DP Communication Module is in initialization state, if DPM_STATE has the
value OFFLINE. After the initialization phase is completed, the Communication Module changes
to STOP state.
DPM_STATE = STOP
The Communication Module is completely initialized, if DPM_STATE has the value STOP. In this
state the Communication Module is ready to receive configuration data. No data are exchanged
with the DP slaves. The Communication Module has this state, if no user program is running.
DPM_STATE = CLEAR
When starting the user program, the Communication Module changes from STOP into CLEAR
state and begins, via the bus, to parameterize (set into operation) the DP slaves assigned
during configuration. When the setup has been completed successfully, the Communication
Module moves to OPERATE state. If an error occurs during parameterization, the Communica-
tion Module changes back to STOP state.
DPM_STATE = OPERATE
Normally, the Communication Module is in OPERATE state, while a user program is running. In
this state, the DP master exchanges I/O data with the DP slaves. If an error occurs during this
process, and if Auto Clear Mode was selected during configuration, the Communication Module
changes back to CLEAR state and tries to parameterize the DP slaves again.
If Auto Clear Mode was not selected, the Communication Module remains (in case of an error)
in OPERATE state. When stopping the user program, the Communication Module also changes
back to STOP state.
DPM_STATE is only valid, if EN = TRUE and ERR = FALSE.

Data type: DPM_COM_ERR_TYPE
The Output COM_ERR provides detailed information to the corresponding output STATE_BITS.
The element address contains the node address of the faulty device and the element event the
error code. If several errors occur simultaneously, the output contains the error of the device
with the lowest address.
The structure of the type DPM_COM_ERR_TYPE is defined in the PROFIBUS library and
described in the following chapter together with the possible errors.

Data type: WORD
BUS_ERR outputs the number of serious bus errors since system startup, such as transmission
line short circuits.
BUS_ERR is only valid, if EN = TRUE and ERR = FALSE.

Data type: WORD
TIME_OUT outputs the number of timeout errors since system startup. A timeout error occurs, if
a DP slave does not respond to a DP master's request within the configured time.

DPM_STATE

COM_ERR

BUS_ERR

TIME_OUT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1777

TIME_OUT is only valid, if EN = TRUE and ERR = FALSE.

On CM592-DP BUS_ERR and TIME_OUT are incremented always at once.
Due to internal handling of error events the counters are updated with steps
greater one always.

Function call in ST
STAT
 (EN := STAT_EN,
 SLOT := STAT_SLOT);

STAT_DONE := STAT.DONE;
STAT_ERR := STAT.ERR;
STAT_ERNO := STAT.ERNO;
STAT_STATE_BITS := STAT.STATE_BITS;
STAT_DPM_STATE := STAT.DPM_STATE;
STAT_COM_ERR := STAT.COM_ERR;
STAT_BUS_ERR := STAT.BUS_ERR;
STAT_TIME_OUT := STAT.TIME_OUT;

STATE_BITS DPM_STATE_BITS_TYPE
The structure STATE_BITS includes four Boolean variables which display different communi-
cation states. Within the PROFIBUS DP library, the data type DPM_STATE_BITS_TYPE is
declared as follows:
TYPE DPM_STATE_BITS_TYPE:
STRUCT
 CTRL: BOOL;
 AUTO_CLR: BOOL;
 NO_EXCH: BOOL;
 FATAL: BOOL;
 EVENT: BOOL;
 TIMEOUT: BOOL;
END_STRUCT
END_TYPE

Data type: BOOL
If this bit is TRUE, a parameter setting error occurred. During normal operation, CTRL should be
FALSE. If this is not the case, the parameter and configuration data have to be checked.

Data type: BOOL
This bit is only valid, if Auto Clear Mode was set during the configuration. If AUTO_CLR is
true, an error occured during communication with at least one DP slave. As a result, the
Communication Module stopped the data exchange with all DP slaves and changed back to
CLEAR state (see DPM_STATE).

Data type: BOOL
This bit is set to TRUE, if process data exchange with one or several DP slaves is not possible.
The error can be caused by the configuration data or by the DP slaves.

CTRL

AUTO_CLR

NO_EXCH

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1778

If no slave devices are connected, the Communication Modules signal state the
following information:

CM592-DP: the bit NO_EXCH remains not set and has FALSE value.

Data type: BOOL
If FATAL is TRUE, no communication via the PROFIBUS DP is possible due to a serious bus
error (e.g. bus line short circuit). In this case, all bus lines have to be checked.

Data type: BOOL
This bit is set to TRUE, if a bus short circuit was detected. The number of detected short circuits
can be read at the BUS_ERR output. After setting the bit once, its state remains TRUE.

State bit EVENT is not supported by Communication Module CM592-DP.
EVENT is always set to FALSE .

Data type: BOOL
This bit is set to TRUE, if a telegram timeout was detected. The number of detected timeouts
can be read at the TIME_OUT output. After setting the bit once, its state remains TRUE.

COM_ERR DPM_COM_ERR_TYPE
Communication errors can be located more detailed using COM_ERR. COM_ERR outputs a
structure of the type DPM_COM_ERR_TYPE. This data type is declared as follows within the
PROFIBUS DP library:
TYPE DPM_COM_ERR_TYPE:
STRUCT
 ADDRESS: BYTE;
 EVENT: BYTE;
END_STRUCT
END_TYPE

COM ERR is not supported by Communication Module CM592-DP. ADDRESS
and EVENT are always set to 0.

Data type: BYTE
If an error occurs, ADDRESS contains the bus address of the faulty device (0 to 125). If
ADDRESS has the value 255, the error is located in the Communication Module itself.

Data type; BYTE
EVENT displays the cause of an error.
The following tables show the encoding of the various errors.

FATAL

EVENT

TIMEOUT

ADDRESS

EVENT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1779

Table 89: ADDRESS = 255 / Communication module error
Event Description Error source Remedy
50 USR_INTF task not found Communication Module Contact ABB

51 No global data field Communication Module Contact ABB

52 FDL task not found Communication Module Contact ABB

53 PLC task not found Communication Module Contact ABB

54 No master parameter record Configuration Generate configuration
in the project and reload
program to controller

55 Faulty value in master param-
eter record

Configuration Check configuration
data for Communication
Module in the project
and/or reload program
to controller

56 No slave parameter records Configuration Add DP slaves to
configuration data and
reload program to con-
troller

57 Faulty value in a slave param-
eter record

Configuration Check configuration
data of subordinate DP
slaves in the project
and/or reload program
to controller

58 Doubled slave address Configuration Check configuration
data of subordinate DP
slaves in the project for
doubled bus addresses
and/or reload program
to controller

59 Invalid offset address output
data

Configuration Check configuration
data of subordinate DP
slaves in the project for
invalid IEC addresses
and/or reload program
to controller

60 Invalid offset address input
data

Configuration Check configuration
data of subordinate DP
slaves in the project for
invalid IEC addresses
and/or reload program
to controller

61 Range overlapping in output
data

Configuration Check configuration
data of subordinate DP
slaves in the project
for overlapping IEC
address ranges and/or
reload program to con-
troller

62 Range overlapping in input
data

Configuration Check configuration
data of subordinate DP
slaves in the project
for overlapping IEC
address ranges and/or
reload program to con-
troller

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1780

Event Description Error source Remedy
63 Unknown process data hand-

shake
Controller Supply voltage

OFF/ON, otherwise
contact ABB

64 Insufficient memory Communication Module Contact ABB

65 Faulty slave parameter record Configuration Check configuration
data of subordinate DP
slaves in the project
and/or reload program
to controller

202 No segment available Communication Module Contact ABB

212 Error while reading database Configuration/ Communi-
cation Module

Reload program with
configuration data to
controller

213 Faulty transfer structure oper-
ating system

Communication Module Contact ABB

Table 90: ADDRESS = 0..125 / Error at subscriber with bus address ADDRESS
Event Description Error source Remedy
2 Subscriber reports overflow DP master telegram Check configuration data of

subordinate DP slave in the
project and/or reload program
to controller

3 Subscriber does not support
requested function

DP master telegram Check DP slave for conformity
according to PROFIBUS DP
standard

9 No data in response tele-
gram

DP slave Compare configuration data of
subordinate DP slave in the
project with actual configura-
tion and reload program to con-
troller if necessary

17 Subscriber does not
response

DP slave Check bus line and DP slave
bus address

18 DP master not in logical
token ring

DP master Check the configured DP
master bus address, the
highest station address (HSA)
in the other system DP masters
and/or bus line for short circuits

21 Faulty parameter in request
telegram

DP master telegram Contact ABB

DPM_SYS_DIAG

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1781

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Diagnosis

The function block DPM_SYS_DIAG outputs different surveys reporting the status of all DP
slaves. Three survey types can be selected:
● configuration survey
● I/O data exchange survey
● diagnosis survey

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
TYP=1, configuration survey
Output SLV indicates which DP slaves have been configured successfully (i.e. set into opera-
tion) by the DP master. Please note, that the DP master only sets DP slaves into operation
which were assigned to the master when generating the configuration data.
TYP=2, data exchange survey

EN

SLOT

TYP (type)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1782

SLV outputs all DP slaves with which the DP master exchanges data. The data exchange can
only be performed with DP slaves which were configured by the DP master itself. The data
exchange survey can only be requested, if the communication module is in OPERATE state.
TYP=3, diagnosis survey
Output SLV indicates all DP slaves which have signalized an available diagnosis. The diagnosis
survey can only be requested, if the Communication Module is in OPERATE state.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: ARRAY[0..127] OF BOOL
SLV outputs the status survey as array of BOOL values. Every index within this array represents
a DP slave. The index itself corresponds to the DP slave bus address. When a certain value
is set to TRUE, corresponding slave signals information regarding selected survey type in input
TYP.
If e.g. TYP = 1 is selected and SLV[2] = TRUE, the DP slave was successfully configured with
bus address 2 by the DP master. If SLV[2] = FALSE, the configuration of the specific DP slave
has not yet been completed or the DP slave is not part of the DP master configuration data.

DONE

ERR

ERNO

SLV (slave)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1783

If TYP = 2 was selected and SLV[2] = TRUE, the DP master exchanges I/O data with the DP
slave having bus address 2. If SLV[2] = FALSE, the DP master currently does not exchange I/O
data with the DP slave. The DP master is only able to exchange data with DP slaves which it
has successfully set into operation before.
If TYP = 3, SLV[2] = TRUE means, that the DP slave with bus address 2 has signalized
a diagnosis. The diagnosis description can then be requested using the function block
DPM_SLV_DIAG.
Output SLV is only valid, if EN = TRUE and ERR = FALSE.

Function call in ST
SYSDIAG
 (EN := SYSDIAG_EN,
 SLOT:= SYSDIAG_SLOT,
 TYP := SYSDIAG_TYP);

SYSDIAG_DONE:= SYSDIAG.DONE;
SYSDIAG_ERR := SYSDIAG.ERR;
SYSDIAG_ERNO:= SYSDIAG.ERNO;
SYSDIAG_SLV := SYSDIAG.SLV;

DPV1_MSAC1_READ

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Data

The function block DPV1_MSAC1_READ implements the acyclic PROFIBUS DP DPV1 service
MSAC1_READ. Using this function, the master has read access to slot and index-related
data of slaves supporting DPV1. DPV1_MSAC1_READ works outside the cyclic process data
exchange.
Every time a FALSE → TRUE edge is applied to input EN, DPV1_MSAC1_READ reads the
data at its inputs and sends a corresponding request message to the Communication Module.
Further FALSE → TRUE edges at input EN are ignored until the processing of the active
requests is finished. The completion of the request processing is indicated by DONE = TRUE.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1784

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input SLV the bus address of the DP slave is applied, the data of which shall be read.
Different range of values have to be considered depending on the used communication module.
For CM592-DP it is 0..125.

Data type: BYTE
At input SLV_SLOT the number of the slot within the slave is specified, the data of which shall
be read.
Valid values: 0..254.

Data type: BYTE
At input SLV_IDX the number of the index within the slot is specified, the data of which shall be
read.
Valid values: 0..254.

Data type: BYTE
The length of the data block to be read is specified at input LEN.

EN

SLOT

SLV (slave)

SLV_SLOT

SLV_IDX

LEN (length)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1785

Valid values: 0..240.

Function block reads a complete data block independent of input LEN.

If length of data block is unknown, set LEN = 240 (max. data LEN).

CAUTION!
Overwriting of variables to data!
If LEN is lower than length of data block the following variables to data will be
overwritten!

Data type: DWORD
At input DATA the address of the variable where the received data block shall be stored is
specified via the ADR address operator.
The size of the variable must be big enough to store the complete data block (e.g. BYTE array).
Furthermore, the format (BYTE, WORD, etc.) of the data must be considered.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

DATA (data)

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1786

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BYTE
Output ERNO1 provides an additional DPV1-specific error information in case that an error
occurred during processing.
ERNO1 always has to be considered together with the outputs DONE, ERR and ERNO. The
value applied at ERNO1 is only valid, if DONE = TRUE, ERR = TRUE and ERNO = 6036 HEX
(24630 DEC).
ERNO1 of the DPV1 function blocks is encoded as follows. The upper nibble (the higher
significant 4 bits) describes the error class, the lower nibble represents the error cause.

7 6 5 4 3 2 1 0

Error class Error code

ERNO1 Error class/Error code
DEC HEX

0 0 Reserved

...

159 9F Reserved

160 A0 10 Application / 0 Read error

161 A1 10 Application / 1 Write error

162 A2 10 Application / 2 Error module

163 A3 Reserved

...

167 A7 Reserved

168 A8 10 Application / 8 Version conflict

169 A9 10 Application / 9 Function not supported

170 AA 10 Application / 10 Manufacturer-specific

...

175 AF 10 Application / 15 Manufacturer-specific

176 B0 11 Access / 0 Invalid index

177 B1 11 Access / 1 Invalid length of data to be written

178 B2 11 Access / 2 Invalid slot

179 B3 11 Access / 3 Type conflict

180 B4 11 Access / 4 Invalid range

181 B5 11 Access / 5 Status conflict

182 B6 11 Access / 6 Access denied

183 B7 11 Access / 7 Invalid value range

ERNO

ERNO1 (error
number 1)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1787

184 B8 11 Access / 8 Invalid parameter

185 B9 11 Access / 9 Invalid type

186 BA 11 Access / 10 Manufacturer-specific

...

191 BF 11 Access / 15 Manufacturer-specific

192 C0 12 Resources / 0 Read conflict

193 C1 12 Resources / 1 Write conflict

194 C2 12 Resources / 2 Resource used

195 C3 12 Resources / 3 Resource not available

196 C4 Reserved

...

199 C7 Reserved

200 C8 12 Resources / 10 Manufacturer-specific

...

207 CF 12 Resources / 15 Manufacturer-specific

208 D0 Reserved

...

255 FF Reserved

Data type: BYTE
Output ERNO2 provides an additional DPV1-specific error information, if an error occurred
during processing. ERNO2 always has to be considered together with the outputs DONE, ERR
and ERNO.
The value applied at ERNO2 is only valid, if DONE = TRUE, ERR = TRUE and ERNO = 6036
HEX (24630 DEC).
The encoding of ERNO2 is completely manufacturer-specific.

Data type: BYTE
Output DATA_LEN displays the length (in bytes) of the input data read by the slave.
DATA_LEN is only valid, if DONE is TRUE and ERR is FALSE. If DATA_LEN contains a value
X which is not 0, the function block has stored X bytes of input data in the variable specified at
DATA.

If DATA is a byte array with start index 1, the valid input data of the slave are contained in the
entries DATA[1] to DATA[X].

Example

Function call in ST
DPV1_READ
 (EN := DPV1_READ_EN,
 SLOT := DPV1_READ_SLOT,
 SLV := DPV1_READ_SLV,
 SLV_SLOT := DPV1_READ_SLV_SLOT,
 SLV_IDX := DPV1_READ_SLV_IDX,
 LEN := DPV1_READ_LEN,
 DATA := ADR(DPV1_READ_DATA));

ERNO2 (error
number 2)

DATA_LEN (data
length)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1788

DPV1_READ_DONE := DPV1_READ.DONE;
DPV1_READ_ERR := DPV1_READ.ERR;
DPV1_READ_ERNO := DPV1_READ.ERNO;
DPV1_READ_ERNO1 := DPV1_READ.ERNO1;
DPV1_READ_ERNO2 := DPV1_READ.ERNO2;
DPV1_READ_DATA_LEN := DPV1_READ.DATA_LEN;

DPV1_MSAC1_WRITE

Parameter Value
Included in library PROFIBUS_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group Data

The function block DPV1_MSAC1_WRITE implements the acyclic PROFIBUS DP DPV1 service
MSAC1_WRITE. Using this function, the master has write access to slot and index-related
data of slaves supporting DPV1. DPV1_MSAC1_WRITE works outside the cyclic process data
exchange.
Every time a FALSE → TRUE edge is applied to input EN, DPV1_MSAC1_WRITE reads the
values at its inputs and the data to be written and sends a corresponding request message
to the Communication Module. Further FALSE → TRUE edges at input EN are ignored until
the processing of the active requests is finished. The completion of the request processing is
indicated by DONE = TRUE.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1789

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE
At input SLV the bus address of the DP slave is specified to which the data shall be written.
Different range of values have to be considered depending on the used communication module.
For CM592-DP it is 0..125.

Data type: BYTE
At input SLV_SLOT the number of the slot within the slave is specified to which the data shall be
written.
Valid values: 0..254.

Data type: BYTE
At input SLV_IDX the number of the index within the slot is specified to which the data shall be
written.
Valid values: 0..254.

Data type: BYTE

EN

SLOT

SLV (slave)

SLV_SLOT

SLV_IDX

LEN (length)

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1790

At input LEN the length of the data block to be written is specified.
Valid values: 0..240.

Data type: DWORD
At input DATA the address of the variable containing the data block to be transmitted is speci-
fied via the ADR address operator. The size of the variable must be big enough to store the
complete data block (e.g. BYTE array).
Furthermore, the format (BYTE, WORD, etc.) of the data must be considered.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BYTE
Output ERNO1 provides an additional DPV1-specific error information in case that an error
occurred during processing.

DATA (data)

DONE

ERR

ERNO

ERNO1 (error
number 1)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1791

ERNO1 always has to be considered together with the outputs DONE, ERR and ERNO. The
value applied at ERNO1 is only valid, if DONE = TRUE, ERR = TRUE and ERNO = 6036 HEX
(24630 DEC).
ERNO1 of the DPV1 function blocks is encoded as follows. The upper nibble (the higher
significant 4 bits) describes the error class, the lower nibble represents the error cause.

7 6 5 4 3 2 1 0

Error class Error code

ERNO1 Error class/Error code
DEC HEX

0 0 Reserved

...

159 9F Reserved

160 A0 10 Application / 0 Read error

161 A1 10 Application / 1 Write error

162 A2 10 Application / 2 Error module

163 A3 Reserved

...

167 A7 Reserved

168 A8 10 Application / 8 Version conflict

169 A9 10 Application / 9 Function not supported

170 AA 10 Application / 10 Manufacturer-specific

...

175 AF 10 Application / 15 Manufacturer-specific

176 B0 11 Access / 0 Invalid index

177 B1 11 Access / 1 Invalid length of data to be written

178 B2 11 Access / 2 Invalid slot

179 B3 11 Access / 3 Type conflict

180 B4 11 Access / 4 Invalid range

181 B5 11 Access / 5 Status conflict

182 B6 11 Access / 6 Access denied

183 B7 11 Access / 7 Invalid value range

184 B8 11 Access / 8 Invalid parameter

185 B9 11 Access / 9 Invalid type

186 BA 11 Access / 10 Manufacturer-specific

...

191 BF 11 Access / 15 Manufacturer-specific

192 C0 12 Resources / 0 Read conflict

193 C1 12 Resources / 1 Write conflict

194 C2 12 Resources / 2 Resource used

195 C3 12 Resources / 3 Resource not available

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1792

196 C4 Reserved

...

199 C7 Reserved

200 C8 12 Resources / 10 Manufacturer-specific

...

207 CF 12 Resources / 15 Manufacturer-specific

208 D0 Reserved

...

255 FF Reserved

Data type: BYTE
Output ERNO2 provides an additional DPV1-specific error information, if an error occurred
during processing. ERNO2 always has to be considered together with the outputs DONE, ERR
and ERNO.
The value applied at ERNO2 is only valid, if DONE = TRUE, ERR = TRUE and ERNO = 6036
HEX (24630 DEC).
The encoding of ERNO2 is completely manufacturer-specific.

Data type: BYTE
The output DATA_LEN displays the actual length (in bytes) of the data written to the slave.
DATA_LEN is only valid, if DONE = TRUE and ERR = 0.

Function call in ST
DPV1_WRITE
 (EN := DPV1_WRITE_EN,
 SLOT := DPV1_WRITE_SLOT,
 SLV := DPV1_WRITE_SLV,
 SLV_SLOT := DPV1_WRITE_SLV_SLOT,
 SLV_IDX := DPV1_WRITE_SLV_IDX,
 LEN := DPV1_WRITE_LEN,
 DATA := ADR(DPV1_WRITE_DATA));

DPV1_WRITE_DONE := DPV1_WRITE.DONE;
DPV1_WRITE_ERR := DPV1_WRITE.ERR;
DPV1_WRITE_ERNO := DPV1_WRITE.ERNO;
DPV1_WRITE_ERNO1 := DPV1_WRITE.ERNO1;
DPV1_WRITE_ERNO2 := DPV1_WRITE.ERNO2;
DPV1_WRITE_DATA_LEN := DPV1_WRITE.DATA_LEN;

1.5.4.26.2 Data types

Data type Description
DPM_COM_ERR_TYPE Communication error

DPM_STATE_BITS_TYPE Bits for Communication Module state description

STATIONSTATUS_1_TYPE Stationstatus_1 (DP slave diagnosis according to standard)

ERNO2 (error
number 2)

DATA_LEN (data
length)

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1793

Data type Description
STATIONSTATUS_2_TYPE Stationstatus_2 (DP slave diagnosis according to standard)

STATIONSTATUS_3_TYPE Stationstatus_3 (DP slave diagnosis according to standard)

1.5.4.27 PROFINET IO library
Library file name: PROFINET_AC500_Vx.lib.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

1.5.4.27.1 Function blocks
PNIO_DEV_ALARM

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group Alarm

The function block PNIO_DEV_ALARM provides diagnostic and emergency information
describing the current condition of a certain PROFINET IO device.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1794

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1 ... 6 -

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.
Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

EN

SLOT

DEV_NAME

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1795

Data type Default value Range Unit
BYTE - - -

Input DATA specifies via the ADR address operator the address of the variable where the
received data block shall be stored. The size of the variable must be big enough to store the
complete data block (e.g. BYTE array). And the format (BYTE, WORD etc.) of the data must be
considered.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DATA

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1796

Data type Default value Range Unit
DWORD - - -

The output API provides the ALARM API of the current alarm.

Data type Default value Range Unit
WORD - - -

The output DEV_SLOT provides the device slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

The output DEV_SUB_SLOT provides the device sub slot which sent the alarm.

Data type Default value Range Unit
DWORD - -

The output DEV_MODULE provides the ID of the module which sent the alarm.

Data type Default value Range Unit
DWORD - - -

The output DEV_SUB_MOD provides the ID of the sub module which sent the alarm.

Data type Default value Range Unit
WORD - - -

The output PRIO provides the priority of the alarm sent by the device.

Data type Default value Range Unit
WORD - - -

The output ALARM_TYPE describes the kind of the reason for diagnosis message received.
The ABB I/O modules CI501-PNIO and CI502-PNIO currently only deliver messages of the type
(2): process.

Value Diagnosis type
16#0000 reserved

16#0001 Diagnosis appears

16#0002 Process

16#0003 Pull

16#0004 Plug

16#0005 Status

16#0006 Update

16#0007 Redundancy

API

DEV_SLOT

DEV_SUB_SLO
T

DEV_MODULE

DEV_SUB_MOD

PRIO

ALARM_TYPE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1797

Value Diagnosis type
16#0008 Controlled by supervisor

16#0009 Released

16#000A Plug wrong submodule

16#000B Return of submodule

16#000C Diagnosis disappears

16#000D Multicast communication mismatch

16#000E Port data change notification

16#000F Sync data change notification

16#0010 Isochronous mode notification

16#0011 Network component problem notification

16#0012 Time data changed notification

16#0013 Dynamic Frame Packing problem notification

16#0014 MRPD problem notification

16#0015 System Redundancy notification

16#0016 Multiple interface mismatch notification

16#0017 - 16#001D Reserved

16#001E Upload and retrieval notification

16#001F Pull mode

16#0020 - 16#007F Manufacturer specific

16#0080 - 16#00FF Reserved for profiles

16#0100 - 16#FFFF Reserved

Data type Default value Range Unit
WORD - 0-15 bit

The bits of the diagnosis specifier describe the type and specification of the current diagnosis:

Bit Description
0 ... 10 Sequence number

11 Channel diagnosis

12 Manufacturer specific diagnosis

13 Submodule diagnosis state

14 Reserved

15 AR diagnosis state

The SPECIFIER can be displayed in plain text using the function PNIO_DEV_SPECIFIER
Ä Chapter 1.5.4.27.1.3 “PNIO_DEV_INFO” on page 1803.

Data type Default value Range Unit
WORD - - -

The output STRUCT_ID provides the manufacture's proprietary data structure ID.

SPECIFIER

SRUCT_ID

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1798

Data type Default value Range Unit
WORD - - -

The output DATA_LEN provides the size of / numbers of bytes which were written to DATA.

Data type Default value Range Unit
BOOL - - -

Signals whether new valid diagnosis information is available. If DONE and NEW are TRUE, the
outputs marked with an asterisk (*) are valid and the data transferred to DATA is up to date.

Data type Default value Range Unit
BOOL - - -

The inquired device is currently active. This output does not depend on the NEW output.

Function call in ST
PNIO_DEVICE_ALARM(
EN := PNIO_DEVICE_ALARM_EN,
SLOT := PNIO_DEVICE_ALARM_SLOT,
SLV_NAME := PNIO_DEVICE_ALARM_DEV_NAME,
DATA := ADR(PNIO_DEVICE_ALARM_DATA));
PNIO_DEVICE_ALARM_DONE := PNIO_DEVICE_ALARM.DONE;
PNIO_DEVICE_ALARM_ERR := PNIO_DEVICE_ALARM.ERR;
PNIO_DEVICE_ALARM_ERNO := PNIO_DEVICE_ALARM.ERNO;
PNIO_DEVICE_ALARM_API := PNIO_DEVICE_ALARM.API;
PNIO_DEVICE_ALARM_DEV_SLOT := PNIO_DEVICE_ALARM.DEV_SLOT;
PNIO_DEVICE_ALARM_DEV_SUB_SLOT :=
PNIO_DEVICE_ALARM.DEV_SUBSLOT;
PNIO_DEVICE_ALARM_DEV_MODULE :=
PNIO_DEVICE_ALARM.DEV_MODULE;
PNIO_DEVICE_ALARM_DEV_SUB_MOD :=
PNIO_DEVICE_ALARM.DEV_SUB_MOD;
PNIO_DEVICE_ALARM_PRIO := PNIO_DEVICE_ALARM.PRIO;
PNIO_DEVICE_ALARM_ALARM_TYPE :=
PNIO_DEVICE_ALARM.ALARM_TYPE;
PNIO_DEVICE_ALARM_SPECIFIER :=
PNIO_DEVICE_ALARM.SPECIFIER;
PNIO_DEVICE_ALARM_STRUCT_ID :=
PNIO_DEVICE_ALARM.STRUCT_ID;
PNIO_DEVICE_ALARM_DATA_LEN := PNIO_DEVICE_ALARM.DATA_LEN;
PNIO_DEVICE_ALARM_NEW := PNIO_DEVICE_ALARM.NEW;
PNIO_DEVICE_ALARM_ACTIVE := PNIO_DEVICE_ALARM.ACTIVE;

DATA_LEN

NEW

ACTIVE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1799

PNIO_DEV_DIAG

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Simple function block with cycle persistent data.

Group Diagnosis

The function block PNIO_DEV_DIAG provides diagnostic information of a certain PROFINET IO
device.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1 ... 6 -

EN

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1800

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.
Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

Data type Default value Range Unit
BYTE - - -

Input DATA specifies via the ADR address operator the address of the variable where the
received data block shall be stored. The size of the variable must be big enough to store the
complete data block (e.g. BYTE array). And the format (BYTE, WORD etc.) of the data must be
considered.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.

DEV_NAME

DATA

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1801

It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - 0-11 Bit

The output FLAGS provides the status flags of the PROFINET IO device chosen by
DEV_NAME.
The individual bits have the following meaning:

Bit Description
0 The I/O module does not exist / The I/O module does not

respond to DCP Ident requests

1 The I/O module is not ready

2 A configuration fault exists for this I/O module (e. g. NameOf-
Station or IP is used more than once in one network)

3 The I/O module transmits an invalid response (e. g. DCP Set
IP was not successful)

4 A parameter fault exists for this I/O module (e. g. wrong
Module ID)

5 This I/O module is deactivated

6 Diagnosis data exists for this I/O module

7 The I/O module sends a "Diagnosis disappeared" alert

8 The diagnosis buffer of the Communication Module was too
small for the diagnosis data sent by the I/O module

9 The diagnosis buffer of the Communication Module was over-
written by new diagnosis data of the I/O module before the old
data was read out

10 The packet requesting diagnosis data is too small to carry the
diagnosis data for this I/O module

11 The I/O module reported a ModuleDiffBlock during connection
establishment

Data type Default value Range Unit
DWORD - - -

The output DATA_LEN provides the size of numbers / of bytes which were written to DATA.

Function call in ST
PNIO_DEVICE_DIAG(EN := PNIO_DEVICE_DIAG_EN,

ERNO

FLAGS

DATA_LEN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1802

 SLOT := PNIO_DEVICE_DIAG_SLOT,
 DATA:= ADR(PNIO_DEVICE_DIAG_DATA));
PNIO_DEVICE_DIAG_DONE := PNIO_DEVICE_DIAG.DONE;
PNIO_DEVICE_DIAG_ERR := PNIO_DEVICE_DIAG.ERR;
PNIO_DEVICE_DIAG_ERNO := PNIO_DEVICE_DIAG.ERNO;
PNIO_DEVICE_DIAG_FLAGS := PNIO_DEVICE_DIAG.FLAGS;
PNIO_DEVICE_DIAG_DATA_LEN := PNIO_DEVICE_DIAG.DATA_LEN;

PNIO_DEV_INFO

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Simple function block with cycle persistent data.

Group Info

The function block PNIO_DEV_INFO provides general information of a certain PROFINET
device.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1803

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1 ... 6 -

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.
Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

EN

SLOT

DEV_NAME

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1804

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
ARRAY - - -

The output MAC provides the MAC address of the device chosen by DEV_NAME.

Data type Default value Range Unit
DWORD - - -

The output IP provides the IP address of the device chosen by DEV_NAME.

DONE

ERR

ERNO

MAC

IP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1805

Data type Default value Range Unit
WORD - - -

The output VENDOR provides the manufacturers VENDOR ID of the device chosen by
DEV_NAME.

Data type Default value Range Unit
WORD - - -

The output DEVICE provides the Device ID of the device chosen by DEV_NAME.

Data type Default value Range Unit
BOOL - - -

If this output is TRUE an alarm is pending on the device chosen by DEV_NAME.

Data type Default value Range Unit
BOOL - - -

The inquired device is currently active. This output does not depend on the NEW output.

Function call in ST
PNIO_DEVICE_INFO(EN := PNIO_DEVICE_INFO_EN,
 SLOT := PNIO_DEVICE_INFO_SLOT,
DEV_NAME := PNIO_DEVICE_INFO_DEV_NAME);
PNIO_DEVICE_INFO_DONE := PNIO_DEVICE_INFO.DONE;
PNIO_DEVICE_INFO_ERR := PNIO_DEVICE_INFO.ERR;
PNIO_DEVICE_INFO_ERNO := PNIO_DEVICE_INFO.ERNO;
PNIO_DEVICE_INFO_MAC := PNIO_DEVICE_INFO.MAC;
PNIO_DEVICE_INFO_IP := PNIO_DEVICE_INFO.IP;
PNIO_DEVICE_INFO_VENDOR := PNIO_DEVICE_INFO.VENDOR;
PNIO_DEVICE_INFO_DEVICE := PNIO_DEVICE_INFO.DEVICE;
PNIO_DEVICE_INFO_ALARM := PNIO_DEVICE_INFO.ALARM;
PNIO_DEVICE_INFO_ACTIVE := PNIO_DEVICE_INFO.ACTIVE;

VENDOR

DEVICE

ALARM

ACTIVE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1806

PNIO_DEV_INFO_EXT

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Simple function block with cycle persistent data.

Group Info

The function block PNIO_DEV_INFO_EXT provides general information of a certain PROFINET
IO device.

Input Description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1807

Data type Default value Range Unit
BYTE - 1 ... 6 -

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.
Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

Output Description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

SLOT

DEV_NAME

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1808

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
ARRAY - - -

The output MAC provides the MAC address of the device chosen by DEV_NAME.

Data type Default value Range Unit
DWORD - - -

The output IP provides the IP address of the device chosen by DEV_NAME.

Data type Default value Range Unit
WORD - - -

The output VENDOR provides the manufacturers VENDOR ID of the device chosen by
DEV_NAME.

Data type Default value Range Unit
WORD - - -

The output DEVICE provides the Device ID of the device chosen by DEV_NAME.

Data type Default value Range Unit
BOOL - - -

If this output is TRUE an alarm is pending on the device chosen by DEV_NAME.

Data type Default value Range Unit
BOOL - - -

The inquired device is currently active. This output does not depend on the NEW output.

Data type Default value Range Unit
DWORD - 0-11 Bit

The output FLAGS provides the status flags of the PROFINET IO device chosen by
DEV_NAME.
The individual bits have the following meaning:

ERNO

MAC

IP

VENDOR

DEVICE

ALARM

ACTIVE

FLAGS

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1809

Bit Description
0 The I/O module does not exist / The I/O module does not

respond to DCP Ident requests

1 The I/O module is not ready

2 A configuration fault exists for this I/O module (e. g. NameOf-
Station or IP is used more than once in one network)

3 The I/O module transmits an invalid response (e. g. DCP Set
IP was not successful)

4 A parameter fault exists for this I/O module (e. g. wrong
Module ID)

5 This I/O module is deactivated

6 Diagnosis data exists for this I/O module

7 The I/O module sends a "Diagnosis disappeared" alert

8 The diagnosis buffer of the Communication Module was too
small for the diagnosis data sent by the I/O module

9 The diagnosis buffer of the Communication Module was over-
written by new diagnosis data of the I/O module before the old
data was read out

10 The packet requesting diagnosis data is too small to carry the
diagnosis data for this I/O module

11 The I/O module reported a ModuleDiffBlock during connection
establishment

Function call in ST
PNIO_DEVICE_INFO_EXT(EN := PNIO_DEVICE_INFO_EXT_EN,
 SLOT := PNIO_DEVICE_INFO_EXT_SLOT);
PNIO_DEVICE_INFO_EXT_DONE := PNIO_DEVICE_INFO_EXT.DONE;
PNIO_DEVICE_INFO_EXT_ERR := PNIO_DEVICE_INFO_EXT.ERR;
PNIO_DEVICE_INFO_EXT_ERNO := PNIO_DEVICE_INFO_EXT.ERNO;
PNIO_DEVICE_INFO_EXT_MAC := PNIO_DEVICE_INFO_EXT.MAC;
PNIO_DEVICE_INFO_EXT_IP := PNIO_DEVICE_INFO_EXT.IP;
PNIO_DEVICE_INFO_EXT_VENDOR := PNIO_DEVICE_INFO_EXT.VENDOR;
PNIO_DEVICE_INFO_EXT_DEVICE := PNIO_DEVICE_INFO_EXT.DEVICE;
PNIO_DEVICE_INFO_EXT_ALARM := PNIO_DEVICE_INFO_EXT.ALARM;
PNIO_DEVICE_INFO_EXT_ACTIVE := PNIO_DEVICE_INFO_EXT.ACTIVE;
PNIO_DEVICE_INFO_EXT_FLAGS := PNIO_DEVICE_INFO_EXT.FLAGS;

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1810

PNIO_DEV_SPECIFIER

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block without historical values

Group Alarm

The function PNIO_DEV_SPECIFIER displays the PNIO_DEV_ALARM SPECIFIER in plain
text.

Input description

Data type Default value Range Unit
WORD - 0-15 bit

The bits of the diagnosis specifier describe the type and specification of the current diagnosis:

Bit Description
0 ... 10 Sequence number

11 Channel diagnosis

12 Manufacturer specific diagnosis

13 Submodule diagnosis state

SPECIFIER

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1811

Bit Description
14 Reserved

15 AR diagnosis state

The SPECIFIER can be displayed in plain text using the function PNIO_DEV_SPECIFIER
Ä Chapter 1.5.4.27.1.3 “PNIO_DEV_INFO” on page 1803.

Output description

Data type Default value Range Unit
WORD - - -

The output SEQUENCE provides the alarm sequence number.

Data type Default value Range Unit
BOOL - - -

The output CHANNEL shows if the current alarm is a channel diagnosis. If CHANNEL=TRUE,
the current alarm is a channel diagnosis.

Data type Default value Range Unit
BOOL - - -

The output MANUFACT shows if the current alarm is a manufacturer-specific diagnosis. If
MANUFACT=TRUE, the current alarm is a manufacturer-specific diagnosis.

Data type Default value Range Unit
BOOL - - -

The output SUB_MOD shows if the current alarm is a sub module diagnosis. If
SUB_MOD=TRUE, the current alarm is a sub module diagnosis.

Data type Default value Range Unit
BOOL - - -

The output res in not used. It is reserved for future use.

SEQUENCE

CHANNEL

MANUFACT

SUB_MOD

RES

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1812

Data type Default value Range Unit
BOOL - - -

The output AR_STATE displays the AR diagnosis state.

Function call in ST
PNIO_DEV_SPECIFIER (EN :=
PNIO_DEV_SPECIFIER_SPECIFIER);
PNIO_DEV_SPECIFIER_SEQUENCE :=
PNIO_DEV_SPECIFIER.SEQUENCE;
PNIO_DEV_SPECIFIER_CHANNEL := PNIO_DEV_SPECIFIER.CHANNEL;
PNIO_DEV_SPECIFIER_MANUFACT :=
PNIO_DEV_SPECIFIER.MANUFACT;
PNIO_DEV_SPECIFIER_SUB_MOD := PNIO_DEV_SPECIFIER.SUB_MOD;
PNIO_DEV_SPECIFIER_AR_STATE :=
PNIO_DEV_SPECIFIER.AR_STATE;

PNIO_IM0

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Simple function block with cycle persistent data.

Group Info

The function block PNIO_IM0 provides Identification & Maintenance information, describing the
manufacturer and the current version and revision of a certain PROFINET IO device.

AR_STATE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1813

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1 ... 6 -

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type Default value Range Unit
WORD - - -

The output DEV_SLOT provides the device slot which sent the alarm.

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.

EN

SLOT

DEV_SLOT

DEV_NAME

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1814

Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD 0000h - -

DONE

ERR

ERNO

VENDOR_ID

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1815

The output parameter VENDOR_ID (or MANUFACTURER_ID) returns the ID of a specific man-
ufacturer that had been assigned by the PROFIBUS/PROFINET business office. Default value
is 0000h in case a manufacturer does not want to handle an ID. With this ID the manufacturer
of a device can be identified from a list, hosted at and available from the PROFIBUS community.
See http://www.profibus.com for further details.

Data type Default value Range Unit
STRING - -

The ORDER_ID output contains the complete order number or at least a relevant part that
allows unambiguous identification of the device/module within the manufacturer's web site. It
consists of a string of 20 octets, whereas unused octets are set to "20h" (blank).

Data type Default value Range Unit
STRING - - -

The SER_NO output contains an unique production number assigned by the manufacturer to
this device during production. It consists of a string of 16 octets, whereas unused octets are set
to "20h" (blank).

Data type Default value Range Unit
WORD - - -

The content of this parameter characterizes the edition of the hardware only. Default value is
0000h. FFFFh indicates availability of profile specific information.

Data type Default value Range Unit
STRUCT
PNIO_IM_SW_REV_
TYPE

- - -

The content of this structure characterizes the edition of the software or firmware of a device or
module. The structure supports coarse and detailed differentiation that may be defined by the
manufacturer: Vx.y.z.
Any component that carries software shall present its software version even if the user may not
be aware of it. V255.255.255 indicates the availability of profile specific information.
Valid values for SW_REV.REV_TYPE are:
V = officially released version
R = Revision (of a virtual or physically modular product)
P = Prototype
U = Under Test (field test)
T = Test Device
SW_REV.FUNCTIONAL (0..255) reflects the functional enhancement level
SW_REV.BUG_FIX (0..255) reflects the bug fix release level SW_REV.INTERNAL (0..255)
reflects a certain internal change level

Data type Default value Range Unit
WORD - - -

ORDER_ID

SER_NO

HW_REV

SW_REV

REV_CNT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1816

http://www.profibus.com

The output value of the REV_CNT parameter of a given module reflects the number of changes
of the hardware or of its parameters. At production time the counter is set to 0. This value is
reserved for the first installation and the first increment. Thus, the counter increments from
1... 65535, wrapping over back to 1 at the end.

Data type Default value Range Unit
WORD - - -

A module following a special profile may offer extended information (PROFILE_SPEC) about
its function and/or sub devices, e. g. HART. Devices not following any PROFINET application
profile shall use F600h. In this case, the device is generic and may indicate its type via the
parameter PROFILE_SPEC.

Data type Default value Range Unit
WORD - - -

In case a module follows a special profile, this output parameter offers information about the
usage of its channels and/or sub devices. The module/channel information is according to the
respective definitions of the application profile. Devices/modules not following any PROFINET
application profile are generic and are using F600h "“ F6FFh.

Data type Default value Range Unit
DWORD - - Bit

The output value of IM_SUPPORTED reflects the availability of I&M records. Each of the 16
bits of this value represents an I&M record. Starting with Bit 0, which represents the availability
of a profile specific I&M information, the Bits 1...15 are counted upwards: Bit 1 equals to I&M1,
Bit 2 equals to I&M2 etc. A bit set to 1 identifies an I&M being available.

Function call in ST
PNIO_IM(
 EN := PNIO_IM_EN,
 SLOT := PNIO_IM_SLOT,
 DEV_SLOT := PNIO_IM_DEV_SLOT,
 DEV_NAME := PNIO_IM_DEV_NAME);
PNIO_IM_DONE := PNIO_IM.DONE;
PNIO_IM_ERR := PNIO_IM.ERR;
PNIO_IM_ERNO := PNIO_IM.ERNO;
PNIO_IM_VENDOR_ID := PNIO_IM.VENDOR_ID;
PNIO_IM_ORDER_ID := PNIO_IM.ORDER_ID;
PNIO_IM_SER_NO := PNIO_IM.SER_NO;
PNIO_IM_HW_REV := PNIO_IM.HW_REV; PNIO_IM_SW_REV
:= PNIO_IM.SW_REV; PNIO_IM_REV_CNT := PNIO_IM.REV_CNT;
PNIO_IM_PROFILE_ID := PNIO_IM.PROFILE_ID;
PNIO_IM_PROFILE_SPEC := PNIO_IM.PROFILE_SPEC;
PNIO_IM_IM_VERSION := PNIO_IM.IM_VERSION;
PNIO_IM_IM_SUPPORTED := PNIO_IM.IM_SUPPORTED;

PROFILE_ID

PROFILE_SPEC

IM_SUPPORTED

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1817

PNIO_READ

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group Data

The function block PNIO_READ implements the acyclic PROFINET READ service. Using this
function, the controller has read access to slot, sub slot and index-related data of PROFINET IO
devices. PNIO_READ works outside the cyclic process data exchange.
Every time a FALSE->TRUE edge is applied to input EN, PNIO _READ reads the data at its
inputs and sends a corresponding request message to the Communication Module. Further
FALSE->TRUE edges at input EN are ignored until the processing of the active requests is
finished. The completion of the request processing is indicated by DONE = TRUE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1818

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1 ... 6 -

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.
Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

Data type Default value Range Unit
WORD - - -

The output DEV_SLOT provides the device slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

The output DEV_SUB_SLOT provides the device sub slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

Input DEV_IDX specifies the number of the index within the sub slot, the data of which shall be
read.

Data type Default value Range Unit
BYTE - - -

Input DATA specifies via the ADR address operator the address of the variable where the
received data block shall be stored. The size of the variable must be big enough to store the
complete data block (e.g. BYTE array). And the format (BYTE, WORD etc.) of the data must be
considered.

SLOT

DEV_NAME

DEV_SLOT

DEV_SUB_SLO
T

DEV_IDX

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1819

Data type Default value Range Unit
WORD - 1-1024 -

Input DATA_MAX specifies the length of the data block to be read. Valid values are 1..1024.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

PNIO_STATUS contains the PNIO error code and error decode (see, Ä Chapter 1.5.4.27.1.13
“PROFINET status*” on page 1839).

DATA_MAX

DONE

ERR

ERNO

STATUS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1820

Data type Default value Range Unit
WORD 1 - -

PNIO_ADD_VAL1 contains the PNIO error code 1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO error code 2.

Data type Default value Range Unit
DWORD - - -

The output DATA_LEN provides the size of numbers / of bytes which were written to DATA.

Function call in ST
PNIO_READ (EN := PNIO_READ_EN,
 SLOT := PNIO_READ_SLOT,
 DEV_NAME := PNIO_READ_DEV_NAME,
 DEV_SLOT := PNIO_READ_DEV_SLOT,
 DEV_SUB_SLOT := PNIO_READ_DEV_SUB_SLOT,
 DEV_IDX := PNIO_READ_DEV_IDX,
 DATA := ADR(PNIO_READ_DATA),
 DATA_MAX := PNIO_READ_DATA_MAX);
PNIO_READ_DONE := PNIO_READ.DONE;
PNIO_READ_ERR := PNIO_READ.ERR;
PNIO_READ_ERNO := PNIO_READ.ERNO;
PNIO_READ_STATUS := PNIO_READ.STATUS;
PNIO_READ_ADD_VAL1 := PNIO_READ.ADD_VAL1;
PNIO_READ_ADD_VAL2 := PNIO_READ.ADD_VAL2;
PNIO_READ_DATA_LEN := PNIO_READ.DATA_LEN;

ADD_VAL1

ADD_VAL2

DATA_LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1821

PNIO_READ_EXT

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V2.2.0

Type Function block with historical values

Group Data

The function block PNIO_READ_EXT implements the acyclic PROFINET READ service. Using
this function, the controller has read access to API, slot, sub slot and index-related data of
PROFINET IO devices. PNIO_READ_EXT works outside the cyclic process data exchange.
Every time a FALSE->TRUE edge is applied to input EN, PNIO_READ_EXT reads the data at
its inputs and sends a corresponding request message to the Communication Module. Further
FALSE->TRUE edges at input EN are ignored until the processing of the active requests is
finished. The completion of the request processing is indicated by DONE = TRUE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1822

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1 ... 6 -

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.
Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

Data type Default value Range Unit
WORD - - -

Input DEV_API specifies the Application Process Identifier of the AP to which the data block
belongs.

Data type Default value Range Unit
WORD - - -

The output DEV_SLOT provides the device slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

The output DEV_SUB_SLOT provides the device sub slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

Input DEV_IDX specifies the number of the index within the sub slot, the data of which shall be
read.

SLOT

DEV_NAME

DEV_API

DEV_SLOT

DEV_SUB_SLO
T

DEV_IDX

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1823

Data type Default value Range Unit
BYTE - - -

Input DATA specifies via the ADR address operator the address of the variable where the
received data block shall be stored. The size of the variable must be big enough to store the
complete data block (e.g. BYTE array). And the format (BYTE, WORD etc.) of the data must be
considered.

Data type Default value Range Unit
WORD - 1-1024 -

Input DATA_MAX specifies the length of the data block to be read. Valid values are 1..1024.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

DATA

DATA_MAX

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1824

Data type Default value Range Unit
DWORD - - -

PNIO_STATUS contains the PNIO error code and error decode (see, Ä Chapter 1.5.4.27.1.13
“PROFINET status*” on page 1839).

Data type Default value Range Unit
WORD 1 - -

PNIO_ADD_VAL1 contains the PNIO error code 1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO error code 2.

Data type Default value Range Unit
DWORD - - -

The output DATA_LEN provides the size of numbers / of bytes which were written to DATA.

Function call in ST
PNIO_READ_EXT (EN := PNIO_READ_EXT_EN,
 SLOT := PNIO_READ_EXT_SLOT,
 DEV_NAME := PNIO_READ_EXT_DEV_NAME,
 DEV_API := PNIO_READ_EXT_DEV_API,
 DEV_SLOT := PNIO_READ_EXT_DEV_SLOT,
 DEV_SUB_SLOT := PNIO_READ_EXT_DEV_SUB_SLOT,
 DEV_IDX := PNIO_READ_EXT_DEV_IDX,
 DATA := ADR(PNIO_READ_EXT_DATA),
 DATA_MAX := PNIO_READ_EXT_DATA_MAX);
PNIO_READ_EXT_DONE := PNIO_READ_EXT.DONE;
PNIO_READ_EXT_ERR := PNIO_READ_EXT.ERR;
PNIO_READ_EXT_ERNO := PNIO_READ_EXT.ERNO;
PNIO_READ_EXT_STATUS := PNIO_READ_EXT.STATUS;
PNIO_READ_EXT_ADD_VAL1 := PNIO_READ_EXT.ADD_VAL1;
PNIO_READ_EXT_ADD_VAL2 := PNIO_READ_EXT.ADD_VAL2;
PNIO_READ_EXT_DATA_LEN := PNIO_READ_EXT.DATA_LEN;

STATUS

ADD_VAL1

ADD_VAL2

DATA_LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1825

PNIO_STATE

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Simple function block with cycle persistent data.

Group Info

The function block PNIO_STATE provides diagnostic and emergency information describing the
current condition of a PROFINET I/O bus.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE - 1 ... 6 -

EN

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1826

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
PNIO_MST_STATE_T
YPE

- - -

The MST_STATE output reflects the major state of the PROFINET Communication Module.
This value is valid with DONE=TRUE and ERR=FALSE.
The MST_STATE is displayed in plain text with aid of the enumeration
PNIO_MST_STATE_TYPE.

DONE

ERR

ERNO

MST_STATE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1827

PNIO_MST_STATE_UNKOWN Unknown state

PNIO_MST_STATE_NOT_CONFIGURED Pre-configuration

PNIO_MST_STATE_STOP Configured but not running

PNIO_MST_STATE_IDLE Idle

PNIO_MST_STATE_OPERATE All up, normal operational state

Data type Default value Range Unit
PNIO_COMM_ERNO
_TYPE

- - -

The COMM_ERNO output value represents the current PROFINET bus condition. A transition
of this output with DONE=TRUE to a non-zero-value signals a communication error caused by
one of the reasons listed in the table below.
The COMM_ERNO is displayed in plain text with aid of the enumeration
PNIO_COMM_ERNO_TYPE.

PNIO_COMM_ERNO_NONE No error

PNIO_CONIFGURATION_FAULT Configuration fault

PNIO_PARAMETER_ERROR Parameter error

PNIO_INV_NETWORK_ERROR Invalid network address

PNIO_NETWORK_FAULT Network fault

PNIO_CONNECTION_CLOSED Connection closed

PNIO_CONNECTION_TIMEOUT Connection timeout

PNIO_LONELY_NETWORK Lonely network

PNIO_DUBLICATE_NODE Duplicate node

PNIO_CABLE_DISCONNECTED Cable disconnected

PNIO_COMM_ERNO_UNKNOWN Unknown communication error

Data type Default value Range Unit
DWORD - - -

The total number of errors detected by the Communication Module since last power up or reset.

Function call in ST
PNIO_GENERAL_STATE(EN := PNIO_GENERAL_STATE_EN,
SLOT := PNIO_GENERAL_STATE_SLOT);
PNIO_GENERAL_STATE_DONE := PNIO_GENERAL_STATE.DONE;
PNIO_GENERAL_STATE_ERR := PNIO_GENERAL_STATE.ERR;
PNIO_GENERAL_STATE_ERNO := PNIO_GENERAL_STATE.ERNO;
PNIO_GENERAL_STATE_MST_STATE := PNIO_GENERAL_STATE.MST_STATE;
PNIO_GENERAL_STATE_COMM_ERNO := PNIO_GENERAL_STATE.COMM_ERNO;
PNIO_GENERAL_STATE_NUM_ERRS := PNIO_GENERAL_STATE.NUM_ERRS;

COMM_ERNO

NUM_ERRS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1828

PNIO_SYS_DIAG

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Simple function block with cycle persistent data.

Group Info

The function block PNIO_SYS_DIAG provides diagnostic and emergency information describing
the current condition of all of the PROFINET IO devices, connected to a certain PROFINET
communication module.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE - 1 ... 6 -

EN

SLOT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1829

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
PNIO_DEV_STATE_T
YPE

- - -

The output DEV_STATE indicates whether the cyclic process data exchange with all configured
I/O modules is working, and no module has any diagnosis issue to be solved. On any I/O
module missing or having a diagnosis issue pending, this output will change to FAILED.
After all slaves are back to normal operation, DEV_STATE will change back to OK

DONE

ERR

ERNO

DEV_STATE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1830

The DEV_STATE is displayed in plain text with aid of the enumeration
PNIO_DEV_STATE_TYPE.

Value Description
PNIO_DEV_STATE_UNDEFINED Undefined

PNIO_DEV_STATE_OK OK

PNIO_DEV_STATE_FAILED Failed (at least one I/O module) or Warning (at
least one I/O module)

Data type Default value Range Unit
DWORD - - -

The output NUM_CFG indicates the number of configured I/O modules, known by the communi-
cation module.

Data type Default value Range Unit
DWORD - - -

The output NUM_ACT indicates the number of currently active I/O modules, known by the
communication module.

Data type Default value Range Unit
DWORD - - -

The output NUM_DIAG indicates the number I/O modules which have current alarms and
current diagnosis information to be proceeded.

Function call in ST
PNIO_SYSTEM_DIAG(EN := PNIO_SYSTEM_DIAG_EN,
SLOT := PNIO_SYSTEM_DIAG_SLOT);
PNIO_SYSTEM_DIAG_DONE := PNIO_SYSTEM_DIAG.DONE;
PNIO_SYSTEM_DIAG_ERR := PNIO_SYSTEM_DIAG.ERR;
PNIO_SYSTEM_DIAG_ERNO := PNIO_SYSTEM_DIAG.ERNO;
PNIO_SYSTEM_DIAG_DEV_STATE := PNIO_SYSTEM_DIAG.DEV_STATE;
PNIO_SYSTEM_DIAG_NUM_CFG := PNIO_SYSTEM_DIAG.NUM_CFG;
PNIO_SYSTEM_DIAG_NUM_ACT := PNIO_SYSTEM_DIAG.NUM_ACT;
PNIO_SYSTEM_DIAG_NUM_DIAG := PNIO_SYSTEM_DIAG.NUM_DIAG;

NUM_CFG

NUM_ACT

NUM_DIAG

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1831

PNIO_WRITE

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V1.3.0

Type Function block with historical values

Group Data

The function block PNIO_WRITE implements the acyclic PROFINET WRITE service. Using this
function, the controller has write access to slot, sub slot and index-related data of PROFINET IO
devices. PNIO_WRITE works outside the cyclic process data exchange.
Every time a FALSE->TRUE edge is applied to input EN, PNIO_WRITE reads the data at its
inputs and sends a corresponding request message to the Communication Module. Further
FALSE->TRUE edges at input EN are ignored until the processing of the active requests is
finished. The completion of the request processing is indicated by DONE = TRUE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1832

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1 ... 6 -

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.
Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

Data type Default value Range Unit
WORD - - -

The output DEV_SLOT provides the device slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

The output DEV_SUB_SLOT provides the device sub slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

Input DEV_IDX specifies the number of the index within the sub slot, the data of which shall be
read.

Data type Default value Range Unit
BYTE - - -

Input DATA specifies via the ADR address operator the address of the variable where the
received data block shall be stored. The size of the variable must be big enough to store the
complete data block (e.g. BYTE array). And the format (BYTE, WORD etc.) of the data must be
considered.

SLOT

DEV_NAME

DEV_SLOT

DEV_SUB_SLO
T

DEV_IDX

DATA

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1833

Data type Default value Range Unit
DWORD - - -

The output DATA_LEN provides the size of numbers / of bytes which were written to DATA.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

PNIO_STATUS contains the PNIO error code and error decode (see, Ä Chapter 1.5.4.27.1.13
“PROFINET status*” on page 1839).

DATA_LEN

DONE

ERR

ERNO

STATUS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1834

Data type Default value Range Unit
WORD 1 - -

PNIO_ADD_VAL1 contains the PNIO error code 1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO error code 2.

Function call in ST
PNIO_WRITE (EN := PNIO_WRITE _EN,
 SLOT := PNIO_WRITE_SLOT,
 DEV_NAME := PNIO_WRITE_DEV_NAME,
 DEV_SLOT := PNIO_WRITE_DEV_SLOT,
 DEV_SUB_SLOT := PNIO_WRITE_DEV_SUB_SLOT,
 DEV_IDX := PNIO_WRITE_DEV_IDX,
 DATA := ADR(PNIO_WRITE_DATA),
 DATA_LEN := PNIO_WRITE_DATA_LEN);
PNIO_WRITE_DONE := PNIO_WRITE.DONE;
PNIO_WRITE_ERR := PNIO_WRITE.ERR;
PNIO_WRITE_ERNO := PNIO_WRITE.ERNO;
PNIO_WRITE_STATUS := PNIO_WRITE.STATUS;
PNIO_WRITE_ADD_VAL1 := PNIO_WRITE.ADD_VAL1;
PNIO_WRITE_ADD_VAL2 := PNIO_WRITE.ADD_VAL2;

PNIO_WRITE_EXT

ADD_VAL1

ADD_VAL2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1835

Parameter Value
Included in library PROFINET_AC500_V13.lib

Available as of firmware V2.2.0

Type Function block with historical values

Group Data

The function block PNIO_WRITE_EXT implements the acyclic PROFINET WRITE service.
Using this function, the controller has write access to API, slot, sub slot and index-related data
of PROFINET IO devices. PNIO_WRITE_EXT works outside the cyclic process data exchange.
Every time a FALSE->TRUE edge is applied to input EN, PNIO_WRITE_EXT reads the data at
its inputs and sends a corresponding request message to the Communication Module. Further
FALSE->TRUE edges at input EN are ignored until the processing of the active requests is
finished. The completion of the request processing is indicated by DONE = TRUE.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE - 1 ... 6 -

The SLOT input selects the communication module serving the PROFINET IO device described
by DEV_NAME. Valid values are 1...6, counting from right to left, starting with 1 as the first
communication module left to the CPU.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

EN

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1836

Data type Default value Range Unit
STRING - - -

The input DEV_NAME describes the PROFINET IO device to be queried. The string may have
a maximum length of 240 characters, including the zero terminating char. In conjunction with the
SLOT value this string selects the target IO module of this request.
Valid values are (examples for the ABB module, where the hash marks # are place holders for
the address selected by the rotary switch at the front of the module):
ci501-pn-##
ci502-pn-##

Data type Default value Range Unit
WORD - - -

Input DEV_API specifies the Application Process Identifier of the AP to which the data block
belongs.

Data type Default value Range Unit
WORD - - -

The output DEV_SLOT provides the device slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

The output DEV_SUB_SLOT provides the device sub slot which sent the alarm.

Data type Default value Range Unit
WORD - - -

Input DEV_IDX specifies the number of the index within the sub slot, the data of which shall be
read.

Data type Default value Range Unit
BYTE - - -

Input DATA specifies via the ADR address operator the address of the variable where the
received data block shall be stored. The size of the variable must be big enough to store the
complete data block (e.g. BYTE array). And the format (BYTE, WORD etc.) of the data must be
considered.

Data type Default value Range Unit
DWORD - - -

The output DATA_LEN provides the size of numbers / of bytes which were written to DATA.

DEV_NAME

DEV_API

DEV_SLOT

DEV_SUB_SLO
T

DEV_IDX

DATA

DATA_LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1837

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

PNIO_STATUS contains the PNIO error code and error decode (see, Ä Chapter 1.5.4.27.1.13
“PROFINET status*” on page 1839).

Data type Default value Range Unit
WORD 1 - -

PNIO_ADD_VAL1 contains the PNIO error code 1.

DONE

ERR

ERNO

STATUS

ADD_VAL1

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1838

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO error code 2.

Function call in ST
PNIO_WRITE_EXT (EN := PNIO_WRITE_EXT_EN,
 SLOT := PNIO_WRITE_EXT_SLOT,
 DEV_NAME := PNIO_WRITE_EXT_DEV_NAME,
 DEV_API := PNIO_WRITE_EXT_DEV_API,
 DEV_SLOT := PNIO_WRITE_EXT_DEV_SLOT,
 DEV_SUB_SLOT := PNIO_WRITE_EXT_DEV_SUB_SLOT,
 DEV_IDX := PNIO_WRITE_EXT_DEV_IDX,
 DATA := ADR(PNIO_WRITE_EXT_DATA),
 DATA_LEN := PNIO_WRITE_EXT_DATA_LEN);
PNIO_WRITE_EXT_DONE := PNIO_WRITE_EXT.DONE;
PNIO_WRITE_EXT_ERR := PNIO_WRITE_EXT.ERR; PNIO_WRITE_EXT_ERNO
:= PNIO_WRITE_EXT.ERNO;
PNIO_WRITE_EXT_STATUS := PNIO_WRITE_EXT.STATUS;
PNIO_WRITE_EXT_ADD_VAL1 := PNIO_WRITE_EXT.ADD_VAL1;
PNIO_WRITE_EXT_ADD_VAL2 := PNIO_WRITE_EXT.ADD_VAL2;

PROFINET status*
The PROFINET status of read / write service is described in the following structures:

ErrorCode
16#DE PNIO READ Response

16#DF PNIO WRITE Respone

ErrorDecode
16#80 PNIO READ / WRITE Service

ADD_VAL2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1839

ErrorClass
16#0 - 16#9 Not Specified / Reserved

16#A Application

16#B Access

16#C Resource

16#D - 16#F User / Module specific

ErrorCode inside ErrorCode1 for ErrorClass 16#A (Application)
16#0 Read error

16#1 Write error

16#2 Module failure

16#3 - 16#6 Not specific / Reserved

16#7 Module busy

16#8 Version conflict

16#9 Feature not supported

16#A - 16#F User / Module specific

ErrorCode inside ErrorCode1 for ErrorClass 16#B (Access)
16#0 Invalid Index

16#1 Write lenhth error

16#2 Invalid slot / subslot

16#3 Type conflict

16#4 Invalid area / API

16#5 State conflict

16#6 Access denied

16#7 Invalid range

16#8 Invalid parameter

16#9 Invalid type

16#A Backup

16#B - 16#F User / Module specific

ErrorCode inside ErrorCode1 for ErrorClass 16#C (Resource)
16#0 Read constrain confict

16#1 Write constrain confict

16#2 Resource busy

16#3 Resource unavailable

16#4 - 16#7 Not specific / Reserved

16#8 - 16#16 User / Module specific

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1840

ErrorCode2
16#00 - 16#FF User / Module specific

*)This chapter corresponds in substance to the standard PN-AL-protocol_2722.

1.5.4.28 Extended PROFINET IO library
Library file name: PROFINET_Ext_AC500_Vx.lib
The function blocks of this library provide access to the Communication Modules CI504-PNIO
and CI506-PNIO and the beneath connected devices.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

1.5.4.28.1 Function blocks
Error messages of the CI506-PNIO CANopen master

The following table defines error messages of the CI506-PNIO CANopen Master. They will
be set as last error code if communication to a CANopen slave fails. The function block
CI506_CANOM_NODE_DIAG provides this as last error code. This last error is also displayed
in the Control Builder Plus online diagnosis.

Hexadecimal Value Definition Description
0x00000000 TLR_S_OK Status ok.

0xC0000001 TLR_E_FAIL Common error, detailed error
information optionally present in
the data area of packet.

0xC0420003 TLR_E_CANOPEN_MASTER_DA
TA_COUNT

Invalid data count.

0xC0420004 TLR_E_CANOPEN_MASTER_DA
TA_OFFSET

Invalid data offset.

0xC0420005 TLR_E_CANOPEN_MASTER_DA
TA_COUNT_WITH_OFFSET

Invalid data count in combination
with offset.

0xC0420006 TLR_E_CANOPEN_MASTER_M
ODE

Invalid mode in command.

0xC0420007 TLR_E_CANOPEN_MASTER_ST
ATE

Command is not allowed in cur-
rent state.

0xC0420008 TLR_E_CANOPEN_MASTER_N
O_VALID_BUS_PARAM

No valid bus configuration para-
meterized.

0xC042000A TLR_E_CANOPEN_MASTER_BU
S_RUNNING

Command is not allowed because
CANopen is running.

0xC042000B TLR_E_CANOPEN_MASTER_BU
S_PARAM_ALREADY_SET

Bus parameters are already con-
figured.

0xC042000C TLR_E_CANOPEN_MASTER_LO
CAL_NODE_ID

Invalid Node ID for CANopen
Master

xC042000D TLR_E_CANOPEN_MASTER_BA
UDRATE

Invalid Baud rate.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1841

Hexadecimal Value Definition Description
0xC042000B TLR_E_CANOPEN_MASTER_BU

S_PARAM_ALREADY_SET
Bus parameters are already con-
figured.

0xC042000C TLR_E_CANOPEN_MASTER_LO
CAL_NODE_ID

Invalid Node ID for CANopen
Master.

xC042000D TLR_E_CANOPEN_MASTER_BA
UDRATE

Invalid Baud rate.

0xC042000E TLR_E_CANOPEN_MASTER_29
BIT_SELECTOR

Invalid parameter for 29 bit
selector.

0xC042000F TLR_E_CANOPEN_MASTER_SY
NC_TIMER_VALUE

Invalid parameter for SYNC timer

0xC0420010L TLR_E_CANOPEN_MASTER_C
OB_ID_SYNC

Invalid parameter for COB-ID
SYNC.

0xC0420011 TLR_E_CANOPEN_MASTER_PR
OD_HEARTBEAT_TIME

Invalid parameter for Producer
Heartbeat time.

0xC0420013 TLR_E_CANOPEN_MASTER_N
ODE_PARAM_SET_SIZE

Invalid size of Node parameter
set.

0xC0420014 TLR_E_CANOPEN_MASTER_N
ODE_PARAM_HEADER_SIZE

Invalid size of Node parameter
header.

0xC0420015 TLR_E_CANOPEN_MASTER_N
ODE_ALREADY_CONFIGURED

Node is already configured.

0xC0420016 TLR_E_CANOPEN_MASTER_SL
AVE_NODE_ID

Invalid Node ID for Slave.

0xC0420017 TLR_E_CANOPEN_MASTER_N
ODE_ID_EQUAL

Node ID of Slave is equal to
Master Node ID.

0xC0420018 TLR_E_CANOPEN_MASTER_PA
RAMETER_SET_LENGTH

Length of parameter set is dif-
ferent from length in parameter
header.

0xC0420019 TLR_E_CANOPEN_MASTER_SD
O_PARAMETER_SET_LENGTH

Invalid size of SDO parameter set:

0xC042001A TLR_E_CANOPEN_MASTER_PD
O_PARAMETER_SET_LENGTH

Invalid size of PDO parameter set:

0xC042001B TLR_E_CANOPEN_MASTER_AD
DR_TABLE_SET_LENGTH

Invalid size of address table

0xC042001C TLR_E_CANOPEN_MASTER_AD
DR_TABLE_LENGTH_INCON-
SISTENT

Address table size is inconsistent.

0xC042001E TLR_E_CANOPEN_MASTER_TP
DO_CNT

Invalid number of transmitted
PDOs.

0xC042001F TLR_E_CANOPEN_MASTER_RP
DO_CNT

Invalid number of received PDOs.

0xC0420020 TLR_E_CANOPEN_MASTER_C
OB_ID_EMCY

Invalid value for COB-ID Emer-
gency.

0xC0420021 TLR_E_CANOPEN_MASTER_C
OB_ID_GUARD

Invalid value for COB-ID Guard.

0xC0420022 TLR_E_CANOPEN_MEMORY_A
LLOCATION

No memory for parameter set.

0xC0420023 TLR_E_CANOPEN_SDO_DATA_
CNT

Invalid value for SDO data count.

0xC0420024 TLR_E_CANOPEN_PDO_DATA_
CNT

Invalid value for PDO data count.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1842

Hexadecimal Value Definition Description
0xC0420025 TLR_E_CANOPEN_ADDR_TAB_

DATA_CNT
Invalid value for address table
data count.

0xC0420026 TLR_E_CANOPEN_ADDR_TAB_
PDO_CNT

Invalid value for address table
PDO count.

0xC0420027 TLR_E_CANOPEN_MASTER_N
ODE_SDO_TIMEOUT

Timeout during SDO transfer.

0xC0420028 TLR_E_CANOPEN_MASTER_N
ODE_SDO_ERROR

Error during SDO transfer.

0xC0420029 TLR_E_CANOPEN_MASTER_N
O_PDO_AVAILABLE

No further PDO available.

0xC042002A TLR_E_CANOPEN_MASTER_AU
TO_CLEAR_ACTIVE

Master is in auto clear state.

0xC042002B TLR_E_CANOPEN_MASTER_W
ATCHDOG_FAIL

Watchdog failure detected.

0xC042002C TLR_E_CANOPEN_MASTER_IN
VALID_INDEX

Invalid index for request.

0xC042002D TLR_E_CANOPEN_MASTER_N
ODE_STATE

Request not possible in current
Node state.

0xC042002F TLR_E_CANOPEN_MASTER_SD
O_REQUEST_FAILED

SDO request failed.

0x40420030 TLR_I_CANOPEN_MASTER_AL
READY_IN_STATE

Master is already in requested
state.

0xC0420031 TLR_E_CANOPEN_MASTER_C
OB_ID_PDO

Invalid value for PDO COB-ID.

0xC0420032 TLR_E_CANOPEN_MASTER_SE
ND_EMCY

Send emergency-telegram failed.

0xC0420033 TLR_E_CANOPEN_MASTER_INI
T_SDO_REQUEST

Failed to initialize SDO request.

0xC0420034 TLR_E_CANOPEN_MASTER_SE
T_NMT_STATE

Set NMT state failed.

0xC0420035 TLR_E_CANOPEN_MASTER_ER
ROR_PASSIVE

CANopen is in error-passive state.

0xC0420036 TLR_E_CANOPEN_MASTER_BU
S_OFF

CANopen is in bus-off state.

0x40420037 TLR_I_CANOPEN_MASTER_NO
DE_DEACTIVATED

Node is deactivated in configura-
tion.

0xC0420038 TLR_E_CANOPEN_MASTER_DL
_REQ_FAILED

CAN-DL request failed.

0xC0420039 TLR_E_CANOPEN_MASTER_PU
T_OBJECT_DATA

Failed to write object data.

0xC042003A TLR_E_CANOPEN_MASTER_SE
T_OBJECT_DATA_VALID

Failed to set object data valid.

0xC042003B TLR_E_CANOPEN_MASTER_INI
T_lib

Failed to initialize CANopen
library.

0xC042003C TLR_E_CANOPEN_MASTER_SE
T_COB_ID_FAILED

COB-ID could not be set.

0xC042003D TLR_E_CANOPEN_MASTER_AD
D_REMOTE_NODE_REQUEST

Failed to add remote Node.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1843

Hexadecimal Value Definition Description
0xC042003E TLR_E_CANOPEN_MASTER_SE

T_HEARTBEAT_TIME
Heartbeat time could not be set.

0xC042003F TLR_E_CANOPEN_MASTER_D
D_GUARDING_SLAVE

Node could not be added to Node
guarding list.

0xC0420040 TLR_E_CANOPEN_MASTER_SE
T_GUARDING_TIME

Node guard time could not be set.

0xC0420041 TLR_E_CANOPEN_MASTER_ST
ART_NODE_GUARD

Node guarding could not be
started.

0xC0420042 TLR_E_CANOPEN_MASTER_RE
SET_NODE

Reset Node failed.

0xC0420043 TLR_E_CANOPEN_MASTER_RE
SET_COMMUNICATION

Failed to reset communication of
Node.

0xC0420044 TLR_E_CANOPEN_MASTER_SE
T_NODE_PREOPERATIONAL

Failed to set Node to preopera-
tional state.

0xC0420045 TLR_E_CANOPEN_MASTER_ST
OP_NODE

Failed to set Node to stop state.

0xC0420046 TLR_E_CANOPEN_MASTER_ST
ART_NODE

Failed to set Node to operational
state.

0xC0420047 TLR_E_CANOPEN_MASTER_SE
T_EMCY_COB_ID

Failed to set Emergency COB-ID.

0xC0420048 TLR_E_CANOPEN_MASTER_ST
ART_SYNC

Failed to start SYNC-telegram.

0xC0420049 TLR_E_CANOPEN_MASTER_ST
OP_SYNC

Failed to stop SYNC-telegram.

0xC042004A TLR_E_CANOPEN_MASTER_N
ODE_UNEXPECTED_STATE

Node is not in expected state.

0xC042004B TLR_E_CANOPEN_MASTER_N
ODE_LOST_CONNECTION

Connection to Node lost.

0xC042004C TLR_E_CANOPEN_MASTER_N
ODE_GUARDING_ERROR

Node guarding error.

0xC042004D TLR_E_CANOPEN_MASTER_N
ODE_HEARTBEAT_ERROR

Heartbeat error.

0x4042004E TLR_I_CANOPEN_MASTER_NO
DE_HEARTBEAT_STARTED

Heartbeat supervision of Node
started

0xC042004F TLR_E_CANOPEN_MASTER_N
ODE_UNEXPECTED_BOOTUP

Unexpected Boot up message
from Node received.

0xC0420050 TLR_E_CANOPEN_MASTER_W
RITE_PDO_REQ

Failed to transmit PDO.

0xC0420051 TLR_E_CANOPEN_MASTER_RE
AD_PDO_REQ

Failed to request PDO.

0xC0420052 TLR_E_CANOPEN_MASTER_INI
T_BUFFER

Initialization of buffer failed.

0x40420053 TLR_I_CANOPEN_MASTER_NO
DE_STATE_NOT_HANDLED

State of Node not handled.

0xC0420054 TLR_E_CANOPEN_MASTER_N
ODE_DEVICE_TYPE

Node Device Type unequal to
configured Device Type.

0x40420055 TLR_I_CANOPEN_MASTER_NO
DE_EMERGENCY_RECEIVED

Emergency message received
from Node

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1844

Hexadecimal Value Definition Description
0x40420056 TLR_I_CANOPEN_MASTER_INI-

TIALIZE
Master is initializing.

0x40420057 TLR_I_CANOPEN_MASTER_NO
DE_BOOTUP

Boot up message from Node
received.

PNIO_CAN2A_REC

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CAN2A

The function block PNIO_CAN2A_REC provides all CAN2A messages received on the
addressed CI506- PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1845

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
ARRAY - - -

Input ADR_DATA specifies the address starting from which the received CAN 2.0A telegrams
should be written. Usually, this specification is done via the ADR operator and should point to an
array with 64 entries of the type CAN2A_MESSAGE_TYPE.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SLOT

DEV_NAME

ADR_DATA

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1846

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the total number of CAN 2.0A telegrams received.

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
REC (EN := REC_EN,
 SLOT := REC_SLOT,
 DEV_NAME := REC_DEV_NAME,
 ADR_DATA := REC_ADR_DATA);

REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;

ERR

ERNO

NUM_REC

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1847

REC_NUM_REC := REC.NUM_REC;
REC_PNIO_STATUS := REC.PNIO_STATUS;
REC_PNIO_ADD_VAL1 := REC.PNIO_ADD_VAL1;
REC_PNIO_ADD_VAL2 := REC.PNIO_ADD_VAL2;
REC_DONE := REC.DONE;

PNIO_CAN2A_REC_ID

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CAN2A

The function block PNIO_CAN2A_REC_ID provides one CAN2A message of the defined CAN
identifier received on the addressed CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1848

The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
WORD - - -

Input ID specifies the identifier of the CAN 2.0A telegrams to be read from the buffer. If no buffer
has been specified for the selected identifier using the controller configuration, this is indicated
accordingly at the function block outputs.

Data type Default value Range Unit
ARRAY - - -

Input ADR_DATA specifies the address starting from which the received CAN 2.0A telegrams
should be written. Usually, this specification is done via the ADR operator and should point to an
array with 64 entries of the type CAN2A_MESSAGE_TYPE.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SLOT

DEV_NAME

ID

ADR_DATA

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1849

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the total number of CAN 2.0A telegrams received.

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
REC_ID(EN := REC_ID_EN,
 SLOT := REC_ID_SLOT,
 DEV_NAME := REC_ID_DEV_NAME,
 ID := REC_ID_ID,
 ADR_DATA := REC_ID_ADR_DATA);

REC_ID_ERR := REC_ID.ERR;
REC_ID_ERNO := REC_ID.ERNO;
REC_ID_NUM_REC := REC_ID.NUM_REC;
REC_ID_PNIO_STATUS := REC_ID.PNIO_STATUS;
REC_ID_PNIO_ADD_VAL1 := REC_ID.PNIO_ADD_VAL1;
REC_ID_PNIO_ADD_VAL2 := REC_ID.PNIO_ADD_VAL2;
REC_ID_DONE := REC_ID.DONE;

ERNO

NUM_REC

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1850

PNIO_CAN2A_SEND

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CAN2A

The function block PNIO_CAN2A_SEND sends CAN2A messages via the addressed CI506-
PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1851

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
ARRAY - - -

Input ADR_DATA specifies the address starting from which the received CAN 2.0A telegrams
should be written. Usually, this specification is done via the ADR operator and should point to an
array with 64 entries of the type CAN2A_MESSAGE_TYPE.

Data type Default value Range Unit
BYTE - 1 - 64 -

Input NUM_SEND specifies the number of valid telegrams to be transmitted and stored starting
at address ADR_DATA. The valid values for NUM_SEND are 1 to 64.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

SLOT

DEV_NAME

ADR_DATA

NUM_SEND

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1852

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
SEND (EN := SEND_EN,
 SLOT := SEND_SLOT,
 DEV_NAME := SEND_DEV_NAME,
 ADR_DATA := SEND_DEV_ADR_DATA,
 NUM_SEND := SEND_NUM_SEND);

SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_STATUS := SEND.PNIO_STATUS;
SEND_PNIO_ADD_VAL1 := SEND.PNIO_ADD_VAL1;
SEND_PNIO_ADD_VAL2 := SEND.PNIO_ADD_VAL2;
SEND_DONE := SEND.DONE;

ERR

ERNO

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1853

PNIO_CAN2B_REC

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group Group/Subgroup

The function block PNIO_CAN2B_REC provides all CAN2B messages received on the
addressed CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1854

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
ARRAY - - -

Input ADR_DATA specifies the address starting from which the received CAN 2.0A telegrams
should be written. Usually, this specification is done via the ADR operator and should point to an
array with 64 entries of the type CAN2A_MESSAGE_TYPE.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SLOT

DEV_NAME

ADR_DATA

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1855

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the total number of CAN 2.0A telegrams received.

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
REC (EN := REC_EN,
 SLOT := REC_SLOT,
 DEV_NAME := REC_DEV_NAME,
 ADR_DATA := REC_ADR_DATA);

REC_ERR := REC.ERR;
REC_ERNO := REC.ERNO;
REC_NUM_REC := REC.NUM_REC;
REC_PNIO_STATUS := REC.PNIO_STATUS;
REC_PNIO_ADD_VAL1 := REC.PNIO_ADD_VAL1;
REC_PNIO_ADD_VAL2 := REC.PNIO_ADD_VAL2;
REC_DONE := REC.DONE;

ERNO

NUM_REC

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1856

PNIO_CAN2B_REC_ID

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CAN2B

The function block PNIO_CAN2B_REC_ID provides one CAN2B message of the defined CAN
identifier received on the addressed CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1857

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
WORD - - -

Input ID specifies the identifier of the CAN 2.0A telegrams to be read from the buffer. If no buffer
has been specified for the selected identifier using the controller configuration, this is indicated
accordingly at the function block outputs.

Data type Default value Range Unit
ARRAY - - -

Input ADR_DATA specifies the address starting from which the received CAN 2.0A telegrams
should be written. Usually, this specification is done via the ADR operator and should point to an
array with 64 entries of the type CAN2A_MESSAGE_TYPE.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

SLOT

DEV_NAME

ID

ADR_DATA

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1858

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the total number of CAN 2.0A telegrams received.

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
REC_ID(EN := REC_ID_EN,
 SLOT := REC_ID_SLOT,
 DEV_NAME := REC_ID_DEV_NAME,
 ID := REC_ID_ID,
 ADR_DATA := REC_ID_ADR_DATA);

REC_ID_ERR := REC_ID.ERR;
REC_ID_ERNO := REC_ID.ERNO;

ERR

ERNO

NUM_REC

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1859

REC_ID_NUM_REC := REC_ID.NUM_REC;
REC_ID_PNIO_STATUS := REC_ID.PNIO_STATUS;
REC_ID_PNIO_ADD_VAL1 := REC_ID.PNIO_ADD_VAL1;
REC_ID_PNIO_ADD_VAL2 := REC_ID.PNIO_ADD_VAL2;
REC_ID_DONE := REC_ID.DONE;

PNIO_CAN2B_SEND

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CAN2B

The function block PNIO_CAN2B_SEND sends CAN2B messages via the addressed CI506-
PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1860

Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
ARRAY - - -

Input ADR_DATA specifies the address starting from which the received CAN 2.0A telegrams
should be written. Usually, this specification is done via the ADR operator and should point to an
array with 64 entries of the type CAN2A_MESSAGE_TYPE.

Data type Default value Range Unit
BYTE - 1 - 64 -

Input NUM_SEND specifies the number of valid telegrams to be transmitted and stored starting
at address ADR_DATA. The valid values for NUM_SEND are 1 to 64.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

SLOT

DEV_NAME

ADR_DATA

NUM_SEND

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1861

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
SEND (EN := SEND_EN,
 SLOT := SEND_SLOT,
 DEV_NAME := SEND_DEV_NAME,
 ADR_DATA := SEND_DEV_ADR_DATA,
 NUM_SEND := SEND_NUM_SEND);

SEND_ERR := SEND.ERR;
SEND_ERNO := SEND.ERNO;
SEND_STATUS := SEND.PNIO_STATUS;
SEND_PNIO_ADD_VAL1 := SEND.PNIO_ADD_VAL1;
SEND_PNIO_ADD_VAL2 := SEND.PNIO_ADD_VAL2;
SEND_DONE := SEND.DONE;

ERR

ERNO

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1862

PNIO_CANOM_NMT

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CANopen

The function block PNIO_CANOM_NMT sends a CANopen Network Management (NMT) com-
mand to a CANopen slave that is connected to the CI506-PNIO CANopen master interface.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1863

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
BYTE - 1 - 127 -

Input NODE describes the target CANopen slave node ID for which the NMT command is
intended.

Data type Default value Range Unit
BYTE - - -

Input NMT_CMD describes the type of the NMT command to be transmitted to the CANopen
slave. The range of values of node ID is as follows:

NMT Command NMT_CMD value in hex NMT_CMD value in decimal
Start remote node 16#01 1

Stop remote node 16#02 2

Enter pre-operational 16#80 128

Reset remote node 16#81 129

Output description

SLOT

DEV_NAME

NODE

NMT_CMD

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1864

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
PNIO_CANOM_NMT(EN := NMT_EN,
 SLOT := NMT_SLOT,
 DEV_NAME := NMT_DEV_NAME,
 NODE := NMT_NODE,
 NMT_CMD := NMT_CMD);

NMT_ERR := PNIO_CANOM_NMT.ERR;
NMT_ERNO := PNIO_CANOM_NMT.ERNO;
NMT_PNIO_STATUS := PNIO_CANOM_NMT.PNIO_STATUS;
NMT_ADD_VAL1 := PNIO_CANOM_NMT.PNIO_ADD_VAL1;
NMT_ADD_VAL2 := PNIO_CANOM_NMT.PNIO_ADD_VAL2;
NMT_DONE := PNIO_CANOM_NMT.DONE;

DONE

ERR

ERNO

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1865

PNIO_CANOM_NODE_DIAG

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CANopen

The function block PNIO_CANOM_NODE_DIAG reads the diagnosis data from a CANopen
slave that is connected to the CANopen master of the addressed CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):

EN

SLOT

DEV_NAME

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1866

ci506-pn-##

Data type Default value Range Unit
BYTE - 1 - 127 -

Input NODE describes the target CANopen slave node ID for which the NMT command is
intended.

Data type Default value Range Unit
DWORD POINTER - - -

Input DATA specifies the address of the variable containing the telegrams to be transmitted.
This specification is usually done via the ADR operator. The node diagnostic data have to be of
the data type PNIO_CANOM_NODE_DIAG_MESSAGE_TYPE defined in the library.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

NODE

DATA

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1867

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Data type Default value Range Unit
- - - -

The CANopen slave node diagnostic can be displayed properly by using the structure
PNIO_CANOM_NODE_DIAG_MESSAGE_TYPE which is declared as follows.
TYPE PNIO_CANOM_NODE_DIAG_MESSAGE_TYPE:
STRUCT
NODE_FLAG: DWORD;
LAST_DIAG: DWORD;
DEV_TYPE_VALID: DWORD;
DEV_TYPE: DWORD;
NMT_STATE: DWORD;
EMCY_CNT: DWORD;
EMCY_DATA: ARRAY [1..5] OF CANOM_EMCY_TYPE;
ADD_INFO: DWORD;
RESERVED : ARRAY [1..4] OF DWORD;
END_STRUCT
END_TYPE

Data type Default value Range Unit
DWORD - 0 - 31 -

Each bit in this variable describes an occurrence of a certain event for the node. The bit
organization is displayed in the following table:

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PNIO_CANOM_
NODE_DIAG_M
ESSAGE_TYPE

NODE_FLAG

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1868

Bit Name Description
31 FLAG_DEACTIVATED Node is deactivated and not handled

by the master. This bit does not gen-
erate an entry in the diagnostic list.

30 FLAG_STATE_NOT_HANDLED At least one state has been omitted
during the initialization sequence of
the node. This bit does not generate
an entry in the diagnostic list.

13..29 Reserved Reserved

12 FLAG_INVALID_PARAMETER Parameter set of node is invalid.

11 FLAG_UNEXPECTED_BOOTUP Unexpected boot-up message from
node received.

10 FLAG_BOOTUP Expected boot-up message from node
received.

9 FLAG_EMCY_BUFF_OVER Emergency buffer overflow

8 FLAG_EMCY_RECEIVED Emergency telegram received

7 FLAG_UNEXPECTED_STATE Node is in unexpected NMT state

6 FLAG_HEARTBEAT_ERROR Error in heartbeat protocol

5 FLAG_CON_LOST Node guarding has been lost

4 FLAG_GUARD_ERROR A guarding message has been lost.
This bit does not generate an entry in
the diagnostic list.

3 FLAG_HEARTBEAT_STARTED Heartbeat protocol started. This bit
does not generate an entry in the diag-
nostic list.

2 FLAG_CFG_FAULT Configuration fault

1 FLAG_SDO_ERROR Error during SDO transfer

0 FLAG_SDO_TIMEOUT Timeout during SDO transfer

Data type Default value Range Unit
DWORD - - -

Last error code recorded by the CANopen master for the slave. See 'Error Messages of the
CI506 CANopen Master' Ä Chapter 1.5.4.28.1.1 “Error messages of the CI506-PNIO CANopen
master” on page 1841.

Data type Default value Range Unit
DWORD - - -

DEV_TYPE_VALID describes the validity of the device type displayed in the variable
DEV_TYPE.
If DEV_TYPE_VALID = 1, the device type is valid.
If DEV_TYPE_VALID = 0, the device type is invalid.

Data type Default value Range Unit
DWORD - - -

LAST_DIAG

DEV_TYPE_
VALID

DEV_TYPE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1869

DEV_TYPE describes the device type read from the CANopen slaves upon node start-up. The
values are predefined in the CANopen specification. Example for device type values are:
Device Profile for I/O modules: 401 decimal
Device Profile for Drives: 402 decimal
Device Profile Encoder modules: 406 decimal

Data type Default value Range Unit
DWORD - 0 - 6 -

NMT_STATE describes the current CANopen slave NMT state. The following table describes
the possible value of the NMT_STATE.

NMT State Value
Unknown 0

Initializing 1

Stopped 2

Operational 3

Pre-operational 4

Reset application 5

Reset communication 6

Data type Default value Range Unit
DWORD - - -

EMCY_CNT outputs the number of valid emergency messages of the slave output at
EMCY_DATA according to the CANopen specification. Up to 5 emergency messages per slave
can be buffered in the CANopen master.

Data type Default value Range Unit
ARRAY - - -

EMCY_DATA outputs up to 5 buffered emergency messages of the slave. The number of valid
messages is output by NUM_EMCY. The structure of the type CANOM_EMCY_TYPE is defined
in the AC500 CANopen library.

Data type Default value Range Unit
DWORD - - -

Not used.

Data type Default value Range Unit
DWORD - - -

Reserved and not used.

NMT_STATE

EMCY_CNT

EMCY_DATA

ADD_INFO

RESERVED

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1870

Function call in ST
PNIO_CANOM_NODE_DIAG(EN := DIAG_EN,
 SLOT := DIAG_SLOT,
 DEV_NAME := DIAG_DEV_NAME,
 NODE := DIAG_NODE,
 DATA := DIAG_DATA);

DIAG_ERR := PNIO_CANOM_NODE_DIAG.ERR;
DIAG_ERRNO := PNIO_CANOM_NODE_DIAG.ERNO;
DIAG_STATUS := PNIO_CANOM_NODE_DIAG.PNIO_STATUS;
DIAG_PNIO_ADD_VAL1 := PNIO_CANOM_NODE_DIAG.PNIO_ADD_VAL1;
DIAG_PNIO_ADD_VAL2 := PNIO_CANOM_NODE_DIAG.PNIO_ADD_VAL2;
DIAG_DONE := PNIO_CANOM_NODE_DIAG.DONE;

PNIO_CANOM_READ_DEV_ERR

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CANopen

The function block PNIO_CANOM_READ_DEV_ERR reads the CANopen slave device error
object (index 16#1001) of a CANopen slave connected to the CANopen master of the
addressed CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1871

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
BYTE - 1 - 127 -

Input NODE describes the target CANopen slave node ID for which the NMT command is
intended.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.

SLOT

DEV_NAME

NODE

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1872

It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Data type Default value Range Unit
DWORD - - -

Value of the CANopen slave device error object (index 16#1001).

Function call in ST
PNIO_CANOM_READ_DEV_ERR(EN := DEV_ERR_EN,
 SLOT := DEV_ERR_SLOT,
 DEV_NAME := DEV_ERR_DEV_NAME,
 NODE := DEV_ERR_NODE);

DEV_ERR_ERR := PNIO_CANOM_READ_DEV_ERR.ERR;
DEV_ERR_ERNO := PNIO_CANOM_READ_DEV_ERR.ERNO;
DEV_ERR_PNIO_STATUS := PNIO_CANOM_READ_DEV_ERR.PNIO_STATUS;
DEV_ERR_PNIO_ADD_VAL1 := PNIO_CANOM_READ_DEV_ERR.PNIO_ADD_VAL1;
DEV_ERR_PNIO_ADD_VAL2 := PNIO_CANOM_READ_DEV_ERR.PNIO_ADD_VAL2;
DEV_ERR_DEV_ERR := PNIO_CANOM_READ_DEV_ERR.DEV_ERR;
DEV_ERR_DONE := PNIO_CANOM_READ_DEV_ERR.DONE;

ERNO

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

DEV_ERR

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1873

PNIO_CANOM_SDO_READ

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CANopen

The function block PNIO_CANOM_SDO_READ reads "service data object" (SDO) of a
CANopen slave connected to the CANopen master of the addressed CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1874

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
BYTE - 1 - 127 -

Input NODE describes the target CANopen slave node ID for which the NMT command is
intended.

Data type Default value Range Unit
WORD - - -

Input OBJ_IDX describes the index of the CANopen object in the slave dictionary (refer to the
CANopen slave EDS file) to be read.

Data type Default value Range Unit
BYTE - - -

Input OBJ_IDX describes the sub-index of the CANopen object in the slave dictionary (refer to
the CANopen slave EDS file) to be read.

Data type Default value Range Unit
DWORD POINTER - - -

Input DATA specifies the address of the variable containing the telegrams to be transmitted.
This specification is usually done via the ADR operator. The node diagnostic data have to be of
the data type PNIO_CANOM_NODE_DIAG_MESSAGE_TYPE defined in the library.

Data type Default value Range Unit
WORD - - -

Input DATA_LEN describes the maximum length of the SDO data to be uploaded in bytes.

SLOT

DEV_NAME

NODE

OBJ_IDX

SUB_IDX

DATA

DATA_LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1875

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

ACT_LEN outputs the length of the received object data (in bytes), after the procedure has
been completed successfully. Since function block execution requires bus access, the data are
available in the next cycle after activating the function block at the earliest. The output value is
only valid, if DONE = TRUE and ERR = FALSE.

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

DONE

ERR

ERNO

ACT_LEN

PNIO_STATUS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1876

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
PNIO_CANCOM_SDO_READ(EN := SDO_READ_EN,
 SLOT := SDO_READ_SLOT,
 DEV_NAME := SDO_READ_DEV_NAME,
 NODE := SDO_READ_NODE,
 OBJ_IDX := SDO_READ_OBJ_IDX,
 SUB_IDX := SDO_READ_SUB_IDX,
 DATA := SDO_READ_DATA,
 DATA_LEN := SDO_READ_DATA_LEN);

SDO_RED_ERR := PNIO_CANCOM_SDO_READ.ERR;
SDO_READ_ERNO := PNIO_CANCOM_SDO_READ.ERNO;
SDO_READ_ACT_LEN := PNIO_CANCOM_SDO_READ.ACT_LEN;
SDO_READ_PNIO_STATUS := PNIO_CANCOM_SDO_READ.PNIO_STATUS;
SDO_READ_PNIO_ADD_VAL1 := PNIO_CANCOM_SDO_READ.PNIO_ADD_VAL1;
SDO_READ_PNIO_ADD_VAL2 := PNIO_CANCOM_SDO_READ.PNIO_ADD_VAL2;
SDO_READ_DONE := PNIO_CANCOM_SDO_READ.DONE;

PNIO_CANOM_SDO_WRITE

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CANopen

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1877

The function block PNIO_CANOM_SDO_WRITE writes a "service data object" (SDO) of a
CANopen slave connected to the CANopen master of the addressed CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
BYTE - 1 - 127 -

EN

SLOT

DEV_NAME

NODE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1878

Input NODE describes the target CANopen slave node ID for which the NMT command is
intended.

Data type Default value Range Unit
WORD - - -

Input OBJ_IDX describes the index of the CANopen object in the slave dictionary (refer to the
CANopen slave EDS file) to be read.

Data type Default value Range Unit
BYTE - - -

Input OBJ_IDX describes the sub-index of the CANopen object in the slave dictionary (refer to
the CANopen slave EDS file) to be read.

Data type Default value Range Unit
DWORD POINTER - - -

Input DATA specifies the address of the variable containing the telegrams to be transmitted.
This specification is usually done via the ADR operator. The node diagnostic data have to be of
the data type PNIO_CANOM_NODE_DIAG_MESSAGE_TYPE defined in the library.

Data type Default value Range Unit
WORD - - -

Input DATA_LEN describes the maximum length of the SDO data to be uploaded in bytes.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

OBJ_IDX

SUB_IDX

DATA

DATA_LEN

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1879

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
PNIO_CANCOM_SDO_WRITE(EN := SDO_WRITE_EN,
 SLOT := SDO_WRITE_SLOT,
 DEV_NAME := SDO_WRITE_DEV_NAME,
 NODE := SDO_WRITE_NODE,
 OBJ_IDX := SDO_WRITE_OBJ_IDX,
 SUB_IDX := SDO_WRITE_SUB_IDX,
 DATA := SDO_WRITE_DATA,
 DATA_LEN := SDO_WRITE_DATA_LEN);

SDO_WRITE_ERR := PNIO_CANCOM_SDO_WRITE.ERR;
SDO_WRITE_ERNO := PNIO_CANCOM_SDO_WRITE.ERNO;
SDO_WRITE_PNIO_STATUS := PNIO_CANCOM_SDO_WRITE.PNIO_STATUS;
SDO_WRITE_PNIO_ADD_VAL1 := PNIO_CANCOM_SDO_WRITE.PNIO_ADD_VAL1;
SDO_WRITE_PNIO_ADD_VAL2 := PNIO_CANCOM_SDO_WRITE.PNIO_ADD_VAL2;
SDO_WRITE_DONE := PNIO_CANCOM_SDO_WRITE.DONE;

ERR

ERNO

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1880

PNIO_CANOM_STATE

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CANopen

The function block PNIO_CANOM_STATE provides state information of the CANopen master of
the addressed CI506-PNIO.

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1881

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
BYTE - 1 - 127 -

Input MASTER_NODE describes the CANopen master node ID in CI506.

Output description

EN

SLOT

DEV_NAME

MASTER_NODE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1882

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
CANOM_STATE_BIT
S_TYPE

- - -

Output STATE_BITS indicates a typical communication states of the CANopen master.
STATE_BITS is only valid if EN = TRUE and ERR = FALSE.

Data type Default value Range Unit
BYTE - - -

CANOM_STATE outputs the general communication state of the CANopen master in CI506.
CANOM_STATE is only valid, if EN = TRUE and ERR = FALSE. The following states are
defined:

State Meaning
Dec Hex

0 00 OFFLINE

64 40 STOP

128 80 CLEAR

192 C0 OPERATE

If CANOM_STATE is set to OFFLINE, the CANopen master performs an initialization. After the
initialization phase is completed, the CANopen master changes to STOP state.

If CANOM_STATE has the value STOP, the CANopen master is completely initialized. In this
state the CANopen master is ready to receive configuration data. There is no data exchange
with the slaves. CANOM_STATE = CLEAR

DONE

ERR

ERNO

STATE_BITS

CANOM_STATE

CANOM_STATE
= OFFLINE

CANOM_STATE
= STOP

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1883

If a CANopen network configuration is received the CANopen master changes from STOP to
CLEAR and starts to establish the connections defined during configuration. When the setup
has been completed successfully, the CANopen master moves to OPERATE state. If an error
occurs during parameterization, the CANopen master changes back to STOP state.

If CANOM_STATE has the value OPERATE, the master exchanges I/O data with the slaves.

Data type Default value Range Unit
CANOM_COM_ERR_
TYPE

- - -

Not used in CI506.

Data type Default value Range Unit
WORD - - -

BUS_ERR outputs the number of occurred bus errors. A bus error occurs if the internal error
frame counter exceeds a specific value. BUS_ERR is only valid if EN = TRUE and ERR =
FALSE.

Data type Default value Range Unit
WORD - - -

BUS_OFF is incremented if the CAN interface reports that it detaches itself from CAN bus due
to exceeded internal bus error counters and must be reinitialized. BUS_OFF is only valid if EN =
TRUE and ERR = FALSE.

Data type Default value Range Unit
WORD - - -

LOST_REC outputs the number of received telegrams that were rejected because they could
not be processed successfully due to a CAN chip overload. LOST_REC is only valid, if EN =
TRUE and ERR = FALSE.

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

CANOM_STATE
= OPERATE

COM_ERR

BUS_ERR

BUS_OFF

LOST_REC

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1884

Function call in ST
PNIO_CANOM_STATE(EN := STATE_EN,
 SLOT := STATE_SLOT,
 DEV_NAME := STATE_DEV_NAME,
 MASTER_NODE := STATE_MASTER_NODE);

STATE_ERR := PNIO_CANOM_STATE.ERR;
STATE_ERNO := PNIO_CANOM_STATE.ERNO;
STATE_BITS := PNIO_CANOM_STATE.STATE_BITS;
STATE_CANCOM_STATE := PNIO_CANOM_STATE.CANOM_STATE;
STATE_CANCOM_ERR := PNIO_CANOM_STATE.COM_ERR;
STATE_BUS_ERR := PNIO_CANOM_STATE.BUS_ERR;
STATE_BUS_OFF := PNIO_CANOM_STATE.BUS_OFF;
STATE_TOUT_ERR := PNIO_CANOM_STATE.TOUT_ERR;
STATE_LOST_REC := PNIO_CANOM_STATE.LOST_REC;
STATE_PNIO_STATUS := PNIO_CANOM_STATE.PNIO_STATUS;
STATE_PNIO_ADD_VAL1 := PNIO_CANOM_STATE.PNIO_ADD_VAL1;
STATE_PNIO_ADD_VAL2 := PNIO_CANOM_STATE.PNIO_ADD_VAL2;
STATE_DONE := PNIO_CANOM_STATE.DONE;

PNIO_CANOM_SYS_DIAG

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group CANopen

The function block PNIO_CANOM_SYS_DIAG gets the states of all slaves connected to the
CI506-PNIO CANopen master.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1885

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
BYTE - - -

Input TYP selects the type of CANopen system diagnosis displayed at output NODE.
TYP = 1 Configured slaves
Output NODE displays which slaves are configured for the CANopen master in CI506 (TRUE).
TYP = 2 Operational slaves
Output NODE displays which slaves are error-free and in operation. A slave can only be
operational if it has been configured in the master. The type of system diagnosis can only be
requested if the CANopen master is in OPERATE state.

EN

SLOT

DEV_NAME

TYP

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1886

TYP = 3 Slaves with diagnosis
Output NODE indicates which slaves report a diagnosis. The diagnosis survey can only be
requested if the CANopen master is in OPERATE state.

Data type Default value Range Unit
BYTE - 1 - 127 -

Input MASTER_NODE describes the CANopen master node ID in CI506.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
ARRAY
ARRAY

- - -

MASTER_NODE

DONE

ERR

ERNO

NODE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1887

Output NODE outputs the status of each slave as a bitfield. Each individual bit within this field
represents one slave. The index number corresponds to the slave's node address. If a bit is
set to TRUE, the state selected using TYP applies for the slave. If e.g. TYP = 1 is selected
and NODE[2] = TRUE, the slave with a configuration for this node was received and stored in
master. If NODE[2] = FALSE, the slave is not part of the master's configuration data. If TYP =
3, NODE[2] = TRUE means that the slave with the node address 2 has received an emergency
message or that the diagnosis indication of the slave has changed. In this case, a diagnosis
description can be requested using the function block PNIO_CANOM_NODE_DIAG Ä Chapter
1.5.4.28.1.9 “PNIO_CANOM_NODE_DIAG” on page 1866.
The bitfield output at NODE is only valid, if EN = TRUE and ERR = FALSE.

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
PNIO_CANOM_SYS_DIAG(EN := SYS_DIAG_EN,
 SLOT := SYS_DIAG_SLOT,
 DEV_NAME := SYS_DIAG_DEV_NAME,
 TYP := SYS_DIAG_TYP,
 MASTER_NODE := SYS_DIAG_MASTER_NODE);

SYS_DIAG_ERR := PNIO_CANOM_SYS_DIAG.ERR;
SYS_DIAG_ERNO := PNIO_CANOM_SYS_DIAG.ERNO;
SYS_DIAG_NODE := PNIO_CANOM_SYS_DIAG.NODE;
SYS_DIAG_PNIO_STATUS := PNIO_CANOM_SYS_DIAG.PNIO_STATUS;
SYS_DIAG_PNIO_ADD_VAL1 := PNIO_CANOM_SYS_DIAG.PNIO_ADD_VAL1;
SYS_DIAG_PNIO_ADD_VAL2 := PNIO_CANOM_SYS_DIAG.PNIO_ADD_VAL2;
SYS_DIAG_DONE := PNIO_CANOM_SYS_DIAG.DONE;

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1888

PNIO_COM_REC

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group COM

The function block PNIO_COM_REC provides all serial messages received on the addressed
CI504-PNIO or CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1889

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
BYTE - - -

At the COM input, the number of the serial interface is specified.
COM = 1: COM1
COM = 2: COM2
COM = 3: COM3 (CI504 only)

Data type Default value Range Unit
ARRAY - - -

Input ADR_DATA specifies the address starting from which the received CAN 2.0A telegrams
should be written. Usually, this specification is done via the ADR operator and should point to an
array with 64 entries of the type CAN2A_MESSAGE_TYPE.

Output description

SLOT

DEV_NAME

COM

ADR_DATA

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1890

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output NUM_REC displays the total number of CAN 2.0A telegrams received.

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

PNIO_COM_MESSAGE_TYPE
This data type is declared as follows:

DONE

ERR

ERNO

NUM_REC

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1891

TYPE PNIO_COM_MESSAGE_TYPE:
STRUCT
 HEADER: PNIO_COM_MESSAGE_HEADER_TYPE; (*HEADER*)
 DATA: ARRAY [1..256] OF BYTE; (*data if any, depends on LENGTH in
HEADER*)
END_STRUCT
END_TYPE

PNIO_COM_MESSAGE_HEADER_TYPE
This data type is declared as follows:
TYPE PNIO_COM_MESSAGE_HEADER_TYPE:
STRUCT
 STATUS: WORD; (*STATUS*)
 LENGTH: WORD; (*LENGTH*)
END_STRUCT
END_TYPE
Possible values for STATUS are:
CDRV_FRAME_BUFFER_FULL = 0x101,
CDRV_FRAME_END_CHAR = 0x102,
CDRV_FRAME_TIMEOUT = 0x103,
CDRV_FRAME_BREAK = 0x104,
CDRV_FRAME_FRAMING = 0x105,
CDRV_FRAME_PARITY = 0x106,
CDRV_FRAME_CANCELED = 0x107,
CDRV_FRAME_ERROR = 0x108,
CDRV_FRAME_CHKSUM = 0x109,
CDRV_FRAME_LEN = 0x10A

Function call in ST
PNIO_COM_REC(EN := REC_EN,
 SLOT := REC_SLOT,
 DEV_NAME := REC_DEV_NAME,
 COM := REC_COM,
 ADR_DATA := REC_ADR);

REC_ERR := PNIO_COM_REC.ERR;
REC_ERNO := PNIO_COM_REC.ERNO;
REC_NUM_REC := PNIO_COM_REC.NUM_REC;
REC_PNIO_STATUS := PNIO_COM_REC.PNIO_STATUS;
REC_PNIO_ADD_VAL1 := PNIO_COM_REC.PNIO_ADD_VAL1;
REC_PNIO_ADD_VAL2 := PNIO_COM_REC.PNIO_ADD_VAL2;
REC_DONE := PNIO_COM_REC.DONE;

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1892

PNIO_COM_SEND

Parameter Value
Included in library PROFINET_Ext_AC500_V20.lib

Available as of firmware V2.1.x

Type Function block with historical values

Group COM

The function block PNIO_COM_SEND provides all serial messages via the addressed CI504-
PNIO or CI506-PNIO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1893

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
STRING - - -

Input DEV_NAME describes the PROFINET IO device to be queried. The string has a maximum
length of 240 characters, including the zero terminating char. In conjunction with the SLOT
value this string selects the target I/O module of this request.
Valid values are (examples for the ABB modules, the hash marks # are place holders for the
address selected by the rotary switch at the front of the device):
ci506-pn-##

Data type Default value Range Unit
BYTE - - -

At the COM input, the number of the serial interface is specified.
COM = 1: COM1
COM = 2: COM2
COM = 3: COM3 (CI504 only)

Data type Default value Range Unit
ARRAY - - -

Input ADR_DATA specifies the address starting from which the received CAN 2.0A telegrams
should be written. Usually, this specification is done via the ADR operator and should point to an
array with 64 entries of the type CAN2A_MESSAGE_TYPE.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

SLOT

DEV_NAME

COM

ADR_DATA

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1894

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE. (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Output PNIO_STATUS contains the PNIO ErrorCode and ErrorDecode.

Data type Default value Range Unit
WORD 1 - -

Output PNIO_ADD_VAL1 contains the PNIO ErrorCode1.

Data type Default value Range Unit
WORD 2 - -

PNIO_ADD_VAL2 contains the PNIO ErrorCode2.

Function call in ST
PNIO_COM_SEND(EN := SEND_EN,
 SLOT := SEND_SLOT,
 DEV_NAME := SEND_DEV_NAME,
 COM := SEND_COM,
 ADR_DATA := SEND_ADR_DATA);

SEND_ERR := PNIO_COM_SEND.ERR;
SEND_ERNO := PNIO_COM_SEND.ERNO;
SEND_PNIO_STATUS := PNIO_COM_SEND.PNIO_STATUS;
SEND_PNIO_ADD_VAL1 := PNIO_COM_SEND.PNIO_ADD_VAL1;
SEND_PNIO_ADD_VAL2 := PNIO_COM_SEND.PNIO_ADD_VAL2;
SEND_DONE := PNIO_COM_SEND.DONE;

1.5.4.29 Profinet_Ext2 library
Library file name: Profinet_Ext2_AC500_Vx.lib

ERR

ERNO

PNIO_STATUS

PNIO_ADD_VAL
1

PNIO_ADD_VAL
2

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1895

This library contains function blocks which are used to control the PROFINET IO network and
the connected devices.

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

The following libraries are required to use the function blocks of the
Profinet_Ext2 library:

– CMN_AC500_V24.lib (V 1.0.0)
– SysInt_AC500_V10.lib (V 1.4.3)
– Profinet_AC500_V13.lib (V1.2.1)

These libraries are part of the Automation Builder.

1.5.4.29.1 Function blocks
PNIO_CNTL_START_COM

Table 91: General information
Available as of runtime system V2.6.2 and above

Available as of AB version V2.1 and above

Available as of CM579-PNIO version V2.8.4.20 and above

Included in library Profinet_Ext2_AC500_V26.lib

Type Function block with historical values.

Preconditions

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1896

The function block PNIO_CNTL_START_COM can be used to start the communication of
the PROFINET IO Controller. That means the communication state is changed from Stop to
Operate.

The next figure shows the flowchart of the execution of the function block
PNIO_CNTL_START_COM.:

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1897

When the execution is started the bus communication will be enabled. After that the communi-
cation state of the PROFINET IO Controller is checked and it’s waited until the communication
state is Operate.
The execution of the FB was successful if the PROFINET IO Controller was changed to the
communication state Operate.
If the PROFINET IO Controller is not in the communication state Operate within the specified
timeout the execution of the FB is failed and the bus communication is disabled again.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
DWORD 0 0 … 4294967295 ms

Value of timeout in ms.

EN

SLOT

TOUT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1898

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

PNIO_CNTL_STOP_COM

DONE

ERR

ERNO

ADD_ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1899

Table 92: General information
Available as of runtime system V2.6.2 and above

Available as of AB version V2.1 and above

Available as of CM579-PNIO version V2.8.4.20 and above

Included in library Profinet_Ext2_AC500_V26.lib

Type Function block with historical values.

The function block PNIO_CNTL_STOP_COM can be used to stop the communication of the
PROFINET IO Controller. That means the communication state is changed from Operate to
Stop.

The user is responsible for resetting of the PROFINET IO related part of the
PLC application when the bus communication is re-started

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1900

The next figure shows the flowchart of the execution of the function block
PNIO_CNTL_STOP_COM.:

When the execution is started the bus communication will be disabled. After that the communi-
cation state is checked and it’s waited until the communication state is Stop.
If the PROFINET IO Controller is in communication Stop and the input RESET_IO is TRUE the
IOs will be reset.
The execution of the FB was successful if the communication state was changed to Stop and
no error is occurred during resetting the IOs. If the PROFINET IO Controller is not in the
communication state Stop within the specified timeout the execution of the FB is failed.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1901

The IO reset functionality of the FB PNIO_CNTL_STOP_COM is not synchron-
ized. That means there is no notification when the reset is finished.

The FB PNIO_CNTL_STOP_COM has an internal waiting time of 1000ms
to be sure the IOs were reset. If this time is not sufficient it has to be
waited an additional time before the communication is re-started with the FB
PNIO_CNTL_START_COM.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

IO values will be reset if set to true.

Data type Default value Range Unit
DWORD 0 0 … 4294967295 ms

Value of timeout in ms.

EN

SLOT

RESET_IO

TOUT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1902

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - 0…232-1 -

At output ADD_ERNO an additional error code is provided when output ERNO is 0 x 0031.

1.5.4.30 RCOM/RCOM+ library
Library file name: RCOM_AC500_Vx.lib

All function blocks of this library can only be executed in RUN mode of the
processor module, not in simulation mode.

DONE

ERR

ERNO

ADD_ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1903

1.5.4.30.1 Function blocks
RCOM_CLOCK

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block transmits a telegram that sets the clock of the called slave(s) to the time
specified at the function block inputs. The master clock is set to the same value.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1904

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Data type Default value Range Unit
WORD - - -

Input HOUR_SET specifies the value of the hour component of the time.

Data type Default value Range Unit
WORD - - -

Input MIN_SET specifies the value of the minutes component of the time.

Data type Default value Range Unit
WORD - - -

Input SEC_SET specifies the value of the seconds component of the time.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

SLOT

NODE

HOUR_SET

MIN_SET

SEC_SET

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1905

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RCOMClock(
 EN := RCOMClock_EN,
 SLOT := RCOMClock_SLOT,
 NODE := RCOMClock_NODE,
 HOUR_SET := RCOMClock_HOUR_SET,
 MIN_SET := RCOMClock_MIN_SET,
 SEC_SET := RCOMClock_SEC_SET);
RCOMClock_DONE := RCOMClock.DONE;
RCOMClockart_ERR := RCOMClock.ERR;
RCOMClock_ERNO := RCOMClock.ERNO;

RCOM_COLDST

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1906

This function block performs a cold start of the called slave(s). After the cold start, the slave(s)
are partially reinitialized.
At the called slave(s) the sequence marks (RCOM-specific protocol parameter) are reset and
the transmission of data records is disabled. All entries in the event queue are deleted, and,
after this, a cold start event is generated.
After a cold start, always a normalization is required.
This function block has to be used for the initialization of the RCOM network, e.g. after the
initialization of the master's CM574-RCOM device.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

EN

SLOT

NODE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1907

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RCOMColdstart(
 EN := RCOMColdstart_EN,
 SLOT := RCOMColdstart_SLOT,
 NODE := RCOMColdstart_NODE);
RCOMColdstart_DONE := RCOMColdstart.DONE;
RCOMColdstart_ERR := RCOMColdstart.ERR;
RCOMColdstart_ERNO := RCOMColdstart.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1908

RCOM_DIAL

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block calls a specified subscriber in a network realized with dial lines. If used in the
RCOM master, the function block has to be processed before transmitting system services or
data records to a slave.
If used in a slave, the function block can be used to call the master in order to request event
polling.
The dial line has to be terminated using the RCOM_HANGUP function block after transmission
is completed.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1909

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RCOMDial(

SLOT

NODE

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1910

 EN := RCOMDial_EN,
 SLOT := RCOMDial_SLOT,
 NODE := RCOMDial_NODE);
RCOMDial_DONE := RCOMDial.DONE;
RCOMDial_ERR := RCOMDial.ERR;
RCOMDial_ERNO := RCOMDial.ERNO;

RCOM_HANGUP

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block hangs up the connection in networks realized with dial lines.
The function block has to be used to terminate the connection after transmitting data records to
or from a slave.
The function block cannot be used until all jobs for a slave are processed completely. Further-
more, the function block can only be used, if the RCOM network is realized by dial lines ("Hayes
compatible dial modem"; has to be selected as modem type in PLC configuration).

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1911

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

SLOT

NODE

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1912

Function call in ST
RCOMHangup(
 EN := RCOMHangup_EN,
 SLOT := RCOMHangup_SLOT,
 NODE := RCOMHangup_NODE);
RCOMHangup_DONE := RCOMHangup.DONE;
RCOMHangup_ERR := RCOMHangup.ERR;
RCOMHangup_ERNO := RCOMHangup.ERNO;

RCOM_INIT

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block is used to initialize the CM574-RCOM. It sets all necessary network parame-
ters and starts initialization.
Once the function block is started, the input parameters must not be changed anymore. Due to
this, the parameters should be preset by assigning constants.
A rising edge at input EN initiates the function block. The signal TRUE must be applied until the
function block is processed completely.
If DONE = TRUE and ERR = FALSE, the initialization process was successful. If DONE = TRUE
and ERR = TRUE, an error occurred and the error number is indicated at output ERNO.
After initialization, the outputs ERR, ERNO, NUM_CYCLES, NEW_TIME, HOUR_ACT,
MIN_ACT, SEC_ACT and NUM_EVENTS are updated with each PLC cycle as long as EN
= TRUE. This way, the PLC permanently receives the cycle counter value and error messages
from the CM574-RCOM. Therefore, input EN should constantly remain TRUE, except when the
Communication Module has to be reinitialized with new parameters.
A falling edge at input EN resets the outputs ERR and ERNO.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1913

Output NUM_CYCLES indicates the current cycle counter value of the CM574-RCOM. The
outputs NEW_TIME, HOUR_ACT, MIN_ACT and SEC_ACT indicate the current RCOM system
time which can also be used in the PLC program. Time starts at switching on with 00:00.00. If
a ‘set clock’ command is received, the time is set to the new value and output
NEW_TIME is set for approx. 5 seconds (e.g. for setting a real-time clock).
For RCOM slaves, output NUM_EVENTS indicates the number of events stored in the event
queue. For the RCOM master, NUM_EVENTS is always zero.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN

SLOT

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1914

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

Output NUM_CYCLES provides the current value of the CM574-RCOM cycle counter. This
value is permanently updated as long as EN = TRUE. The cycle counter should be used to
monitor the CM574-RCOM (life identifier).

Data type Default value Range Unit
BOOL - - -

Output NEW_TIME is set to TRUE for approx. 5 seconds, if a new RCOM time has been set
using the RCOM_CLOCK function block. This output can be used to adjust a real-time clock to
the time applied at HOUR_ACT, MIN_ACT and SEC_ACT.

DONE

ERR

ERNO

NUM_CYCLES

NEW_TIME

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1915

Data type Default value Range Unit
WORD - - -

Output HOUR_ACT indicates the hours component of the RCOM system time. The master can
adjust the time using the RCOM_CLOCK function block.

Data type Default value Range Unit
WORD - - -

Output MIN_ACT indicates the minutes component of the RCOM system time. The master can
adjust the time using the RCOM_CLOCK function block.

Data type Default value Range Unit
WORD - - -

Output SEC_ACT indicates the seconds component of the RCOM system time. The master can
adjust the time using the RCOM_CLOCK function block.

Data type Default value Range Unit
WORD - - -

For RCOM slaves, output NUM_EVENTS indicates the number of events stored in the event
queue. For the RCOM master, NUM_EVENTS is always zero.

Function call in ST
RCOMInit(
EN := RCOMInit_EN,
SLOT := RCOMInit_SLOT);
RCOMInit_DONE := RCOMInit.DONE;
RCOMInit_ERR := RCOMInit.ERR;
RCOMInit_ERNO := RCOMInit.ERNO;
RCOMInit_NUM_CYCLES := RCOMInit.NUM_CYCLES;
RCOMInit_NEWTIME := RCOMInit.NEWTIME;
RCOMInit_HOUR_ACT := RCOMInit.HOUR_ACT;
RCOMInit_MIN_ACT := RCOMInit.MIN_ACT;
RCOMInit_SEC_ACT := RCOMInit.SEC_ACT;
RCOMInit_NUM_EVENTS := RCOMInit.NUM_EVENTS;

HOUR_ACT

MIN_ACT

SEC_ACT

NUM_EVENTS

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1916

RCOM_NORMAL

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block performs a normalization at the called slave and thus enables the transmis-
sion of data records.
This function block has to be processed each time after switching on and after a cold start or a
warm start.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN

SLOT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1917

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RCOMNormal(
 EN := RCOMNormal_EN,
 SLOT := RCOMNormal_SLOT,
 NODE := RCOMNormal_NODE);
RCOMNormal_DONE := RCOMNormal.DONE;
RCOMNormal_ERR := RCOMNormal.ERR;
RCOMNormal_ERNO := RCOMNormal.ERNO;

NODE

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1918

RCOM_POLL

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block performs event polling on the called slave, i.e. the slave is asked whether it
wants to transfer data records to the master.
The data records returned by the slave appear in the master in a correspondingly configured
here Ä Chapter 1.5.4.30.1.10 “RCOM_REC” on page 1927 function block.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

EN

SLOT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1919

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RCOMPoll(
 EN := RCOMPoll_EN,
 SLOT := RCOMPoll_SLOT,
 NODE := RCOMPoll_NODE);
RCOMPoll_DONE := RCOMPoll.DONE;
RCOMPoll_ERR := RCOMPoll.ERR;
RCOMPoll_ERNO := RCOMPoll.ERNO;

NODE

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1920

RCOM_READ

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

The function block reads data from an RCOM slave. For this, a READ job is sent to the commu-
nication partner via the CM574-RCOM communication module. As a result, the communication
partner returns an acknowledgement including the data.
The data received from the slave are stored in a flag area specified at input DATA.
Data transmission (i.e. reading data) using the RCOM_READ function block is only possible,
if the CM574-RCOM communication module has been initialized (RCOM function block) and if
normalization has been performed previously.
Once a job is started (FALSE/TRUE edge at input EN), the data at the inputs NODE, ID, DATA
and LEN must not be changed until the job is completed (i.e. until DONE = TRUE).
With each FALSE/TRUE edge at input EN the reading operation is performed once.
Further FALSE/TRUE edges at input EN are ignored until the reading operation is completed.
The outputs DONE, ERR and ERNO are set when reading is completed.
Input NODE specifies the RCOM subscriber providing the data to be read. Input ID specifies the
data record number within this subscriber and input LEN specifies the number of words to be
transmitted.
If DONE = TRUE and ERR = FALSE, the reading operation could be completed successfully. If
DONE = TRUE and ERR = TRUE, an error occurred and the error number is indicated at output
ERNO. The outputs DONE, ERR and ERNO are reset with each falling edge at input EN.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1921

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Data type Default value Range Unit
WORD - - -

Input ID specifies the number of the data record to be read.

Data type Default value Range Unit
DWORD - - -

Input DATA specifies the first flag of the flag area where the data should be stored.

Data type Default value Range Unit
WORD - - -

EN

SLOT

NODE

ID

DATA

LEN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1922

Input LEN specifies the number of words to be read (has to be even-numbered).

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RCOMRead(
EN := RCOMRead_EN,
SLOT := RCOMRead_SLOT,
NODE := RCOMRead_NODE,
IDT := RCOMRead_IDT,
DATA := ADR(RCOMRead_DATA),
LEN := RCOMRead_LEN);
RCOMRead_DONE := RCOMRead.DONE;
RCOMRead_ERR := RCOMRead.ERR;

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1923

RCOMRead_ERNO := RCOMRead.ERNO;

RCOM_READ_SLV

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block provides the data to be read by the master using an RCOM_READ function
block.
The data are provided to the Communication Module with an incoming READ job for the
specified flag area.
If EN = FALSE or if the slave has not been normalized before, the function block rejects reading
jobs (answer: ‘application part not ready’).
The data record number must match the number in the RCOM_READ function block.
The sender of the reading job is specified at input NODE. Because only the master of an RCOM
network can send reading jobs, input NODE always has to be zero.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1924

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Data type Default value Range Unit
WORD - - -

Input ID specifies the number of the data record to be read.

Data type Default value Range Unit
DWORD - - -

Input DATA specifies the first flag of the flag area where the data should be stored.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

SLOT

NODE

ID

DATA

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1925

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL - - -

Output NEW is set to TRUE, if the master has read the requested data record. This way, the
PLC is able to detect the reception of data by the master. Output NEW is reset during the next
PLC cycle.

Function call in ST
RCOMReadSlv(
 EN := RCOMReadSlv_EN,
 SLOT := RCOMReadSlv_SLOT,
 NODE := RCOMReadSlv_NODE,
 IDT := RCOMReadSlv_IDT,
 DATA := ADR(RCOMReadSlv_DATA));
RCOMReadSlv_DONE := RCOMReadSlv.DONE;
RCOMReadSlv_ERR := RCOMReadSlv.ERR;
RCOMReadSlv_ERNO := RCOMReadSlv.ERNO;
RCOMReadSlv_NEW := RCOMReadSlv.NEW;

ERR

ERNO

NEW

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1926

RCOM_REC

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block is used to receive the data records transmitted using the RCOM_TRANSMIT
function block.
Output NEW is TRUE for one PLC cycle, if new data are available for the called data record.
After this, the new data are stored to the specified flag area.
The data record number (ID) must match the number in the RCOM_TRANSMIT function block.
If EN = FALSE or if the slave has not been normalized before, the function block rejects writing
requests (answer ‘application part not ready’).
The sender of the writing job is specified at input NODE. Data records for a slave are always
sent by the master, therefore input NODE hast to be zero. Data records for the master (events)
can be sent by different slaves, therefore input NODE has to be specified here. This enables the
CM574-RCOM in the master to distribute data records correctly.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1927

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Data type Default value Range Unit
WORD - - -

Input ID specifies the number of the data record to be read.

Data type Default value Range Unit
DWORD - - -

Input DATA specifies the first flag of the flag area where the data should be stored.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

SLOT

NODE

ID

DATA

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1928

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BOOL - - -

Output NEW is set to TRUE, if the master has read the requested data record. This way, the
PLC is able to detect the reception of data by the master. Output NEW is reset during the next
PLC cycle.

Function call in ST
RCOMRec(
 EN := RCOMRec_EN,
 SLOT := RCOMRec_SLOT,
 NODE := RCOMRec_NODE,
 ID := RCOMRec_ID,
 DATA := ADR(RCOMRec_DATA));
RCOMRec_DONE := RCOMRec.DONE;
RCOMRec_ERR := RCOMRec.ERR;
RCOMRec_ERNO := RCOMRec.ERNO;
RCOMRec_NEW := RCOMRec.NEW;

RCOM_TRANSMIT

ERR

ERNO

NEW

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1929

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block transmits a data record to an RCOM communication partner.
If used in an RCOM master, a send job including the user data is sent to the called slave. As a
result, the slave sends an acknowledgement.
If the function block is used in a slave, the data record is transferred to the event queue and
transmitted to the master with the next event poll.
At the receiver, the transmitted data appear at an accordingly programmed RCOM_REC func-
tion block.
Once a job has been started (FALSE/TRUE edge at input EN), the data at the inputs NODE, ID,
LEN and DATA must not be changed until the job is completed (DONE = TRUE).
Data transmission using the RCOM_TRANSMIT function block is only possible, if the CM574-
RCOM has been initialized (RCOM function block) and if normalization has been performed
previously.
With each FALSE/TRUE edge at input EN, transmission is performed once. With this edge, the
outputs DONE, ERR and ERNO are also set to zero.
Further FALSE/TRUE edges at input EN are ignored until transmission is completed (i.e. until
DONE = TRUE). When transmission is completed, the outputs DONE, ERR and ERNO are set.
DONE, ERR and ERNO are reset with a falling edge at input EN.
Input NODE specifies the RCOM subscriber that should receive the data. ID specifies the data
record number within this subscriber, LEN has to be even-numbered and specifies the number
of transmitted words. If the function block is used in a slave (event transmission), NODE has to
be set to zero. LEN can be max. 14, because the timing mark is stored in addition to the user
data.
Transmission was successful, if DONE = TRUE and ERR = FALSE. If DONE = TRUE and ERR
= TRUE, an error occurred and the error type is indicated at output ERNO.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.

EN

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1930

In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

Data type Default value Range Unit
WORD - - -

Input ID specifies the number of the data record to be read.

Data type Default value Range Unit
DWORD - - -

Input DATA specifies the first flag of the flag area where the data should be stored.

Data type Default value Range Unit
WORD - - -

Input LEN specifies the number of words to be read (has to be even-numbered).

Output description

SLOT

NODE

ID

DATA

LEN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1931

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RCOMTransmit(
EN := RCOMTransmit_EN,
SLOT := RCOMTransmit_SLOT,
NODE := RCOMTransmit_NODE,
ID := RCOMTransmit_ID,
DATA := ADR(RCOMTransmit_DATA),
LEN := RCOMTransmit_LEN);
RCOMTransmit_DONE := RCOMTransmit.DONE;
RCOMTransmit_ERR := RCOMTransmit.ERR;
RCOMTransmit_ERNO := RCOMTransmit.ERNO;

RCOM_WARMST

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1932

Parameter Value
Included in library RCOM_AC500_V13.lib

Available as of firmware V1.3.1

Type Function block with historical values

Group RCOM/RCOM+ communication

This function block performs a warm start of the called slave. This deletes the event queue and
disables the transmission of data records.
The function block can be used to resume communication, e.g. after a transmission error.
After a warm start, always a normalization has to be performed.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type Default value Range Unit
WORD - - -

Input NODE specifies the number of the slave. The value 255 sets all slaves to the same time
(all slaves are called).

EN

SLOT

NODE

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1933

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RCOMWarmst(
 EN := RCOMWarmst_EN,
 SLOT := RCOMWarmst_SLOT,
 NODE := RCOMWarmst_NODE);
RCOMWarmst_DONE := RCOMWarmst.DONE;
RCOMWarmst_ERR := RCOMWarmst.ERR;
RCOMWarmst_ERNO := RCOMWarmst.ERNO;

1.5.4.31 RTC library
Library file name: RTC_AC500_Vx.lib

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1934

1.5.4.31.1 Function blocks
MEINBERG_SYNC

Parameter Value
Included in library RTC_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Radio clock

The function block MEINBERG_SYNC reads a telegram out off the Meinberg Radio Clock. The
connection of Meinberg Radio Clock to an AC500 PLC is done via RS-232 interface (COM
1 or COM 2) and ASCII Protocol. The AC500 time management receives this telegram and
disassembles the telegram.
The function block MEINBERG_SYNC will adjust the current time to the time received from the
Meinberg Radio Clock.
MEINBERG_SYNC is called cyclic in users application.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
INT - - -

EN

UTC_OFFSET

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1935

If time format of Radio Clock is UTC, with UTC_OFFSET you can calculate the time in MEZ /
MESZ.
The offset UTC_OFFSET is in minutes.

Data type Default value Range Unit
INT - - -

Specifies the COM-Port the real time Radio Clock is connected to:
COM:= 1 à COM-Port 1
COM:= 2 à COM-Port 2

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

COM

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1936

Function call in ST
MEINBERG_SYNC(
EN:= Meinberg_Sync_EN,
 UTC_OFFSET:= Meinberg_Sync_UTC,
 COM:= Meinberg_Sync_COM);

Meinberg_Sync_DONE:= Meinberg_Sync.DONE;
Meinberg_Sync_ERR:= Meinberg_Sync.ERR;
Meinberg_Sync_ERNO:= Meinberg_Sync.ERNO;

RTC_ADJUST

Parameter Value
Included in library RTC_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Real-time clock

The function block RTC_ADJUST is used to adjust the current time with the supplied time. It
also evaluates the correction values for the time tick adjustment.
Adjustment will be done smoothly during the interval set by RTC_SET_ADJUST_INTERVAL.
Should be called on each readout of the external time source.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1937

In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
WORD - - -

Contains the actual milliseconds within this second.

Data type Default value Range Unit
DWORD - - -

Contains the actual time in seconds since 01.01.1970.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

MSEC

TIMES

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1938

Function call in ST
RTC_ADJUST(EN:= RTC_Adjust_EN,
 MSEC:= RTC_Adjust_MSEC,
 TIMES:= RTC_Adjust_TIMES);

RTC_Adjust_DONE:= RTC_Adjust.DONE;
RTC_Adjust_ERR:= RTC_Adjust.ERR;
RTC_Adjust_ERNO:= RTC_Adjust.ERNO;

RTC_GET_TIME

Parameter Value
Included in library RTC_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Real-time clock

With this function block the user is able to read the actual time out of AC500. The format of
time is in seconds since 01.01.1970 and a word containing the milliseconds within the current
second.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1939

In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
DWORD - - -

Contains the actual time in seconds since 01.01.1970.

Data type Default value Range Unit
WORD - - -

Contains the actual milliseconds within this second.

DONE

ERR

ERNO

TIMES

MSEC

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1940

Function call in ST
RTC_GET_TIME(
EN:= RTC_Get_Time_EN);

RTC_Get_Time_DONE:= RTC_Get_Time.DONE;
RTC_Get_Time_ERR:= RTC_Get_Time.ERR;
RTC_Get_Time_ERNO:= RTC_Get_Time.ERNO;
RTC_Get_Time_TIMES:= RTC_Get_Time.TIMES;
RTC_Get_Time_MSEC:= RTC_Get_Time.MSEC;

RTC_SET_ADJUST_INTERVAL

Parameter Value
Included in library RTC_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Real-time clock

The function block RTC_SET_ADJUST_INTERVAL is used to set the adjustment interval and
calculate the maximum correction possible in that interval.
Smallest value is 2 sec. For the Meinberg real-time clock as time source a value of 60 sec is
chosen.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1941

Data type Default value Range Unit
WORD - - -

Adjustment interval time in seconds.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RTC_SET_ADJUST_INTERVAL(
 EN:= RTC_Set_Adjust_Interval_EN,
 INTERVALL:= RTC_Set_Adjust_Interval_INTERVALL);

RTC_Set_Adjust_Interval_DONE:= RTC_Set_Adjust_Interval.DONE;
RTC_Set_Adjust_Interval_ERR:= RTC_Set_Adjust_Interval.ERR;
RTC_Set_Adjust_Interval_ERNO:= RTC_Set_Adjust_Interval.ERNO;

INTERVALL

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1942

RTC_SET_TIME

Parameter Value
Included in library RTC_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Group/Subgroup

The function block RTC_SET_TIME is used to set the current time in AC500. The time must be
supplied in seconds since 01.01.1970 and milliseconds of current second.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
WORD - - -

Contains the actual milliseconds within this second.

Data type Default value Range Unit
DWORD - - -

EN

MSEC

TIMES

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1943

Contains the actual time in seconds since 01.01.1970.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RTC_SET_TIME(
EN:= RTC_Set_Time_EN,
MSEC:= RTC_Set_Time_MSEC,
TIMES:= RTC_Set_Time_Times);

RTC_Set_Time_DONE:= RTC_Set_Time.DONE;
RTC_Set_Time_ERR:= RTC_Set_Time.ERR;
RTC_Set_Time_ERNO:= RTC_Set_Time.ERNO;

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1944

RTC_SYNC_DISPLAY

Parameter Value
Included in library RTC_AC500_V20.lib

Available as of firmware V2.0

Type Function block with historical values

Group Real-time clock

This Funktion Block is used to inform the time management of AC500, if the source of its current
time shall be the RTC of the display unit or if an external time source is used.
When using an external time source, this function block is called in the user program if the time
of the external source is valid.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE - - -

0: External time source (e.g. Meinberg real-time clock) will be master.
1: RTC on the display will be master.

EN

SYNC

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1945

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function call in ST
RTC_SYNC_DISPLAY(
 EN:= RTC_Sync_Display_EN,
 SYNC:= RTC_Sync_Display_SYNC);

RTC_Sync_Display_DONE:= RTC_Sync_Display.DONE;
RTC_Sync_Display_ERR:= RTC_Sync_Display.ERR;
RTC_Sync_Display_ERNO:= RTC_Sync_Display.ERNO;

1.5.4.32 Series90 AC500 library
Library file name: Serie90_AC500_Vx.lib

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1946

1.5.4.32.1 Function blocks
ADDD

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function block without historical values

Group -

The value of the operand at input E1 is added to the value of the operand at input E2 and the
result is assigned to the operand at output A.
The result is limited to the maximum or minimum value of the number range (-2147483647 …
2147483647). If limiting occurred, a TRUE signal is assigned to the binary operand at output Q.
If no limiting occurred, a FALSE signal is assigned to the binary operand at output Q. The inputs
and outputs can neither be duplicated nor negated.

Input and output description

Parameter Type Data type Description
E1 Input DINT Summand 1

E2 Input DINT Summand 2

A Output DINT Total

Q Output BOOL Total, limited

Function call in ST
ADDD1(E1 := ADDD_E1, E2 := ADDD_E2);
ADDD_Q:=ADDD1.Q;
ADDD_A:=ADDD1.A;

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1947

DIVD

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function block without historical values

Group -

The value of the operand at input E1 is divided by the value of the operand at input E2 and
the result is assigned to the operand at output A. The remainder is assigned to the operand at
output REST. If a remainder is produced, the result will always be rounded down. If the result
lies outside of the permissible number range, it will be limited to the maximum or minimum value
of the number range: -2147483647 (8000 0001H) … 2147483647 (7FFF FFFFH). If a limiting
has been performed, a TRUE signal is assigned to the binary operand at output Q and the value
0 is assigned to output REST. If no limiting occurred, a FALSE signal is assigned to the binary
operand at output Q.
Division by »zero« is therefore also signalized at the binary output Q.
The inputs and outputs can neither be duplicated nor negated.

Input and output Description

Instance DIVD Instance name
E1 Input DINT Dividend

E2 Input DINT Divisor

A Output DINT Result (quotient)

REST Output DINT Remainder

Q Output BOOL Result limited

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1948

Remainder handling
If the division results in a remainder, this is available at the double word output REST. The result
of the division is always rounded down if a remainder occurs.
Example:
3 : 3 = 1 Remainder 0
4 : 3 = 1 Remainder 1
5 : 3 = 1 Remainder 2
6 : 3 = 2 Remainder 0
As the remainder is available at the output REST, the user can compare this to the divisor and
can round the result at output A according to his own requirements.
Example:
Remainder > divisor/2 → round up the result at output A.

Division by »zero«
If the divisor has the value »zero«, the positive or negative limit of the number range is assigned
to output A.
For the division by »zero« the following applies:
A = -2147483647 (8000 0001H) if dividend is negative
A = +2147483647 (7FFF FFFFH) if dividend is positive
REST = 0 Output for the remainder
Q = TRUE Output to signalize that the value at output A has been limited

Invalid result value
If the invalid value 8000 0000H is the result of the division, this will be corrected to the permis-
sible limit 8000 0001H (-2 147 483 647), the binary output Q will be set to the value TRUE and
the output REST will be set to the value 0.

Function call in ST
DIVD1(E1 := DIVD_E1,E2 := DIVD_E2);
DIVD_REST:=DIVD1.REST;
DIVD_Q:=DIVD1.Q;
DIVD_A:=DIVD1.A;

DWW

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1949

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function block without historical values

Group -

The value of the double word operand at input E1 is converted to a word variable and the result
is assigned to the word operand at output A1.
The result is limited to the maximum or minimum number range.
● max. number range: +32767 (7FFFH)
● min. number range: -32767 (8001H)
If limiting occurred, a TRUE signal is assigned to the binary operand at output A2. If no limiting
occurred, a FALSE signal is assigned to the binary operand at output A2.
The input and the outputs can neither be duplicated nor negated.

Input and output description

Instance DWW Instance name
E1 Input DINT Double word variable

to be converted

A1 Output INT Result of conversion,
word variable

A2 Output BOOL Result limited

Function call in ST
DWW1(E := DWW_E);
DWW_A2:=DWW1.A2;
DWW_A1:=DWW1.A1;

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1950

HLG

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function block with historical values

Group -

The ramp function generator is used for the rampshaped adaption of the current actual value at
the output to a specified set point.
The value at the HLG output is adapted linearly from the current actual value to the specified set
point with the slope y’.
In doing so, the value at the output precisely runs through the amount of the set point during the
time TH or TR. If the value at the HLG output has reached the set point, it no longer changes
unless a new set point is specified.
The inputs and the output can neither be duplicated nor negated/inverted.
The slope y’ of the ramp results from the specified time TH (start up time) or TR (return time)
and the amount of the set point:

Slope y' = Set point amount

TH or TR

The slope is
● positive, if set point > actual value
● negative, if set point < actual value
● 0, if set point = 0
Therefore, the specified set point has two functions
● its amount defines the slope of the ramp in conjunction with the specified time TH or TR;
● it represents the value to which the current actual value must be adapted in a ramp shape.
The user can specify the start up time TH and the return time TR separately. The direction of the
slope is defined on the basis of the set point. The direction of the slope then defines whether or
not the running time TH or TR is used.
Slope y’ positive → TH, i.e. the ramp runs upwards.
Slope y’ negative → TR, i.e. the ramp runs downwards.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1951

The start up time TH and the return time TR must be scaled to the program cycle time TZ, i.e.
the following must be specified at the corresponding function block inputs:
● Start up time: TH/TZ
● Return time: TR/TZ
The times are specified in milliseconds. The following applies to the time constants TH or TR:
0 ≤ TH ≤ 32767
0 ≤ TR ≤ 32767
Two set points can be planned (S0 and S1), whereby one of these set points is selected by the
binary input E01 (set point selection).
The set points can assume the following values:
-32767 ≤ set point ≤ +32767
At any time, the output of the ramp function generator can be
● stopped at the current value
● set to an initial value
● reset (output = 0)
The STOP input has the highest priority and the R input has the lowest.
The values at the HLG inputs can be changed at any time in the user program. In this way, any
(non-linear) adaption to the set point can be realized on the basis of the linear adaption of the
actual value.

Set point = 0 means that the slope of the ramp is also 0, i. e. the current actual
value does not change. If it is intended to switch from an actual value unequal
to 0 to an actual value of 0, a set point unequal to 0 must be specified and
the output of the ramp function generator must be limited to 0 by a subsequent
limiter. (On interpolation, the rounding transitions are based on calculation of
integral numbers only).

Input description

Data type Default value Range Unit
BOOL - - -

One of the two set points is selected with input E01.
E01 = FALSE → set point S0

E01

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1952

E01 = TRUE → set point S1

Data type Default value Range Unit
INT - - -

The set point 0 is specified at input S0.

Data type Default value Range Unit
INT - - -

The set point 1 is specified at input S1.

Data type Default value Range Unit
INT - - -

The start up time is specified at input TH_T. At the same time, the start up time TH must be
scaled to the cycle time T.

Data type Default value Range Unit
INT - - -

Data type Default value Range Unit
BOOL - - -

The output can be latched to the current value by means of the STOP input.
STOP = FALSE → Output not latched
STOP = TRUE → Output is latched
The STOP input has higher priority than the inputs S and R.

Data type Default value Range Unit
BOOL - - -

Data type Default value Range Unit
INT - - -

The initial value to which the output is to be set if required is specified at input INIT.

Data type Default value Range Unit
BOOL - - -

The output can be set to the value 0 with the input R.
R = FALSE → Output is not reset
R = TRUE → Output is reset to value 0.

S0

S1

TH_T

TR_T

STOP

S

INIT

R

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1953

Output description

Data type Default value Range Unit
BOOL - - -

Output of the function block.

The actual value is to be changed from 0 to the set point +500 (set point amount 500) and then
from +500 to the set point -1000 (set point amount 1000).
The start up time is TH and the return time TR.
0 S: 500 1 S: -1000

TR(*) is the actual time until the actual value has reached -1000. During the time TH or TR, the
actual value changes by the amount of the applied set point.

The actual value is to be changed from 0 to the set point +500 (set point amount 500) and then
from +500 to the set point 1500 (set point amount 1500).
The start up time is TH and the return time TR.

A

Example 1

Example 2

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1954

0 S: 500
1 S: 1500

TR(*) is the actual time until the actual value has reached 1500. During the time TH or TR, the
actual value changes by the amount of the applied set point.

Function call in ST
HLG1(E01 := HLG_E01,
S1 := HLG_S1,S0 := HLG_S0,
TH_T := HLG_THT,
TR_T := HLG_TRT,
STOP := HLG_STOP,
SET := HLG_SET,
INIT := HLG_INIT,
RESET := HLG_RES);
HLG_A := HLG1.A;

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1955

INTK

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

Group -

The function block generates the integral of the controlled variable X multiplied by the coefficient
of proportionality KP. The integrator output Y can be manipulated as follows:
● It can be set to the value 0 by a 1 signal at input RES (reset).
● It can be latched to a current value by a TRUE signal at input STOP.
● It can be set to the initial value at input INIT by a TRUE signal at input SET.
● It can be limited to a maximum value specified at input OG (high limit).
● It can be limited to a minimum value specified at input UG (low limit).
The inputs and outputs can neither be duplicated nor negated/inverted.

Transfer function

F(s) =
KP

s * T

X

t

1

Transient function:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1956

y

OG

t

INIT
TI

UG

K

Input description

Data type Default value Range Unit
INT - - -

The operand for the controlled variable is specified at input X.

Data type Default value Range Unit
INT - - -

The integration time is specified at input T1_TZ. In this case, it must be scaled to the cycle time.
During the time T1, the output Y of the integrator changes by the value KP * X.
Range of values: 0 ≤ T1_TZ ≤ 328
● If values are specified which are beyond the admissible range of values, the PLC generally

uses the value 328.
● A large integration time (T1) can be achieved by choosing a large cycle time, too. If the

function block is used within a run number block, the cycle time of the run number block is
valid for INTK and not the cycle time of the PLC program.

X

T1_TZ

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1957

Data type Default value Range Unit
BOOL - - -

The output Y can be reset to the value 0 with the input RES. Integration then begins as from the
value 0.

Data type Default value Range Unit
BOOL - - -

The output can be latched to the current value by means of the STOP input.
STOP = FALSE → Output not latched
STOP = TRUE → Output is latched
The STOP input has higher priority than the inputs S and R.

Data type Default value Range Unit
BOOL - - -

With the input SET, the manipulated value Y can be set to the initial value at input INIT.
Integration then begins as from the initial value.
SET = FALSE
→ No setting
SET = TRUE
→ Output Y is set to the specified initial value.
*) Priority sequence for the inputs STOP, SET and RES:
 RES highest priority
 STOP
 SET lowest priority

Data type Default value Range Unit
INT - - -

The initial value to which the output is to be set if required is specified at input INIT.

Data type Default value Range Unit
INT - - -

The coefficient of proportionality is specified at input KP. It serves to weight the controlled
variable at input X. Weighting is achieved by multiplying the controlled variable by the coefficient
of proportionality. The coefficient of proportionality is specified as a percentage.
Example:

RES

STOP

SET

INIT

KP

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1958

KP is equal to Description
1 1 percent The function block multiplies

the value at input X by the
factor 0.01

55 55 percent The function block multiplies
the value at input X by the
factor 0.55

100 100 percent The function block multiplies
the value at input X by the
factor 1

1000 1000 percent The function block multiplies
the value at input X by the
factor 10

-100 -100 percent The function block multiplies
the value at input X by the
factor -1

Data type Default value Range Unit
INT

The manipulated variable Y can be limited to a range of values. The high limit for the manipu-
lated variable Y is specified at input OG.

Data type Default value Range Unit
INT - - -

The manipulated variable Y can be limited to a range of values. The low limit for the manipu-
lated variable Y is specified at input UG.

Output description

Data type Default value Range Unit
BOOL - - -

Whether the value at output Y has reached the specified high limit is signalized at output
OG_MELD. Integration is stopped automatically when the limit is reached.

OG

UG

OG_MELD

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1959

OG_MELD = FALSE
→ Output Y has not reached the limit (yet).
OG_MELD = TRUE
→ Output Y has reached the limit.

Data type Default value Range Unit
BOOL - - -

Whether the value at output Y has reached the specified low limit is signalized at output
UG_MELD. Integration is stopped automatically when the limit is reached.
UG_MELD = FALSE
→ Output Y has not reached the limit (yet).
UG_MELD = TRUE
→ Output Y has reached the limit.

Data type Default value Range Unit
INT - - -

The manipulated variable (output value of the integrator) is provided at the output Y.

Function call in ST
INTK1(X := INTK_X, T1_TZ := INTK_T1TZ,
 RES := INTK_RES, STOP := INTK_STOP,
SET := INTK_SET, INIT := INTK_INIT,
KP := INTK_KP, OG := INTK_OG, UG := INTK_UG);
INTK_MOG := INTK1.OG_MELD;
INTK_MUG := INTK1.UG_MELD;
INTK_Y := INTK1.Y;

LZB

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V1.0

Type Function block with historical values

Group -

UG_MELD

Y

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1960

The function block controls processing of a program part. This program part is called run
number function block and begins with the function block LZB and ends with the appropriate
target label specified at the function block output MRK. This program part is processed as
follows depending on the value of the operand at input E1:

E1 = 0: Program part is not processed.

E1 = 1: Program part is processed during every cycle.

E1 = 2: Program part is processed during every
second cycle.

: :

E1 = n: Program part is processed during every nth
cycle.

Input description

Data type Default value Range Unit
INT - - -

This program part is processed as follows depending on the value of the operand at input E1:

E1 = 0: Program part is not processed.

E1 = 1: Program part is processed during every cycle.

E1 = 2: Program part is processed during every
second cycle.

: :

E1 = n: Program part is processed during every nth
cycle.

Output description

E1

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1961

Data type Default value Range Unit
BOOL - - -

At this output, a jump instruction with a corresponding jump destination must be specified.
Output MRK only signalizes, whether the subsequent program part is processed or not.
The following applies:
MRK = FALSE
→ Processing of program part
MRK = TRUE
→ No processing of program part

Function call in ST
LZB(E1 := LZB_E1);
IF (LZB1.MRK)
 THEN;
END_IF

MAZ

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function block without historical values

Group -

This function block determines the maximum value of a signal up to the current point of time by
evaluating the time behavior of the signal.
The value of the operand at input E1 is compared to the previously occurred maximum value. If
the input value E1 is higher than the previously occurred maximum, the input value is the new
maximum value and is assigned to the operand at output MAZ.
If the input value E1 is less than the previously occurred maximum value, the previous max-
imum value is assigned to the output.
Output MAZ is set to the value of the operand at input INIT (initial value) with the FALSE →
TRUE edge at binary input SET.
The following applies:
E1 < MAZ → MAZ = MAZ
E1 > MAZ → MAZ = E1

MRK

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1962

SET = FALSE→TRUE edge → MAZ = INIT
The inputs and the output can not be negated/inverted.

Input and output description

Instance MAZ Instance name

E1 Input INT Input value whose
time maximum has to
be determined

SET Input BOOL Set input

INIT Input INT Initial value

MAZ Output INT Result of conversion,
word variable

Function call in ST
IF E1 > MAZ THEN
 MAZ
 := E1; (* new max value *)
END_IF;

 IF SET
 AND NOT SET_old THEN
(* rising
 edge of input SET *)
MAZ
 := INIT; (* set INIT value *)
END_IF;
SET_old
 := SET; (* for edge detection *)
MAZ1(E1 := MAZ_E1, SET := MAZ_SET,INIT := MAZ_INIT);
MAZ_MAZ:=MAZ1.MAZ;

MULD

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1963

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function block without historical values

Group Group/Subgroup

The value of the operand at input E1 is multiplied by the value of the operand at input E2 and
the result is assigned to the operand at output A.
The result is limited to the maximum or minimum value of the number range (Number range:
-2147483647 … 2147483647). If limiting occurred, a TRUE signal is assigned to the binary
operand at output Q. If no limiting occurred, a FALSE signal is assigned to the binary operand at
output Q.
The inputs and outputs can neither be duplicated nor negated.

Input and output description

Instance MULD Instance name

E1 Input DINT Multiplicand

E2 Input DINT Multiplier

A Output DINT Result (product)

Q Output BOOL Result limited

Function call in ST
MULD1(E1 := MULD_E1, E2 := MULD_E2);
 MULD_Q:=MULD1.Q;
MULD_A:=MULD1.A;

SUBD

The value of the operand at input E2 is subtracted from the value of the operand at input E1 and
the result is assigned to the operand at output A.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1964

The result is limited to the maximum or minimum value of the number range (Number range:
-2147483647 … 2147483647). If limiting occurred, a TRUE signal is assigned to the binary
operand at output Q. If no limiting occurred, a FALSE signal is assigned to the binary operand at
output Q.

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function block without historical values

Group -

The value of the operand at input E2 is subtracted from the value of the operand at input E1 and
the result is assigned to the operand at output A.
The result is limited to the maximum or minimum value of the number range (Number range:
-2147483647 … 2147483647). If limiting occurred, a TRUE signal is assigned to the binary
operand at output Q. If no limiting occurred, a FALSE signal is assigned to the binary operand at
output Q.
The inputs and outputs can neither be duplicated nor negated.

Input and output description

Instance SUBD Instance name

E1 Input DINT Minuend

E2 Input DINT Subtrahend

A Output DINT Result (difference)

Q Output BOOL Result limited

Function call in ST
SUBD1(E1 := SUBD_E1, E2 := SUBD_E2);
 SUBD_Q:=SUBD1.Q;
 SUBD_A:=SUBD1.A;

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1965

VGL3P

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V1.0

Type Function block without historical values

Group -

The value of the operand at input E is compared to the values of the operands at the inputs OG
and UG.
The possible results are signalled at the outputs E_OG, E_UG and Q.
The following applies:
E < UG
→ E_OG = FALSE, E_UG = TRUE, Q = FALSE
UG ≤ E ≤ OG
→ E_OG = FALSE, E_UG = FALSE, Q = TRUE
E > OG
→ E_OG = TRUE, E_UG = FALSE, Q = FALSE
The inputs and outputs can neither be duplicated nor negated/inverted.

E>OG = 0
E<UG = 1
Q = 0

E>OG = 0
E<UG = 0
Q = 1

E>OG = 1
E<UG = 0
Q = 0

UG OG E

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1966

Input and output description

Instance VGL3P Instance name

E Input INT Input value

OG Input INT High limit

UG Input INT Low limit

E_OG Output BOOL Value > high limit

E_UG Output BOOL Value < low limit

Q Output BOOL Low limit ≤ input value
≤ high limit

Function call in ST
VGL3P1(E := V3P_E, OG := V3P_OG,
 UG := V3P_UG);
 V3P_EUG := VGL3P1.E_UG;
V3P_Q := VGL3P1.Q
V3P_EOG := VGL3P1.E_OG;

VGLEH

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function block with historical values

Group -

The values of the operands at the inputs E1 and E2 are compared to each other. Taking the
hysteresis at input HSY into account, the result is signaled at output Q.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1967

The following applies:
E1 ≥ E2
→ Q = 1
E1 < E2 "“ HYS
→ Q = FALSE
E2 - HYS ≤ E1 < E2
→ Q as in the previous cycle
The inputs can neither be duplicated nor inverted. The output can neither be duplicated nor
inverted.

Input and output description

Instance VGLEH Instance name

E1 Input INT Input value 1

E2 Input INT Input value 2

HYS Input INT Hysteresis

Q Output BOOL Result of the compar-
ison

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1968

Number range
Integer word (16 bits)

Low limit 8001H -32767

High limit 7FFFH +32767

Inadmissible value 8000H ---

The following especially applies here to the specification for the left edge of the hysteresis:
E2 - HYS ≥ -32767 (8001H)
In the two’s complement arithmetic, the value 8000H (-32768) lies outside of the number range
and is neither generated nor processed correctly by the PLC. If this forbidden value reaches the
PLC
● by bit manipulations of the user or
● by reading from outside the PLC or
● by an indirect word constant
it is absolutely not allowed to carry out a negation or subtraction on this value.

Function call in ST
VGLEH1(E1 := VEH_E1, E2 := VEH_E2,HYS := VEH_HYS);
VEH_Q:=VGLEH1.Q;

1.5.4.32.2 Functions
ADDW

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function

Group -

The values of the operands at the inputs of the function are added and the result is assigned to
the operand at the output.
The result is limited to the maximum value 32767 and the minimum value "“32767.
The inputs and the output can neither be duplicated nor negated.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1969

Input and output description

E1 Input INT Summand 1

E2 Input INT Summand 2

 Output INT Total

Function call in ST
ADDW_A:=ADDW(ADDW_E1,ADDW_E2);

BEG

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function

Group Group/Subgroup

The value of the operand at input E is limited to the range between the upper and lower limits.
The upper limit is specified by the operand at the OG input and the lower limit is specified by the
one at the UG input.
The following applies:
A = UG for E < UG
A = E for UG ≤ E ≤ OG
A = OG for E > OG
The inputs and the output can neither be duplicated nor negated.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1970

Input and output description

E Input INT Input value

OG Input INT Upper limit

UG Input INT Lower limit

 Output INT Limited value

Function call in ST
BEG_A:=BEG(BEG_E, BEG_OG,BEG_UG);

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1971

BEGD

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function

Group -

The value of the operand at input E is limited to the range between the upper and lower limits.
The upper limit is specified by the operand at the OG input and the lower limit is specified by the
one at the UG input.
The following applies:
A = UG for E < UG
A = E for UG ≤ E ≤ OG
A = OG for E > OG
The inputs and the output can neither be duplicated nor negated.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1972

Input and output description

E Input DINT Input value

OG Input DINT Upper limit

UG Input DINT Lower limit

 Output DINT Limited value

Function call in ST
BEGD_A:=BEGD(BEGD_E, BEGD_OG,BEGD_UG);

MUL2ND

The value of the operand at input E1 is shifted bitwise N times.
If the value at input N is positive, the value is shifted to the left. Each shift by 1 bit position
corresponds to a multiplication of the current value by 2.
If the value at input N is negative, the value is shifted to the right. Each shift by 1 bit position
corresponds to a division of the current value by 2.
The result is assigned to the operand at output A1.

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function

Group -

The value of the operand at input E1 is shifted bitwise N times.
If the value at input N is positive, the value is shifted to the left. Each shift by 1 bit position
corresponds to a multiplication of the current value by 2.

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1973

If the value at input N is negative, the value is shifted to the right. Each shift by 1 bit position
corresponds to a division of the current value by 2.
The result is assigned to the operand at output A1.
The inputs and the output can neither be duplicated nor negated.
Reasonable range for N: -30 ≤ N ≤ +30
If N = 0, the value at input E1 is passed directly to output A1.

Input and output description

E1 Input DINT Input operand

N Input INT Quantity

 Output DINT Result

Sign of the value at input E1
The sign of value E1 is not influenced by the shift operation. I.e. the sign of the output value is
always identical with the sign of the input value.

Shift to the left (Multiplication)
When the value at the input is shifted to the left, the released bit 0 is filled with 0. The sign bit
(bit 31) is not changed because a limiting to the limit of the number range is performed before.
Limiting the value at output A1 when shifting to the left:
● The following applies to positive values at input E1: If bit 30 has a »1« and if shift operations

still have to be carried out on the basis of the value at input N, these are no longer
executed. Instead, the output is set to the limit of the positive number range. I.e. the limit
has been reached in any case at the latest after 30 shifts.
Limit value: Output A1 = +2147483647 (7FFFFFFFH).

● The following applies to negative values at input E1: If bit 30 has a »0« and if shift opera-
tions still have to be carried out on the basis of the value at input N, these are no longer
executed. Instead, the output is set to the limit of the negative number range. I.e. the limit
has been reached in any case at the latest after 30 shifts.
Limit value: Output A1 = -2147483647 (80000001H).

Shift to the right (Division)
When shifting to the right, every bit moves to the right by one position. At the same time, the
sign bit (bit 31) always retains its value. The released bit (bit 30) is filled in each case with the
value of the sign bit.
Limiting the value at the output when shifting to the right:

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1974

● The following applies to positive values at input E1: If now only bit 0 has a »1« and shift
operations still have to be carried out because of the value at input N, the output will be set
to the value 0. I.e. value 0 has been reached in any case at the latest after 30 shifts.
Output A1 = 0.

● The following applies to negative values at input E1: If bit 0 ... bit 31 has a »1« as the result
of the shift, the limit value (-1) has been reached. Further shifts have no effect. I.e. the value
-1 has been reached at the latest after 31 shifts.
Output A1 = -1 (FFFFFFFFH).

The inputs and the output can neither be duplicated nor negated.

Examples
1. Input value E1 = 58350926 (37A5D4EH) Exponent N = 4 4 * Left shift

2. Input value E1 = 326786382 (137A5D4EH)
Exponent N = -4 4 * Right shift

3. Input value E1 = -326786382 (EC85A2B2H)
Exponent N = -4 4 * Right shift

Function call in ST
MUL2ND_A:=MUL2ND(MUL2ND_E1, MUL2ND_N);

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1975

MULDI

The operand value at input E1 is multiplied by the operand value at input E2, the intermediate
result is divided by the operand value at E3 and then the result is assigned to output A.
The result is limited to the maximum or minimum value of the number range.

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function

Group -

The operand value at input E1 is multiplied by the operand value at input E2, the intermediate
result is divided by the operand value at E3 and then the result is assigned to output A.
Internal, the function block performs the multiplication and division with the accuracy of a double
word (32 bit). Only when assigning the result to output A, the limiting to the accuracy of a word
(16 bit) is carried out. If the remainder of the division is > 0,5, the result is rounded up. If a
numerical overflow occurs during the division (e.g. division by zero), the correct signed limit of
the number range is applied at output A.
The result is limited to the maximum value 32767 and the minimum value -32767.
The inputs and the output can neither be duplicated nor negated.

Input and output description

E1 Input INT Multiplicand

E2 Input INT Multiplier

E3 Input INT Divisor

 Output INT Result

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1976

Function call in ST
MULDI_A := MULDI(MULDI_E1, MULDI_E2,MULDI_E3);

MULW

The values of the operands at the inputs of the function are multiplied and the result is assigned
to the operand at the output.
The result is limited to the maximum or minimum value of the number range.

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function

Group -

The values of the operands at the inputs of the function are multiplied and the result is assigned
to the operand at the output.
The result is limited to the maximum value 32767 and the minimum value -32767.
The inputs and the output can neither be duplicated nor negated.

Input and output description

E1 Input INT Multiplicand

E2 Input INT Multiplier

 Output INT Result (product)

Function call in ST
MULW_A := MULW(MULW_E1, MULW_E2);

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1977

NEGD

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function

Group -

The value of the operand at input IN is negated and the result is assigned to the operand at
output A.
The result is limited to the maximum or minimum value of the number range. (Number range:
-2147483647 … 2147483647).
The input and the output can neither be duplicated nor negated.

Input and output description

IN Input DINT Input value

 Output DINT Negated value

Function call in ST
NEGD_A:=NEGD(NEGD_E1);

NEGW

The value of the operand at input E1 is negated and the result is assigned to the operand at
output A.

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1978

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

Type Function

Group Group/Subgroup

The value of the operand at input E1 is negated and the result is assigned to the operand at
output A.
The result is limited to the maximum or minimum value of the number range. (Number range:
-2147483647 … 2147483647).
The input and the output can neither be duplicated nor negated.

Input and output description

E1 Input INT Input value

 Output INT Negated value

Function call in ST
NEGW_A:=NEGW(NEGW_E1);

SUBW

The value of the operand at input E2 is subtracted from the value of the operand at input E1 and
the result is assigned to the operand at output A.

Parameter Value
Included in library Serie90_AC500_V10.lib

Available as of firmware V2.0

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1979

Parameter Value
Type Function

Group -

The value of the operand at input E2 is subtracted from the value of the operand at input E1 and
the result is assigned to the operand at output A.
The result is limited to the maximum value 32767 and the minimum value -32767.
The inputs and the output can neither be duplicated nor negated.

Input and output description

E1 Input INT Minuend

E2 Input INT Subtrahend; input can
be dublicated

 Output INT Result (difference)

Function call in ST
SUBW_A:=SUBW(SUBW_E1, SUBW_E2);

1.5.4.33 Glossary
Variables of the type BOOL can have the values TRUE and FALSE. For this, 8 bit of memory
space are reserved.

BYTE belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

Table 93: For integer data types the following range limits are valid:
TYPE BYTE
Lower limit 0

Upper limit 255

Memory space 8 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

BOOL

BYTE

PLC Automation with V2 CPUs
Libraries and solutions > Standard function block libraries AC500

2022/01/203ADR010582, 3, en_US1980

DINT belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

Table 94: For integer data types the following range limits are valid:
TYPE DINT
Lower limit -2147483648

Upper limit 2147483647

Memory space 32 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

DWORD belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

Table 95: For integer data types the following range limits are valid:
TYPE DWORD
Lower limit 0

Upper limit 4294967295

Memory space 32 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

Functions are subroutines which have multiple input parameters and return exactly one result
element. The returned result can be of an elementary or a derived data type. Due to this,
a function may also return an array, a structure, an array of structures and so on. For the
same input parameters, functions always return the same result (they do not have an internal
memory).
Therefore, the following rules can be derived:
● Within functions, global variables can neither be read nor written.
● Within functions, absolute operands can neither be read nor written.
● Within functions, function 'Function Blocks' must not be called.

Function blocks are subroutines which can have as many inputs, outputs and internal variables
as required. They are called from a program or from another function block. As they can be
used several times (with different data records), function blocks (code and interface) can be
considered as type. When assigning an individual data record (declaration) to the function
block, a function block instance is generated. In contrast to functions, function blocks can con-
tain statically local data which are saved from one call to the next. Therefore e.g. counters can
be realized which may not forget their counter value. I.e. function blockscan have an internal
memory.
Functions and function blocks differ in two essential points:
● A function block has multiple output parameters, a function only one. The output parameters

of functions and function blocks differ syntactically.
● In contrast to a function, a function block can have an internal memory.

INT belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

DINT

DWORD

Functions

Function blocks

INT

PLC Automation with V2 CPUs

Libraries and solutions > Standard function block libraries AC500

2022/01/20 3ADR010582, 3, en_US 1981

Table 96: For integer data types the following range limits are valid:
TYPE INT
Lower limit -32768

Upper limit 32767

Memory space 16 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

WORD belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

Table 97: For integer data types the following range limits are valid:
TYPE WORD
Lower limit 0

Upper limit 65535

Memory space 16 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

1.5.5 AC500 HA High Availability System
1.5.5.1 AC500 HA-CS31 based on serial communication

For the AC500 HA-CS31 high availability based on ABBs CS-31 Bus with serial communication
(2 parallel lines) see High Availability System Technology Chapter in Automation Builder online
documentation.

1.5.5.1.1 Introduction
Consider the following before using the libraries:
● All pertinent state, regional, and local safety regulations must be observed when installing

and using this product. When functions or devices are used for applications with technical
safety requirements, the relevant instructions must be followed.

● Read the complete safety instructions of the user's manuals for the drives you are using,
before installation and commissioning.

● Read all Ä Chapter 1.6.1.1 “Safety instructions” on page 3697 for the AC500 PLC.
● Read the user information of the devices and functions you are using, see Automation

Builder online help.

The library package has been released for the software and firmware versions listed in the
readme file of Automation Builder only (see “Help è Automation Builder Release Notes”) .
In no event will ABB or its representatives be liable for loss of data, profits, revenue or conse-
quential, incidental or other damage that may result from the use of other versions of product,
software or firmware versions. The error-free operation of the HA library with other devices,
software or firmware versions should be possible but cannot be guaranteed and may need
adaptations e.g. of example programs.

WORD

Safety
instructions

Preconditions:
HA-CS31 library

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1982

CAUTION!
Generally, the user in all applications is fully and alone responsible for checking
all functions carefully, especially for safe and reliable operation.

The function blocks contained in the library can be executed only in RUN mode
of the PLC, but not in simulation mode.

1.5.5.1.2 AC500 High Availability CS31 system technology
Introduction

What is the AC500 High Availability CS31 system?
The AC500 High Availability CS31 system is designed for the demand of automation systems
that require a higher availability, which is realized by redundant devices and communications.
The redundancy concept reduces the risk of losing production due to failure of parts of the
automation system and thereby minimizes scheduled idle times. For instance, control can be
taken over by the secondary station if the primary station fails.
AC500 High Availability CS31 system helps to implement redundancy based on standard
AC500 PLCs:
● CPU
● Field communication
● SCADA communication

Greater availability to the field connection is provided by redundant fieldbus (CS31) connection
to CI590-CS31-HA, a redundant CS31 slave as S500 I/O module. The CI590-CS31-HA includes
two CS31 slave interfaces: One is connected to the CS31 master system on station A, the
other is connected to the CS31 master system on station B. Further information on the device is
provided in the device description for Ä Chapter 1.6.2.8.3.1 “CI590-CS31-HA” on page 4745.
Both automation systems require activated HA-CS31 function blocks to achieve that the control
sequences can be switched over bumplessly, meaning they continue in the event of failures.
The total application program has to be made considering high availability.
The HA-CS31 system has hot-standby redundancy as a quality level:
● Both CPUs are running in parallel
● Both CPUs are continuously synchronized
● The fieldbus is redundant and continuously running (updated by both CPUs)
● The CI590 remote I/O decides itself which CPU and route to trust (voter) which ensures very

fast switch over times while keeping the process running.

When to use AC500 High Availability CS31 system?
Centralized and particularly important system components require greater levels of availability.
To keep the control sequences operational in the event of a failure, the mechanism of HA-CS31
system automatically switches over to the redundant backup system.
HA-CS31 system can be used in any situation in which system components require greater
levels of availability by redundancy and automatic switch over, where a brief freeze of the
system can be tolerated by the process while switching from one station to another. See
Ä Chapter 1.5.5.1.2.4.1 “Use case and reaction time” on page 2004.

HA-CS31
system

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1983

AC500 HA system can be used to manage the following types of failure:
● Failure of CPU components:

– Failure of the power supply unit
– Failure of the terminal base of the CPU
– Failure of the CS31 master
– CPU failure due to hardware or software faults

● Failure of field device connection:
– Breaks/short circuit in the bus cable for the data link or CS31 slave interface faults on

CI590-CS31-HA module
● Failure of HMI connection (if using HMI and switches):

– Switch
– Connection between CPU and switch
– Connection between switch and HMI

Requirements

Hardware
The communication interface module Ä Chapter 1.6.2.8.3.1 “CI590-CS31-HA” on page 4745 is
required.
Two AC500 CPUs are required as central hardware components. Each CPU must be equipped
with an integrated Ethernet port (or Ethernet communication module) and a connection for a
CS31 master system. These two CPUs, called station A and station B, are linked by means
of an Ethernet bus system through which they can exchange information. Connection to the
peripheral devices is performed via two CS31 master systems - one on station A and another on
station B.
AC500 I/O modules on CI590-CS31-HA are connected to both CS31 master systems. The
CS31 slave interface enables switching from the first to the second interface in the event of a
fault, thereby enabling process status data to be passed to the peripherals by the second CS31
master.
Until version V2.3.0 (HA_CS31_AC500_V23.lib) the library supported high availability only for
I/O modules connected on CPU COM1 of the CS31 bus.

The following diagram represents HA-CS31 system recommendation for applications using one
CPU COM CS31 Bus only.

Only one PLC
COM CS31 bus

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1984

Fig. 31: Recommended high availability connection.

Blocks inside the doted box are not mandatory. However, if users require
Ethernet redundancy with a control system/SCADA/ DigiVis 500, the customer
has to use Level 2 Managed Ethernet switch.

As of HA-CS31 library version V2.4.0 (HA_CS31_AC500_V23.lib) and higher, high availability
also supports the I/O modules connected on both CPU COM ports and CM574-RS COM ports.
The HA-CS31 library supports up to three CM574-RS modules and each CM574-RS supports
two CS31 lines. So it supports a maximum of seven CS31 lines including CPU COM1 CS31
line.

PM595 supports maximum 2 CM574-RS modules. So it supports a maximum of
5 CS31 lines including CPU COM1 CS31 line.

PLC COM CS31
bus and CM574-
RS COM CS31
bus

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1985

PM591-2 ETH and PM595 PLCs must use onboard ETH1 for UDP data com-
munication.

The following diagram represents one CPU COM CS31 Bus and only one CM574-RS COM
CS31 bus. Users can add up to three CM574-RS as per the requirements:

Fig. 32: Recommended high availability connection. Option 2.

Blocks inside the doted box are not mandatory. However, if the application
requires Ethernet redundancy with DigiVis 500, the user has to use Level 2
Managed Ethernet switch.

Recommended connections for a HA-CS31 system
CPU redundancy is ensured by using two CPUs in combination with the HA-CS31 library.
Redundancy of the Ethernet connection between CPUs and HMI can be achieved depending on
the type of HMI and use of managed switches:

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1986

SI no. HMI (DigiVis 500/
CP6xx)

CPU Redundancy Ethernet Redun-
dancy

Recommenda-
tion

1 DigiVis 500 with
two Ethernet ports
on PC and Layer
2 managed switch.
Refer to Ä Chapter
1.5.5.1.2.2.1.1.1
“DigiVis 500 with
two Ethernet ports”
on page 1987.

Yes (with the HA-
CS31 library)

Yes (complete
Ethernet network
is redundant with
Layer 2 managed
switches).

Recommended
for users who
require CPU and
Ethernet network
redundancy.

2 HMI CP6xx with
two Ethernet ports
on HMI with same
IP and Layer 2
managed switch.
Refer to Ä Chapter
1.5.5.1.2.2.1.1.2
“HMI CP6xx with
two Ethernet ports”
on page 1988.

Yes (with the HA-
CS31 library)

Yes (complete
Ethernet network is
redundant with Layer
2 managed switches,
HMI IP switching
functionality is
achieved by ‘Node
Override IP’ function-
ality within the script
programming. Refer
to
Example_AC500_HA
_CS31_V242.project,
HA_CS31_Example_
OnlyCPU_HMI)

Recommended
for users who
require CPU and
Ethernet network
redundancy.

3 DigiVis 500 with
standard Ethernet
switch (unmanaged
switch). Refer
to Ä Chapter
1.5.5.1.2.2.1.1.3
“DigiVis 500
with standard
Ethernet switch”
on page 1989.

Yes (with the HA-
CS31 library)

No Recommended
for users who
require CPU
redundancy but
no Ethernet net-
work redun-
dancy.

4 HMI CP6xx with
one Ethernet port
on HMI with
standard Ethernet
switch (unmanaged
switch). Refer
to Ä Chapter
1.5.5.1.2.2.1.1.4
“HMI CP6xx
with one/two
Ethernet ports”
on page 1990.

Yes (with the HA-
CS31 library)

No Recommended
for users who
require CPU
redundancy but
no Ethernet net-
work redun-
dancy.

DigiVis 500 with two Ethernet ports
DigiVis 500 with two Ethernet ports on PC and Layer 2 managed switch.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1987

Fig. 33: Recommended high availability connection. Option 1.

HMI CP6xx with two Ethernet ports
HMI CP6xx with two Ethernet ports on HMI with same IP and Layer 2 managed switch:

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1988

Fig. 34: Recommended high availability connection. Option 2.

Ethernet redundancy must be done by the application and Layer 2 managed switches.
HA example application program (Example_AC500_HA_CS31_V242.project) provides a sample
application program for CP620 HMI. It has the required scripts to read data from the primary
PLC. Also it provides an option for the user to select one of the two PLCs to read data. This is
done using the IP override functionality. With minor modifications the HMI application program
can be made application specific.

Data writing from HMI to PLC is not recommended as it will write data only to
the primary CPU.

DigiVis 500 with standard Ethernet switch
DigiVis 500 with standard Ethernet switch (unmanaged switch):

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1989

Fig. 35: Recommended high availability connection. Option 3.

If HA application requires CPU redundancy but no Ethernet redundancy, users can use a
standard Ethernet switch (unmanged switch) with Digivis 500.

HMI CP6xx with one/two Ethernet ports
HMI CP6xx with One/Two Ethernet ports on HMI with standard Ethernet switch (unmanaged
switch):

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1990

Fig. 36: Recommended high availability connection. Option 4.

If application requires only CPU redundancy and no Ethernet redundancy, the users can use
standard Ethernet switch (unmanaged switch) with CP6xx HMI.
HA example application program (Example_AC500_HA_CS31_V242.project) provides a sample
application program for CP620 HMI. It has the required scripts to read the data from the primary
PLC. Also it provides an option for the user to select one of the two PLCs to read data. This is
done using the IP override functionality. With minor modifications the HMI application program
can be made application specific.

Data writing from HMI to PLC is not recommended as it will write data only to
the primary CPU.

Recommended use of Ethernet connections
The following types of Ethernet communication is required:

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1991

● UDP: Communication between the two CPUs for HA synchronization.
● AB: Communication between CPUs and Engineering PC for program download.
● OPC: Communication between CPUs and HMI (optionally).
● WEB: Web server communication between CPUs and HMI (optionally).
Ethernet ports are available on the CPU (onboard) and on the CM597-ETH communication
module. For an optimal load balance the following connections are recommended:

CPU Type Web
server
requir
ed

Onboard ETH1 Onboard ETH2 CM597-ETH

PM57x, PM58x, PM591,
PM592

No UDP n/a AB, OPC

PM57x, PM58x, PM591,
PM592

Yes AB, OPC, WEB n/a UPD

PM592-2ETH, PM595 No UDP AB, OPC -

PM592-2ETH, PM595 Yes UDP AB, OPC, WEB -

PM591-2 ETH and PM595 PLCs must use onboard ETH1 for UDP data com-
munication.

Software
The HA-CS31 library V2.4.2 (HA_CS31_AC500_V23.lib) has been tested with the following
versions:
● Automation Builder: 1.1
● CODESYS: 2.3.9.46
● CPU and CM574 Firmware: 2.4.2
● CI590 Firmware: 3.0.15

Guidelines for usage

Introduction
The following sections give an overview of the engineering steps (hardware configuration,
programming, task configuration and program download) and the operation.
If only one CS31 line is required, please consider the information provided in the chapters
“Single CS31 Bus on CPU COM Port”. If more than one CS31 line is required (with CM574
extension), please consider the information provided in the chapters “CS31 Bus Extension with
CM574-RS communication module”.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1992

For further information on HA-CS31 library preconditions, please refer
to Ä Chapter 1.5.5.1.3.2 “Prerequisites for the use of HA-CS31 library”
on page 2020.

For further information on HA configuration, please refer to the provided
HA examples - typically located in: C:\Users\Public\Documents\Automation-
Builder\Examples.

Hardware configuration in Automation Builder

Single CS31 bus on CPU COM port
In order to configure a single CS31 Bus on a CPU COM port, build-up the hardware configura-
tion in Automation Builder. The following figure demonstrates necessary configuration:

Fig. 37: Hardware Configuration Tree. Option 1.

1. Shows the configured PLC type.
2. Addition of local I/O Bus modules is possible but the I/O modules will not be redundant.
3. CS31 Bus module below CPU COM1 interface.
4. CI590-CS31-HA module and I/O modules below CS31 Bus.
5. Maximum limit is 31 CI590-CS31-HA modules in one CS31 line.
6. UDP data exchange below the Ethernet interface. This is mandatory for a HA-CS31

system to run since it is responsible for synchronization of CPU A and CPU B.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1993

7. CM597-ETH module below the communication module slot for OPC server and
Automation Builder communication etc. If the PLC has more than one onboard ETH
port (Example: PM595, PM591-2ETH) the user can use ETH2 port instead of CM597-
ETH. Refer to Ä Chapter 1.5.5.1.2.2.1.2 “Recommended use of Ethernet connections”
on page 1991.

PM591-2 ETH and PM595 PLCs must use onboard ETH1 for UDP data
communication.

We recommend you, to use separate Ethernet slots for UDP data
exchange and PC connectivity. Refer to Ä Chapter 1.5.5.1.2.2.1.2 “Rec-
ommended use of Ethernet connections” on page 1991.

For using CI590 2FC (fast counter) users have to add CI590 2FC under
CS31 network. Then, the “Fast Counter” selection must be updated with the
appropriate counter type. With the default setting “No Counter” the system will
become unstable.

CS31 bus extension with CM574-RS module
If more than one CS31 line is needed, CM574 can be used for extension. The following figure
demonstrates an example of CPU and CM574 hardware configuration tree:

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1994

Fig. 38: Hardware Configuration Tree. Option 2.

1. Shows the configured device type: CM574-RS.
2. Configure Interfaces as “shared” com ports. Engineering of underlying CS31 lines and

CI590-CS31-HA is done in the CPU hardware tree.
3. Shows the configured PLC type.
4. Addition of local I/O Bus modules is possible but the I/O modules will not be redundant.
5. CS31 Bus module below CPU COM1 interface.
6. CI590-CS31-HA module and I/O modules below CS31 Bus.
7. UDP data exchange below the Ethernet interface. This is mandatory for a HA-CS31

system to RUN, it does the synchronization between CPU A and CPU B.
8. CM597-ETH module below the communication module slot for program download, OPC

server communication etc. We recommend you, to have separate Ethernet slot for UDP
data exchange and PC connectivity. In another case if a user has a PLC with more than
one onboard ETH port (Example: PM595, PM591-2ETH) the user can use ETH2 port
for downloading e.g. the program, web server, OPC server communication etc. Refer to
Ä Chapter 1.5.5.1.2.2.1.2 “Recommended use of Ethernet connections” on page 1991.

9. CM574-RS for CS31 extension.
10. CS31 Bus module below CM574-RS COM1 interface and CI590-CS31-HA module and

additional I/O modules.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1995

PM591-2 ETH and PM595 PLCs must use onboard ETH1 for UDP data com-
munication.

The following hardware configuration (CS31 lines below CM574-RS) is not supported for a
HA-CS31 system even though it is supported by Automation Builder:

Fig. 39: Not supported/ not recommended hardware configuration.

For more details about the configuration please refer to the
Example_AC500_HA_CS31_V242_3ADR023070M0201.pdf.

Programming

Single CS31 bus on CPU COM port
The CPU program contains different types of HA-CS31 function blocks.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1996

The following figure describes function blocks and functions for a HA-CS31 system to work with
a CPU COM1 CS31 Bus connected with I/O modules. The function blocks indicated with dotted
lines are not mandatory for a HA-CS31 system to run.

Fig. 40: Function blocks in CPU

The following function blocks and functions are required to be called and downloaded to the
PLC:
● HA_CS31_CONTROL
● HA_CS31_DIAG
● HA_CS31_CALLBACK_STOP

CS31 bus extension with CM574-RS module
If configuration requires more than one CS31 network, then the CM574-RS is used to extend
the CS31 lines. In this case, users have to create two separate programs: one for the AC500
CPU and one for the CM574-RS including the respective function blocks called from the library.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1997

Fig. 41: Function blocks in CPU and CM574-RS

The following sections explain mandatory steps required while programming such a set-up.

The right part of the figure above describes function blocks for the CPU. The function blocks
indicated with dotted lines are not mandatory for a HA-CS31 system to run.

The following function blocks and functions are required to be downloaded to the CPU:
● HA_CS31_CONTROL
● HA_CS31_DIAG
● HA_CS31_DIAG_VIA_CM574
● HA_CS31_CALLBACK_STOP

CPU program

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US1998

For HA programming using SFC language (Sequential Function Chart)
is not recommended as too much and too spread data is to be
synchronized. For further information about programming, please refer to
Example_AC500_HA_CS31_V242_3ADR023070M0201.pdf.

● Application will start on CPU A connected to CS31 Bus A if both CPUs start together or on
CPU CS31 B and Bus B if only CPU B is connected.

● If CPU A stops / turns off or crashes -> application will run on CPU B and Bus B.
● If CS31 Bus A is open or in short circuit -> application will run on CPU B and Bus B.

The left part of the figure above describes the function blocks for CM574-RS.
Function block HA_CS31_DIAG_ON_CM574 must be downloaded to CM574 module. This
function block sends CS31 Bus diagnosis information to host CPU.
The CM574-RS program is common and can be used for each CM574-RS module without any
specific changes (please refer to Example_AC500_HA_CS31_V242_3ADR023070M0201.pdf).

Fig. 42: Common program for CM574-RS

Task configuration

Single CS31 bus on CPU COM port
At least, two tasks must be defined:
● HA_Task for the mandatory HA-CS31 function blocks HA_CS31_CONTROL,

HA_CS31_DIAG, HA_CS31_DIAG_VIA_CM574. Recommended HA task cycle time is
equal to CS31 cycle time (as indicated in Automation Builder), but at least 30 ms. Priority
must be higher than priority of the other tasks in the project.

● Main task for the application itself: lower priority than the HA_Task. Cycle time to be decided
based on CPU loading, but not less than HA cycle time.

CM574-RS pro-
gram

Task configura-
tion for the CPU
program

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 1999

HA_Task priority must be higher than the main task priority.

CS31 bus extension with CM574-RS module
At least, two tasks must be defined:
● HA_Task for the mandatory HA-CS31 function blocks HA_CS31_CONTROL,

HA_CS31_DIAG, HA_CS31_DIAG_VIA_CM574. Recommended HA task cycle time is
equal to CS31 cycle time (as indicated in Automation Builder), but at least 30 ms. Priority
must be higher than priority of the other tasks in the project.

● Main task for the application itself: lower priority than the HA_Task. Cycle time to be decided
based on CPU loading, but not less than HA cycle time.

HA_Task priority must be higher than the main task priority.

The program which calls function block HA_C31_DIAG_ON_CM574 must be called and
assigned to a cyclic task.
The cycle time of this task must not be more than the cycle time of the HA_Task above.
For further information, please refer to
Example_AC500_HA_CS31_V242_3ADR023070M0201.pdf.

Program download
To avoid any difference in configuration, we recommend you to create a single Automation
Builder project for high availability. Download this project to both CPUs.

Single CS31 bus on CPU COM port

The CPU program can be downloaded to the PLC using normal TCP/IP gateway. We recom-
mend you, to use a dedicated CM597-ETH slot for downloading the program to both PLCs. If
no CM597-ETH is available, onboard Ethernet slot can be used. In another case if user has a
PLC with more than one onboard ETH port (Example: PM595, PM591-2ETH) the user can use
ETH2 port for downloading e.g. the program, webserver, OPC server communication etc. After
the download, create a boot project.
For further information, please refer to
Example_AC500_HA_CS31_V242_3ADR023070M0201.pdf.

CS31 bus extension with CM574-RS module

Task configura-
tion for the CPU
program

Task configura-
tion for the
CM574 program

Download for
CPU program

Download for
CPU program

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2000

The CPU program can be downloaded to the PLC using normal TCP/IP gateway. We recom-
mend you, to use a dedicated CM597-ETH slot for downloading the program to both PLCs. If
no CM597-ETH is available, onboard Ethernet slot can be used. In another case if user has a
PLC with more than one onboard ETH port (Example: PM595, PM591-2ETH) the user can use
ETH2 port for downloading e.g. the program, webserver, OPC server communication etc. After
the download, create a boot project.
For further information, please refer to
Example_AC500_HA_CS31_V242_3ADR023070M0201.pdf.

Download the configuration and program to CM574 via Ethernet level 2 root driver. The fol-
lowing figure describes the settings of a gateway channel for connection via AC500 CPU. The
Ethernet port uses the IP address 192.168.3.10 with routing to CM574-RS plugged into slot 2
(line 2).

Fig. 43: Communication Parameters

Table 98: The following settings have to be specified:
Address IP address of the AC500 CPU, in the

example: 192.168.3.10

Routing levels 1

Communication module (level 1) Line 2

Motorola byte order Yes

After downloading the program, create a boot project. For further information on providing
access to CM574, please refer to Ä Chapter 1.6.4.2.6.5 “Programming access to the CM574-
RS” on page 5610

Operation
Single CS31 bus on CPU COM port

HA_CS31_CONTROL function block handles HA-CS31 operation such as change over from pri-
mary to secondary CPU in case of fault with related diagnostics and also data transfer between
HA-CS31 CPUs. This is a mandatory function block for High Availability to run. For further infor-
mation on this function block, please refer to Ä Chapter 1.5.5.1.3.3.2 “HA_CS31_CONTROL -
HA control FB” on page 2026.
HA_CS31_DIAG function block will be used to get diagnosis information only from CPU COM1
CS31 line. For further information on this function block, please refer to Ä Chapter 1.5.5.1.3.3.4
“HA_CS31_DIAG - Reading HA diagnosis” on page 2035.

Download for
CM574 program

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2001

HA_CS31_DATA_SYNC function block is used for synchronizing non High Availability func-
tion blocks or any other data. For further information on this function block, please refer to
Ä Chapter 1.5.5.1.3.3.3 “HA_CS31_DATA_SYNC - HA data synchronization FB” on page 2028.
High Availability Utility function blocks outputs are internally synchronized and can be used
directly without using HA_CS31_SYNC function block. For further information on these function
blocks, please refer to Ä Chapter 1.5.5.1.3.4 “Utility function blocks” on page 2047.

High Availability overview visualization can be used for monitoring purpose but it will show data
only for the CPU on which we are logged into.
The following figure describes the visualization screen of a running HA-CS31 system with the
CS31 lines only on the PLC COM port:

Fig. 44: Visualization of AC500 High Availability System. Option 1.

DigiVis and OPC server can be used to write data as it will allow the user to write data to both
PLCs at the same time. Data is read out from the primary PLC only. We recommend you, not to
use HMI for writing data as it is not written to both PLCs.

If during the startup of the HA-CS31 system none CI590-CS31-HA module is
powered on, or if all CI590-CS31-HA modules have a wrong module address,
the system does not become stable.

If any CI590-CS31-HA module address has been changed after startup of the
HA-CS31 system the system will continue to run as it is. In order to activate the
new address the complete system must be restarted.

If any CI590-CS31-HA module is powered off and on, there is no need to power
restart the complete system from library version V2.4.2 onwards. Sync LED of
failed CI590 line will blink and has to be acknowledged by the user.

For further information, please refer to both, the online help for HA-CS31 function blocks
(Ä Chapter 1.5.5.1.3 “AC500 High Availability CS31 library” on page 2017) and the
Example_AC500_HA_CS31_V242_3ADR023070M0201.pdf.

Visualization

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2002

CS31 bus extension with CM574-RS communication module
Apart from all functions explained in chapter Ä Chapter 1.5.5.1.2.3.6.1 “Single CS31 bus on
CPU COM port” on page 2001 there are CM574 related function blocks which are called in the
programs of this configuration.

Function block HA_CS31_DIAG_VIA_CM574 reads the extended diagnostics of CM574-RS
CS31 Bus in high availability operation.

Function block HA_CS31_DIAG_ON_CM574 sends CS31 Bus diagnosis information to host
CPU and receives CS31 configuration information from host CPU.

The following figure describes visualization of a running HA-CS31 system with the CS31 lines
both on the PLC COM port and the CM574 COM ports.

Fig. 45: Visualization of AC500 High Availability System. Option 2.

Example of a utility function block - Switch over
Consider the on-delay timer HA_CS31_TON (refer to Ä Chapter 1.5.5.1.3.4.12
“HA_CS31_TON - HA turn-on delay timer” on page 2071).

Fig. 46: HA_CS31_TON

Both CPUs require the same function block called in the program. Under normal operating
conditions the elapsed time ET and output, Q of the timer is synchronized internally for both
CPUs. ET and Q data are available and can be attached to local or global variables in the
program as per application requirements. If CPU A shuts down due to a fault, the primary status
switches over to CPU B.
In the event of a switch over, the moment the CPU B becomes the primary, the timer on
this PLC will keep running. Since till the time of CPU A failure the timer on the CPU B was
synchronized, the actual process remains unaffected by the switch over.

CPU program

CM574 program

Visualization

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2003

All possible use cases for switch over are described under Ä Chapter 1.5.5.1.2.4.1 “Use case
and reaction time” on page 2004.

Fault on primary and secondary PLC
HA-CS31 system only takes care of the first fault. In case of a second fault the primary CPU
remains primary CPU until the second fault occurs. This results in no further switch overs
(manual switch overs included).
Example: If an error occurs on PLC A (primary) due to CS31 cable disconnection, the HA-CS31
system will switch over to PLC B (primary). If there is any cable disconnection happened in
either PLC A (secondary) or PLC B (primary) the HA-CS31 system will remain in PLC B as
primary.
In case of a second error generated in the HA-CS31 system, function block HA_CS31_CON-
TROL will generate an error with error code 16#2006.
If one fault occurs in both, CPU A and CPU B, error code 16#2006 occurs. This error code
does not consider two faults on the same PLC. In the following the most common scenarios that
trigger error code 16#2006 (named as wHA_ER_LOCAL_AND_REMOTE_FAULT) are listed:
● CS31 cable is removed from PLC A and PLC B (from same corresponding ports).
● CS31 cable is removed from PLC A and PLC B (from different ports).
● Cable of CS31 network is removed from any CI590-CS31-HA related to PLC A and after-

wards it is removed from PLC B (coming from the same corresponding ports).
● Cable of CS31 network is removed from any CI590-CS31-HA related to PLC A and after-

wards it is removed from PLC B (coming from different ports).
● PLC A is stopped and PLC B CS31 line is removed.
● PLC A CS31 line is removed and PLC B is stopped.
● PLC A is powered off and PLC B CS31 line is removed.
● PLC A CS31 line is removed and PLC B is powered off.
● PLC A CS31 line is removed and PLC B CI-590 is powered off.
All outputs on the remote modules keep on working properly as long as at least one CS31 line
is active - regardless of CPU primary or secondary status. This is because of the self-primary
action in CI590-CS31-HA module.

Functionality
Use case and reaction time

The HA-CS31 system performs a switch over when the primary CPU is powered off, crashed
or stopped or if the primary CS31 bus is disconnected. The total switch over time depends on
the use case. The following table gives an overview of the switch over times assuming that HA
cycle = CS31 cycle time (as indicated in Automation Builder) or at least 30 ms according to the
recommendation. After CI590 switchover period the outputs will be written from the new CPU.
CI590 LED will be steadily green after CPU switch over period.

 Capacitor discharge
period

CI590 switch over
period

CPU switch over
period, afterwards
remaining CI590 are
switched over

Primary CPU powered
off

Depending on system
size

£ 4 CS31 cycles Not relevant, all CI590
already switched over

Primary CPU stopped 0 £ 2 CS31 cycles Not relevant, all CI590
already switched over

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2004

 Capacitor discharge
period

CI590 switch over
period

CPU switch over
period, afterwards
remaining CI590 are
switched over

Primary CS31 bus cut
near CPU

0 £ 4 CS31 cycles 35 HA cycles

Primary CS31 bus cut
at local CI590

0 £ 4 CS31 cycles 35 HA cycles

Details are described in the following sections:

Fig. 47: Use case 1

Reaction Switch over to secondary CPU. All CI590 are immediately switched over.

Total switch over
time

CI590 switch over period (£ 4 CS31 cycles).

Comment In case of power off there is a capacitor discharge period before CI590
switch over period. Duration depends on the system size.
Outputs are frozen during CI590 switch over period.
It takes some more HA cycles until the other CPU takes over primary
status. However, this is not relevant for the process, because all CI590
were already switched over individually in the first CI590 switch over
period.

Diagnosis message
on function block

● Primary CPU: Power OFF
● Secondary CPU: HA_CS31_CONTROL: 16#101B (remote CPU

failure: other CPU is OFF or out of order.)

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” OFF, “CB” ON, "RUN A" OFF, "RB" ON, "SYNC-ERR" RED
(Blinking), "S-ERR" RED (Blinking).

Primary CPU off
or primary CPU
crash

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2005

Fig. 48: Use case 2

Reaction Switch over to secondary CPU. All CI590 are immediately switched over.

Total switch over
time

CI590 switch over period (£ 2 CS31 cycles).

Comment Outputs are frozen during CI590 switch over period.
It takes some more High Availability cycles until the other CPU takes
over primary status. However, this is not relevant for the process,
because all CI590 were already switched over individually in the first
CI590 switch over period.

Diagnosis message
on function block

● Primary CPU: STOP
● Secondary CPU: HA_CS31_CONTROL: 16#101B (remote CPU

failure: other CPU is OFF or out of order.)

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON (Blinking), “CB” ON, "RUN A" OFF, "RB" ON, "SYNC-ERR"
RED (Blinking), "S-ERR" OFF.

Fig. 49: Use case 3

Primary CPU
stop

Secondary CPU
off or secondary
CPU crash

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2006

Reaction No switch over

Total switch over
time

N.A.

Comment Process continues

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#101B (remote CPU failure:
other CPU is OFF or out of order.)

● Secondary CPU: Power OFF

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON, “CB” OFF, "RUN A" ON, "RB" OFF, "SYNC-ERR" OFF,
"S-ERR" ON (Blinking).

Fig. 50: Use case 4

Reaction No switch over

Total switch over
time

N.A.

Comment Process continues

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#101B (remote CPU failure:
other CPU is OFF or out of order.)

● Secondary CPU: STOP

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON, “CB” ON (Blinking), "RUN A" ON, "RB" OFF, "SYNC-ERR"
OFF, "S-ERR" OFF.

Secondary CPU
stop

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2007

Fig. 51: Use case 5

Reaction Switch over to secondary CPU. All CI590 from the broken CS31 bus are
immediately switched over. After the CPU switch over period all CI590
from the other CS31 lines are switched over.

Total switch over
time

CI590 switch over period (£ 4 CS31 cycles)

+ CPU switch over period (~ 35 HA cycles)

Comment Outputs are frozen during CI590 switch over period.
It takes ~ 35 HA cycles until the other CPU takes over primary status.
Thus short disturbances of the CS31 bus cannot cause an unintended
switch over.

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#2005 (CS31 Bus failure),
HA_CS31_DIAG / HA_CS31_DIAG_VIA_CM574: 16#1021 (one or
more CI590-CS31-HA slave(s) is inactive)

● Secondary CPU: STOP

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON, “CB” ON (Blinking), "RUN A" ON, "RB" OFF, "SYNC-ERR"
OFF, "S-ERR" OFF.

Fig. 52: Use case 6

Primary CS31
bus off / Discon-
nected / Short
circuit near
CPU / No
module con-
nected

Primary CS31
bus off / Discon-
nected / Short
circuit at local
CI590/ Some
Modules still
connected

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2008

Reaction Switch over to secondary CPU. All disconnected CI590 are immediately
switched over. After the CPU switch over period all remaining CI590
of the same CS31 line and all CI590 from the other CS31 lines are
switched over.

Total switch over
time

CI590 switch over period (£ 4 CS31 cycles)

+ CPU switch over period (~ 35 HA cycles)

Comment Outputs are frozen during CI590 switch over period.
It takes ~ 35 HA cycles until the other CPU takes over primary status.
Thus short disturbances of the CS31 bus cannot cause an unintended
switch over.

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#1021 (own CI590-
CS31-HA slave failure (missing module), HA_CS31_DIAG /
HA_CS31_DIAG_VIA_CM574: 16#1021 (one or more CI590-CS31-
HA slave(s) is inactive)

● Secondary CPU: HA_CS31_CONTROL: 16#201B (remote CS31
Bus failure: other CPUs' CS31 Bus is out of order)

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” OFF, “CB” ON, "RUN A" OFF, "RB" ON, "SYNC-ERR" ON,
"S-ERR" ON (Blinking).

Fig. 53: Use case 7

Reaction No switch over

Total switch over
time

N.A.

Comment Process continues

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#201B (remote CS31 Bus
failure: other CPUs' CS31 Bus is out of order)

● Secondary CPU: HA_CS31_CONTROL: 16#1021 (own CI590-
CS31-HA slave failure (missing module), HA_CS31_DIAG /
HA_CS31_DIAG_VIA_CM574: 16#1021 (one or more CI590-CS31-
HA slave(s) is inactive.)

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON, “CB” OFF, "RUN A" ON, "RB" OFF, "SYNC-ERR" OFF,
"S-ERR" ON (Blinking).

Secondary CPU
CS31 bus dis-
connected /
Short Circuit /
At least one
Module is dis-
connected

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2009

Fig. 54: Use case 8

Reaction No switch over

Total switch over
time

N.A.

Comment Process continues

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#2013 (no Ethernet Link)
● Secondary CPU: HA_CS31_CONTROL: 16#2013 (No Ethernet Link)

Diagnosis message
on CI590-CS31
LEDs

CI590-CS31 LEDs status: “CS31 A” ON, “CB” ON, "RUN A" ON, "RB"
OFF, "SYNC-ERR" OFF, "S-ERR" OFF (considering PM1 is Primary).

Fig. 55: Use case 9

Reaction No switch over

Total switch over
time

N.A.

Comment Process continues on existing module according user's choice

Ethernet cable
disconnected or
no Ethernet
communication

One or more
CI590-CS31-HA
are off or not
connected to
both CPUs

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2010

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#2006 (fault on both local
and remote CPU), HA_CS31_DIAG / HA_CS31_DIAG_VIA_CM574:
16#1021(one or more CI590-CS31-HA slave(s) is inac-
tive),HA_CS31_DIAG_VIA_CM574: 16#1021(one or more CI590 are
inactive)

● Secondary CPU: HA_CS31_CONTROL: 16#2006 (fault on both local
and remote CPU), HA_CS31_DIAG / HA_CS31_DIAG_VIA_CM574:
16#1021(one or more CI590-CS31-HA slave(s) is inactive),
HA_CS31_DIAG_VIA_CM574: 16#1021 (one or more CI590 are
inactive)

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON, “CB” ON, "RUN A" ON, "RB" OFF, "SYNC-ERR" OFF,
"S-ERR" OFF.

Fig. 56: Use case 10

Reaction Switch over to secondary PLC

Total switch over
time

5 ms

Comment Outputs freeze to last state during switch over time. Then process con-
tinues on secondary CPU.

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#2005 (CS31 Bus failure),
HA_CS31_DIAG_VIA_CM574: 16#2013 (error in DPRAM communi-
cation between CM574-RS and AC500 CPU)

● Secondary CPU: HA_CS31_CONTROL: 16#201B (remote CS31
Bus failure: other CPUs' CS31 Bus is out of order)

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON (Blinking), “CB” ON, "RUN A" OFF, "RB" ON, "SYNC-ERR"
ON (Blinking), "S-ERR" OFF.

CM574-RS is not
in RUN mode in
primary

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2011

Fig. 57: Use case 11

Reaction No switch over

Total switch over
time

N.A.

Comment Process continues

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#201B (remote CS31 Bus
failure: other CPUs' CS31 Bus is out of order)

● Secondary CPU: HA_CS31_CONTROL: 16#2005 (CS31 Bus
failure), HA_CS31_DIAG_VIA_CM574: 16#2013 (error in DPRAM
communication between CM574-RS and AC500 CPU)

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON, “CB” ON (Blinking), "RUN A" ON, "RB" OFF, "SYNC-ERR"
OFF, "S-ERR" OFF.

Fig. 58: Use case 12

Reaction No switch over as fault is in both system

Total switch over
time

N.A.

Comment -

CM574-RS not
in RUN mode in
secondary

CM574-RS not
in RUN mode in
both systems

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2012

Diagnosis message
on function block

● Primary CPU: HA_CS31_CONTROL: 16#2006 (fault on both local
and remote CPU), HA_CS31_DIAG_VIA_CM574: 16#2013 (error in
DPRAM communication between CM574-RS and AC500 CPU)

● Secondary CPU: HA_CS31_CONTROL: 16#2006 (fault on both local
and remote CPU), HA_CS31_DIAG_VIA_CM574: 16#2013 (error in
DPRAM communication between CM574-RS and AC500 CPU)

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON (Blinking), “CB” ON (Blinking), "RUN A" ON (Blinking),
"RB" OFF, "SYNC-ERR" OFF, "S-ERR" ON (Blinking).

Reaction Switch over to secondary CPU at user's request

Total switch over
time

N.A.

Comment Process continues, primary and secondary CPUs are swapped

Diagnosis message
on function block

● Primary CPU: No Error
● Secondary CPU: No Error

Diagnosis message
on CI590-CS31
LEDs

“CS31 A” ON, “CB” ON, "RUN A" OFF, "RB" ON, "SYNC-ERR" ON,
"S-ERR" OFF (Considering Manual switch over request to PM1).

Procedure for modifying hardware and application program
In order to modify hardware configuration or application program while HA-CS31 system is
running, proceed as follows:
1. Execute all necessary changes.
2. Compile the project.
3. Make sure that there is no error in the program.
4. We recommend you, to carry out a 'Clean All' and 'Rebuild All'.
5. Select the communication channel of the primary CPU.
6. Download the modified program.

ð Now the CPU goes to STOP mode and there will be a changeover to secondary CPU.

7. After a successful download, set the primary CPU to RUN mode and create a boot project.

ð Now, the primary CPU is updated with the new program.

8. Select the communication channel of the second CPU which is now the primary. Down-
load the modified program.

ð The CPU switches to STOP mode which results in a change over to the original CPU.
The original CPU will start working as Primary.

9. After a successful download, set the CPU to RUN mode and create a boot project.

ð The complete system works in the same status as before modification.

After adding or deleting the HA_CS31_DATA_SYNC function block or any HA-
CS31 utility function block, restart the complete system.

Manual switch
over by users

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2013

It is absolutely necessary that both CPUs have identically user programs.

The replacement of CI590 is possible with a normal HA-CS31 system, which
otherwise has no error: PLC A has to be the primary.

For replacement of CI590 when PLC B is the primary, the following pins of
TU522-CS31 must be bridged before:

– 2.2 to 2.5
– 2.3 to 2.6
– 2.4 to 2.7

System structure
A HA-CS31 system is characterized by two AC500 CPUs with the following features:
● Synchronized by means of UDP Ethernet Bus system.
● Identical application program that is loaded in both CPUs.
● Two CS31 master systems with redundant CI590-CS31-HA slave(s) and additionally con-

nected I/O devices.

Single CS31 bus on CPU COM port
The following picture describes basic operation of HA-CS31 system - a typical scan cycle of an
AC500 CPU with redundant CS31 slave (CI590-CS31-HA).

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2014

Fig. 59: System Structure AC500 CPU

Status of the inputs connected to CI590-CS31-HA is transferred to both CPUs simultaneously
in every CS31 cycle. The CPUs process HA-CS31 function blocks along with the application
program. At the end of the program, the generated outputs are transferred to respective buffers
in the CI590-CS31-HA via CS31 Bus. Depending on the control byte and on diagnosis events,
the CI590-CS31-HA selects one of the output buffers. Then, the buffer content is transferred to
physical outputs through the I/O Bus.
Data transfer between the CPUs is watched by HA_CS31_CONTROL function block.
HA_CS31_DATA_SYNC function block collects data from the primary CPU and creates a data
table which is transferred to the secondary CPU via Ethernet link. Depending on data size, data
transfer may take more than one cycle.

CS31 bus extension with CM574-RS module
As of HA-CS31 library version V2.4.0 (HA_CS31_AC500_V23.lib) the library supports CM574-
RS CS31 Bus. Data transfer between CPU and CM574-RS is done with the help of the HA-
CS31 library function blocks HA_CS31_DIAG_VIA_CM574 and HA_CS31_DIAG_ON_CM574.
The following picture describes the basic operation for this type of configuration:

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2015

Fig. 60: Operation Process for CS31 and CM574-RS

For further information on function block operations, please refer to the online help for HA-
CS31 function blocks (Ä Chapter 1.5.5.1.2 “AC500 High Availability CS31 system technology”
on page 1983).

Details of control and state byte

These bytes are managed by HA_CS31_CONTROL function block.

Table 99: Structure of the control byte
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit5 Bit6 Bit 7
CPU
status:
0: CPU in
STOP
mode
1: CPU in
RUN
mode

Not used Manual
change
over
request:
0: No
request
1:
Request

Switch
over
acknowl-
edge-
ment:
0: No
request
1:
Request

Primary
request
0: No pri-
mary
request
1: Primary
request

Not used Not used Life status:
Toggles
when CS31
Bus is
active

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2016

Table 100: Structure of status byte
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Line infor-
mation:
0: Line B
1: Line A

Other Bus
Active:
0: Not
Active
1: Active

Manual
change
over
request:
0: No
Request
1:
Request

Digital
O/P buffer
different
0: Iden-
tical
1: Dif-
ferent

Other Bus
Primary
0: Not pri-
mary
1: Primary

Analog
O/P buffer
different
0: Iden-
tical
1: Dif-
ferent

CI590-
CS31-HA
Initializa-
tion
0: Not
done
1: Done

Life status:
Toggles
when CS31
Bus is
active

HA-CS31 limitations
● The HA-CS31 library does not recommend more than three CM574-RS modules for HA-

CS31 Bus. For PM57x CPU only one CM574-RS is recommended.
● The HA-CS31 library will not support more than 1024 HA_CS31_DATA_SYNC function

blocks in one POU.
● AC500-eCo PLCs are not supported for HA-CS31 library.
● The HA-CS31 system takes care of the first fault only. If more than one error occurs in the

same PLC, the user must restart the system to reset the error.
● To avoid compatibility issues with HA-CS31 library, users must have recommended

hardware with runtime system and software Ä Chapter 1.5.5.1.2.2 “Requirements”
on page 1984.
For further information on CS31 limitations please refer to Ä Chapter 1.6.2.8.3.1 “CI590-
CS31-HA” on page 4745.

1.5.5.1.3 AC500 High Availability CS31 library

Components of HA-CS31 library
The HA-CS31 library contains the following function blocks, structures, visualizations, constants
and variables.

HA-CS31 library - Overview diagram
The following table gives an overview which function blocks and functions run on CPU and
on CM574 (slot 2 to 4). In the example slot 1 is used for CM597-ETH for program download.
Function blocks marked in italic font are only available from HA-CS31 library version V2.4.0.
In another case if a user has a PLC with more than one onboard ETH (Example: PM595,
PM591-2ETH) the user can use ETH2 port for downloading e.g. the program, web server, OPC
server communication etc.

CM574
pro-
gram
(slot 4)

CM574
pro-
gram
(slot 3)

CM574 program
(slot 2)

CM597-ETH
(slot 1)

CPU program CS31 line

- - - - Application -

- - - - HA_CS31_PID -

- - - - HA_CS31_CTD -

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2017

CM574
pro-
gram
(slot 4)

CM574
pro-
gram
(slot 3)

CM574 program
(slot 2)

CM597-ETH
(slot 1)

CPU program CS31 line

- - - - ... (further utility func-
tion blocks)

-

- - - - HA_CS31_DATA_SYN
C

-

- - - - HA Functionality -

- - - - HA_CONTROL -

- - - - HA_CS31_CALL-
BACK_STOP

-

- - - - HA_CS31_DIAG(_EXT 01 (local)

- - HA_CS31_DIAG
_ON_CM574

- HA_CS31_DIAG(_EXT
)_VIA_CM574

2.1 (slot 2,
COM1)

- - HA_CS31_DIAG
_ON_CM574

- HA_CS31_DIAG(_EXT
)_VIA_CM574

2.2 (slot 2,
COM2)

- HA_CS
31_DIA
G_ON_
CM574

- - HA_CS31_DIAG(_EXT
)_VIA_CM574

3.1 (slot 3,
COM1)

- HA_CS
31_DIA
G_ON_
CM574

- - HA_CS31_DIAG(_EXT
)_VIA_CM574

3.2 (slot 3,
COM2)

HA_CS
31_DIA
G_ON_
CM574

- - - HA_CS31_DIAG(_EXT
)_VIA_CM574

4.1 (slot 4,
COM1)

HA_CS
31_DIA
G_ON_
CM574

- - - HA_CS31_DIAG(_EXT
)_VIA_CM574

4.2 (slot 4,
COM2)

Function blocks

POU Name Function
Group: Control

HA_CS31_CONTROL High Availability control block

HA_CS31_DATA_SYNC High Availability data synchronization block

Group: Diagnosis_PM5xx

HA_CS31_DIAG High Availability diagnosis block for CPU COM1
CS31 Line

HA_CS31_DIAG_EXTD High Availability extended diagnosis block for CPU
COM1 CS31 Line

HA_CS31_DIAG_VIA_CM574 High Availability diagnosis block used in CPU for
CM574-RS CS31 Line

HA_CS31_DIAG_EXTD_VIA_CM574 High Availability extended diagnosis block for CM574
CS31 Line

Group: Diagnosis_CM574-RS

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2018

POU Name Function
HA_CS31_DIAG_ON_CM574 High Availability diagnosis block used in CM574 for

CM574-RS CS31 Line

Group: Utility

HA_CS31_CTD High Availability count down counter

HA_CS31_CTU High Availability count up counter

HA_CS31_CTUD High Availability Up/down counter

HA_CS31_INTEGRAL High Availability integral function

HA_CS31_PID High Availability PID controller

HA_CS31_PID_DV500 High Availability PID controller for DigiVis 500 face-
plates

HA_CS31_PID_FIXCYCLE High Availability PID controller with fix cycle

HA_CS31_PID_FIXCYCLE_DV500 High Availability PID controller for DigiVis 500 face-
plates

HA_CS31_RAMP_INT High Availability ramp with integer

HA_CS31_RAMP_REAL High Availability ramp with real

HA_CS31_TOF High Availability off delay timer

HA_CS31_TON High Availability on delay timer

Function

Group: Callback

HA_CS31_CALLBACK_STOP High Availability CPU STOP event function

Visualizations

HA_CS31_DIAG_VISU_PH Faceplate for function block HA_CS31_DIAG

HA_CS31_OVERVIEW_VISU Visualization for HA-CS31 library overview.
This is available as of HA-CS31 library version
2.4.0 (HA_CS31_AC500_V23.lib)

Group: Control

HA_CS31_CONTROL_VISU_PH Faceplate for function block HA_CS31_CON-
TROL

HA_CS31_DATA_SYNC_VISU_PH Faceplate for function block
HA_CS31_DATA_SYNC

Group: Diagnosis_PM5xx

HA_CS31_DIAG_EXTD_VIA_CM574_VISU_
PH

Faceplate for function block
HA_CS31_DIAG_EXTD_VIA_CM574

HA_CS31_DIAG_EXTD_VISU_PH Faceplate for function block
HA_CS31_DIAG_EXTD

HA_CS31_DIAG_VIA_CM574_VISU_PH Faceplate for function block
HA_CS31_DIAG_VIA_CM574

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2019

Structures

stTON_TOFFSyncData Structure for synchronized TON and TOFF
data

zHA_CS31_PID_DV500_DATA_TYPE Structure for synchronization data for
HA_CS31_PID_DV500

zHA_CS31_PID_FIX-
CYCLE_DV500_DATA_TYPE

Structure for synchronization data for
HA_CS31_PID_FIXCYCLE_DV500

Global variables

Group: HA_Global_Variables

fG_HA_PRIMARY State of the AC500 CPU (FALSE -> PM acts
as secondary, TRUE -> PM acts as primary)

fG_HA_PM1_PRIMARY Indication of primary PM (FALSE -> PM1 / IP1
is not primary, TRUE -> PM1 / IP1 acts as
primary

fG_HA_CPU_STOP Indication of PLC STOP status (FALSE ->
indicates the CPU in RUN mode. If TRUE ->
indicates the CPU in STOP MODE)

fG_HA_Err High Availability error state

wG_HA_ErNo High Availability error code

bitG_Data_ERR High Availability error state for data synchroni-
zation

wG_DATA ERNO High Availability error code for data synchroni-
zation

dwG_HA_OwnIP Own IP address on sync link connection

dwG_HA_OtherIP Other PMs IP address on sync link connection

bG_HA_Slot Slot of interface to sync link connection

dwG_HA_ServerAlive Life counter incremented by OPC server

byLastDataDelay Variable to store last delay in data exchange

bitRefreshDataDelay Bit to refresh data delay

byCntDataDelay Data delay counts

wETH_Life Ethernet Life Count

dwHATimersBaseTime High Availability base timer

Group: HA_VISU_COLOR_INFO

dwHaVisuBackgroundColor Visualization elements background color
16#00<G><R>

dwHaVisuTitleColor Visualization elements title background color
16#00<G><R>

Prerequisites for the use of HA-CS31 library
Introduction

This library is intended to be used for a HA-CS31 project along with two AC500 CPUs with
Ethernet port (or with a Ethernet Communication Module) and CI590-CS31-HA communication
interface modules. For general information on how to use CI590-CS31-HA please refer to
Ä Chapter 1.5.5.1.2.3.4 “Task configuration” on page 1999.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2020

The following table specifies the mandatory function blocks to be used for HA-CS31 library in
order to work with different configurations:

Serial No. Hardware Configura-
tion Type

Mandatory functions and function blocks

 To be Downloaded on
CPU

To be Downloaded on
CM574-RS

1 Only CPU HA_CALLBACK_STOP
HA_CS31_CONTROL
HA_CS31_DIAG

Not applicable

2 CPU + CM574-RS HA_CALLBACK_STOP
HA_CS31_CONTROL
HA_CS31_DIAG
HA_CS31_DIAG_VIA_CM
574

HA_CS31_DIAG_ON_C
M574

Only the I/O channels of the CI590-CS31-HA and those of connected I/O modules are covered
under high availability. It is possible to use local I/O modules, but only with standard functionality
and not with high availability feature.
The limitations of the HA-CS31 Bus are the same as of the standard CS31 Bus.

It is not possible to use or mix any other CS31 slave (e.g. DC551-CS31) with a
CI590-CS31-HA slave.

The HA-CS31 system only takes care of the first occurring error. If both PLCs
are erroneous, then the CPU which generates the second error will remain
primary CPU - independent of further errors or manual switch over command.

Hardware configuration
The AC500 I/O configuration on redundant CS31 slave interface (CI590-CS31-HA) must be
identical in both CPUs. To avoid any differences in configurations we recommend you, to create
a single Automation Builder project for high availability. Then import this project into both CPUs.
CS31 Bus wiring: The CPU connected to CI590-CS31-HA Bus A will be CPU A and will be the
primary CPU in usual operation mode. The CPU connected to CI590-CS31-HA Bus B will be
CPU B and will be the secondary CPU.
We recommend you, to use separate CM597-ETH modules for larger systems, refer to
Ä Chapter 1.5.5.1.2.2.1.2 “Recommended use of Ethernet connections” on page 1991.
In order to use CI590-CS31-2FC (Fast counter) the users have to perform the following:
● CI590-CS31-2FC must be added to their CS31 network.
● Section “Fast Counter” must be updated with the appropriate counter type. The default

setting "No Counter” leads the system to become unstable.
For further information please refer to
Example_AC500_HA_CS31_V242_3ADR023070M0201.pdf.

General precon-
ditions

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2021

● Download the CPU configuration before downloading configuration and program to CM574-
RS.

● CM574-RS is a programmable co–processor module with two serial communication ports.
Configuration and programming of the CM574-RS module is done by creating a separate
node in Automation Builder project. In case of problems, please check configuration of
CM574-RS below AC500 CPU node: “Enable debug” must be set to “On”.

● The AC500 CPU node in Automation Builder project must be downloaded to AC500 CPU
before downloading CM574-RS configuration and the program to CM574-RS.

● If more than one CS31 line is configured, the users have to set the “Max Wait Run” under
each CS31 Bus line based on the actual time taken for all CS31 lines to come online. This
will ensure that all outputs of the I/O modules get activated at the same time.

● If the CS31 lines have different sizes their startup time will be different. In order to avoid an
unsynchronized I/O module startup, users have to set the “Max Wait Run” under each CS31
Bus line and it must be greater than the actual time taken for all CS31 lines to come online.
This will ensure that all I/O module outputs will get activated at the same time.

Fig. 61: Configuration in Automation Builder

Program
We recommend you, to use an AC500 PLC node (Automation Builder configuration + program)
download to both PLCs, create boot project in both and restart the complete system.
We recommend you, to use the IP address of CPU A as IP1 in HA_CS31_CONTROL function
block.
HA-CS31 utility function blocks are synchronized internally. Any other synchronization require-
ment is to be done through HA_CS31_DATA_SYNC function block.
Restart the complete system if any of the HA-CS31 library function blocks changed. Else the
system may become unstable as HA library function blocks are not supporting online changes.
If online program modification is required on a running high availability application (e.g. addi-
tional variable, number or type of the variable in HA_CS31_DATA_SYNC), it is necessary to
restart the whole system to recreate synchronization.
SFC language (Sequential Function Chart) is not recommended for HA programming as too
much and too spread data is to synchronize.
If web visualization is required, the following setup is recommended: Onboard Ethernet for
web server and OPC & Automation Builder communication, CM597-ETH for HA data syn-
chronization, refer to Ä Chapter 1.5.5.1.2.2.1.2 “Recommended use of Ethernet connections”
on page 1991.
For web visualization users have to use onboard Ethernet slot. If a user has a PLC with more
than one onboard ETH port (Example: PM595, PM591-2ETH) the user can use ETH1 port for
UDP data exchange and ETH2 for web server.
If a user is using a PLC with one onboard ETH port and requires web visualization, then use
onboard ETH for web visualization (CM597-ETH does not support web server) and CM597-ETH
for UDP data exchange. This change may be able to make some impact on UDP data exchange
performance as CM597-ETH port has a lower priority than the PLC on board port.
Use DigiVis and OPC server for writing data as it will be written to both PLCs at the same time.
We recommend you, not to use HMI for writing data as it is not written to both PLCs.

Preconditions
when using
more than one
CS31 line
(AC500 CPU
configuration +
CM574-RS)

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2022

PM591-2 ETH and PM595 PLCs must use onboard ETH1 for UDP data com-
munication.

Task configuration
The default task in the CPU can be used for the application program, containing the utility
blocks. Beyond this the following tasks have to be created:
● HA_Task on CPU, containing the CONTROL and DIAG function blocks.
● HA_Task on CM574, containing DIAG_ON_CM574 function blocks.
The cycle times are dependent on the CS31 cycle time which is calculated by the Automation
Builder and indicated in the CS31 Bus node (tab “Check CS31 modules”). Minimum HA CPU
cycle time must be either 30 ms or (CS31 cycle time) whichever value is higher. HA-CM574-RS
cycle time must be always lesser than the CPU cycle time.
HA_CS31_CALLBACK_STOP function must be called in CPU program as a Stop Event under
SYSTEM EVENTS with the name starting with "callback" (e.g. "callback_stop").
Proceed as follows:
● Select: Task configuration -> system event.
● Enable the system event Stop.
● In the ‘Called POU’ column type in the POU name, starting with CALLBACK (e.g. CALL-

BACK_STOP).
● Click the ‘Create POU <individual POU name>’ button to create the CALLBACK_STOP

(FUN) function in the POU project.
● Switch to CALLBACK_STOP POU and insert HA_CS31_CALLBACK_STOP function.

Fig. 62: Callback stop event

If a customer has downloaded the program to the PLC with a wrong callback stop event name
then the CPU freezes and is unable to log in/on to the PLC using Ethernet cable. Users have
to download a blank project to the PLC using RS-232 communication cable (TK501) in order to
return the PLC into healthy stage. After this, the users have to correct the callback stop event
name as recommended and restart the download.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2023

The callback stop event should follow the name pattern “CALLBACK_xxx”.

The blocks contained in the library can only be executed in RUN mode of the
PLC, but not in 'simulation' mode.

Control and diagnosis - Function blocks and functions
HA_CS31_CALLBACK_STOP - HA CPU STOP event function

Fig. 63: Function HA_CS31_CALLBACK_STOP

Table 101: General information
Available as of runtime system V2.3 and above

Included in library HA_CS31_AC500_V23.lib (V2.4). In previous
library versions this component was a pro-
gram (not a function).

Type DWORD (previously this function was a pro-
gram)

This mandatory function is intended to detect the CPU stop event and process logic related to
HA-CS31 project. For further information please refer to Ä Chapter 1.5.5.1.3.2.4 “Task configu-
ration” on page 2023.
HA_CS31_CALLBACK_STOP function is programmed to process logic related to HA-CS31
project in case of CPU switching into stop mode.
If there is a STOP event initiated in the PLC, HA_CS31_CALLBACK_STOP function is pro-
cessed before the CPU switches to STOP state. This function sets/resets some HA-CS31
library global variables, to provide the one CPU’s STOP information to the other CPU.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2024

Input description

Fig. 64: Function HA_CS31_CALLBACK_STOP

Data type: DINT.
Runtime system event in which the function block is to be called.

Data type: DINT.
Runtime system event filter.

Data type: DINT.
Runtime event system source.

Output description

Fig. 65: Function HA_CS31_CALLBACK_STOP

Data type: DWORD.

Function call in ST
HA_CS31_CALLBACK_STOP(dwEvent, dwFilter, dwOwner);

dwEvent

dwFilter

dwOwner

dwHACS31Call-
backStop

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2025

HA_CS31_CONTROL - HA control FB

Fig. 66: Function Block HA_CS31_CONTROL

Table 102: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block handles HA-CS31 operation such as change over from primary to secondary
CPU in case of an error with related diagnosis. Further it is used for data transfer between
high availability CPUs. This is a mandatory function block for high availability application.
HA_CS31_CONTROL receives the status data from all seven CS31 lines and sends back the
control data.
This function block works with the respective diagnosis function blocks for sending and
receiving diagnosis information.

Input description

Fig. 67: Function Block HA_CS31_CONTROL

Data type Default value Range Unit
BOOL - - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input is set to TRUE, the
inputs are continuously checked for validity and plausibility. If this is not the case, processing is
aborted and an error is displayed.

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2026

Data type: BYTE, default value: 0, range: 0 to 4.
Ethernet slot number. At input ETH_SLOT the communication module slot (module number) is
selected which shall be used by the block.
The internal communication module always has the module number 0. All external communica-
tion modules are serially numbered from right to left, starting with module number 1.

PM591-2 ETH and PM595 PLCs must use onboard ETH1 for UDP data com-
munication.

Data type: STRING, default value: 0.0.0.0, range: 000.000.000.000 to 255.255.255.255.
IP address of the AC500 CPU connected to line A.

Data type: STRING, default value: 0.0.0.0, range: 000.000.000.000 to 255.255.255.255
IP address of the AC500 CPU connected to line B.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE
The user can acknowledge the changeover event.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE
A manual change in the primary CPU to value TRUE forces a changeover from the primary
CPU to the secondary CPU.

Output description

Fig. 68: Function Block HA_CS31_CONTROL

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

ETH_SLOT

IP_ADR_CPU_A

IP_ADR_CPU_B

ACK_CHG_OVE
R

MANUAL_CHG_
OVER

DONE

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2027

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function block call in ST
HACS31control(
EN := hacs31_EN,
ETH_SLOT := hacontrol_ethslot,
IP_ADR_CPU_A := hacontrol_ipadr_a,
IP_ADR_CPU_B := hacontrol_ipadr_b,
ACK_CHG_OVER := hacontrol_ackn,
MANUAL_CHG_OVER := hacontrol_man_chnge_ovr);
hacontrol_done := HACS31control.DONE;
hacontrol_err := HACS31control.ERR;
hacontrol_erno := HACS31control.ERNO;

HA_CS31_DATA_SYNC - HA data synchronization FB

Fig. 69: Function block HA_CS31_DATA_SYNC

Table 103: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

The function block HA_CS31_DATA_SYNC is intended to be used for synchronizing different
instances of function blocks in the HA-CS31 project. It is needed only if the user is not using
HA-CS31 utility function blocks.

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2028

HA_CS31_DATA_SYNC is part of the HA-CS31 library and is used for synchronization. It
collects data and size information of the connected function block instance and delivers those
details to the HA_CS31_CONTROL function block for data synchronization. Users can use up
to 1024 instances of HA_CS31_DATA_SYNC in one program. The maximum of 1024 bytes
(user data) can be synchronized in one cycle. In previous library versions (< 2.4.0) the users
can use only up to 256 instances of HA_CS31_DATA_SYNC.
To start synchronization HA_CS31_DATA_SYNC should be enabled in both CPUs at least once.
Once the function block is enabled, it runs till the system is powered off (regardless of an
enabled input status). We recommend you, always to keep ENABLE input as TRUE instead of
connecting a variable.

Functionality
The following figure describes the function blocks which are mandatory for data synchronization
in all switchover conditions and which are necessary for a complete redundant system.
HA_CS31_SYNC will help users to synchronize different function block instances, variables,
arrays etc. HA_CS31_TON is a utility function block available in HA-CS31 library and the
outputs of this function block are internally synchronized. All utility function blocks which are
available in HA-CS31 library are internally synchronized.

Fig. 70: Function block PUMP_LEVEL_CTRL

Data synchronization is used for writing the values of the defined variables or internal historical
values of function blocks from the primary CPU to the secondary CPU. Users need this in case
of external change or after repair. Please note that the data is always written from primary to
secondary CPU.

● All instances on HA_CS31_DATA_SYNC must be executed at least once to have a correct
data synchronization table.

● We recommend you, to have all instances of HA_CS31_DATA_SYNC and HA-CS31 func-
tion blocks to be called in one separate POU. This POU should be called in PLC_PRG.

● During commissioning the users have to use OPC client to tune the parameters of HA-CS31
utility function blocks to make sure that both PLCs are sending/receiving data at the same
time without any time delay.

The following figure describes how function blocks are provided by HA_CS31_AC500_V23
library. Internal historical values are placed in an exchange table and copied from the primary
to the secondary CPU. Then, the secondary CPU is synchronized with the primary and the
process outputs are identically on both CPUs.

Rules for data
synchronization

Synchronization
of function
blocks

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2029

Fig. 71: Function block PUMP_LEVEL_CTRL

The following function blocks with historical values are not included in the
HA_CS31_AC500_V23 library:
● Set Reset (SR)
● Reset Set (RS)
● Rising edge trigger (R_TRIG)
● Falling edge trigger (F_TRIG)
● etc.
To be able to resynchronize these values after an error or a PLC stop, these internal values can
be added in a synchronization table.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2030

Fig. 72: Function block PUMP_LEVEL_CTRL

Internal values to synchronize are:
● RS1.Q1 (internal value of RS1)
● SR1.Q1 (internal value of SR1)
● FT1.Q (internal value of FT1)
● RT1.Q (internal value of RT1)

The variables which are changed by a SCADA/ HMI on the primary CPU should be synchron-
ized, e.g:
● Set points, limits, on/off command, etc.
● Variables used to manage program sequences.
● Sequence number, condition with historical values, etc.

Tips for data synchronization:
To optimize data exchange and synchronization in a High Availability program data can be
grouped in a structure as shown in the following figure to avoid multiple entries in synchroniza-
tion table.

User data syn-
chronization

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2031

Fig. 73: Function block PUMP_LEVEL_CTRL

Then, one complete structure can be placed in a synchronization table. In the example
all variables of the structure data will be synchronized using only one instance of
HA_CS31_DATA_SYNC.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2032

Fig. 74: Function block PUMP_LEVEL_CTRL

Input description

Fig. 75: Function block HA_CS31_DATA_SYNC

Data type Default value Range Unit
BOOL - - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input is set to TRUE, the
inputs are continuously checked for validity and plausibility. If this is not the case, processing is
aborted and an error is displayed.

Data type: DWORD, default value: 0, range: 0-255.
Start address of the parameters/ variables to be synchronized (via ADR-operator).

EN (enable)

DATA

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2033

Data type: BYTE, default value: 0, range: 0-255.
Length of the parameters/variables to be synchronized (via SIZEOF-operator).

Output description

Fig. 76: Function block HA_CS31_DATA_SYNC

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function block call in ST
HACS31_datasync(
EN := hacs31_sync_EN,
DATA := ADR(VAR1),
LEN := SIZEOF(VAR1),
DONE := hacs31_data_done,
ERR := hacs31_data_err,
ERNO := hacs31_data_erno);

LEN (length)

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2034

HA_CS31_DIAG - Reading HA diagnosis

Fig. 77: Function block HA_CS31_DIAG

Table 104: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block handles the control and status bytes of each CI590-CS31-HA module on the
CPU COM1 CS31 Bus and related diagnostics. It is a mandatory function block for CPU COM
CS31 Bus to work.
HA_CS31_DIAG will be used to get diagnosis information from CPU COM1 CS31 line only. It
handles the control and status bytes of each CI590-CS31-HA module on the CS31 Bus. It is
also possible to find information such as configured and active CI590-CS31-HA slaves available
on CPU COM1 CS31 Bus and related diagnosis.

Input description

Fig. 78: Function block HA_CS31_DIAG

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2035

Data type Default value Range Unit
BOOL - - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input is set to TRUE, the
inputs are continuously checked for validity and plausibility. If this is not the case, processing is
aborted and an error is displayed.

Data type: BYTE, default value: 1, range: 1.
CS31 communication port number. At input COM, the port number of the serial interface on
AC500 CPU for CS31 protocol is selected.

Output description

Fig. 79: Function block HA_CS31_DIAG

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

EN (enable)

COM (communi-
cation port)

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2036

Number of CI590-CS31-HA slaves configured in the PLC configuration. The output
NUM_SLV_CFG indicates the number of CI590-CS31-HA slaves configured in the PLC configu-
ration.

Number of active CI590-CS31-HA slaves in the CS31 Bus. The output NUM_SLV_ACT indi-
cates the number of active CI590-CS31-HA slaves available in the CS31 Bus.

Each bit of this DWORD represents an active CI590-CS31-HA device on the CS31 Bus. Each
bit of the output ACTIVE_SLV indicates an active CI590-CS31-HA in the CS31 Bus.

Error in case of mix-wiring between Bus line A and Bus line B of CS31 slaves. Output
ERR_MIX_WIRING indicates a mix-wiring (cross-wiring) between line A and line B of CI590-
CS31-HA slaves.

Function block call in ST
HACS31diag(
EN := hacs31_EN,
COM := hacs31_COM);
hacs31_done := HACS31diag.DONE;
hacs31_err := HACS31diag.ERR;
hacs31_erno := HACS31diag.ERNO;
hacs31_num_cfg_slv := HACS31diag.NUM_SLV_CFG;
hacs31_num_act_slv := HACS31diag.NUM_SLV_ACT;
hacs31_act_slv := HACS31diag.ACTIVE_SLV;
hacs31_err_mix_wire := HACS31diag.ERR_MIX_WIRING;

HA_CS31_DIAG_EXTD - HA Extended Diagnosis FB

Fig. 80: Function block HA_CS31_DIAG_EXTD

Table 105: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

NUM_SLV_CFG
(number of
slaves config-
ured)

NUM_SLV_ACT
(number of
active slaves)

ACTIVE_SLV
(active slaves)

ERR_MIX_WIRI
NG (error of
mix-wiring)

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2037

This function block reads the extended diagnosis from CPU COM1 CS31 Bus. It works only if
HA_CS31_DIAG is enabled in the CPU program.
HA_CS31_DIAG_EXTD is an optional function block which can be used to read the extended
diagnosis from CI590-CS31-HA slave module. It is used in order to get extended diagnosis
information from CPU COM1 CS31 line only.

Input description

Fig. 81: Function block HA_CS31_DIAG_EXTD

Data type Default value Range Unit
BOOL - - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input is set to TRUE, the
inputs are continuously checked for validity and plausibility. If this is not the case, processing is
aborted and an error is displayed.

Output description

Fig. 82: Function block HA_CS31_DIAG_EXTD

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

EN (enable)

DONE

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2038

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: DWORD.
Each bit of this DWORD represents a CI590-CS31-HA with identical buffer for digital type.

Data type: BOOL.
Error bit to indicate that the output buffer for digital type data is different in one or more
CI590-CS31-HA which are active on the Bus.

Data type: DWORD.
Each bit of this DWORD represents a CI590-CS31-HA with identical buffer for analog type.

Data type: BOOL.
Error bit to indicate that the output buffer for analog type data is different in one or more
CI590-CS31-HA which are active on the Bus.

Function block call in ST
HACS31_extdiag(
EN := hacs31_ext_EN);
hacs31_ext_done := HACS31_extdiag.DONE;
hacs31_ext_err := HACS31_extdiag.ERR;
hacs31_ext_erno := HACS31_extdiag.ERNO;
hacs31_ext_out_eq := HACS31_extdiag.BOOL_OUT_EQ;
hacs31_ext_out_diff := HACS31_extdiag.BOOL_OUT_DIFF;
hacs31_ext_ana_out_eq := HACS31_extdiag.ANALOG_OUT_EQ;
hacs31_ext_ana_out_diff := HACS31_extdiag.ANALOG_OUT_DIFF;

ERR

ERNO

BOOL_OUT_EQ
(bool out
equality)

BOOL_OUT_DIF
F (bool out dif-
ference)

ANALOG_OUT_
EQ (analog out
equality)

ANALOG_OUT_
DIFF (analog out
difference)

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2039

HA_CS31_DIAG_EXTD_VIA_CM574 - HA extended diagnosis FB

Fig. 83: Function block HA_CS31_DIAG_EXTD_VIA_CM574

Table 106: General Information
Available as of runtime system V2.3 and above

Included in library HA_CS31_AC500_V23.lib (V2.4) and above

Type Function block with historical values.

This function block reads the extended diagnosis of CM574-RS CS31 Bus in High Availability
operation. HA_CS31_DIAG_EXTD_VIA_CM574 works only if HA_CS31_DIAG_VIA_CM574 is
enabled in the CPU program.

Input description

Fig. 84: Function block HA_CS31_DIAG_EXTD_VIA_CM574

Data type Default value Range Unit
BOOL - - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input is set to TRUE, the
inputs are continuously checked for validity and plausibility. If this is not the case, processing is
aborted and an error is displayed.

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2040

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE, default value: 1, range: 1 to 2.
CS31 communication port number of the CS31 master.

Output description

Fig. 85: Function block HA_CS31_DIAG_EXTD_VIA_CM574

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

SLOT

COM

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2041

Data type: DWORD.
Each bit of the DWORD represents identical output buffer for BOOL data in each CS31 slave.

Data type: DWORD.
If PLC A and PLC B bool output buffer is different, then this bit will turn on to TRUE.

Data type: DWORD.
Each bit of the DWORD represents identical output buffer for analog data in each CS31 slave.

Data type: DWORD.
If PLC A and PLC B analog output buffer is different, then this bit will turn on to TRUE.

Function block call in ST
HACS31_extdiagviaCM574-RS(
EN := hacs31_extdiagviaCM574_EN;
SLOT := hacs31_extdiagviaCM574_EN;
COM := hacs31_extdiagviaCM574_EN);
hacs31_extdiagviaCM574_done := HACS31_extdiagviaCM574.DONE;
hacs31_extdiagviaCM574_err := HACS31_extdiagviaCM574.ERR;
hacs31_extdiagviaCM574_erno := HACS31_extdiagviaCM574.ERNO;
hacs31_extdiagviaCM574_out_eq :=
HACS31_extdiagviaCM574.BOOL_OUT_EQ;
hacs31_extdiagviaCM574_out_diff :=
HACS31_extdiagviaCM574.BOOL_OUT_DIFF;
hacs31_extdiagviaCM574_ana_out_eq :=
HACS31_extdiagviaCM574.ANALOG_OUT_EQ;
hacs31_extdiagviaCM574_ana_out_diff :=
HACS31_extdiagviaCM574.ANALOG_OUT_DIFF;

HA_CS31_DIAG_ON_CM574 - HA diagnosis FB on CM574-RS

Fig. 86: Function block HA_CS31_DIAG_ON_CM574

Table 107: General Information
Available as of runtime system V2.3 and above

Included in library HA_CS31_AC500_V23.lib (V2.4) and above

Type Function block with historical values.

BOOL_OUT_EQ
(BOOL out
equal)

BOOL_OUT_DIF
F (BOOL out dif-
ference)

ANALOG_OUT_
EQ (analog out
equal)

ANALOG_OUT_
DIFF (analog out
different)

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2042

This function block will work only on CM574-RS and in combination with enabled
HA_CS31_DIAG_VIA_CM574 on the CPU. It is a mandatory function block for CM574-RS
CS31 Bus to work. HA_CS31_DIAG_ON_CM574-RS sends CS31 Bus diagnosis information to
host CPU and receives CS31 configuration information from host CPU.
This function block has to be called separately for each CM574-RS CS31 line (number of
CM574-RS CS31 = number of HA_CS31_DIAG_ON_CM574).

Input description

Fig. 87: Function block HA_CS31_DIAG_ON_CM574

Data type Default value Range Unit
BOOL - - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input is set to TRUE, the
inputs are continuously checked for validity and plausibility. If this is not the case, processing is
aborted and an error is displayed.

Data type: BYTE, default value: 1, range: 1 to 2.
CS31 communication port number of the CS31 master.

Output description

Fig. 88: Function block HA_CS31_DIAG_ON_CM574

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

EN (enable)

COM

DONE

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2043

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Function block call in ST
HACS31diagonCM574(
EN := hacs31diagonCM574_EN,
COM := hacs31diagonCM574_COM);
hacs31diagonCM574_done := HACS31diagonCM574.DONE;
hacs31diagonCM574_err := HACS31diagonCM574.ERR;
hacs31diagonCM574_erno := HACS31diagonCM574.ERNO;

HA_CS31_DIAG_VIA_CM574 - HA diagnosis FB for CM574-RS

Fig. 89: Function block HA_CS31_DIAG_VIA_CM574

Table 108: General Information
Available as of runtime system V2.3 and above

Included in library HA_CS31_AC500_V23.lib (V2.4) and above

Type Function block with historical values.

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2044

This function block will work only on the CPU and in combination with an enabled
HA_CS31_DIAG_ON_CM574 in CM574-RS program. HA_CS31_DIAG_VIA_CM574 reads the
status byte and writes the control byte of all CI590-CS31-HA connected on CM574-RS COM
with relevant diagnosis. This is a mandatory function block for CM574-RS CS31 Bus to work.
This function block has to be called separately for each CM574-RS CS31 line (number of
CM574-RS CS31 = number of HA_CS31_DIAG_ON_CM574).

Input description

Fig. 90: Function block HA_CS31_DIAG_VIA-CM574

Data type Default value Range Unit
BOOL - - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input is set to TRUE, the
inputs are continuously checked for validity and plausibility. If this is not the case, processing is
aborted and an error is displayed.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

Data type: BYTE, default value: 1, range: 1 to 2.
Communication port number of the CS31 master.

EN (enable)

SLOT

COM

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2045

Output description

Fig. 91: Function block HA_CS31_DIAG_VIA-CM574

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BYTE.
This output indicates the number of CI590-CS31-HA slaves configured in the PLC configuration.

Data type: BYTE
This output indicates the number of active CI590-CS31-HA slaves available in CS31 Bus.

Data type: DWORD
Each bit of this output indicates an active CI590-CS31-HA slave in the CS31 Bus.

DONE

ERR

ERNO

NUM_SLV_CFG
(number of
slave config-
ured)

NUM_SLV_ACT
(number of
slave active)

ACTIVE_SLV
(active slaves)

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2046

Data type: BOOL
This output indicates a mix-wiring (cross-wiring) between line A and line B of CI590-CS31-HA
slaves.

Function block call in ST
HACS31diagviaCM574(
EN := hacs31diagviaCM574_EN,
COM := hacs31diagviaCM574_COM);
hacs31 viaCM574_done := HACS31diagviaCM574.DONE;
hacs31 viaCM574_err := HACS31diagviaCM574.ERR;
hacs31 viaCM574_erno := HACS31diagviaCM574.ERNO;
hacs31 viaCM574_num_cfg_slv := HACS31diagviaCM574.NUM_SLV_CFG;
hacs31 viaCM574_num_act_slv := HACS31diagviaCM574.NUM_SLV_ACT;
hacs31 viaCM574_act_slv := HACS31diagviaCM574.ACTIVE_SLV;
hacs31 viaCM574_err_mix_wire := HACS31diagviaCM574.ERR_MIX_WIRING;

Utility function blocks
HA_CS31_CTD - HA count down counter

Fig. 92: Function block HA_CS31_CTD

Table 109: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is a standard count down counter with automatic data synchronization in a
high availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

If parameter LOAD=TRUE, parameter CV (Counter Variable) will be initialized with the upper
limit of PV (Preset Value). If parameter CD (Count Down) has a rising edge from FALSE to
TRUE, CV will be lowered by 1, provided that CV > 0 (i.e., it does not cause the value to fall
below 0).

ERR_MIX_WIRI
NG (Error Mix
Wiring)

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2047

Input description

Fig. 93: Function block HA_CS31_CTD

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Count down with rising edge.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
This parameter loads the parameter PV (preset value) into the parameter CV (counter value)
with rising edge at LOAD.

Data type: WORD, default value: 0, range: 0 to 65535.
Preset value.

Output description

Fig. 94: Function block HA_CS31_CTD

Data type: BOOL.
This parameter returns TRUE if parameter CV is 0.

Data type: WORD.
Actual counter value.

CD

LOAD

PV

Q

CV

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2048

Function block call in ST
HACS31CTD (
CD := hactd_cd,
LOAD := hactd_load,
PV := hactd_pv);
hactd_q := HACS31CTD.Q;
hactd_cv := HACS31CTD.CV;

HA_CS31_CTU - HA count up counter

Fig. 95: Function block HA_CS31_CTU

Table 110: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is a standard count up counter with automatic data synchronization in a high
availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

Parameter CV (Counter Variable) will be initialized with 0 if RESET=TRUE. If parameter CU
(Count Up) has a rising edge from FALSE to TRUE, parameter CV will be raised by 1. Param-
eter Q will return TRUE when CV is greater or equal to the upper limit PV (Preset Value).

Input description

Fig. 96: Function block HA_CS31_CTU

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2049

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Count up with rising edge.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Loads value '0' into CV with a rising edge at RESET.

Data type: WORD, default value: 0, range: 0 - 65535.
Preset value.

Output description

Fig. 97: Function block HA_CS31_CTU

Data type: BOOL, range: TRUE/FALSE.
Parameter Q returns TRUE when parameter CV (counter value) is greater than or equal to
parameter PV (preset value).

Data type: WORD.
Actual counter value.

Function block call in ST
HACS31CTU (
CU := hactu_cu,
RESET := hactu_reset,
PV := hactu_pv);
hactu_q := HACS31CTU.Q;
hactu_cv := HACS31CTU.CV;

CU

RESET

PV

Q

CV

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2050

HA_CS31_CTUD - HA up/down counter

Fig. 98: Function block HA_CS31_CTUD

Table 111: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is standard bidirectional counter with automatic data synchronization in a
high availability application (high availability bidirectional counter).

Only internal variables and outputs are synchronized. Input variables or param-
eters are not synchronized. If necessary, use HA_CS31_DATA_SYNC function
block to synchronize the input variables.

If the CU (Count Up) parameter has a rising edge from FALSE to TRUE, parameter CV
(Counter Variable) will be increased by 1. If parameter CD (Count Down) has a rising edge
from FALSE to TRUE, parameter CV will be decreased by 1, provided that this does not cause
the value to fall below 0.
If RESET=TRUE, CV will be initialized with 0. If LOAD=TRUE, parameter CV will be initialized
with PV (Preset Value). QU returns TRUE when CV has become greater or equal PV. QD
returns TRUE when CV has become equal 0.

Input description

Fig. 99: Function block HA_CS31_CTUD

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2051

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Count up with rising edge.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Count down with rising edge.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Loads value 0 into parameter CV with a rising edge at RESET.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Loads parameter PV into parameter CV with rising edge at LOAD.

Data type: WORD, default value: 0, range: 0-65535.
Preset value.

Output description

Fig. 100: Function block HA_CS31_CTUD

Data type: BOOL
QU is TRUE when parameter CV is greater than or equal to parameter PV.

Data type: BOOL
QD is TRUE when parameter CV is 0.

Data type: WORD, default value: , range:
Actual counter value.

CU

CD

RESET

LOAD

PV

QU

QD

CV

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2052

Function call in ST
HACS31CTUD(
CU := hactud_cu,
CD := hactud_cd,
RESET := hactud_reset,
LOAD := hactud_load,
PV := hactud_pv);
hactud_qu := HACS31CTUD.QU;
hactud_qd := HACS31CTUD.QD;
hactud_cv := HACS31CTUD.CV;

HA_CS31_INTEGRAL - HA integral function block

Fig. 101: Function block HA_CS31_INTEGRAL

Table 112: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block approximately determines the integral of the function with automatic data
synchronization in a High Availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

In an analogous fashion to DERIVATIVE, the function value is delivered as a REAL variable
by using IN. TM contains the time which has passed in a DWORD (in ms). The input of
RESET of the bool type allows the function block to start anew with value TRUE. The integral
is approximated by two step functions. The average of these is delivered as the approximated
integral.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2053

Input description

Fig. 102: Function block HA_CS31_INTEGRAL

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Input function value.

Data type: REAL, default value: 0, range: 0 to 4294967295.
Time in ms.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Rising edge starts with a new value.

Output description

Fig. 103: Function block HA_CS31_INTEGRAL

Data type: REAL.
Integral output.

Data type: BOOL.
Overflow in the integral part.

Function block call in ST
HACS31INTEGRAL(
IN := haintegral_in,
TM := haintegral_tm,
RESET := haintegral_reset);
haintegral_out := HACS31INTEGRAL.OUT;
haintegral_overflow := HACS31INTEGRAL.OVERFLOW;

IN

TM

RESET

OUT

OVERFLOW

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2054

HA_CS31_PID - HA PID controller

Fig. 104: Function block HA_CS31_PID

Table 113: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is a standard PID controller with automatic data synchronization in a High
Availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

● The parameters Y_OFFSET, Y_MIN and Y_MAX serve for transformation of the manipu-
lated variable within a prescribed range.

● MANUAL parameter can be used to switch to manual operation.
● RESET parameter can be used to re-initialize the controller.
● In normal operation (MANUAL = RESET = LIMITS_ACTIVE = FALSE) the controller calcu-

lates the controller error as difference from SET_POINT parameter – ACTUAL parameter,
generates the derivation with respect to time de/dt and stores these values internally.

● The output, i.e. the manipulated variable Y unlike the PD controller contains an additional
integral part and is calculated as follows: Y = KP × (D + 1/TN ∫edt + TV dD/dt) + Y_OFFSET.
So besides the P-part also the current change of the controller error (D-part) and the history
of the controller error (I-part) influence the manipulated variable. The PID controller can be
easily converted to a PI controller by setting TV=0. Because of the additional integral part,
an overflow can come about by incorrect parameterization of the controller if the integral of
error D becomes too great. Therefore for the sake of security a BOOLEAN output called
OVERFLOW is present, which in this case would have the value TRUE. This only will
happen if the control system is instable due to incorrect parameterization. At the same time,
the controller will be suspended and will only be activated again by re-initialization.

Parameter
description

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2055

Input description

Fig. 105: Function block HA_CS31_PID

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Current value of the controlled variable.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Desired value, command variable.

Data type: REAL, default value: 0, range; 0 to 3.402823466e+38.
Coefficient of proportionality, unity gain of the P-part.

Data type: REAL, default value: 0, range: 0 to 3.402823466e+38.
Reset time, reciprocal unity gain of the I-part; given in seconds, e.g. "0.5" for 500 ms.

Data type: REAL, default value: 0, range: 0 to 3.402823466e+38.
Derivative action time, unity gain of the D-part in seconds, e.g. "0.5" for 500 ms.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Defines output value Y in case of MANUAL=TRUE.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Offset for the manipulated variable Y.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Lower limit for the manipulated variable Y. If Y exceeds these limits, output LIMITS_ACTIVE will
be set to TRUE and Y will be kept within the prescribed range. This control will only work if
Y_MIN < Y_MAX.

ACTUAL

SET_POINT

KP

TN

TV

Y_MANUAL

Y_OFFSET

Y_MIN

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2056

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Upper limit for the manipulated variable Y. If Y exceeds these limits, output LIMITS_ACTIVE will
be set to TRUE and Y will be kept within the prescribed range. This control will only work if
Y_MIN < Y_MAX.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
If TRUE, manual operation will be active, i.e. the manipulated value will be defined by
Y_MANUAL.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
TRUE resets the controller; during re-initialization Y = Y_OFFSET.

Output description

Fig. 106: Function block HA_CS31_PID

Data type: REAL.
Manipulated value, calculated by the function block.

Data type: BOOL.
TRUE indicates that Y has exceeded the given limits (Y_MIN, Y_MAX).

Data type: BOOL.
TRUE indicates an overflow in the integral part.

Function block call in ST
HACS31PID(
ACTUAL := hapid_actual,
SET_POINT := hapid_set_point,
KP := hapid_kp,
TN := hapid_tn,

Y_MAX

MANUAL

RESET

Y

LIMITS_ACTIVE

OVERFLOW

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2057

TV := hapid_tv,
Y_MANUAL := hapid_y_manual,
Y_OFFSET := hapid_y_offset,
Y_MIN := hapid_y_min,
Y_MAX := hapid_y_max,
MANUAL := hapid_manual,
RESET := hapid_reset);
hapid_y := HACS31PID.A;
hapid_limits_active := HACS31PID.LIMITS_ACTIVE;
hapid_overflow := HACS31PID.OVERFLOW;

HA_CS31_PID_DV500 - HA PID controller for DigiVis

Fig. 107: Function block HA_CS31_PID_DV500

Table 114: General Information
Available as of runtime system V2.3 and above

Included in library HA_CS31_AC500_V23.lib (V2.4) and above

Type Function block with historical values.

This function block is a standard PID controller with automatic data synchronization in a High
Availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

In terms of functionality this function block is similar to HA_CS31_PID, though, users can only
access the ACTUAL parameter. Users get the complete configuration faceplate on the DigiVis,
which is identical to the faceplate of HA_CS31_PID.

● The parameters Y_OFFSET, Y_MIN and Y_MAX serve for transformation of the manipu-
lated variable within a prescribed range.

● MANUAL parameter can be used to switch to manual operation.
● RESET parameter can be used to re-initialize the controller.

Parameter
description

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2058

● In normal operation (MANUAL = RESET = LIMITS_ACTIVE = FALSE) the controller calcu-
lates the controller error as difference from SET_POINT parameter – ACTUAL parameter,
generates the derivation with respect to time de/dt and stores these values internally.

● The output, i.e. the manipulated variable Y unlike the PD controller contains an additional
integral part and is calculated as follows: Y = KP × (D + 1/TN ∫edt + TV dD/dt) + Y_OFFSET.
So besides the P-part also the current change of the controller error (D-part) and the history
of the controller error (I-part) influence the manipulated variable. The PID controller can be
easily converted to a PI controller by setting TV=0. Because of the additional integral part,
an overflow can come about by incorrect parameterization of the controller if the integral of
error D becomes too great. Therefore for the sake of security a BOOLEAN output called
OVERFLOW is present, which in this case would have the value TRUE. This only will
happen if the control system is instable due to incorrect parameterization. At the same time,
the controller will be suspended and will only be activated again by re-initialization.

Input description

Fig. 108: Function block HA_CS31_PID_DV500

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Current value of the controlled variable.

Output description

Fig. 109: Function block HA_CS31_PID_DV500

Data type: REAL.
Manipulated value, calculated by the function block.

Data type: BOOL.
TRUE indicates that Y has exceeded the given limits (Y_MIN, Y_MAX).

Data type: BOOL.
TRUE indicates an overflow in the integral part.

ACTUAL

Y

LIMITS_ACTIVE

OVERFLOW

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2059

Function block call in ST
HACS31PIDDV500(
ACTUAL := haPID_actual,
hapid_y := HACS31PID.A;
hapid_limits_active := HACS31PID.LIMITS_ACTIVE;
hapid_overflow := HACS31PID.OVERFLOW;

HA_CS31_PID_FIXCYCLE - HA PID controller with fix cycle

Fig. 110: Function block HA_CS31_PID_FIXCYCLE

Table 115: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is a standard PID controller with automatic data synchronization in a High
Availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

● The parameters Y_OFFSET, Y_MIN and Y_MAX serve for transformation of the manipu-
lated variable within a prescribed range.

● MANUAL parameter can be used to switch to manual operation.
● CYCLE ia an input to to the function block and is to be set by the user (in ms).
● RESET parameter can be used to re-initialize the controller.

The cycle time is not measured automatically. It is set by the input CYCLE (in seconds).

Parameter
description

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2060

● In normal operation (MANUAL = RESET = LIMITS_ACTIVE = FALSE) the controller calcu-
lates the controller error as difference from SET_POINT parameter – ACTUAL parameter,
generates the derivation with respect to time de/dt and stores these values internally.

● The output, i.e. the manipulated variable Y unlike the PD controller contains an additional
integral part and is calculated as follows: Y = KP × (D + 1/TN ∫edt + TV dD/dt) + Y_OFFSET.
So besides the P-part also the current change of the controller error (D-part) and the history
of the controller error (I-part) influence the manipulated variable. The PID controller can be
easily converted to a PI controller by setting TV=0. Because of the additional integral part,
an overflow can come about by incorrect parameterization of the controller if the integral
of error D becomes too great. Therefore for the sake of security a boolean output called
OVERFLOW is present, which in this case would have the value TRUE. This only will
happen if the control system is instable due to incorrect parameterization. At the same time,
the controller will be suspended and will only be activated again by re-initialization.

Input description

Fig. 111: Function block HA_CS31_PID_FIXCYCLE

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Current value of the controlled variable.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Desired value, command variable.

Data type: REAL, default value: 0, range: 0 to 3.402823466e+38.
Coefficient of proportionality, unity gain of the P-part.

Data type: REAL, default value: 0, range: 0 to 3.402823466e+38.
Reset time, reciprocal unity gain of the I-part; given in seconds, e.g. "0.5" for 500 ms.

Data type: REAL, default value: 0, range: 0 to 3.402823466e+38.
Derivative action time, unity gain of the D-part in seconds, e.g. "0.5" for 500 ms.

ACTUAL

SET_POINT

KP

TN

TV

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2061

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Defines output value Y in case of MANUAL = TRUE.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Offset for the manipulated variable Y.

Data type: REAL, default value: 0.
Lower limit for the manipulated variable Y. If Y exceeds these limits, output LIMITS_ACTIVE will
be set to TRUE and Y will be kept within the prescribed range. This control will only work if
Y_MIN < Y_MAX.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Upper limit for the manipulated variable Y. If Y exceeds these limits, output LIMITS_ACTIVE will
be set to TRUE and Y will be kept within the prescribed range. This control will only work if
Y_MIN < Y_MAX.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
If TRUE, manual operation will be active, i.e. the manipulated value will be defined by
Y_MANUAL.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
TRUE resets the controller; during re-initialization Y = Y_OFFSET.

Data type: REAL, default value: 0, range: 0 to 3.402823466e+38.
Number of cycles.

Output description

Fig. 112: Function block HA_CS31_PID_FIXCYCLE

Y_MANUAL

Y_OFFSET

Y_MIN

Y_MAX

MANUAL

RESET

CYCLE

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2062

Data type: REAL
Manipulated value, calculated by the function block.

Data type: BOOL
TRUE indicates that Y has exceeded the given limits (Y_MIN, Y_MAX).

Data type: BOOL
TRUE indicates an overflow in the integral part.

Function block call in ST
HACS31PIDFIXCYCLE(
ACTUAL := hapid_actual,
SET_POINT := hapid_set_point,
KP := hapid_kp,
TN := hapid_tn,
TV := hapid_tv,
Y_MANUAL := hapid_y_manual,
Y_OFFSET := hapid_y_offset,
Y_MIN := hapid_y_min,
Y_MAX := hapid_y_max,
MANUAL := hapid_manual,
RESET := hapid_reset);

HA_CS31_PID_FIXCYCLE_DV500 - HA PID controller for DigiVis

Fig. 113: Function block HA_CS31_PID_FIXCYCLE_DV500

Table 116: General Information
Available as of runtime system V2.3 and above

Included in library HA_CS31_AC500_V23.lib (V2.4) and above

Type Function block with historical values.

This function block is a standard PID controller with automatic data synchronization in a High
Availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

Y

LIMITS_ACTIVE

OVERFLOW

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2063

In terms of functionality this function block is similar to HA_CS31_PID_FIXCYCLE, though,
users can only access the ACTUAL parameter. Users get the complete configuration faceplate
on the DigiVis, which is identical to the faceplate of HA_CS31_PID.

● The parameters Y_OFFSET, Y_MIN and Y_MAX serve for transformation of the manipu-
lated variable within a prescribed range.

● MANUAL parameter can be used to switch to manual operation.
● RESET parameter can be used to re-initialize the controller.
● In normal operation (MANUAL = RESET = LIMITS_ACTIVE = FALSE) the controller calcu-

lates the controller error as difference from SET_POINT parameter – ACTUAL parameter,
generates the derivation with respect to time de/dt and stores these values internally.

● The output, i.e. the manipulated variable Y unlike the PD controller contains an additional
integral part and is calculated as follows: Y = KP × (D + 1/TN ∫edt + TV dD/dt) + Y_OFFSET.
So besides the P-part also the current change of the controller error (D-part) and the history
of the controller error (I-part) influence the manipulated variable. The PID controller can be
easily converted to a PI controller by setting TV=0. Because of the additional integral part,
an overflow can come about by incorrect parameterization of the controller if the integral of
error D becomes too great. Therefore for the sake of security a BOOLEAN output called
OVERFLOW is present, which in this case would have the value TRUE. This only will
happen if the control system is instable due to incorrect parameterization. At the same time,
the controller will be suspended and will only be activated again by re-initialization.

Input description

Fig. 114: Function block HA_CS31_PID_FIXCYCLE_DV500

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Current value of the controlled variable.

Output description

Fig. 115: Function block HA_CS31_PID_FIXCYCLE_DV500

Data type: REAL
Manipulated value, calculated by the function block.

Parameter
description

ACTUAL

Y

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2064

Data type: BOOL
TRUE indicates that Y has exceeded the given limits (Y_MIN, Y_MAX).

Data type: BOOL
TRUE indicates an overflow.

Function block call in ST
HACS31PIDFIXCYCLEDV500(
ACTUAL := hapid_actual,
hapid_y := HACS31PID.A;
hapid_limits_active := HACS31PID.LIMITS_ACTIVE;
hapid_overflow := HACS31PID.OVERFLOW;

HA_CS31_RAMP_INT - HA ramp with integer

Fig. 116: Function block HA_CS31_RAMP_INT

Table 117: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is an integer ramp generator with automatic data synchronization in a High
Availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

This function block serves to limit ascending or descending of a function:
The input consists of three INT values: IN (function input), and ASCEND and DESCEND, the
maximum increase or decrease for a given time interval, which is defined by the TIMEBASE
parameter. Setting RESET parameter to TRUE causes the function block to be initialized anew.

LIMITS_ACTIVE

OVERFLOW

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2065

The output OUT of the type INT contains ascends and descends limited function value. If the
TIMEBASE parameter is set to t#0s, ASCEND and DESCEND are not related to the time
interval, but remain the same.

Input description

Fig. 117: Function block HA_CS31_RAMP_INT

Data type: INT, default value: 0, range: -32767 to 32767.
Function input.

Data type: INT, default value: 0, range: -32767 to 32767.
Max. ascension per time interval.

Data type: INT, default value: 0, range: -32767 to 32767.
Max. descend per time interval.

Data type: TIME, default value: 0, range: 0 to 4194967295 ms.
Time interval for the maximum increase/decrease.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Reset input to reinitialize the function block.

IN

ASCEND

DESCEND

TIMEBASE

RESET

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2066

Output description

Fig. 118: Function block HA_CS31_RAMP_INT

Data type: INT.
Output with ascended or descended function value.

Function block call in ST
HACS31RAMPINT(
IN := harampint_in,
ASCEND := harampint_ascend,
DESCEND := harampint_descend,
TIMEBASE := harampint_timebase,
RESET := harampint_reset);
harampint_out := HACS31RAMPINT.OUT;

HA_CS31_RAMP_REAL - HA Ramp with Real

Fig. 119: Function block HA_CS31_RAMP_REAL

Table 118: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is a real ramp generator with automatic data synchronization in a High
Availability application.

OUT

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2067

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

This function block serves to limit ascending or descending of a function:
The input consists of three REAL values: IN (function input), and ASCEND and DESCEND, the
maximum increase or decrease for a given time interval, which is defined by the TIMEBASE
parameter. Setting RESET parameter to TRUE causes the function block to be initialized anew.
The output OUT of the type REAL contains ascends and descends limited function value. When
the TIMEBASE parameter is set to t#0s, ASCEND and DESCEND are not related to the time
interval, but remain the same.

Input description

Fig. 120: Function block HA_CS31_RAMP_REAL

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Function input.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Max. ascension per time interval.

Data type: REAL, default value: 0, range: 1.175494351e-38 to 3.402823466e+38.
Max. descend per time interval.

Data type: TIME, default value: 0, range: 0 to 4194967295 ms.
Time interval for the maximum increase/decrease.

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
Reset input to re-initialize the function block.

IN

ASCEND

DESCEND

TIMEBASE

RESET

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2068

Output description

Fig. 121: Function block HA_CS31_RAMP_REAL

Data type: REAL.
Output with ascended or descended function value.

Function block call in ST
HACS31RAMPREAL(
IN := harampreal_in,
SCEND := harampreal_ascend,
DESCEND := harampreal_descend,
TIMEBASE := harampreal_timebase,
RESET := harampreal_reset);
harampreal_out := HACS31RAMPREAL.OUT;

HA_CS31_TOF - HA Turn-Off delay timer

Fig. 122: Function block HA_CS31_TOF

Table 119: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is standard turn-off delay with automatic data synchronization in a High
Availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

OUT

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2069

This function block implements a turn-off delay timer. As soon as the IN parameter becomes
FALSE, time counting in ET will start (unit: ms). Counting will proceed until the value in ET is
equal to PT value. Then, it will remain constant. Q is FALSE if IN is FALSE and ET is equal to
PT. Otherwise it is TRUE. Thus, the Q parameter has a falling edge as soon as time indicated in
PT has run out (unit: ms).

Fig. 123: A_CS31_TOF behavior over time

Input description

Fig. 124: Function block HA_CS31_TOF

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
If IN=FALSE, the turn-off delay starts.

Data type: TIME, default value: 0, range: 0 to 4194967295 ms.
Preset time for turn-off delay.

Output description

Fig. 125: Function block HA_CS31_TOF

Data type: BOOL, range: TRUE/FALSE.
Q=FALSE if IN=FALSE and ET=PT.

Data type: TIME.
Actual time of turn-off delay.

IN

PT

Q

ET

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2070

Function block call in ST
HACS31TOF(
IN := hatof_in,
PT := hatof_pt);
hatof_q := HACS31TOF.Q;
hatof_et := HACS31TOF.ET;

HA_CS31_TON - HA turn-on delay timer

Fig. 126: Function block HA_CS31_TON

Table 120: General information
Available as of runtime system V1.3 and above

Included in library HA_CS31_AC500_V13.lib (V1.3) and above

Type Function block with historical values.

This function block is a standard turn-on delay with automatic data synchronization in a High
Availability application.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_CS31_DATA_SYNC to
achieve the same.

This function block implements a turn-on delay timer. As soon as the IN parameter becomes
TRUE, time counting in ET will start (unit: ms). Counting will proceed until the value in ET is
equal to PT value. Then, it will remain constant. Q is TRUE when IN is TRUE and ET is equal to
PT. Otherwise it is FALSE. Thus, the Q parameter has a rising edge as soon as time indicated in
PT has run out (unit: ms).

Fig. 127: HA_CS31_TON behavior over time.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2071

Input description

Fig. 128: Function block HA_CS31_TON

Data type: BOOL, default value: FALSE, range: TRUE/FALSE.
If IN=TRUE, the turn-on delay starts.

Data type: TIME, default value: 0, range: 0 to 4194967295 ms.
Preset time for turn-on delay.

Output description

Fig. 129: Function block HA_CS31_TON

Data type: BOOL.
Q=TRUE if IN=TRUE and ET=PT.

Data type: TIME.
Actual time of turn-on delay.

Function block call in ST
HACS31TON(
IN := haton_in,
PT := haton_pt);
haton_q := HACS31TON.Q;
haton_et := HACS31TON.ET;

Visualizations
In the application program, the user can add the visualization object in his project. The following
figure describes how to add the faceplate of the required function block to the visualization
object:

IN

PT

Q

ET

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2072

Fig. 130: HA_CS31_Visualization

In the following chapter, overall visualization and visualization for each individual function block
are discussed in detail.

HA_CS31_OVERVIEW_VISU - Visualization

This overview visualization for a AC500 High Availability CS31 system provides information for
easy diagnosis in case of an error. It contains information about Ethernet cable status, PLC
primary and secondary status, status for each CS31 line and diagnosis information, the HA
_CS31_CONTROL status etc.
The following figure describes the visualization in offline and online mode:

Fig. 131: HA_CS31_Visualization_offline

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2073

Fig. 132: HA_CS31_Visualization_online

No. Description
1 Shows the PLC status as PRIMARY or SECONDARY.

2 Shows PLC IP address.

3 Shows HA_CS31_CONTROL error code.

4 Acknowledge button for change over.

5 Shows PLC RUN status (green: running, red: stopped).

6 A green frame surrounding a PLC indicates the PLC that is connected to the pro-
gramming software.

7 Shows UDP data exchange Ethernet status (green: no error, red: error).

8 Changeover button (only available in primary PLC).

9 Shows CM597-ETH if configured.

10 Shows CS31 line status (green: active, red: not active).

11 Shows CS31 line number.

12 Shows active salves in that particular CS31 line.

13 Shows configured slaves in that particular CS31 line.

14 Shows errors related to that particular CS31 line.

15 A red box indicates mix wire errors (white box = no error).

HA-CS31 visualization can be used only for monitoring purpose. Users can only
view the logged PLC information using visualization. The only possible action
is a manual changeover and the acknowledgment. Users can use DigiVis and
OPC server to read out data from or to write data to the HA-CS31 system.
Writing data through OPC server will affect both PLCs. Reading out data is
done from primary PLC.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2074

HA_CS31_CONTROL_VISU_PH - Visualization
Visualization element HA_CS31_CONTROL_VISU_PH can be used to show the actual values
of all inputs and outputs of the instance of the HA_CS31_CONTROL function block. The visuali-
zation could also be used to control the function block by those inputs which are not connected
inside the program.
The following figures demonstrate visualization in the offline and online mode.

Fig. 133: Faceplate HA_CS31_CONTROL_VISU_PH offline mode

Fig. 134: Faceplate HA_CS31_CONTROL_VISU_PH online mode

The color of the variables has the following meaning:
● White: Actual FALSE and should be FALSE in normal operation.
● Green: Actual TRUE and should be TRUE in normal operation.
● Yellow: Actual FALSE but should be TRUE in normal operation.
● Red: Actual TRUE but should be FALSE in normal operation

Colors

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2075

Variable Access Way of Access Description *)
EN R To enable the function block with

value TRUE.

ETH_SLOT R Slot number for UDP data
exchange.

IP_ADR_CPU_A R IP address of CPU A.

IP_ADR_CPU_B R IP address of CPU B.

ACK_CHG_OVER R/W Toggle Acknowledgement for switch over.

MANUAL_CHG_OV
ER

R/W Toggle Manual change over

DONE R Execution finished when output
DONE=TRUE.

ERR R Error occurred during execution
when output ERR=TRUE.

ERNO R Error code.

*) all elements refer to the function block instance replaced for the placeholder FB.

All inputs of the HA_CS31_DATA_SYNC function block which are not connected to a variable
(left open) can be written from this faceplate. So the function block can be controlled from the
visualization as long as the inputs are left open. The color of the background can be changed by
writing a value to the global variable dwAcsVisuBackgroundColor. The color of the title can be
changed by writing a value to the global variable dwAcsVisuTitleColor.

All inputs of the HA_CS31_ DIAG_EXTD_VIA_CM574-RS function block which are not con-
nected to a variable (left open) can be written from this faceplate. So the function block can be
controlled from the visualization as long as the inputs are left open. The color of the background
can be changed by writing a value to the global variable dwAcsVisuBackgroundColor. The color
of the title can be changed by writing a value to the global variable dwAcsVisuTitleColor.

HA_CS31_DATA_SYNC_VISU_PH - Visualization

Visualization element HA_CS31_DATA_SYNC_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of the HA_CS31_DATA_SYNC function block.
Visualization can also be used to control the function block by those inputs which are not
connected inside the program.
The following figures demonstrate visualization in the offline and online mode:

Visualization
parameters

Description

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2076

Fig. 135: HA_CS31_Visualization_SYNC_offline

Fig. 136: HA_CS31_Visualization_SYNC_online

The color of the variables has the following meaning:
● White: Actual FALSE and should be FALSE in normal operation.
● Green: Actual TRUE and should be TRUE in normal operation.
● Yellow: Actual FALSE but should be TRUE in normal operation.
● Red: Actual TRUE but should be FALSE in normal operation

Variable Access Description *)
EN R To enable the function block with value TRUE.

LEN R Function block instance input (via SIZEOF-
operator) for size.

DONE R Execution finished when output DONE=TRUE.

ERR R Error occurred during execution when output
ERR=TRUE.

ERNO R Error code.

*) all elements refer to the function block instance replaced for the placeholder FB.

Colors

Visualization
parameters

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2077

All inputs of the HA_CS31_DATA_SYNC function block which are not connected to a variable
(left open) can be written from this faceplate. So the function block can be controlled from the
visualization as long as the inputs are left open. Background color can be changed by writing a
value to the global variable dwAcsVisuBackgroundColor. Title color can be changed by writing a
value to the global variable dwAcsVisuTitleColor.

HA_CS31_DIAG_EXTD_VIA_CM574_VISU_PH - Visualization

Visualization element HA_CS31_DIAG_EXTD_VIA_CM574_VISU_PH can be used to
show the actual values of all inputs and outputs of the instance of the
HA_CS31_DIAG_EXTD_VIA_CM574 function block. The visualization could also be used to
control the function block by those inputs which are not connected inside the program.
The following figure describes visualization in the offline and online mode:

Fig. 137: HA_CS31_DIAG_EXTD_VIA_CM574_offline

Fig. 138: HA_CS31_DIAG_EXTD_VIA_CM574_online

The color of the variables has the following meaning:
● White: Actual FALSE and should be FALSE in normal operation.
● Green: Actual TRUE and should be TRUE in normal operation.
● Yellow: Actual FALSE but should be TRUE in normal operation.
● Red: Actual TRUE but should be FALSE in normal operation

Description

Colors

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2078

Variable Access Description *)
EN R To enable the function block with value TRUE.

SLOT R Slot number of the CS31 master.

COM R COM port number of the CS31 master.

DONE R Execution finished when output DONE=TRUE.

ERR R Error occurred during execution when output
ERR=TRUE.

ERNO R Error code.

BOOL_OUT_EQ R Each bit of the DWORD represents identical
output buffer for BOOL data.

BOOL_OUT_DIFF R Output buffer with different BOOL data.

ANALOG_OUT_EQ R Each bit of the DWORD represents identical
output buffer for analog data.

ANALOG_OUT_DIFF R Output buffer with different analog data.

*) all elements refer to the function block instance replaced for the placeholder FB.

All inputs of the HA_CS31_ DIAG_EXTD_VIA_CM574 function block which are not connected
to a variable (left open) can be written from this faceplate. So the function block can be
controlled from the visualization as long as the inputs are left open. Background color can be
changed by writing a value to the global variable dwAcsVisuBackgroundColor. Title color can be
changed by writing a value to the global variable dwAcsVisuTitleColor.

HA_CS31_DIAG_EXTD_VISU_PH - Visualization

Visualization element HA_CS31_DIAG_EXTD_VISU_PH can be used to show the actual values
of all inputs and outputs of the instance of the HA_CS31_DIAG_EXTD function block. The
visualization could also be used to control the function block by those inputs which are not
connected inside the program.
The following figure describes the visualization in the offline and online mode:

Fig. 139: HA_CS31_DIAG_EXTD_VISU_PH_offline

Visualization
Parameters

Description

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2079

Fig. 140: HA_CS31_DIAG_EXTD_VISU_PH_online

The color of the variables has the following meaning:
● White: Actual FALSE and should be FALSE in normal operation.
● Green: Actual TRUE and should be TRUE in normal operation.
● Yellow: Actual FALSE but should be TRUE in normal operation.
● Red: Actual TRUE but should be FALSE in normal operation

Variable Access Description *)
EN R To enable the function block with value TRUE.

DONE R Execution finished when output DONE=TRUE.

ERR R Error occurred during execution when output
ERR=TRUE.

ERNO R Error code.

BOOL_OUT_EQ R Each bit of the DWORD represents identical
output buffer for BOOL data.

BOOL_OUT_DIFF R Output buffer with different BOOL data.

ANALOG_OUT_EQ R Each bit of the DWORD represents identical
output buffer for analog data.

ANALOG_OUT_DIFF R Output buffer with different analog data.

*) all elements refer to the function block instance replaced for the placeholder FB.

All inputs of the HA_CS31_ DIAG_EXTD function block which are not connected to a variable
(left open) can be written from this faceplate. So the function block can be controlled from the
visualization as long as the inputs are left open. Background color can be changed by writing a
value to the global variable dwAcsVisuBackgroundColor. Title color can be changed by writing a
value to the global variable dwAcsVisuTitleColor.

Colors

Visualization
parameters

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2080

HA_CS31_DIAG_VIA_CM574_VISU_PH - Visualization

Visualization element HA_CS31_DIAG_VIA_CM574_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of the HA_CS31_DIAG_VIA_CM574 function
block. The visualization could also be used to control the function block by those inputs which
are not connected inside the program.
The following figures describe visualization in the offline and online mode:

Fig. 141: HA_CS31_DIAG_VIA_CM574_VISU_PH_offline

Fig. 142: HA_CS31_DIAG_VIA_CM574-RS_VISU_PH_online

The color of the variables has the following meaning:
● White: Actual FALSE and should be FALSE in normal operation.
● Green: Actual TRUE and should be TRUE in normal operation.
● Yellow: Actual FALSE but should be TRUE in normal operation.
● Red: Actual TRUE but should be FALSE in normal operation

Variable Access Description *)
EN R To enable the function block with value TRUE.

SLOT R Slot number of the CS31 master.

COM R COM port number of the CS31 master.

DONE R Execution finished when output DONE=TRUE.

Description

Colors

Visualization
parameters

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2081

Variable Access Description *)
ERR R Error occurred during execution when output

ERR=TRUE.

ERNO R Error code.

NUM_SLV_CFG R Number of configured CI590-CS31-HA slave
modules on COM.

NUM_SLV_ACT R Number of CI590-CS31-HA slave modules
active on CS31 Bus.

ACTIVE_SLV R Each bit of the DWORD indicates the active
slave modules CI590-CS31-HA.

ERR_MIX_WIRING R Error bit indicating mix wiring between Bus 1
and Bus 2.

*) all elements refer to the function block instance replaced for the placeholder FB.

All inputs of the HA_CS31_ DIAG_VIA_CM574 function block which are not connected to a
variable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open. Background color can be changed by
writing a value to the global variable dwAcsVisuBackgroundColor. Title color can be changed by
writing a value to the global variable dwAcsVisuTitleColor.

HA_CS31_DIAG_VISU_PH - Visualization

Visualization element HA_CS31_DIAG_VISU_PH can be used to show the actual values of
all inputs and outputs of the instance of HA_CS31_DIAG function block. The visualization can
also be used to control the function block by those inputs which are not connected inside the
program.
The following figure describes visualization in offline and online mode:

Fig. 143: HA_CS31_DIAG_VISU_PH_offline

Description

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2082

Fig. 144: HA_CS31_DIAG_VISU_PH_online

The color of the variables has the following meaning:
● White: Actual FALSE and should be FALSE in normal operation.
● Green: Actual TRUE and should be TRUE in normal operation.
● Yellow: Actual FALSE but should be TRUE in normal operation.
● Red: Actual TRUE but should be FALSE in normal operation

Variable Access Description *)
EN R To enable the function block with value TRUE.

COM R COM port number of CS31 master.

DONE R Execution finished when output DONE=TRUE.

ERR R Error occurred during execution when output
ERR=TRUE.

ERNO R Error code.

NUM_SLV_CFG R Number of configured CI590-CS31-HA slave
modules on COM.

NUM_SLV_ACT R Number of CI590-CS31-HA active slave
modules on CS31 Bus.

ACTIVE_SLV R Each bit of the DWORD indicates the active
CI590-CS31-HA slave modules.

ERR_MIX_WIRING R Error bit indicating mix wiring between Bus 1
and Bus 2.

*) all elements refer to the function block instance replaced for the placeholder FB.

All inputs of the HA_CS31_ DIAG function block which are not connected to a variable (left
open) can be written from this faceplate. So the function block can be controlled from the
visualization as long as the inputs are left open. Background color can be changed by writing a
value to the global variable dwAcsVisuBackgroundColor. Title color can be changed by writing a
value to the global variable dwAcsVisuTitleColor.

Colors

Visualization
parameters

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2083

Structures

stTON_TOFFSyncData Structure for synchronized TON and TOFF
data.

zHA_CS31_PID_DV500_DATA_TYPE Structure for synchronization data for
HA_CS31_PID_DV500.

zHA_CS31_PID_FIX-
CYCLE_DV500_DATA_TYPE

Structure for synchronization data for
HA_CS31_PID_FIXCYCLE_DV500.

Global variables

Group: HA_Global_Variables Description
fG_HA_PRIMARY State of the AC500 CPU:

FALSE: PM acts as secondary.
TRUE: PM acts as primary.

fG_HA_PM1_PRIMARY Indication of primary PM.
FALSE: PM1/ IP1 is not primary.
TRUE: PM1/ IP1 acts as primary.

fG_HA_CPU_STOP Indication of PLC Stop status.
FALSE: Indicates the CPU in Run mode.
TRUE: Indicates the CPU in Stop mode.

fG_HA_Err High Availability error state.

wG_HA_ErNo High Availability error code.

bitG_Data_ERR High Availability error state for data synchroni-
zation.

wG_Data_ERNO High Availability error code for data synchroni-
zation.

dwG_HA_OwnIP Own IP address on synchronization link con-
nection.

dwG_HA_OtherIP Other PMs IP address on synchronization link
connection.

bG_HA_Slot Slot of interface to synchronization link con-
nection.

dwG_HA_ServerAlive Life counter incremented by OPC server.

byLastDataDelay Variable to store last delay in data exchange.

bitRefreshDataDelay Bit to refresh data delay.

byCntDataDelay Data delay counts.

wETH_Life Ethernet life count.

dwHATimersBaseTime High Availability base timer.

Group: HA_VISU_COLOR_INFO Description
dwHaVisuBackgroundColor Visualization elements background color

16#00<G><R>.

dwHaVisuTitleColor Visualization elements title background color
16#00<G><R>.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2084

Appendix
Table: Call names of HA function blocks

Used abbreviations:
● FBhv: Function block with historical values
● FBnohv: Function block without historical values
● F: Function

POU Name Type Function
HA_CS31_CALLBACK_STOP F High Availability CPU STOP event function

HA_CS31_CONTROL FBhV High Availability control function block

HA_CS31_CTD FBhV High Availability count down counter function block

HA_CS31_CTU FBhV High Availability count up counter function block

HA_CS31_CTUD FBhV High Availability Up/down counter function block

HA_CS31_DATA_SYNC FBhV High Availability data synchronization function block

HA_CS31_DIAG_ON_CM574 FBhV High Availability diagnosis function block for CM574-
RS CS31 line used in CM574-RS

HA_CS31_DIAG FBhV High Availability diagnosis function block for CPU
COM1 CS31 line

HA_CS31_DIAG_EXTD FBhV High Availability extended diagnosis function block for
CPU COM1 CS31 line

HA_CS31_DIAG_EXTD_VIA_
CM574

FBhV High Availability extended diagnosis function block for
CM574-RS CS31 line used in CPU

HA_CS31_DIAG_VIA_CM574 FBhV High Availability diagnosis function block for CM574-
RS CS31 line used in CPU

HA_CS31_INTEGRAL FBhV High Availability integral function block

HA_CS31_PID FBhV High Availability PID controller function block

HA_CS31_PID_FIXCYCLE FBhV High Availability PID controller with fix cycle function
block

HA_CS31_RAMP_INT FBhV High Availability ramp function block with integer

HA_CS31_RAMP_REAL FBhV High Availability ramp function block with real

HA_CS31_TOF FBhV High Availability off delay timer function block

HA_CS31_TON FBhV High Availability on delay timer function block

Table: HA library versions and runtime system details

High Availability Library
Library name HA_CS31_

AC500__V.
V13.lib
(V1.3.0)

HA_CS31_AC50
0_V20.lib
(V2.0.0)

HA_CS31_AC500_
V23.lib (V2.3.0)

HA_CS31_AC50
0_V23.lib (V2.4)

Tested with firmware
version

V13 V20 V23 V24

Number of supported
CS31 buses

1 1 1 7 (6 via 3
CM574
modules)

Functions and function blocks

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2085

HA_CS31_CALL-
BACK_STOP (pro-
gram)

x x NA NA

HA_CS31_CALL-
BACK_STOP (func-
tion)

NA NA x x

HA_CS31_CONTROL x x x x

HA_CS31_DATA_SY
NC

x x x x

HA_CS31_DIAG x x x x

HA_CS31_DIAG_VIA
_CM574

NA NA NA x

HA_CS31_DIAG_ON
_CM574

NA NA NA x

HA_CS31_DIAG_EXT
D

x x x x

HA_CS31_DIAG_EXT
D_VIA_CM574

NA NA NA x

HA_CS31_CTD x x x x

HA_CS31_CTU x x x x

HA_CS31_CTUD x x x x

HA_CS31_INTE-
GRAL

x x x x

HA_CS31_PID x x x x

HA_CS31_PID_DV50
0

NA NA NA x

HA_CS31_PID_FIX-
CYCLE

x x x x

HA_CS31_PID_FIX-
CYCLE_DV500

NA NA NA x

HA_CS31_RAMP_IN
T

x x x x

HA_CS31_RAMP_RE
AL

x x x x

HA_CS31_TOF x x x x

HA_CS31_TON x x x x

Glossary

Variables of the type BOOL can have the values TRUE and FALSE. For this, 8 bit of memory
space are reserved.

BYTE belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

BOOL

BYTE

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2086

Table 121: For integer data types the following range limits are valid:
TYPE BYTE
Lower limit 0

Upper limit 255

Memory space 8 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

DINT belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

Table 122: For integer data types the following range limits are valid:
TYPE DINT
Lower limit -2147483648

Upper limit 2147483647

Memory space 32 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

DWORD belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

Table 123: For integer data types the following range limits are valid:
TYPE DWORD
Lower limit 0

Upper limit 4294967295

Memory space 32 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

INT belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

Table 124: For integer data types the following range limits are valid:
TYPE INT
Lower limit -32768

Upper limit 32767

Memory space 16 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

WORD belongs to the integer data types. The different numerical types are responsible for a
different numerical range.

DINT

DWORD

INT

WORD

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2087

Table 125: For integer data types the following range limits are valid:
TYPE WORD
Lower limit 0

Upper limit 65535

Memory space 16 bits

Due to this, it is possible that information are lost when converting greater data types to smaller
data types.

Functions are subroutines which have multiple input parameters and return exactly one result
element. The returned result can be of an elementary or a derived data type. Due to this,
a function may also return an array, a structure, an array of structures and so on. For the
same input parameters, functions always return the same result (they do not have an internal
memory).
Therefore, the following rules can be derived:
● Within functions, global variables can neither be read nor written.
● Within functions, absolute operands can neither be read nor written.
● Within functions, function 'Function Blocks' must not be called.

Function blocks are subroutines which can have as many inputs, outputs and internal variables
as required. They are called from a program or from another function block. As they can be
used several times (with different data records), function blocks (code and interface) can be
considered as type. When assigning an individual data record (declaration) to the function
block, a function block instance is generated. In contrast to functions, function blocks can con-
tain statically local data which are saved from one call to the next. Therefore e.g. counters can
be realized which may not forget their counter value. I.e. function blockscan have an internal
memory.
Functions and function blocks differ in two essential points:
● A function block has multiple output parameters, a function only one. The output parameters

of functions and function blocks differ syntactically.
● In contrast to a function, a function block can have an internal memory.

For function blocks with historical values it has to be observed that instance names may not be
defined several times if different data sets should be called.

For function blocks without historical values only one instance has to be defined for the function
block type. This instance can be used for several calls of the function block (also with different
I/O values).

1.5.5.2 AC500 HA-Modbus TCP
1.5.5.2.1 Safety instructions and preconditions to use HA-Modbus TCP library

Consider the following before using the libraries:
● All pertinent state, regional, and local safety regulations must be observed when installing

and using this product. When functions or devices are used for applications with technical
safety requirements, the relevant instructions must be followed.

● Read the complete safety instructions of the user's manuals for the drives you are using,
before installation and commissioning.

● Read all Ä Chapter 1.6.1.1 “Safety instructions” on page 3697 for the AC500 PLC.
● Read the user information of the devices and functions you are using, see Automation

Builder online help.

Functions

Function blocks

Function blocks
with historical
values
(memory)
Function blocks
without histor-
ical values
(memory)

Safety
instructions

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2088

The library package has been released for the software and firmware versions listed in the
readme file of Automation Builder only (see “Help è Automation Builder Release Notes”) .
In no event will ABB or its representatives be liable for loss of data, profits, revenue or conse-
quential, incidental or other damage that may result from the use of other versions of product,
software or firmware versions. The error-free operation of the HA library with other devices,
software or firmware versions should be possible but cannot be guaranteed and may need
adaptations e.g. of example programs.

CAUTION!
Generally, the user in all applications is fully and alone responsible for checking
all functions carefully, especially for safe and reliable operation.

The function blocks contained in the library can be executed only in RUN mode
of the PLC, but not in simulation mode.

1.5.5.2.2 HA-Modbus TCP - System technology
The AC500 High Availability system

The AC500 High Availability system is designed for the demand of automation systems that
require a higher availability, which is realized by redundant devices and communications.
The redundancy concept reduces the risk of losing production due to failure of parts of the
automation system and thereby minimizes scheduled idle times.
For instance, control can be taken over by the secondary station automatically if the primary
station fails.
AC500 High Availability system implements redundancy based on standard AC500 PLCs:
● PLC
● Field communication
● SCADA communication

General differences in high availability / redundancy systems are in which way and how fast the
switchover between redundancies happens.
● Cold standby: A replacement system is there but not up and running - Process has (to

allow) to completely stop for switchover – e.g. outputs may go to zero.
● Warm standby: Both CPU may be running (= warm) but e.g. communication need to be

started/stopped for switch-over - Process needs to tolerate longer freeze times e.g. on
outputs - e.g. several seconds.

● AC500 High Availability systems are "hot-standby":
– Redundant CPUs and all communications are always up and running (hot)
– Continuous failure detection in both CPU´s and mutual exchange of status
– Continuous synchronization of critical/historical data from primary to secondary
– Automatic switch-over in very short time in case of any failure in primary CPU

Preconditions of
HA-Modbus TCP
library

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2089

Fig. 145: Principle AC500 HA-Modbus TCP architecture example based on Ethernet redun-
dancy

Details of AC500 HA operation along the figure above:
● PLC redundancy: The two PLCs (A and B) are running in parallel and calculating and

reading.
One is “primary” = active, which means also writing data to field devices.
The other one is “secondary” (= stand-by), also calculating but only reading data from field
and receiving synchronization (or short = sync) data from the primary.

● Synchronisation data are critical internal variables with e.g. historical content, which will
be transmitted from primary to secondary CPU over the sync connection, so that secon-
dary always has the latest data and can take over immediately. Automatically synced are
the historic data of the special HA library function blocks (like counters, timers, integral
controllers, …), additional Data e.g. of events and diagnosis can be synced by the user
with sync blocks. The sync connection also transmits a “lifecom1” signal (back and forth)
containing diagnosis data of each CPU, so that both CPU know the status of the other CPU.
If secondary CPU receives no “lifecom1” anymore it assumes that primary CPU has a failure
and takes over primary status. If the sync connection is broken both CPUs would try to
adopt primary status, therefore, a separate connection “lifecom2” is used to differential a
“sync link” failure from an “other PLC” failure. The “lifecom2” should be routed via a different
physical communication path than the data sync/lifecom1, e.g. the Field or SCADA network.

● The field I/O connection is performed via the Ethernet protocol ModbusTCP - connecting
the CI52x devices (Ä Chapter 1.6.2.8.5.1 “CI521-MODTCP” on page 4864 or Ä Chapter
1.6.2.8.5.2 “CI522-MODTCP” on page 4904).

For high availability/redundancy of the field or SCADA network, proven Ethernet network redun-
dancy mechanisms are used. (In AC500 this is assumed to be realized by at least 2 (to avoid a
single point of failure) external, managed switches), which has the advantage to be able to use
AC500 HA with any faster redundancy mechanism / protocol.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2090

● For the I/O communication with CI52x modules two variants exist (see online help: PLC
Automation with V2 CPUs ➔ PLC integration ➔ Device specifications ➔ Communication
interface modules (S500) ➔ Modbus XY)
For smaller systems, the CI52x modules can be directly daisy chained (as in previous figure
above) if MRP (Media Redundancy Protocol) or DLR (Device Level Ring) is used. Ci52x are
not actively participating in ring recovery however, a special FW allows fast ring detection
and very short freeze times. Larger systems with e.g. many IO and clusters typically anyway
connect to the network via a dedicated managed switch.

● SCADA connection is redundant by nature of the two Ethernet ports and can be extended
with further redundancy level as well by managed switches. SCADA itself can also switch
the primary PLC to ensure communication to the active PLC in case of a simple connection
and a connection failure. If the redundancy mechanism of the OPC DA server is not used,
SCADA level itself must be able to handle and differentiate primary and secondary PLC and
IP addresses based on the HA-status bits. For CP600 a script exists to do the same for
Modbus or AC500 communication protocol.

In most PLC applications the critical components to fail are, beneath PLC, typically the power
supply or communication components such as wires or switches. Therefore a SPOF (Single
Point Of Failure) has to be avoided by adding redundant devices or redundancy functions
wherever a failure likelihood is high and failures are not tolerable.
HA core functionality typically can tolerate only a single failure in the different levels. Then, a
repair of the failed part is highly advised to achieve and ensure redundancy again. As shown
in the above figure, the I/O-network cabling already provides a second independent redundancy
layer e.g. for cable failure by its redundancy mechanism (e.g. ring), which can keep up commu-
nication without switching the PLCs: There a second failure in the PLC level could be tolerated
as long as both connecting, managed switched still work, but it is highly advised to repair
immediately anyway.

The AC500 High Availability system itself only takes care of the first fault. For
example, in case of a second fault the primary PLC remains primary PLC
until the second fault occurs. This results in no further switchovers (manual
switchovers included).

Due to the efficient data sync mechanism, which allows data sync over normal and shared
ethernet networks, with a well-planned communication network, the PLCs can operate geo-
graphically separated (by many 10th of kilometers). So even in catastrophic events with full
mechanical destruction still one PLC will be available to control the process or infrastructure.
The secondary PLC or single CI52x modules can be exchanged in a running system without
interruption of the primary PLC or the process. (Check document in “Examples” directory of
Automation Builder if HA package was installed.)

In order to achieve high availability, the CODESYS application must be enhanced with HA
function blocks, from the HA-Modbus TCP library and the CI52x library. If the bulk data manager
tool (BDM) is used for configuring the System and I/O modules - this is done automatically
for the basic initial configuration step by code creation resulting in a prepared user specific
“template” application (see below).
● HA-Modbus TCP library contains HA control and HA utility function blocks

– HA control function blocks manage the core HA functionality by collecting diagnosis and
switching if necessary.

– HA utility function blocks provide standard functions in the application program with
internal sync for integral data e.g. timers, counters, PI control.

● CI52x library contains a function block to configure and communicate to the communication
interface modules and ensures that only the primary PLC writes to the outputs. The inputs
are read by both PLCs.

● For both PLCs the same application must be used/downloaded.

Libraries

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2091

For configuration of the CI52x Modbus TCPs, a separate Bulk Data Manager tool (BDM) is
provided. Especially in larger systems usage of BDM is recommended to comfortably engineer
HA and create CI52x related configuration and variable data in one place:
● Configuration and parameters of the used I/O modules
● Program code creationfor variable naming, configuration, communication and all basic HA

functionality
The BDM tool can serve SCADA programming and documentation as well in an efficient
manner.

Hardware, requirements and options overview
Two same type AC500 PLCs are required as central hardware components. Each PLC is
equipped with at least two Ethernet ports at a processor module or at a communication module.
The two PLCs, called PLC A and PLC B, are linked by Ethernet to exchange and synchronize
information (Sync). Connections to the AC500 peripheral field devices (I/O) are performed via
Ethernet as well.
For further information on which CPU type and library to be used refer to Ä Table 126 “Over-
view of AC500 HA systems and options” on page 2093.
The following table gives an overview of the different High Availability variants possible with
AC500.
The figures are indicative, depend on chosen architectures, system size, network and CPU/CM
modules used.

Bulk data man-
ager tool (BDM)

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2092

Table 126: Overview of AC500 HA systems and options
Library version HA-CS31 HA-Modbus TCP

CPU version V2 CPUs V2 CPUs V3 CPUs

I/O communication Parallel
serial

Ethernet Ethernet

CPUs PM573 - 595 PM5
73

PM59
1

PM595 PM5630 PM5650 PM5670

Parallel serial I/O network based on Ethernet and ext.edundancy
mechanism

Max. system size
CI52x 1, 6)

3 - 50 2) 3 < 25 /
50

< 60 /
92

< 30 < 50 < 120

I/O modules CI590: S500 CI52x: S500 and S500-eCo usable 4)

Switch-
over

times

CPU 25 -120 ms 3) Typically < 50 ms ~6)

Field 15 - 120 ms
3)

Depends mainly on network size, redundancy mecha-
nism of external switches 7)

SCADA connectivity OPC DA,
IEC60870,

…

OPC DA, IEC60870, … OPC DA, OPC UA, IEC60870,
…

Interfaces Several
CS31 and
Ethernet

Several ETH ports, via
CM597

2 ETH ports 5)

+ 1 CAN Interface

Sync UDP UDP UDP

Lifecom1 - UDP UDP

Lifecom2 - Modbus TCP Modbus TCP / CAN

Overview of AC500
HA system

1) Number of CI52x recommendation based on performance or max. number of sockets (CPU
and CM modules).
For more details of sockets supported in AC500 V2 PLCs refer to Ä Chapter 1.6.4.1.6.1.1.2
“Numbers and usage of Ethernet sockets” on page 5448.
2) Limited by CPU performance, number of CM574 modules number of CS31 clients and
process data limits.
3) Depends on system size and CPU type.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2093

4) For details on certain S500-eCo modules not supported, see the Automation Builder release
notes, Appendix 1.
5) CM597 not available for V3 CPUs.
6) Based on HA bits switchover, depending on failure case Ä Chapter 1.5.5.2.2.3.2 “Use case
descriptions” on page 2100 Ä Chapter 1.5.5.2.2.5.2 “Task configuration recommendations for
HA system” on page 2113.
7) Field network: If CI52x are used with their 2 ports as part of a ring: In the moment of a network
switchover single telegrams may be destroyed: - for V2 ETH onboard: Standard TCP delays
repeats by 500 ms - for V3 CPUs onboard or V2 CPU using CM597: A special HA-FW ensures
fast repeats of typ. ~50ms (settable).

CPU choice, system size and performance indications
The diagrams below indicate the example choices of AC500 CPU's (horizontal axes) based
on the number of communication interface CI-remote I/O clusters (Communication Interface
modules; numbers see legend) used in a system and resulting application cycle times (vertical
axes).
Further details can be found in Ä Chapter 1.5.5.2.2.5.2 “Task configuration recommendations
for HA system” on page 2113. The values in below graphs base on the assumption to use
max. 50-60% as CPU loading by the bare fast IO communication and HA functionality. So the
application load would come on top and cycle times (especially HA, Modbus) need to be relaxed
(made higher) compared to below indication.

Fig. 146: Indication of AC500 CPU's performance (horizontal axes) based on the number of
communication interface CI-remote I/O clusters (Communication Interface modules; numbers
see legend) used in a system and resulting application cycle times (vertical axes).

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2094

Example: If you need a system supporting min. 25 CI at application cycle time around 120 ms,
suitable options based on above graph would be V2 PLCs - PM592 or PM595 and V3 PLCs –
PM5650 or PM5670. The main parameter in the application cycle determination is the amount of
overall Sync data, which is assumed 160 bytes per CI for the smaller systems, up to 250 bytes
per CI for the larger ones. Sync data of the project of in total more than ~1200 byte necessitates
several HA cycles to transfer within one application cycle.
The V2 or V3 PLCs types, also differ in available interfaces, protocols supported and memory
size.
CI521-MODTCP or CI522-MODTCP can be used as peripheral devices which communicate via
the Modbus TCP protocol with the PLCs. The HA-Modbus TCP library supports currently up
to 120 CI52x, depending on the CPU type as listed in Ä Further information on page 2093.
Each CI52x supports up to a maximum of 10 S500-I/O modules. Nevertheless the standard
Modbus TCP communication of the HA library transfers only 120 words per cycle: Therefore
please check if for your module configuration matches: In case of many analog IO modules
with high-density - like 16 channel AI523/AO523 or modules with fast counters - this limit might
be surpassed by roughly 5-6 such modules (to help calculate exactly, there is an Excel sheet
provided in the HA “Examples” subfolder of Automation Builder once installed).
For more details of sockets supported in AC500 V2 PLCs refer to Ä Chapter 1.6.4.1.6.1.1.2
“Numbers and usage of Ethernet sockets” on page 5448.

Local I/O on a CPU can signal / interact for diagnosis or service with / from this
CPU. This local I/O is not redundant and won't be available to communicate to
in case of a CPU failure.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2095

Hardware connections

Fig. 147: AC500 HA and SCADA connection

SCADA/ Engineering connection is done using ETH ports of both PLCs and one or several
managed Ethernet switches depending on the redundancy requirements in the Ethernet levels.
● HA communication between PLC A and PLC B must be done via two physical connections

between PLC A and PLC B in order to distinguish a “sync link” failure from another PLC
failure:
– Sync (including “lifecom1”) over Ethernet
– “Lifecom2”

over Ethernet (Modbus TCP): Can be combined with Field or SCADA network or a
separate Ethernet network
over CAN (only possible with AC500 V3 CPU)

● Field devices (CI52x modules) will be connected via Ethernet switches, forming a redundant
network (if requested). For details on network configuration see Ä Chapter 1.5.5.2.2.5.3
“Field I/O network topologies” on page 2115.

The following table shows possible combinations of connections for different CPU types. There
must be at least two physical connections. The availability can be increased with a third physical
connection, e.g. CM597 for AC500 V2 CPUs or CAN for AC500 V3 CPUs.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2096

1 ETH1 (orange)
2 ETH2 (green)
3 CAN (blue, applicable only in V3)
11 CM597 communication module at slot1 (grey)

The blue box indicates the example which is used in the next chapters.
The numbers in the figure above define the slot on which the connection is made. Last line # of
physical connections define how many physical interfaces are used or connected between the
PLCs.
It is also possible to realize an HA system without a communication interface CI module see
chapter Ä Chapter 1.5.5.2.2.6.1.1 “Configuration without communication interface modules to
establish redundancy” on page 2119.

Hardware Example
HA hardware configuration based on V3 PLC to explain the minimal recommended Ethernet
port configuration.
● The Sync connection is performed via SCADA network, the
● “lifecom2” is performed via field network (or the other way around).
The following figure represents the connection example with the details from the highlighted box
(see previous figure).

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2097

Fig. 148: Physical connection example: 2 ETH CPUs combining sync data / “lifefcom2” with
SCADA / Field I/O network

Support of I/O modules (S500/S500-eCo) depends on the version of the library
package. See the version details of the library in the Automation Builder release
notes.

Functionality
Failures and use cases

The AC500 High Availability system performs a switch-over whenever the primary PLC is
powered off, crashed or stopped or if the primary PLC loses fieldbus communication (cut of ETH
or defect MRP switch) while the secondary PLC still has connection.
In the following the different use cases and reaction times are outlined.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2098

Fig. 149: HA use cases – failures, assuming PLC A is primary and “lifecom2” over field network

The below use case table with reaction and diagnosis messages are based on the setup where
Sync is via SCADA network, “lifecom2” over field network and PLC A is primary.

Case Use case Reaction Diagnosis message
on
*)

1 Primary PLC is powered off,
crashed or stopped.

Switchover to secondary
PLC. CI52x outputs are
frozen during switchover
period.

Secondary

2 Secondary PLC is powered
off, crashed or stopped.

No switchover, process con-
tinues.

Primary

3 Primary PLC loses con-
nection to fieldbus CI52x
modules while secondary
PLC still has a connection.

Switchover to the secon-
dary PLC. CI52x outputs
are frozen during switchover
period.

Primary

4 Secondary PLC loses con-
nection to one or more CI52x
modules.

No switchover, process con-
tinues.

Secondary

5 CI52x module is stopped/
powered off.

No switchover, process con-
tinues.

Primary and secon-
dary

6 Connection lost in Field
Ethernet network.

Depending on Ethernet net-
work structure, and redun-
dancy mechanisms used a
reconfiguration time exists.

Lifecom2 lost and CI
module lost errors will
be generated in pri-
mary and secondary.

7 Sync and/ or “lifecom2” are
broken.

No switchover, process con-
tinues.

Primary and secon-
dary

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2099

Case Use case Reaction Diagnosis message
on
*)

8 Primary PLC loses connec-
tion to SCADA.

SCADA is responsible to
detect and to switch over.

-

9 Secondary PLC loses con-
nection to SCADA.

SCADA is responsible to
detect and to switch over.

-

10 SCADA is broken SCADA is responsible to
detect and to switch over.

-

11 Manual switchover by the
user.

Switchover to the secon-
dary PLC. CI52x outputs
are frozen during switchover
period.

-

*) Diagnosis description, see function block description.

Use case descriptions
The below cases explain the behavior of the system during different use cases.
Basic diagnosis information is provided for each case. For diagnosis description refer to
Ä Chapter 1.5.5.2.2.8 “Diagnosis” on page 2124.

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary PLC.

Comment CI52x outputs are frozen during switchover
period.

Diagnosis message on function block Primary PLC is powered off.
Secondary PLC: control block output Runtime
Error = 16#001E and xHaModPrimary = TRUE

Case 1 a): Pri-
mary PLC is
powered off or
crashes

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2100

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary PLC.

Comment CI52x outputs are frozen during switchover
period.

Diagnosis message on function block Primary PLC is stopped.
Secondary PLC: control block output Runtime
Error = 16#0016 and xHaModPrimary = TRUE

If “lifecom2” is lost and the PLC is in STOP mode RUNTIME ERROR will not
be TRUE. This is because Modbus is still responding even if PLC is in STOP
mode.

Case 1 b): Pri-
mary PLC is
stopped

Case 2 a): Sec-
ondary PLC is
powered off or
crashes

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2101

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#001E and xHaModPrimary = TRUE
Secondary PLC is stopped.

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0016 and xHaModPrimary = TRUE
Secondary PLC is stopped.

If “lifecom2” is lost and the PLC is in STOP mode RUNTIME ERROR will not
be TRUE. This is because Modbus is still responding even if PLC is in STOP
mode.

Case 2 b): Sec-
ondary PLC
stop

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2102

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary.

Comment CI52x outputs are frozen during the switch-
over period.

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0094 and xHaModPrimary =
FALSE
Secondary PLC: control block output Runtime
Error = 16#0015 and xHaModPrimary = TRUE

Case 3: Primary
PLC loses con-
nection to
fieldbus CI52x
modules

Case 4: Secon-
dary PLC loses
connection to
fieldbus CI52x
modules

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2103

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0015 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0094 and xHaModPrimary =
FALSE

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0081 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0081 and xHaModPrimary =
FALSE

If any CI52x-MODTCP module is powered off and on, there is no need to
power restart the complete system. The module will be recognized once the
communication is reestablished.

Case 5: CI52x is
powered off or
stopped

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2104

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0014 / 16#0094 and xHaModPri-
mary = TRUE
Secondary PLC: control block output Runtime
Error = 16#0014 / 16#0094 and xHaModPri-
mary = FALSE

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0008 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0008 and xHaModPrimary =
FALSE

Case 7 a): Sync
connection is
broken between
the PLCs

Case 7 b):
Lifecom2 con-
nection is lost
between the
PLCs

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2105

Reaction No switchover

Comment Process continues, SCADA is responsible to
detect and switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0000 and xHaModPrimary =
FALSE

Case 8: Primary
PLC loses
SCADA connec-
tion

Case 9: Secon-
dary PLC loses
SCADA connec-
tion

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2106

Reaction No switchover

Comment Process continues, SCADA is responsible to
detect and switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0000 and xHaModPrimary =
FALSE

SCADA link may be combined with sync connection or “lifecom2” connection. In
that case runtime error and system behavior will be as described in the cases
above (Sync connection lost / “lifecom2” connection broken).

Reaction Changeover from primary PLC to secondary
PLC.

Comment CI52x outputs will be frozen during switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary =
FALSE
Secondary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE

A manual switchover can be triggered from both PLCs. For each trigger a
switchover from primary PLC to secondary PLC will take place.

How to get and install the AC500 High Availability system package
The PS5601- High Availability Modbus library package can be installed from the Automation
Builder Installation Manager by selecting the component.

Case 11: Manual
changeover by
user

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2107

Fig. 150: Automation Builder Installation Manager

The following components are installed:
● Libraries

– AC500 V2 libraries: C:\Program Files (x86)\Common Files\CAA-Tar-
gets\ABB_AC500\AC500_V12\library\PS5601-HA-MTCP
CI52x_AC500_Vxx.lib, HAModbus_AC500_Vxx.lib.

– AC500 V3 libraries available in library repository:
ABB_CI52x_AC500.compiled-library, ABB_HaModbus_AC500.compiled-library

● Online help: HA-CS31, HA Modbus V2 function block description
● Automation Builder Example folder: C:\Users\Public\Documents\AutomationBuilder\Exam-

ples\PS5601-HA-MTCP
– AC500_V2: Examples for AC500 V2 including documentation
– AC500_V3: Examples for AC500 V3 including documentation
– BulkDataManager: Bulk Data Manager (BDM) tool which helps efficient engineering in

larger projects. This requires a separate installation. Further information can be found
in the document: C:\Users\Public\Documents\AutomationBuilder\Examples\PS5601-HA-
MTCP\BulkDataManager\Documentation.

– HA-Modbus TCP System Technology.pdf (this document)

System structure
This chapter explains the detailed structure of the HA system in CODESYS. A HA-Modbus TCP
system is characterized by two AC500 PLCs with the following features:
● Identical programs (application with additional HA and Modbus function blocks) that are

loaded to both PLCs.
● Communication interface modules CI52x-MODTCP that are connected via Modbus TCP.
● Synchronization of both PLCs (sync/lifecom1 and lifecom2 logical connections).

Programming
Each PLC contains at least three main tasks/ programs:
● HA program
● Application program
● Modbus program

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2108

The programs in one PLC communicate via internal structures of the libraries and dedicated
internal memory areas for HA-Sync array and the Modbus CI52x memory(ies) CiModDataxx.

Fig. 151: Principle structure of the HA system and recommended tasks: HA, Modbus, Applica-
tion

Table 127: Image description
Layout element Meaning
Dotted outline box Indicates optional function block or programs.

Solid outline box Indicates the mandatory function blocks or
programs. All mandatory blocks are called
when an export is created from Bulk data
manager.

Italic font Indicates the program or functions user should
call in his project and not created by Bulk data
manager.

Light yellow background block / blue arrow Indicates the operations which are handled
internally in the library.

Green solid box Indicates the three different tasks which user
has to configure.

The function block CIModCI52x (V3) / CI_MOD_CI52x (V2) reads the input values from the
CI52x modules and stores them in the structure CiModDataxx. If the CPU is primary it also
writes the outputs to the CI52x modules. The Function block also parametrizes the CI Module
as configured in e.g. Bulk data manager tool during the first startup or when a CI module is
exchanged.

Modbus pro-
gram

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2109

Normally the HA-Modbus TCP library takes care of communication monitoring.
Nevertheless if com- munication is cut completely, the CI52x communication
interfaces and its I/O modules have to react on their own to achieve a bumpless
or desired behavior: The following parameters for the CI52x com- munication
interfaces and I/O modules need to be considered:

– – CI52x: parameter “Timeout" for Bus supervision: 2)

Allows to detect errors from communication interface side as well and take
action to ensure a fail- safe behavior if communication is cut. It can be set in
10 ms steps. If set to 0 no bus supervision is active. Proposed value: 50 =
500 ms = default in Bulk data manager; this value should be increased, e.g.
to value 65 if AC500 V2 CPU ports are used for field communication to take
care of the larger TCP retransmit time.

– “Behaviour Outputs” at “Timeout for Bus supervision” 1), 2). This fail-safe
parameter has to be con- sciously set: separate settings are possible for
each module (and communication interface): “off”; “last” or “substitute”: 5 s,
10 s, ∞ s 1).

Remarks:
1) The parameters “Behaviour Outputs at comm. Error” is only analyzed if the
Failsafe-mode is [ON].
2) Both are CI52x parameters set e.g. via Bulk data manager tool in the pro-
gram.

● At the start of the application task the InputRefresh program has to be called. It copies data
from Modbus via the structure CiModDataxx to the user variables, which were defined in
BDM as signals. For further information refer to BDM documentation, chapter 7 which is
available in the path: C:\Users\Public\Documents\AutomationBuilder\Examples\PS5601-HA-
MTCP\BulkDataManager\Documentation.

● Only the main application programs should be in this task and use these variables
for the user defined functions. E.g here the user programs and logic should be called
and use the HA libraries utility blocks (which sync their historic data automatically) and
HA_MOD_DATA_SYNC blocks for further user data which should be synchronized.

● Data of utility blocks and HA_MOD_DATA_SYNC blocks are copied to the HA Sync array of
the primary CPU (which is sent to the secondary CPU by the HA program).

● OutputRefresh program is called as a last step. It copies data from the user variables via
structure CiModDataxx to Modbus.

Consider the on-delay timer HA_MOD_TON (V2)/ HaModTon (V3).

Fig. 152: HaModTon utility function block with internal synchronization

Both PLCs require the same function block called in the program. Under normal operating
conditions the elapsed time ET and output Q of the timer is synchronized internally from primary
to the secondary CPU. ET and Q data are available and can be attached to local or global
variables in the program as per application requirements. If PLC A shuts down due to a fault,
the primary status switches over to PLC B.

Application pro-
gram

Example of a
utility function
block (with inte-
grated sync
data)

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2110

In the event of a switchover, the moment PLC B becomes the primary, the timer on this PLC
will keep running. Until the time of PLC A failure, the timer on PLC B was synchronized. This
is most important in cases when one CPU was not in run or off and needs to “catch up” such
integral or historic system values (timers, counters, operator settings, …). The actual process
remains then unaffected by the switchover.

HA_MOD_CONTROL has two functions:
● Exchange status data (lifecom1 and lifecom2) and switch from secondary to primary PLC

(or vice versa) based on the status according to the use cases described in Ä Chapter
1.5.5.2.2.3.1 “Failures and use cases” on page 2098.

● Send sync “HA SYNC” array from primary to secondary PLC to ensure that the secondary
PLC is always in hot-stand-by and can take over immediately. UDP protocol is used for data
synchronization between the CPUs.

This chapter explains how the data synchronization happens between primary and secondary
PLC via UDP.
All prepared sync data is synchronized with the secondary PLC. Typically only integral values
(timers, counters, PID, …) or settings which might have been received have to be synchronized.
For example for fast start-up cases when a secondary CPU was restarted, as both PLCs are
running and calculating closely in parallel and based on the same input values, synchronization
will make the secondary start with current value instead of default value. For details on how to
configure or use the data sync function block refer example projects.
Following steps are performed:
● HA SYNC array is transferred via UDP to the secondary CPU. This includes the exchange

of lifecom1 status between primary and secondary CPU.
● In the HA program the HA_MOD_CONTROL function block collects all diagnosis, sync and

lifecom2 data from the field and/ or the other PLC. Whether a switchover is necessary is
decided based on a simple decision matrix.

● Lifecom2 is exchanged between CPUs over Modbus TCP every cycle.
● One task per program, see figure above.
● Status of the inputs connected to CI52x decentralized I/O stations is transferred to both

PLCs simultaneously in every PLC cycle. They are received by the CI52x function block.
● At the end of the program, the generated output values are sent, by transferring from the

primary PLC respective buffers to the CI52x-MODTCP module(s) via CI52x function block
and Modbus TCP. The secondary PLC is prepared to send but stays “silent” (not sending
output values).

PLC needs one HA cycle to send one ETH frame data from primary to secon-
dary CPU and receive acknowledge from secondary CPU. Similarly V3 PLC
needs two HA cycles.

One ETH frame copies approx. 1412 data bytes. The number of ETH frames needed to syn-
chronize HA Sync Array completely depends on the number of data sync bytes. Global variable
iNoOfEthFrames gives the user this information, which should be used to calculate the cycle
time for the application task.
Ä Chapter 1.5.5.2.2.5.2 “Task configuration recommendations for HA system” on page 2113

Up to max. 60 kB of Sync data can be synchronized.
Synchronization between the primary and the secondary PLC happens over a few cycles of HA
task time depending on the total sync data bytes configured in the system. Lifecom1 is also
exchanged between the primary and the secondary PLC. The primary PLC sends lifecom1 to
the secondary PLC along with sync data. Backwards the secondary PLC sends lifecom1 to the
primary PLC every cycle.
The following figures shows an example for V2 PLC. When in the project the sync data is equal
to 4 iNoOfEthFrames then it takes 4 HA cycles to synchronize the data between the PLCs.

HA program

Data synchroni-
zation via UDP

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2111

When sync data in the project is equal to 6 iNoOfEthFrames then it takes 6 HA cycles to
synchronize the data between the PLCs.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2112

Task configuration recommendations for HA system
For a balanced performance of the HA system consider the following recommendations in your
project task configuration:
General
● Use the real time priorities for all HA related tasks. The HA program/ task should be called

at highest priority as it is responsible for the core HA functionality and should be the fastest
task.

● The Modbus task contains the Modbus communication function blocks at lower priority and
(depending on CPU performance) also a faster cycle time to ensure sufficient update rates
on Modbus without over- loading the CPU with communication.

● The application program parts should be called in the application task with even lower
priority and a larger cycle time than above tasks.

● Configuration to improve standard Modbus TCP for a fast switch over between PLCs.
● AC500 V2

– CM597ETH_SET_TCP_RTO function block from CM597_ETH_AC500_V28.lib needs to
be called inside HA task. User needs to call this function block for each CM597 module
connected. For recommended values see example description.

● AC500 V3
– RTO retransmission time function block “EthSetRtoMin” for the ETH port where fieldbus

communication is configured. By default, minimum retransmission time configured is 15
ms.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2113

Task Priority PM57x, PM58x,
PM59x

PM595-4ETH V3 PLCs

HA 10 (high) 4 ms or higher 2 ms or higher 4 ms or higher

Modbus 11 (medium) Maximum of (HA cycle
time *2), (3 ms +
roundup (#CI/2))

Maximum of (HA
cycle time *2),
(3 ms + roundup
(#CI/2))

Maximum of (HA
cycle time *2),
(3 ms + roundup
(#CI/2))

Application 12 (low) Maximum of (Modbus
cycle time *2), (iNoO-
fEthFrames * HA cycle
time)

(iNoOfEthFrames
* HA cycle time)

Maximum of
(Modbus cycle
time *2), (iNoO-
fEthFrames * HA
cycle time *2)

1. Choose suitable CPU type according to chapter CPU choice, system size, performance
indications

2. Configure task priorities according to the table
3. Set HA task to minimum according to above table
4. Calculate Modbus cycle time according formulas in the table, based on HA cycle and

number of CI modules “#CI”
5. Calculate Application cycle time according to formulas in the table, based on Modbus

cycle time and variable iNoOfEthFrames, which is defined in the global variables of HA-
Modbus TCP library.

6. Measure PLC and CPU load during trial operation.
V2: CPU load : Ä Chapter 1.5.4.12.1.2 “CPU_LOAD” on page 1168

If the PLC load is higher than 40 % or CPU load higher than 60 % then increase HA cycle
time (e.g. to 8 ms / 12 ms / 24 ms, …) and go to step 4, repeat the steps until loading is
within defined range.

A new V3 CPU configuration option is introduced from Automation
Builder 2.4.1 and onwards which allows to change the priority for Ethernet
communication in PLCs.

Set this configuration in the device tree of the CPU in Automation Builder
double click on PLC “CPU_Parameters Parameters è Communication
Schema è Select “Onboard Ethernet””.

The above parameter should be set to “Onboard” Ethernet for HA systems
and it will consequently increase the loading due to the higher priority.
PLC Load < 50 % and CPU load < 70 % should be considered as guide-
lines here instead, while setting the task times while setting the task times.

7. Following timeout values has to be defined in the user project according to the relation
defined.

Timeout variables (see defini-

tions in box below table)

HA in V2 HA in V3

timCI52xTimeOut 1 * Modbus Task time 50 ms or Modbus Task time,
whichever is higher

timHaModSyncTimeOut 1* HA Task time 2 * HA Task time

timResponseTimeout Not applicable 50ms or (2 * Modbus Task
time), whichever is higher

timCanTimeOut Not applicable 100 ms or (2 * Applica-
tion Task time) whichever is
higher

Procedure for
task configura-
tion

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2114

8. Add additional applications and SCADA communication: Check PLC and CPU load again
vs. your requirements.

In the HA Modbus system different timeouts must be configured for the fine
operation of the system as described above in the task configuration for V2 and
V3 PLCs. These different timeouts meaning, and relation is explained below:

timHaModSyncTimeOut:
Time limit to check if the new sync data is received or not in the secondary PLC.
If this timeout is not defined properly, Sync lost error/ “lifecom1” lost error will be
generated.

timCanTimeOut:
Time used for the check whether “lifecom2” is received when configured via
CAN. This value is applicable only in AC500 V3. Lifecom2 via CAN won’t be
stable between the PLCs and runtime error "lifecom2 lost" will be flickering if not
the right value is configured.

timCI52xTimeOut:
Time limit to check whether new data is received in the Modbus field modules.
It is also used to check whether “lifecom2” is received when configured via
Modbus TCP. If 'timCI52xTimeOut' is not defined as described, “lifecom2” error /
communication interface diagnosis error will not be generated as expected.

timResponseTimeOut:
Timeout value to check whether CPU has lost the communication interface
modules connected in the network. If this value is not defined as described,
communication interface module lost detection will not be indicated properly.

Field I/O network topologies
Modbus TCP communication between PLC and communication interface modules CI521-
MODTCP or CI522-MODTCP can be done using different network topologies. In the following
subchapters different simple combinations with their pros and cons are explained.

If a CI52x module of a daisy chain is powered off, next following modules will
lose connection/ data provided there is no redundancy in the Ethernet network
(e.g. ring and managed switch).

Simple ring topology (smaller systems)
In a simple configuration, CI52x modules can be part of a ring if MRP (or DLR) protocol is used
in the managed switches. Then the CI52x are connected from one to another device (“daisy
chained") through e.g. two network switches. The redundancy protocol detects a closed ring
and opens one port of a managed switch to avoid the ring. The user has to configure the
necessary ring configurations and enable the ring manager for the used ring ports in one switch.

It is recommended that time interval between ETH cable disconnection and
re-connection should be greater than 2-3 seconds.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2115

Fig. 153: Redundant ring topology with 2 MRP switches (avoids a SPOF (Single Point Of
Failure))

Standard network topology (large systems)
In the standard redundant network, which is often done by third party dedicated telecommunica-
tion companies, managed switches are used for every connection point to this network. It’s the
network's (and operator's) responsibility to repair any failure fast enough so that no influence on
the HA system or its outputs occur.
The network can use other fast redundancy algorithms, also having other than ring structures, if
redundancy links are activated fast enough.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2116

Fig. 154: Redundant ring topology with independent network (using any fast redundancy mech-
anism internally in a ring or meshed network)

Parallel network topology (using PRP)
Each CI52x module and PLCs as single ended devices are connected by PRP switches to both
networks. Here the failure of the switch which connects the primary CPU will also lead to a
switchover.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2117

Fig. 155: Parallel-redundant network, PRP switches to connect each device, CPU and commu-
nication inter- face modules

Redundancy switchover timing should match the settings in the program and communication
interface modules for time-out and freeze periods. The networks for larger systems are often
seen as a separate entity and done by a separate company. Make sure to have the redundancy
status information of the network at least in SCADA, to repair in time. If the I/O field network
responsibility is with the automation/ PLC part, the redundancy status should be also monitored
by the PLC. A warning to initiate repair may be created from the managed switches in the I/O
field network.

● Alarm output(s) wired (e.g. to a CI52x input and related settings of the switch(es)).
● Settings of the switch(es) to send (e.g. SNMP traps, which can be received in PLC

(AC500 SNMP library)).
● Use of “automation switches” which can also communicate their status directly via

Modbus.

Examples

It is also possible to connect switches in ring combination with CI modules
connected to them in daisy chain. User needs to do the relevant setting based
on type of switch and protocol (Ex: MRP, RSTP).

If RSTP ring configuration is used in the system, ring reconfiguration time is
slower than other ring protocols. During this reconfiguration, connection to the
CI modules will be lost.

HA Modbus system without communication interface modules in the network
It is also possible to have a HA Modbus system without connecting any field devices, CI521-
MODTCP / CI522-MODTCP in the network. This system can be used for establishing a redun-
dant PLC system with data synchronization between two AC500 controllers, either without field
IO or with user integration of other protocols to field-IO or “intelligent” IO: CPUs as field devices.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2118

Secondary will be on hot standby with primary PLC, during a power off/ stop of the primary PLC.
Secondary will take over the control and continue the process. Any user integrated field-IO or
CPUs can establish communication mapped with the primary bit: parallel reading but prevent
parallel writing.
HA without CI modules can be also used during commissioning to check the data sync, OPC
and SCADA related communications without any field devices configured. The user has to set
the global variable 'xNoCiBus' to TRUE defined in the HA_GLOBAL_VARIABLES. This variable
has to be set to TRUE in both PLCs. Note: It is not advised to update this variable during run
time.

Fig. 156: Simple SCADA connection

Getting started
Quick start list and guidelines

Fig. 157: Engineering workflow using Automation Builder

Simple steps to engineer the HA Modbus system is explained in the following chapters.

Configuration without communication interface modules to establish redundancy
Configuration of the HA system without communication interface modules to establish redun-
dancy is done by the following steps (for details see the example documentations):

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2119

1. Install the hardware Ä Chapter 1.5.5.2.2.2 “Hardware, requirements and options over-
view” on page 2092.

2. Select the CPUs based on the requirements Ä Chapter 1.5.5.2.2.2.1 “CPU choice, system
size and performance indications” on page 2094.

3. Install Automation Builder including the latest libraries Ä Chapter 1.5.5.2.2.4 “How to get
and install the AC500 High Availability system package” on page 2107.

4. Create a new project in Automation Builder for the chosen CPUs.
5. Configure the required Modbus and UDP configuration in the Automation Builder device

tree of the CPU.

6. For UDP in AC500 V2 PLC, configure “UDP_no_AC31_header” and set the port number
to value '3000'.

7. Assign the IP addresses in ³ 2 different Ethernet networks:

● SCADA network: SCADA, connected PLC A and PLC B
● Field network: connected CI52x module(s)

8. Configure the mandatory HA_MOD_CONTROL function block for the HA task Ä “HA
program” on page 2111.

9. Add Callback stop function HA_MOD_CALLBACK_STOP and call it in the system event
“stop”.

10. Add optional HA utility function blocks or function block HA_MOD_DATASYNC.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2120

11. Make the global variable xNoCiBus = TRUE to run the system without communication
interface module configured in the system. Refer to Ä Chapter 1.5.5.2.2.5.3.4 “HA
Modbus system without communication interface modules in the network” on page 2118.

12. Add the task configuration Ä Chapter 1.5.5.2.2.5.2 “Task configuration recommendations
for HA system” on page 2113.

13. Compile and download to both PLCs (simplified in V3 via integrated download manager).
14. Create a boot project, restart the complete system and RUN.
15. Operation: Test use cases (e.g. by putting the primary PLC to STOP mode and observe

the switchover). For different use cases and behavior refer to .
16. Runtime error and diagnosis function block can be used to monitor the system . For

details refer to chapter Diagnosis Ä Chapter 1.5.5.2.2.8 “Diagnosis” on page 2124.

Configuration with communication interface modules and redundancy
For medium or large HA systems the configuration with communication interface modules and
redundancy is done by the following steps. For details see the example documentations:
1. Install the hardware Ä Chapter 1.5.5.2.2.2 “Hardware, requirements and options over-

view” on page 2092.
2. Select the CPUs based on the requirements Ä Chapter 1.5.5.2.2.2.1 “CPU choice, system

size and performance indications” on page 2094.
3. Install Automation Builder including the latest libraries Ä Chapter 1.5.5.2.2.2 “Hardware,

requirements and options overview” on page 2092.
4. Install the Bulk Data Manager tool (BDM) Ä Chapter 1.5.5.2.2.4 “How to get and install

the AC500 High Availability system package” on page 2107.
5. Create a new project in Automation Builder for the chosen CPUs.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2121

6. Configure the required Modbus and UDP configuration in the Automation Builderdevice
tree of the CPU. UDP settings are only required in AC500 V2 PLCs.

7. For UDP in AC500 V2 PLC, configure “UDP_no_AC31_header” and define the port
number as '3000'.

8. In AC500 V2 PLCs for each CM597-ETH communication module added the “Send
timeout” value has to be changed to 600 ms for the Modbus TCP server.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2122

9. Assign the IP addresses in ³ 2 different Ethernet networks:

● SCADA network: SCADA, connected PLC A and PLC B.
● Field network: connected CI52x module(s).

10. Configure a network switch in the field network (if managed /redundant) based on network
redundancy required Ä Chapter 1.5.5.2.2.5.3 “Field I/O network topologies” on page 2115.

11. Run BDM tool to configure CI52x network.
12. Export the files. Refer for details in the document: C:\Users\Public\Documents\Automa-

tionBuilder\Examples\PS5601-HA-MTCP\BulkDataManager\Documentation.
13. Import the Bulk data export files to the Automation Builder project.
14. Add Modbus TCP configuration for the ETH ports.
15. For the system with V3 PLCs, set the Communication Schema to “Onboard Ethernet”

“CPU-Parameters Parameters” for better performance.

16. Add Callback stop function HA_MOD_CALLBACK_STOP and call it in the system event
“stop”.

17. Add optional HA utility function blocks or function block HA_MOD_DATASYNC.

18. Add the task configuration Ä Chapter 1.5.5.2.2.5.2 “Task configuration recommendations
for HA system” on page 2113.

19. Compile and download to both PLCs (simplified in V3 via integrated download manager).

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2123

20. Create a boot project, restart the complete system and RUN.
21. Operation: Test use cases (e.g. by putting the primary PLC to STOP mode and observe

the switchover).
22. For different use cases and behavior refer to Ä Chapter 1.5.5.2.2.3.1 “Failures and use

cases” on page 2098.
23. Runtime error and diagnosis function block can be used to monitor the system. For details

refer to Ä Chapter 1.5.5.2.2.8 “Diagnosis” on page 2124.

HA-Modbus TCP Limits
HA-Modbus TCP is supported as of Automation Builder 2.0 or higher and the corresponding
AC500 CPUs mentioned previously. AC500 V3 PLC is currently not supporting external ETH
communication modules. Therefore, onboard ETH1, ETH2 (and eventually CAN) ports are to be
used for communication.
3000 sync instances can be used: Either 3000 HA_MOD_DATA_SYNC function block instances
alone or together 3000 instances of HA_MOD_DATA_SYNC inclouding + HA utility function
block can be used. If more than 3000 instances are configured user can see the error at
xHaModDataErr = True and wHaModDataErNo = 16#2022 in HA_GLOBAL_VARIABLES.
The maximum length of sync data at an instance of HA_MOD_DATA_SYNC function block
would be 1412 bytes. The maximum size of sync data which can be synced between PLCA and
PLCB in total can be max. 60 000 bytes.
The HA-Modbus TCP system takes care of the first fault only. This fault must be visualized by
the programmer and overall system (e.g. HMI, SCADA) to the operator, to plan and repair as
soon as possible as redundancy might be lost. If more than one error occurs, system may not
react to second or following faults.
SCADA/ HMI has to be configured/programmed to:
● Only read data from the primary PLC.
● Parameters and control data should be always written to both PLCs or has to be synchron-

ized via the function block.
This is given automatically when using OPC DA, where the CODESYS OPC Server does this
switching for the connected clients according to the primary status. For CP600 HMI a script is
available to switch likewise (connected via the internal AC500 protocol or Modbus). Zenon as a
SCADA also uses the AC500 protocol to automatically switchover.

Diagnosis
This chapter explains the diagnosis information available to the user in the HA Modbus library
and CI52x library. Diagnosis information is available at the outputs of HA control function block,
HA Diagnosis function block and at the CI52x function block.
Depending on the use case defined in Ä Chapter 1.5.5.2.2.3 “Functionality” on page 2098
different diagnosis information can be accessed.

Primary CPU currently can read-out the diagnosis information (CI52x function
block outputs) from communication interface module only once, hence secon-
dary PLC will not be able to read the diagnosis information from the CI52x
module.

So if any change happens in CI52x diagnosis it is not reflected in the secondary
CPU.

This can lead to different diagnosis information of CI52x module in the primary
and the secondary CPU. Hence it is recommended to customers that diagnosis
information should be handled in the application (e.g. SCADA).

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2124

Diagnosis in HA-Modbus TCP library
In the HA Modbus library diagnosis information is available at the control block and diagnosis
block.

This output at the HA control block gives the information of system configuration. Each bit of the
word represents a different configuration.

Bit Description
0 Sync is configured via CAN

1 Sync is configured via UDP

2 Lifecom2 is configured via CAN

3 Lifecom2 is configured via UDP

4 Lifecom2 is configured via Modbus TCP

5 Initialization for Ethernet configuration

This output at the HA control block gives the details of error in the configuration. Each bit of the
word represents different configuration errors. It is valid only when Error = TRUE.

Bit Description
0 Communication interface module is not configured properly

1 1< SyncSlot >3. Invalid value at input sync slot

2 1<SecSlot>3. Invalid value at input second slot

3 Value at IpAdrCpuASync is invalid

4 Value at IpAdrCpuBSync is invalid

5 Value at IpAdrCpuALifecom2 is invalid

6 Value at IpAdrCpuBLifecom2 is invalid

7 IpAdrCpuASync = IpAdrCpuBSync or IpAdrCpuALifecom2 = IpAdrCpuBLi-
fecom2
The IP addresses assigned at sync or lifecom2 inputs are wrong

This output at the HA control block gives the details of the error during run time of the system.
Each bit of the word represents different runtime errors. It will not set Error = FALSE.

Bit Description
0 Communication interface modules are lost

1 Other CPU is not active

2 Lifecom1 is lost (part of sync)

3 Lifecom2 is lost. This error will not be TRUE if the PLC is in STOP status. This is
because Modbus is still responding even when PLC is in STOP

4 Synchronization is lost

5 Error in synchronization

6 Ethernet status error

Output System
Configuration

Output System
Configuration
error

Output Runtime
error

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2125

Bit Description
7 Other PLC lost communication to CI52x modules

8 CAN_HEADER function block has error

9 CAN_DATA function block has error

10 fbGetOwnIP function block has error

Outputs at the HA Diagnosis function block, HaModDiag (V3) / HA_MOD_DIAG (V2) provides
the following diagnosis information of the HA system.

Output Description
CpuAPrimary / CPUA_PRIMARY TRUE indicates CPU A is primary

CpuBPrimary / CPUB_PRIMARY TRUE indicates CPU B is primary

CpuARun / CPUA_RUN TRUE means CPU A is in RUN mode

CpuBRun / CPUB_RUN TRUE means CPU B is in RUN mode

CpuACI52xBusActive /
CPUA_CI52x_BUS_ACTIVE

Modbus TCP CI52x bus active on CPU A

CpuBCI52xBusActive /
CPUB_CI52x_BUS_ACTIVE

Modbus TCP CI52x bus active on CPU B

CpuACi52xCfg / CPUA_CI52x_CFG Total number of CI52x configured on CPU A

CpuBCi52xCfg / CPUB_CI52x_CFG Total number of CI52x configured on CPU B

CpuACi52xAct / CPUA_CI52x_ACT Total number of CI52x active on CPU A line

CpuBCi52xAct / CPUB_CI52x_ACT Total number of CI2x active on CPU B line

SyncInstances / SYNC_INSTANCES Number of data sync and utility blocks initial-
ized in the system

SyncDataCheckSum / SYNC_DATA_SUM Checksum of all address pointer blocks in
bytes, indicates total number of bytes getting
synchronized.

Diagnosis func-
tion block

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2126

Output Description
StHACpuStatus / stHA_CPU_STATUS HA own CPU status. It will show the status

details of logged in CPU for the following
parameters:
● HA1: CPU A is primary
● HA2: CPU B is primary
● bit_CI52x_BUS_active: CI52x bus with

one or more communication interface
modules active

● bit_CI52x_BUS_err: CI52x bus one or
more communication interface modules
powered off / connection lost

● RUN: Run status of CI52x
● cnt: Count of data sync communication,

indicates data sync between CPUs is
okay.

StHAotherCpuStatus /
stHA_OTHER_CPU_STATUS

HA other CPU status. It will show the status
details of other CPU for the following parame-
ters:
● HA1: CPU A is primary
● HA2: CPU B is primary
● bit_CI52x_BUS_active: CI52x bus with

one or more communication interface
modules active

● bit_CI52x_BUS_err: CI52x bus one or
more communication interface modules
powered off / connection lost

● RUN: Run status of CI52x
● byETH_ACT_CI52x_Count: CI52x alive

identification count.

Apart from the errors / diagnosis information available in the control and diagnosis block, few
other variables can be monitored too.

Variable Value Description
wHA_ER_NO_SYNC_LINK 16#7487 No sync link between the

PLCs

HA_MOD_INVALID_LENGTH 16#2017 Invalid length at the input of
the data sync block

HA_MOD_ERNO_TBL_OVER
FLOW

16#2022 HA data reference table is full

xHaModDataErr TRUE IF TRUE – HA data sync is in
error state

wHaModDataErNo HA data sync error code

xHaModErr TRUE HA system is in error state

dwHaModServerAlive Life counter incremented by
OPC DA server

Other diagnosis
variables

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2127

Diagnosis in CI52x library
In addition to the diagnosis information in the HA Modbus library, additional diagnosis informa-
tion for each communication interface module can be obtained from the CI52x library.

This output at the CI52x function block gives the details of the configuration error in the CI52x
module. Each bit of the byte represents different configuration errors:

Bit Description
0 Reserved

1 Wrong ETH port is configured at input Config ETH

2 Wrong IP address is configured for communication interface module

RuntimeError (v3) / RUNTIME_ERROR (v2) of the function block CiModCi52x (v3) /
CI_MOD_CI52x (v2). Runtime error is a combination of error bits that are described in the
following:

Runtime Error Description
Bit 0 Indicates communication error i.e., when CPU is not able to

get any response from CI52x module. This error will get reset
when communication is reestablished.

Bit 1 Indicates parameter state is not equal to 2
(PARA_STATE_PARA_DONE). If not true, then system gives
I/O bus error. System resets this error when parameter state is
equal to 2.

Bit 2 Indicates the cluster error 1) in the system, if there is an error
in the diagnosis buffer. ACK input is needed to reset this error.

Bit 3 Indicates the hardware configuration error, mismatch between
configuration and actual hardware detected. System automati-
cally resets this error when the hardware matches.

S-ERR (LED on communica-
tion interface module)

Indicates that there is some issue with channel configuration in
the cluster 1). It is not linked with Runtime Error. User can read
DiagBuffer (v3) / DIAG_BUFFER (v2) from CiModDiag (v3)/
CI_MOD_DIAG (v2) function block to get more information.
This error does not get reset using ACK. It will only reset when
all channel errors are removed.

1) "Cluster" means a combination of one communication interface module and several I/O
modules attached to it.

Runtime error in different scenarios:

System Config-
uration error

Runtime error

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2128

Error Run-
time
error

PLC A: Primary PLC B: Secondary
Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluste
r error

Bit3 -
HW
config
error

Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluster
error

Bit3 -
HW
config
error

Wrong IP
address
configured

16#1 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

Wrong slot
address
configured
1)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Communi-
cation
cable dis-
connected

16#2 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

Wrong I/O
module
plugged in
the CI
module

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Wrong
hotswap
I/O module
plugged at
the start

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Wrong
hotswap
I/O module
swapped
online

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Configured
I/O module
not con-
nected at
start 2)

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Configured
hotswap
I/O module
not con-
nected at
start 2)

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

I/O module
powered off
in CI
module 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Hotswap
I/O module
powered off
in CI
module 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Remove
hotswap
I/O module
when
online 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2129

Error Run-
time
error

PLC A: Primary PLC B: Secondary
Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluste
r error

Bit3 -
HW
config
error

Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluster
error

Bit3 -
HW
config
error

CI module
is powered
off

16#2 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

Mismatch in
Channel
configura-
tion and
wiring 3)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Regular I/O
module
mounted on
hotswap
terminal
unit 4)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

During an
error stage
if HA
system
changeover
is initiated
5)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1) Slot input in the block can be ignored. Similar to ETH input of the ModMast blocks.
2) Error generated only in the primary PLC, to reset ACK input to be used.
3) No runtime error in function block. Module generates S-Err and ZP Blinks.
4) No runtime error in function block. Module generates S-Err.
5) Runtimer Error bit2 gets reset when the PLC is switched over and error won’t be available in
any of the PLC regardless of its Primary status.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2130

Table 128: Function block CiModDiag (V3) and CI_MOD_DIAG (V2)
Output Description
DevState / DEV_STATE CI521 or CI522 device current status is displayed.

● STATE_PREOP: Device is booting
● STATE_OPERATION: Device is operational, no bus super-

vision is active
● STATE_ERROR: Device detected a bus error, bus supervi-

sion is active
● STATE_IP_ERROR: Device has an IP address error
● STATE_CYLIC_OPERATION: Device is operational, bus

supervision is active
● STATE_NA: Not available

ParaState / PARA_STATE CI521 or CI522 device parameter status.
● PARA_STATE_NO_PARA: Device has no parameters
● PARA_STATE_PARA_ACTIVE: Parameterization process

is running
● PARA_STATE_PARA_DONE: Device used valid parame-

ters and parameterization is done
● PARA_STATE_ERROR: Device has invalid parameters
● PARA_STATE_NA: Not available

DeviceInfo / DEVICE_INFO CI521 or CI522 type and extended module types. This will
give the details of the module configured in the communication
interface module including the I/O modules.
If module is with suffix F, then fast counter is enabled for that
module.

DiagBuffer / DIAG_BUFFER CI521 or CI522 module diagnosis buffer. Refer to Ä Chapter
1.6.4.3.1.2.3.2 “Diagnosis data” on page 5659.

ErClass / ERR_CLASS Communication interface error class. Refer to Ä Chapter 1.7.3
“Diagnosis messages” on page 6429

ErNo / ERR_NO Communication interface error number. Refer to Ä Chapter
1.7.3 “Diagnosis messages” on page 6429

ModMastErr / MOD-
MAST_ERR

Latest 22 Modbus TCP error message status of the Mod-
MastTcp (V2) / COM_MOD_MAST (V2) function block.

ModMastErNo / MOD-
MAST_ERR_NO

Latest 22 Modbus TCP error numbers. Refer to the error
details in Modbus library Ä Chapter 1.5.5.2.2.8.1 “Diagnosis
in HA-Modbus TCP library” on page 2125.
V2: Refer to the error messages related to Ä Chapter
1.5.4.22.1.1 “COM_MOD_MAST” on page 1698

Library overview
CODESYS V2 libraries are described in a separate library documentation: Ä Chapter 1.5.5.2.3
“HA-Modbus TCP V2 library function block description” on page 2133.
The following function blocks are contained in the libraries:

Communication
interface diag-
nosis

Documentation

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2131

HA-Modbus TCP
library

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2132

1.5.5.2.3 HA-Modbus TCP V2 library function block description
Scope and structure of this document

The purpose of this libraries description is to explain different components of HA-Modbus TCP
and CI52x library.
The libraries description is valid for AC500 V2 products (using CODESYS V2 libraries).
For AC500 V3 products (using CODESYS V3 libraries) the library description is integrated in the
Library Manager of Automation Builder.

HA-Modbus TCP library
The HA-Modbus TCP library contains the following function, function blocks, structures, visuali-
zations, constants and variables.
● Function

– HA_MOD_CALLBACK_STOP
● Function blocks

Main:
– HA_MOD_DATA_SYNC
– HA_MOD_CONTROL
– HA_MOD_DIAG

HA_CI52x
library

Components of
HA-Modbus TCP
library

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2133

● Function blocks
Utility:
– HA_MOD_AIO
– HA_MOD_CTD
– HA_MOD_CTU
– HA_MOD_CTUD
– HA_MOD_DERIVATIVE
– HA_MOD_DIO
– HA_MOD_INTEGRAL
– HA_MOD_PID
– HA_MOD_PID_FIXCYCLE
– HA_MOD_RAMP_INT
– HA_MOD_RAMP_REAL
– HA_MOD_TOF
– HA_MOD_TON

● Visualizations
– HA_MOD_DATA_SYNC_VISU_PH
– HA_MOD_CONTROL_VISU_PH
– HA_MOD_DIAG_VISU_PH
– HA_MOD_AIO_VISU_PH
– HA_MOD_CTD_VISU_PH
– HA_MOD_CTU_VISU_PH
– HA_MOD_CTUD_VISU_PH
– HA_MOD_DERIVATIVE_VISU_PH
– HA_MOD_DIO_VISU_PH
– HA_MOD_INTEGRAL_VISU_PH
– HA_MOD_PID_VISU_PH
– HA_MOD_PID_FIXCYCLE_VISU_PH
– HA_MOD_RAMP_INT_VISU_PH
– HA_MOD_RAMP_REAL_VISU_PH
– HA_MOD_TOF_VISU_PH
– HA_MOD_TON_VISU_PH
– HA_OVERVIEW_VISU

● Global variables
– HA_GLOBAL (constant)
– HA_GLOBAL_VARIABLES

● Structures

Function
HA_MOD_CALLBACK_STOP

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2134

Parameter Value
Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Event Function, Return DWORD

HA_MOD_CALLBACK_STOP function is programmed to process logic related to AC500 High
Availability project in case of CPU switching into stop mode.
If there is a STOP event initiated in the PLC, HA_MOD_CALLBACK_STOP function is pro-
cessed before the CPU switches to STOP state. This function sets/resets some HA library
global variables, to provide the CPU’s STOP information to the other CPU.
This function needs to be called under runtime system event. For further information on how to
call the call back stop function in system events please refer to example project and documenta-
tion of the library.

– The Callback stop event should follow the name pattern “CALLBACK_xxx”.
– If a user has downloaded the program to the PLC with a wrong callback

stop event name then the CPU freezes and is unable to log in/on to the
PLC using Ethernet cable.

– User has to download a blank project using RS232 communication
cable (TK501/TK502/TK503) in order to return the PLC into healthy
stage.

– After this, the user has to correct the callback stop event name as
recommended and restart the download

– When a PLC type is changed in Automation Builder project, assigning of
callback stop to “Stop event” in the System events, checkbox stop gets
unchecked.
The user has to select the stop event again manually.

Input description

Data type Default value Range Unit
DINT - - -

Runtime system event in which the function block is to be called.

Data type Default value Range Unit
DINT - - -

Runtime system event filter.

EVENT

FILTER

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2135

Data type Default value Range Unit
DINT - - -

Runtime event system source.

Output description

Data type Default value Range Unit
DWORD - - -

Function blocks
HA_MOD_DATA_SYNC

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_DATA_SYNC is used for synchronizing different instances of function
blocks, or any other data that need to be synchronized, in the HA application.
It collects data and size information from the connected function block and delivers details to the
HA_MOD_CONTROL function block.
User can use up to 1024 instances of HA_MOD_DATA_SYNC function block in one program.
This number depends on the number of High Availability utility function blocks used. The utility
function blocks are synchronizing relevant data automatically.

OWNER

HA_MOD_CALL-
BACK_STOP

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2136

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
DWORD 0 0 ... 255 -

Function block instance input (via ADR-operator) for pointer data.

Data type Default value Range Unit
WORD 0 0 ... 255 -

Function block instance input (via SIZEOF-operator) for size, maximum 1412 bytes.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

DATA

LEN (length)

DONE

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2137

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

HA_MOD_CONTROL

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

HA_MOD_CONTROL function block handles the AC500 High Availability operation such as
change over from primary to secondary CPU in case of an error with related diagnostics.
Further it is used to data transfer between high availability CPUs. This is a mandatory function
block for HA application.

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2138

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 1 ... 61 -

Slot number on which Sync Communication is configured. Possible 1, 2, 3, 4, 11, 21, 31, 41, 51,
61 dependent on CPU type and communication module position of ETH port.

Data type Default value Range Unit
BYTE 0 1 ... 61 -

Slot number on which second communication LifeCom2 is configured. Possible 1, 2, 3, 4, 11,
21, 31, 41, 51, 61 dependent on CPU type and communication module position of ETH port.

Data type Default value Range Unit
STRING(16) ‘0.0.0.0’ - -

IP Address (on which SYNC communication is configured) of AC500 CPU connected to PLC A.

Data type Default value Range Unit
STRING(16) ‘0.0.0.0’ - -

IP Address (on which SYNC Communication is configured) of AC500 CPU connected to PLC B.

Data type Default value Range Unit
STRING(16) ‘0.0.0.0’ - -

EN

SYNC_SLOT

SEC_SLOT

IP_ADR_CPU_A
_SYNC

IP_ADR_CPU_B
_SYNC

IP_ADR_CPU_A
_LIFECOM2

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2139

IP Address (on which LifeCom2 Communication is configured) of AC500 CPU connected to
PLC A.

Data type Default value Range Unit
STRING(16) ‘0.0.0.0’ - -

IP Address (on which LifeCom2 Communication is configured) of AC500 CPU connected to
PLC B.

Data type Default value Range Unit
BOOL FALSE - -

TRUE- Manual changeover from primary to secondary PLC.

Data type Default value Range Unit
BOOL FALSE - -

TRUE- Suppress changeover (from primary to secondary PLC)
If used this input should be activated in both the CPU at the same time else system may behave
randomly.

Suppress changeover feature is recommended to use only during network
reconfiguration and not during any other switchover scenarios for example PLC
STOP.

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

IP_ADR_CPU_B
_LIFECOM2

MANUAL_CHG_
OVER

SUPPR_CHG_
OVER

BUSY

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2140

Data type Default value Range Unit
BOOL FALSE - -

Error occurred during execution when output ERR = TRUE.

Data type Default value Range Unit
WORD 0 - -

Each bit of the WORD represents different configuration errors:
Bit0 - CI module configuration mismatch,
Bit1 - SYNC_SLOT invalid,
Bit2 - SEC_SLOT invalid,
Bit3 - IP_ADR_CPU_A_SYNC invalid,
Bit4 - IP_ADR_CPU_B_SYNC invalid,
Bit5 - IP_ADR_CPU_A_LIFECOM2 invalid,
Bit6 - IP_ADR_CPU_B_LIFECOM2 invalid,
Bit7 - IP_ADR_CPU_A_SYNC = IP_ADR_CPU_B_SYNC or IP_ADR_CPU_A_LIFECOM2=
IP_ADR_CPU_B_LIFECOM2.
CFG_ERROR is valid only when ERR = TRUE

Data type Default value Range Unit
WORD 0 - -

Each bit of the WORD represents different Runtime errors:
Bit0 - CI module lost,
Bit1 - Other CPU not active,
Bit2 - Lifecom1 is lost (part of Sync),
Bit3 - Lifecom2 is lost,
Bit4 - Sync lost,
Bit5 - Error in Sync,
Bit6 - Ethernet status,
Bit7- Other PLC Lost communication to CI52x,
Bit8- Not used,
Bit9- Not used,
Bit10- Error reading own IP address.

RUNTIME Errors may occur during operation, but they will not generate ERR
output = TRUE. This allows the system to run and revert to an error free state.

Bit3 - Lifecom2 is lost in RUNTIME ERROR will not be TRUE if the PLC is in
STOP status. This is because Modbus is still responding even when PLC is in
STOP.

ERR

CFG_ERROR

RUN-
TIME_ERROR

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2141

Data type Default value Range Unit
WORD 0 - -

Bit0 - Not used,
Bit1 - Sync via UDP enabled,
Bit2 - Not used,
Bit3 - Not used,
Bit4 - LifeCom2 via Modbus TCP is enabled,
Bit5 - Initialization for Ethernet configuration.

HA_MOD_DIAG

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

HA_MOD_DIAG function block provides the diagnosis information other than the configuration
and runtime errors displayed in the HA_MOD_CONTROL function block. Using this function
block, user will be able to get the diagnosis information such as primary status, active and
configured CI modules, CI communication status, sync instances and number of sync bytes
configured.
This function block must be connected to HA_MOD_CONTROL function block instance called
for the system using ADR operator to populate the diagnosis information.

CFG

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2142

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
POINTER TO
HA_MOD_CONTROL

- - -

This input points to the address of the control block instance from which the diagnosis informa-
tion has to be read. Use the ADR operator and connect the instance of HA_MOD_CONTROL
function block.

EN

dwHaP

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2143

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

Error occurred during execution when output ERR = TRUE.

Data type Default value Range Unit
BOOL FALSE - -

CPU A primary status.

Data type Default value Range Unit
BOOL FALSE - -

CPU B primary status.

Data type Default value Range Unit
BOOL FALSE - -

CPU A RUN status.

Data type Default value Range Unit
BOOL FALSE - -

CPU B RUN status.

BUSY

ERR

CPUA_
PRIMARY

CPUB_
PRIMARY

CPUA_RUN

CPUB_RUN

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2144

Data type Default value Range Unit
BOOL FALSE - -

Modbus TCP CI52x – Bus active on CPU A.

Data type Default value Range Unit
BOOL FALSE - -

Modbus TCP CI52x – Bus active on CPU B.

Data type Default value Range Unit
BYTE 0 - -

Number of CI52x configured on CPU A.

Data type Default value Range Unit
BYTE 0 - -

Number of CI52x configured on CPU B.

Data type Default value Range Unit
BYTE 0 - -

Number of CI52x active on CPU A.

Data type Default value Range Unit
BYTE 0 - -

Number of CI52x active on CPU B.

Data type Default value Range Unit
UINT 0 - -

Number of data sync and utility blocks initialized in project.

Data type Default value Range Unit
INT 0 - -

Total number of sync data in bytes.

Data type Default value Range Unit
HA_MOD_STATUS_P
LC

- - -

HA own CPU status. It will show the status details of logged in CPU.

CPUA_CI52X_
BUS_ACTIVE

CPUB_CI52X_
BUS_ACTIVE

CPUA_CI52X_
CFG

CPUB_CI52X_
CFG

CPUA_CI52X_
ACT

CPUB_CI52X_
ACT

SYNC_
INSTANCES

SYNC_DATA_
SUM

stHA_CPU_
STATUS

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2145

Data type Default value Range Unit
HA_MOD_STATUS_P
LC

- - -

HA other CPU status. It will show the status of another CPU.

HA_MOD_AIO

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

This function block can add in a standardized way scaling, limiting, alarming and other functions
as often available in DCS type environment for analog inputs and outputs.

stHA_OTHER_
CPU_STATUS

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2146

Input description

Data type Default value Range Unit
REAL 0 - -

Signal input.

Data type Default value Range Unit
REAL 0 - -

Lower limit of input range of values.

Data type Default value Range Unit
REAL 0 - -

Upper limit of input range of values.

Data type Default value Range Unit
REAL 0 - -

Lower limit of output value range.

Data type Default value Range Unit
REAL 0 - -

Upper limit of output value range.

IN

IN_MIN

IN_MAX

OUT_MIN

OUT_MAX

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2147

Data type Default value Range Unit
REAL 0 - -

Signal minimum range.

Data type Default value Range Unit
REAL 0 - -

Signal maximum range.

Data type Default value Range Unit
REAL 0 - -

Value for High alarm event.

Data type Default value Range Unit
REAL 0 - -

Value for High high alarm event.

Data type Default value Range Unit
REAL 0 - -

Value for Low alarm event.

Data type Default value Range Unit
REAL 0 - -

Value for Low low alarm event.

Data type Default value Range Unit
BOOL FALSE - -

Set object error

Data type Default value Range Unit
BOOL FALSE - -

Enable High alarm event.

Data type Default value Range Unit
BOOL FALSE - -

Enable High high alarm event.

LIM_MIN

LIM_MAX

HIGH_VALUE

HIGH_HIGH_
VALUE

LOW_VALUE

LOW_LOW_
VALUE

SET_OBJ_
ERROR

EN_HIGH

EN_HIGHHIGH

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2148

Data type Default value Range Unit
BOOL FALSE - -

Enable Low alarm event.

Data type Default value Range Unit
BOOL FALSE - -

Enable Low low alarm event.

Data type Default value Range Unit
BOOL TRUE - -

Use HA sync.

Data type Default value Range Unit
REAL 0 - -

Hysteresis alarm event.

Data type Default value Range Unit
DWORD - - -

High & Low On delay [ms].

Data type Default value Range Unit
DWORD 0 - -

High High & Low Low On delay [ms].

EN_LOW

EN_LOWLOW

USE_SYNC

HYS

HIGH_LOW_
DELAY

HIGHHIGH_
LOWLOW_
DELAY

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2149

Output description

Data type Default value Range Unit
BOOL FALSE - -

High alarm active.

Data type Default value Range Unit
BOOL FALSE - -

High high alarm active.

Data type Default value Range Unit
BOOL FALSE - -

Low alarm active.

Data type Default value Range Unit
BOOL FALSE - -

Low low alarm active.

Data type Default value Range Unit
BOOL FALSE - -

Signal object error.

HIGH_STATUS

HIGH-
HIGH_STATUS

LOW_STATUS

LOWLOW_
STATUS

OBJ_ERR

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2150

Data type Default value Range Unit
BOOL FALSE - -

Simulation ON.

Data type Default value Range Unit
REAL 0 - -

Signal out.

Data type Default value Range Unit
REAL 0 - -

High offset.

Data type Default value Range Unit
REAL 0 - -

High high offset.

HA_MOD_CTD

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_CTD is a standard count down counter with automatic data synchroni-
zation in a high availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

FORCED

OUT

HIGH_OFFSET

HIGH-
HIGH_OFFSET

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2151

Input description

Data type Default value Range Unit
BOOL FALSE - -

Count down on rising edge.

Data type Default value Range Unit
BOOL FALSE - -

Load start value.

Data type Default value Range Unit
WORD 0 - -

Start value

Output description

Data type Default value Range Unit
BOOL FALSE - -

Counter reached 0.

Data type Default value Range Unit
WORD 0 - -

Current counter value.

CD

LOAD

PV

Q

CV

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2152

HA_MOD_CTU

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_CTU is a standard count up counter with automatic data synchroniza-
tion in a high availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

Input description

Data type Default value Range Unit
BOOL FALSE - -

Count up.

Data type Default value Range Unit
BOOL FALSE - -

Reset counter to 0.

Data type Default value Range Unit
WORD 0 - -

Counter limit

CU

RESET

PV

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2153

Output description

Data type Default value Range Unit
BOOL FALSE - -

Counter reached the limit.

Data type Default value Range Unit
WORD 0 - -

Current counter value.

HA_MOD_CTUD

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_CTUD is a standard count up and count down counter with automatic
data synchronization in a high availability system.
QD is TRUE, if counter is 0. QU is TRUE, if counter is PV.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

Q

CV

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2154

Input description

Data type Default value Range Unit
BOOL FALSE - -

Count up.

Data type Default value Range Unit
BOOL FALSE - -

Count down.

Data type Default value Range Unit
BOOL FALSE - -

Reset counter to 0.

Data type Default value Range Unit
BOOL FALSE - -

Load start value.

Data type Default value Range Unit
WORD 0 - -

Start value / counter limit.

Output description

CU

CD

RESET

LOAD

PV

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2155

Data type Default value Range Unit
BOOL FALSE - -

Counter reached limit.

Data type Default value Range Unit
BOOL FALSE - -

Counter reached 0.

Data type Default value Range Unit
WORD 0 - -

Current counter value.

HA_MOD_DERIVATIVE

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_DERIVATIVE is a standard derivative with automatic data synchroni-
zation in a high availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

Input description

QU

QD

CV

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2156

Data type Default value Range Unit
REAL 0 - -

Input variable.

Data type Default value Range Unit
DINT 0 - -

Time since last call [ms].

Data type Default value Range Unit
BOOL FALSE - -

OUT is set to zero.

Output description

Data type Default value Range Unit
REAL 0 - -

Value of the derivative.

HA_MOD_DIO

IN

TM

RESET

OUT

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2157

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

This function block can add in a standardized way event handling, alarming and other functions
as often available in DCS type environment for digital in- and outputs.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

Input description

Data type Default value Range Unit
BOOL FALSE - -

Signal input.

Data type Default value Range Unit
BOOL FALSE - -

Set object error.

Data type Default value Range Unit
BOOL FALSE - -

Signal inversion.

Data type Default value Range Unit
BOOL FALSE - -

Signal alarm configuration enabled.

IN

SET_OBJ_ERR

INVERT

EN_ALARM

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2158

Data type Default value Range Unit
BOOL FALSE - -

Signal alarm configuration, alarm value 0 / 1 active.

Data type Default value Range Unit
BOOL FALSE - -

Reset latched state.

Data type Default value Range Unit
BOOL FALSE - -

Automatically reset latched state.

Data type Default value Range Unit
BOOL TRUE - -

HA sync is used.

Data type Default value Range Unit
DWORD 0 - -

Signal input switch ON delay [ms].

Data type Default value Range Unit
DWORD 0 - -

Signal input switch OFF delay [ms].

Output description

ALARM_VALUE

RESET

USE_LATCH

USE_SYNC

IN_TON

IN_TOF

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2159

Data type Default value Range Unit
BOOL FALSE - -

Signal alarm.

Data type Default value Range Unit
BOOL FALSE - -

Signal object error.

Data type Default value Range Unit
BOOL FALSE - -

Signal out.

Data type Default value Range Unit
BOOL FALSE - -

Simulation ON.

Data type Default value Range Unit
BOOL FALSE - -

Signal inversion.

Data type Default value Range Unit
BOOL FALSE - -

Latched output.

HA_MOD_INTEGRAL

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_INTEGRAL is a standard integral with automatic data synchronization
in a high availability system.

ALARM

OBJ_ERR

OUT

FORCED

INVERTED

LATCH

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2160

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

Input description

Data type Default value Range Unit
REAL 0 - -

Input variable.

Data type Default value Range Unit
DINT 0 - -

Time since last call [ms].

Data type Default value Range Unit
BOOL FALSE - -

OUT is set to zero and OVERFLOW to false.

Output description

Data type Default value Range Unit
REAL 0 - -

Value of the integral.

IN

TM

RESET

OUT

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2161

Data type Default value Range Unit
BOOL FALSE - -

Overflow.

HA_MOD_PID

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_PID is a standard PID with automatic data synchronization in a high
availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

OVERFLOW

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2162

Input description

Data type Default value Range Unit
REAL 0 - -

Actual value, process variable.

Data type Default value Range Unit
REAL 0 - -

Desired value, set point.

Data type Default value Range Unit
REAL 0 - -

Coefficient of proportionality, unity gain of the P-part (P).

Data type Default value Range Unit
REAL 0 - -

Reset time (I) [s].

Data type Default value Range Unit
REAL 0 - -

Rate time, derivative time (D) [s].

Data type Default value Range Unit
REAL 0 - -

Y is set to this value as long as MANUAL=TRUE.

ACTUAL

SET_POINT

KP

TN

TV

Y_MANUAL

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2163

Data type Default value Range Unit
REAL 0 - -

Offset for manipulated variable.

Data type Default value Range Unit
REAL 0 - -

Minimum value for manipulated variable.

Data type Default value Range Unit
REAL 0 - -

Maximum value for manipulated variable.

Data type Default value Range Unit
BOOL FALSE - -

TRUE: Y is not influenced by controller.
FALSE: controller determines Y.

Data type Default value Range Unit
BOOL FALSE - -

Set Y output to Y_OFFSET, reset integral part.

Output description

Data type Default value Range Unit
REAL 0 - -

Y_OFFSET

Y_MIN

Y_MAX

MANUAL

RESET

Y

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2164

Manipulated variable, set value.

Data type Default value Range Unit
BOOL FALSE - -

TRUE set value would exceed limits Y_MIN, Y_MAX.

Data type Default value Range Unit
BOOL FALSE - -

Overflow in integral part.

HA_MOD_PID_FIXCYCLE

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_PID_FIXCYCLE is a standard PID in fix cycle with automatic data
synchronization in a high availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

LIMITS_ACTIVE

OVERFLOW

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2165

Input description

Data type Default value Range Unit
REAL 0 - -

Actual value, process variable.

Data type Default value Range Unit
REAL 0 - -

Desired value, set point.

Data type Default value Range Unit
REAL 0 - -

Coefficient of proportionality, unity gain of the P-part (P).

Data type Default value Range Unit
REAL 0 - -

Reset time (I) [s].

Data type Default value Range Unit
REAL 0 - -

Rate time, derivative time (D) [s].

Data type Default value Range Unit
REAL 0 - -

Y is set to this value as long as MANUAL=TRUE.

ACTUAL

SET_POINT

KP

TN

TV

Y_MANUAL

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2166

Data type Default value Range Unit
REAL 0 - -

Offset for manipulated variable.

Data type Default value Range Unit
REAL 0 - -

Minimum value for manipulated variable.

Data type Default value Range Unit
REAL 0 - -

Maximum value for manipulated variable.

Data type Default value Range Unit
BOOL FALSE - -

TRUE: Y is not influenced by controller.
FALSE: controller determines Y.

Data type Default value Range Unit
BOOL FALSE - -

Set Y output to Y_OFFSET, reset integral part.

Data type Default value Range Unit
REAL 0 - -

Time in [s] between two calls.

Y_OFFSET

Y_MIN

Y_MAX

MANUAL

RESET

CYCLE

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2167

Output description

Data type Default value Range Unit
REAL 0 - -

Manipulated variable, set value.

Data type Default value Range Unit
BOOL FALSE - -

TRUE set value would exceed limits Y_MIN, Y_MAX.

Data type Default value Range Unit
BOOL FALSE - -

Overflow in integral part.

HA_MOD_RAMP_INT

Y

LIMITS_ACTIVE

OVERFLOW

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2168

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_RAMP_INT is a standard integer ramp generator with automatic data
synchronization in a high availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

Input description

Data type Default value Range Unit
INT 0 - -

Input variable.

Data type Default value Range Unit
INT 0 - -

Maximum positive slope.

Data type Default value Range Unit
INT 0 - -

Maximum negative slope (non-negative!).

Data type Default value Range Unit
TIME TIME#0ms - -

Reference for ASCEND / DESCEND : t#0s : ASCEND / DESCEND defined per call
else : ASCEND / DESCEND defined per specified time.

IN

ASCEND

DESCEND

TIMEBASE

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2169

Data type Default value Range Unit
BOOL FALSE - -

Resets the OUT value.

Output description

Data type Default value Range Unit
INT 0 - -

Value of function with limited slope.

HA_MOD_RAMP_REAL

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_RAMP_REAL is a standard real ramp generator with automatic data
synchronization in a high availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

RESET

OUT

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2170

Input description

Data type Default value Range Unit
REAL 0 - -

Input variable.

Data type Default value Range Unit
REAL 0 - -

Maximum positive slope.

Data type Default value Range Unit
REAL 0 - -

Maximum negative slope (non-negative!).

Data type Default value Range Unit
TIME TIME#0ms - -

Reference for ASCEND / DESCEND : t#0s : ASCEND / DESCEND defined per call
else : ASCEND / DESCEND defined per specified time.

Data type Default value Range Unit
BOOL FALSE - -

Resets the OUT value.

IN

ASCEND

DESCEND

TIMEBASE

RESET

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2171

Output description

Data type Default value Range Unit
REAL 0 - -

Value of function with limited slope.

HA_MOD_TOF

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_TOF is a standard off delay timer with automatic data synchronization
in a high availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

OUT

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2172

Input description

Data type Default value Range Unit
BOOL FALSE - -

Starts timer with falling edge.
Resets timer with rising edge.

Data type Default value Range Unit
TIME TIME#0ms - -

Time to pass, before Q is set.

Output description

Data type Default value Range Unit
BOOL FALSE - -

Is FALSE, PT seconds after IN had a falling edge.

Data type Default value Range Unit
TIME TIME#0ms - -

Elapsed time.

IN

PT

Q

ET

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2173

HA_MOD_TON

Available as of firmware V2.6

Included in library HaModbus_AC500_V26.lib

Type Function block with historical values

Function block HA_MOD_TON is a standard on delay timer with automatic data synchronization
in a high availability system.

Only internal variables and outputs are synchronized. Input variables and
parameters are not synchronized. If needed, use HA_MOD_DATA_SYNC.

Input description

Data type Default value Range Unit
BOOL FALSE - -

Starts timer with rising edge.
Resets timer with falling edge.

Data type Default value Range Unit
TIME TIME#0ms - -

Time to pass, before Q is set.

IN

PT

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2174

Output description

Data type Default value Range Unit
BOOL FALSE - -

Is TRUE, PT seconds after IN had a rising edge.

Data type Default value Range Unit
TIME TIME#0ms - -

Elapsed time.

Visualization
In the application program, the user can add visualization objects in his project. In the following
chapter, overall visualization and visualization for each individual function block are discussed in
detail.

HA_OVERVIEW_VISU
Visualization element HA_OVERVIEW_VISU gives an overview of the HA system state.
Based on the configuration, the state of the interfaces which are used is indicated.
Run state, PLC type, Primary or Secondary state, IP Address, Runtime Error, configured and
actual count of CI52x modules are represented for both CPUs.
The button [MANUAL CHANGE OVER] may be used to perform a manual switch over.
The following figure demonstrates visualization in the offline mode:

Q

ET

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2175

HA_MOD_DATA_SYNC_VISU_PH
Visualization element HA_MOD_DATA_SYNC_VISU_PH can be used to show the actual values
of all inputs and outputs of the instance of the HA_MOD_DATA_SYNC function block. Visualiza-
tion can also be used to control the function block by those inputs which are not connected
inside the program.
The following figure demonstrates visualization in the offline mode:

HA_MOD_CONTROL_VISU_PH
Visualization element HA_MOD_CONTROL_VISU_PH can be used to show the actual values
of all inputs and outputs of the HA_MOD_CONTROL function block. The visualization could
also be used to control the function block by those inputs which are not connected inside the
program.
The following figure demonstrates visualization in the offline mode:

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2176

For all the utility and diagnosis function blocks visualizations are available in the
library. All these visualization works same like the main function block visualiza-
tions defined above.

Global variables
HA_GLOBAL - errors/constants

List of all error numbers generated by HA-Modbus TCP library and specific constants declared
in the library.

scope Name Type Initial Comment
Error
Num-
bers

HA_MOD_INVALID_LENGTH WORD 16#2017 Invalid length at the input
of data sync block.

HA_MOD_ERNO_TBL_OVER-
FLOW

WORD 16#2022 HA data reference table
is full.

HA_MOD_FRAME_TYPE_STATU
S

BYTE 16#42 HA status frame.

Con-
stants

HA_MOD_FRAME_TYPE_STATU
S_DATA

BYTE 16#42 HA status and data
frame 16#DD.

HA_MOD_MAX_BUFFER_SIZE UINT 1464 HA sync max. frame size
(1400 original).

HA_MOD_DELAY_CI52x_ERR UINT 0 Number of cycle delay
before declaring the
CI52x failure error.

HA_MOD_FILTER_TIME_HA_SY
NC_ARRAY_INIT

UINT 200 Number of cycles to
wait before calculating
HA_SyncArray ptrData
CS.

HA_MOD_MAX_SYNC_ENTRIES UINT 3000 Total size of the sync
entry array (NoSyncFB-
Pins* MaxSyncFBs.) in
bytes.

HA_MOD_MAX_DATA_IN_ETH_F
RAME

UINT 1416 Ethernet Frame Length
- Size of Header (1416
UDP) in bytes.

HA_GLOBAL_VARIABLES
Global variables for the status of high availability and Ethernet data exchange.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2177

Name Type Initial Comment
xHaModPrimary BOOL FALSE State of the AC500

CPU. TRUE = PM
acts as Primary.
FALSE = PM acts as
Secondary

xHaModCpuStop BOOL FALSE If TRUE -> Indicates
the CPU in STOP
Mode

xHaModDataErr BOOL FALSE If TRUE -> HA data
sync is in error state.

wHaModDataErNo WORD 0 HA data sync error
code.

dwHaModTimersBaseTime DINT 0 HA base time value
for the HA timers

xHaModErr BOOL FALSE If TRUE -> HA error
state.

dwHaModOwnIP DWORD 0 Own IP address con-
figured for sync link
connection.

dwHaModOtherIP DWORD 0 Other PMs IP address
configured for sync
link connection.

dwHaModServerAlive DWORD 0 Life counter incre-
mented by OPC
server.

wHaModEthLife WORD 0 Ethernet Life Count.

timHaModSyncTimeOut TIME T#10MS LifeCom1 UDP syn-
chronization time out.
May be changed by
the user based on
Cycle Time of the HA
Task.

uiHaModSyncArrayIndex: UINT 0 Synchronization
ARRAY index

stHAEthRecData:
HA_MOD_ETH_FRAME_HE
ADER;

 Received Ethernet
header

iTotalSyncData UINT 0 Total sync data for the
HA system

iNoOfEthFrames INT 0 Number of packages
sent for all Sync data.

xNoCiBus BOOL FALSE No CI Bus config-
ured. HA standalone
system.

CI52x library
CI52x library is a part of HA-Modbus TCP library package.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2178

● Function block:
– CI_MOD_CI52x
– CI_MOD_DIAG

● Visualization:
– CI_MOD_CI52x_VISU_PH
– CI_MOD_DIAG_VISU_PH
– AI523, AI531, AI561, AI562, AI563
– AO523, AO561
– AX521, AX522, AX561
– CI521, CI522
– DA501, DA502
– DC522, DC523, DC532, DC561
– DI524, DI561, DI562, DI571, DI572
– DO524, DO526, DO561, DO571, DO572, DO573
– DX522, DX531, DX561, DX571

● Global variables Ä Chapter 1.5.5.2.3.3.3 “Global variable list (GVL)” on page 2191
– CI52x_GLOBAL_CONSTANT
– CI52x_GLOBAL_VARIABLES

Function blocks
CI_MOD_CI52x

Components of
CI52x library:

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2179

Available as of firmware V2.6

Included in library CI52x_AC500_V26.lib

Type Function block with historical values

CI_MOD_CI52x function block is to establish the communication between AC500 PLC and
communication interface module CI521 or CI522. Using this function block, status of the CI52x
module configured in the network can be known.

The diagnosis info (CI_MOD_CI52x function block outputs) from CI52x commu-
nication interface module can be read out only once, so e.g. the secondary CPU
once it was read.

So if change happens in CI52x diagnosis, it is not reflected in secondary CPU,
leading to different diagnosis information in Primary and Secondary CPU.

Hence it is recommended to the user that the diagnosis info handled in applica-
tion program e.g. should be synchronized in a separate structure OR handled
e.g. on SCADA side

NOTICE!
For updating the state of inputs and outputs actions of the CI_MOD_CI52x
function block must be called:
– Action “ACTION_INPUT_REFRESH” for refreshing the inputs,
– Action “ACTION_OUTPUT_REFRESH” for refreshing the outputs.
Input refresh should be done at the beginning of the task, output refresh at the
end.
When there is a different task for the application logic, where the inputs and
outputs are read/written it is mandatory that these actions are called from the
task which is reading/writing the IO data.
For example, two Tasks: Modbus task and application task. In the Modbus Task
the CI_MOD_CI52x function block is called.
The action “ACTION_INPUT_REFRESH” of the function block is called in
beginning of the application task. Then all necessary calls for the application
logic are done.
At the end of the application task the action “ACTION_OUTPUT_REFRESH” of
the function block is called.

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2180

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

CI_MOD_CI52x function block disabling (EN = FALSE) will not set output RUN-
TIME_ERROR Bit 0 (Bit 0 - CI module lost error) on HA_MOD_CONTROL
function block.

Data type Default value Range Unit
STRING(15) - - -

IP Address of the I/O module.

EN

CONFIG_IP

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2181

Data type Default value Range Unit
BYTE 0 - -

Ethernet slot used for communication on the PLC (see Ä Chapter 1.5.4.13.1.19
“ETHx_MOD_MAST” on page 1250).

Data type Default value Range Unit
DWORD 0 - -

Communication interface module configuration address

Data type Default value Range Unit
DWORD 0 - -

Communication interface module IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 1 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 1 IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 2 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 2 IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 3 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 3 IO structure address

CONFIG_ETH

PARA_0

DATA_0

PARA_1

DATA_1

PARA_2

DATA_2

PARA_3

DATA_3

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2182

Data type Default value Range Unit
DWORD 0 - -

I/O module 4 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 4 IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 5 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 5 IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 6 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 6 IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 7 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 7 IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 8 configuration address.

PARA_4

DATA_4

PARA_5

DATA_5

PARA_6

DATA_6

PARA_7

DATA_7

PARA_8

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2183

Data type Default value Range Unit
DWORD 0 - -

I/O module 8 IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 9 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 9 IO structure address

Data type Default value Range Unit
DWORD 0 - -

I/O module 10 configuration address.

Data type Default value Range Unit
DWORD 0 - -

I/O module 10 IO structure address

Data type Default value Range Unit
BOOL FALSE - -

To acknowledge errors.

DATA_8

PARA_9

DATA_9

PARA_10

DATA_10

ACK

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2184

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

Data type Default value Range Unit
BOOL FALSE - -

If TRUE - Error condition reached, mismatch between configuration and actual hardware
detected.

Data type Default value Range Unit
BOOL FALSE - -

If TRUE - CI52x module is running.

Data type Default value Range Unit
BYTE 0 - -

BUSY

ERR

RUN

CFG_ERROR

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2185

Each bit of the byte represents different configuration errors:
● Bit 0: CPU_INFO error
● Bit 1: CONFIG_ETH invalid
● Bit 2: CONFIG_IP invalid

Data type Default value Range Unit
BYTE 0 - -

Each bit of the byte represents different runtime errors:
● Bit 0: Communication error
● Bit 1: I/O bus error
● Bit 2: Cluster error
● Bit 3: Hardware configuration error, mismatch between configuration and actual hardware

detected

CI_MOD_DIAG

Available as of firmware V2.6

Included in library CI52x_AC500_V26.lib

Type Function block with historical values

CI_MOD_DIAG function block can be used to get the additional diagnosis information related to
the CI521 / CI522 communication module. This block provides addition information like device
state, parameter state, device information, CI module diagnosis buffer, CI module related errors
and details of error generated in the COM_MOD_MAST core block.
This function block must be connected to CI_MOD_CI52x function block instance using ADR
operator to read the diagnosis of particular communication interface module.

RUNTIME_
ERROR

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2186

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
POINTER TO
CI_MOD_CI52x

- - -

This input points to the address of the CI communication block instance from which the
diagnosis information has to be read. Use the ADR operator and connect the instance of
CI_MOD_CI52x function block.

Output description

Data type Default value Range Unit
BOOL FALSE - -

Operation is running.

EN

dwCiP

BUSY

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2187

Data type Default value Range Unit
BOOL FALSE - -

Error occurred during execution when output ERR = TRUE.

Data type Default value Range Unit
CI_MOD_DEVICE_
STATE

- - -

CI521 or CI522 device current status is displayed.
● STATE_PREOP – Device is booting
● STATE_OPERATION – Device is operational, no bus monitoring is active
● STATE_ERROR – Device detected a bus error, bus monitoring is active
● STATE_IP_ERROR – Device has an IP address error
● STATE_CYCLIC_OPERATION – Device is operational, bus monitoring is active
● STATE_NA – Not available

Data type Default value Range Unit
CI_MOD_PARA_
STATE

- - -

CI521 or CI522 device current status is displayed.
● PARA_STATE_NO_PARA – Device has no parameters
● PARA_STATE_PARA_ACTIVE – Parameterization process is running
● PARA_STATE_PARA_DONE– Device used valid parameters and parameterization is done
● PARA_STATE_ERROR– Device has invalid parameters
● PARA_STATE_NA – Not available

Data type Default value Range Unit
ARRAY[0..10] OF
CI_MOD_DIAG_MOD
_INFO

- - -

CI521 or CI522 type and extended module types. This will give the details of the module
configured in the communication interface module including the I/O modules.
If module is with suffix F, then fast counter is enabled for that module.

Data type Default value Range Unit
ARRAY[0..9] OF
CI_MOD_CI_CLUSTE
R_DIAG

- - -

CI521 or CI522 module diagnosis buffer. More details on this are provided in Ä Chapter
1.6.4.3.1.2.3.2 “Diagnosis data” on page 5659

Data type Default value Range Unit
ARRAY[0..9] OF
BYTE

- - -

CI error class. Refer to the diagnostics Ä Chapter 1.5.3 “Error messages of the AC500 V2
function block libraries” on page 735.

ERR

DEV_STATE

PARA_STATE

DEV_INFO

DIAG_BUFFER

ERR_CLASS

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2188

Data type Default value Range Unit
ARRAY[0..9] OF
BYTE

- - -

CI error number. Refer to the diagnostics Ä Chapter 1.5.3 “Error messages of the AC500 V2
function block libraries” on page 735.

Data type Default value Range Unit
ARRAY[0..22] OF
BOOL

- - -

Latest 22 Modbus TCP error messages of the block.

Data type Default value Range Unit
ARRAY[0..22] OF
WORD

- - -

Latest 22 Modbus TCP error numbers. Refer to the error details in Modbus Ä Chapter 1.5.3
“Error messages of the AC500 V2 function block libraries” on page 735.

Visualization
In the application program, the user can add the visualization object in his project. In the
following chapter, overall visualization and visualization for each individual function block are
discussed in detail.

CI_MOD_CI52x_VISU_PH
The visualization element CI_MOD_CI52x_VISU_PH can be used to show the actual values of
all inputs and outputs of the instance of the CI52x function block. Visualization can also be used
to control the function block by those inputs which are not connected inside the program.
The following picture demonstrates visualization in offline mode:

ERR_NO

MODMAST_ERR

MODMAST_
ERR_NO

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2189

IO visualization
Visualization elements can be used to show the actual values of all inputs and outputs on the
hardware module. Values will be updated only on the primary PLC.
The following example figure demonstrates visualization in the online mode:

PLC Automation with V2 CPUs
Libraries and solutions > AC500 HA High Availability System

2022/01/203ADR010582, 3, en_US2190

In the similar way for all the IO modules visualizations are available in the library
which can be used to view the state of the LEDs on hardware module.

Values will be updated only on the Primary PLC.

Global variable list (GVL)
List of all global variables declared in the library.

CI52x_GLOBAL_CONSTANT

Scope Name Type Initial Comment
Constants CI52x_MOD_SE

ND
BYTE 16 Write the values

to the CI modules
selected

CI52x_MOD_RE
C

BYTE 3 Read the values
from the CI mod-
ules selected

CI52x_MOD_FC
23

BYTE 23 Read or write the
values to the CI
modules selected

CI52x_MOD_NO
T_VALID

BYTE 16#0 Status to indicate
that module is
not available.

List of all the
global con-
stants declared
in the library.

PLC Automation with V2 CPUs

Libraries and solutions > AC500 HA High Availability System

2022/01/20 3ADR010582, 3, en_US 2191

CI52x_GLOBAL_VARIABLES

Name Type Initial Comment
byCI52xActive-
CICluster

BYTE 0 Number of active
CI52x clusters in the
network.

aCI52xActiveCIClus-
terStatus

ARRAY [1..100] OF
POINTER TO
CI_MOD_CLUSTER_
STATUS

 Status of the clusters
configured.

timCI52xTimeOut TIME T#10ms Modbuscommunica-
tion time out.

1.5.5.3 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

1.5.6 ACS / DCS drives libraries
1.5.6.1 System technology

In the following chapter a guide is given how to select the appropriate function blocks to set up
a working system of AC500 together with ACS drives. This guide is given in form of questions
which answers will lead step by step to the selection of correct components and function blocks.
Additional information on preconditions of the configuration of the drives can then be found at
the documentation of the selected function blocks.

1.5.6.1.1 Application selection
Question: What kind of application should be realized?
● Motion control application using PLC open motion control function blocks --> Use the

PS552-MC motion control library
● Speed and/or torque applications using ABB Drives Profile in the ACS drive --> Go to

chapter Connection Selection Ä Chapter 1.5.6.1.2 “Connection selection” on page 2192

1.5.6.1.2 Connection selection
Question: What kind of connection between AC500 and ACS drive should be used?
● discrete or analog wiring to start/stop and give reference values --> no special function

blocks needed. Please see drive manuals how to connect.
PROFIBUS Ä Chapter 1.5.6.1.3 “PROFIBUS” on page 2192
PROFINET Ä Chapter 1.5.6.1.4 “PROFINET” on page 2194
CANopen Ä Chapter 1.5.6.1.5 “CANopen” on page 2194
EtherCAT Ä Chapter 1.5.6.1.6 “EtherCAT” on page 2195
Modbus TCP Ä Chapter 1.5.6.1.7 “Modbus TCP” on page 2195
Modbus RTU Ä Chapter 1.5.6.1.8 “Modbus RTU” on page 2200

1.5.6.1.3 PROFIBUS
The following hardware components must be available:

List of all global
variables
declared in the
library which
are intended for
the user

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2192

● AC500 with a PROFIBUS master Communication Module
● ACSxxx / DCSxxx drive with FPBA-01 or RPBA-01 PROFIBUS Communication Module
● PROFIBUS cable with DSUB9 for the PROFIBUS master Communication Module and

DSUB9 for drive Communication Modules
The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500.
● Drive --> AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 --> drive: Control word and reference value 1 (speed) and optional reference value 2

(torque)
The following libraries have to be loaded into the project:
● ACSDrivesBase_AC500_V20.lib Ä Chapter 1.5.6.2 “ACS drives base library” on page 2204
● Optional ACSDrivesComPB_AC500_V24.lib Ä Chapter 1.5.6.6 “ACS / DCS Drives commu-

nication via PROFIBUS” on page 2410
● DCS Drives Library Ä Chapter 1.5.6.8 “DCS drives library” on page 2467 (if DCS drives are

used)
The following communication profile should be used:
● ABB Drives profile
The following function blocks can be used in AC500 program
● Control function blocks:

– Generic control blocks – only ACSDrivesBase_AC500_V20.lib ⇘ “ACS Drives Base
Library” and DCSDrivesBase_AC500_V24.lib is needed.

– ACS_DRIVES_CTRL_STANDARD_GEN Ä Chapter 1.5.6.2.4.7
“ACS_DRIVES_CTRL_STANDARD_GEN” on page 2241

– DCS_DRIVES_CTRL_GEN Ä Chapter 1.5.6.8.4.2 “DCS_DRIVES_CTRL_GEN control
of DCS drives with ABB-Drives profile via generic fieldbus” on page 2477(if DCS drives
are used)

– Standard control blocks toghether with communication blocks
ACS_DRIVES_CTRL_STANDARD
DCS_DRIVES_CTRL_STANDARD

● scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● Communication function blocks:
– ACS_COM_PB Ä Chapter 1.5.6.6.3.1 “ACS_COM_PB communication block via

PROFIBUS” on page 2412 Communication for ACS drives via PROFIBUS DP for
PZD1..3

– ACS_COM_PB_PZD Ä Chapter 1.5.6.6.3.2 “ACS_COM_PB_PZD communication block
for direct access to PZD4..12” on page 2415 (Communication for ACS drives via
PROFIBUS DP for Process Data PZD4..12)

● Parameter READ / WRITE function blocks:
PPO-Types 3, 4, 6 or 8 (DPV1)
– ACS_PB_READ_N_PRM_DPV1 Ä Chapter 1.5.6.6.3.5

“ACS_PB_N_READ_PRM_DPV1 read parameters from ABB drives via PROFIBUS
DPV1” on page 2425

– ACS_PB_WRITE_N_PRM_DPV1 Ä Chapter 1.5.6.6.3.6
“ACS_PB_N_WRITE_PRM_DPV1 write parameters from ABB drives via PROFIBUS
DPV1” on page 2431
These function blocks can be used stand-alone without any communication block.

– ACS_PB_READ_PRM_DPV0 Ä Chapter 1.5.6.6.3.3 “ACS_PB_READ_PRM_DPV0
read parameters from ABB drives via PROFIBUS DPV0” on page 2420

– ACS_PB_WRITE_PRM_DPV0 Ä Chapter 1.5.6.6.3.4 “ACS_PB_WRITE_PRM_DPV0”
on page 2423
These function blocks must be used together with FB ACS_COM_PB ⇘
“ACS_COM_PB”

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2193

1.5.6.1.4 PROFINET
The following hardware components must be available:
● AC500 with CM579-PNIO (PROFINET master Communication Module)
● ACSxxx drive with FENA-01, FENA-11, FENA-21 or RETA-02 realtime Ethernet communica-

tion module
● Ethernet cable with RJ45 plugs
The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500.
● Drive --> AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 --> drive: Control word and reference value 1 (speed) and optional reference value 2

(torque)
The following libraries have to be loaded into the project:
● ACSDrivesBase_AC500_V20.lib Ä Chapter 1.5.6.2 “ACS drives base library” on page 2204
● DCS Drives Library Ä Chapter 1.5.6.8 “DCS drives library” on page 2467(if DCS drives are

used)
● Optional: ACSDrivesComPN_AC500_V24.lib Ä Chapter 1.5.6.7 “ACS / DCS Drives read /

write parameter via PROFINET library” on page 2451

The following function blocks can be used in AC500 program:
● Control function block:
The following communication profile should be used:
ABB Drives profile
● ACS_DRIVES_CTRL_STANDARD_GEN Ä Chapter 1.5.6.2.4.7

“ACS_DRIVES_CTRL_STANDARD_GEN” on page 2241
● DCS_DRIVES_CTRL_GEN (if DCS drives are used) Ä Chapter 1.5.6.8.4.2

“DCS_DRIVES_CTRL_GEN control of DCS drives with ABB-Drives profile via generic
fieldbus” on page 2477

● scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● Parameter READ / WRITE function blocks:
– ACS_PN_READ_N_PRM_DPV1 Ä Chapter 1.5.6.7.4.1

“ACS_PN_READ_N_PRM_DPV1 read parameters from ABB drives via PROFINET
DPV1” on page 2453

– ACS_PN_WRITE_N_PRM_DPV1 Ä Chapter 1.5.6.7.4.2
“ACS_PN_WRITE_N_PRM_DPV1 write parameters from ABB drives via PROFINET
DPV1” on page 2457

1.5.6.1.5 CANopen
The following hardware components must be available:
● AC500 with CM598-CN (CANopen master Communication Module)
● ACSxxx drive with FCAN-01 or RCAN-01 CANopen slave Communication Module
● CANopen cable
The following values should be mapped in the fieldbus configuration of the drive and the
Automation Builder configuration of AC500.
● Drive --> AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 --> drive: Control word and reference value 1 (speed) and optional reference value 2

(torque)
The following libraries have to be loaded into the project:

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2194

● ACSDrivesBase_AC500_V20.lib Ä Chapter 1.5.6.2 “ACS drives base library” on page 2204
● DCS Drives Library (if DCS drives are used) Ä Chapter 1.5.6.8 “DCS drives library”

on page 2467

The following communication profile should be used:
● ABB Drives profile
The following function blocks can be used in AC500 program:
● Control function blocks:

– ACS_DRIVES_CTRL_STANDARD_GEN Ä Chapter 1.5.6.2.4.7
“ACS_DRIVES_CTRL_STANDARD_GEN” on page 2241

– DCS_DRIVES_CTRL_GEN (if DCS drives are used) Ä Chapter 1.5.6.8.4.2
“DCS_DRIVES_CTRL_GEN control of DCS drives with ABB-Drives profile via generic
fieldbus” on page 2477

● scaling: ACS_REF_SCALING Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246(optional)

1.5.6.1.6 EtherCAT
The following hardware components must be available:
● AC500 with CM579-ETHCAT (EtherCAT master Communication Module)
● ACSxxx drive with FECA01 or RECA-01 EtherCAT slave Communication Module
● Ethernet cable with RJ45 plugs
The following values should be mapped in the fieldbus configuration of the drive and the
Automation Builder configuration of AC500.
● Drive --> AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 --> drive: Control word and reference value 1 (speed) and optional reference value 2

(torque)
The following libraries have to be loaded into the project:
● ACSDrivesBase_AC500_V20.lib Ä Chapter 1.5.6.2 “ACS drives base library” on page 2204
● DCS Drives Library (if DCS drives are used) Ä Chapter 1.5.6.8 “DCS drives library”

on page 2467

The following communication profile should be used:
● ABB Drives profile
The following function blocks can be used in AC500 program
● Control function blocks:

– ACS_DRIVES_CTRL_STANDARD_GEN Ä Chapter 1.5.6.2.4.7
“ACS_DRIVES_CTRL_STANDARD_GEN” on page 2241

– DCS_DRIVES_CTRL_GEN (if DCS drives are used) Ä Chapter 1.5.6.8.4.2
“DCS_DRIVES_CTRL_GEN control of DCS drives with ABB-Drives profile via generic
fieldbus” on page 2477

● scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

1.5.6.1.7 Modbus TCP
The following hardware components must be available:
● AC500 or AC500-eCo with Ethernet option
● Drive with FENA-01 or FENA-11 or RETA-01 or RETA-02 realtime Ethernet communication

module
● Ethernet cable with RJ45 plugs
The following libraries have to be loaded into the project:

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2195

● ACSDrivesBase_AC500_V20.lib Ä Chapter 1.5.6.2 “ACS drives base library” on page 2204
● In case the Firmware is less then V2.4 and CPU has only one Ethernet Interface:

ACSDrivesComModTCP_AC500_V22.lib Ä Chapter 1.5.6.4 “ACS / DCS drives communica-
tion via Modbus TCP library” on page 2359

● In case the CPU has two Ethernet Interfaces e.g. PM595 or PM591-2ETH and at least with
Firmware V2.4. Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS /
DCS drives via Modbus TCP” on page 2360

Question:Which ACSxxx drive should be used?
● ACS355 Ä Chapter 1.5.6.1.7.1 “ACS355 with Modbus TCP” on page 2196
● ACS550 or ACH550 Ä Chapter 1.5.6.1.7.2 “ACS550 or ACH550 with Modbus TCP”

on page 2197
● ACS580 Ä Chapter 1.5.6.1.7.3 “ACS580 with Modbus TCP” on page 2197
● ACS800 Ä Chapter 1.5.6.1.7.4 “ACS800 with Modbus TCP” on page 2198
● ACS850, ACQ810 or ACSM1 Ä Chapter 1.5.6.1.7.5 “ACS850, ACQ810 or ACSM1 with

Modbus TCP ” on page 2199
● ACS880 Ä Chapter 1.5.6.1.7.6 “ACS880 with Modbus TCP” on page 2200
● DCS800 or DCS550 Ä Chapter 1.5.6.1.7.7 “DCS800 or DCS550 with Modbus TCP”

on page 2200

ACS355 with Modbus TCP
Used drive Communication Module: FENA-x1:
Question: How many values should be exchanged?
● only status word, actual speed, control word and speed reference:

– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: Use ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx communica-
tion for ACS / DCS drives via Modbus TCP” on page 2385

– control function block in AC500 program: ACS3XX_DRIVES_CTRL_BASIC Ä Chapter
1.5.6.2.4.4 “ACS3XX_DRIVES_CTRL_BASIC” on page 2220

– scaling: the scaling is included in the ACS3XX_DRIVES_CTRL_BASIC Ä Chapter
1.5.6.2.4.4 “ACS3XX_DRIVES_CTRL_BASIC” on page 2220 function block

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)
and reference value2 (torque):
– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: Use ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx communica-
tion for ACS / DCS drives via Modbus TCP” on page 2385

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246(optional)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2196

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed),
reference value2 (torque) and up to 10 more values read from drive and up to 10 more
values write to the drive
– communication profile in drive parameters: ABB Drives enhanced
– communication function block in AC500 program:

Use ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives
via Modbus TCP” on page 2367, if PLC firmware is less than
V2.4, else use ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via
Modbus TCP” on page 2392

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215

ACS550 or ACH550 with Modbus TCP
Used drive Communication Module: RETA-01
Question: How many values should be exchanged?
● only status word, actual speed, control word and speed reference:

– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: Use ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx communica-
tion for ACS / DCS drives via Modbus TCP” on page 2385

– control function block in AC500 program: ACS3XX_DRIVES_CTRL_BASIC Ä Chapter
1.5.6.2.4.4 “ACS3XX_DRIVES_CTRL_BASIC” on page 2220

– scaling: the scaling is included in the ACS3XX_DRIVES_CTRL_BASIC function block
● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)

and reference value2 (torque):
– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: Use ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx communica-
tion for ACS / DCS drives via Modbus TCP” on page 2385

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215

ACS580 with Modbus TCP
Used drive Communication Module: FENA-x1

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2197

Question: How many values should be exchanged?
● only status word, actual speed, control word and speed reference:

– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: Use ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx communica-
tion for ACS / DCS drives via Modbus TCP” on page 2385

– control function block in AC500 program: ACS_DRIVES_CTRL Ä Chapter 1.5.6.2.4.6
“ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed),
reference value2 (torque) and up to 12 more values read from drive and up to 12 more
values write to the drive
– communication profile in drive parameters: ABB Drives enhanced
– communication function block in AC500 program:

Use ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives via Modbus
TCP” on page 2367
“ACS_COM_MOD_TCP_ENHANCED Communication for ACS Drives via Modbus
TCP”, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via
Modbus TCP” on page 2392
“ACS_COM_MOD_TCPx_ENHANCED Communication for ACS Drives via Modbus
TCP”

– control function block in AC500 program:
ACS_DRIVES_CTRL_STANDARD Ä Chapter 1.5.6.2.4.6
“ACS_DRIVES_CTRL_STANDARD ” on page 2234
“ACS_DRIVES_CTRL_STANDARD Control of ACS Drives with ABB-Drives Profile”

– scaling: ACS_REF_SCALING (optional)
“ACS_REF_SCALING Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING” on page 2246
Scaling for ACS Reference and Actual Values”

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215

ACS800 with Modbus TCP
Used drive Communication Module: RETA-01
Question: How many values should be exchanged?

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2198

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)
and reference value2 (torque):
– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: Use ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx communica-
tion for ACS / DCS drives via Modbus TCP” on page 2385

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215
●

ACS850, ACQ810 or ACSM1 with Modbus TCP
Used drive Communication Module: FENA-x1
Question: How many values should be exchanged?
● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)

and reference value2 (torque):
– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: Use ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx communica-
tion for ACS / DCS drives via Modbus TCP” on page 2385.

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246 (optional)

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed),
reference value2 (torque) and up to 12 more values read from drive and up to 12 more
values write to the drive
– communication profile in drive parameters: ABB Drives enhanced
– communication function block in AC500 program:

Use ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives
via Modbus TCP” on page 2367, if PLC firmware is less than
V2.4, else use ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via
Modbus TCP” on page 2392

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215
●

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2199

ACS880 with Modbus TCP
Used drive Communication Module: FENA-11
Question: How many values should be exchanged?
● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed),

reference value2 (torque) and up to 12 more values read from drive and up to 12 more
values write to the drive
– communication profile in drive parameters: ABB Drives enhanced
– communication function block in AC500 program:

Use ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives
via Modbus TCP” on page 2367, if PLC firmware is less than
V2.4, else use ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via
Modbus TCP” on page 2392

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed),
reference value2 (torque) and up to 12 more values read from drive and up to 12 more
values write to the drive
– communication profile in drive parameters: ABB Drives enhanced
– communication function block in AC500 program:

Use ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives via Modbus
TCP” on page 2367 “ACS_COM_MOD_TCP_ENHANCED, if PLC firmware is less
than V2.4, else use ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via
Modbus TCP” on page 2392

– control function block in AC500 program:
ACS_DRIVES_CTRL_STANDARD Ä Chapter 1.5.6.2.4.6
“ACS_DRIVES_CTRL_STANDARD ” on page 2234

DCS800 or DCS550 with Modbus TCP
Used drive Communication Module: RETA-01
Question: How many values should be exchanged?
● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)

and reference value2 (torque):
– communication function block in AC500 program: Use ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, if PLC firmware is less than V2.4, else use
ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx communica-
tion for ACS / DCS drives via Modbus TCP” on page 2385

– control function block in AC500 program: DCS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– to exchange more than above mentioned values use additionally the following blocks:
ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”
on page 2212
ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”
on page 2215

1.5.6.1.8 Modbus RTU
The following hardware components must be available:

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2200

● AC500 or AC500-eCo
● Drive with embedded Modbus RTU or FMBA-01 or FSCA-01 or RMBA-01 RS-485 Commu-

nication Module
● Twisted pair serial cable
The following libraries have to be loaded into the project:
● ACSDrivesBase_AC500_V20.lib Ä Chapter 1.5.6.2 “ACS drives base library” on page 2204
● ACSDrivesComModRTU_AC500_V22.lib Ä Chapter 1.5.6.3 “ACS / DCS Drives communi-

cation via Modbus RTU library” on page 2288
● DCS Drives Library Ä Chapter 1.5.6.8 “DCS drives library” on page 2467 (if DCS drives are

used)
Question:Which Drive should be used?
● ACS310, ACS350, ACS355, ACS550 or ACH550 Ä Chapter 1.5.6.1.8.1 “ACS310, ACS350,

ACS355, ACS550 or ACH550 with Modbus RTU” on page 2201
● ACS800 Ä Chapter 1.5.6.1.8.2 “ACS800 with Modbus RTU” on page 2202
● ACS850 or ACQ810 Ä Chapter 1.5.6.1.8.3 “ACS850, ACQ810 with Modbus RTU”

on page 2202
● ACS880 or ACSM1 or ACS580 Ä Chapter 1.5.6.1.8.4 “ACS880 or ACSM1 or ACS580 with

Modbus RTU” on page 2203
● DCS800 Ä Chapter 1.5.6.1.8.5 “DCS800 with Modbus RTU” on page 2203 or DCS550

ACS310, ACS350, ACS355, ACS550 or ACH550 with Modbus RTU
Used drive Communication Module: embedded, only ACS350 or ACS355 with FMBA-01:
Question: Are the Emergency stops needed and is the change to Ext1/2 control location
needed?
● Emergency stops or change to external control location is NOT needed

– READ / WRITE variables: status word, actual speed, control word and speed reference
and up to 7 more values read from the drive

– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: ACS3XX_COM_MOD_RTU
Ä Chapter 1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU communication for ACS3XXwrite
one bit/ACX550 drives via Modbus RTU” on page 2293

– control function block in AC500 program: ACS3XX_DRIVES_CTRL_BASIC Ä Chapter
1.5.6.2.4.4 “ACS3XX_DRIVES_CTRL_BASIC” on page 2220

– scaling:the scaling is included in the ACS3XX_DRIVES_CTRL_BASIC function block
● Emergency stops or change to external control location is needed

– read/write variables: status word, actual speed, control word and speed reference and
up to 7 more values read from the drive:

– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: ACS3XX_COM_MOD_RTU
Ä Chapter 1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU communication for ACS3XXwrite
one bit/ACX550 drives via Modbus RTU” on page 2293

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2201

ACS800 with Modbus RTU
Used drive Communication Module: RMBA-01
Question: How many values should be exchanged?
● READ / WRITE variables: status word, actual value1 (speed), actual value2 (torque), control

word, reference1 (speed), reference value2 (torque)
– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: ACS_COM_MOD_RTU Ä Chapter

1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus
RTU” on page 2301

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215

ACS850, ACQ810 with Modbus RTU
Question: How many values should be exchanged?
● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)

and reference value2 (torque) and up to 24 more values read from the drive
– used drive Communication Module: embedded Modbus using the D2D plug
– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: ACS_COM_MOD_RTU Ä Chapter

1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus
RTU” on page 2301

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)
and reference value2 (torque)
– used drive Communication Module: embedded Modbus using the D2D plug or FSCA-01
– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: ACS_COM_MOD_RTU Ä Chapter

1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus
RTU” on page 2301

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2202

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed),
reference value2 (torque) and up to 12 more values read from drive and up to 12 more
values write to the drive
– used drive Communication Module: FSCA-01
– communication profile in drive parameters: ABB Drives enhanced
– communication function block in AC500 program: ACS_COM_MOD_RTU_ENHANCED
Ä Chapter 1.5.6.3.5.3 “ACS_COM_MOD_RTU_ENHANCED communication for ACS
drives via Modbus RTU using ABB drives profile enhanced” on page 2312

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215

ACS880 or ACSM1 or ACS580 with Modbus RTU
Used drive Communication Module: FSCA-01:
Question: How many values should be exchanged?
● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)

and reference value2 (torque)
– communication profile in drive parameters: ABB Drives classic
– communication function block in AC500 program: ACS_COM_MOD_RTU Ä Chapter

1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus
RTU” on page 2301

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed),
reference value2 (torque) and up to 12 more values read from drive and up to 12 more
values write to the drive
– communication profile in drive parameters: ABB Drives enhanced
– communication function block in AC500 program: ACS_COM_MOD_RTU_ENHANCED
Ä Chapter 1.5.6.3.5.3 “ACS_COM_MOD_RTU_ENHANCED communication for ACS
drives via Modbus RTU using ABB drives profile enhanced” on page 2312

– control function block in AC500 program: ACS_DRIVES_CTRL_STANDARD Ä Chapter
1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215

DCS800 with Modbus RTU
Used drive Communication Module: RMBA-01
Question: How many values should be exchanged?

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2203

● status word, actual value1 (speed), actual value2 (torque), control word, reference1 (speed)
and reference value2 (torque):
– communication function block in AC500 program: Use ACS_COM_MOD_RTU
Ä Chapter 1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for ACS / DCS drives
via Modbus RTU” on page 2301

– control function block in AC500 program: DCS_DRIVES_CTRL Ä Chapter 1.5.6.8.4.1
“DCS_DRIVES_CTRL Control of DCS Drives with ABB-Drives profile using a communi-
cation block” on page 2470

– scaling: ACS_REF_SCALING (optional) Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

● to exchange more than above mentioned values use additionally the following blocks:
– ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1 “ACS_MOD_READ_N_PRM”

on page 2212
– ACS_MOD_WRITE_N_PRM Ä Chapter 1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM”

on page 2215

1.5.6.2 ACS drives base library

1.5.6.2.1 Preconditions for the use of the ACS drives base library

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

Some of the function blocks can only be used in combination with one
of the ACSDrivesComXXX_AC500_V20 libraries, e.g. the ACSDrivesCom-
ModRTU_AC500_V20.lib.

The library is released for the following products:

AC500, AC500-eCo
Modbus communication is tested for connection of 7 drives in total. Connection of more drives
depends on performance of used CPU, communication type and settings.

Modbus RTU (Serial Modbus)
Modbus TCP
CANopen: For CANopen communication we have to use FCAN-01 module firmware version
1050 or above has to be used.
PROFIBUS
PROFINET
EtherCAT

Following blocks can be used independent of used fieldbus:
● ACS_DRIVES_CTRL_STANDARD_GEN Ä Chapter 1.5.6.2.4.7

“ACS_DRIVES_CTRL_STANDARD_GEN” on page 2241
● ACS_REF_SCALING Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING” on page 2246

CPUs:

Fieldbuses:

General blocks

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2204

To check the compatiblity of drives and their communication modules please refer to the fol-
lowing table, that shows the tested combinations:

Communica-
tion

PLC communica-
tion modules

PLC Fieldbus Adapter Drive

PLC
commu-
nication
module

Firm-
ware
Version

Fieldbu
s
Adapter
(FBA)

FBA
comm
sw ver

FBA
appl sw
ver

Drive Firm-
ware
Ver-
sion

Drive
Rating
ID

Modbus RTU Onboard FMBA ACS355 5060 /
5090

ACS3
55-03
E-01A
2-4

 ACS355 5060 ACS3
55-01
E-02A
4-2

 ACS355 5040 ACS3
55-01
E-02A
4-2

 Onboard Onboard Onboard ACS310 402A ACS3
10-03
E-01A
3-4

 RMBA ACS800 SW
Ver
AS7R7
365.
Appl
Ver
ASAR
F018

ACS8
00-01-
0005-3

 Onboard Onboard Onboard ACS550 313D /
314E

ACH5
50-01-
03A3-
4

 Onboard Onboard Onboard ACH550 313D /
314E

ACH5
50-01-
02A4-
4

 FSCA-0
1

300C 042A ACS850 UIFI
2110 /
2700

ACS8
50-04-
03A0-
5

 FSCA-0
1

300C 042A ACSM1 UMFI
1510 /
1600

ACSM
1-04A
x-03A
0-4

 Onboard Onboard Onboard ACQ810 UIFQ
2010 /
2200

ACQ8
10_04-
02A7-
4

Modbus RTU
- Enhanced

Onboard FSCA-0
1

300C 042A /
163

ACQ810 UIFQ
2010 /
2200

ACQ8
10_02
A7

Compatibility

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2205

Communica-
tion

PLC communica-
tion modules

PLC Fieldbus Adapter Drive

PLC
commu-
nication
module

Firm-
ware
Version

Fieldbu
s
Adapter
(FBA)

FBA
comm
sw ver

FBA
appl sw
ver

Drive Firm-
ware
Ver-
sion

Drive
Rating
ID

Modbus TCP CM577-
ETH

V01.100 FENA-11 0072 0252 /
0302

ACS850 UIFI
2110

ACS8
50-04-
03A0-
5

Onboard V01.100 FENA-11 0072 0252 /
0302

ACSM1 UMFI
1510 /
1600

ACSM
1-04A
x-03A
0-4

Modbus TCP
- Enhanced

Onboard V 1.3.2 FENA-0
1

0062 0252/30
2

ACQ810 UIFQ
2010 /
2200

ACQ8
10_02
A7

PROFIBUS CM572-
DP

V01.097 FPBA-01 205B 0200B /
0300

ACSM1 UMFI
1510 /
1600

ACSM
1-02A
5-4

FPBA-01 3102 2145 /
0300

ACS880 AINF0
1.11.0.
0 /
1.92.2
00.3

AINF0
1.11.0.
0

 FPBA-01 3102 21450 /
300

ACS850 UIFI
2400

ACS8
50_03
A0

PROFIBUS CM592-
DP

V3.00 FPBA-01 - 0x0300 ACS880 AINFC
2.82.0.
0

ACS8
80-01-
02A4-
3

PROFINET CM579-
PNIO

2.6.5 (0) FENA-11 072 0255 /
0302

ACS880 AINF0
1.11.0.
0

ACS8
80-01-
02A4-
3(301)

FENA-11 062 0246 /
0302

ACQ810 UIFQ
2020

ACQ8
10_02
A7

EtherCAT CM579_
ECAT

2.4.11
(0)

FECA-0
1

0073 0109 /
121

ACS355 5060 /
5090

ACS3
55-03
E-01A
2-4

CANopen CM578-
CAN

V01.101 FCAN-0
1

3120 1050 ACS850 UIFI
2400

ACS8
50_03
A0

CANopen CM598-
CAN

V1.16 FCAN-0
1

- 0x0116 ACS880 AINFC
2.82.0.
0

ACS8
80-01-
02A4-
3

1.5.6.2.2 Special characteristics of the ACS drives base library
The types and constants defined in this library are base types and can be used in other
ACSDrivesXXX libraries, e.g. ACSDrivesComModRTU_AC500_V20.lib.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2206

The ACSDrivesBase_AC500_V20 Library includes 3 different control function blocks to be used
with ACS drives configured for ABB Drives Profile.
For three of these blocks the communication to the drive is made via the DRIVE_DATA
variable which must be connected to an communication function block. The communication
function blocks for different fieldbuses can be found in separate libraries, e.g. ACSCom-
ModRTU_AC500_V20.lib for Modbus RTU connection.
One control function block (ACS_DRIVES_CTRL_STANDARD_GEN) is a generic block which
doesn´t need a communication block. The input of Status Word and output of Control Word
must be mapped somehow to any fieldbus.
The control function blocks work independent of the used fieldbus connection. The principle and
differences of the 4 control blocks is shortly described below:

The ACS_DRIVES_CTRL_ENG function block is designed for user specific control of the drive
setting the Control Word (CW) by the user in the program.
Therefore the user should have a detailed knowledge of the ABB Drives Profile handling.
The reference and actual values must be given in fieldbus equivalent, e.g. +/- 20000 for the
reference value 1.

ACS_DRIVES_C
TRL_ENG

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2207

The ACS_DRIVES_CTRL_STANDARD function block can be used for standard control func-
tions.
The handling of the ABB Drives Profile State Machine is done inside the block. The Control
Word is built according to ABB Drives Profile State Machine, the Status Word (SW) and the
inputs of the function block.
The reference and actual values must be given in fieldbus equivalent, e.g. +/- 20000 for the
reference value 1.

The ACS3XX_DRIVES_CTRL_BASIC function block is designed especially for ACS3XX and
ACX550 drives and provides additionally scaling functions for the speed reference.

ACS_DRIVES_C
TRL_STANDAR
D

ACS3XX_DRIVE
S_CTRL_BASIC

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2208

The handling of the ABB Drives Profile State Machine is done inside the block. The Control
Word is built according to ABB Drives Profile State Machine, the Status Word (SW) and the
inputs of the function block.
The speed reference input can be given in rpm or in 0.1 Hz. The act speed output is also in rpm
or 0.1 Hz.

The ACS_DRIVES_CTRL_STANDARD_GEN function block can be used for standard control
functions, using any generic fieldbus.
The handling of the ABB Drives Profile State Machine is done inside the block. The Control
Word is built according to ABB Drives Profile State Machine, the Status Word (SW) and the
inputs of the function block.
The block does not have a DRIVE_DATA input. The SW and CW can be retrieved from any
where. So any generic fieldbus can be used to get the SW and send the CW to the drive.
The block does not have any input or output for actual- or reference speed values. These can
be send directly via the fieldbus to the drive.

This block can be used to scale the actual and reference values from fieldbus equivalent (+/-
20000 or +/- 10000) to the physical value ("rpm" or "Hz").
Figure bellow shows an overview for the speed values. Same functionality is also provided in
the same block for the torque values.
This block can also be used together with other ACS or DCS blocks, e.g.
ACS_DRIVES_CTRL_STANDARD or DCS_DRIVES_CTRL to scale the fieldbus values to
physical values used in the PLC program.

1.5.6.2.3 Overview of the ACS drives base components according to their call names
Used abbreviations:

ACS_DRIVES_C
TRL_STANDAR
D_GEN

ACS_REF_SCA
LING

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2209

FBhv Function block with historical values

FBnohv Function block without historical values

F: Function

Enum: Enumeration

Struct: Structure

Visu: Visualization

VE name Type Function
ACS_CW_VISU_PH Ä Chapter
1.5.6.2.8.9 “ACS_CW_VISU_PH visuali-
zation for the ABB drives profile control
word” on page 2286

Visu Visualization for the ABB Drives Profile
Control Word

ACS_DRIVE_CONFIG_TYPE
Ä Chapter 1.5.6.2.6.1
“ACS_DRIVE_CONFIG_TYPE structure
including configurations parameters of
the ACS3XX drive” on page 2252

Struct Structure Including Configurations
Parameters of the ACS3XX Drive

ACS_DRIVE_DATA_TYPE Ä Chapter
1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE
structure to exchange data between
function blocks for 1 Drive”
on page 2253

Struct Structure to Exchange Data between
function blocks for 1 drive

ACS_DRIVES_CTRL_ENG
Ä Chapter 1.5.6.2.4.5
“ACS_DRIVES_CTRL_ENG ”
on page 2226

FBhv Control of ACS Drives with ABB-Drives
Profile

ACS_DRIVES_CTRL_ENG_VISU_PH
Ä Chapter 1.5.6.2.8.4
“ACS_DRIVES_CTRL_ENG_VISU_PH
faceplate of function
block ACS_DRIVES_CTRL_ENG”
on page 2266

Visu Faceplate of function block
ACS_DRIVES_CTRL_ENG

ACS_DRIVES_CTRL_STANDARD
Ä Chapter 1.5.6.2.4.6
“ACS_DRIVES_CTRL_STANDARD ”
on page 2234

FBhv Control of ACS Drives with ABB-Drives
Profile

ACS_DRIVES_CTRL_STANDARD_VIS
U_PH Ä Chapter 1.5.6.2.8.5
“ACS_DRIVES_CTRL_STANDARD_VI
SU_PH faceplate of function block
ACS_DRIVES_CTRL_STANDARD”
on page 2271

Visu Faceplate for the function block

ACS_DRIVES_CTRL_STANDARD_GE
N Ä Chapter 1.5.6.2.4.7
“ACS_DRIVES_CTRL_STANDARD_GE
N” on page 2241

FBhv Control of ACS Drives with ABB-Drives
Profile

ACS_DRIVES_CTRL_STANDARD_GE
N_VISU_P Ä Chapter 1.5.6.2.8.6
“ACS_DRIVES_CTRL_STANDARD_GE
N_VISU_PH faceplate for the function
block” on page 2275

Visu Faceplate for the function block

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2210

VE name Type Function
ACS_DRIVE_ENUM Ä Chapter
1.5.6.2.5.1 “ACS_DRIVE_ENUM enu-
merations to select the type of drive
used” on page 2251

Enum Enumerations to Select the Type of Drive
Used

ACS_MOD_PRM_NUM_32BIT
Ä Chapter 1.5.6.2.4.3
“ACS_MOD_PRM_NUM_32BIT”
on page 2219

FBhv Function creates the Modbus Address 32-
bit Parameters of ACSxxx Drives

ACS_MOD_READ_N_PRM
Ä Chapter 1.5.6.2.4.1
“ACS_MOD_READ_N_PRM”
on page 2212

FBhv Read 1 or More Parameters from an ACS
Drive via Modbus RTU

ACS_MOD_READ_N_PRM_VISU_PH
Ä Chapter 1.5.6.2.8.1
“ACS_MOD_READ_N_PRM_VISU_PH
faceplate for the function
block ACS_MOD_READ_N_PRM”
on page 2256

Visu Faceplate of function block
ACS_MOD_READ_N_PRM

ACS_MOD_TOKEN_TYPE Ä Chapter
1.5.6.2.6.3 “ACS_MOD_TOKEN_TYPE
structure to exchange the internal
Modbus token for Modbus RTU com-
munication with more than 1 Drive”
on page 2254

Struct Structure to Exchange the Internal
Modbus Token for Modbus RTU Commu-
nication With More Than 1 Drive

ACS_MOD_WRITE_N_PRM
Ä Chapter 1.5.6.2.4.2
“ACS_MOD_WRITE_N_PRM”
on page 2215

FBhv Write 1 or More Parameters to an ACS
Drive via Modbus RTU

ACS_MOD_WRITE_N_PRM_VISU_PH
Ä Chapter 1.5.6.2.8.2
“ACS_MOD_WRITE_N_PRM_VISU_P
H faceplate for the function block
ACS_MOD_WRITE_N_PRM”
on page 2260

Visu Faceplate for the function block
ACS_MOD_WRITE_N_PRM

ACS_REF_SCALING Ä Chapter
1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246

FBhv Scaling for ACS Reference and Actual
Values

ACS_REF_SCALING_VISU_PH
Ä Chapter 1.5.6.2.8.7
“ACS_REF_SCALING_VISU_PH face-
plate for the function block
ACS_REF_SCALING” on page 2279

Visu Faceplate of function block
ACS_REF_SCALING

ACS_SW_VISU_PH Ä Chapter
1.5.6.2.8.8 “ACS_SW_VISU_PH visuali-
zation for the ABB drives profile status
word” on page 2282

Visu Visualization for the ABB Drives Profile
Status Word

ACS3XX_DRIVES_CTRL_BASIC
Ä Chapter 1.5.6.2.4.4
“ACS3XX_DRIVES_CTRL_BASIC”
on page 2220

FBhv Control of ACS3XX Drives with ABB-
Drives Profile

ACS3XX_DRIVES_CTRL_BASIC_VISU
_PH Ä Chapter 1.5.6.2.8.3
“ACS3XX_DRIVES_CTRL_BASIC_VIS
U_PH faceplate of function block
ACS3XX_DRIVES_CTRL_BASIC”
on page 2262

Visu Faceplate for the function block
ACS3XX_DRIVES_CTRL_BASIC

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2211

1.5.6.2.4 Function blocks
ACS_MOD_READ_N_PRM

Function block ACS_MOD_READ_N_PRM is used for reading n parameters from a drive via
Modbus.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Function block type: Function block with historical values.

Function block ACS_MOD_READ_N_PRM reads n parameters of the drive. The number of
parameters to be read is specified at the input NVAR. The first parameter number is specified
at the input PRM_NUM. All parameters must be accessible from consecutive Modbus registers
in the drive. The values of the parameters are stored in the PLC memory area, defined at the
input DATA. The values in the PLC memory area are updated when the read job was performed
without error. This is indicated by DONE=TRUE and ERR=FALSE.
As long as the EN = TRUE a new read job is requested each time the further read job is
terminated.
The Modbus job is started from the communication block which is connected to the same
DRIVE_DATA variable. It uses the Modbus function code 03 (Read n words).
The drive (Modbus slave) from which the parameter is read is specified at this communication
block.
The communication blocks are available from other ACSDrivesComXXX libraries e.g.
ACS_3XX_COM_MOD_RTU Ä Chapter 1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU communi-
cation for ACS3XXwrite one bit/ACX550 drives via Modbus RTU” on page 2293 in
ACSDrivesComModRTU_AC500_V20.lib. Ä Chapter 1.5.6.3 “ACS / DCS Drives communi-
cation via Modbus RTU library” on page 2288 or ACS_COM_MOD_TCP_ENHANCED
Ä Chapter 1.5.6.4.3.2 “ACS_COM_MOD_TCP_ENHANCED communication for ACS /
DCS drives via Modbus TCP” on page 2367 in ACSDrivesComModTCP_V22.lib
Ä Chapter 1.5.6.4 “ACS / DCS drives communication via Modbus TCP
library” on page 2359ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2392 in ACSDrivesComModTCP_Ext_AC500_V24.lib.

If the connected communication block (via DRIVE_DATA variable) is disabled
or not parametrized correctly and EN = TRUE, the variables or arrays that are
attached via DATA input are reset to zero. This can be checked by the ERNO
output.

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2212

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
If a TRUE state is applied to the input EN, a request to perform a Modbus read job is set to the
DRIVE_DATA variable.
All further inputs are read in.
If the input values are valid, a request to perform a Modbus job is send to the communication
block via the DRIVE_DATA variable.
If at least 1 input is invalid, no job is generated and the error is displayed at the outputs ERR
and ERNO instead.
If the state of EN stays TRUE a new read job is requested each time the previous job is
terminated, indicated by the DONE = TRUE flag.

Data type: BOOL
Input PRIO is reserved for future usage. It can be left open.

Data type: UINT, Default value: 1, Range: 1 to 125
Input NVAR defines the number of variables to be read by the function block.
If the read job was finished successfully the first 15 parameter values
are written to the internal array VALUE, which can be made visible
in the visualization element ACS_MOD_READ_N_PRM_VISU_PH Ä Chapter
1.5.6.2.8.1 “ACS_MOD_READ_N_PRM_VISU_PH faceplate for the function block
ACS_MOD_READ_N_PRM” on page 2256or used via <instance of the function block>.
VALUE[1..15].

Data type: UINT, Range 0 to 65535
For 16bit Parameters it is set in the format 100 * GG + ii as decimal integer value. (GG =
parameter group, ii = parameter index of the drive, e.g. for parameter 12.02, 100 * GG + ii =
1202.)
(GG = parameter group, ii = parameter index of the drive)
For 32bit Parameters it must be set according to the formula 20000 + 200 x GG + 2 x ii.(see
description of related drive fieldbus module), e.g. for parameter 14.54 = 22908.
This calculation is provided in the function ACS_MOD_PRM_NUM_32BIT Ä Chapter
1.5.6.2.4.3 “ACS_MOD_PRM_NUM_32BIT” on page 2219, which output can then be connected
to the PRM_NUM input. The Modbus address which is used at the Communication Block is
PRM_NUM - 1.

EN (enable)

PRIO (priority)

NVAR (number
of variables)

PRM_NUM
(parameter
number)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2213

The parameter number must be set prior or at the same cycle when input EN is
set to TRUE.

The Modbus address which is used at the communication block is PRM_NUM - 1.

Data type: DWORD
At input DATA, the address of the first operand in the PLC is specified to which the data read by
the slave should be stored.
For this purpose it is necessary that all PLC variables, which are written to the drive, have con-
secutive addresses. This can be obtained by declaration of each variable within the %MW0.xxx
area or declaration of an array containing all variables.
Declaration of each variable has the advantage, that the types (integer or word) can be selected
individually.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

DATA (data)

DRIVE_DATA
(drive data)

DONE (done)

ERR (error)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2214

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

dwAcsModReadNPrm_DATA := ADR(aiAcsModReadNPrm_VALUE[1]);

aiAcsModReadNPrm_DATA (EN := xAcsModReadPrm_EN,
 PRM_NUM := uiAcsModReadPrm_PRM_NUM,
 DATA := dwAcsModReadNPrm_DATA,
 DRIVE_DATA := tsDriveData);

xAcsModReadNPrm_DONE := AcsModReadNPrm.DONE;
xAcsModReadNPrm_ERR := AcsModReadNPrm.ERR;
wAcsModReadNPrm_ERNO := AcsModReadNPrm.ERNO;
xAcsModReadNPrm_BUSY := AcsModReadNPrm.BUSY;

ACS_MOD_WRITE_N_PRM

Function block ACS_MOD_WRITE_N_PRM is used for writing n parameters to a drive via
Modbus.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Function block type: Function block with historical values.

Function block ACS_MOD_WRITE_PRM writes n parameter to the drive. The number of param-
eters to be written is specified must be available in the PLC memory area, defined at the input
DATA. The write job has been performed without error if DONE=TRUE and ERR=FALSE.

ERNO (error
number)

BUSY (busy)

Function call in
ST:

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2215

To start a new write job the input EN has to be set from FALSE to TRUE (edge sensitive).
The Modbus job is started from the Communication Block which is connected to the same
DRIVE_DATA variable. It uses the Modbus function code 16 (Write n words).
The drive (Modbus Slave) to which the parameter is written is specified at this communication
block.
The communication blocks are available from other ACSDrivesComXXX libraries e.g.
ACS3XX_COM_MOD_RTU Ä Chapter 1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU communication
for ACS3XXwrite one bit/ACX550 drives via Modbus RTU” on page 2293 in ACSDrivesCom-
ModRTU_AC500_V20.lib Ä Chapter 1.5.6.3 “ACS / DCS Drives communication via Modbus
RTU library” on page 2288. or ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2367 in ACSDrivesComModTCP_V22.lib Ä Chapter 1.5.6.4 “ACS / DCS drives com-
munication via Modbus TCP library” on page 2359. See description of these blocks for further
information.

ACS drive parameters are only saved temporarily, if changed via fieldbus. To
make these changes permanent in the drive the special parameter "PARAM-
ETER SAVE" has to be set. Please see drive manuals and following table which
parameter has to be set.

Save valid parameters to permanent
memory in drive

ACS3XX, ACX550,
ACQ810, ACS850,
ACSM1, ACS800

ACS880

1 = Saves the valid parameter values to
permanent memory. 0 = Save completed.

Par 16.07 = 1 Par 96.07 = 1

Input description

Data type: BOOL
If a FALSE->TRUE edge is applied to input EN, all further inputs are read in (edge sensitive).
If the input values are valid, a request telegram is sent to the communication block via the
DRIVE_DATA variable.
If at least 1 input is invalid, no telegram is generated and the error is displayed at the outputs
ERR and ERNO instead.
While the request is processed, state changes at input EN are recognized but not evaluated.

Data type: BOOL
Input PRIO is reserved for future usage. It can be left open.

EN (enable)

PRIO (priority)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2216

Data type: UINT, Default value: 1, Range: 1 to 125
Input NVAR defines the number of variables to be read by the function block.
If the read job was finished successfully the first 15 parameter values
are written to the internal array VALUE, which can be made visible
in the visualization element ACS_MOD_READ_N_PRM_VISU_PH Ä Chapter
1.5.6.2.8.1 “ACS_MOD_READ_N_PRM_VISU_PH faceplate for the function block
ACS_MOD_READ_N_PRM” on page 2256or used via <instance of the function block>.
VALUE[1..15].

Data type: UINT, Range 0 to 65535
For 16bit Parameters it is set in the format 100 * GG + ii as decimal integer value. (GG =
parameter group, ii = parameter index of the drive, e.g. for parameter 12.02, 100 * GG + ii =
1202.)
(GG = parameter group, ii = parameter index of the drive)
For 32bit Parameters it must be set according to the formula 20000 + 200 x GG + 2 x ii.(see
description of related drive fieldbus module), e.g. for parameter 14.54 = 22908.
This calculation is provided in the function ACS_MOD_PRM_NUM_32BIT Ä Chapter
1.5.6.2.4.3 “ACS_MOD_PRM_NUM_32BIT” on page 2219, which output can then be connected
to the PRM_NUM input. The Modbus address which is used at the Communication Block is
PRM_NUM - 1.

The parameter number must be set prior or at the same cycle when input EN is
set to TRUE.

The Modbus address which is used at the communication block is PRM_NUM - 1.

Data type: DWORD
At input DATA, the address of the first operand in the PLC is specified to which the data read by
the slave should be stored.
For this purpose it is necessary that all PLC variables, which are written to the drive, have con-
secutive addresses. This can be obtained by declaration of each variable within the %MW0.xxx
area or declaration of an array containing all variables.
Declaration of each variable has the advantage, that the types (integer or word) can be selected
individually.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

NVAR (number
of variables)

PRM_NUM
(parameter
number)

DATA (data)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2217

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

dwAcsModWriteNPrm_DATA := ADR(aiAcsModWriteNPrm_VALUE[1]);

AcsModWriteNPrm (EN := xAcsModWritePrm_EN,
 PRM_NUM := uiAcsModWritePrm_PRM_NUM,
 DATA := dwAcsModWriteNPrm_DATA,
 DRIVE_DATA := tsDriveData);

xAcsModWritePrm_DONE := AcsModWritePrm.DONE;
xAcsModWritePrm_ERR := AcsModWritePrm.ERR;
xAcsModWritePrm_ERNO := AcsModWritePrm.ERNO;
xAcsModWritePrm_BUSY := AcsModWritePrm.BUSY;

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

Function call in
ST:

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2218

ACS_MOD_PRM_NUM_32BIT

Function to create the Modbus address for a 32-bit parameter of ACSxxx drives.

Example

Available as of runtime system: V1.3.2 and above

Included in library: ACSDrivesBase_AC500_V20.lib

Function type: Function block with historical values.

This function will create the Modbus address for 32-bit parameters of the ACSXXX / ACx550
drives using the format for 16 bit parameter as input.
Output is the calculated address for 32-bit parameters according the following rule:
ACS_MOD_PRM_NUM_32BIT = 20000 + (200 * GG) + (2 * ii)
Where GG = parameter group and ii = the index of input PRM_NUM in format of 4 digits: GGii.

Input description

Data type: WORD
Input for function. Parameter number in format: 100 * GG + ii
(GG = parameter group, ii = parameter index of the drive, e.g. for parameter 12.02, 100 * GG +
ii = 1202.)

Output description

Function
information

Function
description

PRM_NUM
(parameter
number)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2219

Data type: WORD
Output of function. Modbus address for 32-bit parameter access, which can
be used at input PRM_NUM of ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1
“ACS_MOD_READ_N_PRM” on page 2212 or ACS_MOD_WRITE_N_PRM Ä Chapter
1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM” on page 2215.
E.g. ACQ810 Par.14.54 (32-bit parameter) Modbus Address is 22908. This is the output of the
function if PRM_NUM input is set to 1454.

uiAcsModReadNPrm_PRM_NUM := ACS_MOD_PRM_NUM_32BIT (

 PAR_NUM := wAcsModPrmNum32Bit_PAR_NUM);

ACS3XX_DRIVES_CTRL_BASIC

Function block ACS3XX_DRIVES_CTRL_BASIC is used for the control of ACS3XX and
ACX550 drives with ABB Drives profile.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Function block type: Function block with historical values

ACS_MOD_PRM
_NUM_32BIT
(acs mod prm
num 32 bit)

Function call in
ST

Function block
information

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2220

Function block ACS_DRIVES_CTRL_BASIC is used for controlling ACS3XX and ACX550
drives with ABB Drives profile.
The Function block provides basic start/stop signals, basic diagnosis signals and scaling of the
SPEED_REF input and ACT_SPEED to the ACS fieldbus scaling range -20000 to +20000.
The scaling is done according to the drive parameter 11.05 (Ref1 Max) which is read automati-
cally at the first start of the function block form the drive. A successful reading of this and some
other configuration parameters is indicated by the output SCALING_DONE. These parameter
values are available at the DRIVE_DATA variable element “config” e.g. tsDriveData.config.
iRefScaleMax.
The function block internally calls the function block ACS_DRIVES_CTRL_STANDARD
Ä Chapter 1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234 which is included
in the same library.
If the connected communication block (via DRIVE_DATA variable) is disabled or not parame-
trized correctly all outputs except DONE, ERR and ERNO are reset to zero. This can be
checked by the ERNO output.
PRECONDITIONS
The function block is only working for ACS3XX (ACS310, ACS350 and ACS355) and ACX550
(ACS550 and ACH550) drives via Modbus RTU communication.

This function block cannot be used with ACS380 drive.

Instead for ACS380 drive use ACS_DRIVES_CTRL_STANDARD function
block.

The data transfer to the ACS3XX / ACX550 drive is realized via the IN_OUT var-
iable DRIVE_DATA, which must be connected to a communication block such as
ACS3XX_COM_MOD_RTU Ä Chapter 1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU communica-
tion for ACS3XXwrite one bit/ACX550 drives via Modbus RTU” on page 2293 or an
ACS_COM_MOD_RTU Ä Chapter 1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for
ACS / DCS drives via Modbus RTU” on page 2301, ACS_COM_MOD_RTU_ENHANCED
Ä Chapter 1.5.6.3.5.3 “ACS_COM_MOD_RTU_ENHANCED communication for ACS drives

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2221

via Modbus RTU using ABB drives profile enhanced” on page 2312, ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives via
Modbus TCP” on page 2360or ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2367.
The drive parameters to select the source of the Control Word must be set to fieldbus control.
Also the source for reference 1 and the RESET signal must be set to fieldbus.
For an ACS3XX / ACX550 drive the setting must be as follows:
10.01 = 10 (EXT1 COMMANDS = COMM)

11.02 = 8 (EXT1/EXT2 SEL = COMM)

11.03 = 8 (REF1 SEL = COMM)

16.04 = 8 (FAULT RESET SEL = COMM)

53.05 = 2 (ABB drives profile)

Input description

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the function block is active, the current values are available at the outputs.
If the function block has been deactivated, all outputs are set to 0.
After a rising edge (FALSE -> TRUE) of input EN some parameters are read from the
ACS3XX / ACX550 drive. Included is parameter 11.05 which reflects the maximum speed
reference value of the drive. After successful reading of the ACS3XX / ACX550 parameters
output SCALING_DONE is set to TRUE.

Data type: BOOL
With a rising edge at input START (FALSE -> TRUE) the ACS Drive is started. If START =
FALSE the drive is stopped along the normal stop ramp, defined in the drive (e.g. Par. 22.03 for
ACS355).

According to the ABB Drives Profile a new rising edge of START input will be
ignored by the drive until zero speed was reached.

EN (enable)

START (start)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2222

After an emergency stop of the drive a new rising edge of the START input is required to restart
the drive.

Data type: BOOL
Input STOP_COAST = TRUE will coast the drive immediately (STOP_COAST = inverted Bit
3 of the Control Word – INHIBIT_OP). Setting STOP_COAST=FALSE will restart the drive
immediately without need of an rising edge at input START.

Data type: BOOL
Input RESET is packed to bit 7 of the Control Word as long as input USE_CW=FALSE. RESET
= TRUE resets faults and warnings in the drive. It does not reset the function block itself.

Data type: REAL
Input SPEED_REF must be given according to ACS3XX / ACX550 drive motor control mode.
The motor control mode is set in the drive (e.g. Par. 99.04 for ACS355). In case of a scalar
motor control mode (99.04 = 3 for ACS355) the input SPEED_REF reflects the frequency
reference in 0.1 Hz (10 = 1Hz). In case of vector speed control mode (99.04 = 2 for ACS35) the
input SPEED_REF reflects the speed reference in rpm.
The function block includes a linear scaling of input SPEED_REF to the fieldbus equivalent
value between -20000 to +20000. 20000 = the value defined in the drive parameter 11.05 (Ref1
Max). This parameter 11.05 is automatically read by the function block after a rising edge is
given at the input START.
The input range is from negative to positive value of maximum speed (Par.11.05 “Ref1 Max”),
e.g. –1500 .. +1500 rpm.
If the input value exceeds the input range, the speed reference value is limited to maximum
value. ERR is set to TRUE, ERNO is set to the message that the input of SPEED_REF is out of
range. Nevertheless, the function block is processed normally.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

STOP_COAST
(stop coast)

RESET (reset)

SPEED_REF
(speed refer-
ence)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2223

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output SCALING_DONE is set to TRUE when the reading of the scaling parameters from the
ACS3XX / ACX550 drive has been finished. SCALING_DONE will be reset to FALSE if EN =
FALSE. With a rising edge of EN the reading of the scaling parameters will be started. If the
reading of a scaling parameter is not successful the ERR output is set to TRUE and the ERNO
indicates that the reading of the scaling parameters was erroneous.
Scaling parameters for ACS3XX / ACX550 are written to the DRIVE_DATA variable struc-
ture under DRIVE_DATA.config (see description of DRIVE_DATA). They are only valid if
SCALING_DONE = TRUE.

The parameters can be accessed via the DRIVE_DATA variable using the
Point-Operator. Scaling parameters are Par.11.05 (Ref1 Max); Par 99.04 (Motor
Ctrl Mode), Par 99.07 (Motor Nom Freq), Par. 99.08 (Motor Nom Speed).

Data type: BOOL
Output OPERATING=TRUE indicates that the drive is controlled by this function block. The
drive is enabled and running (Status Word of drive bits: RDY_ON = TRUE, RDY_RUN = TRUE,
RDY_REF = TRUE).

DONE (done)

ERR (error)

ERNO (error
number)

SCALING_DON
E (scaling done)

OPERATING
(operating)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2224

If the drive is controlled from another control place, e.g. local panel, output OPERATING is reset
to FALSE, even if the drive might be enabled and running.
To get a control place independent indication, evaluate if the following bits of input SW are set:
SW.0 AND SW.1 AND SW.2

Data type: BOOL
Output TRIPPED=TRUE indicates that the drive is tripped (Bit 3 in the Status Word from the
drive).

Data type: BOOL
Output ALARM=TRUE indicates that the drive has an alarm (Bit 7 in the Status Word from the
drive).

Data type: REAL
Output ACT_SPEED returns the actual speed value from the drive. The scaling depends on the
drive settings.

Drive Fieldbus Parameter Settings Scaling
ACS3XX / ACX550 Modbus RTU 53.10=101 Actual speed [rpm] 1

= 1 rpm

ACS3XX / ACX550 Modbus RTU 53.10=103 Absolute frequency 10
= 1 Hz

ACS3XXDrivesCtrlBasic (EN := xACS3XXDrivesCtrlBasic_EN,
 START := xACS3XXDrivesCtrlBasic_START,
 STOP_COAST := xACS3XXDrivesCtrlBasic_STOP_COAST,
 RESET := xACS3XXDrivesCtrlBasic_RESET,
 SPEED_REF := rACS3XXDrivesCtrlBasic_SPEED_REF,
 DRIVE_DATA := tsDriveData);

xACS3XXDrivesCtrlBasic_DONE := ACS3XXDrivesCtrlBasic.DONE;
xACS3XXDrivesCtrlBasic_ERR := ACS3XXDrivesCtrlBasic.ERR;
wACS3XXDrivesCtrlBasic_ERNO := ACS3XXDrivesCtrlBasic.ERNO;
xACS3XXDrivesCtrlBasic_SCALING_DONE := ACS3XXDrivesCtrlBasic.SCALING_DONE;
xACS3XXDrivesCtrlBasic_OPERATING := ACS3XXDrivesCtrlBasic.OPERATING;
xACS3XXDrivesCtrlBasic_TRIPPED := ACS3XXDrivesCtrlBasic.TRIPPED;
xACS3XXDrivesCtrlBasic_ALARM := ACS3XXDrivesCtrlBasic.ALARM;
rACS3XXDrivesCtrlBasic_ACT_SPEED := ACS3XXDrivesCtrlBasic.ACT_SPEED;

TRIPPED
(tripped)

ALARM (alarm)

ACT_SPEED
(actual speed)

Function call in
ST

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2225

ACS_DRIVES_CTRL_ENG

Function block ACS_DRIVES_CTRL_ENG is used as an engineering interface for ACS Drives
with ABB Drives profile.

Available as of runtime system: V1.3.2

Available as of runtime system: ACSDrivesBase_AC500_V20.lib

Function block type Function block with historical values

Function block ACS_DRIVES_CTRL_ENG is used as an engineering interface for ACS Drives
with ABB Drives profile.
Inputs REF_VALUE1 and REF_VALUE2 and the generated Control Word are written to the
DRIVE_DATA variable which transfers these values to a communication function block, e.g.
ACS3XX_MOD-MAST_RTU. That communication function block writes them to the drive. In
the same way ACT_VALUE1, ACT_VALUE2 and the Status Word are transferred from the
communication function block to the ACS_DRIVES_CTRL_ENG block where they are written to
the outputs.
As long as EN=FALSE no values are read nor written to the DRIVE_DATA variable.
The Control Word can be generated in 2 ways. First way is to set the single bits of the Control
Word separately at the inputs OFF1 ... CW_BIT15 while the input USE_CW=FALSE. Second
way is to set the input USE_CW=TRUE and write the Control Word as a whole word directly
to the input CW. The generated Control Word is written to the DRIVE_DATA variable and for
diagnosis purpose also available at output USED_CW.
PRECONDITIONS
The data transfer to the ACS drive is realized via the IN_OUT variable
DRIVE_DATA, which must be connected to an ACS3XX_COM_MOD_RTU Ä Chapter
1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU communication for ACS3XXwrite one bit/ACX550
drives via Modbus RTU” on page 2293, ACS_COM_MOD_RTU Ä Chapter
1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus
RTU” on page 2301, ACS_COM_MOD_RTU_ENHANCED Ä Chapter 1.5.6.3.5.3
“ACS_COM_MOD_RTU_ENHANCED communication for ACS drives via Modbus
RTU using ABB drives profile enhanced” on page 2312, ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360 or ACS_COM_MOD_TCP_ENHANCED Ä Chapter

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2226

1.5.6.4.3.2 “ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives
via Modbus TCP” on page 2367, ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1
“ACS_COM_MOD_TCPx communication for ACS / DCS drives via Modbus TCP”
on page 2385 or ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2392.

Table 129: Necessary configuration of parameters in the drive
Drive
Param-
eter

ACS3XX,
ACX550

ACS850,
ACQ810
embedde
d

ACS850,
ACQ810

ACSM1 ACS580,
ACS880

ACS800 Comment

EXT1
COM-
MANDS

10.01 =
COMM

10.01 =
FBA

10.01 =
FB

10.01 =
FBA

20.01 =
Fieldbus
A

10.01 =
COMM.C
W

Fieldbus
interface
as source
for start
and stop.

EXT1/
EXT2 SEL

11.02 =
COMM

12.01 =
P.02.36 bit
15

12.01 =
P.02.22 bit
15

34.01 =
P.02.12 bit
15

19.11 =
MCW
Bit11
(06.01)

11.02 =
COMM.C
W

Fieldbus
interface
as source
to switch
to EXT2
control
place.

REF1
SELECT

11.03 =
COMM

21.01 =
EFB
REF1

21.01 =
FBA
REF1

24.01 =
FBA Ref1

22.11 =
FBA ref1

11.03 =
COMM.R
EF

Fieldbus
interface
as source
for speed
reference.

FAULT
RESET
SEL

16.04 =
COMM

10.10 =
P.02.36 bit
8

10.10 =
P.02.22 bit
8

10.08 =
P.02.12 bit
8

31.11 =
P.06.01 bit
7

16.04 =
COMM.C
W

Fieldbus
interface
as source
for fault
reset.

PROFILE 53.05 =
ABB DRV
FULL

58.06 =
ABB
Drives
classic/
enhanced

51.02 =
ABB
Drives
classic/
enhanced

51.02 =
ABB
Drives
classic/
enhanced

51.02 =
ABB
Drives
classic/
enhanced

98.07 =
ABB
DRIVES

Control
Profile to
ABB
Drives
Profile
classic or
enhanced.

Only one of the function blocks ACS3XX_DRIVES_CTRL_BASIC,
ACS_DRIVES_CTRL_STANDARD or ACS_DRIVES_CTRL_ENG must be ena-
bled (EN=TRUE) at the same time.

The data transfer to the ACS drive is realized via the IN_OUT variable DRIVE_DATA, which
must be connected to an ACS3XX_COM_MOD_RTU or an ACS_COM_xxx function block.
The input and output names of the bits of the Control Word and Status Word reflect the
functions used with ABB Drive profile. So the block should be used with ABB Drives profile
setting in the drive.
The function block does not execute any functionality expect data transfer to and from the
DRIVE_DATA variable. So there is no special drive parameter setting necessary to use this
block.
The programmer using this block should have a detailed understanding of how to set the
Control Word according to the Status Word and the description of the used drive.

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2227

For standard speed & torque control application it is recommended to the use the
ACS_DRIVES_CTRL_STANDARD instead.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the function block is active, the current values are available at the outputs.
If the function block has been deactivated, all outputs are set to 0, with the exception of the
USED_CW output and the DRIVE_DATA.cw, which are set to 1024 (hex 0400 - only remote bit).

Data type: BOOL
Input OFF1 is packed to bit 0 of the Control Word as long as input USE_CW=FALSE.

Data type: BOOL
Input OFF2 is packed to bit 1 of the Control Word as long as input USE_CW=FALSE.

Data type: BOOL
Input OFF3 is packed to bit 2 of the Control Word as long as input USE_CW=FALSE.

EN (enable)

OFF1 (off1)

OFF2 (off2)

OFF3 (off3)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2228

Data type: BOOL
Input INHIBIT_OP is packed to bit 3 of the Control Word as long as input USE_CW=FALSE.

Data type: BOOL
Input RAMP_OUT_ZERO is packed to bit 4 of the Control Word as long as input
USE_CW=FALSE.

Data type: BOOL
Input RAMP_HOLD is packed to bit 5 of the Control Word as long as input USE_CW=FALSE.

Data type: BOOL
Input RAMP_IN_ZERO is packed to bit 6 of the Control Word as long as input
USE_CW=FALSE.

Data type: BOOL
Input RESET is packed to bit 7 of the Control Word as long as input USE_CW=FALSE. RESET
= TRUE resets faults and warnings in the drive. It does not reset the function block itself.

Data type: BOOL
Input CW_BIT8 is packed to bit 8 of the Control Word as long as input USE_CW=FALSE.

Data type: BOOL
Input CW_BIT9 is packed to bit 9 of the Control Word as long as input USE_CW=FALSE.

Data type: BOOL
Input REMOTE_CMD is packed to bit 10 of the Control Word as long as input
USE_CW=FALSE.

Data type: BOOL
Input EXT_CTRL_LOC is packed to bit 11 of the Control Word as long as input
USE_CW=FALSE.
Input EXT_CTRL_LOC=TRUE sets the control place for the drive to EXT2 (Bit 11 in the Control
Word to the drive). For normal control of the drive from the PLC EXT_CTRL_LOC should be set
to FALSE.

Data type: BOOL
Input CW_BIT12 is packed to bit 12 of the Control Word as long as input USE_CW=FALSE.

Data type: BOOL
Input CW_BIT13 is packed to bit 13 of the Control Word as long as input USE_CW=FALSE.

Data type: BOOL
Input CW_BIT14 is packed to bit 14 of the Control Word as long as input USE_CW=FALSE.

INHIBIT_OP
(inhibit opera-
tion)

RAMP_OUT_ZE
RO (ramp out
zero)

RAMP_HOLD
(ramp hold)

RAMP_IN_ZERO
(ramp in zero)

RESET (reset)

CW_BIT8 (con-
trol word bit 8)

CW_BIT9 (con-
trol word bit 9)

REMOTE
(remote com-
mand)

EXT_CTRL_LOC
(external control
location)

CW_BIT12 (con-
trol word bit 12)

CW_BIT13 (con-
trol word bit 13)

CW_BIT14 (con-
trol word bit 14)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2229

Data type: BOOL
Input CW_BIT15 is packed to bit 15 of the Control Word as long as input USE_CW=FALSE.

Data type: WORD
Output USED_CW shows the used Control Word which is written to the DRIVE_DATA variable.
E.g. the packed word from the input bits OFF1 .. CW_BIT15 if USE_CW=FALSE.

Data type: WORD
Input CW is written to the DRIVE_DATA variable as Control Word as long as USE_CW=TRUE.

Data type: INT
Input REF_VALUE1 is written to the DRIVE_DATA variable as Reference Value 1
(SPEED_REF).

Data type: INT
Input REF_VALUE2 is written to the DRIVE_DATA variable as Reference Value 2. Input
REF_VALUE2 must be given in fieldbus equivalent value between -10000 .. +10000. 10000
= the value defined in the drive as Ref2 Max (e.g. Par.11.08 Ref2 Max for ACS3XX or Par Gr.
32.for ACSM1).

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

CW_BIT15 (con-
trol word bit 15)

USE_CW (use
control word)

CW (control
word)

REF_VALUE1
(reference value
1)

REF_VALUE2
(reference value
2)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2230

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output RDY_ON is bit 0 of actual Status Word from the drive.

Data type: BOOL
Output RDY_RUN is bit 1 of actual Status Word from the drive.

Data type: BOOL
Output RDY_REF (ready reference) is bit 2 of actual Status Word from the drive.

Data type: BOOL
Output TRIPPED=TRUE indicates that the drive is tripped (Bit 3 in the Status Word from the
drive).

Data type: BOOL
Output OFF_STATE2 is bit 4 of actual Status Word from the drive.

Data type: BOOL
Output OFF_STATE3 is bit 5 of actual Status Word from the drive.

DONE (done)

RDY_ON (ready
on)

RDY_RUN
(ready run)

RDY_REF

TRIPPED
(tripped)

OFF2_STATE
(off state 2)

OFF3_STATE
(off state 3)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2231

Data type: Bool
Output SWC_ON_INHIB is bit 6 of actual Status Word from the drive.

Data type: BOOL
Output ALARM=TRUE indicates that the drive has an alarm (Bit 7 in the Status Word from the
drive).

Data type: BOOL
Output AT_SETPOINT is bit 8 of actual Status Word from the drive.

Data type: BOOL
Output REMOTE is bit 9 of actual Status Word from the drive.

Data type: BOOL
Output ABOVE_LIMIT is bit 10 of actual Status Word from the drive.

Data type: BOOL
Output EXT_CTRL_LOC_ACT is bit 11 of actual Status Word from the drive. Output
EXT_CTRL_LOC_ACT = TRUE indicates that the drive is controlled from the control place
EXT2 (Bit 11 in Status Word from the drive). EXT_CTRL_LOC_ACT might be set to TRUE due
to the input EXT_CTRL_LOC = TRUE.

Data type: BOOL
Output EXT_RUN_ENABLE is bit 12 of actual Status Word from the drive. Output
EXT_RUN_ENABLE=TRUE indicates that the drive received External Run Enable signal. For
normal control of the drive from the PLC EXT_RUN_ENABLE must be set to TRUE.

Data type: BOOL
Output SW_BIT13 is bit 13 of actual Status Word from the drive.

Data type: BOOL
Output SW_BIT14 is bit 14 of actual Status Word from the drive.

Data type: BOOL
Output SW_BIT15 is bit 15 of actual Status Word from the drive.

Data type: WORD
Output ACT_SW is the actual Status Word from the drive.

Data type: INT
Output ACT_VALUE1 is the Actual Value 1 (actual speed value) from the drive.

SWC_ON_INHIB
(switch on
inhibit)

ALARM (alarm)

AT_SETPOINT
(actual toler-
ance setpoint)

REMOTE
(remote)

ABOVE_LIMIT
(above limit)

EXT_CTRL_LOC
_ACT (external
control location
active)

EXT_RUN_ENA
BLE (external
run enable)

SW_BIT13
(status word bit
13)

SW_BIT14
(status word bit
14)

SW_BIT15
(status word bit
15)

ACT_SW (actual
status word)

ACT_VALUE1
(actual value 1)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2232

Data type: INT
Output ACT_VALUE2 is the Actual Value 2 from the drive.

Data type: WORD
Output USED_CW shows the used Control Word which is written to the DRIVE_DATA variable.
E.g. the packed word from the input bits OFF1 .. CW_BIT15 if USE_CW=FALSE.

ACSDrivesCtrlEng (EN := xACSDrivesCtrlEng_EN,
 OFF1 := xACSDrivesCtrlEng_OFF1,
 OFF2 := xACSDrivesCtrlEng_OFF2,
 OFF3 := xACSDrivesCtrlEng_OFF3,
 INHIBIT_OP := xACSDrivesCtrlEng_INHIBIT_OP,
 RAMP_OUT_ZERO := xACSDrivesCtrlEng_RAMP_OUT_ZERO,
 RAMP_HOLD := xACSDrivesCtrlEng_RAMP_HOLD,
 RAMP_IN_ZERO := xACSDrivesCtrlEng_RAMP_IN_ZERO,
 RESET := xACSDrivesCtrlEng_RESET,
 CW_BIT8 := xACSDrivesCtrlEng_CW_BIT8,
 CW_BIT9 := xACSDrivesCtrlEng_CW_BIT9,
 REMOTE_CMD := xACSDrivesCtrlEng_REMOTE_CMD,
 EXT_CTRL_LOC := xACSDrivesCtrlEng_EXT_CTRL_LOC,
 CW_BIT12 := xACSDrivesCtrlEng_CW_BIT12,
 CW_BIT13 := xACSDrivesCtrlEng_CW_BIT13,
 CW_BIT14 := xACSDrivesCtrlEng_CW_BIT14,
 CW_BIT15 := xACSDrivesCtrlEng_CW_BIT15,
 USE_CW := xACSDrivesCtrlEng_USE_CW,
 CW := xwACSDrivesCtrlEng_CW,
 REF_VALUE1 := iACSDrivesCtrlEng_REF_VALUE1,
 REF_VALUE2 := iACSDrivesCtrlEng_REF_VALUE2,
 DRIVE_DATA := tsDRIVE_DATA);

xACSDrivesCtrlEng_DONE := ACSDrivesCtrlEng.DONE;
xACSDrivesCtrlEng_RDY_ON := ACSDrivesCtrlEng.RDY_ON;
xACSDrivesCtrlEng_RDY_RUN := ACSDrivesCtrlEng.RDY_DONE;
xACSDrivesCtrlEng_RDY_REF := ACSDrivesCtrlEng.RDY_REF;
xACSDrivesCtrlEng_TRIPPED := ACSDrivesCtrlEng.TRIPPED;
xACSDrivesCtrlEng_OFF2_STATE := ACSDrivesCtrlEng.OFF2_STATE;
xACSDrivesCtrlEng_OFF3_STATE := ACSDrivesCtrlEng.OFF3_STATE;
xACSDrivesCtrlEng_SWC_ON_INHIB := ACSDrivesCtrlEng.SWC_ON_INHIB;
xACSDrivesCtrlEng_ALARM := ACSDrivesCtrlEng.ALARM;
xACSDrivesCtrlEng_AT_SETPOINT := ACSDrivesCtrlEng.AT_SETPOINT;
xACSDrivesCtrlEng_REMOTE := ACSDrivesCtrlEng.REMOTE;
xACSDrivesCtrlEng_ABOVE_LIMIT := ACSDrivesCtrlEng.ABOVE_LIMIT;
xACSDrivesCtrlEng_EXT_CTRL_LOC_ACT :=
ACSDrivesCtrlEng.EXT_CTRL_LOC_ACT;
xACSDrivesCtrlEng_EXT_RUN_ENABLE := ACSDrivesCtrlEng.EXT_RUN_ENABLE;
xACSDrivesCtrlEng_SW_BIT13 := ACSDrivesCtrlEng.SW_BIT13;
xACSDrivesCtrlEng_SW_BIT14 := ACSDrivesCtrlEng.SW_BIT14;
xACSDrivesCtrlEng_SW_BIT15 := ACSDrivesCtrlEng.SW_BIT15;
wACSDrivesCtrlEng_ACT_SW := ACSDrivesCtrlEng.ACT_SW;
iACSDrivesCtrlEng_ACT_VALUE1 := ACSDrivesCtrlEng.ACT_VALUE1;
iACSDrivesCtrlEng_ACT_VALUE2 := ACSDrivesCtrlEng.ACT_VALUE2;
wACSDrivesCtrlEng_USED_CW := ACSDrivesCtrlEng.USED_CW;

ACT_VALUE2
(actual value 2)

USED_CW
(used control
word)

Function call in
ST

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2233

ACS_DRIVES_CTRL_STANDARD

Function block ACS_DRIVES_CTRL_STANDARD is used for controlling ACS Drives with ABB
Drives profile.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Function block type Function block with historical values

Function block ACS_DRIVES_CTRL_STANDARD is used for controlling ACS Drives with ABB
Drives profile.
The function block provides standard start/stop signals to control the drive and standard diag-
nosis signals read from the drive.

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2234

According to the start/stop input signals and the actual Status Word (SW), read from the
DRIVE_DATA variable, the ABB Drives profile state machine is executed. The Control Word
(CW) is built and written to the DRIVE_DATA variable. For diagnosis purpose the CW is also
written to the output USED_CW.
SPEED_REF input has to be given in the ACS fieldbus range.of -20000 .. +20000, according to
the scaling parameter in the drive (e.g. Par. 11.05 of ACS355)
ACT_SPEED provides the actual speed in the ACS fieldbus range of -20000 .. +20000,
according to the scaling parameter in the drive (e.g. Par. 11.05 of ACS355).
ACS_REF_SCALING Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING” on page 2246 function
block could be used to scale the fieldbus range to a physical value.
If the connected communication block (via DVIVE_DATA variable) is disabled or not parameter-
ized correctly all outputs except DONE, ERR and ERNO are reset to zero. This can be checked
by the ERNO output.
PRECONDITIONS
The function block is only working for ACS drives using ABB Drive profile.
The data transfer to the ACS drive is realized via the IN_OUT variable
DRIVE_DATA, which must be connected to an ACS3XX_COM_MOD_RTU Ä Chapter
1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU communication for ACS3XXwrite one bit/ACX550
drives via Modbus RTU” on page 2293, ACS_COM_MOD_RTU Ä Chapter
1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus
RTU” on page 2301, ACS_COM_MOD_RTU_ENHANCED Ä Chapter 1.5.6.3.5.3
“ACS_COM_MOD_RTU_ENHANCED communication for ACS drives via Modbus
RTU using ABB drives profile enhanced” on page 2312, ACS_COM_MOD_TCP
Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives
via Modbus TCP” on page 2360, ACS_COM_MOD_TCP_ENHANCED Ä Chapter
1.5.6.4.3.2 “ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives
via Modbus TCP” on page 2367, ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1
“ACS_COM_MOD_TCPx communication for ACS / DCS drives via Modbus TCP”
on page 2385 or ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2392.
Please refer the respective drives manual for parameter setting if the drive is not mentioned in
below table.

Table 130: Necessary configuration of parameters in the drive
Drive
Param-
eter

ACS3XX,
ACX550

ACS850,
ACQ810
embedde
d

ACS850,
ACQ810

ACSM1 ACS580,
ACS880

ACS800 Comment

EXT1
COM-
MANDS

10.01 =
COMM

10.01 =
FBA

10.01 =
FB

10.01 =
FBA

20.01 =
Fieldbus
A

10.01 =
COMM.C
W

Fieldbus
interface
as source
for start
and stop

EXT1/
EXT2 SEL

11.02 =
COMM

12.01 =
P.02.36 bit
15

12.01 =
P.02.22 bit
15

34.01 =
P.02.12 bit
15

19.11 =
MCW
Bit11
(06.01)

11.02 =
COMM.C
W

Fieldbus
interface
as source
to switch
to EXT2
control
place

REF1
SELECT

11.03 =
COMM

21.01 =
EFB
REF1

21.01 =
FBA
REF1

24.01 =
FBA Ref1

22.11 =
FBA ref1

11.03 =
COMM.R
EF

Fieldbus
interface
as source
for speed
reference

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2235

Drive
Param-
eter

ACS3XX,
ACX550

ACS850,
ACQ810
embedde
d

ACS850,
ACQ810

ACSM1 ACS580,
ACS880

ACS800 Comment

FAULT
RESET
SEL

16.04 =
COMM

10.10 =
P.02.36 bit
8

10.10 =
P.02.22 bit
8

10.08 =
P.02.12 bit
8

31.11 =
P.06.01 bit
7

16.04 =
COMM.C
W

Fieldbus
interface
as source
for fault
reset

PROFILE 53.05 =
ABB DRV
FULL

58.06 =
ABB
Drives
classic/
enhanced

51.02 =
ABB
Drives
classic/
enhanced

51.02 =
ABB
Drives
classic/
enhanced

51.02 =
ABB
Drives
classic/
enhanced

98.07 =
ABB
DRIVES

Control
Profile to
ABB
Drives
Profile
classic or
enhanced.

Only one of the function blocks ACS3XX_DRIVES_CTRL_BASIC,
ACS_DRIVES_CTRL_STANDARD or ACS_DRIVES_CTRL_ENG must be ena-
bled (EN=TRUE) at the same time.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the function block is active, the current values are available at the outputs.
If the function block has been deactivated, all outputs are set to 0, with the exception of the
USED_CW output and the DRIVE_DATA.cw, which are set to 1024 (hex 0400 - only remote bit).

Data type: BOOL

EN (enable)

START (start)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2236

With a rising edge at input START (FALSE -> TRUE) the ACS Drive is started. If START =
FALSE the drive is stopped along the normal stop ramp, defined in the drive (e.g. Par. 22.03 for
ACS355).

According to the ABB Drives Profile a new rising edge of START input will be
ignored by the drive until zero speed was reached.

After an emergency stop of the drive a new rising edge of the START input is required to restart
the drive.

Data type: BOOL
Input STOP_EMCY_COAST=FALSE will coast the drive (bit 1 of the Control Word OFF2). A
new rising edge of the START input is needed to start the drive again.
STOP_EMCY_COAST=TRUE enables normal operation of the drive.
Default value = TRUE.

Data type: BOOL
Input STOP_EMCY_RAMP = FALSE will stop the drive along the emergency ramp, defined in
the drive (bit 2 of the Control Word OFF3). A new rising edge of the START input is needed to
start the drive again.
STOP_EMCY_RAMP = TRUE enables normal operation of the drive.
Default value = TRUE.

Data type: BOOL
Input STOP_COAST = TRUE will coast the drive immediately (STOP_COAST = inverted Bit
3 of the Control Word – INHIBIT_OP). Setting STOP_COAST=FALSE will restart the drive
immediately without need of an rising edge at input START.

Data type: BOOL
Input RESET is packed to bit 7 of the Control Word as long as input USE_CW=FALSE. RESET
= TRUE resets faults and warnings in the drive. It does not reset the function block itself.

Data type: BOOL
Input EXT_CTRL_LOC is packed to bit 11 of the Control Word as long as input
USE_CW=FALSE.
Input EXT_CTRL_LOC=TRUE sets the control place for the drive to EXT2 (Bit 11 in the Control
Word to the drive). For normal control of the drive from the PLC EXT_CTRL_LOC should be set
to FALSE.

Data type: REAL
Input SPEED_REF must be given according to ACS3XX / ACX550 drive motor control mode.
The motor control mode is set in the drive (e.g. Par. 99.04 for ACS355). In case of a scalar
motor control mode (99.04 = 3 for ACS355) the input SPEED_REF reflects the frequency
reference in 0.1 Hz (10 = 1Hz). In case of vector speed control mode (99.04 = 2 for ACS35) the
input SPEED_REF reflects the speed reference in rpm.

STOP_EMCY_C
OAST (stop
emergency
coast)

STOP_EMCY_R
AMP (stop
emergency
ramp)

STOP_COAST
(stop coast)

RESET (reset)

EXT_CTRL_LOC
(external control
location)

SPEED_REF
(speed refer-
ence)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2237

The function block includes a linear scaling of input SPEED_REF to the fieldbus equivalent
value between -20000 to +20000. 20000 = the value defined in the drive parameter 11.05 (Ref1
Max). This parameter 11.05 is automatically read by the function block after a rising edge is
given at the input START.
The input range is from negative to positive value of maximum speed (Par.11.05 “Ref1 Max”),
e.g. –1500 .. +1500 rpm.
If the input value exceeds the input range, the speed reference value is limited to maximum
value. ERR is set to TRUE, ERNO is set to the message that the input of SPEED_REF is out of
range. Nevertheless, the function block is processed normally.

Data type: INT
Input REF_VALUE2 is written to the DRIVE_DATA variable as Reference Value 2. Input
REF_VALUE2 must be given in fieldbus equivalent value between -10000 .. +10000. 10000
= the value defined in the drive as Ref2 Max (e.g. Par.11.08 Ref2 Max for ACS3XX or Par Gr.
32.for ACSM1).

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

REF_VALUE2
(reference value
2)

DRIVE_DATA
(drive data)

DONE (done)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2238

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output READY=TRUE indicates that the drive is ready to switch on (Bit 0 in the status word
from the drive).

Data type: BOOL
Output OPERATING=TRUE indicates that the drive is controlled by this function block. The
drive is enabled and running (Status Word of drive bits: RDY_ON = TRUE, RDY_RUN = TRUE,
RDY_REF = TRUE).
If the drive is controlled from another control place, e.g. local panel, output OPERATING is reset
to FALSE, even if the drive might be enabled and running.
To get a control place independent indication, evaluate if the following bits of input SW are set:
SW.0 AND SW.1 AND SW.2

Data type: BOOL
Output TRIPPED=TRUE indicates that the drive is tripped (Bit 3 in the Status Word from the
drive).

Data type: BOOL
Output ALARM=TRUE indicates that the drive has an alarm (Bit 7 in the Status Word from the
drive).

Data type: BOOL
Output EXT_RUN_ENABLE is bit 12 of actual Status Word from the drive. Output
EXT_RUN_ENABLE=TRUE indicates that the drive received External Run Enable signal. For
normal control of the drive from the PLC EXT_RUN_ENABLE must be set to TRUE.

Data type: BOOL
Output LOCAL_CTRL = TRUE indicates that the drive is not controlled from remote control
e.g. PLC (LOCAL_CTRL = inverted bit 9 in the Status Word from the drive - REMOTE).
LOCAL_CTRL might be set to TRUE due to no connection to the drive or the drive was set
to local control via the drive panel or a drive configuration tool from PC.

Data type: BOOL

ERR (error)

ERNO (error
number)

READY (ready)

OPERATING
(operating)

TRIPPED
(tripped)

ALARM (alarm)

EXT_RUN_ENA
BLE (external
run enable)

LOCAL_CTRL
(local control)

EXT_CTRL_LOC
_ACT (external
control location
active)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2239

Output EXT_CTRL_LOC_ACT is bit 11 of actual Status Word from the drive. Output
EXT_CTRL_LOC_ACT = TRUE indicates that the drive is controlled from the control place
EXT2 (Bit 11 in Status Word from the drive). EXT_CTRL_LOC_ACT might be set to TRUE due
to the input EXT_CTRL_LOC = TRUE.

Data type: INT, Range: -20000 .. +20000
Output ACT_SPEED returns the actual speed value from the drive. The scaling depends on the
drive settings.

Drive Fieldbus Parameter Settings Scaling
ACS3XX / ACX550 Modbus RTU 53.10=101 Actual speed [rpm] 1

= 1 rpm

ACS3XX / ACX550 Modbus RTU 53.10=103 Absolute frequency 10
= 1 Hz

Data type: INT
Output ACT_VALUE2 is the Actual Value 2 from the drive.

Data type: WORD
Output ACT_SW is the actual Status Word from the drive.

Data type: WORD
Output USED_CW shows the used Control Word which is written to the DRIVE_DATA variable.
E.g. the packed word from the input bits OFF1 .. CW_BIT15 if USE_CW=FALSE.

ACS_Drives_Ctrl_Standard (EN :=
xACS_Drives_Ctrl_Standard_EN,
 START := xACS_Drives_Ctrl_Standard_START,
 STOP_EMCY_COAST := xACS_Drives_Ctrl_Standard_STOP_EMCY_COAST,
 STOP_EMCY_RAMP := xACS_Drives_Ctrl_Standard_STOP_EMCY_RAMP,
 STOP_COAST :=
xACS_Drives_Ctrl_Standard_STOP_COAST,
 RESET := xACS_Drives_Ctrl_Standard_RESET,
 EXT_CTRL_LOC := xACS_Drives_Ctrl_Standard_EXT_CTRL_LOC,
 SPEED_REF := iACS_Drives_Ctrl_Standard_SPEED_REF,
 REF_VALUE2 :=
iACS_Drives_Ctrl_Standard_REF_VALUE2,
 DRIVE_DATA := tsDRIVE_DATA);

xACS_Drives_Ctrl_Standard_DONE :=
ACS_Drives_Ctrl_Standard.DONE;
xACS_Drives_Ctrl_Standard_ERR :=
ACS_Drives_Ctrl_Standard.ERR;
wACS_Drives_Ctrl_Standard_ERNO :=
ACS_Drives_Ctrl_Standard.ERNO;
xACS_Drives_Ctrl_Standard_READY :=
ACS_Drives_Ctrl_Standard.READY;
xACS_Drives_Ctrl_Standard_OPERATING :=
ACS_Drives_Ctrl_Standard.OPERATING;
xACS_Drives_Ctrl_Standard_TRIPPED :=

ACT_SPEED
(actual speed)

ACT_VALUE2
(actual value 2)

ACT_SW (actual
status word)

USED_CW
(used control
word)

Function call in
ST

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2240

ACS_Drives_Ctrl_Standard.FAULT;
xACS_Drives_Ctrl_Standard_ALARM :=
ACS_Drives_Ctrl_Standard.WARN;
xACS_Drives_Ctrl_Standard_EXT_RUN_ENABLE :=
ACS_Drives_Ctrl_Standard.EXT_RUN_ENABLE;
xACS_Drives_Ctrl_Standard_LOCAL_CTRL :=
ACS_Drives_Ctrl_Standard.LOCAL_CTRL;
xACS_Drives_Ctrl_Standard_EXT_CTRL_LOC_ACT :=
ACS_Drives_Ctrl_Standard.EXT_CTRL_ACT;
iACS_Drives_Ctrl_Standard_ACT_SPEED :=
ACS_Drives_Ctrl_Standard.ACT_SPEED;
iACS_Drives_Ctrl_Standard_ACT_VALUE2 :=
ACS_Drives_Ctrl_Standard.ACT_VALUE2;
wACS_Drives_Ctrl_Standard_ACT_SW :=
ACS_Drives_Ctrl_Standard.ACT_SW;
wACS_Drives_Ctrl_Standard_USED_CW :=
ACS_Drives_Ctrl_Standard.USED_CW;

ACS_DRIVES_CTRL_STANDARD_GEN

Function block ACS_DRIVES_CTRL_STANDARD_GEN is used for controlling ACS Drives with
ABB Drives profile. The Status Word (SW) and Control Word (CW) can be transferred via any
generic fieldbus.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Function block type Function block with historical values

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2241

Function block ACS_DRIVES_CTRL_STANDARD_GEN is used for controlling ACS Drives with
ABB Drives profile. User has to connect Status Word from the fieldbus to this function block
input. Function block generates Control Word, which has to be connected to the fieldbus.
Please refer the respective drives manual for parameter setting, if the drive is not mentioned in
below table.

Table 131: Necessary configuration of parameters in the drive
Drive
Parameter

ACS3XX,
ACX550

ACS850,
ACQ810

ACSM1 ACS580,
ACS880

ACS800 Comment

EXT1
COM-
MANDS

10.01 =
COMM

10.01 = FB 10.01 =
FBA

20.01 =
Fieldbus A

10.01 =
COMM.CW

Fieldbus
interface as
source for
start and
stop

EXT1/EXT2
SEL

11.02 =
COMM

12.01 =
P.02.22 bit
15

34.01 =
P.02.12 bit
15

19.11 =
MCW Bit11
(06.01)

11.02 =
COMM.CW

Fieldbus
interface as
source to
switch to
EXT2 con-
trol place

REF1
SELECT

11.03 =
COMM

21.01 =
FBA REF1

24.01 =
FBA Ref1

22.11 =
FBA ref1

11.03 =
COMM.REF

Fieldbus
interface as
source for
speed refer-
ence

FAULT
RESET
SEL

16.04 =
COMM

10.10 =
P.02.22 bit
8

10.08 =
P.02.12 bit
8

31.11 =
P.06.01 bit
7

16.04 =
COMM.CW

Fieldbus
interface as
source for
fault reset

PROFILE 53.05 =
ABB DRV
FULL

51.02 =
ABB Drives
classic/
enhanced

51.02 =
ABB Drives
classic/
enhanced

51.02 =
ABB Drives
classic/
enhanced

98.07 =
ABB
DRIVES

Control Pro-
file to ABB
Drives Pro-
file classic
or
enhanced.

Input description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2242

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the function block is active, the current values are available at the outputs.
If the function block has been deactivated, all outputs are set to 0, with the exception of the CW
output to 1024 (hex 0400 - only remote bit).

Data type: BOOL
With a rising edge at input START (FALSE -> TRUE) the ACS Drive is started. If START =
FALSE the drive is stopped along the normal stop ramp, defined in the drive (e.g. Par. 22.03 for
ACS355).

According to the ABB Drives Profile a new rising edge of START input will be
ignored by the drive until zero speed was reached.

After an emergency stop of the drive a new rising edge of the START input is required to restart
the drive.

Data type: BOOL
Input STOP_EMCY_COAST=FALSE will coast the drive (bit 1 of the Control Word OFF2). A
new rising edge of the START input is needed to start the drive again.
STOP_EMCY_COAST=TRUE enables normal operation of the drive.
Default value = TRUE.

Data type: BOOL
Input STOP_EMCY_RAMP = FALSE will stop the drive along the emergency ramp, defined in
the drive (bit 2 of the Control Word OFF3). A new rising edge of the START input is needed to
start the drive again.
STOP_EMCY_RAMP = TRUE enables normal operation of the drive.
Default value = TRUE.

Data type: BOOL
Input STOP_COAST = TRUE will coast the drive immediately (STOP_COAST = inverted Bit
3 of the Control Word – INHIBIT_OP). Setting STOP_COAST=FALSE will restart the drive
immediately without need of an rising edge at input START.

Data type: BOOL
Input RESET is packed to bit 7 of the Control Word as long as input USE_CW=FALSE. RESET
= TRUE resets faults and warnings in the drive. It does not reset the function block itself.

Data type: BOOL
Input EXT_CTRL_LOC is packed to bit 11 of the Control Word as long as input
USE_CW=FALSE.
Input EXT_CTRL_LOC=TRUE sets the control place for the drive to EXT2 (Bit 11 in the Control
Word to the drive). For normal control of the drive from the PLC EXT_CTRL_LOC should be set
to FALSE.

EN (enable)

START (start)

STOP_EMCY_C
OAST (stop
emergency
coast)

STOP_EMCY_R
AMP (stop
emergency
ramp)

STOP_COAST
(stop coast)

RESET (reset)

EXT_CTRL_LOC
(external control
location)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2243

Data type: WORD
Status Word from drive. Connect Status Word from fieldbus to this input.

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output READY=TRUE indicates that the drive is ready to switch on (Bit 0 in the status word
from the drive).

Data type: BOOL
Output OPERATING=TRUE indicates that the drive is controlled by this function block. The
drive is enabled and running (Status Word of drive bits: RDY_ON = TRUE, RDY_RUN = TRUE,
RDY_REF = TRUE).
If the drive is controlled from another control place, e.g. local panel, output OPERATING is reset
to FALSE, even if the drive might be enabled and running.

SW (status
word)

DONE (done)

ERR (error)

ERNO (error
number)

READY (ready)

OPERATING
(operating)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2244

To get a control place independent indication, evaluate if the following bits of input SW are set:
SW.0 AND SW.1 AND SW.2

Data type: BOOL
Output TRIPPED=TRUE indicates that the drive is tripped (Bit 3 in the Status Word from the
drive).

Data type: BOOL
Output ALARM=TRUE indicates that the drive has an alarm (Bit 7 in the Status Word from the
drive).

Data type: BOOL
Output EXT_RUN_ENABLE is bit 12 of actual Status Word from the drive. Output
EXT_RUN_ENABLE=TRUE indicates that the drive received External Run Enable signal. For
normal control of the drive from the PLC EXT_RUN_ENABLE must be set to TRUE.

Data type: BOOL
Output LOCAL_CTRL = TRUE indicates that the drive is not controlled from remote control
e.g. PLC (LOCAL_CTRL = inverted bit 9 in the Status Word from the drive - REMOTE).
LOCAL_CTRL might be set to TRUE due to no connection to the drive or the drive was set
to local control via the drive panel or a drive configuration tool from PC.

Data type: BOOL
Output EXT_CTRL_LOC_ACT is bit 11 of actual Status Word from the drive. Output
EXT_CTRL_LOC_ACT = TRUE indicates that the drive is controlled from the control place
EXT2 (Bit 11 in Status Word from the drive). EXT_CTRL_LOC_ACT might be set to TRUE due
to the input EXT_CTRL_LOC = TRUE.

Data type: WORD
Input CW is written to the DRIVE_DATA variable as Control Word as long as USE_CW=TRUE.

ACS_Drives_Ctrl_Standard_Gen (EN :=
xACS_Drives_Ctrl_Standard_Gen_EN,

 START :=
xACS_Drives_Ctrl_Standard_Gen_START,

 STOP_EMCY_COAST :=
xACS_Drives_Ctrl_Standard_Gen_STOP_EMCY_COAST,

 STOP_EMCY_RAMP :=
xACS_Drives_Ctrl_Standard_Gen_STOP_EMCY_RAMP,

 STOP_COAST :=
xACS_Drives_Ctrl_Standard_Gen_STOP_COAST,

TRIPPED
(tripped)

ALARM (alarm)

EXT_RUN_ENA
BLE (external
run enable)

LOCAL_CTRL
(local control)

EXT_CTRL_LOC
_ACT (external
control location
active)

CW (control
word)

Function call in
ST

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2245

 RESET :=
xACS_Drives_Ctrl_Standard_Gen_RESET,

 EXT_CTRL_LOC :=
xACS_Drives_Ctrl_Standard_Gen_EXT_CTRL_LOC,

 SW :=
wACS_Drives_Ctrl_Standard_Gen_SW);

xACS_Drives_Ctrl_Standard_Gen_DONE
 := ACS_Drives_Ctrl_Standard_Gen.DONE;
xACS_Drives_Ctrl_Standard_Gen_ERR
 := ACS_Drives_Ctrl_Standard_Gen.ERR;
wACS_Drives_Ctrl_Standard_Gen_ERNO
 := ACS_Drives_Ctrl_Standard_Gen.ERNO;
xACS_Drives_Ctrl_Standard_Gen_READY
 := ACS_Drives_Ctrl_Standard_Gen.READY;
xACS_Drives_Ctrl_Standard_Gen_OPERATING
 := ACS_Drives_Ctrl_Standard_Gen.OPERATING;
xACS_Drives_Ctrl_Standard_Gen_TRIPPED
 := ACS_Drives_Ctrl_Standard_Gen.FAULT;
xACS_Drives_Ctrl_Standard_Gen_ALARM
 := ACS_Drives_Ctrl_Standard_Gen.WARN;
xACS_Drives_Ctrl_Standard_Gen_EXT_RUN_ENABLE :=
ACS_Drives_Ctrl_Standard_Gen.EXT_RUN_ENABLE;
xACS_Drives_Ctrl_Standard_Gen_LOCAL_CTRL :=
ACS_Drives_Ctrl_Standard_Gen.LOCAL_CTRL;
xACS_Drives_Ctrl_Standard_Gen_EXT_CTRL_LOC_ACT :=
ACS_Drives_Ctrl_Standard_Gen.EXT_CTRL_ACT;
wACS_Drives_Ctrl_Standard_Gen_CW
 := ACS_Drives_Ctrl_Standard_Gen.CW;

ACS_REF_SCALING

Function block ACS_REF_SCALING is used for scaling of fieldbus integer reference and actual
values to real values.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Function block type: Function block with historical values

Function block
information

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2246

Function block ACS_REF_SCALING can be used to scale the variables from fieldbus equivalent
values to values used in the program. With the scaling also a conversion from INT to REAL is
performed.
Fieldbus variables are mostly given in fieldbus equivalent values as INT values.
Reference1 and Actual Value1 (speed) are mostly given in the range of -20000 .. + 20000.
Reference2 and Actual Value2 (torque) are mostly given in the range of -10000 .. + 10000.
In the program it´s often useful to work with real physical values such as "rpm", "Hz", "%" or
"Nm" as REAL values.
The function block provides scaling for two scaling settings: Speed (Reference1 and Actual
Value1) and Torque (Reference2 and Actual Value2).
The Scaling maximum and the according reference maximum can be set at the inputs of the
function block. This is independent of the drives profile used and could also be utilized for
transparent mode or any drive independent linear scaling.
The linear calculation limits the outputs only at the maximum of the INT range at -32768 and
+32767. If the scaling would result in a higher value the ERR and ERNO output are indicating
the overflow.

Input description

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2247

Data type: BOOL
Enabling of the function block processing.
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the function block is deactivated all outputs are set to zero.

Data type: UINT, Default value: 20000; Range: Minimum=1
Scaling maximum for speed. With ABB Drives Profile mostly maximum fieldbus equivalent for
maximum of Reference1 and Actual Value1 = +20000.
This value (speed reference maximum) can be adapted at this input by setting a different value,
e.g. if transparent mode is used, or speed is used as the Reference2 and Actual Value2.

Data type: INT, Default value: 20000, Range: Minimum=1
Value which corresponds to 100% of the SPEED_REF range.
Should be the speed scaling parameter from the drive. ACS850 = Par.19.01, ACSM1 =
Par25.02, ACS355 = Par11.05. e.g. 1500[rpm] or 500 [(0.1)Hz].

Data type: REAL
Input SPEED_REF (speed reference) is a REAL value, in rpm or 0.1 Hz or %.
Output SPEED_REF_FB will be calculated according to this input and scaled to +/-
SPEED_SCALE_MAX. The scaled value is available at ouput SPEED_REF_FB.
If SPEED_REF exeeds 32767, an error (16#4042) will be indicated and SPEED_REF is set to
32767.

Data type: INT
Actual speed input from fieldbus in fieldbus equivalent. 100% = +SPEED_SCALE_MAX.

Data type: INT
Scaling maximum for torque. With ABB Drives Profile mostly maximum fieldbus equivalent for
maximum of Reference2 and Actual Value2 = +10000.
This value can be adapted at this input by setting a different value, e.g. if transparent mode is
used, or torque is used as the Reference1 and Actual Value1.
Default: 10000. Minimum = 1.

Data type: INT
Value which corresponds to 100% of the TORQUE_REF range.
Working with [Nm] instead of [%] the scaling parameter from the drive should be connected
here: e.g. ACS850 = Par.1.29, ACSM1= Par98.1.
Default: 100. Minimum = 1.

Data type: UINT
Torque reference input as real value which is used in the program. Can be in [%] or [Nm].
Will be scaled to +/-TORQUE_SCALE_MAX and be available at ouput TORQUE_REF. If
TORQUE_REF would be more than 32767 an error 16#4042 will be indicated. TORQUE_REF
is set to 32767.

EN (enable)

SPEED_SCALE_
MAX

SPEED_REF_M
AX (speed refer-
ence maximum)

SPEED_REF

ACT_SPEED_FB
(actual speed in
fieldbus equiva-
lent)

TORQUE_SCAL
E_MAX (torque
reference max-
imum)

TORQUE_REF_
MAX (torque ref-
erence max-
imum)

TORQUE_REF
(torque refer-
ence)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2248

Data type: INT
Actual torque input form fieldbus in fieldbus equivalent (+/- TORQUE_SCALE_MAX).
TORQUE_SCALE_MAX will be scaled to TORQUE_REF_MAX input and be available at output
ACT_TORQUE.

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: INT
Speed reference for fieldbus = SPEED_REF input scaled to (SPEED_SCALE_MAX /
SPEED_REF_MAX).
This reference should be connected directly to the fieldbus.
If the result would be higher than 32767 or less than -32768, the output is limit at these values
and ERR and ERNO indicating the overflow.

Data type: REAL
Output ACT_SPEED returns the actual speed value from the drive. The scaling depends on the
drive settings.

ACT_TORQUE_
FB (actual
torque in
fieldbus equiva-
lent)

DONE (done)

ERR (error)

ERNO (error
number)

SPEED_REF_FB
(speed refer-
ence in fieldbus
equivalent)

ACT_SPEED
(actual speed)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2249

Drive Fieldbus Parameter Settings Scaling
ACS3XX / ACX550 Modbus RTU 53.10=101 Actual speed [rpm] 1

= 1 rpm

ACS3XX / ACX550 Modbus RTU 53.10=103 Absolute frequency 10
= 1 Hz

Data type: INT
Torque reference for fieldbus = TORQUE_REF input scaled to (TORQUE_SCALE_MAX /
TORQUE_REF_MAX).
This reference should be connected directly to the fieldbus.
If the result would be higher than 32767 or less than -32768, the output is limit at these values
and ERR and ERNO indicating the overflow.

Data type: REAL
Actual torque = ACT_TORQUE_FB input scaled to (TORQUE_REF_MAX /
TORQUE_SCALE_MAX) and converted to REAL.

AcsRefScaling (EN := xAcsRefScaling_EN,

 SPEED_SCALE_MAX := iAcsRefScaling_SPEED_SCALE_MAX,

 SPEED_REF_MAX :=
uiAcsRefScaling_SPEED_REF_MAX,

 SPEED_REF :=
rAcsRefScaling_SPEED_REF,

 ACT_SPEED_FB :=
iAcsRefScaling_ACT_SPEED_FB,

 TORQUE_SCALE_MAX := iAcsRefScaling_TORQUE_SCALE_MAX,

 TORQUE_REF_MAX :=
uiAcsRefScaling_TORQUE_REF_MAX,

 TORQUE_REF :=
rAcsRefScaling_TORQUE_REF,

 ACT_TORQUE_FB :=
iAcsRefScaling_ACT_TORQUE_FB);

xAcsRefScaling_DONE :=
AcsRefScaling.DONE;
xAcsRefScaling_ERR :=
AcsRefScaling.ERR;
wAcsRefScaling_ERNO :=
AcsRefScaling.ERNO;
iAcsRefScaling_SPEED_REF_FB := AcsRefScaling.SPEED_REF_FB;
rAcsRefScaling_ACT_SPEED :=
AcsRefScaling.ACT_SPEED;
iAcsRefScaling_TORQUE_REF_FB := AcsRefScaling.TORQUE_REF_FB;
rAcsRefScaling_ACT_TORQUE := AcsRefScaling.ACT_TORQUE;

TORQU_REF_F
B (torque refer-
ence in fieldbus
equivalent)

ACT_TORQUE
(actual torque)

Function call in
ST

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2250

1.5.6.2.5 Enumerations
ACS_DRIVE_ENUM enumerations to select the type of drive used

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Enumeration Value Description
ACS_DRIVE_ACS800 1 ACS800

ACS_DRIVE_ACSM1 2 ACSM1

ACS_DRIVE_ACS350 3 ACS350

ACS_DRIVE_ACS355 4 ACS355

ACS_DRIVE_ACS310 5 ACS310

ACS_DRIVE_ACS550 6 ACS550

ACS_DRIVE_ACH550 7 ACH550

ACS_DRIVE_ACQ810 8 ACQ810

ACS_DRIVE_ACS850 9 ACS850

ACS_DRIVE_ACS880 10 ACS880

ACS_DRIVE_ACS580 11 ACS580

ACS_DRIVE_DCS800 12 DCS800

ACS_DRIVE_DCS550 13 DCS550

ACS_DRIVE_ACH580 14 ACH580

ACS_DRIVE_ACS380 15 ACS380

ACS_DRIVE_ACS480 16 ACS480

ACS_DRIVE_ACQ580 17 ACQ580

ACS_PB_PN_PRM_TYPE_ENUM

Available as of runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Enumeration Value Description
 Hex DEC

ACS_INT16_PR
M

16#03 3 Integer of 16 bits

ACS_INT32_PR
M

16#04 4 Integer of 32 bits

ACS_UINT16_P
RM

16#06 6 Unsigned 16 bits

ACS_UINT32_P
RM

16#07 7 Unsigned 32 bits

ACS_ZERO_VAL
UE

16#40 64 Zero value returned, Ex.Parameter is not availabe
inside the Drive

Enumeration
information

Enumeration
information

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2251

Enumeration Value Description
ACS_BYTE_PR
M

16#41 65 Byte

ACS_WORD_PR
M

16#42 66 Word

ACS_DWORD_P
RM

16#43 67 Double Word

ACS_ERROR_V
ALUE

16#44 68 Error returned, Ex.Not able to read / write because
of communication fault or read or write protected
parameter etc

For writing any parameter using PROFIBUS/PROFINET DPV1 function blocks, user need to
speficy the data type in function block input. For example, if user is writing one parameter to
drive which is double word then user need to specify 16#43 in DATA input abyPrmType.

1.5.6.2.6 Structures
ACS_DRIVE_CONFIG_TYPE structure including configurations parameters of the ACS3XX drive

Structure ACS_DRIVE_CONFIG_TYPE is used in the ACS_DRIVE_DATA_TYPE as subele-
ment and contains configuration parameters of the drive.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visible Variable Type Default
Value

Description

iMotorCtrlMode INT 0 0=no information, 1=scalar control, 2=vector
control or DTC

iRefScaleMax INT 0 Reference scaling = +20000

iRefScaleMin INT 0 Reference scaling = -20000

iActScaleMax INT 0 Actual value scaling = +20000

iActScaleMin INT 0 Actual value scaling = -20000

iMotorNomFrqHz INT 0 Nominal motor frequency [0.1 Hz]

iMotorNom-
SpeedRpm

INT 0 Nominal motor speed [rpm]

Structure ACS_DRIVE_CONFIG_TYPE is used in the ACS_DRIVE_DATA_TYPE as subele-
ment and contains configuration parameters of the drive.
The ACS3XX_DRIVES_CTRL_BASIC function block reads scaling and other configuration
parameters from the drive. These values are written to subelement CONFIG of the
DRIVE_DATA variable.
These values are only valid if output SCALING_DONE at the ACS3XX_DRIVES_CTRL_BASIC
is set to TRUE.
The user can read these values via the DRIVE_DATA variable but he must not change these
values.

Description

Structure infor-
mation

Structure
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2252

ACS_DRIVE_DATA_TYPE structure to exchange data between function blocks for 1 Drive
Structure ACS_DRIVE_DATA_TYPE is used for the DRIVE_DATA variable to exchange the
data for one drive.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visible Vari-
able

Type Default
value

User
Access *)

Description

sw WORD 0 R Actual Status Word from drive

actValue1 INT 0 R Actual value 1 from drive -
mostly actual speed

actValue2 INT 0 R Actual value 2 from drive - map-
ping is made in drive configura-
tion

cw WORD 0 R Control Word to drive

refValue1 INT 0 R Reference Value 1 to drive -
mostly speed reference

refValue2 INT 0 R Reference Value 2 to drive -
mapping is made in drive con-
figuration

driveType INT 0 R Selected drive type – input of
communication function block

adapterType INT 0 R Seleceted fieldbus adapter type
– built in communication func-
tion block according to chosen
drive type and communication
block for specific fieldbus type

name STRING[20] "Default
Drive
Name"

R/W Name for drive which can
be set by user directly to
DRIVE_DATA variable

online BOOL R Connection established – set
in Modbus communication func-
tion block after successful
reading and writing one Modbus
job

config ACS_DRIVE_C
ONFIG_TYPE

 R Some configuration and scaling
parameters of the drive – read
by the
ACS3XX_DRIVES_CTRL_BASI
C function block

*) R = read only, R/W = read and write access

Structure ACS_DRIVE_DATA_TYPE is used for the DRIVE_DATA variable which must be con-
nected to all function blocks related to the same drive.
Besides the variable “name” all variables should not be written by the user directly. They are
read and written within the function blocks.
The ACS_DRIVE_DATA_TYPE contains some more internal, invisible variables which are used
for interlocks and data transfer and not meant for user access.

Structure infor-
mation

Structure
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2253

ACS_MOD_TOKEN_TYPE structure to exchange the internal Modbus token for Modbus RTU communica-
tion with more than 1 Drive

Structure ACS_MOD_TOKEN_TYPE is used to exchange the internal Modbus token between
the ACS3XX_COM_MOD_RTU or ACS_COM_MOD_RTU function blocks.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Structure ACS_MOD_TOKEN_TYPE is used for the LINE_TOKEN variable which must be
connected to all Modbus communication function blocks of the same physical Modbus line, e.g.
COM1. As on the same Modbus line, only one job at a time can be processed, this variable is
used to transfer the internal Modbus token to handle this.

ACS_PB_PN_PRM_DPV1_DATA_TYPE

Available as of runtime
system:

V2.4 Remark:

Included in library: ACSDrives-
Base_AC500_V20.lib

Visible Vari-
able

Type Default
Value

Description

abyPrmGroup ARRAY[1..37] OF
BYTE

0 Drive parameter Group Number. For
example: Parameter 20.12 , Group number
is 20.

abyPrmIndex ARRAY[1..37] OF
BYTE

0 Drive parameter Index Number. For
example: Parameter 20.12 , Index number
is 12.

abyPrmType ARRAY[1..37] OF
BYTE

0 While using READ block, it will act as
an output and for WRITE block, it will
act as an input. For writing, user need
to speficy the Drive Parameter Type here.
Refer ACS_PB_PN_PRM_TYPE_ENUM
for ENUM for each data
type Ä Chapter 1.5.6.2.5.2
“ACS_PB_PN_PRM_TYPE_ENUM”
on page 2251.

adwPrmValue ARRAY[1..37] OF
DWORD

0 While using READ block, it will act as an
output and for WRITE block, it will act as
an input. For writing the value to drive,
user need to specify the value here. While
reading, user will receive the value here.

Structure ACS_PB_PN_PRM_DPV1_DATA_TYPE is used to assign assigning Group,
Index, Type and Value in input DATA for ACS_PB_WRITE_N_PRM_DPV1 and
ACS_PN_WRITE_N_PRM_DPV1.
Same structure is used in ACS_PB_READ_N_PRM_DPV1 and
ACS_PN_READ_N_PRM_DPV1 for assigning Group and Index in Input DATA . READ function
block reads the values and stores it in type and Value array available in the same structure.

Structure infor-
mation

Structure
description

Structure infor-
mation

Description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2254

1.5.6.2.7 Global variables
dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global variables to set the background and title
colors for the visualization elements

The background color and the color of the title in the visualization elements of the ACS Drives
Libraries can be changed with the two global variables dwAcsVisuBackgroundColor and dwAcs-
VisuTitleColor.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

The color variables are given in hex format and represent the following colors:
variable := 16#00BBGGRR (where RR = red, GG = green, BB = blue)
The color variables can be changed to another value in any part of the users program.
Examples

 dwAcsVisuBack-
groundColor

dwAcsVisuTitleColor Example

Example 1 16#00808080 16#0080FFFF

Example 2 16#00000000 (black) 16#00FFFFFF (white)

Example 3 16#00000080 16#00008000

Change Color Variables in ST

Parameters

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2255

dwAcsVisuBackgroundColo := 16#00000080;
dwAcsVisuTitleColor := 16#00008000;

Change Color Variables in FUP

Example 3:

1.5.6.2.8 Visualizations
ACS_MOD_READ_N_PRM_VISU_PH faceplate for the function block ACS_MOD_READ_N_PRM

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2256

Visualization element ACS_MOD_READ_N_PRM_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_MOD_READ_N_PRM function block
which instance was used to replace the placeholder FB.
The visualization can also be used to control the function block by those inputs which are not
connected inside the program.
Additionally the first 10 values of the read block are shown.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_MOD_READ_N_PRM_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_MOD_READ_N_PRM function block
which instance was used to replace the placeholder FB.
All inputs of that ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1
“ACS_MOD_READ_N_PRM” on page 2212 function block which are not connected to a var-
iable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open. The DRIVE_DATA variable must be
connected to the function block.
The values to be written can not be displayed with this faceplate, because they have to be
accessed by the ADR operator outside the function block ACS_MOD_READ_N_PRM.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2257

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1...125
Description: NVAR input

Access via:
Description: PRM_NUM input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_ReadNPrm

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

EN

NVAR

PRM_NUM

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2258

Description: BUSY output.

Description: Value of 1st read parameter, written if read job was successfully.

Description: Value of 2nd read parameter, written if read job was successfully.

Description: Value of 3rd read parameter, written if read job was successfully.

Description: Value of 4th read parameter, written if read job was successfully.

Description: Value of 5th read parameter, written if read job was successfully.

Description: Value of 6th read parameter, written if read job was successfully.

Description: Value of 7th read parameter, written if read job was successfully.

Description: Value of 8th read parameter, written if read job was successfully

Description: Value of 9th read parameter, written if read job was successfully.

Description: Value of 10th read parameter, written if read job was successfully.

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

BUSY

VALUE1

VALUE2

VALUE3

VALUE4

VALUE5

VALUE6

VALUE7

VALUE8

VALUE9

VALUE10

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2259

ACS_MOD_WRITE_N_PRM_VISU_PH faceplate for the function block ACS_MOD_WRITE_N_PRM

Visualization element ACS_MOD_WRITE_N_PRM_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_MOD_WRITE_N_PRM function block
which instance was used to replace the placeholder FB.
The visualization can also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_MOD_WRITE_N_PRM_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_MOD_WRITE_N_PRM function block
which instance was used to replace the placeholder FB.
All inputs of that ACS_MOD_WRITE_N_PRM_MOD Ä Chapter 1.5.6.2.4.2
“ACS_MOD_WRITE_N_PRM” on page 2215 function block which are not connected to a var-
iable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open. The DRIVE_DATA variable must be
connected to the function block.
The values to be written can not be displayed with this faceplate, because they have to be
accessed by the ADR operator outside the function block ACS_MOD_WRITE_N_PRM.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2260

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1...125
Description: NVAR input

Access via:
Description: PRM_NUM input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_WriteNPrm

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

EN

NVAR

PRM_NUM

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2261

Description: BUSY output.

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS3XX_DRIVES_CTRL_BASIC_VISU_PH faceplate of function block ACS3XX_DRIVES_CTRL_BASIC

BUSY

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2262

Visualization element ACS3XX_DRIVES_CTRL_BASIC_VISU_PH can be used to show the
actual values of all inputs and outputs of the instance of an ACS3XX_DRIVES_CTRL_BASIC
function block which instance was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS3XX_DRIVES_CTRL_BASIC_VISU_PH can be used to show the
actual values of all inputs and outputs of the instance of an ACS3XX_DRIVES_CTRL_BASIC
Ä Chapter 1.5.6.2.4.4 “ACS3XX_DRIVES_CTRL_BASIC” on page 2220 function block which
instance was used to replace the placeholder FB.
All inputs of that ACS3XX_DRIVES_CTRL_BASIC function block which are not connected to a
variable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open. The DRIVE_DATA variable must be
connected to the function block.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2263

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Toggle
Description: START input

Access via: Toggle
Description: STOP_COAST input

Access via: Toggle
Description: RESET input

Access via: Numpad, no limits
Description: SPEED_REF input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_BASIC_CTR
L

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: SCALING_DONE output

EN

START

STOP_COAST

RESET

SPEED_REF

DONE

ERR

ERNO

SCALING_DON
E

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2264

Description: OPERATING output

Description: TRIPPED output

Description: ALARM output

Description: ACT_SPEED output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

OPERATING

TRIPPED

ALARM

ACT_SPEED

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2265

ACS_DRIVES_CTRL_ENG_VISU_PH faceplate of function block ACS_DRIVES_CTRL_ENG

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2266

Visualization element ACS_DRIVES_CTRL_ENG_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_DRIVES_CTRL_ENG Ä Chapter
1.5.6.2.4.5 “ACS_DRIVES_CTRL_ENG ” on page 2226 function block which instance was used
to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_DRIVES_CTRL_ENG_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_DRIVES_ENG_STANDARD function
block which instance was used to replace the placeholder FB.
All inputs of that ACS_DRIVES_CTRL_ENG function block which are not connected to a var-
iable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open. The DRIVE_DATA variable must be
connected to the function block.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2267

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Toggle
Description: OFF1 input

Access via: Toggle
Description: OFF2 input

Access via: Toggle
Description: OFF3 input

Access via: Toggle
Description: INHIBIT_OP input

Access via: Toggle
Description: RAMP_OUT_ZERO input

Access via: Toggle
Description: RAMP_HOLD input

EN

OFF1

OFF2

OFF3

INHIBIT_OP

RAMP_OUT_ZE
RO

RAMP_HOLD

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2268

Access via: Toggle
Description: RAMP_IN_ZERO input

Access via: Toggle
Description: RESET input

Access via: Toggle
Description: CW_BIT8 input

Way of Access: Toggle
Description: CW_BIT9 input

Access via: Toggle
Description: CW_BIT9 input

Access via: Toggle
Description: EXT_CTRL_LOC input

Access via: Toggle
Description: CW_BIT12 input

Access via: Toggle
Description: CW_BIT13 input

Access via: Toggle
Description: CW_BIT14 input

Access via: Toggle
Description: CW_BIT15 input

Access via: Toggle
Description: USE_CW input (switch to CW input instead of single bits above)

Access via: Text input -Word: 0...65535
Description: CW input (used if USE_CW = TRUE)

Access via: Text input -32768...+32768
Description: REF_VALUE1 input

Access via: Text input -32768...+32768
Description: REF_VALUE2 input

RAMP_IN_ZERO

RESET

CW_BIT8

CW_BIT9

REMOTE_CMD

EXT_CTRL_LOC

CW_BIT12

CW_BIT13

CW_BIT14

CW_BIT15

USE_CW

CW

REF_VALUE1

REF_VALUE2

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2269

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_ENGI-
NEERING

Access R
Description: DONE output.

Description: RDY_RUN output

Description: RDY_RUN output

Description: RDY_REF output

Description: TRIPPED output

Description: OFF2_STATE output

Description: OFF3_STATE output

Description: SWITCH_ON_INHIB output

Description: ALARM output

Description: AT_SETPOINT output

Description: REMOTE output

Description: ABOVE_LIMIT output

Description: EXT_CTRL_LOC output

Description: EXT_RUN_EN output

Description: SW_BIT13 output

Description: SW_BIT14 output

Description: SW_BIT15 output

Description: ACT_SW output

DONE

RDY_ON

RDY_RUN

RDY_REF

TRIPPED

OFF2_STATE

OFF3_STATE

SWITCH_ON_IN
HIB

ALARM

AT_SETPOINT

REMOTE

ABOVE_LIMIT

EXT_CTRL_LOC

EXT_RUN_EN

SW_BIT13

SW_BIT14

SW_BIT15

ACT_SW

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2270

Description: USED_CW output

Description: ACT_VALUE1 output

Description: ACT_VALUE2 output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_DRIVES_CTRL_STANDARD_VISU_PH faceplate of function block ACS_DRIVES_CTRL_STANDARD

USED_CW

ACT_VALUE1

ACT_VALUE2

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2271

Visualization element ACS_DRIVES_CTRL_STANDARD_VISU_PH can be used to show the
actual values of all inputs and outputs of the instance of an ACS_DRIVES_CTRL_STANDARD
function block which instance was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_DRIVES_CTRL_STANDARD_VISU_PH can be used to show the
actual values of all inputs and outputs of the instance of an ACS_DRIVES_CTRL_STANDARD
Ä Chapter 1.5.6.2.4.6 “ACS_DRIVES_CTRL_STANDARD ” on page 2234 function block which
instance was used to replace the placeholder FB.
All inputs of that ACS_DRIVES_CTRL_STANDARD function block which are not connected to
a variable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open. The DRIVE_DATA variable must be
connected to the function block.
Additionally, a text message of the actual state, e.g. missing input or missing feedback from
drive, is given by the variable MESSAGE, shown next to label MESSAGE.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2272

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Toggle
Description: START input

Access via: Toggle
Description: EMCY_COAST input

Access via: Toggle
Description: EMCY_RAMP input

EN

START

EMCY_COAST

EMCY_RAMP

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2273

Access via: Toggle
Description: STOP_COAST input

Access via: Toggle
Description: RESET input

Access via: Toggle
Description: EXT_CTRL_LOC input

Access via: Numpad, no limits
Description: SPEED_REF input

Access via: Text input -32768...+32768
Description: REF_VALUE2 input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_BASIC_CTR
L

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: READY output

Description: OPERATING output

Description: TRIPPED output

Description: ALARM output

Description: EXT_RUN_EN output

Description: LOC_CTRL output

Description: EXT_CTRL_LOC output

STOP_COAST

RESET

EXT_CTRL_LOC

SPEED_REF

REF_VALUE2

DONE

ERR

ERNO

READY

OPERATING

TRIPPED

ALARM

EXT_RUN_EN

LOC_CTRL

EXT_CTRL_LOC

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2274

Description: ACT_SPEED output

Description: ACT_VALUE2 output

Description: MESSAGE output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_DRIVES_CTRL_STANDARD_GEN_VISU_PH faceplate for the function block

ACT_SPEED

ACT_VALUE2

MESSAGE

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2275

Visualization element ACS_DRIVES_CTRL_STANDARD_GEN_VISU_PH can be
used to show the actual values of all inputs and outputs of the
instance of an ACS_DRIVES_CTRL_STANDARD_GEN Ä Chapter 1.5.6.2.4.7
“ACS_DRIVES_CTRL_STANDARD_GEN” on page 2241 function block which instance is used
to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_DRIVES_CTRL_STANDARD_GEN_VISU_PH can be
used to show the actual values of all inputs and outputs of the
instance of an ACS_DRIVES_CTRL_STANDARD_GEN Ä Chapter 1.5.6.2.4.7
“ACS_DRIVES_CTRL_STANDARD_GEN” on page 2241function block which instance was
used to replace the placeholder FB.
All inputs of that ACS_DRIVES_CTRL_STANDARD_GEN Ä Chapter 1.5.6.2.4.7
“ACS_DRIVES_CTRL_STANDARD_GEN” on page 2241function block which are not connected
to a variable (left open) can be written from this faceplate. So the function block can be
controlled from the visualization as long as the inputs are left open.
Additionally, a text message of the actual state, e.g. missing input or missing feedback from
drive, is given by the variable MESSAGE, shown next to the label MESSAGE.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2276

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Toggle
Description: START input

Access via: Toggle
Description: EMCY_COAST input

Access via: Toggle
Description: EMCY_RAMP input

Access via: Toggle
Description: STOP_COAST input

Access via: Toggle
Description: RESET input

EN

START

EMCY_COAST

EMCY_RAMP

STOP_COAST

RESET

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2277

Access via: Toggle
Description: EXT_CTRL_LOC input

Access via: Text
Description: SW input (Status word)

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_BASIC_CTR
L

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: READY output

Description: OPERATING output

Description: TRIPPED output

Description: ALARM output

Description: EXT_RUN_EN output

Description: LOC_CTRL output

Description: EXT_CTRL_LOC output

Description: CW output (Control word)

Description: MESSAGE output

EXT_CTRL_LOC

SW

DONE

ERR

ERNO

READY

OPERATING

TRIPPED

ALARM

EXT_RUN_EN

LOC_CTRL

EXT_CTRL_LOC

CW

MESSAGE

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2278

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_REF_SCALING_VISU_PH faceplate for the function block ACS_REF_SCALING

Visualization element ACS_REF_SCALING_VISU_PH can be used to show the actual values of
all inputs and outputs of the instance of an ACS_REF_SCALING function block which instance
was used to replace the placeholder FB.
The visualization can also be used to control the function block by those inputs which are not
connected inside the program.

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2279

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_REF_SCALING_VISU_PH can be used to show the actual values
of all inputs and outputs of the instance of an ACS_REF_SCALING Ä Chapter 1.5.6.2.4.8
“ACS_REF_SCALING” on page 2246function block which instance was used to replace the
placeholder FB.
All inputs of that ACS_REF_SCALING Ä Chapter 1.5.6.2.4.8 “ACS_REF_SCALING”
on page 2246 function block which are not connected to a variable (left open) can be written
from this faceplate. So the function block can be controlled from the visualization as long as the
inputs are left open.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2280

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1 .. 32767
Description: SPEED_SCALE_MAX input

Access via: Numpad 1 .. 32767
Description: SPEED_REF_MAX input

Access via: Numpad, no limits
Description: SPEED_REF input

Access via: Numpad -32768.0 .. -32767.0
Description: ACT_SPEED_FB input – should be connected to the fieldbus.

Access via: Numpad 1...32767
Description: TORQUE_SCALE_MAX input

Access via: Numpad 1...32767
Description: TORQUE_REF_MAX input

Access via: Numpad -32768.0 .. -32767.0
Description: TORQUE_REF input

Access via: Numpad -32768.0 .. -32767.0
Description: ACT_TORQUE_FB input – should be connected to the fieldbus.

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive51.FB_SCALING

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

EN

SPEED_SCALE_
MAX

SPEED_REF_M
AX

SPEED_REF

ACT_SPEED_FB

TORQUE_SCAL
E_MAX

TORQUE_REF_
MAX

TORQUE_REF

ACT_TORQUE_
FB

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2281

Description: BUSY output.

Description: SPEED_REF_FB output – should be connected to the fieldbus.

Description: ACT_SPEED output

Description: TORQUE_REF_FB output – should be connected to the fieldbus.

Description: ACT_TORQUE output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_SW_VISU_PH visualization for the ABB drives profile status word

BUSY

SPEED_REF_FB

ACT_SPEED

TORQUE_REF_
FB

ACT_TORQUE

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2282

Visualization element ACS_SW_VISU_PH can be used to show the actual values of all bits of
the Status Word.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_SW_VISU_PH can be used to show the actual values of all bits
of the Status Word. The placeholder SW must be replaced by the “sw” element of the
DRIVE_DATA variable.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2283

Parameters
Access R

Description: RDY_RUN output

Description: RDY_RUN output

Description: RDY_REF output

Description: TRIPPED output

Description: OFF2_STATE output

Description: OFF3_STATE output

Description: SWITCH_ON_INHIB output

Description: ALARM output

RDY_ON

RDY_RUN

RDY_REF

TRIPPED

OFF2_STATE

OFF3_STATE

SWITCH_ON_IN
HIB

ALARM

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2284

Description: AT_SETPOINT output

Description: REMOTE output

Description: ABOVE_LIMIT output

Description: EXT_CTRL_LOC output

Description: EXT_RUN_EN output

Description: SW_BIT13 output

Description: SW_BIT14 output

Description: SW_BIT15 output

Placeholder Replacement Example
SW SW element of DRIVE_DATA

variable
PRG_Drive1.tsDriveData.sw

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

AT_SETPOINT

REMOTE

ABOVE_LIMIT

EXT_CTRL_LOC

EXT_RUN_EN

SW_BIT13

SW_BIT14

SW_BIT15

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2285

ACS_CW_VISU_PH visualization for the ABB drives profile control word

Visualization ACS_CW_VISU_PH can be used to show the actual value of all bits of the Control
Word. The naming is made according the ABB Drives Profile.

Available in runtime system: V1.3.2

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization ACS_CW_VISU_PH can be used to show the actual value of all bits of the Control
Word. The naming is made according the ABB Drives Profile.
The placeholder CW must be replaced by the “cw” element of the DRIVE_DATA variable.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2286

Parameters
Access R

Description: OFF1 input

Description: OFF2 input

Description: OFF3 input

Description: INHIBIT_OP input

Description: RAMP_OUT_ZERO input

Description: RAMP_HOLD input

Description: RAMP_IN_ZERO input

Description: RESET input

Description: CW_BIT8 input

Description: CW_BIT9 input

Description: REMOTE_CMD input

OFF1

OFF2

OFF3

INHIBIT_OP

RAMP_OUT_ZE
RO

RAMP_HOLD

RAMP_IN_ZERO

RESET

CW_BIT8

CW_BIT9

REMOTE_CMD

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2287

Description: EXT_CTRL_LOC input

Description: CW_BIT12 input

Description: CW_BIT13 input

Description: CW_BIT14 input

Description: CW_BIT15 input

Placeholder Replacement Example
CW CW element of DRIVE_DATA

variable
PRG_Drive1.tsDriveData.cw

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

1.5.6.3 ACS / DCS Drives communication via Modbus RTU library

1.5.6.3.1 Preconditions for the use of the ACS / DCS drives communication via Modbus RTU library
The library is released for the following products:

CPUs: AC500 and AC500-eCo

Fieldbus: Modbus RTU (Serial Modbus)

Drives: ACS800, ACSM1, ACS350, ACS355,
ACS310, ACS550, ACH550, ACQ810,
ACS850, ACS880, ACS800, DCS800,
DCS550

EXT_CTRL_LOC

CW_BIT12

CW_BIT13

CW_BIT14

CW_BIT15

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2288

Generic Devices: No specific limit except that they can work
with the Modbus function codes defined
in function block Ä Chapter 1.5.4.22.1.1
“COM_MOD_MAST” on page 1698.

Modbus RTU configuration: Prior to the use of the function blocks a Com-
munication Module "COMx_Modbus" has to
be configured accordingly using Automation
Builder, either at "Interfaces" or at "CM574-
RS" module.

ACS3XX_COM_MOD_RTU,
ACS_COM_MOD_RTU,
ACS_COM_MOD_RTU_ENHANCED:

Modbus communication tested for connection
of 7 drives in total. Connection of more drives
depends on the performance of used CPU
and communication settings.
The communication function blocks are
designed to be used for one specific drive at
run time. So it´s not recommanded to change
the COM or SLAVE inputs of the blocks while
the program is running.

ACS_COM_MOD_RTU_GEN: Modbus communication for generic devices.
The communication performance depends on
performance of used CPU and communication
settings.
The communication function block is designed
to be used for one specific slave device at run
time. So it´s not recommanded to change the
COM or SLAVE inputs of the block while the
program is running.

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

The blocks can only be used in combination with the ACSDrives-
Base_AC500_V20 Library.

1.5.6.3.2 Special characteristics of the ACS / DCS drives communication via Modbus RTU library
The function blocks in the ACSDrivesComModRTU_AC500_V20 Library are designed to handle
the Modbus RTU communication to 1 or more drives.
The function blocks ACSxxxx_COM_MOD_RTU perform all the actions that are needed to read
and write Modbus RTU jobs from / to different slaves.
The data handling is automatically done in the ACSxxxx_COM_MOD_RTU function blocks
using the COM_MOD_MAST and ACS_COM_READ_N_PRM and ACS_COM_WRITE_N_PRM
function blocks internally.
The user just has to connect the communication function blocks together via the common
LINE_TOKEN variable of type ACS_MOD_TOKEN_TYPE.

The following block diagram shows the general connection of the function blocks for 3 drives:

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2289

Fig. 158: Function Block Diagram PS553-DRIVES library Modbus RTU connection for three
ACS drives

The communication function blocks are connected together via the LineToken variable. All
function blocks regarding 1 drive are connected together via the DRIVE_DATA variable of type
ACS_DRIVE_DATA_TYPE.
For the Modbus settings in the AC500 see tab PLC configuration \ Interfaces \ COMx – Modbus
\ Module parameters – or in ABB Automation Builder: Setting_COMx_Modbus
For the Modbus settings in the ACS drives see Parameter group "EFB Protocoll", e.g. Par.
53.02 .. 53.04 for ACS355.

The following timing performance has been measured:
Test was done with no change of commands nor reference values. So just a continuous reading
of status values from each drive were performed.
Test conditions general: PM554-T, timeout at ACS3XX_COM_MOD_RTU: 1000 ms

Transmission
rate

Number of
drives

Update time for 1 drive

- - PLC scan time:
10ms PLC load:
50%

PLC scan time:
5ms PLC load:
74%

PLC scan time:
3ms PLC load:
75%

19,2 kBd 7 450 ms 360 ms -

19,2 kBd 3 190 ms - 147 ms

115,2 kBd 7 370 ms 280 ms -

115,2 kBd 3 160 ms - 100 ms

Performance

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2290

When one or more drives in the Modbus RTU lines are offline, all the other drives have to wait
for the TIMEOUT to elapse until a line token is assigned to next drive.
Reconnection pause input helps in skipping the drives which are offline from the next Modbus
job and execute Modbus job operations only for the drives which are online.
“reconnectPause” is time in seconds before next retry to connect after a timeout was detected.
Timeout is detected with ERNO = 8211.
This feature can be used with the ACS_COM_MOD_RTU or
ACS_COM_MOD_RTU_ENHANCED function block when Modbus RTU communication is
used.
User must configure the reconnect pause input value using the input/output variable
“DRIVE_DATA.reconnectPause”.
For the generic RTU function block ACS_COM_MOD_RTU_GEN, value for the reconnect
pause must be configured at the input/output variable “SLAVE_DATA.reconnectPause”.

1.5.6.3.3 Components of the ACS / DCS drives communication via Modbus RTU library
The library ACSDrivesComModRTU_AC500_V20.lib contains the following function blocks,
structures and visualizations:

Table 132: Function blocks
Group: Modbus RTU -> ACS Drives
ACS3XX_COM_MOD_RTU Ä Chapter
1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU com-
munication for ACS3XXwrite one bit/ACX550
drives via Modbus RTU” on page 2293

Communication for ACS 3xx or ACX550
Drives via Modbus RTU

ACS_COM_MOD_RTU Ä Chapter 1.5.6.3.5.2
“ACS_COM_MOD_RTU communication for
ACS / DCS drives via Modbus RTU”
on page 2301

Communication for ACS / DCS Drives via
Modbus RTU

ACS_COM_MOD_RTU_ENHANCED
Ä Chapter 1.5.6.3.5.3
“ACS_COM_MOD_RTU_ENHANCED com-
munication for ACS drives via Modbus
RTU using ABB drives profile enhanced”
on page 2312

Communication for ACS / DCS Drives via
Modbus RTU

Group: Modbus RTU -> Generic Devices
ACS_COM_MOD_RTU_GEN Ä Chapter
1.5.6.3.5.4 “ACS_COM_MOD_RTU_GEN
communication for generic devices via
Modbus RTU ” on page 2322

Communication for Generic Devices via
Modbus RTU

ACS_COM_MOD_RTU_GEN_READ_N_PRM
Ä Chapter 1.5.6.3.5.5
“ACS_COM_MOD_RTU_GEN_READ_N_PR
M read N parameters from a generic Modbus
RTU device ” on page 2327

Read N Parameters from a Generic Modbus
RTU Device

ACS_COM_MOD_RTU_GEN_WRITE_N_PR
M Ä Chapter 1.5.6.3.5.6
“ACS_COM_MOD_RTU_GEN_WRITE_N_PR
M write N parameters to a generic Modbus
RTU device ” on page 2330

Write N Parameters to a Generic Modbus
RTU Device

Reconnection
pause:

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2291

Table 133: Structures
ACS_GEN_DEV_DATA_TYPE Ä Chapter
1.5.6.3.6.1 “ACS_GEN_DEV_DATA_TYPE
structure to exchange data between function
blocks for 1 generic device ” on page 2334

Structure to Exchange Data between function
blocks for 1 Generic Device

Table 134: Visualizations
Group: Modbus RTU -> ACS Drives
ACS3XX_COM_MOD_RTU_VISU_PH
Ä Chapter 1.5.6.3.7.1
“ACS3XX_COM_MOD_RTU_VISU_PH face-
plate for the function block
ACS3XX_COM_MOD_RTU” on page 2335

Faceplate for the function block
ACS3XX_COM_MOD_RTU

ACS_COM_MOD_RTU_VISU_PH Ä Chapter
1.5.6.3.5.2 “ACS_COM_MOD_RTU communi-
cation for ACS / DCS drives via Modbus RTU”
on page 2301

Faceplate for the function block
ACS_COM_MOD_RTU

ACS_COM_MOD_RTU_ENHANCED_VISU_
PH Ä Chapter 1.5.6.3.7.3
“ACS_COM_MOD_RTU_ENHANCED_VISU_
PH faceplate for the function block
ACS_COM_MOD_RTU_ENHANCED ”
on page 2345

Faceplate for the function block
ACS_COM_MOD_RTU_ENHANCED

Group: Modbus RTU -> Generic Devices
ACS_COM_MOD_RTU_GEN_VISU_PH
Ä Chapter 1.5.6.3.7.4
“ACS_COM_MOD_RTU_GEN_VISU_PH
faceplate for the function block
ACS_COM_MOD_RTU_GEN ” on page 2350

Faceplate for the function block
ACS_COM_MOD_RTU_GEN

ACS_COM_MOD_RTU_GEN_READ_N_PRM
_VISU_PH Ä Chapter 1.5.6.3.7.5
“ACS_COM_MOD_RTU_GEN_READ_N_PR
M_VISU_PH faceplate for the function block
ACS_COM_MOD_RTU_GEN_READ_N_PRM
” on page 2353

Faceplate for the function block
ACS_COM_MOD_RTU_GEN_READ_N_PRM

ACS_COM_MOD_RTU_GEN_WRITE_N_PR
M_VISU_PH Ä Chapter 1.5.6.3.7.6
“ACS_COM_MOD_RTU_GEN_WRITE_N_PR
M_VISU_PH faceplate for the function block
ACS_COM_MOD_RTU_GEN_WRITE_N_PR
M ” on page 2356

Faceplate for the function block
ACS_COM_MOD_RTU_GEN_WRITE_N_PR
M

1.5.6.3.4 Overview of the ACS / DCS drives communication via Modbus RTU function blocks according to
their call names

Used abbreviations:

FBhv Function block with historical values

FBnohv Function block without historical values

F: Function

Enum: Enumeration

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2292

Struct: Structure

Visu: Visualization

VE Name Type Function
ACS3XX_COM_MOD_RTU FBhv Communication for ACS3xx and ACX550

Drives via Modbus RTU

ACS_COM_MOD_RTU FBhv Communication for ACS / DCS Drives via
Modbus RTU

ACS_COM_MOD_RTU_ENHANCED FBhv Communication for ACS DCS Drives via
Modbus RTU

ACS_COM_MOD_RTU_GEN FBhv Communication for Generic Devices via
Modbus RTU

ACS_COM_MOD_RTU_GEN_READ
_N_PRM

FBhv Read N Parameters from a Generic
Modbus RTU device

ACS_COM_MOD_RTU_GEN_WRIT
E_N_PRM

FBhv Write N Parameters to a Generic Modbus
RTU Device

1.5.6.3.5 Function blocks
ACS3XX_COM_MOD_RTU communication for ACS3XXwrite one bit/ACX550 drives via Modbus RTU

Available as of runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Function block with historical values

Function block ACS3XX_COM_MOD_RTU controls the Modbus RTU communication to an
ACS3XX / ACX550 drive (except ACS380) and is used for the basic control of ACS3XX /
ACX550 drives (except ACS380) with ABB Drives profile.

The function block continuously reads data from the drive starting at Modbus register 40004. So
at least the Status Word (SW), Actual Value 1 (SPEED_REF), Actual Value 2 (ACT_VALUE2)
are continuously read from the drive and written to the DRIVE_DATA variable.
With input NVAR_READ the function block can be configured to read between 3 and 9 signals
from the drive. All read data is also written to the array at the READ_VALUE output. The first
signal is the Status Word. The following signals are configured in the ACS3XX / ACX550 drive
with Par. 53.10 .. 53.17. The array READ_VALUE contains the data as follows:

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2293

The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Modbus
register
address
in drive

Mapping configura-
tion in drive

Written to in
AC500

Condition at function block

ACS3XX,
ACX550

ACS355
default
values
using the
Macro
"AC500
Modbus"
in Par.
99.02

Commu-
nication
module

embedded fieldbus
or FMBA-01

40004 Status
Word
(SW)

Fix DRIVE_DATA
.sw
READ_VALU
E[1]

EN = TRUE
NVAR_READ
>= 3

40005 Par.
53.10
(e.g.101)

Speed &
direction
(101)

DRIVE_DATA
.actValue1
READ_VALU
E[2]

EN = TRUE
NVAR_READ
>= 3

40006 Par. 53.11
(e.g.105)

FB STS
WORD 1
(303)

DRIVE_DATA
.actValue2
READ_VALU
E[3]

EN = TRUE
NVAR_READ
>= 3

40007 Par.
53.12

FAULT
WORD 1
(305)

READ_VALU
E[4]

 EN = TRUE and
NVAR_READ >= 4

40008 Par.
53.13

0 READ_VALU
E[5]

 EN = TRUE and
NVAR_READ >= 5

40012 Par.
53.17

0 READ_VALU
E[9]

 EN = TRUE and
NVAR_READ = 9

If a Modbus job tries to access a register in the drive which has no valid map-
ping information the job is aborted with an error. Therefore in ACS3XX/ACX550
at least the Par. 53.10 and 53.11 have to be configured to the Actual Value1 and
Actual Value2 e.g. 101 and 105.

If e.g. NVAR_READ = 5 the values from READ_VALUE[1 .. 5] are updated. Then none of the
configured parameters Par. 53.10 .. 53.13 in the ACS3XX drive must be zero.
The READ_VALUE array is reset to zero in the following cases:
● EN = FALSE
● COM, SLAVE or TIMEOUT are out of range
● Communication error occurs
Writing Control Word and Reference Values to Drive
The function block checks, if there are changes of the Control Word (CW), Reference Value 1
(SPEED_REF) or Reference Value 2 (REF_VALUE2) on the DRIVE_DATA variable. If there is a
change a write job is requested to send these 3 values to the ACS3XX / ACX550 drive starting
at Modbus register 40001.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2294

The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Modbus register address in
drive

Mapping configuration in
drive

Taken form AC500

For ACS3XX / ACX550
drives

40001 Control Word (CW) DRIVE_DATA.cw

40002 Reference Value1 DRIVE_DATA.refValue1

40003 Reference Value2 DRIVE_DATA.refValue2

Read/Write Jobs Coming from Other function blocks
The requests to process other read or write Modbus jobs is transferred via the DRIVE_DATA
variable at the IN_OUT variable DRIVE_DATA which can be connected to several other read/
write function blocks e.g. ACS_MOD_READ_N_PRM or ACS_MOD_WRITE_N_PRM of this
drive.
Communication with Several ACS3XX Drives
If several drives are used, for each drive an communication function block such as
ACS3XX_COM_MOD_RTU must be programmed. Also every other generic slave device on
the same Modbus RTU line must be programmed with it´s own ACS_COM_MOD_RTU_GEN
function block. All those communication function blocks of one Modbus RTU line must be linked
together via one variable of type ACS_MOD_TOKEN_TYPE, connected to the IN_OUTPUTs
LINE_TOKEN. Via this variable the Modbus token is passed to the next drive / device, so only
one drive / device at a time is communicating with the PLC.

The function block is only working with ACS3XX / ACX550 drives (ACS310, ACS350, ACS355,
ACS500, ACH550) via Modbus RTU communication.

This function block cannot be used with ACS380 drive.

Instead for ACS380 drive use ACS_COM_MOD_RTU function block or
ACS_COM_MOD_RTU_ENHANCED function block based on the drive configu-
ration.

The data transfer to other function blocks for this drive communication to the ACS3XX/ACX550
drive is realized via the IN_OUTPUT variable DRIVE_DATA, which must be connected to then
ACS3XX_COM_MOD_RTU even if no other function block is connected.
The Modbus token is passed to other Modbus communication blocks such as
ACS3XX_COM_MOD_RTU via the IN_OUTPUT variable LINE_TOKEN which must be con-
nected even if no other ACS3XX_COM_MOD_RTU function block is used.
The ACS3XX / ACX550 parameters must be set as follows:

Setting according to
AC500 configuration
or function block
input
Communication
module:

ACS3XX, ACX550 ACS355 default
values using the
Macro "AC500
Modbus" in Par.
99.02

Condition at func-
tion block

Embedded fieldbus or FMBA-01
Fieldbus activation
= STD Modbus or
Modbus RS-232

98.02 STD Modbus EN = TRUE and
NVAR_READ >= 3

SLAVE number 53.02 2 EN = TRUE and
NVAR_READ >= 3

Preconditions

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2295

Setting according to
AC500 configuration
or function block
input
Communication
module:

ACS3XX, ACX550 ACS355 default
values using the
Macro "AC500
Modbus" in Par.
99.02

Condition at func-
tion block

Embedded fieldbus or FMBA-01
Transmission rate =
AC500 Modbus con-
figuration

53.03 19.2 kbit/s (192) EN = TRUE and
NVAR_READ >= 3

Parity, Data- and
Stopbits = AC500
Modbus configuration

53.04 8 NONE 1 (1) EN = TRUE and
NVAR_READ >= 3

Control profile = ABB
Drives (lim or full)
but not ABB drives
enhanced nor DCU
profile

53.05 ABB DRV FULL (2) EN = TRUE and
NVAR_READ >= 3

Mapping of Actual
Value1 Modbus reg-
ister 40005

53.10 e.g. 101 Speed & direction
(101)

EN = TRUE and
NVAR_READ >= 3

Mapping of Actual
Value2 Modbus reg-
ister 40006

53.11 e.g. 105 FB STS WORD 1
(303)

EN = TRUE and
NVAR_READ >= 3

Optional Modbus reg-
ister 40007

53.12 e.g. 305 FAULT WORD 1 (305) EN = TRUE and
NVAR_READ >= 4

Optional Modbus reg-
ister 40012

53.17 EN = TRUE and
NVAR_READ = 9

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the block is active, the current values are available at the outputs.

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2296

After a rising edge (FALSE -> TRUE) of input EN output ONLINE is set to FALSE and parame-
ters are read from the ACS3XX / ACX550 drive.
After first successful reading and writing parameters, output ONLINE is set to TRUE.
The processing of continuously read of status information from the drive (SW, ACT_VALUE1
and ACT_VALUE2) and writing of Control Word and Reference Values (CW, SPEED_REF,
REF_VALUE2) to the drive is started.
If EN is reset to FALSE while a Modbus job is performed (BUSY = TRUE), the function block will
be processed until the Modbus job is terminated (DONE = TRUE for 1 cycle).
If EN is reset to FALSE while the function block actually keeps the token of the LINE_TOKEN
variable the token will be released for another drive (set to 0).

Data type: BYTE
Interface identifier of Modbus line.
COM = 1: COM1
COM = 2: COM2
...
COM = 11: COM11 (using CM574-RS)
(COM3 = FPB, COM4 .. COM11 = COMs on CM574-RS).
Default value = 1. Minimum = 1, Maximum = 11
The COM input should not be changed while the program is running. If changed nevertheless,
the new value will become effective only after a new rising edge of EN input.

Data type: BYTE
At input SLAVE, the address of the drive (slave) to which the connection shall be established
must be specified.
Default value = 2, Minimum = 1, Maximum = 255
The function block is designed to be used with a fix SLAVE device. The SLAVE input should not
be changed while the program is running. If changed nevertheless the new value will become
effective only after an already running Modbus job is finished.

Data type: WORD
The telegram timeout in milliseconds (ms) is specified at input TIMEOUT.
If no response is received within the time interval specified at TIMEOUT, the procedure is
aborted and an error identifier is output.

If several drives are connected to the Modbus line and one drive cannot
respond, the whole communication is waiting till the timeout is over and the
Modbus procedure (job) is aborted. Afterwards the next drive can take the
LINE_TOKEN signal. The TIMEOUT should not be set too long if more than one
drive is connected, but also not too short for having a chance to respond within
the TIMEOUT. A minimum of 100 is required.

Typical values should be between 300 ms and 2000 ms (range: minimum 100, maximum
65535).
Default value = 1000. Minimum = 100, Maximum = 65535.

Data type: INT, Default value: ACS_DRIVE_ACS355

COM (com)

SLAVE (slave)

TIMEOUT
(timeout)

DRIVE_TYPE
(drive type)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2297

At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM. The input can be
set either by the value directly or by using the enum.

ENUM Value
ACS_DRIVE_ACS800 1

ACS_DRIVE_ACSM1 2

ACS_DRIVE_ACS350 3

ACS_DRIVE_ACS355 4

ACS_DRIVE_ACS310 5

ACS_DRIVE_ACS550 6

ACS_DRIVE_ACH550 7

ACS_DRIVE_ACQ810 8

ACS_DRIVE_ACS850 9

ACS_DRIVE_ACS880 10

ACS_DRIVE_ACS580 11

ACS_DRIVE_DCS800 12

ACS_DRIVE_DCS550 13

ACS_DRIVE_ACH580 14

ACS_DRIVE_ACS380 15

ACS_DRIVE_ACS480 16

ACS_DRIVE_ACQ580 17

Data type: BYTE
With the input NVAR_READ the function block can be configured to read between 3 and 9
signals from the drive. All read data is written to the array at the READ_VALUE output. The first
value is the Status Word (SW). The following values are configured in the ACS3XX / ACX550
drive with Par. 53.10 .. 53.17.
If e.g. NVAR_READ = 5 then none of the configuration parameters Par. 53.10 .. 53.13 must be
0. Then the values from READ_VALUE[1] .. READ_VALUE[5] are updated.
Default value = 3. Minimum = 3, Maximum = 9.

For ACS3XX/ACX550 drives, mapping of 53.10 and 53.11 parameters to any of
the drive parameter is mandatory, otherwise function block will return error.

When NVAR READ = 3, it reads SW, 53.10 mapped parameter and 53.11
mapped parameter.

See table at description of READ_VALUE output.

Data type: ACS_MOD_TOKEN_TYPE
The combined input/output LINE_TOKEN must be connected to the one variable of
ACS_MOD_TOKEN_TYPE of the related Modbus line. Each Modbus line must have its own
LINE_TOKEN variable.
The LINE_TOKEN variable contains the token for the Modbus line and must be connected to all
related ACS3XX_COM_MOD_RTU function blocks of this line (COMx).
Description:

NVAR_READ
(number of vari-
ables for
reading)

LINE_TOKEN
(line token)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2298

The ACS_COM_MOD_RTU_ENHANCED function block writes its SLAVE number to the
LINE_TOKEN variable (takes the token) when it is 0.
If the token is already occupied it writes its SLAVE number to the next-token-request.
If all Modbus jobs of a drive are terminated, the ACS_COM_MOD_RTU_ENHANCED function
block resets the token on the LINE_TOKEN variable to 0 (release the token) if the next-token-
request is set (not 0).
If an ACS_COM_MOD_RTU_ENHANCED takes the token it releases the next-token-request at
the same time.

Output description

Data type: ACS_MOD_TOKEN_TYPE
The combined input/output LINE_TOKEN must be connected to the one variable of
ACS_MOD_TOKEN_TYPE of the related Modbus line. Each Modbus line must have its own
LINE_TOKEN variable.
The LINE_TOKEN variable contains the token for the Modbus line and must be connected to all
related ACS3XX_COM_MOD_RTU function blocks of this line (COMx).
Description:
The ACS_COM_MOD_RTU_ENHANCED function block writes its SLAVE number to the
LINE_TOKEN variable (takes the token) when it is 0.
If the token is already occupied it writes its SLAVE number to the next-token-request.
If all Modbus jobs of a drive are terminated, the ACS_COM_MOD_RTU_ENHANCED function
block resets the token on the LINE_TOKEN variable to 0 (release the token) if the next-token-
request is set (not 0).
If an ACS_COM_MOD_RTU_ENHANCED takes the token it releases the next-token-request at
the same time.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

LINE_TOKEN
(line token)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2299

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

Data type: BOOL
After the first time input EN is set to TRUE and at least one read job and one write job is
performed successfully, output ONLINE is set to TRUE.
Output ONLINE is reset to FALSE after a rising edge of EN or if an error occurs while reading
the status information or writing the Control Word and Reference Values.

Data type: ARRAY[1..9] OF WORD
At output READ_VALUES the values of the array are updated after the read status information
job was terminated successfully (DONE = TRUE, ERR = FALSE, BUSY = FALSE).
The read status information job is requested cyclically. It reads data from the ACS drive starting
at Modbus register 400051 up to the number specified at input NVAR_READ +3.
READ_VALUES contains the data as follows:
READ_VALUES[1] = <Modbus register 400054>
READ_VALUES[2] = <Modbus register 400055>
...
READ_VALUES[12] = <Modbus register 400065>.

ACS3XXComModRTU (EN := xACS3XXComModRTU_EN,

 COM := byACS3XXComModRTU_COM,

 SLAVE := byACS3XXComModRTU_SLAVE,

 TIMEOUT := wACS3XXComModRTU_TIMEOUT,

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

ONLINE (online)

READ_VALUE
(actual spee-
darray of read
values)

Function call in
ST:

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2300

 DRIVE_TYPE := eACS3XXComModRTU_DRIVE_TYPE,

 NVAR_READ := byACS3XXComModRTU_NVAR_READ,

 LINE_TOKEN := tsLineToken,

 DRIVE_DATA := tsDriveData);
xACS3XXComModRTU_DONE := ACS3XXComModRTU.DONE;
xACS3XXComModRTU_ERR := ACS3XXComModRTU.ERR;
wACS3XXComModRTU_ERNO := ACS3XXComModRTU.ERNO;
xACS3XXComModRTU_BUSY := ACS3XXComModRTU.BUSY;
xACS3XXComModRTU_ONLINE := ACS3XXComModRTU.ONLINE;
awACS3XXComModRTU_READ_VALUE := ACS3XXComModRTU.READ_VALUE;

ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus RTU

Fig. 159: Function block ACS_COM_MOD_RTU controls the Modbus RTU communication to an
ACS / DCS drive and is used for the basic control of ACS / DCS drives with ABB Drives Profile.

Available from runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Function block with historical values

Function block ACS_COM_MOD_RTU controls the Modbus RTU communication to an ACS /
DCS drive and is used for the basic control of ACS / DCS drives with ABB Drives profile.
Reading Status Information from Drive The function block continuously reads data from the
drive starting at Modbus register 40004. At least the Status Word (SW), Actual Value 1
(SPEED_REF), Actual Value 2 (ACT_VALUE2) are continuously read from the drive and written
to the DRIVE_DATA variable.
With input NVAR_READ the function block can be configured to read in the same job
between 0 .. 24 data more from the drive. These additional data is written to the array at the
READ_VALUES output. These data have to be configured in the drive and are only accessible if
the embedded Modbus is used. See table below for detailed information.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Function block
information

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2301

Modbu
s reg-
ister
addres
s in
drive *)

Mapping configuration in drive Written to in AC500 Condi-
tion at
function
block

ACS3X
X,
ACX55
0

ACS850,
ACQ810

ACS58
0

ACS850,
ACQ810,
ACSM1,
ACS880,

ACS80
0

DCS550,
DCS800

Com-
munica-
tion
module

embedd
ed
fieldbus

embedde
d
fieldbus

embedd
ed
fieldbus

FSCA-01 RMBA-
01

RMBA-01

40004 Status
Word
(SW)

Status
Word
(SW)

Par.:
58.104
= 4 -
Status
Word
(SW)

Status
Word
(SW)

Status
Word
(SW)

Par.:
92.01=80
1 Status
Word
(SW)

DRIVE_D
ATA.sw

EN =
TRUE

40005 Par.
53.10
(e.g.101
)

Actual
Value1

Par.:
58.105
= 5 –
Actual
Value1

Actual
Value 1

Par.:
92.02 =
Actual
Value1
e.g. =
102
(Speed)

Par.:
92.02 =
104
Actual
Value1
e.g. = 102
(Speed)

DRIVE_D
ATA.act-
Value1

EN =
TRUE

40006 Par.
53.11
(e.g.105
)

Actual
Value2

Par.:
58.106
= 6 –
Actual
Value2

Actual
Value2

Par.:
92.03 =
Actual
Value2
e.g. =
105
(Torque
) **)

92.03 =
209
Actual
Value2
e.g. = 105
(Torque)
**)

DRIVE_D
ATA.act-
Value2

EN =
TRUE

40007 Par.
53.12

Par.
58.35

Par.:
58.107

 READ_V
ALUES[1]

EN =
TRUE
and
NVAR_R
EAD >= 1

40008 Par.
53.13

Par.
58.36

Par.:
58.108

 READ_V
ALUES[2]

EN =
TRUE
and
NVAR_R
EAD >= 2

40012 Par.
53.17

Par.
58.40

Par.:
58.112

 READ_V
ALUES[6]

EN =
TRUE
and
NVAR_R
EAD >= 6

40014 Par.
58.42

Par.:
58.114

 READ_V
ALUES[8]

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2302

Modbu
s reg-
ister
addres
s in
drive *)

Mapping configuration in drive Written to in AC500 Condi-
tion at
function
block

ACS3X
X,
ACX55
0

ACS850,
ACQ810

ACS58
0

ACS850,
ACQ810,
ACSM1,
ACS880,

ACS80
0

DCS550,
DCS800

40030 Par.
58.58

 READ_V
ALUES[2
4]

EN =
TRUE
and
NVAR_R
EAD = 24

*) For ACS850, ACQ810 and external fieldbus adapters are having 6 digit Modbus address.
Eg; ACS3XX Status Word Modbus address is 40004 and ACS850 Modbus address is 400004.
**) If 51.19 .. 51.22 (Output 1 .. 4) are set to the actual values the Modbus response will be
faster because those values are updated cyclically between RETA-01 and ACS800.

If a Modbus job tries to access a register in the drive which has no valid map-
ping information the job is aborted with an error. Therefore in ACS3XX/ACX550
at least the Par. 53.10 and 53.11 have to be configured to the Actual Value1 and
Actual Value2 e.g. 101 and 105.

If e.g. NVAR_READ = 5 the values from READ_VALUES[1 .. 5] are updated. Then all of the
configured parameters Par. 53.12 ... 53.16 in the ACS3XX/ACX550 or Par. 58.35 & 58.38 in
ACS850/ACQ810 drive must contain valid mapping information (not zero).
The function block checks if there are changes of the Control Word (CW), Reference Value 1
(SPEED_REF) or Reference Value 2 (REF_VALUE2) on the DRIVE_DATA variable. If there is
a change a write job is requested to send these 3 values to the ACS drive starting at Modbus
register 40001.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Table 135: Reading status information from drive
Modbus reg-
ister address
in drive

Mapping configuration in drive Taken form
AC500

Condition at
function
blockFor all ACS

drives
DCS 800 /
DCS550

ACS 580

40001 Control Word
(CW)

Par.: 90.01 =
701 – Control
Word (CW)

Par.: 58.101 =
1 – Control
Word (CW)

DRIVE_DATA.
cw

EN = TRUE

40002 Reference
Value1

Par.: 90.02 =
2301 – Refer-
ence Value 1

Par.: 58.102 =
2 – Refer-
encec Value 1

DRIVE_DATA.
refValue1

EN = TRUE

40003 Reference
Value2

Par.: 90.03 =
2501 – Refer-
ence Value 2

Par.: 58.103 =
3 – Refer-
encec Value 2

DRIVE_DATA.
refValue2

EN = TRUE

The requests to process other read or write Modbus jobs is transferred via the DRIVE_DATA
variable at the IN_OUT variable DRIVE_DATA which can be connected to several other
ACS_MOD_READ_N_PRM or ACS_MOD_WRITE_N_PRM function blocks of this drive.

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2303

If several drives are used, for each drive a communication function block such as
ACS_COM_MOD_RTU must be programmed. Also every other generic slave device on the
same Modbus RTU line must be programmed with it´s own ACS_COM_MOD_RTU_GEN func-
tion block. All those communication function blocks of one Modbus RTU line must be linked
together via one variable of type ACS_MOD_TOKEN_TYPE, connected to the IN_OUTPUTs
LINE_TOKEN. Via this variable the Modbus token is passed to the next drive / device, so only
one drive / device at a time is communicating with the PLC.

The output ERNO, which reflects an actual error number is only valid for one cycle if DONE and
ERR output are set to TRUE.
To catch this error number an external function must be programmed.
However there are internal diagnosis variables available, which are not shown at any output, but
can be accessed from the function block instance. This can be done in three ways:
● Opening the "+" sign of function block instance in the declaration part being online.
● Create an assignment in the code with <instance>.<diagnosis variable>
● Create a visualization element of the function block ACS_COM_MOD_RTU_VISU_PH.
The additional diagnosis variables are:

iWriteErrCnt: number of errors in write jobs since EN =
TRUE

wLastWriteErno: holds the error number of the last executed
write job

iReadErrCnt: number of errors in read jobs since EN =
TRUE

wLastReadErno: holds the error number of the last executed
read job

The function block is working with all ACS / DCS drives via Modbus RTU communication.
The data transfer to other function blocks for this drive communication to the ACS /DCSdrive
is realized via the IN_OUTPUT variable DRIVE_DATA, which must be connected to the
ACS_COM_MOD_RTU even if no other function block is connected.
The Modbus token is passed to other communication function blocks such as
ACS_COM_MOD_RTU or ACS_COM_MOD_RTU_GEN via the IN_OUTPUT variable
LINE_TOKEN which must be connected even if no other of those communication function
blocks is used.
The following ACS drive parameters have to be set according the configuration for the Modbus
line and the inputs of the function block.

Diagnosis

Preconditions

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2304

Setting
according
to AC500
configura-
tion or
function
block
input

ACS3XX,
ACX550

ACS850,
ACQ810

ACS580 ACS850,
ACQ810,
ACSM1,

ACS880 ACS800

Communi-
cation
module:

direct or
FMBA-01

embedded
fieldbus

embedded
fieldbus

FSCA-01 FSCA-01 RMBA-01

Fieldbus
activation =
STD
Modbus or
Modbus
RS-232

98.02 58.01 58.01 50.01 50.01 98.02

SLAVE
number

53.02 58.03 58.03 51.03 51.03 52.01

Transmis-
sion rate =
AC500
Modbus
configura-
tion

53.03 58.04 58.04 51.04 51.04 52.02

Parity,
Data- and
Stopbits =
AC500
Modbus
configura-
tion

53.04 58.05 58.05 51.05 51.05 52.03

Control
profile =
ABB Drives
(lim or full)
but not
ABB drives
enhanced
nor DCU
profile

53.05 58.06 58.25 51.02 51.02 98.07

Mapping of
Control
Word
Modbus
register
40001

Fix Fix 58.101 Fix

Mapping of
Reference
Value 1
Modbus
register
40002

Fix Fix 58.102

Mapping of
Reference
Value 2
Modbus
register
40003

Fix Fix 58.103 Fix

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2305

Setting
according
to AC500
configura-
tion or
function
block
input

ACS3XX,
ACX550

ACS850,
ACQ810

ACS580 ACS850,
ACQ810,
ACSM1,

ACS880 ACS800

Mapping of
Status
Word
Modbus
register
40004

Fix Fix 58.104 Fix

Mapping of
Actual
Value1
Modbus
register
40005

53.10 e.g.
101

Fix 58.105 Fix Fix Fix

Mapping of
Actual
Value2
Modbus
register
40006

53.11 e.g.
105

Fix 58.106 Fix Fix Fix

Timeout
mode =
None(0) or
Any mes-
sage(1),
but not Ctrl
write(2) as
theses
values are
only written
after
changes.

 58.08 58.15 51.07 Timeout
mode

Fix moni-
toring of
Main and
Auxiliary
data sets.
See
Manual
Par.30.18.

Modbus
timeout.
Depending
on Timeout
mode.
Value in
100ms.

 58.07 58.16 51.06 Modbus
timeout

Fix

Refresh
settings in
drive

 58.10 58.06 51.27 51.27

For further settings, e.g. reaction of drive at communication error, please see related drive or
fieldbus adapter manual.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2306

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the block is active, the current values are available at the outputs.
After a rising edge (FALSE -> TRUE) of input EN output ONLINE is set to FALSE and parame-
ters are read from the ACSXXX drive.
The processing of continuously read of status information from the drive (SW, ACT_VALUE1
and ACT_VALUE2) and writing of controls and Reference Values (CW, SPEED_REF,
REF_VALUE2) (if they are changed) to the drive is started.
If EN is reset to FALSE while a Modbus job is performed (BUSY = TRUE), the function block will
be processed until the Modbus job is terminated (DONE = TRUE for 1 cycle).
If EN is reset to FALSE while the function block actually keeps the token of the LINE_TOKEN
variable, the token will be released for another drive (set to 0) as soon as no Modbus job is
performed any more.
If EN = FALSE the outputs ONLINE are reset to zero, as well as the data SW, actValue1 and
actValue2 on the DRIVE_DATA variable are reset to zero. The elements of the READ_VALUES
array are also reset to zero.

Data type: BYTE
Interface identifier of Modbus line.
COM = 1: COM1
COM = 2: COM2
...
COM = 11: COM11 (using CM574-RS)
(COM3 = FPB, COM4 .. COM11 = COMs on CM574-RS).
Default value = 1. Minimum = 1, Maximum = 11
The COM input should not be changed while the program is running. If changed nevertheless,
the new value will become effective only after a new rising edge of EN input.

Data type: BYTE
At input SLAVE, the address of the drive (slave) to which the connection shall be established
must be specified.

EN (enable)

COM (com)

SLAVE (slave)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2307

Default value = 2, Minimum = 1, Maximum = 255
The function block is designed to be used with a fix SLAVE device. The SLAVE input should not
be changed while the program is running. If changed nevertheless the new value will become
effective only after an already running Modbus job is finished.

Data type: WORD
The telegram timeout in milliseconds (ms) is specified at input TIMEOUT.
If no response is received within the time interval specified at TIMEOUT, the procedure is
aborted and an error identifier is output.

If several drives are connected to the Modbus line and one drive cannot
respond, the whole communication is waiting till the timeout is over and the
Modbus procedure (job) is aborted. Afterwards the next drive can take the
LINE_TOKEN signal. The TIMEOUT should not be set too long if more than one
drive is connected, but also not too short for having a chance to respond within
the TIMEOUT. A minimum of 100 is required.

Typical values should be between 300 ms and 2000 ms (range: minimum 100, maximum
65535).
Default value = 1000. Minimum = 100, Maximum = 65535.

Data type: INT, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM. The input can be
set either by the value directly or by using the enum.

ENUM Value
ACS_DRIVE_ACS800 1

ACS_DRIVE_ACSM1 2

ACS_DRIVE_ACS350 3

ACS_DRIVE_ACS355 4

ACS_DRIVE_ACS310 5

ACS_DRIVE_ACS550 6

ACS_DRIVE_ACH550 7

ACS_DRIVE_ACQ810 8

ACS_DRIVE_ACS850 9

ACS_DRIVE_ACS880 10

ACS_DRIVE_ACS580 11

ACS_DRIVE_DCS800 12

ACS_DRIVE_DCS550 13

ACS_DRIVE_ACH580 14

ACS_DRIVE_ACS380 15

ACS_DRIVE_ACS480 16

ACS_DRIVE_ACQ580 17

TIMEOUT
(timeout)

DRIVE_TYPE
(drive type)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2308

Data type: BYTE
The internal Modbus read job reads 3 + NVAR_READ words starting from Modbus register
address 40004 from the drive.
Only for ACS drives using embedded fieldbus option, such as ACS3xx, ACx550, ACS850 and
ACQ810 the input NVAR_READ should be set higher than 0.
With the input NVAR_READ the function block can be configured to read between 0 and 24
data more from the drive in addition to the 3 signals that are always read from Modbus registers
addresses 40004 .. 40006.
If NVAR_READ input is set to e.g. 5 the internal read job addresses the Modbus registers from
40004 .. 40001.
See table Ä Table 135 “Reading status information from drive” on page 2303.
The first 3 signals are always the Status Word (SW), Actual Value1 and Actual Value2 and will
be written to the Ä “DRIVE_DATA (drive data)” on page 2309 variable.
The additional NVAR_READ data will be written to the array at the READ_VALUES output.
Example:
If e.g. NVAR_READ = 5 and all mapping Parameters, Par. 53.10 ... 53.13 for ACS3XX /
ACX550 or Par. 58.35 ... 58.39 for ACS850 / ACQ810 are valid (not 0), then the values from
READ_VALUES[1] to READ_VALUES[5] are updated.
Default value = 0, Minimum 0, Maximum 24.

To read/write "one" 32-bit data, the NVAR should be equal to 2. Accordingly this
has to be followed if we want to read/write more than one data.

Data type: ACS_MOD_TOKEN_TYPE
The combined input/output LINE_TOKEN must be connected to the one variable of
ACS_MOD_TOKEN_TYPE of the related Modbus line. Each Modbus line must have its own
LINE_TOKEN variable.
The LINE_TOKEN variable contains the token for the Modbus line and must be connected to all
related ACS3XX_COM_MOD_RTU function blocks of this line (COMx).
Description:
The ACS_COM_MOD_RTU_ENHANCED function block writes its SLAVE number to the
LINE_TOKEN variable (takes the token) when it is 0.
If the token is already occupied it writes its SLAVE number to the next-token-request.
If all Modbus jobs of a drive are terminated, the ACS_COM_MOD_RTU_ENHANCED function
block resets the token on the LINE_TOKEN variable to 0 (release the token) if the next-token-
request is set (not 0).
If an ACS_COM_MOD_RTU_ENHANCED takes the token it releases the next-token-request at
the same time.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.

NVAR_READ
(number of vari-
ables for
reading)

LINE_TOKEN
(line token)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2309

The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

Output description

Data type: ACS_MOD_TOKEN_TYPE
The combined input/output LINE_TOKEN must be connected to the one variable of
ACS_MOD_TOKEN_TYPE of the related Modbus line. Each Modbus line must have its own
LINE_TOKEN variable.
The LINE_TOKEN variable contains the token for the Modbus line and must be connected to all
related ACS3XX_COM_MOD_RTU function blocks of this line (COMx).
Description:
The ACS_COM_MOD_RTU_ENHANCED function block writes its SLAVE number to the
LINE_TOKEN variable (takes the token) when it is 0.
If the token is already occupied it writes its SLAVE number to the next-token-request.
If all Modbus jobs of a drive are terminated, the ACS_COM_MOD_RTU_ENHANCED function
block resets the token on the LINE_TOKEN variable to 0 (release the token) if the next-token-
request is set (not 0).
If an ACS_COM_MOD_RTU_ENHANCED takes the token it releases the next-token-request at
the same time.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

Data type: BOOL

LINE_TOKEN
(line token)

DRIVE_DATA
(drive data)

DONE (done)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2310

Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

Data type: BOOL
After the first time input EN is set to TRUE and at least one read job and one write job is
performed successfully, output ONLINE is set to TRUE.
Output ONLINE is reset to FALSE after a rising edge of EN or if an error occurs while reading
the status information or writing the Control Word and Reference Values.

Data type: ARRAY[1..12] OF INT
At output READ_VALUES the values of the array are updated after the read status information
job was terminated successfully (DONE = TRUE, ERR = FALSE, BUSY = FALSE).
The read status information job is requested cyclically. It reads data from the ACS drive starting
at Modbus register 400051 up to the number specified at input 3 + NVAR_READ
READ_VALUES contains the data as follows:
READ_VALUES[1] = <Modbus register 400054>
READ_VALUES[2] = <Modbus register 400055>
...
READ_VALUES[12] = <Modbus register 400065>.

ACSComModRTU (EN = xACSComModRTU_EN,

 COM := byACSComModRTU_COM,

 SLAVE := byACSCom-
ModRTU_SLAVE,

 TIMEOUT := wACSCom-
ModRTU_TIMEOUT,

 DRIVE_TYPE := eACSCom-
ModRTU_DRIVE_TYPE,

ERR (error)

ERNO (error
number)

BUSY (busy)

ONLINE (online)

READ_VALUES
(array of read
values)

Function call in
ST

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2311

 NVAR_READ := byACSCom-
ModRTU_NVAR_READ,

 LINE_TOKEN := tsLineToken,

 DRIVE_DATA := tsDriveData);

xACSComModRTU_DONE := ACSComModRTU.DONE;

xACSComModRTU_ERR := ACSComModRTU.ERR;

wACSComModRTU_ERNO := ACSComModRTU.ERNO;

xACSComModRTU_BUSY := ACSComModRTU.BUSY;

xACSComModRTU_ONLINE := ACSCom-
ModRTU.ONLINE;

awACSCom-
ModRTU_READ_VALUES

 := ACSCom-
ModRTU.READ_VALUES;

ACS_COM_MOD_RTU_ENHANCED communication for ACS drives via Modbus RTU using ABB drives
profile enhanced

Available from runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Function block with historical values

Function block ACS_COM_MOD_RTU_ENHANCED establishes the Modbus RTU communica-
tion to an ACS drive and is used for the basic control of ACS drives with ABB Drives Profile
Enhanced.
The ABB Drives Profile Enhanced communication profile provides register mapped access to
the Control, Status, Reference and Actual Values of the ABB Drives Profile Enhanced. The
mapping of the registers has been enhanced to allow additionally writing of up to 12 control and
reading of up to 12 additionally status parameters in a single Modbus job.
The function block continuously reads data from the drive starting at Modbus register 400051.
The Status Word (SW), Actual Value 1 (SPEED_REF), Actual Value 2 (ACT_VALUE2) are
continuously read from the drive and written to the DRIVE_DATA variable. These values are
stored in MSW, ActValue1 and ActValue2.
Apart from these three parameters there is also an option to read additional 12 more drive
parameters in the same Modbus job. Using the input NVAR_READ the function block can be
configured to read between 1 and 12 more parameters from the drive. All read data is then
written to the array at the READ_VALUES output.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Function block
information

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2312

Table 136: Reading status information from the drive
Modbus register
address in drive

Mapping configuration in drive Written to in
AC500

Condition at
function block

ACS850,
ACQ810
embedded
fieldbus

ACS850,
ACQ810,
ACSM1,
ACS880,
ACS800,
ACS580

400051 Status Word
(SW)

Status Word
(SW)

DRIVE_DATA.sw EN = TRUE

400052 Actual Value1 Actual Value1 DRIVE_DATA.act
Value1

EN = TRUE

400053 Actual Value2 Actual Value2 DRIVE_DATA.act
Value2

EN = TRUE

400054 Par. 58.47 FBA DATA IN 1 READ_VALUES[
1]

EN = TRUE and
NVAR_READ >=
1

400055 Par. 58.48 FBA DATA IN 2 READ_VALUES[
2]

EN = TRUE and
NVAR_READ >=
2

400065 Par. 58.58 FBA DATA IN 12 READ_VALUES[
6]

EN = TRUE and
NVAR_READ =
12

If a Modbus job tries to access a register in the drive which has no valid
mapping information the job is aborted with an error. Therefore the drive param-
eters in FBA DATA IN group have to be configured according to the used
NVAR_READ input number.

If 32-bit parameters are mapped to DATA IN,

– The following field in DATA IN has to be left open (= 0) To retrieve
the original 32-bit value from the drive in AC500 the HW and LW from
READ_VALUES fields have to be recombined in the program.

– The word order of the High-Word and Low-Word can be configured in the
drive. If e.g. FSCA-01 is used the configuration is done in Par.51.11.

– To retrieve the original 32-bit value from the drive in AC500 the HW and LW
from READ_VALUES fields have to be recombined in the program.

Function block DATA IN has to be configured in drive in the following groups see also FSCA-01
manual.

Drive Parameter group
ACS355 FSCA-01 is not released 54.01 .. 54.10

ACS850, ACQ810, ACSM1, ACS880 52.01 .. 52.12

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2313

The function block checks if there are changes of the Control Word (CW), Reference Value 1
(SPEED_REF) or Reference Value 2 (REF_VALUE2) on the DRIVE_DATA variable. If there is
a change a write job is requested to send these 3 values to the ACS drive starting at Modbus
register 400001.
Apart from these three parameters there is also an option to write additional 12 more drive
parameters in the same Modbus job. Using the input NVAR_WRITE the function block can be
configured to write between 1 and 12 more parameters to the drive. The necessary values have
to present in the array connected to WRITE_VALUES input.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area from where the data in the AC500 is taken.

Modbus register
address in drive

Mapping configuration in drive Written to in
AC500

Condition at
function block

ACS850,
ACQ810
embedded
fieldbus

ACS850,
ACQ810,
ACSM1,
ACS880,
ACS800

400001 Control Word
(CW)

Control Word
(CW)

DRIVE_DATA.cw EN = TRUE

400002 Reference
Value1

Actual Value1 DRIVE_DATA.ref
Value1

EN = TRUE

400003 Reference
Value2

Actual Value2 DRIVE_DATA.ref
Value2

EN = TRUE

400004 Par. 58.35 FBA DATA OUT
1

WRITE_VALUE
S[1]

EN = TRUE and
NVAR_READ >=
1

400005 Par. 58.36 FBA DATA OUT
2

WRITE_VALUE
S[2]

EN = TRUE and
NVAR_READ >=
2

400015 Par. 58.46 FBA DATA OUT
12

WRITE_VALUE
S[6]

EN = TRUE and
NVAR_READ =
12

If a Modbus job tries to access a register in the drive which has no valid
mapping information the job is aborted with an error. Therefore the drive param-
eters in FBA DATA IN group have to be configured according to the used
NVAR_READ input number.

If 32-bit parameters are mapped to DATA OUT,

– The following field in DATA OUT has to be left open (= 0)
– The word order of the High-Word and Low-Word can be configured in the

drive. If e.g. FSCA-01 is used the configuration is done in Par.51.11.
– The original 32-bit value in AC500 has to be split up in HW and LW in the

WRITE_VALUES array.

Function block DATA IN has to be configured in drive in the following groups see also FSCA-01
manual.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2314

Drive Parameter group
ACS355 54.01 .. 54.10

ACS850, ACQ810, ACSM1, ACS880 52.01 .. 52.12

ACS drive parameters are only saved temporarily, if changed via fieldbus. To
make these changes permanent in the drive the special parameter "PARAM-
ETER SAVE" has to be set. Please see drive manuals and following table which
parameter has to be set

Save valid parameters to per-
manent memory in drive

ACS3XX, ACX550, ACQ810,
ACS850, ACSM1, ACS800

ACS880

1 = Saves the valid parameter
values to permanent memory.
0 = Save completed.

Par 16.07 = 1 Par 96.07 = 1

The requests to process other read or write Modbus jobs is transferred via the DRIVE_DATA
variable at the IN_OUT variable DRIVE_DATA which can be connected to several other read/
write function blocks e.g. ACS_MOD_READ_N_PRM or ACS_MOD_WRITE_N_PRM of this
drive.
If several drives are used, for each drive a communication function block such as
ACS_COM_MOD_RTU_ENHANCED must be programmed. Also every other generic
slave device on the same Modbus RTU line must be programmed with it´s own
ACS_COM_MOD_RTU_GEN function block. All those communication function blocks of one
Modbus RTU line must be linked together via one variable of type ACS_MOD_TOKEN_TYPE,
connected to the IN_OUTPUT LINE_TOKEN. Via this variable the Modbus token is passed to
the next drive / device, so only one drive / device at a time is communicating with the PLC.

The output ERNO, which reflects an actual error number is only valid for one cycle if DONE and
ERR output are set to TRUE.
To catch this error number an external function must be programmed.
However there are internal diagnosis variables available, which are not shown at any output, but
can be accessed from the function block instance. This can be done in three ways:
● Opening the "+" sign of function block instance in the declaration part being online.
● Create an assignment in the code with <instance>.<diagnosis variable>
● Create a visualization element of the function block.
The additional diagnosis variables are:

iWriteErrCnt: number of errors in write jobs since EN =
TRUE

wLastWriteErno: holds the error number of the last executed
write job

iReadErrCnt: number of errors in read jobs since EN =
TRUE

wLastReadErno: holds the error number of the last executed
read job

Diagnosis

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2315

The function block is working with all ACS drives via Enhanced Modbus RTU communication.
The data transfer to other function blocks for this drive communication to the ACS
drive is realized via the IN_OUTPUT variable DRIVE_DATA, which must be connected to
ACS_COM_MOD_RTU_ENHANCED even if no other function block is connected.
The Modbus token is passed to other ACS_COM_MOD_RTU_ENHANCED function via
the IN_OUTPUT variable LINE_TOKEN which must be connected even if no other
ACS_COM_MOD_RTU_ENHANCED function block is used.
The following ACS drive parameters have to be set according to the configuration of the
Modbus line and the inputs of the function block.

Setting
according to
AC500 con-
figuration or
function
block input

ACS355 ACS850,
ACQ810

ACS850,
ACQ810,
ACSM1,

ACS880 ACS800

Communica-
tion module:

FSCA-01 embedded
fieldbus

FSCA-01 FSCA-01 FSCA-01

Fieldbus acti-
vation = STD
Modbus or
Modbus
RS-232 or
EXT FBA

98.02 58.01 50.01 50.01 98.02

SLAVE
number

51.03 58.03 51.03 51.03 52.01

Transmission
rate = AC500
Modbus con-
figuration

51.04 58.04 51.04 51.04 52.02

Parity, Data-
and Stopbits =
AC500
Modbus con-
figuration

51.05 58.05 51.05 51.05 52.03

Control profile
= ABB Drives
Profile
Enhanced

53.05 58.06 51.02 51.02 98.07

Word order for
32-bit param-
eter access

No 32-bit
access

58.32 51.11 51.11 51.11

Timeout mode
= None(0) or
Any mes-
sage(1), but
not Ctrl
write(2) as
theses values
are only
written after
changes.

51.07 58.08 51.07 Timeout mode Fix monitoring
of Main and
Auxiliary data
sets. See
Manual
Par.30.18.

Preconditions

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2316

Setting
according to
AC500 con-
figuration or
function
block input

ACS355 ACS850,
ACQ810

ACS850,
ACQ810,
ACSM1,

ACS880 ACS800

Modbus
timeout.
Depending on
Timeout
mode. Value
in 100ms.

51.06 58.07 51.06 Modbus
timeout

Fix

Refresh set-
tings in drive

51.27 58.10 51.27 51.27

For further settings, e.g. reaction of drive at communication error, please see related drive
manual.

Input descriptions

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the block is active, the current values are available at the outputs.
After a rising edge (FALSE -> TRUE) of input EN output ONLINE is set to FALSE and parame-
ters are read from the ACS drive.
The processing of continuously read of status information from the drive (SW, ACT_VALUE1
and ACT_VALUE2) and writing of Control Word and Reference Values (CW, SPEED_REF,
REF_VALUE2) (if they are changed) to the drive is started.
If EN is reset to FALSE while a Modbus job is performed (BUSY = TRUE), the function block will
be processed until the Modbus job is terminated (DONE = TRUE for 1 cycle).
If EN is reset to FALSE while the function block actually keeps the token of the LINE_TOKEN
variable the token will be released for another drive (set to 0) as soon as no Modbus job is
performed any more.
If EN = FALSE the outputs ONLINE are reset to zero, as well as the data SW, actValue1 and
actValue2 on the DRIVE_DATA variable are reset to zero. The elements of the READ_VALUES
array are also reset to zero.

EN (enable)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2317

Data type: BYTE
Interface identifier of Modbus line.
COM = 1: COM1
COM = 2: COM2
...
COM = 11: COM11 (using CM574-RS)
(COM3 = FPB, COM4 .. COM11 = COMs on CM574-RS).
Default value = 1. Minimum = 1, Maximum = 11
The COM input should not be changed while the program is running. If changed nevertheless,
the new value will become effective only after a new rising edge of EN input.

Data type: BYTE
At input SLAVE, the address of the drive (slave) to which the connection shall be established
must be specified.
Default value = 2, Minimum = 1, Maximum = 255
The function block is designed to be used with a fix SLAVE device. The SLAVE input should not
be changed while the program is running. If changed nevertheless the new value will become
effective only after an already running Modbus job is finished.

Data type: WORD
The telegram timeout in milliseconds (ms) is specified at input TIMEOUT.
If no response is received within the time interval specified at TIMEOUT, the procedure is
aborted and an error identifier is output.

If several drives are connected to the Modbus line and one drive cannot
respond, the whole communication is waiting till the timeout is over and the
Modbus procedure (job) is aborted. Afterwards the next drive can take the
LINE_TOKEN signal. The TIMEOUT should not be set too long if more than one
drive is connected, but also not too short for having a chance to respond within
the TIMEOUT. A minimum of 100 is required.

Typical values should be between 300 ms and 2000 ms (range: minimum 100, maximum
65535).
Default value = 1000. Minimum = 100, Maximum = 65535.

Data type: INT, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM. The input can be
set either by the value directly or by using the enum.

ENUM Value
ACS_DRIVE_ACS800 1

ACS_DRIVE_ACSM1 2

ACS_DRIVE_ACS350 3

ACS_DRIVE_ACS355 4

ACS_DRIVE_ACS310 5

ACS_DRIVE_ACS550 6

COM (com)

SLAVE (slave)

TIMEOUT
(timeout)

DRIVE_TYPE
(drive type)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2318

ENUM Value
ACS_DRIVE_ACH550 7

ACS_DRIVE_ACQ810 8

ACS_DRIVE_ACS850 9

ACS_DRIVE_ACS880 10

ACS_DRIVE_ACS580 11

ACS_DRIVE_DCS800 12

ACS_DRIVE_DCS550 13

ACS_DRIVE_ACH580 14

ACS_DRIVE_ACS380 15

ACS_DRIVE_ACS480 16

ACS_DRIVE_ACQ580 17

Data type: BYTE
The internal Modbus read job reads 3 + NVAR_READ words starting from Modbus register
address 400051 from the drive.
With the input NVAR_READ the function block can be configured to read between 0 and 12
data more from the drive in addition to the 3 signals that are always read from Modbus registers
addresses 400051 .. 400053.
If NVAR_READ input is set to e.g. 5 the internal read job addresses the Modbus registers from
400051 .. 400058.
The first 3 signals are always the Status Word (SW), Actual Value1 and Actual Value2 and
will be written to the Ä “DRIVE_DATA (drive data)” on page 2320 variable. The additional
NVAR_READ data will be written to the array at the READ_VALUES output.
See table Ä Table 136 “Reading status information from the drive” on page 2313 about how to
configure the drive and where the data is stored in AC500.
Default value = 0. Minimum = 0, Maximum = 12.

To read/write "one" 32-bit data, the NVAR should be equal to 2. Accordingly this
has to be followed if we want to read/write more than one data.

Data type: BYTE
The internal Modbus write job writes 3 + NVAR_WRITE words starting from Modbus register
address 400001 to the drive, every time a change in those variables is detected.
With the input NVAR_WRITE the function block can be configured to write between 0 and 12
variables more to the drive in addition to the 3 controls (CW, ref1 and ref2). These are always
written to Modbus registers addresses 400001 .. 400003 if changed.
If NVAR_WRITE input is set to e.g. 5 the internal write job addresses the Modbus registers from
400001 .. 400008.
The first 3 signals are always the Control Word (CW), Reference value1 and Reference value2
and will be taken from the DRIVE_DATA variable.
The additional NVAR_WRITE data will be taken from the array at the WRITE_VALUES input.
Default value = 0. Minimum 0, Maximum 12.

NVAR_READ
(number of vari-
ables for
reading)

NVAR_WRITE
(number of vari-
ables for
writing)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2319

Data type: ARRAY[1..12] OF INT
The values from the array at input WRITE_VALUE will be written to Modbus registers 400004
400015 in the drive. The number of data written to the drive is specified at the input
NVAR_WRITE.
See table in chapter Writing Control Word and Reference Values to the drive for information
about how to configure the drive.

Data type: ACS_MOD_TOKEN_TYPE
The combined input/output LINE_TOKEN must be connected to the one variable of
ACS_MOD_TOKEN_TYPE of the related Modbus line. Each Modbus line must have its own
LINE_TOKEN variable.
The LINE_TOKEN variable contains the token for the Modbus line and must be connected to all
related ACS3XX_COM_MOD_RTU function blocks of this line (COMx).
Description:
The ACS_COM_MOD_RTU_ENHANCED function block writes its SLAVE number to the
LINE_TOKEN variable (takes the token) when it is 0.
If the token is already occupied it writes its SLAVE number to the next-token-request.
If all Modbus jobs of a drive are terminated, the ACS_COM_MOD_RTU_ENHANCED function
block resets the token on the LINE_TOKEN variable to 0 (release the token) if the next-token-
request is set (not 0).
If an ACS_COM_MOD_RTU_ENHANCED takes the token it releases the next-token-request at
the same time.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

Output descriptions

WRITE_VALUES
(write values to
mapped param-
eters in drive
group
DATA_OUT)

LINE_TOKEN
(line token)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2320

Data type: ACS_MOD_TOKEN_TYPE
The combined input/output LINE_TOKEN must be connected to the one variable of
ACS_MOD_TOKEN_TYPE of the related Modbus line. Each Modbus line must have its own
LINE_TOKEN variable.
The LINE_TOKEN variable contains the token for the Modbus line and must be connected to all
related ACS3XX_COM_MOD_RTU function blocks of this line (COMx).
Description:
The ACS_COM_MOD_RTU_ENHANCED function block writes its SLAVE number to the
LINE_TOKEN variable (takes the token) when it is 0.
If the token is already occupied it writes its SLAVE number to the next-token-request.
If all Modbus jobs of a drive are terminated, the ACS_COM_MOD_RTU_ENHANCED function
block resets the token on the LINE_TOKEN variable to 0 (release the token) if the next-token-
request is set (not 0).
If an ACS_COM_MOD_RTU_ENHANCED takes the token it releases the next-token-request at
the same time.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_RTU_ENHANCED reads the Control Word and refer-
ences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

LINE_TOKEN
(line token)

DRIVE_DATA
(drive data)

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2321

Data type: BOOL
After the first time input EN is set to TRUE and at least one read job and one write job is
performed successfully, output ONLINE is set to TRUE.
Output ONLINE is reset to FALSE after a rising edge of EN or if an error occurs while reading
the status information or writing the Control Word and Reference Values.

Data type: ARRAY[1..12] OF INT
At output READ_VALUES the values of the array are updated after the read status information
job was terminated successfully (DONE = TRUE, ERR = FALSE, BUSY = FALSE).
The read status information job is requested cyclically. It reads data from the ACS drive starting
at Modbus register 400051 up to the number specified at input 3 + NVAR_READ
READ_VALUES contains the data as follows:
READ_VALUES[1] = <Modbus register 400054>
READ_VALUES[2] = <Modbus register 400055>
...
READ_VALUES[12] = <Modbus register 400065>.

Function call in ST
ACSComModRTUEnhanced (EN = xACSComModRTUEnhanced_EN,
 COM := byACSComModRTUEnhanced_COM,
 SLAVE := byACSComModRTUEnhanced_SLAVE,
 TIMEOUT := wACSComModRTUEnhanced_TIMEOUT,
 DRIVE_TYPE := eACSComModRTUEnhanced_DRIVE_TYPE,
 NVAR_READ := byACSComModRTUEnhanced_NVAR_READ,
 NVAR_WRITE := byACSComModRTUEnhanced_NVAR_WRITE,
 WRITE_VALUES := aiACSComModRTUEnhanced_WRITE_VALUES,
 LINE_TOKEN := tsLineToken,
 DRIVE_DATA := tsDriveData);

xACSComModRTUEnhanced_DONE := ACSComModRTUEnhanced.DONE;
xACSComModRTUEnhanced_ERR := ACSComModRTUEnhanced.ERR;
wACSComModRTUEnhanced_ERNO := ACSComModRTUEnhanced.ERNO;
xACSComModRTUEnhanced_BUSY := ACSComModRTUEnhanced.BUSY;
xACSComModRTUEnhanced_ONLINE := ACSComModRTUEnhanced.ONLINE;
awACSComModRTUEnhanced_READ_VALUES :=
ACSComModRTUEnhanced.READ_VALUES;

ACS_COM_MOD_RTU_GEN communication for generic devices via Modbus RTU

ONLINE (online)

READ_VALUES
(array of read
values)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2322

Function block ACS_COM_MOD_RTU_GEN controls the Modbus RTU com-
munication to a generic slave device. It must be used together
with the function blocks ACS_COM_MOD_RTU_GEN_READ_N_PRM and/or
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM to exchange Modbus data. function block
ACS_COM_MOD_RTU_GEN controls the Modbus RTU communication to a generic Modbus
RTU server device. A generic Modbus RTU server device can be any field device which sup-
ports Modbus RTU server within it such as PLC, HMI or ABB ACS/DCS drive etc. It must
be used together with the function blocks ACS_COM_MOD_RTU_GEN_READ_N_PRM and/or
ACS_COM_MOD_RTU_GEN_WRITE_N_and/or ModRtuReadWrite23 to exchange Modbus
data.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Function block with historical values

If more devices are connected to the same Modbus RTU line, for each of them an
own instance of ACS_COM_MOD_RTU_GEN or ACS_COM_MOD_RTU_ENHANCED or
ACS_COM_MOD_RTU (for connection to an ABB ACS/DCS drive) function block must be
used. All these function blocks must be connected to the same LineToken variable of type
ACS_MOD_TOKEN_TYPE at their IN_OUT LINE_TOKEN. Via this LINE_TOKEN variable the
serial access to the different devices is controlled. All these blocks must be called within the
same PLC task.
At the IN_OUT SLAVE_DATA a variable of type ACS_GEN_DEV_DATA_TYPE must
be connected, which inturn connected to the Modbus read/write blocks related to
the same device. Via these blocks ACS_COM_MOD_RTU_GEN_READ_N_PRM and
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM the Modbus jobs are initiated in the order they
are programmed. The requests to process these read or write Modbus jobs is transferred via
the SLAVE_DATA variable to the ACS_COM_MOD_RTU_GEN block. The Modbus job will be
started, when the ACS_COM_MOD_RTU_GEN block of the server has the token, and the read/
write block was started before. All these blocks must be called within the same PLC task.
The input TIMEOUT sets the timeout for one Modbus job in ms. After a timeout this
server will not be reconnected for the time which can be assigned at the variable
SLAVA_DATA<point>reconnectPause in seconds. So a steady delay for a disconnected server
can be avoided Ä Chapter 1.5.6.2.2 “Special characteristics of the ACS drives base library”
on page 2206.
Diagnosis: The output ERNO, which reflects an actual error number is only valid for one cycle,
output ERR is set to TRUE. To capture this error number, an external function must be pro-
grammed. However there are internal diagnosis variables available, which are not shown at any
output, but can be accessed from the function block instance or visualization.
The additional diagnosis variables are:
iWriteErrCnt: number of errors in write jobs since Enable = TRUE. wLastWriteErno: holds the
error number of the last executed write job.
iReadErrCnt: number of errors in read jobs since Enable = TRUE. wLastReadErno: holds the
error number of the last executed read job.
iReadWriteErrCnt: number of errors in readwrite23 with function code 23 jobs since Enable =
TRUE. wLastReadWriteErno: holds the error number of the last executed readwrite23 job.
iWriteMaskErrCnt: number of errors in writemask22 with function code 22 jobs since Enable =
TRUE.
wLastWriteMaskErno: holds the error number of the last executed readwrite22 job.

Block data

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2323

This function block must not be used in parallel with COM_MOD_MAST func-
tion block for the same RTU line. The function block must be used in same
PLC task than other function blocks using the same variable on IN_OUT
LINE_TOKEN and IN_OUT SLAVE_DATA.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the block is active, the current values are available at the outputs.
After a rising edge (FALSE -> TRUE) of input EN output ONLINE is set to FALSE.
If EN is reset to FALSE while a Modbus job is performed (BUSY = TRUE), the function block will
be processed until the Modbus job is terminated (DONE = TRUE for 1 cycle).
If EN is reset to FALSE while the function block actually keeps the token of the LINE_TOKEN
variable the token will be released for another device (set to 0).

Data type: BYTE
Interface identifier of Modbus line.
COM = 1: COM1
COM = 2: COM2
...
COM = 11: COM11 (using CM574-RS)
(COM3 = FPB, COM4 .. COM11 = COMs on CM574-RS).
Default value = 1. Minimum = 1, Maximum = 11
The COM input should not be changed while the program is running. If changed nevertheless,
the new value will become effective only after a new rising edge of EN input.

Data type: BYTE
At input SLAVE, the address of the drive (slave) to which the connection shall be established
must be specified.
Default value = 2, Minimum = 1, Maximum = 255

EN (enable)

COM (com)

SLAVE (slave)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2324

The function block is designed to be used with a fix SLAVE device. The SLAVE input should not
be changed while the program is running. If changed nevertheless the new value will become
effective only after an already running Modbus job is finished.

Data type: WORD
The telegram timeout in milliseconds (ms) is specified at input TIMEOUT.
If no response is received within the time interval specified at TIMEOUT, the procedure is
aborted and an error identifier is output.

If several drives are connected to the Modbus line and one drive cannot
respond, the whole communication is waiting till the timeout is over and the
Modbus procedure (job) is aborted. Afterwards the next drive can take the
LINE_TOKEN signal. The TIMEOUT should not be set too long if more than one
drive is connected, but also not too short for having a chance to respond within
the TIMEOUT. A minimum of 100 is required.

Typical values should be between 300 ms and 2000 ms (range: minimum 100, maximum
65535).
Default value = 1000. Minimum = 100, Maximum = 65535.

Data type: ACS_MOD_TOKEN_TYPE
The combined input/output LINE_TOKEN must be connected to the one variable of
ACS_MOD_TOKEN_TYPE of the related Modbus line. Each Modbus line must have its own
LINE_TOKEN variable.
The LINE_TOKEN variable contains the token for the Modbus line and must be connected to all
related ACS3XX_COM_MOD_RTU function blocks of this line (COMx).
Description:
The ACS_COM_MOD_RTU_ENHANCED function block writes its SLAVE number to the
LINE_TOKEN variable (takes the token) when it is 0.
If the token is already occupied it writes its SLAVE number to the next-token-request.
If all Modbus jobs of a drive are terminated, the ACS_COM_MOD_RTU_ENHANCED function
block resets the token on the LINE_TOKEN variable to 0 (release the token) if the next-token-
request is set (not 0).
If an ACS_COM_MOD_RTU_ENHANCED takes the token it releases the next-token-request at
the same time.

Data type: ACS_DRIVE_DATA_TYPE
The combined input/output SLAVE_DATA must be connected to the variable of type
ACS_GEN_DEV_DATA_TYPE of the related slave device. Each device must have its own
SLAVE_DATA variable.
The SLAVE_DATA variable transfers the Modbus
data from the ACS_COM_MOD_RTU_GEN_READ_N_PRM or
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM function blocks to the
ACS_COM_MOD_RTU_GEN function block. It contains also some information about the online
state of the device and must be connected to all related function blocks of this device.

TIMEOUT
(timeout)

LINE_TOKEN
(line token)

SLAVE_DATA
(slave data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2325

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

Data type: BOOL
After the first time input EN is set to TRUE and at least one read job and one write job is
performed successfully, output ONLINE is set to TRUE.
Output ONLINE is reset to FALSE after a rising edge of EN or if an error occurs while reading
the status information or writing the Control Word and Reference Values.

ACSComModRTUGen (EN :=
xACSComModRTUGen_EN,

 COM := byACSComModRTUGen_COM,

 SLAVE := byACSComModRTUGen_SLAVE,

 TIMEOUT := wACSComModRTUGen_TIMEOUT,

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

ONLINE (online)

Function call in
ST

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2326

 LINE_TOKEN := tsLineToken,

 SLAVE_DATA := tsSlaveData);

xACSComModRTUGen_DONE := ACSComModRTUGen.DONE;
xACSComModRTUGen_ERR := ACSComModRTUGen.ERR;
wACSComModRTUGen_ERNO := ACSComModRTUGen.ERNO;
xACSComModRTUGen_BUSY := ACSComModRTUGen.BUSY;
xACSComModRTUGen_ONLINE := ACSComModRTUGen.ONLINE;

ACS_COM_MOD_RTU_GEN_READ_N_PRM read N parameters from a generic Modbus RTU device

Available from runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Function block with historical values

Function block ACS_COM_MOD_RTU_GEN_READ_N_PRM reads n data of the slave device.
The number of data to be read is specified at the input NB. The first address is specified at
the input ADDR. The values of the data is stored in the PLC memory area, defined at the input
DATA. The values in the PLC memory area are updated when the read job was performed
without error. This is indicated by DONE = TRUE and ERR = FALSE.
As long as the EN = TRUE a new read job is requested each time the further read job is
terminated.
The Modbus job is started from the ACS_COM_MOD_RTU_GEN function block which is con-
nected to the same SLAVE_DATA variable.
The slave address of the device from which the data is read is specified at this
ACS_COM_MOD_RTU_GEN block.
If the input values are valid, a request to perform a Modbus RTU job is send to the
ACS_COM_MOD_RTU_GEN block via the SLAVE_DATA variable.

The ACS_COM_MOD_RTU_GEN_READ_N_PRM function block does only
change the values at the DATA input if the Modbus job was excecuted
without errors. If the block is not enabled or the connection to the
ACS_COM_MOD_RTU_GEN block is not ok these values are not updated
and keep their previous values. This is also the case for the internal VALUE
array. However the ACS_MOD_READ_N_PRM for drives does reset its values
attached to DATA input and the VALUE array to zero in case of no connection to
the related ACS_COM_MOD function block or if the block is not enabled.

Function block
information

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2327

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
If a TRUE state is applied to the input EN, a request to perform a Modbus read job is set to the
SLAVE_DATA variable.
All further inputs are read in.
If the state of EN stays TRUE a new read job is requested each time the previous job is
terminated, indicated by the DONE = TRUE flag.

Data type: BOOL
Input PRIO is reserved for future usage. It can be left open.

Data type: BYTE
The function code of the request telegram is specified at input FCT.

01 or 02 read n bits

03 or 04 read n words

05 write one bit

06 write one word

15 write n bits

16 write n words

Data type: UINT
At input NB, the number of data to be read is specified.
The unit of NB depends on the selected function. For bit accesses the number of bits, for word
and double word accesses the number of words is specified at NB.
Default: 1. Minimum 1, Maximum 96.

Data type: UINT
The operand/register address in the slave from which data should be read is specified at input
ADDR.

EN (enable)

PRIO (priority)

FCT (number of
variables)

NB (number of
variables)

ADDR (address)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2328

The access to operands of AC500 devices in Modbus slave mode is defined via the Modbus
cross-reference list. Only operands that are listed in the cross-reference list may be used (see
Communication with Modbus RTU).
Only operands that are listed in the Modbus address list may be used. When accessing
other devices, ADDR is freely selectable. The valid ranges have to be gathered from the
corresponding device description.

Data type: DWORD
At input DATA, the address of the first operand in the PLC is specified to which the data read by
the slave should be stored.
For this purpose it is necessary that all PLC variables, which are written to the drive, have con-
secutive addresses. This can be obtained by declaration of each variable within the %MW0.xxx
area or declaration of an array containing all variables.
Declaration of each variable has the advantage, that the types (integer or word) can be selected
individually.

Data type: ACS_DRIVE_DATA_TYPE
The combined input/output SLAVE_DATA must be connected to the variable of type
ACS_GEN_DEV_DATA_TYPE of the related slave device. Each device must have its own
SLAVE_DATA variable.
The SLAVE_DATA variable transfers the Modbus
data from the ACS_COM_MOD_RTU_GEN_READ_N_PRM or
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM function blocks to the
ACS_COM_MOD_RTU_GEN function block. It contains also some information about the online
state of the device and must be connected to all related function blocks of this device.

Output description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL

DATA (data)

SLAVE_DATA
(slave data)

DONE (done)

ERR (error)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2329

Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

dwAcsComModRTUGenReadNPrm_DATA :=
ADR(aiAcsComModRTUGenReadNPrm_VALUE[1]);

ACSComModRTUGenReadNPrm (EN :=
xACSComModRTUGenReadNPrm_EN,

 FCT :=
byACSComModRTUGenReadNPrm_FCT,

 NB :=
uiACSComModRTUGenReadNPrm_NB,

 ADDR :=
uiACSComModRTUGenReadNPrm_ADDR,

 DATA :=
dwAcsComModRTUGenReadNPrm_DATA,

 SLAVE_DATA := tsSlaveData);

xACSComModRTUGenReadNPrm_DONE := ACSComModRTUGenReadNPrm.DONE;
xACSComModRTUGenReadNPrm_ERR := ACSComModRTUGenReadNPrm.ERR;
wACSComModRTUGenReadNPrm_ERNO := ACSComModRTUGenReadNPrm.ERNO;
xACSComModRTUGenReadNPrm_BUSY := ACSComModRTUGenReadNPrm.BUSY;

ACS_COM_MOD_RTU_GEN_WRITE_N_PRM write N parameters to a generic Modbus RTU device

ERNO (error
number)

BUSY (busy)

Function call in
ST

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2330

Available from runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Function block with historical values

Function block ACS_COM_MOD_RTU_GEN_WRITE_N_PRM writes n data to the slave device.
The number of data to be written is specified at the input NB. The first address is specified
at the input ADDR. The values of the data that should be written must be stored in the PLC
memory area, defined at the input DATA. A successful writing is indicated by DONE = TRUE
and ERR = FALSE.
To initiate a write job the EN input must be given a rising edge. (FALSE -> TRUE).
After termination of this job, even if it was not successful, a next writing can once again only be
started with a rising edge at EN input.
The Modbus job is started from the ACS_COM_MOD_RTU_GEN function block which is con-
nected to the same SLAVE_DATA variable.
The slave address of the device to which the data is written is specified at this
ACS_COM_MOD_RTU_GEN block.
If the input values are valid, a request to perform a Modbus RTU job is send to the
ACS_COM_MOD_RTU_GEN block via the SLAVE_DATA variable.
If at least 1 input is invalid, no job is generated and the error is displayed at the outputs ERR
and ERNO instead.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
If a FALSE -> TRUE edge is applied to input EN, all further inputs are read in (edge sensitive).
If the input values are valid, a request telegram is sent to the communication block via the
DRIVE_DATA variable.
If at least 1 input is invalid, no telegram is generated and the error is displayed at the outputs
ERR and ERNO instead.
The inputs are read in until the job is processed. This can be seen at the output BUSY.

Data type: BOOL
Input PRIO is reserved for future usage. It can be left open.

Function block
information

EN (enable)

PRIO (priority)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2331

Data type: BYTE
The function code of the request telegram is specified at input FCT.

01 or 02 read n bits

03 or 04 read n words

05 write one bit

06 write one word

15 write n bits

16 write n words

Data type: UINT
At input NB, the number of data to be read is specified.
The unit of NB depends on the selected function. For bit accesses the number of bits, for word
and double word accesses the number of words is specified at NB.
Default: 1. Minimum 1, Maximum 96.

Data type: UINT
The operand/register address in the slave from which data should be read is specified at input
ADDR.
The access to operands of AC500 devices in Modbus slave mode is defined via the Modbus
cross-reference list. Only operands that are listed in the cross-reference list may be used (see
Communication with Modbus RTU).
Only operands that are listed in the Modbus address list may be used. When accessing
other devices, ADDR is freely selectable. The valid ranges have to be gathered from the
corresponding device description.

Data type: DWORD
At input DATA, the address of the first operand in the PLC is specified to which the data read by
the slave should be stored.
For this purpose it is necessary that all PLC variables, which are written to the drive, have con-
secutive addresses. This can be obtained by declaration of each variable within the %MW0.xxx
area or declaration of an array containing all variables.
Declaration of each variable has the advantage, that the types (integer or word) can be selected
individually.

Data type: ACS_DRIVE_DATA_TYPE
The combined input/output SLAVE_DATA must be connected to the variable of type
ACS_GEN_DEV_DATA_TYPE of the related slave device. Each device must have its own
SLAVE_DATA variable.
The SLAVE_DATA variable transfers the Modbus
data from the ACS_COM_MOD_RTU_GEN_READ_N_PRM or
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM function blocks to the
ACS_COM_MOD_RTU_GEN function block. It contains also some information about the online
state of the device and must be connected to all related function blocks of this device.

FCT (number of
variables)

NB (number of
variables)

ADDR (address)

DATA (data)

SLAVE_DATA
(slave data)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2332

Output description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: ACS_DRIVE_DATA_TYPE
The combined input/output SLAVE_DATA must be connected to the variable of type
ACS_GEN_DEV_DATA_TYPE of the related slave device. Each device must have its own
SLAVE_DATA variable.
The SLAVE_DATA variable transfers the Modbus
data from the ACS_COM_MOD_RTU_GEN_READ_N_PRM or
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM function blocks to the
ACS_COM_MOD_RTU_GEN function block. It contains also some information about the online
state of the device and must be connected to all related function blocks of this device.

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

SLAVE_DATA
(slave data)

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2333

dwAcsComModRTUGenWriteNPrm_DATA :=
ADR(aiAcsComModRTUGenWriteNPrm_VALUE[1]);

ACSComModRTUGenWriteNPrm (EN :=
xACSComModRTUGenWriteNPrm_EN,

 FCT :=
byACSComModRTUGenWriteNPrm_FCT,

 NB :=
uiACSComModRtuGenWriteNPrm_NB,

 ADDR :=
uiACSComModRtuGenWriteNPrm_ADDR,

 DATA :=
dwAcsComModGenWritePrm_DATA,

 SLAVE_DATA := tsSlaveData);

xACSComModRTUGenWriteNPrm_DONE := ACSComModRTUGenWriteNPrm.DONE;
xACSComModRTUGenWriteNPrm_ERR := ACSComModRTUGenWriteNPrm.ERR;
wACSComModRTUGenWriteNPrm_ERNO := ACSComModRTUGenWriteNPrm.ERNO;
xACSComModRTUGenWriteNPrm_BUSY := ACSComModRTUGenWriteNPrm.BUSY;

1.5.6.3.6 Structures
ACS_GEN_DEV_DATA_TYPE structure to exchange data between function blocks for 1 generic device

Structure ACS_GEN_DEV_DATA_TYPE is used for the SLAVE_DATA variable to exchange the
data for one generic Modbus slave device.

Available as of runtime
system:

V1.3.2 Remark:

Included in library: ACSDrivesCom-
ModRTU_AC500_V20.lib

ACSDrives-
Base_AC500_V20.lib
is needed in addition.

Visible variable Type Default value User access *) Description
online BOOL FALSE R Connection

established – set
in Modbus com-
munication func-
tion block after
successfull
reading and
writing one
Modbus job.

Function call in
ST

Structure data

Structure

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2334

name STRING(20) Default Drive
Name

R/W Name for slave
device which can
be set by user
directly to
SLAVE_DATA
variable – as
information or
use in visualiza-
tions.

adapterType INT 1 R Will be set to 100
in
ACS_COM_MOD
_RTU_GEN for
internal checks.

*) R = read only, R/W = read and write access

Structure ACS_GEN_DEV_DATA_TYPE is used for the SLAVE_DATA variable which must be
connected to all function blocks related to the same device.
Besides the variable "name" all variables should not be written by the user directly. They are
read and written within the function blocks.
The ACS_GEN_DEV_DATA_TYPE contains some more internal, invisible variables which are
used for interlocks and data transfer and not meant for user access.

1.5.6.3.7 Visualizations
ACS3XX_COM_MOD_RTU_VISU_PH faceplate for the function block ACS3XX_COM_MOD_RTU

Description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2335

Fig. 160: Visualization offline / online mode

Visualization element ACS3XX_COM_MOD_RTU_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS3XX_COM_MOD_RTU function block
which instance was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20_App.lib

Visualization element ACS3XX_COM_MOD_RTU_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS3XX_COM_MOD_RTU Ä Chapter
1.5.6.3.5.1 “ACS3XX_COM_MOD_RTU communication for ACS3XXwrite one bit/ACX550
drives via Modbus RTU” on page 2293 function block which instance was used to replace
the placeholder FB.
All inputs of that ACS3XX_COM_MOD_RTU function block, which are not connected to a
variable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open. The DRIVE_DATA variable must be
connected to the function block.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2336

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1..10
Description: COM. After a change the program must be reset (create boot project, reset and
start).

Access via: Numpad min. 1
Description: TIMEOUT input

Way of Access: Numpad 1..31
Description: SLAVE input

Access via: Numpad 1 ..17
Description: DRIVE_TYPE input

Access via: Numpad 0 .. 12
Description: NVAR_READ input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_COM

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: Numbers of write errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last write job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Numbers of read errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last read job. See error messages of COM_MOD_MAST
function block.

EN

COM

TIMEOUT

SLAVE

DRIVE_TYPE

NVAR_READ

DONE

ERR

ERNO

WriteErrCnt

LastWriteErno

ReadErrCnt

LastReadErno

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2337

Description: Status Word of drive, READ_VALUE[1] output

Description:Actual Value 1 mapped in Par. 53.10 - READ_VALUE[2] output

Description:Actual Value 2 mapped in Par. 53.11 - READ_VALUE[3] output

Description:Actual Value 3 mapped in Par. 53.12 - READ_VALUE[4] output

Description:Actual Value 4 mapped in Par. 53.13 - READ_VALUE[5] output

Description:Actual Value 5 mapped in Par. 53.14 - READ_VALUE[6] output

Description:Actual Value 6 mapped in Par. 53.15 - READ_VALUE[7] output

Description:Actual Value 7 mapped in Par. 53.16 - READ_VALUE[8] output

Description:Actual Value 8 mapped in Par. 53.17 - READ_VALUE[9] output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

SW_BIT13

ACT_VALUE1

ACT_VALUE2

ACT_VALUE3

ACT_VALUE4

ACT_VALUE5

ACT_VALUE6

ACT_VALUE7

ACT_VALUE8

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2338

ACS_COM_MOD_RTU_VISU_PH faceplate for the function block ACS_COM_MOD_RTU

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2339

Fig. 161: Visualization offline / online mode

Visualization element ACS_COM_MOD_RTU_VISU_PH can be used to show the actual values
of all inputs and outputs of the instance of an ACS_COM_MOD_RTU Ä Chapter 1.5.6.3.5.2
“ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus RTU” on page 2301
function block which instance was used to replace the placeholder FB.
The visualization can also be used to control the function block by those inputs which are not
connected inside the program.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Visualization element ACS_COM_MOD_RTU_VISU_PH can be used to show the actual values
of all inputs and outputs of the instance of an ACS_COM_MOD_RTU function block, which
instance was used to replace the placeholder FB.
All inputs of that ACS_COM_MOD_RTU function block which are not connected to a variable
(left open) can be written from this faceplate. So the function block can be controlled from the
visualization as long as the inputs are left open.
The DRIVE_DATA variable must be connected to the function block.

Visualization
data

Description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2340

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1..10
Description: COM. After a change the program must be reset (create boot project, reset and
start).

Access via: Numpad min. 1
Description: TIMEOUT input

Way of Access: Numpad 1..31
Description: SLAVE input

Access via: Numpad 1 ..17
Description: DRIVE_TYPE input

Access via: Numpad 0 .. 12
Description: NVAR_READ input

Access via: Numpad min. 0
Description: Reconnect Pause value in seconds.

EN

COM

TIMEOUT

SLAVE

DRIVE_TYPE

NVAR_READ

ReconPause

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2341

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_COM

Access R
Description: Control Word to the drive

Description: Reference value 1 to the drive

Description: Reference value 2 to the drive

Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: BUSY output.

Description: ONLINE output

Timeout or other SLAVE error detected and reconnection pause is active.

Description: Numbers of write errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last write job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Numbers of read errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last read job. See error messages of COM_MOD_MAST
function block.

Description: Status Word of drive, READ_VALUE[1] output.

Description: ACT_VALUE1 output

Description: Actual Value 2 output; Actual Value 2 of drive

Description: READ_VALUE[1] output

MCW

RefValue1

RefValue2

DONE

ERR

ERNO

BUSY

ONLINE

ReconPause

WriteErrCnt

LastWriteErno

ReadErrCnt

LastReadErno

MSW

ACT_VALUE1

ActValue2

DATA_IN1

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2342

Description: READ_VALUE[2] output

Description: READ_VALUE[3] output

Description: READ_VALUE[4] output

Description: READ_VALUE[5] output

Description: READ_VALUE[6] output

Description: READ_VALUE[7] output

Description: READ_VALUE[8] output

Description: READ_VALUE[9] output

Description: READ_VALUE[10] output

Description: READ_VALUE[11] output

Description: READ_VALUE[12] output

Description: READ_VALUE[13] output

Description: READ_VALUE[14] output

Description: READ_VALUE[15] output

Description: READ_VALUE[16] output

Description: READ_VALUE[17] output

Description: READ_VALUE[18] output

Description: READ_VALUE[19] output

Description: READ_VALUE[20] output

Description: READ_VALUE[21] output

Description: READ_VALUE[22] output

DATA_IN2

DATA_IN3

DATA_IN4

DATA_IN5

DATA_IN6

DATA_IN7

DATA_IN8

DATA_IN9

DATA_IN10

DATA_IN11

DATA_IN12

DATA_IN13

DATA_IN14

DATA_IN15

DATA_IN16

DATA_IN17

DATA_IN18

DATA_IN19

DATA_IN20

DATA_IN21

DATA_IN22

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2343

Description: READ_VALUE[23] output

Description: READ_VALUE[24] output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

DATA_IN23

DATA_IN24

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2344

ACS_COM_MOD_RTU_ENHANCED_VISU_PH faceplate for the function block
ACS_COM_MOD_RTU_ENHANCED

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2345

Fig. 162: Visualization offline / online mode

Visualization element ACS_COM_MOD_RTU_ENHANCED_VISU_PH can be used to
show the actual values of all inputs and outputs of the instance of an
ACS_COM_MOD_RTU_ENHANCED function block which instance was used to replace the
placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Visualization element ACS_COM_MOD_RTU_ENHANCED_VISU_PH can be used
to show the actual values of all inputs and outputs of the
instance of an ACS_COM_MOD_RTU_ENHANCED Ä Chapter 1.5.6.3.5.3
“ACS_COM_MOD_RTU_ENHANCED communication for ACS drives via Modbus RTU using
ABB drives profile enhanced” on page 2312 function block which instance was used to replace
the placeholder FB.
All inputs of that ACS_COM_MOD_RTU_ENHANCED function block which are not connected
to a variable (left open) can be written from this faceplate. So the function block can be
controlled from the visualization as long as the inputs are left open. The DRIVE_DATA variable
must be connected to the function block.

Visualization
data

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2346

Parameters
ACCESS R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1..10
Description: COM. After a change the program must be reset (create boot project, reset and
start).

Access via: Numpad min. 1
Description: TIMEOUT input

Access via: Numpad 1..247
Description: SLAVE input

Access via: Numpad 1 ..17
Description: DRIVE_TYPE input

Access via: Numpad 0 .. 12
Description: NVAR_READ input

Access via: Numpad 0 .. 12
Description: NVAR_WRITE input

Access via: Numpad min. 0
Description: Reconnect Pause value in seconds.

EN

COM

TIMEOUT

SLAVE

DRIVE_TYPE

NVAR_READ

NVAR_WRITE

ReconPause

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2347

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_COM

Description: WRITE_VALUE[1] input

Description: WRITE_VALUE[2] input

Description: WRITE_VALUE[3] input

Description: WRITE_VALUE[4] input

Description: WRITE_VALUE[5] input

Description: WRITE_VALUE[6] input

Description: WRITE_VALUE[7] input

Description: WRITE_VALUE[8] input

Description: WRITE_VALUE[9] input

Description: WRITE_VALUE[10] input

Description: WRITE_VALUE[11] input

Description: WRITE_VALUE[12] input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_COM

ACCESS R
Description: Control Word to the drive

Description: Reference value 1 to the drive

Description: Reference value 2 to the drive

Description: DONE output.

DATA_OUT1

DATA_OUT2

DATA_OUT3

DATA_OUT4

DATA_OUT5

DATA_OUT6

DATA_OUT7

DATA_OUT8

DATA_OUT9

DATA_OUT10

DATA_OUT11

DATA_OUT12

MCW

RefValue1

RefValue2

DONE

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2348

Description: ERR output.

Description: ERNO output.

Description: BUSY output.

Description: ONLINE output

Timeout or other SLAVE error detected and reconnection pause is active.

Description: Numbers of write errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last write job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Numbers of read errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last read job. See error messages of COM_MOD_MAST
function block.

Description: Status Word of drive, READ_VALUE[1] output.

Description: ACT_VALUE1 output

Description: ACT_VALUE2 output

Description: READ_VALUE[1] output

Description: READ_VALUE[2] output

Description: READ_VALUE[3] output

Description: READ_VALUE[4] output

Description: READ_VALUE[5] output

Description: READ_VALUE[6] output

Description: READ_VALUE[7] output

Description: READ_VALUE[8] output

ERR

ERNO

BUSY

ONLINE

ReconPause

WriteErrCnt

LastWriteErno

ReadErrCnt

LastReadErno

MSW

ACT_VALUE1

ACT_VALUE2

DATA_IN1

DATA_IN2

DATA_IN3

DATA_IN4

DATA_IN5

DATA_IN6

DATA_IN7

DATA_IN8

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2349

Description: READ_VALUE[9] output

Description: READ_VALUE[10] output

ACS_COM_MOD_RTU_GEN_VISU_PH faceplate for the function block ACS_COM_MOD_RTU_GEN

Fig. 163: Visualization offline / online mode

Visualization element ACS_COM_MOD_RTU_GEN_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_COM_MOD_RTU_GEN Ä Chapter
1.5.6.3.5.4 “ACS_COM_MOD_RTU_GEN communication for generic devices via Modbus RTU ”
on page 2322 function block which instance is used to replace the placeholder FB.
The visualization can also be used to control the function block by those inputs which are not
connected inside the program.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

DATA_IN9

DATA_IN10

Visualization
data

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2350

Visualization element ACS_COM_MOD_RTU_GEN_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_COM_MOD_RTU_GEN function
block, which instance was used to replace the placeholder FB.
All inputs of that ACS_COM_MOD_RTU_GEN function block, which are not connected to a
variable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open.
Even if most of the inputs should not be change while the program is running (COM, SLAVE and
TIMEOUT), the visualization is nevertheless helpful to check the ONLINE state and additional
internal variables about error count and last error numbers.
The SLAVE_DATA variable must be connected to the function block.

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1..10
Description: COM. After a change the program must be reset (create boot project, reset and
start).

Way of Access: Numpad 1..31
Description: SLAVE input

Access via: Numpad min. 1

Description

EN

COM

SLAVE

TIMEOUT

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2351

Description: TIMEOUT input

Access via: Numpad min. 0
Description: Reconnect Pause value in seconds.

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_COM

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Panel1.FB_Write

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: ONLINE output

Timeout or other SLAVE error detected and reconnection pause is active.

Description: Numbers of write errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last write job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Numbers of read errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last read job. See error messages of COM_MOD_MAST
function block.

Description: error count of read/Write (FCT-23) errors.

Description: last error code of read/Write (FCT-23) error.

Description: error count of masked (FCT-22) errors.

Description: Last error code for the masked (FCT-22) error.

ReconPause

DONE

ERR

ERNO

ONLINE

ReconPause

WriteErrCnt

LastWriteErno

ReadErrCnt

LastReadErr

RWErrCnt

LastRWErr

MaskErrCnt

LastMaskErr

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2352

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_COM_MOD_RTU_GEN_READ_N_PRM_VISU_PH faceplate for the function block
ACS_COM_MOD_RTU_GEN_READ_N_PRM

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2353

Fig. 164: Visualization offline / online mode

Visualization element ACS_COM_MOD_RTU_GEN_READ_N_PRM_VISU_PH can be
used to show the actual values of all inputs and outputs of the
instance of an ACS_COM_MOD_RTU_GEN_READ_N_PRM Ä Chapter 1.5.6.3.5.5
“ACS_COM_MOD_RTU_GEN_READ_N_PRM read N parameters from a generic Modbus RTU
device ” on page 2327 function block which instance was used to replace the placeholder FB.
The visualization can also be used to control the function block by those inputs which are not
connected inside the program.

Available as of runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Visualization element ACS_COM_MOD_RTU_GEN_READ_N_PRM_VISU_PH can be used
to show the actual values of all inputs and outputs of the instance of an
ACS_COM_MOD_RTU_GEN_READ_N_PRM function block which instance was used to
replace the placeholder FB.
All inputs of that ACS_COM_MOD_RTU_GEN_READ_N_PRM function block which are not
connected to a variable (left open) can be written from this faceplate. So the function block
can be controlled from the visualization as long as the inputs are left open. The DRIVE_DATA
variable must be connected to the function block.
The values to where the read data is stored to in the PLC can not be displayed with this
faceplate, because they have to be accessed by the ADR operator outside the function block
ACS_COM_MOD_RTU_GEN_READ_N_PRM.
Nevertheless the first 10 values are also copied to an internal array of 15 elements. The first 10
elements are displayed in this visualization.
The input DATA is not shown as it has to be connected to the address of a variable and
therefore can not be set in the visualization.
SLAVE_DATA input must be connected in the program.

Parameters
Access R/W

Access via: Toggle

Visualization
data

Description

EN

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2354

Description: EN input

Data type: BOOL
Input PRIO is reserved for future usage. It can be left open.

Access via: Numpad 5..16
Description: FCT input

Access via: Numpad 1..1968
Description: NB input

Access via: Numpad min. 0
Description: ADR input

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: BUSY output.

Description: Value of 1st read parameter, written if read job was successfully.

Description: Value of 2nd read parameter, written if read job was successfully.

Description: Value of 3rd read parameter, written if read job was successfully.

Description: Value of 4th read parameter, written if read job was successfully.

Description: Value of 5th read parameter, written if read job was successfully.

Description: Value of 6th read parameter, written if read job was successfully.

Description: Value of 7th read parameter, written if read job was successfully.

Description: Value of 8th read parameter, written if read job was successfully

Description: Value of 9th read parameter, written if read job was successfully.

PRIO (priority)

FCT

NB

ADDR

DONE

ERR

ERNO

BUSY

VALUE1

VALUE2

VALUE3

VALUE4

VALUE5

VALUE6

VALUE7

VALUE8

VALUE9

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2355

Description: Value of 10th read parameter, written if read job was successfully.

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Panel1.FB_Read

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_COM_MOD_RTU_GEN_WRITE_N_PRM_VISU_PH faceplate for the function block
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM

Fig. 165: Visualization offline / online mode

Visualization element ACS_COM_MOD_RTU_GEN_WRITE_N_PRM_VISU_PH can be
used to show the actual values of all inputs and outputs of the
instance of an ACS_COM_MOD_RTU_GEN_WRITE_N_PRM Ä Chapter 1.5.6.3.5.6
“ACS_COM_MOD_RTU_GEN_WRITE_N_PRM write N parameters to a generic Modbus RTU
device ” on page 2330 function block which instance was used to replace the placeholder FB.
The visualization can also be used to control the function block by those inputs which are not
connected inside the program.

VALUE10

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2356

Available as of runtime system: V1.3.2

Included in library: ACSDrivesComModRTU_AC500_V20.lib

Visualization element ACS_COM_MOD_RTU_GEN_WRITE_N_PRM_VISU_PH can be used
to show the actual values of all inputs and outputs of the instance of an
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM function block which instance was used to
replace the placeholder FB.
All inputs of that ACS_COM_MOD_RTU_GEN_WRITE_N_PRM function block which are not
connected to a variable (left open) can be written from this faceplate. So the function block can
be controlled from the visualization as long as the inputs are left open.
The SLAVE_DATA variable must be connected to the function block.
The values to be written can not be displayed with this faceplate, because
they have to be accessed by the ADR operator outside the function block
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM.

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Text
Description: PRIO input

Visualization
data

Description

EN

PRIO

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2357

Access via: Numpad 5..16
Description: FCT input

Access via: Numpad 1..1968
Description: NB input

Access via: Numpad min. 0
Description: ADR input

Placeholder Replacement Example
FB Instance name of the function block PRG_Panel1.FB_Write

Access R
Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: BUSY output.

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

FCT

NB

ADDR

DONE

ERR

ERNO

BUSY

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2358

1.5.6.4 ACS / DCS drives communication via Modbus TCP library
To establish the communication to an ACS / DCS drive one of the following two libraries can be
used: ACSDrivesComModTCP_AC500_V22.lib or ACSDrivesComModTCP_Ext_AC500_V24.lib
Ä Chapter 1.5.6.5 “ACS / DCS drives communication via Modbus TCP ext library”
on page 2384 The ACSDrivesComModTCP_AC500_V22.lib can be used, as long as the CPU
does not support more than one internal Ethernet Interface. And this library must be used, if the
Firmwareversion of the CPU is less than V2.4.x.
The ACSDrivesComModTCP_Ext_AC500_V24.lib should be used for new project and if the
Firmware Version of the CPU is at least V2.4.x. It must be used, if a CPU with more than one
internal Ethernet Interface is used, e.g. PM595.

1.5.6.4.1 Preconditions for the use of the ACS / DCS drives communication via Modbus TCP library

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

The blocks can only be used in combination with the ACSDrives-
Base_AC500_V20 Library.

The library is released for the following products:
● CPUs: AC500 and AC500-eCo
● Fieldbus: Modbus TCP
● Drives:ACS800, ACSM1, ACS350, ACS355, ACS550, ACH550, ACQ810, ACS850,

ACS880, ACS580, DCS550, DCS800
● Modbus TCP configuration:

Prior to the use of the function blocks a Communication Module "Modbus_on_TCP_IP" has
to be configured accordingly using Automation Builder, either at "Onboard_Ethernet" or at
"CM597-ETH" module.

● ACS_COM_MOD_TCP and ACS_COM_MOD_TCP_ENHANCED:
The communication function blocks are designed to be used each for one specific drive at
run time. So it´s not recommended to change the COM or SLAVE inputs of the blocks while
the program is running.
There is no check in the function blocks if the maximum number of TCP/IP sockets is
already reached. So the user has to take care about the number of used socket. Each
ACS_COM_MOD_TCP or ACS_COM_MOD_TCP_ENHANCED function block will use one
socket.

1.5.6.4.2 Components of the ACS / DCS drives communication via Modbus TCP library

ACS_COM_MOD_TCP Ä Chapter 1.5.6.4.3.1
“ACS_COM_MOD_TCP communication for
ACS / DCS drives via Modbus TCP”
on page 2360

Communication for ACS / DCS Drives via
Modbus TCP

ACS_COM_MOD_TCP_ENHANCED
Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED com-
munication for ACS / DCS drives via Modbus
TCP” on page 2367

Communication for ACS / DCSDrives via
Modbus TCP

Function blocks

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2359

ACS_COM_MOD_TCP_VISU_PH Ä Chapter
1.5.6.4.4.1 “ACS_COM_MOD_TCP_VISU_PH
faceplate for the function block
ACS_COM_MOD_TCP” on page 2376

Faceplate for the function block

ACS_COM_MOD_TCP_ENHANCED_VISU_P
H Ä Chapter 1.5.6.4.4.2
“ACS_COM_MOD_TCP_ENHANCED_VISU_P
H faceplate for the function block
ACS_COM_MOD_TCP_ENHANCED”
on page 2379

Faceplate for the function block

1.5.6.4.3 Function blocks
ACS_COM_MOD_TCP communication for ACS / DCS drives via Modbus TCP

Function block ACS_COM_MOD_TCP controls the Modbus TCP communication to an ACS /
DCS drive and is used for the basic control of ACS / DCS drives with ABB Drives profile.

Available in runtime system: V1.3.2

Included in library: ACSDrivesComModTCP_AC500_V22_App.lib

Function block type: Function block with historical values.

Function block ACS_COM_MOD_TCP controls the Modbus TCP communication to an ACS /
DCS drive and is used for the basic control of ACS / DCS drives with ABB Drives profile.

If the user changes drive profile while drive is online with PLC, function block
output’s may give wrong indication.

Reading Status Information from Drive
The function block continuously reads data from the drive starting at Modbus register
400004. So at least the Status Word (SW), Actual Value 1 (SPEED_REF), Actual Value 2
(ACT_VALUE2) are continuously read from the drive and written to the DRIVE_DATA variable.
These values are stored in DRIVE_DATA.MSW, ActValue1 and ActValue2.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Visualizations

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2360

Modbus reg-
ister address
in drive

Mapping configuration in drive Written to in
AC500

Condition at
function
blockACS355,

ACS850,
ACQ810,
ACSM1,
ACS880

ACS800 ACS550,
ACH550

Communica-
tion module

FENA-01 / -11 RETA-01 / -02 RETA-01 / -02

40004 Status Word
(SW)

Status Word
(SW) fix

Status Word
51.23 (SW) fix

DRIVE_DATA.
sw

EN = TRUE

40005 Actual Value1 92.02 = Actual
Value1, e.g. =
102 (Speed)

51.24 = Actual
Value1 (fix)

DRIVE_DATA.
actValue1

EN = TRUE

40006 Actual Value2 92.03 = Actual
Value2 e.g. =
105 (Torque)
*)

51.25 = Actual
Value2, e.g.=
105 (Torque)

DRIVE_DATA.
actValue2

EN = TRUE

*) If 51.19 .. 51.22 (Output 1 .. 4) are set to the actual values the Modbus response will be
faster because those values are updated cyclically between RETA-01 and ACS800.

Writing Control Word and Reference Values to Drive
The function block checks if there are changes of the Control Word (CW), Reference Value 1
(SPEED_REF) or Reference Value 2 (REF_VALUE2) on the DRIVE_DATA variable. If there is
a change a write job is requested to send these 3 values to the ACS drive starting at Modbus
register 40001.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Modbus register
address in drive

Communication module Written to in
AC500

Condition at
function blockACS355,

ACS850,
ACQ810,
ACSM1,
ACS880,
ACS580

ACS800,
ACS550,
ACH550,
DCS550,
DCS800

Communication
module

FENA-01 / -11 RETA-01 / -02

40001 Control Word
(CW)

Control Word
(CW)

DRIVE_DATA.cw EN = TRUE

40002 Reference
Value1

Reference
Value1

DRIVE_DATA.ref
Value1

EN = TRUE

40003 Reference
Value2

Reference
Value2

DRIVE_DATA.ref
Value2

EN = TRUE

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2361

If a Modbus job tries to access a register in the drive which has no valid
mapping information the job is aborted with an error. Therefore the drive param-
eters in FBA DATA OUT group have to be configured according to the used
NVAR_WRITE input number.

If 32-bit parameters are mapped to DATA OUT,

– The following field in DATA OUT has to be left open (= 0)
– The word order of the High-Word and Low-Word can be configured in the

drive. If e.g. FENA-x1 is used the configuration is done in Par.51.22.
– The original 32-bit value in AC500 has to be split up in HW and LW in the

WRITE_VALUES array.

Function block DATA OUT has to be configured in drive in the following groups see also
FENA-x1 manual.

Drive Parameter group
ACS355 55.01 .. 55.10

ACS850, ACQ810, ACSM1, ACS880 53.01 .. 53.12

ACS880 53.01 .. 53.02(Fieldbus A), 56.01 .. 56.12
(Fieldbus B)

ACS drive parameters are only saved temporarily, if changed via fieldbus. To
make these changes permanent in the drive the special parameter "PARAM-
ETER SAVE" has to be set. Please see drive manuals and following table which
parameter has to be set.

Save valid parameters to
permanent memory in drive

ACS3XX, ACX550,
ACQ810, ACS850,
ACSM1, ACS800

ACS880,
ACS580

DCS550, DCS800

1 = Saves the valid parameter
values to permanent memory.
0 = Save completed.

Par 16.07 = 1 Par 96.07 = 1 Par 16.06 = 1

Read/Write Jobs Coming from Other Function Blocks
The requests to process other read or write Modbus jobs is transferred via the DRIVE_DATA
variable at the IN_OUT variable DRIVE_DATA which can be connected to several
other read/write function blocks e.g. ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1
“ACS_MOD_READ_N_PRM” on page 2212 or ACS_MOD_WRITE_N_PRM Ä Chapter
1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM” on page 2215 of this drive.
Communication with Several ACS Drives
If several drives are used, for each drive a communication function block such as
ACS_COM_MOD_TCP or ACS_COM_MOD_TCP_ENHANCED function block must be pro-
grammed.
The function block provides the basic start/stop signals, basic diagnosis signals and the scaling
of the SPEED_REF input and ACT_SPEED to the ACS fieldbus scaling range. -20000 ..
+20000.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2362

The AC500 CPU types provide different numbers of usable TCP/IP sockets.
For each ACS Modbus TCP communication block (ACS_COM_MOD_TCP and
ACS_COM_MOD_TCP_ENHANCED) one socket will be needed. The user has
to check that the programmed number of ACS Modbus TCP communication
blocks is not higher than the number of available free sockets for the used CPU.

Diagnosis
The output ERNO, which reflects an actual error number is only valid for one cycle if DONE and
ERR output are set to TRUE.
To catch this error number an external function must be programmed.
However there are internal diagnosis variables available, which are not shown at any output, but
can be accessed from the function block instance. This can be done in three ways:
● Opening the "+" sign of function block instance in the declaration part being online.
● Create an assignment in the code with <instance>.<diagnosis variable>.
● Create a visualization element of the function block see

ACS_COM_MOD_TCP_ENHANCED_VISU_PH.
The additional diagnosis variables are:
● iWriteErrCnt: number of errors in write jobs since EN = TRUE.
● wLastWriteErno: holds the error number of the last executed write job.
● iReadErrCnt: number of errors in read jobs since EN = TRUE.
● wLastReadErno: holds the error number of the last executed read job.
Preconditions
The function block is working with all ACS / DCS drives via Modbus TCP communication with
field bus adapter FENA-X1 / RETA-X1.
The data transfer to other function blocks for this drive communication to the ACS / DCS
drive is realized via the IN_OUTPUT variable DRIVE_DATA, which must be connected to then
ACS_COM_MOD_TCP even if no other function block is connected.
For ACS drive parameters must be set as follows:

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Setting according to AC500
configuration or function block
input

ACS355 ACS850,
ACQ810,
ACSM1

ACS580,
ACS880

ACS800,
ACS550,
ACH550,
DCS550,
DCS800

Communication module: FENA-01 FENA-11 FENA-11 RETA-01 /
RETA-02

Fieldbus activation = EXT FBA /
ENABLE

98.02 50.01 50.01 98.02

COMM RATE = Auto (0) 51.03 51.03 51.03 51.02

IP CONFIGURATION = Static
IP (0) ! not default ! Set 51.27
(Refresh) after first change to
"Static IP".

51.04 51.04 51.04 51.03

IP ADDRESS1 .. IP ADDRESS4 51.05 .. 51.08 51.05 .. 51.08 51.05 .. 51.08 51.04 ..
51.07 **)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2363

Setting according to AC500
configuration or function block
input

ACS355 ACS850,
ACQ810,
ACSM1

ACS580,
ACS880

ACS800,
ACS550,
ACH550,
DCS550,
DCS800

SUBNET CIDR = e.g.
255.255.255.0 = 24

51.09 51.09 51.09 51.08 ..
51.11

GateWay ADDRESS (normally =
0.0.0.0)

51.10 .. 51.13 51.10 .. 51.13 51.10 .. 51.13 51.12 ..
51.15

PROTOCOL / PROFILE =
MB/TCP ABB E (ABB Drives
Profile Classic) (0)

51.02 51.02 51.02 51.16

Word order for 32-bit parameter
access

No 32-bit
access

51.22 51.22 No 32-bit
access

Timeout mode = None(0) or Any
message(1), but not Ctrl write(2)
as these values are only written
after changes

51.21 51.21 Timeout
mode

Modbus Timeout. Depending on
Timeout mode. Value in 100ms.

51.20 51.20 Modbus
timeout

51.17

Refresh settings in drive 51.27 51.27 51.27 51.27

**) For RETA-01/-02 IP address could also be set via hardware DIP switches. If any switch is
set (192.168.0.xxx) with xxx = DIP switches setting.

For further settings, e.g. reaction of drive at communication error, please see related drive and
fieldbus manual.

Input description
Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the block is active, the current values are available at the outputs.
After a rising edge (FALSE -> TRUE) of input EN output ONLINE is set to FALSE and parame-
ters are read from the ACS drive.
The processing of continuously read of status information from the drive (SW, ACT_VALUE1
and ACT_VALUE2) and writing of Control Word and Reference Values (CW, SPEED_REF,
REF_VALUE2) after changes to the drive is started.
If EN is reset to FALSE while a Modbus TCP job is performed (BUSY = TRUE), the function
block will be processed until the Modbus TCP job is terminated (DONE = TRUE for 1 cycle).
If EN = FALSE the outputs ONLINE are reset to zero, as well as the data SW, actValue1 and
actValue2 on the DRIVE_DATA variable are reset to zero.

Data type: BYTE
At input SLOT, the Modbus interface number is specified:
SLOT = 0 ; SLOT0 (onboard Ethernet slot)
SLOT = 1 : SLOT1 (CM597-ETH)
SLOT = 2 : SLOT2 (CM597-ETH)
Default value = 0.
Maximum value = 4.

EN (enable)

SLOT (slot)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2364

Data type: STRING
IP Address of the drive (slave) to which the connecton shall be established must be specified
here as string. Used with 4 times 3 digits.
Default value: ‘192.168.005.003’

Data type: INT, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM. The input can be
set either by the value directly or by using the enum.

ENUM Value
ACS_DRIVE_ACS800 1

ACS_DRIVE_ACSM1 2

ACS_DRIVE_ACS350 3

ACS_DRIVE_ACS355 4

ACS_DRIVE_ACS310 5

ACS_DRIVE_ACS550 6

ACS_DRIVE_ACH550 7

ACS_DRIVE_ACQ810 8

ACS_DRIVE_ACS850 9

ACS_DRIVE_ACS880 10

ACS_DRIVE_ACS580 11

ACS_DRIVE_DCS800 12

ACS_DRIVE_DCS550 13

ACS_DRIVE_ACH580 14

ACS_DRIVE_ACS380 15

ACS_DRIVE_ACS480 16

ACS_DRIVE_ACQ580 17

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS / DCS drive (slave). Each drive must have its
own DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_TCP reads the Control Word and references (CW,
SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status informa-
tion (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives requests
and data for Modbus TCP jobs from other function blocks e.g. ACS_MOD_READ_N_PRM or
ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

SLAVE_IP (slave
IP-Address)

DRIVE_TYPE
(drive type)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2365

Output description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates, whenever there is a communication action performed.

Data type: BOOL
After the first time input EN is set to TRUE and at least one read job and one write job is
performed successfully, output ONLINE is set to TRUE.
Output ONLINE is reset to FALSE after a rising edge of EN or if an error occurs while reading
the status information or writing the Control Word and Reference Values.

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

ONLINE (online)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2366

ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives via Modbus TCP

Function block ACS_COM_MOD_TCP_ENHANCED establishes the Modbus TCP communica-
tion to an ACS drive. This function block is used for the basic control of the ACS drive using
ABB Drives Profile Enhanced. It also reads and writes the drive parameters which are mapped
in the drive.

Available in runtime system: V2.4

Included in library: ACSDrivesComModTCP_AC500_V22_App.lib

Function block type: Function block with historical values.

Function block ACS_COM_MOD_TCP_ENHANCED establishes the Modbus TCP communica-
tion to an ACS drive and is used for the basic control of ACS drives with ABB Drives Profile
Enhanced.

If the user changes drive profile while drive is online with PLC, function block
output’s may give wrong indication.

Reading Status Information from Drive
The function block continuously reads data from the drive starting at Modbus register
400051. So at least the Status Word (SW), Actual Value 1 (SPEED_REF), Actual Value
2 (ACT_VALUE2) are continuously read from the drive and written to the DRIVE_DATA
Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE structure to exchange data between function
blocks for 1 Drive” on page 2253variable. These values are stored in DRIVE_DATA.MSW,
ActValue1 and ActValue2.
Apart from these three there is also an option to read 12 additional drive parameters. Using the
input NVAR_READ the function block can be configured to read between 0 and 12 parameters
from the drive. All read data is then written to the array at the READ_VALUE output. Configura-
tion in ACS drive is depending of configured parameters in group FBD DATA IN.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2367

Modbus register
address in drive

Mapping configuration in drive Written to in
AC500

Condition at
function block

 ACS355 ACS850,
ACQ810,
ACSM1,
ACS880,
ACS580

400051 Status Word
(SW)

Status Word
(SW)

DRIVE_DATA.sw EN = TRUE

400052 Actual Value1 Actual Value1 DRIVE_DATA.act
Value1

EN = TRUE

400053 Actual Value2 Actual Value2 DRIVE_DATA.act
Value2

EN = TRUE

400054 FBA DATA IN 1 FBA DATA IN 1 READ_VALUES[
1]

EN = TRUE and
NVAR_READ >=
1

400055 FBA DATA IN 2 FBA DATA IN 2 READ_VALUES[
2]

EN = TRUE and
NVAR_READ >=
2

...

400063 FBA DATA IN 10 FBA DATA IN 10 READ_VALUES[
10]

EN = TRUE and
NVAR_READ >=
10

...

400065 FBA DATA IN 12 READ_VALUES[
12]

EN = TRUE and
NVAR_READ =
12

If a Modbus TCP job tries to access a register in the drive which has no valid
mapping information the job is aborted with an error.

Therefore the drive parameters in FBA DATA IN group have to be configured
according to the used NVAR_READ input number.

If 32-bit parameters are mapped to DATA IN,

– The following field in DATA IN has to be left open (= 0)
– The word order of the High-Word and Low-Word can be configured in the

drive. (using FENA-X1: Par. 51.22)
– To retrieve the original 32-bit value from the drive in AC500 the HW and LW

from READ_VALUES fields have to be recombined in the program.

Function block DATA IN has to be configured in drive in the following groups see also FSCA-01
manual.

Drive Parameter group
ACS355 54.01 .. 54.10

ACS850, ACQ810, ACSM1, ACS880,
ACS580

52.01 .. 52.12 52.01 .. 52.12 if installed as
adapter A

Writing Control Word and Reference Values to Drive

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2368

The function block checks if there are changes of the Control Word (CW), Reference Value 1
(SPEED_REF) or Reference Value 2 (REF_VALUE2) on the DRIVE_DATA variable. If there is
a change a write job is requested to send these 3 values to the ACS drive starting at Modbus
register 400001.
Apart from these three parameters there is also an option to write additional 12 more drive
parameters in the same Modbus job. Using the input NVAR_WRITE the function block can be
configured to write between 0 and 12 more parameters to the drive. The necessary values have
to present in the array connected to WRITE_VALUES input.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area from where the data in the AC500 is taken.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Table 137: Writing control word and reference values to drive
Modbus register
address in drive

Mapping configuration in drive Written to in
AC500

Condition at
function block

 ACS355 ACS850,
ACQ810,
ACSM1,
ACS880,
ACS580

400001 Control Word
(CW)

Control Word
(CW)

DRIVE_DATA.cw EN = TRUE

400002 Reference
Value1

Reference
Value1

DRIVE_DATA.ref
Value1

EN = TRUE

400003 Reference
Value2

Reference
Value2

DRIVE_DATA.ref
Value2

EN = TRU

400004 FBA DATA OUT
1

FBA DATA OUT
1

READ_VALUES[
1]

EN = TRUE and
NVAR_WRITE
>= 1

400005 FBA DATA OUT
2

FBA DATA OUT
2

READ_VALUES[
2]

EN = TRUE and
NVAR_WRITE
>= 2

...

400013 FBA DATA OUT
10

FBA DATA OUT
10

READ_VALUES[
10]

EN = TRUE and
NVAR_WRITE
>= 10

...

400015 FBA DATA OUT
12

READ_VALUES[
12]

EN = TRUE and
NVAR_WRITE
>= 12

If a Modbus TCP job tries to access a register in the drive which has no valid
mapping information the job is aborted with an error.

Therefore the drive parameters in FBA DATA OUT group have to be configured
according to the used NVAR_WRITE input number.

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2369

If 32-bit parameters are mapped to DATA OUT,

– The following field in DATA OUT has to be left open (= 0)
– The word order of the High-Word and Low-Word can be configured in the

drive. (using FENA-X1: Par. 51.22)
– To retrieve the original 32-bit value from the drive in AC500 the HW and LW

from WRITE_VALUES fields have to be recombined in the program.

Function block DATA OUT has to be configured in drive in the following groups see also
FENA-X1 manual.

Drive Parameter group
ACS355 55.01 .. 55.10

ACS850, ACQ810, ACSM1, ACS580,
ACS880

53.01 .. 53.12 53.01 .. 53.12 if installed as
adapter A

ACS drive parameters are only saved temporarily, if changed via fieldbus. To
make these changes permanent in the drive the special parameter "PARAM-
ETER SAVE" has to be set.

Please see drive manuals and following table which parameter has to be set.

Save valid parameters to
permanent memory in drive

ACS3XX, ACQ810, ACS850,
ACSM1

ACS880, ACS580

1 = Saves the valid parameter
values to permanent memory.
0 = Save completed.

Par 16.07 = 1 Par 96.07 = 1

Read/Write Jobs Coming from Other Function Blocks
The requests to process other read or write Modbus jobs is transferred via the DRIVE_DATA
variable at the IN_OUT variable DRIVE_DATA which can be connected to several
other read/write function blocks e.g. ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1
“ACS_MOD_READ_N_PRM” on page 2212 or ACS_MOD_WRITE_N_PRM Ä Chapter
1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM” on page 2215 of this drive.
Communication with several ACS Drives
If several drives are used, for each drive a communication function block such as
ACS_COM_MOD_TCP_ENHANCED or ACS_COM_MOD_TCP function block must be pro-
grammed.
The function block provides the basic start/stop signals, basic diagnosis signals and the
scaling of the SPEED_REF input and ACT_SPEED to the ACS fieldbus scaling range -20000 ..
+20000.

The AC500 CPU types provide different numbers of usable TCP/IP sockets.
For each ACS Modbus TCP communication block (ACS_COM_MOD_TCP and
ACS_COM_MOD_TCP_ENHANCED) one socket will be needed.

The user has to check that the programmed number of ACS_COM_MOD_TCP
or ACS_COM_MOD_TCP_ENHANCED communication blocks is not higher
than the number of available free sockets for the used CPU.

Diagnosis
The output ERNO, which reflects an actual error number is only valid for one cycle if DONE and
ERR output are set to TRUE.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2370

To catch this error number an external function must be programmed.
However there are internal diagnosis variables available, which are not shown at any output, but
can be accessed from the function block instance. This can be done in three ways:
● Opening the "+" sign of function block instance in the declaration part being online.
● Create an assignment in the code with <instance>.<diagnosis variable>.
● Create a visualization element of the function block

see ACS_COM_MOD_TCP_ENHANCED_VISU_PH Ä Chapter 1.5.6.4.4.2
“ACS_COM_MOD_TCP_ENHANCED_VISU_PH faceplate for the function block
ACS_COM_MOD_TCP_ENHANCED” on page 2379.

The additional diagnosis variables are:

iWriteErrCnt: number of errors in write jobs since EN = TRUE
wLastWriteErno: holds the error number of the last executed write job
iReadErrCnt: number of errors in read jobs since EN = TRUE
wLastReadErno: holds the error number of the last executed read job

Preconditions
The function block is working with all ACS drives via Modbus TCP communication with field bus
adapter FENA-X1.
The data transfer to other function blocks for this drive communication to the ACS
drive is realized via the IN_OUTPUT variable DRIVE_DATA, which must be connected to
ACS_COM_MOD_TCP_ENHANCED even if no other function block is connected.
The following ACS drive parameters have to be set according to the configuration of the
Modbus line and the inputs of the function block.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Setting according to
AC500 configuration
or function block
input

ACS355 ACS850,
ACQ810,
ACSM1,

ACS880,
ACS580

ACX550,
ACS800,
DCS550,
DCS800

Communication
module:

FENA-01 FENA-11 FENA-11 ENHANCED not
possible with
RETA-0X

Fieldbus activation =
EXT FBA

98.02 50.01 50.01

COMM RATE = Auto
(0)

51.03 51.03 51.03

IP CONFIGURATION
= Static IP (0) ! not
default ! Set 51.27
(Refresh) after first
change to "Static IP".

51.04 51.04 51.04

IP ADDRESS1 .. IP
ADDRESS4

51.05 .. 51.08 51.05 .. 51.08 51.05 .. 51.08

SUBNET CIDR = e.g.
255.255.255.0 = 24

51.09 51.09 51.09

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2371

Setting according to
AC500 configuration
or function block
input

ACS355 ACS850,
ACQ810,
ACSM1,

ACS880,
ACS580

ACX550,
ACS800,
DCS550,
DCS800

PROTOCOL / PRO-
FILE = MB/TCP ABB
E (ABB Drives Profile
Enhanced) (1)

51.02 51.02 51.02

Word order for 32-bit
parameter access

No 32-bit
access

51.22 51.22

Timeout mode =
None(0) or Any mes-
sage(1), but not Ctrl
write(2) as these
values are only written
after changes

51.21 51.21 Timeout mode

Modbus Timeout.
Depending on Timeout
mode. Value in 100ms.

51.20 51.20 Modbus timeout

Refresh settings in
drive

51.27 51.27 51.27

For further settings, e.g. reaction of drive at communication error, please see related drive and
fieldbus manual.
Please refer FENA-X1 Ethernet adapter manual for more information.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the block is active, the current values are available at the outputs.
After a rising edge (FALSE -> TRUE) of input EN output ONLINE is set to FALSE and parame-
ters are read from the ACS drive.
After successfully reading and writing of the ACS parameters, output ONLINE is set to TRUE.
The processing of continuously read of status information from the drive (SW, ACT_VALUE1
and ACT_VALUE2) and writing of Control Word and Reference Values (CW, SPEED_REF,
REF_VALUE2) after changes to the drive is started.

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2372

If EN is reset to FALSE while a Modbus job is performed (BUSY = TRUE), the function block will
be processed until the Modbus job is terminated (DONE = TRUE for 1 cycle).
If EN = FALSE the outputs ONLINE are reset to zero, as well as the data SW, actValue1 and
actValue2 on the DRIVE_DATA variable are reset to zero. The elements of the READ_VALUES
array are also reset to zero.

Data type: BYTE
At input SLOT, the Modbus interface number is specified:
SLOT = 0 ; SLOT0 (onboard Ethernet slot)
SLOT = 1 : SLOT1 (CM597-ETH)
SLOT = 2 : SLOT2 (CM597-ETH)
Default value = 0.
Maximum value = 4.

Data type: STRING
IP Address of the drive (slave) to which the connecton shall be established must be specified
here as string. Used with 4 times 3 digits.
Default value: ‘192.168.005.003’

Data type: INT, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM. The input can be
set either by the value directly or by using the enum.

ENUM Value
ACS_DRIVE_ACS800 1

ACS_DRIVE_ACSM1 2

ACS_DRIVE_ACS350 3

ACS_DRIVE_ACS355 4

ACS_DRIVE_ACS310 5

ACS_DRIVE_ACS550 6

ACS_DRIVE_ACH550 7

ACS_DRIVE_ACQ810 8

ACS_DRIVE_ACS850 9

ACS_DRIVE_ACS880 10

ACS_DRIVE_ACS580 11

ACS_DRIVE_DCS800 12

ACS_DRIVE_DCS550 13

ACS_DRIVE_ACH580 14

ACS_DRIVE_ACS380 15

ACS_DRIVE_ACS480 16

ACS_DRIVE_ACQ580 17

SLOT (slot)

SLAVE_IP (slave
IP-Address)

DRIVE_TYPE
(drive type)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2373

Data type: BYTE
With the input NVAR_READ the function block can be configured to read between 1 and
12 signals from the drive. All read data is written to the array at the READ_VALUE output.
Configuration in ACS drive is depending of configured parameters in group FBD DATA IN in
drive
Default value = 0. Minimum 0, Maximum 12.

To read/write "one" 32-bit data, the NVAR should be equal to 2. Accordingly
this has to be followed if we want to read/write more than one data. The
user has to check that the programmed number of ACS_COM_MOD_TCP or
ACS_COM_MOD_TCP_ENHANCED communication blocks is not higher than
the number of available free sockets for the used CPU.

Data type: BYTE
The internal Modbus write job writes 3 + NVAR_WRITE words starting from Modbus register
address 400001 to the drive, every time a change in those variables is detected.
With the input NVAR_WRITE the function block can be configured to write between 0 and 12
variables more to the drive in addition to the 3 controls (CW, ref1 and ref2). These are always
written to Modbus registers addresses 400001 .. 400003 if changed.
If NVAR_WRITE input is set to e.g. 5 the internal write job addresses the Modbus registers from
400001 .. 400008.
The first 3 signals are always the Control Word (CW), Reference value1 and Reference value2
and will be taken from the DRIVE_DATA variable.
The additional NVAR_WRITE data will be taken from the array at the WRITE_VALUES input.
Default value = 0. Minimum 0, Maximum 12.

Data type: ARRAY[1..12] OF INT
The values from the array at input WRITE_VALUE will be written to Modbus registers 400004
400015 in the drive. The number of data written to the drive is specified at the input
NVAR_WRITE.
See table in chapter Writing Control Word and Reference Values to the drive for information
about how to configure the drive.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_TCP_ENHANCED reads the Control Word and references
(CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status
information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives
requests and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM
or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

NVAR_READ
(number of vari-
ables for
reading)

NVAR_WRITE
(number of vari-
ables for
writing)

WRITE_VALUES
(write values to
mapped param-
eters in drive
group
DATA_OUT)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2374

Output description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

Data type: BOOL
After the first time input EN is set to TRUE and at least one read job and one write job is
performed successfully, output ONLINE is set to TRUE.
Output ONLINE is reset to FALSE after a rising edge of EN or if an error occurs while reading
the status information or writing the Control Word and Reference Values.

Data type: ARRAY[1..12] OF INT
At output READ_VALUES the values of the array are updated after the read status information
job was terminated successfully (DONE = TRUE, ERR = FALSE, BUSY = FALSE).
The read status information job is requested cyclically. It reads data from the ACS drive starting
at Modbus register 400051 up to the number specified at input 3 + NVAR_READ

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

ONLINE (online)

READ_VALUES
(array of read
values)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2375

READ_VALUES contains the data as follows:
READ_VALUES[1] = <Modbus register 400054>
READ_VALUES[2] = <Modbus register 400055>
...
READ_VALUES[12] = <Modbus register 400065>.

1.5.6.4.4 Visualization
ACS_COM_MOD_TCP_VISU_PH faceplate for the function block ACS_COM_MOD_TCP

Visualization element ACS_COM_MOD_TCP_VISU_PH can be used to show the actual values
of all inputs and outputs of the instance of an ACS_COM_MOD_TCP Ä Chapter 1.5.6.4.3.1
“ACS_COM_MOD_TCP communication for ACS / DCS drives via Modbus TCP” on page 2360
function block which instance was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V2.4

Included in library: ACSDrivesComModTCP_Eth_AC500_V24.lib

Visualization element ACS_COM_MOD_TCP_VISU_PH can be used to show the actual values
of all inputs and outputs of the instance of an ACS_COM_MOD_TCP Ä Chapter 1.5.6.4.3.1
“ACS_COM_MOD_TCP communication for ACS / DCS drives via Modbus TCP” on page 2360
function block which instance was used to replace the placeholder FB.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2376

All inputs of that ACS_COM_MOD_TCP Ä Chapter 1.5.6.4.3.1 “ACS_COM_MOD_TCP com-
munication for ACS / DCS drives via Modbus TCP” on page 2360 function block which are not
connected to a variable (left open) can be written from this faceplate. So the function block
can be controlled from the visualization as long as the inputs are left open. The DRIVE_DATA
variable must be connected to the function block.

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 0 .. 4
Description: SLOT (module number) of the communication module

Access via: Text
Description: Slave address

EN

SLOT

IP_ADDRESS

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2377

Access via: Numpad 1 ..17
Description: DRIVE_TYPE input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drivel.FB_COM

Access R
Description: Control Word to the drive

Description: Reference value 1 to the drive

Description: Reference value 2 to the drive

Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: BUSY output.

Description: ONLINE output

Description: Numbers of write errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last write job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Numbers of read errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last read job. See error messages of ETH_MOD_MAST func-
tion block.

DRIVE_TYPE

MCW

RefValue1

RefValue2

DONE

ERR

ERNO

BUSY

ONLINE

WriteErrCnt

LastWriteErno

ReadErrCnt

LastReadErno

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2378

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_COM_MOD_TCP_ENHANCED_VISU_PH faceplate for the function block
ACS_COM_MOD_TCP_ENHANCED

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2379

Visualization element ACS_COM_MOD_TCP_ENHANCED_VISU_PH can be used
to show the actual values of all inputs and outputs of the
instance of an ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2367 function block which instance was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V1.3.2

Included in library: ACSDrivesComModTCP_AC500_V22_App.lib

Visualization element ACS_COM_MOD_TCP_ENHANCED_VISU_PH can be used
to show the actual values of all inputs and outputs of the
instance of an ACS_COM_MOD_TCP_ENHANCED Ä Chapter 1.5.6.4.3.2
“ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2367 function block which instance was used to replace the placeholder FB.
All inputs of that ACS_COM_MOD_TCP_ENHANCED function block, which are not connected
to a variable (left open) can be written from this faceplate. So the function block can be
controlled from the visualization as long as the inputs are left open. The DRIVE_DATA variable
must be connected to the function block.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2380

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 0 .. 4
Description: SLOT (module number) of the communication module

Access via: Text
Description: Slave address

Access via: Numpad 1 ..17

EN

SLOT

IP_ADDRESS

DRIVE_TYPE

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2381

Description: DRIVE_TYPE input

Access via: Numpad 0 .. 12
Description: NVAR_READ input

Access via: Numpad 0 .. 12
Description: NVAR_WRITE input

Description: WRITE_VALUE[1] input

Description: WRITE_VALUE[2] input

Description: WRITE_VALUE[3] input

Description: WRITE_VALUE[4] input

Description: WRITE_VALUE[5] input

Description: WRITE_VALUE[6] input

Description: WRITE_VALUE[7] input

Description: WRITE_VALUE[8] input

Description: WRITE_VALUE[9] input

Description: WRITE_VALUE[10] input

Description: WRITE_VALUE[11] input

Description: WRITE_VALUE[12] input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drivel.FB_COM

Access R
Description: DONE output.

NVAR_READ

NVAR_WRITE

DATA_OUT1

DATA_OUT2

DATA_OUT3

DATA_OUT4

DATA_OUT5

DATA_OUT6

DATA_OUT7

DATA_OUT8

DATA_OUT9

DATA_OUT10

DATA_OUT11

DATA_OUT12

DONE

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2382

Description: ERR output.

Description: ERNO output.

Description: BUSY output.

Description: ONLINE output

Description: Numbers of write errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last write job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Numbers of read errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last read job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Control Word to the drive

Description: Reference value 1 to the drive

Description: Reference value 2 to the drive

Description: Status Word of drive, READ_VALUE[1] output.

Description: Actual Value 1 mapped in Par. 53.10 - READ_VALUE[2] output

Description: ACT_VALUE2 output

Description: READ_VALUE[1] output

Description: READ_VALUE[2] output

Description: READ_VALUE[3] output

Description: READ_VALUE[4] output

Description: READ_VALUE[5] output

Description: READ_VALUE[6] output

ERR

ERNO

BUSY

ONLINE

WriteErrCnt

LastWriteErno

ReadErrCnt

LastReadErno

MCW

RefValue1

RefValue2

MSW

ActValue1

ACT_VALUE2

DATA_IN1

DATA_IN2

DATA_IN3

DATA_IN4

DATA_IN5

DATA_IN6

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2383

Description: READ_VALUE[7] output

Description: READ_VALUE[8] output

Description: READ_VALUE[9] output

Description: READ_VALUE[10] output

Description: READ_VALUE[11] output

Description: READ_VALUE[12] output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

1.5.6.5 ACS / DCS drives communication via Modbus TCP ext library
To establish the communication to an ACS / DCS drive one of the following two libraries can be
used: ACSDrivesComModTCP_AC500_V22.lib Ä Chapter 1.5.6.4 “ACS / DCS drives communi-
cation via Modbus TCP library” on page 2359 or ACSDrivesComModTCP_Ext_AC500_V24.lib
The ACSDrivesComModTCP_AC500_V22.lib can be used, as long as the CPU does not sup-
port more than one internal Ethernet Interface. And this library must be used, if the Firmware-
version of the CPU is less than V2.4.x.
The ACSDrivesComModTCP_Ext_AC500_V24.lib should be used for new project and if the
Firmware Version of the CPU is at least V2.4.x. It must be used, if a CPU with more than one
internal Ethernet Interface is used, e.g. PM595.

1.5.6.5.1 Preconditions for the use of the ACS / DCS drives communication via Modbus TCP ext library

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

The blocks can only be used in combination with the ACSDrives-
Base_AC500_V20 Library.

DATA_IN7

DATA_IN8

DATA_IN9

DATA_IN10

DATA_IN11

DATA_IN12

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2384

The library is released for the following products:
● CPUs: AC500 and AC500-eCo
● Fieldbus: Modbus TCP
● Drives:ACS800, ACSM1, ACS350, ACS355, ACS550, ACH550, ACQ810, ACS850,

ACS880, ACS580, DCS550, DCS800
● Modbus TCP configuration:

Prior to the use of the function blocks a Communication Module "Modbus_on_TCP_IP" has
to be configured accordingly using Automation Builder, either at "Onboard_Ethernet" or at
"CM597-ETH" module.

● ACS_COM_MOD_TCPx and ACS_COM_MOD_TCPx_ENHANCED:
The communication function blocks are designed to be used each for one specific drive at
runtime. So it´s not recommended to change the COM or SLAVE inputs of the blocks while
the program is running.
There is no check in the function blocks if the maximum number of TCP/IP sockets is
already reached. So the user has to take care about the number of used socket. Each
ACS_COM_MOD_TCP or ACS_COM_MOD_TCP_ENHANCED function block will use one
socket.

1.5.6.5.2 Components of the ACS / DCS drives communication via Modbus TCP ext library

ACS_COM_MOD_TCPx Ä Chapter
1.5.6.5.3.1 “ACS_COM_MOD_TCPx commu-
nication for ACS / DCS drives via Modbus
TCP” on page 2385

Communication for ACS / DCS Drives via
Modbus TCP

ACS_COM_MOD_TCPx_ENHANCED
Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED com-
munication for ACS / DCS drives via Modbus
TCP” on page 2392

Communication for ACS / DCSDrives via
Modbus TCP

ACS_COM_MOD_TCPx_VISU_PH Ä Chapter
1.5.6.5.4.1 “ACS_COM_MOD_TCPx_VISU_PH
faceplate for the function block
ACS_COM_MOD_TCPx” on page 2402

Faceplate for the function block

ACS_COM_MOD_TCPx_ENHANCED_VISU_P
H Ä Chapter 1.5.6.5.4.2
“ACS_COM_MOD_TCPx_ENHANCED_VISU_
PH faceplate for the function block
ACS_COM_MOD_TCPx_ENHANCED”
on page 2405

Faceplate for the function block

1.5.6.5.3 Function blocks
ACS_COM_MOD_TCPx communication for ACS / DCS drives via Modbus TCP

Function blocks

Visualizations

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2385

Function block ACS_COM_MOD_TCPx controls the Modbus TCP communication to an ACS /
DCS drive and is used for the basic control of ACS / DCS drives with ABB Drives profile.

Available in runtime system: V2.4.x

Included in library: ACSDrivesCom-
ModTCP_Ext_AC500_V24_App.lib

Function block type: Function block with historical values.

Function block ACS_COM_MOD_TCPx controls the Modbus TCP communication to an ACS /
DCS drive and is used for the basic control of ACS / DCS drives with ABB Drives profile.

If the user changes drive profile while drive is online with PLC, function block
output’s may give wrong indication.

Reading Status Information from Drive
The function block continuously reads data from the drive starting at Modbus register
400004. So at least the Status Word (SW), Actual Value 1 (SPEED_REF), Actual Value 2
(ACT_VALUE2) are continuously read from the drive and written to the DRIVE_DATA variable.
These values are stored in DRIVE_DATA.MSW, ActValue1 and ActValue2.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Modbus reg-
ister address
in drive

Mapping configuration in drive Written to in
AC500

Condition at
function
blockACS355,

ACS850,
ACQ810,
ACSM1,
ACS880

ACS800 ACS550,
ACH550

Communica-
tion module

FENA-01 / -11 RETA-01 / -02 RETA-01 / -02

40004 Status Word
(SW)

Status Word
(SW) fix

Status Word
51.23 (SW) fix

DRIVE_DATA.
sw

EN = TRUE

40005 Actual Value1 92.02 = Actual
Value1, e.g. =
102 (Speed)

51.24 = Actual
Value1 (fix)

DRIVE_DATA.
actValue1

EN = TRUE

40006 Actual Value2 92.03 = Actual
Value2 e.g. =
105 (Torque)
*)

51.25 = Actual
Value2, e.g.=
105 (Torque)

DRIVE_DATA.
actValue2

EN = TRUE

*) If 51.19 .. 51.22 (Output 1 .. 4) are set to the actual values the Modbus response will be
faster because those values are updated cyclically between RETA-01 and ACS800.

Writing Control Word and Reference Values to Drive

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2386

The function block checks if there are changes of the Control Word (CW), Reference Value 1
(SPEED_REF) or Reference Value 2 (REF_VALUE2) on the DRIVE_DATA variable. If there is
a change a write job is requested to send these 3 values to the ACS drive starting at Modbus
register 40001.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Modbus register
address in drive

Communication module Written to in
AC500

Condition at
function blockACS355,

ACS850,
ACQ810,
ACSM1,
ACS880,
ACS580

ACS800,
ACS550,
ACH550,
DCS550,
DCS800

Communication
module

FENA-01 / -11 RETA-01 / -02

40001 Control Word
(CW)

Control Word
(CW)

DRIVE_DATA.cw EN = TRUE

40002 Reference
Value1

Reference
Value1

DRIVE_DATA.ref
Value1

EN = TRUE

40003 Reference
Value2

Reference
Value2

DRIVE_DATA.ref
Value2

EN = TRUE

If a Modbus job tries to access a register in the drive which has no valid
mapping information the job is aborted with an error. Therefore the drive param-
eters in FBA DATA OUT group have to be configured according to the used
NVAR_WRITE input number.

If 32-bit parameters are mapped to DATA OUT,

– The following field in DATA OUT has to be left open (= 0)
– The word order of the High-Word and Low-Word can be configured in the

drive. If e.g. FENA-x1 is used the configuration is done in Par.51.22.
– The original 32-bit value in AC500 has to be split up in HW and LW in the

WRITE_VALUES array.

Function block DATA OUT has to be configured in drive in the following groups see also
FENA-x1 manual.

Drive Parameter group
ACS355 55.01 .. 55.10

ACS850, ACQ810, ACSM1, ACS880 53.01 .. 53.12

ACS880 53.01 .. 53.02(Fieldbus A), 56.01 .. 56.12
(Fieldbus B)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2387

ACS drive parameters are only saved temporarily, if changed via fieldbus. To
make these changes permanent in the drive the special parameter "PARAM-
ETER SAVE" has to be set. Please see drive manuals and following table which
parameter has to be set.

Save valid parameters to
permanent memory in drive

ACS3XX, ACX550,
ACQ810, ACS850,
ACSM1, ACS800

ACS880,
ACS580

DCS550, DCS800

1 = Saves the valid parameter
values to permanent memory.
0 = Save completed.

Par 16.07 = 1 Par 96.07 = 1 Par 16.06 = 1

Read/Write Jobs Coming from Other Function Blocks
The requests to process other read or write Modbus jobs is transferred via the DRIVE_DATA
variable at the IN_OUT variable DRIVE_DATA which can be connected to several
other read/write function blocks e.g. ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1
“ACS_MOD_READ_N_PRM” on page 2212 or ACS_MOD_WRITE_N_PRM Ä Chapter
1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM” on page 2215 of this drive.
Communication with Several ACS Drives
If several drives are used, for each drive a communication function block such as
ACS_COM_MOD_TCPx or ACS_COM_MOD_TCPx_ENHANCED function block must be pro-
grammed.
The function block provides the basic start/stop signals, basic diagnosis signals and the scaling
of the SPEED_REF input and ACT_SPEED to the ACS fieldbus scaling range. -20000 ..
+20000.

The AC500 CPU types provide different numbers of usable TCP/IP sockets. For
each ACS Modbus TCP communication block (ACS_COM_MOD_TCPx and
ACS_COM_MOD_TCPx_ENHANCED) one socket will be needed. The user
has to check that the programmed number of ACS Modbus TCP communication
blocks is not higher than the number of available free sockets for the used CPU.

Diagnosis
The output ERNO, which reflects an actual error number is only valid for one cycle if DONE and
ERR output are set to TRUE.
To catch this error number an external function must be programmed.
However there are internal diagnosis variables available, which are not shown at any output, but
can be accessed from the function block instance. This can be done in three ways:
● Opening the "+" sign of function block instance in the declaration part being online.
● Create an assignment in the code with <instance>.<diagnosis variable>.
● Create a visualization element of the function block see ACS_COM_MOD_TCPx_VISU_PH.
The additional diagnosis variables are:
● iWriteErrCnt: number of errors in write jobs since EN = TRUE.
● wLastWriteErno: holds the error number of the last executed write job.
● iReadErrCnt: number of errors in read jobs since EN = TRUE.
● wLastReadErno: holds the error number of the last executed read job.
Preconditions
The function block is working with all ACS / DCS drives via Modbus TCP communication with
field bus adapter FENA-X1 / RETA-X1.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2388

The data transfer to other function blocks for this drive communication to the ACS / DCS
drive is realized via the IN_OUTPUT variable DRIVE_DATA, which must be connected to then
ACS_COM_MOD_TCPx even if no other function block is connected.
For ACS drive parameters must be set as follows:

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Setting according to AC500
configuration or function block
input

ACS355 ACS850,
ACQ810,
ACSM1

ACS580,
ACS880

ACS800,
ACS550,
ACH550,
DCS550,
DCS800

Communication module: FENA-01 FENA-11 FENA-11 RETA-01 /
RETA-02

Fieldbus activation = EXT FBA /
ENABLE

98.02 50.01 50.01 98.02

COMM RATE = Auto (0) 51.03 51.03 51.03 51.02

IP CONFIGURATION = Static
IP (0) ! not default ! Set 51.27
(Refresh) after first change to
"Static IP".

51.04 51.04 51.04 51.03

IP ADDRESS1 .. IP ADDRESS4 51.05 .. 51.08 51.05 .. 51.08 51.05 .. 51.08 51.04 ..
51.07 **)

SUBNET CIDR = e.g.
255.255.255.0 = 24

51.09 51.09 51.09 51.08 ..
51.11

GateWay ADDRESS (normally =
0.0.0.0)

51.10 .. 51.13 51.10 .. 51.13 51.10 .. 51.13 51.12 ..
51.15

PROTOCOL / PROFILE =
MB/TCP ABB E (ABB Drives
Profile Classic) (0)

51.02 51.02 51.02 51.16

Word order for 32-bit parameter
access

No 32-bit
access

51.22 51.22 No 32-bit
access

Timeout mode = None(0) or Any
message(1), but not Ctrl write(2)
as these values are only written
after changes

51.21 51.21 Timeout
mode

Modbus Timeout. Depending on
Timeout mode. Value in 100ms.

51.20 51.20 Modbus
timeout

51.17

Refresh settings in drive 51.27 51.27 51.27 51.27

**) For RETA-01/-02 IP address could also be set via hardware DIP switches. If any switch is
set (192.168.0.xxx) with xxx = DIP switches setting.

For further settings, e.g. reaction of drive at communication error, please see related drive and
fieldbus manual.

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2389

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the block is active, the current values are available at the outputs.
After a rising edge (FALSE -> TRUE) of input EN output ONLINE is set to FALSE and parame-
ters are read from the ACS drive.
The processing of continuously read of status information from the drive (SW, ACT_VALUE1
and ACT_VALUE2) and writing of Control Word and Reference Values (CW, SPEED_REF,
REF_VALUE2) after changes to the drive is started.
If EN is reset to FALSE while a Modbus TCP job is performed (BUSY = TRUE), the function
block will be processed until the Modbus TCP job is terminated (DONE = TRUE for 1 cycle).
If EN = FALSE the outputs ONLINE are reset to zero, as well as the data SW, actValue1 and
actValue2 on the DRIVE_DATA variable are reset to zero.

Data type: BYTE
At input SLOT, the Modbus interface number is specified:
SLOT = 1 : internal Ethernet communication module ETH1
SLOT = 2 : internal Ethernet communication module ETH2
SLOT = 11 : SLOT1 (CM597-ETH)
SLOT = 21 : SLOT2 (CM597-ETH)
SLOT = 31 : SLOT3 (CM597-ETH)
SLOT = 41 : SLOT4 (CM597-ETH)
Default value = 1. Valid values = 1, 2, 11, 21, 31, 41

Data type: STRING
IP Address of the drive (slave) to which the connecton shall be established must be specified
here as string. Used with 4 times 3 digits.
Default value: ‘192.168.005.003’

Data type: INT, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM. The input can be
set either by the value directly or by using the enum.

EN (enable)

SLOT (slot)

SLAVE_IP (slave
IP-Address)

DRIVE_TYPE
(drive type)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2390

ENUM Value
ACS_DRIVE_ACS800 1

ACS_DRIVE_ACSM1 2

ACS_DRIVE_ACS350 3

ACS_DRIVE_ACS355 4

ACS_DRIVE_ACS310 5

ACS_DRIVE_ACS550 6

ACS_DRIVE_ACH550 7

ACS_DRIVE_ACQ810 8

ACS_DRIVE_ACS850 9

ACS_DRIVE_ACS880 10

ACS_DRIVE_ACS580 11

ACS_DRIVE_DCS800 12

ACS_DRIVE_DCS550 13

ACS_DRIVE_ACH580 14

ACS_DRIVE_ACS380 15

ACS_DRIVE_ACS480 16

ACS_DRIVE_ACQ580 17

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_TCPx reads the Control Word and references (CW,
SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes the status information
(SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It also receives requests
and data for Modbus jobs from other function blocks e.g. ACS_MOD_READ_N_PRM or
ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

Output description

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2391

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates, whenever there is a communication action performed.

Data type: BOOL
After the first time input EN is set to TRUE and at least one read job and one write job is
performed successfully, output ONLINE is set to TRUE.
Output ONLINE is reset to FALSE after a rising edge of EN or if an error occurs while reading
the status information or writing the Control Word and Reference Values.

ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via Modbus TCP

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

ONLINE (online)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2392

Function block ACS_COM_MOD_TCPx_ENHANCED establishes the Modbus TCP communi-
cation to an ACS drive. This function block is used for the basic control of the ACS drive using
ABB Drives Profile Enhanced .It also reads and writes the drive parameters which are mapped
in the drive.

Available in runtime system: V2.4x

Included in library: ACSDrivesCom-
ModTCP_Ext_AC500_V24_App.lib

Function block type: Function block with historical values.

Function block ACS_COM_MOD_TCPx_ENHANCED establishes the Modbus TCP communi-
cation to an ACS drive and is used for the basic control of ACS drives with ABB Drives Profile
Enhanced.

If the user changes drive profile while drive is online with PLC, function block
output’s may give wrong indication.

Reading Status Information from Drive
The function block continuously reads data from the drive starting at Modbus register
400051. So at least the Status Word (SW), Actual Value 1 (SPEED_REF), Actual Value 2
(ACT_VALUE2) are continuously read from the drive and written to the DRIVE_DATA variable.
These values are stored in DRIVE_DATA.MSW, ActValue1 and ActValue2.
Apart from these three there is also an option to read 12 additional drive parameters. Using the
input NVAR_READ the function block can be configured to read between 0 and 12 parameters
from the drive. All read data is then written to the array at the READ_VALUE output. Configura-
tion in ACS drive is depending of configured parameters in group FBD DATA IN.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Modbus register
address in drive

Mapping configuration in drive Written to in
AC500

Condition at
function block

 ACS355 ACS850,
ACQ810,
ACSM1,
ACS880,
ACS580

400051 Status Word
(SW)

Status Word
(SW)

DRIVE_DATA.sw EN = TRUE

400052 Actual Value1 Actual Value1 DRIVE_DATA.act
Value1

EN = TRUE

400053 Actual Value2 Actual Value2 DRIVE_DATA.act
Value2

EN = TRUE

400054 FBA DATA IN 1 FBA DATA IN 1 READ_VALUES[
1]

EN = TRUE and
NVAR_READ >=
1

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2393

Modbus register
address in drive

Mapping configuration in drive Written to in
AC500

Condition at
function block

400055 FBA DATA IN 2 FBA DATA IN 2 READ_VALUES[
2]

EN = TRUE and
NVAR_READ >=
2

...

400063 FBA DATA IN 10 FBA DATA IN 10 READ_VALUES[
10]

EN = TRUE and
NVAR_READ >=
10

...

400065 FBA DATA IN 12 READ_VALUES[
12]

EN = TRUE and
NVAR_READ =
12

If a Modbus TCP job tries to access a register in the drive which has no valid
mapping information the job is aborted with an error.

Therefore the drive parameters in FBA DATA IN group have to be configured
according to the used NVAR_READ input number.

If 32-bit parameters are mapped to DATA IN,

– The following field in DATA IN has to be left open (= 0)
– The word order of the High-Word and Low-Word can be configured in the

drive. (using FENA-X1: Par. 51.22)
– To retrieve the original 32-bit value from the drive in AC500 the HW and LW

from READ_VALUES fields have to be recombined in the program.

Function block DATA IN has to be configured in drive in the following groups see also FSCA-01
manual.

Drive Parameter group
ACS355 54.01 .. 54.10

ACS850, ACQ810, ACSM1, ACS880,
ACS580

52.01 .. 52.12 52.01 .. 52.12 if installed as
adapter A

Writing Control Word and Reference Values to Drive
The function block checks if there are changes of the Control Word (CW), Reference Value 1
(SPEED_REF) or Reference Value 2 (REF_VALUE2) on the DRIVE_DATA variable. If there is
a change a write job is requested to send these 3 values to the ACS drive starting at Modbus
register 400001.
Apart from these three parameters there is also an option to write additional 12 more drive
parameters in the same Modbus job. Using the input NVAR_WRITE the function block can be
configured to write between 0 and 12 more parameters to the drive. The necessary values have
to present in the array connected to WRITE_VALUES input.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area from where the data in the AC500 is taken.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2394

Modbus register
address in drive

Mapping configuration in drive Written to in
AC500

Condition at
function block

 ACS355 ACS850,
ACQ810,
ACSM1,
ACS880,
ACS580

400001 Control Word
(CW)

Control Word
(CW)

DRIVE_DATA.cw EN = TRUE

400002 Reference
Value1

Reference
Value1

DRIVE_DATA.ref
Value1

EN = TRUE

400003 Reference
Value2

Reference
Value2

DRIVE_DATA.ref
Value2

EN = TRU

400004 FBA DATA OUT
1

FBA DATA OUT
1

READ_VALUES[
1]

EN = TRUE and
NVAR_WRITE
>= 1

400005 FBA DATA OUT
2

FBA DATA OUT
2

READ_VALUES[
2]

EN = TRUE and
NVAR_WRITE
>= 2

...

400013 FBA DATA OUT
10

FBA DATA OUT
10

READ_VALUES[
10]

EN = TRUE and
NVAR_WRITE
>= 10

...

400015 FBA DATA OUT
12

READ_VALUES[
12]

EN = TRUE and
NVAR_WRITE
>= 12

If a Modbus TCP job tries to access a register in the drive which has no valid
mapping information the job is aborted with an error.

Therefore the drive parameters in FBA DATA OUT group have to be configured
according to the used NVAR_WRITE input number.

If 32-bit parameters are mapped to DATA OUT,

– The following field in DATA OUT has to be left open (= 0)
– The word order of the High-Word and Low-Word can be configured in the

drive. (using FENA-X1: Par. 51.22)
– To retrieve the original 32-bit value from the drive in AC500 the HW and LW

from WRITE_VALUES fields have to be recombined in the program.

Function block DATA OUT has to be configured in drive in the following groups see also
FENA-X1 manual.

Drive Parameter group
ACS355 55.01 .. 55.10

ACS850, ACQ810, ACSM1, ACS580,
ACS880

53.01 .. 53.12 53.01 .. 53.12 if installed as
adapter A

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2395

ACS drive parameters are only saved temporarily, if changed via fieldbus. To
make these changes permanent in the drive the special parameter "PARAM-
ETER SAVE" has to be set.

Please see drive manuals and following table which parameter has to be set.

Save valid parameters to
permanent memory in drive

ACS3XX, ACQ810, ACS850,
ACSM1

ACS880, ACS580

1 = Saves the valid parameter
values to permanent memory.
0 = Save completed.

Par 16.07 = 1 Par 96.07 = 1

Read/Write Jobs Coming from Other Function Blocks
The requests to process other read or write Modbus jobs is transferred via the DRIVE_DATA
variable at the IN_OUT variable DRIVE_DATA which can be connected to several
other read/write function blocks e.g. ACS_MOD_READ_N_PRM Ä Chapter 1.5.6.2.4.1
“ACS_MOD_READ_N_PRM” on page 2212 or ACS_MOD_WRITE_N_PRM Ä Chapter
1.5.6.2.4.2 “ACS_MOD_WRITE_N_PRM” on page 2215 of this drive.
Communication with several ACS Drives
If several drives are used, for each drive a communication function block such as
ACS_COM_MOD_TCPx_ENHANCED or ACS_COM_MOD_TCPx function block must be pro-
grammed.
The function block provides the basic start/stop signals, basic diagnosis signals and the
scaling of the SPEED_REF input and ACT_SPEED to the ACS fieldbus scaling range -20000 ..
+20000.

The AC500 CPU types provide different numbers of usable TCP/IP sockets. For
each ACS Modbus TCP communication block (ACS_COM_MOD_TCPx and
ACS_COM_MOD_TCPx_ENHANCED) one socket will be needed.

The user has to check that the programmed number of ACS_COM_MOD_TCPx
or ACS_COM_MOD_TCPx_ENHANCED communication blocks is not higher
than the number of available free sockets for the used CPU.

Diagnosis
The output ERNO, which reflects an actual error number is only valid for one cycle if DONE and
ERR output are set to TRUE.
To catch this error number an external function must be programmed.
However there are internal diagnosis variables available, which are not shown at any output, but
can be accessed from the function block instance. This can be done in three ways:
● Opening the "+" sign of function block instance in the declaration part being online.
● Create an assignment in the code with <instance>.<diagnosis variable>.
● Create a visualization element of the function block

see ACS_COM_MOD_TCPx_ENHANCED_VISU_PH Ä Chapter 1.5.6.5.4.2
“ACS_COM_MOD_TCPx_ENHANCED_VISU_PH faceplate for the function block
ACS_COM_MOD_TCPx_ENHANCED” on page 2405.

The additional diagnosis variables are:

iWriteErrCnt: number of errors in write jobs since EN = TRUE
wLastWriteErno: holds the error number of the last executed write job

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2396

iReadErrCnt: number of errors in read jobs since EN = TRUE
wLastReadErno: holds the error number of the last executed read job

Preconditions
The function block is working with all ACS drives via Modbus TCP communication with field bus
adapter FENA-X1.
The data transfer to other function blocks for this drive communication to the ACS
drive is realized via the IN_OUTPUT variable DRIVE_DATA, which must be connected to
ACS_COM_MOD_TCPx_ENHANCED even if no other function block is connected.
The following ACS drive parameters have to be set according to the configuration of the
Modbus line and the inputs of the function block.

Please refer the respective drives / fieldbus module manual for parameter set-
ting, if the drive setting is not mentioned in below table.

Setting according to
AC500 configuration
or function block
input

ACS355 ACS850,
ACQ810,
ACSM1,

ACS880,
ACS580

ACX550,
ACS800,
DCS550,
DCS800

Communication
module:

FENA-01 FENA-11 FENA-11 ENHANCED not
possible with
RETA-0X

Fieldbus activation =
EXT FBA

98.02 50.01 50.01

COMM RATE = Auto
(0)

51.03 51.03 51.03

IP CONFIGURATION
= Static IP (0) ! not
default ! Set 51.27
(Refresh) after first
change to "Static IP".

51.04 51.04 51.04

IP ADDRESS1 .. IP
ADDRESS4

51.05 .. 51.08 51.05 .. 51.08 51.05 .. 51.08

SUBNET CIDR = e.g.
255.255.255.0 = 24

51.09 51.09 51.09

PROTOCOL / PRO-
FILE = MB/TCP ABB
E (ABB Drives Profile
Enhanced) (1)

51.02 51.02 51.02

Word order for 32-bit
parameter access

No 32-bit
access

51.22 51.22

Timeout mode =
None(0) or Any mes-
sage(1), but not Ctrl
write(2) as these
values are only written
after changes

51.21 51.21 Timeout mode

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2397

Setting according to
AC500 configuration
or function block
input

ACS355 ACS850,
ACQ810,
ACSM1,

ACS880,
ACS580

ACX550,
ACS800,
DCS550,
DCS800

Modbus Timeout.
Depending on Timeout
mode. Value in 100ms.

51.20 51.20 Modbus timeout

Refresh settings in
drive

51.27 51.27 51.27

For further settings, e.g. reaction of drive at communication error, please see related drive and
fieldbus manual.
Please refer FENA-X1 Ethernet adapter manual for more information.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the block is active, the current values are available at the outputs.
After a rising edge (FALSE -> TRUE) of input EN output ONLINE is set to FALSE and parame-
ters are read from the ACS drive.
After successfully reading and writing of the ACS parameters, output ONLINE is set to TRUE.
The processing of continuously read of status information from the drive (SW, ACT_VALUE1
and ACT_VALUE2) and writing of Control Word and Reference Values (CW, SPEED_REF,
REF_VALUE2) after changes to the drive is started.
If EN is reset to FALSE while a Modbus job is performed (BUSY = TRUE), the function block will
be processed until the Modbus job is terminated (DONE = TRUE for 1 cycle).
If EN = FALSE the outputs ONLINE are reset to zero, as well as the data SW, actValue1 and
actValue2 on the DRIVE_DATA variable are reset to zero. The elements of the READ_VALUES
array are also reset to zero.

Data type: BYTE
At input SLOT, the Modbus interface number is specified:
SLOT = 1 : internal Ethernet communication module ETH1

EN (enable)

SLOT (slot)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2398

SLOT = 2 : internal Ethernet communication module ETH2
SLOT = 11 : SLOT1 (CM597-ETH)
SLOT = 21 : SLOT2 (CM597-ETH)
SLOT = 31 : SLOT3 (CM597-ETH)
SLOT = 41 : SLOT4 (CM597-ETH)
Default value = 1. Valid values = 1, 2, 11, 21, 31, 41

Data type: STRING
IP Address of the drive (slave) to which the connecton shall be established must be specified
here as string. Used with 4 times 3 digits.
Default value: ‘192.168.005.003’

Data type: INT, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM. The input can be
set either by the value directly or by using the enum.

ENUM Value
ACS_DRIVE_ACS800 1

ACS_DRIVE_ACSM1 2

ACS_DRIVE_ACS350 3

ACS_DRIVE_ACS355 4

ACS_DRIVE_ACS310 5

ACS_DRIVE_ACS550 6

ACS_DRIVE_ACH550 7

ACS_DRIVE_ACQ810 8

ACS_DRIVE_ACS850 9

ACS_DRIVE_ACS880 10

ACS_DRIVE_ACS580 11

ACS_DRIVE_DCS800 12

ACS_DRIVE_DCS550 13

ACS_DRIVE_ACH580 14

ACS_DRIVE_ACS380 15

ACS_DRIVE_ACS480 16

ACS_DRIVE_ACQ580 17

Data type: BYTE
With the input NVAR_READ the function block can be configured to read between 1 and
12 signals from the drive. All read data is written to the array at the READ_VALUE output.
Configuration in ACS drive is depending of configured parameters in group FBD DATA IN in
drive
Default value = 0. Minimum 0, Maximum 12.

SLAVE_IP (slave
IP-Address)

DRIVE_TYPE
(drive type)

NVAR_READ
(number of vari-
ables for
reading)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2399

To read/write "one" 32-bit data, the NVAR should be equal to 2. Accordingly
this has to be followed if we want to read/write more than one data. The
user has to check that the programmed number of ACS_COM_MOD_TCPx or
ACS_COM_MOD_TCPx_ENHANCED communication blocks is not higher than
the number of available free sockets for the used CPU.

Data type: BYTE
The internal Modbus write job writes 3 + NVAR_WRITE words starting from Modbus register
address 400001 to the drive, every time a change in those variables is detected.
With the input NVAR_WRITE the function block can be configured to write between 0 and 12
variables more to the drive in addition to the 3 controls (CW, ref1 and ref2). These are always
written to Modbus registers addresses 400001 .. 400003 if changed.
If NVAR_WRITE input is set to e.g. 5 the internal write job addresses the Modbus registers from
400001 .. 400008.
The first 3 signals are always the Control Word (CW), Reference value1 and Reference value2
and will be taken from the DRIVE_DATA variable.
The additional NVAR_WRITE data will be taken from the array at the WRITE_VALUES input.
Default value = 0. Minimum 0, Maximum 12.

Data type: ARRAY[1..12] OF INT
The values from the array at input WRITE_VALUE will be written to Modbus registers 400004
400015 in the drive. The number of data written to the drive is specified at the input
NVAR_WRITE.
See table in chapter Writing Control Word and Reference Values to the drive for information
about how to configure the drive.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.
The function block ACS_COM_MOD_TCPx_ENHANCED reads the Control Word and ref-
erences (CW, SPEED_REF, REF_VALUE2) from the DRIVE_DATA variable and writes
the status information (SW, ACT_SPEED, ACT-VALUE2) to the DRIVE_DATA variable. It
also receives requests and data for Modbus TCP jobs from other function blocks e.g.
ACS_MOD_READ_N_PRM or ACS_MOD_WRITE_N_PRM via the DRIVE_DATA variable.

NVAR_WRITE
(number of vari-
ables for
writing)

WRITE_VALUES
(write values to
mapped param-
eters in drive
group
DATA_OUT)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2400

Output description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output BUSY indicates whenever there is a communication action performed.

Data type: BOOL
After the first time input EN is set to TRUE and at least one read job and one write job is
performed successfully, output ONLINE is set to TRUE.
Output ONLINE is reset to FALSE after a rising edge of EN or if an error occurs while reading
the status information or writing the Control Word and Reference Values.

Data type: ARRAY[1..12] OF INT
At output READ_VALUES the values of the array are updated after the read status information
job was terminated successfully (DONE = TRUE, ERR = FALSE, BUSY = FALSE).

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

ONLINE (online)

READ_VALUES
(array of read
values)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2401

The read status information job is requested cyclically. It reads data from the ACS drive starting
at Modbus register 400051 up to the number specified at input 3 + NVAR_READ
READ_VALUES contains the data as follows:
READ_VALUES[1] = <Modbus register 400054>
READ_VALUES[2] = <Modbus register 400055>
...
READ_VALUES[12] = <Modbus register 400065>.

1.5.6.5.4 Visualization
ACS_COM_MOD_TCPx_VISU_PH faceplate for the function block ACS_COM_MOD_TCPx

Visualization element ACS_COM_MOD_TCPx_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_COM_MOD_TCPx Ä Chapter
1.5.6.5.3.1 “ACS_COM_MOD_TCPx communication for ACS / DCS drives via Modbus TCP”
on page 2385 function block which instance was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V2.4

Included in library: ACSDrivesComModTCP_Ext_AC500_V24.lib

Visualization element ACS_COM_MOD_TCPx_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an ACS_COM_MOD_TCPx Ä Chapter
1.5.6.5.3.1 “ACS_COM_MOD_TCPx communication for ACS / DCS drives via Modbus TCP”
on page 2385function block which instance was used to replace the placeholder FB.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2402

All inputs of that ACS_COM_MOD_TCPx Ä Chapter 1.5.6.5.3.1 “ACS_COM_MOD_TCPx com-
munication for ACS / DCS drives via Modbus TCP” on page 2385 function block which are not
connected to a variable (left open) can be written from this faceplate. So the function block
can be controlled from the visualization as long as the inputs are left open. The DRIVE_DATA
variable must be connected to the function block.

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1, 2, 11, 21, 31, 41
Description: SLOT (module number) of the communication module

Access via: Text
Description: Slave address

EN

SLOT

IP_ADDRESS

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2403

Access via: Numpad 1 ..17
Description: DRIVE_TYPE input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drivel.FB_COM

Access R
Description: Control Word to the drive

Description: Reference value 1 to the drive

Description: Reference value 2 to the drive

Description: DONE output.

Description: ERR output.

Description: ERNO output.

Description: BUSY output.

Description: ONLINE output

Description: Numbers of write errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last write job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Numbers of read errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last read job. See error messages of ETH_MOD_MAST func-
tion block.

DRIVE_TYPE

MCW

RefValue1

RefValue2

DONE

ERR

ERNO

BUSY

ONLINE

WriteErrCnt

LastWriteErno

ReadErrCnt

LastReadErno

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2404

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_COM_MOD_TCPx_ENHANCED_VISU_PH faceplate for the function block
ACS_COM_MOD_TCPx_ENHANCED

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2405

Visualization element ACS_COM_MOD_TCPx_ENHANCED_VISU_PH can be used
to show the actual values of all inputs and outputs of the
instance of an ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2392 function block which instance was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V2.4.x

Included in library: ACSDrivesCom-
ModTCP_Ext_AC500_V24_App.lib

Visualization element ACS_COM_MOD_TCPx_ENHANCED_VISU_PH can be used
to show the actual values of all inputs and outputs of the
instance of an ACS_COM_MOD_TCPx_ENHANCED Ä Chapter 1.5.6.5.3.2
“ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via Modbus TCP”
on page 2392 function block which instance was used to replace the placeholder FB.
All inputs of that ACS_COM_MOD_TCPx_ENHANCED function block, which are not connected
to a variable (left open) can be written from this faceplate. So the function block can be
controlled from the visualization as long as the inputs are left open. The DRIVE_DATA variable
must be connected to the function block.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2406

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Numpad 1, 2, 11, 21, 31, 41
Description: SLOT (module number) of the communication module

Access via: Text
Description: Slave address

Access via: Numpad 1 ..17

EN

SLOT

IP_ADDRESS

DRIVE_TYPE

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2407

Description: DRIVE_TYPE input

Access via: Numpad 0 .. 12
Description: NVAR_READ input

Access via: Numpad 0 .. 12
Description: NVAR_WRITE input

Description: WRITE_VALUE[1] input

Description: WRITE_VALUE[2] input

Description: WRITE_VALUE[3] input

Description: WRITE_VALUE[4] input

Description: WRITE_VALUE[5] input

Description: WRITE_VALUE[6] input

Description: WRITE_VALUE[7] input

Description: WRITE_VALUE[8] input

Description: WRITE_VALUE[9] input

Description: WRITE_VALUE[10] input

Description: WRITE_VALUE[11] input

Description: WRITE_VALUE[12] input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drivel.FB_COM

Access R
Description: DONE output.

Description: ERR output.

NVAR_READ

NVAR_WRITE

DATA_OUT1

DATA_OUT2

DATA_OUT3

DATA_OUT4

DATA_OUT5

DATA_OUT6

DATA_OUT7

DATA_OUT8

DATA_OUT9

DATA_OUT10

DATA_OUT11

DATA_OUT12

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2408

Description: ERNO output.

Description: BUSY output.

Description: ONLINE output

Description: Numbers of write errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last write job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Numbers of read errors since EN = TRUE, is reset to 0 with rising edge of EN.

Description: Error number of the last read job. See error messages of ETH_MOD_MAST func-
tion block.

Description: Control Word to the drive

Description: Reference value 1 to the drive

Description: Reference value 2 to the drive

Description: Status Word of drive, READ_VALUE[1] output.

Description: Actual Value 1 mapped in Par. 53.10 - READ_VALUE[2] output

Description: ACT_VALUE2 output

Description: READ_VALUE[1] output

Description: READ_VALUE[2] output

Description: READ_VALUE[3] output

Description: READ_VALUE[4] output

Description: READ_VALUE[5] output

Description: READ_VALUE[6] output

Description: READ_VALUE[7] output

ERNO

BUSY

ONLINE

WriteErrCnt

LastWriteErno

ReadErrCnt

LastReadErno

MCW

RefValue1

RefValue2

MSW

ActValue1

ACT_VALUE2

DATA_IN1

DATA_IN2

DATA_IN3

DATA_IN4

DATA_IN5

DATA_IN6

DATA_IN7

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2409

Description: READ_VALUE[8] output

Description: READ_VALUE[9] output

Description: READ_VALUE[10] output

Description: READ_VALUE[11] output

Description: READ_VALUE[12] output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

1.5.6.6 ACS / DCS Drives communication via PROFIBUS

1.5.6.6.1 Preconditions for the use of the ACS / DCS drives communication via PROFIBUS library

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

The blocks can only be used in combination with the ACSDrives-
Base_AC500_V20 Library.

The library is released for the following products:
● CPUs: AC500
● Fieldbus: PROFIBUS
● Drives: ACS800, ACSM1, ACS355, ACS550, ACH550, ACQ810, ACS850, ACS880,

ACS580, DCS550, DCS800
● PROFIBUS configuration:

Prior to the use of the function blocks PROFIBUS Communication Module has to be config-
ured accordingly using Automation Builder, at "Interfaces".

DATA_IN8

DATA_IN9

DATA_IN10

DATA_IN11

DATA_IN12

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2410

If the ACS_PB_READ_N_PRM_DPV1 function blocks are used at the same
time the DriveManager is connecting, refreshing or writing variables, it might
come to an error on either the ACS_PB_READ_N_PRM_DPV1 block or the
DriveManager.

The DriveManager might be disconnected!

1.5.6.6.2 Components of the ACS / DCS drives communication via PROFIBUS library

ACS_COM_PB Ä Chapter 1.5.6.6.3.1
“ACS_COM_PB communication block via
PROFIBUS” on page 2412

Basic communication block for ABB / DCS
drives via PROFIBUS DP using FBPA-01 or
RPBA-01 communication modules including
direct access for PZD1..3

ACS_COM_PB_PZD Ä Chapter 1.5.6.6.3.2
“ACS_COM_PB_PZD communication block
for direct access to PZD4..12” on page 2415

Communication block, which gives direct
access for PZD4..12

ACS_PB_READ_PRM_DPV0 Ä Chapter
1.5.6.6.3.3 “ACS_PB_READ_PRM_DPV0
read parameters from ABB drives via
PROFIBUS DPV0” on page 2420

Read a parameter from drive via PROFIBUS
DPV0 (using PKWs) - only for PPO-Types
PPO 1, 2, 5 or 7

ACS_PB_WRITE_PRM_DPV0 Ä Chapter
1.5.6.6.3.4 “ACS_PB_WRITE_PRM_DPV0”
on page 2423

Write a parameter to drive via PROFIBUS
DPV0 (using PKWs) - only for PPO-Types
PPO 1, 2, 5 or 7

ACS_PB_READ_N_PRM_DPV1 Ä Chapter
1.5.6.6.3.5 “ACS_PB_N_READ_PRM_DPV1
read parameters from ABB drives via
PROFIBUS DPV1” on page 2425

This function block reads up to 37 parame-
ters from an ACS / DCS drive via PROFIBUS
DPV1 in a single query.

ACS_PB_WRITE_N_PRM_DPV1 Ä Chapter
1.5.6.6.3.6 “ACS_PB_N_WRITE_PRM_DPV1
write parameters from ABB drives via
PROFIBUS DPV1” on page 2431

This function block writes up to 37 parameters
to an ACS / DCS drive via PROFIBUS DPV1
in a single query.

ACS_COM_PB_VISU_PH Ä Chapter
1.5.6.6.4.1 “ACS_COM_PB_VISU_PH visuali-
zation to run the ACS_COM_PB function block.”
on page 2438

Visualization to run the ACS_COM_PB func-
tion block.

ACS_COM_PB_PZD_VISU_PH Ä Chapter
1.5.6.6.4.2 “ACS_COM_PB_PZD_VISU_PH
visualization to run the ACS_COM_PB_PZD
function block.” on page 2440

Visualization to run the ACS_COM_PB_PZD
function block.

ACS_PB_READ_PRM_DPV0_VISU_PH
Ä Chapter 1.5.6.6.4.3
“ACS_PB_READ_PRM_DPV0_VISU_PH vis-
ualization to run the
ACS_PB_READ_PRM_DPV0 function block.”
on page 2444

Visualization to run the
ACS_PB_READ_PRM_DPV0 function block.

ACS_PB_WRITE_PRM_DPV0_VISU_PH
Ä Chapter 1.5.6.6.4.4
“ACS_PB_WRITE_PRM_DPV0_VISU_PH
visualization to run the
ACS_PB_WRITE_PRM_DPV0 function block.”
on page 2445

Visualization to run the
ACS_PB_WRITE_PRM_DPV0 function
block.

Function blocks

Visualizations

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2411

ACS_PB_READ_N_PRM_DPV1_VISU_PH
Ä Chapter 1.5.6.6.4.5
“ACS_PB_READ_N_PRM_DPV1_VISU_PH
visualization to run the
ACS_PB_READ_N_PRM_DPV1 function
block.” on page 2447

Visualization to run the
ACS_PB_READ_N_PRM_DPV1 function
block.

ACS_PB_WRITE_N_PRM_DPV1_VISU_PH
Ä Chapter 1.5.6.6.4.6
“ACS_PB_WRITE_N_PRM_DPV1_VISU_PH
visualization to run the
ACS_PB_WRITE_N_PRM_DPV1 function
block.” on page 2449

Visualization to run the
ACS_PB_WRITE_N_PRM_DPV1 function
block.

ACS_VERSION_INFOR-
MATION

Stores all the version information of the file along with the change
log. No variable is declared inside this section.

1.5.6.6.3 Function blocks
ACS_COM_PB communication block via PROFIBUS

Function block ACS_COM_PB provides a PROFIBUS interface to the cyclic exchanged process
data (PZD) of the PROFIBUS. It includes the handshake to READ/WRITE single parameters via
PKWs variables for PPO-Types, that include PKWs (only in DPV0).

Available in runtime system: V2.4

Included in library: ACSDrivesComPB_AC500_V24.lib

Function block type: Function block with historical values.

Function block ACS_COM_PB provides a PROFIBUS interface to the cyclic exchanged process
data (PZD) of the PROFIBUS. It includes the handshake to read / write single parameters via
PKWs variables for PPO-Types that include PKWs (only in DPV0).
ACS and DCS drives offer different telegram types in their GSD file for cyclic data transmission.
These different telegrams are so called Parameter Process Data Object (PPO). Each PPO
contains a Process Data channel (PZD) and sometimes (only for DPV0) also a Parameter
channel (PKW). (For more details refer to FPBA-01 or RPBA-01 PROFIBUS DP user manual.)
To READ / WRITE single parameters via PKWs, the separate blocks
ACS_PB_READ_PRM_DPV0 and ACS_PB_WRITE_PRM_DPV0 can be used and therefore
must be connected to the same DRIVE_DATA variable as the ACS_COM_PB.
For PROFIBUS the following function blocks can only be used together with this ACS_COM_PB
block:
● ACS_COM_PB_PZD
● ACS_PB_READ_PRM_DPV0
● ACS_PB_WRITE_PRM_DPV0

Global variables

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2412

● ACS_DRIVES_CTRL_STANDARD
● ACS_DRIVES_CTRL_ENG
● ACS3XX_DRIVES_CTRL_BASIC
● DCS_DRIVES_CTRL
In the Automation Builder configuration one of the PPO types 1..8 with predefined number of
PKW and PZDs has to be selected. ADR_IN and ADR_OUT inputs of the function block need
to be connected to the address of the first input process variable, and to the address of the first
output variable respectively.

For parameter setting inside drive, please refer the respective drives / fieldbus
module manual for parameter setting.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
It enables function block processing.
The function block is not processed, if input EN = FALSE.
While input is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type: INT
At the input PPO_TYPE the configured PPO-Type must be set.
E.g., if PPO-Type 5 is configured the input PPO_TYPE must be set to 5.

Data type: ENUM, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM or INT. (Please refer
ACS_DRIVE_ENUM for details.) The input can be set either by the value directly or by using the
enum.

Data type: POINTER TO WORD
Address of the first process input variable (PZD).

EN (enable)

PPO_TYPE
(parameter
process data
object type)

DRIVE_TYPE
(drive type)

ADR_IN
(ADR_IN)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2413

(PKW0 or PZD0 if no PKW is available in the PPO-Type).
With this address and the correct input PPO_TYPE, all other variables can be
accessed directly via the function block ACS_COM_PB_PZD and a drives control block
(e.g. ACS_DRIVES_CTRL_STANDARD, DCS_DRIVES_CTRL, ACS_DRIVES_CTRL_ENG,
ACS3XX_DRIVES_CTRL_BASIC). So the configuration of input and output variables can be
reduced to the first variable only.

Data type: POINTER TO WORD
Address of the first process output variable (PZD).
(PKW0 or PZD0 if no PKW is available in the PPO-Type).
With this address and the correct input PPO_TYPE, all other variables can be
accessed directly via the function block ACS_COM_PB_PZD and a drives control block
(e.g. ACS_DRIVES_CTRL_STANDARD, DCS_DRIVES_CTRL, ACS_DRIVES_CTRL_ENG,
ACS3XX_DRIVES_CTRL_BASIC). So the configuration of input and output variables can be
reduced to the first variable only.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.

Output description

Data type: BOOL
Output DONE indicates the processing state of the block.
If DONE = FALSE, the function block is not processed due to EN = FALSE and all outputs are
set to 0.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD

ADR_OUT
(ADR_OUT)

DRIVE_DATA
(drive data)

DONE (done)

ERR (error)

ERNO (error
number)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2414

Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in a separate table of Error
Messages (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
Output BUSY = TRUE is indicating that the function block is enabled.
In case of an error of this block, the BUSY output will be set to FALSE while ERR = TRUE. In
case of a read / write error of a function block that is attached to the DRIVE_DATA variable, the
BUSY will stay TRUE and ERR = TRUE.

AcsComPb (EN := xAcsComPb_EN,

PPO_TYPE := iAcsComPb_Ppo_Type,

DRIVE_TYPE := iAcsComPb_Drive_Type,

ADR_IN := ADR(pAcsComPb_AdrIn),

ADR_OUT := ADR(pAcsComPb_AdrOut),

 DRIVE_DATA :=
AcsComPb_DriveData);

xAcsComPb_Done := AcsComPb.DONE;
xAcsComPb_Err := AcsComPb.ERR;
wAcsComPb_Erno := AcsComPb.ERNO;
xAcsComPb_Busy := AcsComPb.Busy

ACS_COM_PB_PZD communication block for direct access to PZD4..12

BUSY (busy)

Calling of
ACS_COM_PB
in ST

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2415

Function block ACS_COM_PB_PZD gives direct access to the PZD 4 .. 12. It must be used
together with ACS_COM_PB function block.

Available in runtime system: V2.4 and above

Included in library: ACSDrivesComPB_AC500_V24.lib

Function block type: Function block with historical values.

Function block ACS_COM_PB_PZD gives direct access to the PZD 4 .. 12. User can use PZD
4 to 12 IN and OUT to read and write PZD parameters with ease. Therefore the DRIVE_DATA
variable must be connected to the related ACS_COM_PB function block.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the function block is active, the current values are available at the outputs.
If the function block is deactivated (EN = FALSE), then all outputs are reset to zero.

Data type: WORD
Process Data word to drive
Available with PPO_Type: 2,4,5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 2,4,5,6,7,8

Function block
information

Block descrip-
tion

EN (enable)

PZD_OUT4 (PZD
output 4)

PZD_OUT5 (PZD
output 5)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2416

Data type: WORD
Process Data word to drive
Available with PPO_Type: 2,4,5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 7,8

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.

PZD_OUT6 (PZD
output 6)

PZD_OUT7 (PZD
output 7)

PZD_OUT8 (PZD
output 8)

PZD_OUT9 (PZD
output 9)

PZD_OUT10
(PZD output 10)

PZD_OUT11
(PZD output 11)

PZD_OUT12
(PZD output 12)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2417

Output description

Data type: BOOL
Output DONE indicates the processing state of the function block.
The DONE remains TRUE as long as the EN is TRUE.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in a separate table of Error
Messages (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: WORD
Process Data word to drive
Available with PPO_Type: 2,4,5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 2,4,5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 2,4,5,6,7,8

DONE (done)

ERR (error)

ERNO (error
number)

PZD_IN4 (PZD
input 4)

PZD_IN5 (PZD
input 5)

PZD_IN6 (PZD
input 6)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2418

Data type: WORD
Process Data word to drive
Available with PPO_Type: 5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 5,6,7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 7,8

Data type: WORD
Process Data word to drive
Available with PPO_Type: 7,8

AcsComPbPzd (EN := xAcsComPbPzd_En,

PZD_OUT4 := wAcsComPbPzd_PzdOut4,

PZD_OUT5 := wAcsComPbPzd_PzdOut5,

PZD_OUT6 := wAcsComPbPzd_PzdOut6,

PZD_OUT7 := wAcsComPbPzd_PzdOut7,

PZD_OUT8 := wAcsComPbPzd_PzdOut8,

PZD_OUT9 := wAcsComPbPzd_PzdOut9,

PZD_OUT10 := wAcsComPbPzd_PzdOut10,

PZD_IN7 (PZD
input 7)

PZD_IN8 (PZD
input 8)

PZD_IN9 (PZD
input 9)

PZD_IN10 (PZD
input 10)

PZD_IN11 (PZD
input 11)

PZD_IN12 (PZD
input 12)

Calling of
ACS_COM_PB_
PZD in ST

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2419

PZD_OUT11 := wAcsComPbPzd_PzdOut11,

PZD_OUT12 := wAcsComPbPzd_PzdOut12,

DRIVE_DATA := AcsComPbPzd_DriveData);

xAcsComPbPzd_Done := AcsComPbPzd.DONE;
xAcsComPbPzd_Err := AcsComPbPzd.ERR;
wAcsComPbPzd_Erno := AcsComPbPzd.ERNO;
wAcsComPbPzd_PzdIn4 := AcsComPbPzd.PZDIN4 ;
wAcsComPbPzd_PzdIn5 := AcsComPbPzd.PZDIN5 ;
wAcsComPbPzd_PzdIn6 := AcsComPbPzd.PZDIN6 ;
wAcsComPbPzd_PzdIn7 := AcsComPbPzd.PZDIN7 ;
wAcsComPbPzd_PzdIn8 := AcsComPbPzd.PZDIN8 ;
wAcsComPbPzd_PzdIn9 := AcsComPbPzd.PZDIN9 ;
wAcsComPbPzd_PzdIn10 := AcsComPbPzd.PZDIN10 ;
wAcsComPbPzd_PzdIn11 := AcsComPbPzd.PZDIN11 ;
wAcsComPbPzd_PzdIn12 := AcsComPbPzd.PZDIN12 ;

ACS_PB_READ_PRM_DPV0 read parameters from ABB drives via PROFIBUS DPV0

Function block ACS_PB_READ_PRM_DPV0 is used to read parameters from ACS / DCS drive
using PROFIBUS communication via PKW. It must be used together with ACS_COM_PB func-
tion block.

Available in runtime system: V2.4 and above

Included in library: ACSDrivesComPB_AC500_V24.lib

Function block type: Function block with historical values.

If the ACS_PB_READ_N_PRM_DPV1 function block is used at the same time
the DriveManager is connecting, refreshing or writing variables it might come to
an error on either the ACS_PB_READ_N_PRM_DPV1 block or the DriveMan-
ager.

Function block ACS_PB_READ_PRM_DPV0 reads one drive parameter using PROFIBUS
DPV0 communication via PKW especially for ABB Drives. This function block works only with
PPO types that contains the PKW part (e.g. PPO 1, 2, 5 or 7.)

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2420

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
It enables function block processing.
The function block is not processed if input EN = FALSE.
While input is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Data type: WORD
Input PRM_NUM is the parameter number in the drive which will be read. The parameter
number is calculated from group number and index.
Parameter: 2 digits = group, 2 digit = index, e.g. Par 20.06 = 2006

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.

Output description

EN (enable)

PRM_NUM
(parameter
number)

DRIVE_DATA
(drive data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2421

Data type: BOOL
Output DONE indicates the processing of the function block. If DONE = FALSE, the function
block is not processed due to EN = FALSE and all outputs are set to 0.
For that reason, the other outputs always have to be considered together with output DONE. All
other outputs are only valid, if DONE = TRUE.
DONE is set to TRUE for one cycle. For that reason, the output always has to be considered
together with output ERR. If ERR is TRUE, an error occurred. In this case, the error number can
be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in a separate table of Error
Messages (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
Output BUSY = TRUE indicates, that the read job requested by the function block is being
processed.

Data type: DINT
Parameter value of the READ parameter

AcsPBReadPrmDpv0 (EN :=
xAcsPBReadPrmDpv0_En,

 PRM_NUM := wAcsPBReadPrmDpv0_PrmNum,

 DRIVE_DATA := AcsPBReadPrmDpv0_DriveData);

xAcsPBReadPrmDpv0_Done := AcsPBReadPrmDpv0.DONE;
xAcsPBReadPrmDpv0_Err := AcsPBReadPrmDpv0.ERR;
xAcsPBReadPrmDpv0_Busy := AcsPBReadPrmDpv0.BUSY;
diAcsPBReadPrmDpv0_Value := AcsPBReadPrmDpv0.VALUE;

DONE (done)

ERR (error)

ERNO (error
number)

BUSY (busy)

VALUE (value)

Calling of
ACS_PB_READ
_PRM_DPV0 in
ST

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2422

ACS_PB_WRITE_PRM_DPV0

Function block ACS_PB_WRITE_PRM_DPV0 is used to write parameters to ACS / DCS drive
using PROFIBUS communication. It must be used together with ACS_COM_PB function block

Available in runtime system: V2.4 and above

Included in library: ACSDrivesComPB_AC500_V24.lib

Function block type: Function block with historical values.

Function block ACS_PB_WRITES_PRM_DPV0 writes one drive parameter using PROFIBUS
DPV0 communication via PKW especially for ABB Drives.
This function block works only with PPO types that contain the PKW part (e.g. PPO 1, 2, 5 or 7.)

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
It enables function block processing (edge sensitive).
The function block is not processed if input EN = FALSE.
While input is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

Function block
information

Block descrip-
tion

EN (enable)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2423

Data type: WORD
Input PRM_NUM is the parameter number in the drive which will be read. The parameter
number is calculated from group number and index.
Parameter: 2 digits = group, 2 digit = index, e.g. Par 20.06 = 2006

Data type: DINT
Parameter value of the READ parameter

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.

Output description

Data type: BOOL
Output DONE indicates the processing of the function block. If DONE = FALSE, the function
block is not processed due to EN = FALSE and all outputs are set to 0.
For that reason, the other outputs always have to be considered together with output DONE. All
other outputs are only valid, if DONE = TRUE.
DONE is set to TRUE for one cycle. For that reason, the output always has to be considered
together with output ERR. If ERR is TRUE, an error occurred. In this case, the error number can
be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.

PRM_NUM
(parameter
number)

VALUE (value)

DRIVE_DATA
(drive data)

DONE (done)

ERR (error)

ERNO (error
number)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2424

The encoding of the error messages output at ERNO is explained in a separate table of Error
Messages (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
Output BUSY is not used at the moment.

AcsPBWritePrmDpv0 (EN :=
xAcsPBWritePrmDpv0_En,

 PRM_NUM := wAcsPBWritePrmDpv0_PrmNum,

 VALUE := diAcsPBWritePrmDpv0_Value,

 DRIVE_DATA := AcsPBWritePrmDpv0_DriveData);

xAcsPBWritePrmDpv0_Done := AcsPBWritePrmDpv0.DONE;
xAcsPBWritePrmDpv0_Err := AcsPBWritePrmDpv0.ERR;
wAcsPBWritePrmDpv0_Erno := AcsPBWritePrmDpv0.ERNO;
xAcsPBWritePrmDpv0_Busy := AcsPBWritePrmDpv0.BUSY;

ACS_PB_N_READ_PRM_DPV1 read parameters from ABB drives via PROFIBUS DPV1

Function block ACS_PB_READ_N_PRM_DPV1 is used for reading maximum 37 parameters
from a drive via PROFIBUS DPV1 in a single query.

Available in runtime system: V2.4 and above

Included in library: ACSDrivesComPB_AC500_V24.lib

Function block type: Function block with historical values.

BUSY (busy)

Calling of
ACS_PB_WRITE
_PRM_DPV0 in
ST

Function block
information

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2425

If the ACS_PB_READ_N_PRM_DPV1 function block is used at the same time
the DriveManager is connecting, refreshing or writing variables, it might come to
an error on either the ACS_PB_READ_N_PRM_DPV1 block or the DriveMan-
ager.

Function block ACS_PB_READ_N_PRM_DPV1 reads maximum 37 parameters from the drive
in a single query. The number of parameters to be read is specified at the input NVAR. Parame-
ters to read to the drive is specified at the DATA input.
ACS_PB_PN_PRM_DPV1_DATA_TYPE structure must be declared to a variable and con-
nected to DATA input using ADR, which is to be entered with Group, Index .
Read parameter type and values are stored in the same variable.
ACS_PB_PN_PRM_DPV1_DATA_TYPE structure has the following array elements:
● abyPrmGroup : Array of 37 BYTE for specifying parameter Group.
● abyPrmIndex : Array of 37 BYTE for specifying parameter Index
● abyPrmType : Array of 37 BYTE

READ parameter data type will be available here. For
details refer to ACS_PB_PN_PRM_TYPE_ENUM Ä Chapter 1.5.6.2.5.2
“ACS_PB_PN_PRM_TYPE_ENUM” on page 2251

● adwPrmValue: Array of 37 DWORD
READ parameter value will be available here.

Currently user cannot use enumeration from
ACS_PB_PN_PRM_TYPE_ENUM.

Instead user need to use numerical values from
ACS_PB_PN_PRM_TYPE_ENUM only.

The values in the structure area are updated, when the READ job was performed without error.
This is indicated by DONE=TRUE and ERR=FALSE.

If the user need to read Parameter 10.01 and 11.05, then user need to enter the group and
index number separately in input DATA as below:
DataStructure : ACS_PB_PN_PRM_DPV1_DATA_TYPE
Parameter Group : DataStruct.abyPrmGroup[1]:= 10; DataStruct.abyPrmGroup[2]:= 11;
Parameter Index : DataStruct .abyPrmIndex [1]:= 01; DataStruct .abyPrmIndex [2]:= 05;
Parameter Type : Once read operation is complete parameter type will be stored inside
DataStruct. abyPrmType [1]:= xx; DataStruct. abyPrmType [2]:= xx;
Parameter Value : Value will be stored inside DataStruct. adwPrmValue [1]:= xx; DataStruct.
adwPrmValue [2]:= xx;
The values in the structure area are updated once the read job is performed without error. This
is indicated by DONE=TRUE and ERR=FALSE.

Example

Input description

Block descrip-
tion

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2426

Data type: BOOL
In order to enable the function block processing, input EN has to be set from FALSE to TRUE.
While input is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.
Default value = FALSE.

If multiple ACS_PB_READ_N_PRM_DPV1 and / or multiple
ACS_PB_WRITE_N_PRM_DPV1 functions blocks enabled at the same time
it may cause for error Read / Write error.

Data type: BYTE, Default value: 1, Range: 1 to 6
At input SLOT the communication module SLOT (module number) is selected, which should
be used by the function block. All external Communication Modules are serially numbered from
right to left, starting with module number 1.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.
If the SLOT number is given incorrect or invalid, then the function block will displays an error. In
such case ERR=TRUE and ERNO=16#4020.

Data type: BYTE, Default value: 1, Range: 1 to 126
At input SLV_ADR, the address of the drive (slave), from which the parameter value is to be
read, must be specified.
The function block is designed to be used with a fix SLAVE device. The SLAVE input should not
be changed, while the program is running. If changed, nevertheless the new value will become
effective, only after the function block is enabled again.
If the SLV_ADR is given incorrect or invalid, then the function block will display an error. In such
case ERR=TRUE and ERNO=16#4030.

Data type: INT, Default value = ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM (enumeration).
The input can be set either by the value directly or by using the enum Ä Chapter 1.5.6.2.5.1
“ACS_DRIVE_ENUM enumerations to select the type of drive used” on page 2251.
If the DRIVE_TYPE is given invalid, then the function block will display an error. In such case
ERR=TRUE and ERNO=16#4040.

EN (enable)

SLOT (slot)

SLV_ADR (slave
address)

DRIVE_TYPE
(drive type)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2427

Data type: BYTE, Default value: 0, Range: 0 to 37
With input NVAR the function block can be configured to read between 0 to 37 drive parameter
values.
If the NVAR is given incorrect or invalid, then the function block will display an error. In such
case ERR=TRUE and ERNO=16#4040.

Data type: DWORD
Input Data must be connected to the variable of type ACS_PB_PN_PRM_DPV1_DATA_TYPE
for specifying READ parameter group and index. Each drive must have its own DATA variable.

Output description

Data type: BOOL
Output DONE indicates the processing of the function block. If DONE = FALSE, the function
block is not processed due to EN = FALSE and all outputs are set to 0.
For that reason, the other outputs always have to be considered together with output DONE. All
other outputs are only valid, if DONE = TRUE.
DONE is set to TRUE for one cycle. For that reason, the output always has to be considered
together with output ERR. If ERR is TRUE, an error occurred. In this case, the error number can
be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in a separate table of Error
Messages (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

NVAR (number
of variables)

DATA (data)

DONE (done)

ERR (error)

ERNO (error
number)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2428

Data type: WORD, Default value: 0, Range: ³0

Output ERNO1 provides additional error information in case an error occurred during pro-
cessing. ERNO1 always has to be considered together with the outputs DONE, ERR and
ERNO. The value applied at ERNO1 is only valid, if DONE = TRUE, ERR = TRUE and ERNO =
6036 HEX (24630 DEC).
The encoding of the error messages output at ERNO is explained in a separate table "Error
Messages" (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

ERNO1 of the DPV1 function blocks is encoded as follows. The upper nibble (the higher
significant 4 bits) describes the error class, the lower nibble represents the error cause.

Error class Error code

Bit: 7 6 5 4 3 2 1 0

ERNO1

DEC HEX Error class / Error code

0 0 Reserved

... ...

159 9F Reserved

160 A0 10 Application / 0 Read error

161 A1 10 Application / 1 Write error

162 A2 10 Application / 2 Error module

163 A3 Reserved

...

167 A7 Reserved

168 A8 10 Application / 8 Version conflict

169 A9 10 Application / 9 Function not supported

170 AA 10 Application / 10 Manufacturer-specific

...

175 AF 10 Application / 15 Manufacturer-specific

176 B0 11 Access / 0 Invalid index

177 B1 11 Access / 1 Invalid length of data to be
written

178 B2 11 Access / 2 Invalid slot

179 B3 11 Access / 3 Type conflict

180 B4 11 Access / 4 Invalid range

181 B5 11 Access / 5 Status conflict

182 B6 11 Access / 6 Access denied

183 B7 11 Access / 7 Invalid value range

184 B8 11 Access / 8 Invalid parameter

185 B9 11 Access / 9 Invalid type

186 BA 11 Access / 10 Manufacturer-specific

...

191 BF 11 Access / 15 Manufacturer-specific

ERNO1 (error
number 1)

Encoding of
ERNO1 Param-
eter error mes-
sages

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2429

192 C0 12 Resources / 0 Read conflict

193 C1 12 Resources / 1 Write conflict

194 C2 12 Resources / 2 Resource used

195 C3 12 Resources / 3 Resource not available

196 C4 Reserved

...

199 C7 Reserved

200 C8 12 Resources / 10 Manufacturer-specific

...

207 CF 12 Resources / 15 Manufacturer-specific

208 D0 Reserved

...

255 FF Reserved

Data type: WORD, Default value: 0, Range: ³0

Output ERNO2 provides an additional DPV1-specific error information, if an error occurred
during processing. ERNO2 always has to be considered together with the outputs DONE, ERR
and ERNO. The value applied at ERNO2 is only valid, if DONE = TRUE, ERR = TRUE and
ERNO = 6036 HEX (24630 DEC). The encoding of ERNO2 is completely manufacturer-specific.

dwAcsPbReadNPrmDpv1_DATA:= ADR (AcsPbPnPrmDpv1DataType)
ACS_PB_READ_N_PRM_DPV1
(EN := xAcsPbReadNPrmDpv1_EN,

SLOT := byAcsPbReadNPrmDpv1_SLOT,

 SLV_ADR :=
byAcsPbReadNPrmDpv1_SLV_ADR,

 DRIVE_TYPE :=
iAcsPbReadNPrmDpv1_DRIVE_TYPE,

NVAR := byAcsPbReadNPrmDpv1_NVAR,

DATA := dwAcsPbReadNPrmDpv1_DATA);

xAcsPbReadNPrmDpv1_DONE := ACS_PB_READ_N_PRM_DPV1.DONE;
xAcsPbReadNPrmDpv1_ERR := ACS_PB_READ_N_PRM_DPV1.ERR;
wAcsPbReadNPrmDpv1_ERNO := ACS_PB_READ_N_PRM_DPV1.ERNO;
wAcsPbReadNPrmDpv1_ERNO1 := ACS_PB_READ_N_PRM_DPV1.ERNO1;
wAcsPbReadNPrmDpv1_ERNO2 := ACS_PB_READ_N_PRM_DPV1.ERNO2;

ERNO2 (error
number 2)

Calling of
ACS_PB_READ
_N_PRM_DPV1
in ST

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2430

ACS_PB_N_WRITE_PRM_DPV1 write parameters from ABB drives via PROFIBUS DPV1

Function block ACS_PB_WRITE_N_PRM_DPV1 is used for writing maximum 37 parameters to
a drive via PROFIBUS in a single query.

Available in runtime system: V2.4 and above

Included in library: ACSDrivesComPB_AC500_V24.lib

Function block type: Function block with historical values.

If the ACS_PB_WRITE_N_PRM_DPV1 function block is used at the same time
the DriveManager is connecting, refreshing or writing variables, it might come to
an error on either the ACS_PB_WRITE_N_PRM_DPV1 block or the DriveMan-
ager.

Function block ACS_PB_WRITE_N_PRM_DPV1 writes maximum 37 parameters to drive in a
single query. The number of parameters to be write is specified at the input NVAR.
Another limit while using the WRITE function block is, it can process only up to 240 byte data in
one request or 37 drive parameters whichever is lower. If the WRITE data length is more than
240 byte, the function block generates error code 16#7012.
Parameters to write to the drive is specified at the DATA input.
ACS_PB_PN_PRM_DPV1_DATA_TYPE structure must be declared to a variable and con-
nected to DATA input using ADR, which is to be entered with Group, Index, types and values.
ACS_PB_PN_PRM_DPV1_DATA_TYPE structure has the following array elements:
● abyPrmGroup : Array of 37 BYTE for specifying parameter Group.
● abyPrmIndex : Array of 37 BYTE for specifying parameter Index
● abyPrmType : Array of 37 BYTE for specifying parameter type, please refer the respective

drives manual for parameter data type and enter the respective ENUM / VALUE . For
details about ENUM / VALUE please refer ACS_PB_PN_PRM_TYPE_ENUM Ä Chapter
1.5.6.2.5.2 “ACS_PB_PN_PRM_TYPE_ENUM” on page 2251

● adwPrmValue: Array of 37 BYTE for specifying parameter value

Currently user cannot use enumeration from
ACS_PB_PN_PRM_TYPE_ENUM.

Instead user need to use numerical values from
ACS_PB_PN_PRM_TYPE_ENUM only.

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2431

The values in the structure area are updated, when the WRITE job was performed without error.
This is indicated by DONE=TRUE and ERR=FALSE.

If the user need to read Parameter 10.01 and 11.05, then user need to enter the group and
index number separately in input DATA as below:
DataStructure : ACS_PB_PN_PRM_DPV1_DATA_TYPE
Parameter Group : DataStruct.abyPrmGroup[1]:= 10; DataStruct.abyPrmGroup[2]:= 11;
Parameter Index : DataStruct .abyPrmIndex [1]:= 01; DataStruct .abyPrmIndex [2]:= 05;
Parameter Type : DataStruct. abyPrmType [1]:= xx; DataStruct. abyPrmType [2]:= xx; . . Data-
Struct. abyPrmType [37]:= xx;
Parameter Value : And the value will be stored inside DataStruct. adwPrmValue [1]:= xx;
DataStruct. adwPrmValue [2]:= xx;
The values in the structure area are written to drive when the write job is performed without
error. This is indicated by DONE=TRUE and ERR=FALSE.

Example

Input description

Data type: BOOL
In order to enable the function block processing, input EN has to be set from FALSE to TRUE.
While input is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.
Default value = FALSE.

If multiple ACS_PB_READ_N_PRM_DPV1 and / or multiple
ACS_PB_WRITE_N_PRM_DPV1 functions blocks enabled at the same time
it may cause for error Read / Write error.

Data type: BYTE, Default value: 1, Range: 1 to 6
At input SLOT the communication module SLOT (module number) is selected, which should
be used by the function block. All external Communication Modules are serially numbered from
right to left, starting with module number 1.

EN (enable)

SLOT (slot)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2432

For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.
If the SLOT number is given incorrect or invalid, then the function block will displays an error. In
such case ERR=TRUE and ERNO=16#4020.

Data type: BYTE, Default value: 1, Range: 1 to 126
At input SLV_ADR, the address of the drive (slave), from which the parameter value is to be
read, must be specified.
The function block is designed to be used with a fix SLAVE device. The SLAVE input should not
be changed, while the program is running. If changed, nevertheless the new value will become
effective, only after the function block is enabled again.
If the SLV_ADR is given incorrect or invalid, then the function block will display an error. In such
case ERR=TRUE and ERNO=16#4030.

Data type: INT, Default value = ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM (enumeration).
The input can be set either by the value directly or by using the enum Ä Chapter 1.5.6.2.5.1
“ACS_DRIVE_ENUM enumerations to select the type of drive used” on page 2251.
If the DRIVE_TYPE is given invalid, then the function block will display an error. In such case
ERR=TRUE and ERNO=16#4040.

Data type: BYTE, Default value: 0, Range: 0 to 37
With input NVAR the function block can be configured to read between 0 to 37 drive parameter
values.
If the NVAR is given incorrect or invalid, then the function block will display an error. In such
case ERR=TRUE and ERNO=16#4040.

Data type: DWORD
Input Data must be connected to the variable of type ACS_PB_PN_PRM_DPV1_DATA_TYPE
for specifying READ parameter group and index. Each drive must have its own DATA variable.

Output description

SLV_ADR (slave
address)

DRIVE_TYPE
(drive type)

NVAR (number
of variables)

DATA (data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2433

Data type: BOOL
Output DONE indicates the processing of the function block. If DONE = FALSE, the function
block is not processed due to EN = FALSE and all outputs are set to 0.
For that reason, the other outputs always have to be considered together with output DONE. All
other outputs are only valid, if DONE = TRUE.
DONE is set to TRUE for one cycle. For that reason, the output always has to be considered
together with output ERR. If ERR is TRUE, an error occurred. In this case, the error number can
be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in a separate table of Error
Messages (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: WORD, Default value: 0, Range: ³0

Output ERNO1 provides additional error information in case an error occurred during pro-
cessing. ERNO1 always has to be considered together with the outputs DONE, ERR and
ERNO. The value applied at ERNO1 is only valid, if DONE = TRUE, ERR = TRUE and ERNO =
6036 HEX (24630 DEC).
The encoding of the error messages output at ERNO is explained in a separate table "Error
Messages" (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

ERNO1 of the DPV1 function blocks is encoded as follows. The upper nibble (the higher
significant 4 bits) describes the error class, the lower nibble represents the error cause.

Error class Error code

Bit: 7 6 5 4 3 2 1 0

ERNO1

DEC HEX Error class / Error code

0 0 Reserved

... ...

159 9F Reserved

160 A0 10 Application / 0 Read error

161 A1 10 Application / 1 Write error

162 A2 10 Application / 2 Error module

163 A3 Reserved

...

DONE (done)

ERR (error)

ERNO (error
number)

ERNO1 (error
number 1)

Encoding of
ERNO1 Param-
eter error mes-
sages

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2434

167 A7 Reserved

168 A8 10 Application / 8 Version conflict

169 A9 10 Application / 9 Function not supported

170 AA 10 Application / 10 Manufacturer-specific

...

175 AF 10 Application / 15 Manufacturer-specific

176 B0 11 Access / 0 Invalid index

177 B1 11 Access / 1 Invalid length of data to be
written

178 B2 11 Access / 2 Invalid slot

179 B3 11 Access / 3 Type conflict

180 B4 11 Access / 4 Invalid range

181 B5 11 Access / 5 Status conflict

182 B6 11 Access / 6 Access denied

183 B7 11 Access / 7 Invalid value range

184 B8 11 Access / 8 Invalid parameter

185 B9 11 Access / 9 Invalid type

186 BA 11 Access / 10 Manufacturer-specific

...

191 BF 11 Access / 15 Manufacturer-specific

192 C0 12 Resources / 0 Read conflict

193 C1 12 Resources / 1 Write conflict

194 C2 12 Resources / 2 Resource used

195 C3 12 Resources / 3 Resource not available

196 C4 Reserved

...

199 C7 Reserved

200 C8 12 Resources / 10 Manufacturer-specific

...

207 CF 12 Resources / 15 Manufacturer-specific

208 D0 Reserved

...

255 FF Reserved

Data type: WORD, Default value: 0, Range: ³0

Output ERNO2 provides an additional DPV1-specific error information, if an error occurred
during processing. ERNO2 always has to be considered together with the outputs DONE, ERR
and ERNO. The value applied at ERNO2 is only valid, if DONE = TRUE, ERR = TRUE and
ERNO = 6036 HEX (24630 DEC). The encoding of ERNO2 is completely manufacturer-specific.

ERNO2 (error
number 2)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2435

dwAcsPbWriteNPrmDpv1_DATA:= ADR (AcsPbPnPrmDpv1DataType)
ACS_PB_WRITE_N_PRM_DPV1 (EN :=
xAcsPbWriteNPrmDpv1_EN,

SLOT := byAcsPbWriteNPrmDpv1_SLOT,

 SLV_ADR :=
byAcsPbWriteNPrmDpv1_SLV_ADR,

 DRIVE_TYPE :=
iAcsPbWriteNPrmDpv1_DRIVE_TYPE,

NVAR := byAcsPbWriteNPrmDpv1_NVAR,

DATA := dwAcsPbWriteNPrmDpv1_DATA);

xAcsPbWriteNPrmDpv1_DONE := ACS_PB_WRITE_N_PRM_DPV1.DONE;
xAcsPbWriteNPrmDpv1_ERR := ACS_PB_WRITE_N_PRM_DPV1.ERR;
wAcsPbWriteNPrmDpv1_ERNO := ACS_PB_WRITE_N_PRM_DPV1.ERNO;
wAcsPbWriteNPrmDpv1_ERNO1 := ACS_PB_WRITE_N_PRM_DPV1.ERNO1;
wAcsPbWriteNPrmDpv1_ERNO2 := ACS_PB_WRITE_N_PRM_DPV1.ERNO2;

1.5.6.6.4 Visualization
In the application program, the user can add the visualization object in the project. In this object,
the user needs to add faceplate of the desired function block, as shown in the figure.

Calling of
ACS_PB_WRITE
_N_PRM_DPV1
in ST

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2436

Fig. 166: Visualization

Fig. 167: Visualization: file selection

In the following chapter, overall visualization and visualization for each individual function block
are discussed in detail.

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2437

ACS_COM_PB_VISU_PH visualization to run the ACS_COM_PB function block.

Fig. 168: Visualization in offline / online mode

Available in runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_COM_PB_VISU_PH is used to show the actual values of all inputs
and outputs of the instance of ACS_COM_PB_VISU_PH function block.
The visualization is also used to control the function block by those inputs, which are not
connected inside the program.

Parameters
Access R/W

Access via: Toggle
Description: EN input
Enables the function block by TRUE value of input EN.

Access via: Numpad
Description: PRO_TYPE input 1, 2, 3, 4, 5, 6, 7 or 8

Access via: Text
Description: DRIVE_TYPE input

Access via: Text
Description: Address of first process input variable

Access via: Text

Visualization
information

Visualization
description

EN

PRO_TYPE

DRIVE_TYPE

ADR_IN

ADR_OUT

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2438

Description: Address of first process output variable

All inputs of ACS_COM_PB_VISU_PH function block, which are not connected to a variable
(left open), can be written from this faceplate. The function block can be controlled from the
visualization as long as the inputs are left open.

Access R
Description: DONE output.
To indicate, the Function Block processing is completed.

Description: ERR output.
Function Block processed with error.

Description: ERNO output.

Description: BUSY output.

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

DONE

ERR

ERNO

BUSY

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2439

ACS_COM_PB_PZD_VISU_PH visualization to run the ACS_COM_PB_PZD function block.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2440

Fig. 169: Visualization in offline / online mode

Available in runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_COM_PB_PZD_VISU_PH is used to show the actual values of all
inputs and outputs of the instance of ACS_COM_PB_PZD_VISU_PH function block.
The visualization is also used to control the function block by those inputs, which are not
connected inside the program.

Parameters
Access R/W

Access via: Toggle
Description: EN input
Enables the function block by TRUE value of input EN.

Access via: Text
Description: Process data word 4 to drive

Access via: Text
Description: Process data word 5 to drive

Visualization
information

Visualization
description

EN

PZD_OUT4

PZD_OUT5

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2441

Access via: Text
Description: Process data word 6 to drive

Access via: Text
Description: Process data word 7 to drive

Access via: Text
Description: Process data word 8 to drive

Access via: Text
Description: Process data word 9 to drive

Access via: Text
Description: Process data word 10 to drive

Access via: Text
Description: Process data word 11 to drive

Access via: Text
Description: Process data word 12 to drive

All inputs of ACS_COM_PB_PZD_VISU_PH function block, which are not connected to a vari-
able (left open), can be written from this faceplate. The function block can be controlled from the
visualization as long as the inputs are left open.

Access R
Description: DONE output.
To indicate, the Function Block processing is completed.

Description: ERR output.
Function Block processed with error.

Description: ERNO output.

Drive Control Word

Description: Reference 1

Description: Reference 2

Drive Status Word

PZD_OUT6

PZD_OUT7

PZD_OUT8

PZD_OUT9

PZD_OUT10

PZD_OUT11

PZD_OUT12

DONE

ERR

ERNO

CW

Ref1

Ref2

SW

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2442

Actual value 1

Actual value 2

Description: Process data word 4 from drive

Description: Process data word 5 from drive

Description: Process data word 6 from drive

Description: Process data word 7 from drive

Description: Process data word 8 from drive

Description: Process data word 9 from drive

Description: Process data word 10 from drive

Description: Process data word 11 from drive

Description: Process data word 12 from drive

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

Act1

Act2

PZD_IN4

PZD_IN5

PZD_IN6

PZD_IN7

PZD_IN8

PZD_IN9

PZD_IN10

PZD_IN11

PZD_IN12

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2443

ACS_PB_READ_PRM_DPV0_VISU_PH visualization to run the ACS_PB_READ_PRM_DPV0 function block.

Fig. 170: Visualization in offline / online mode

Available in runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_PB_READ_PRM_DPV0_VISU_PH is used to show the actual
values of all inputs and outputs of the instance of ACS_PB_READ_PRM_DPV0_VISU_PH
function block.
The visualization is also used to control the function block by those inputs, which are not
connected inside the program.

Parameters
Access R/W

Access via: Toggle
Description: EN input
Enables the function block by TRUE value of input EN.

Access via: Numpad
Description: Parameter number in drive.

All inputs of ACS_PB_READ_PRM_DPV0_VISU_PH function block, which are not connected to
a variable (left open), can be written from this faceplate. The function block can be controlled
from the visualization as long as the inputs are left open.

Access R
Description: DONE output.
To indicate, the Function Block processing is completed.

Visualization
information

Visualization
description

EN

PRM_NUM

DONE

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2444

Description: ERR output.
Function Block processed with error.

Description: ERNO output.

Description: BUSY output.

Parameter value

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_PB_WRITE_PRM_DPV0_VISU_PH visualization to run the ACS_PB_WRITE_PRM_DPV0 function
block.

Fig. 171: Visualization in offline / online mode

ERR

ERNO

BUSY

VALUE

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2445

Available in runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_PB_WRITE_PRM_DPV0_VISU_PH is used to show the actual
values of all inputs and outputs of the instance of ACS_PB_WRITE_PRM_DPV0_VISU_PH
function block.
The visualization is also used to control the function block by those inputs, which are not
connected inside the program.

Parameters
Access R/W

Access via: Toggle
Description: EN input
Enables the function block by TRUE value of input EN.

Access via: Numpad
Description: Parameter number in drive.

Access via: Numpad
Parameter value

All inputs of ACS_PB_WRITE_PRM_DPV0_VISU_PH function block, which are not connected
to a variable (left open), can be written from this faceplate. The function block can be controlled
from the visualization as long as the inputs are left open.

Access R
Description: DONE output.
To indicate, the Function Block processing is completed.

Description: ERR output.
Function Block processed with error.

Description: ERNO output.

Description: BUSY output.

Visualization
information

Visualization
description

EN

PRM_NUM

VALUE

DONE

ERR

ERNO

BUSY

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2446

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_PB_READ_N_PRM_DPV1_VISU_PH visualization to run the ACS_PB_READ_N_PRM_DPV1 function
block.

Fig. 172: Visualization in offline / online mode

Available in runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_PB_READ_N_PRM_DPV1_VISU_PH is used to show the actual
values of all inputs and outputs of the instance of ACS_PB_READ_N_PRM_DPV1_VISU_PH
function block.
The visualization is also used to control the function block by those inputs, which are not
connected inside the program.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2447

Parameters
Access R/W

Access via: Toggle
Description: EN input
Enables the function block by TRUE value of input EN.

Access via: Text
Description: SLOT, in which the PROFIBUS master communication module is mounted.

Access via: Text
Description: PROFIBUS station address.

Access via: Text
Description: DRIVE_TYPE input

Access via: Text
Description: Number of drive parameters to be read from drive using PROFIBUS.

All inputs of ACS_PB_READ_N_PRM_DPV1_VISU_PH function block, which are not con-
nected to a variable (left open), can be written from this faceplate. The function block can
be controlled from the visualization as long as the inputs are left open.

Access R
Description: DONE output.
To indicate, the Function Block processing is completed.

Description: ERR output.
Function Block processed with error.

Description: ERNO output.

Description: Data input to connect structure ACS_PB_PN_PRM_DPV1_DATA_TYPE for speci-
fying READ parameter group and index.

Description: Additional error information.
The Value applied at ERNO1 is only valid, if DONE = TRUE, ERR = TRUE and ERNO = 6036
HEX (24630 DEC).

Description: Additional error information.
The Value applied at ERNO2 is only valid, if DONE = TRUE, ERR = TRUE and ERNO = 6036
HEX (24630 DEC).

EN

SLOT

SLV_ADR

DRIVE_TYPE

NVAR

DONE

ERR

ERNO

DATA

ERNO1

ERNO2

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2448

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_PB_WRITE_N_PRM_DPV1_VISU_PH visualization to run the ACS_PB_WRITE_N_PRM_DPV1 function
block.

Fig. 173: Visualization in offline / online mode

Available in runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_PB_WRITE_N_PRM_DPV1_VISU_PH is used to show the actual
values of all inputs and outputs of the instance of ACS_PB_WRITE_N_PRM_DPV1_VISU_PH
function block.
The visualization is also used to control the function block by those inputs, which are not
connected inside the program.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2449

Parameters
Access R/W

Access via: Toggle
Description: EN input
Enables the function block by TRUE value of input EN.

Access via: Text
Description: SLOT, in which the PROFIBUS master communication module is mounted.

Access via: Text
Description: PROFIBUS station address.

Access via: Text
Description: DRIVE_TYPE input

Access via: Text
Description: Number of drive parameters to be read from drive using PROFIBUS.

All inputs of ACS_PB_WRITE_N_PRM_DPV1_VISU_PH function block, which are not con-
nected to a variable (left open), can be written from this faceplate. The function block can be
controlled from the visualization as long as the inputs are left open.

Access R
Description: DONE output.
To indicate, the Function Block processing is completed.

Description: ERR output.
Function Block processed with error.

Description: ERNO output.

Description: Data input to connect structure ACS_PB_PN_PRM_DPV1_DATA_TYPE for speci-
fying READ parameter group and index.

Description: Additional error information.
The Value applied at ERNO1 is only valid, if DONE = TRUE, ERR = TRUE and ERNO = 6036
HEX (24630 DEC).

Description: Additional error information.
The Value applied at ERNO2 is only valid, if DONE = TRUE, ERR = TRUE and ERNO = 6036
HEX (24630 DEC).

EN

SLOT

SLV_ADR

DRIVE_TYPE

NVAR

DONE

ERR

ERNO

DATA

ERNO1

ERNO2

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2450

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

1.5.6.7 ACS / DCS Drives read / write parameter via PROFINET library

1.5.6.7.1 Preconditions for the use of the ACS / DCS drives read / write parameter via PROFINET library

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

The blocks can only be used in combination with the ACSDrives-
Base_AC500_V20 Library.

The library is released for the following products:
● CPUs: AC500
● Fieldbus: PROFINET
● Drives: ACS800, ACSM1, ACS355, ACS550, ACH550, ACQ810, ACS850, ACS880,

ACS580, DCS550, DCS800
● PROFINET configuration:

Prior to the use of the function blocks, PROFINET Communication Module has to be config-
ured accordingly using Automation Builder, at "Interfaces".

If multiple ACS_PN_READ_N_PRM_DPV1 and / or multiple
ACS_PN_WRITE_N_PRM_DPV1 function blocks are enabled at the same time,
it may cause an READ / WRITE error.

1.5.6.7.2 Components of PROFINET read / write library
ACSDrivesComPN_AC500_V24 Library contains PROFINET DPV1 READ / WRITE function
blocks and visualizations.

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2451

ACS_PN_READ_N_PRM_DPV1 Ä Chapter
1.5.6.7.4.1 “ACS_PN_READ_N_PRM_DPV1
read parameters from ABB drives via
PROFINET DPV1” on page 2453

This function block reads maximum 37 param-
eters from an ACS Drive via PROFINET.

ACS_PN_WRITE_N_PRM_DPV1 Ä Chapter
1.5.6.7.4.2 “ACS_PN_WRITE_N_PRM_DPV1
write parameters from ABB drives via
PROFINET DPV1” on page 2457

This function block writes maximum 37 param-
eters to an ACS Drive via PROFINET.

ACS_PN_READ_N_PRM_DPV1_VISU_PH
Ä Chapter 1.5.6.7.5.1
“ACS_PN_READ_N_PRM_DPV1_VISU_PH
faceplate of ACS_PN_READ_N_PRM_DPV1
function block.” on page 2463

Visualization to run the
ACS_PN_READ_N_PRM_DPV1 function
block.

ACS_PN_WRITE_N_PRM_DPV1_VISU_PH
Ä Chapter 1.5.6.7.5.2
“ACS_PN_WRITE_N_PRM_DPV1_VISU_PH
visualization to run the
ACS_PN_WRITE_N_PRM_DPV1 function
block.” on page 2465

Visualization to run the
ACS_PN_WRITE_N_PRM_DPV1 function
block.

ACS_PN_VERSION_INFORMATION Stores all the version information of the file
along with the change log. No variable is
declared inside this section.

1.5.6.7.3 Overview of the ACS / DCS drives read / write parameter via PROFINET function blocks
Used abbreviations:

FBhv Function block with historical values
FBnohv Function block without historical values
F Function
Enum Enumeration
Struct Structure
Visu Visualization

POU name Function
ACS_PN_READ_N_PRM_DPV
1 Ä Chapter 1.5.6.7.4.1
“ACS_PN_READ_N_PRM_DP
V1 read parameters from ABB
drives via PROFINET DPV1”
on page 2453

Function block ACS_PN_READ_N_PRM_DPV1 reads max-
imum 37 parameters from the drive

ACS_PN_WRITE_N_PRM_DP
V1 Ä Chapter 1.5.6.7.4.2
“ACS_PN_WRITE_N_PRM_DP
V1 write parameters from ABB
drives via PROFINET DPV1”
on page 2457

Function block ACS_PN_WRITE_N_PRM_DPV1 writes
maximum 37 parameters to drive

Function blocks

Visualizations

Global variables

Function blocks

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2452

POU name Function
ACS_PN_READ_N_PRM_DPV1_VISU
_PH Ä Chapter 1.5.6.7.5.1
“ACS_PN_READ_N_PRM_DPV1_VIS
U_PH faceplate of
ACS_PN_READ_N_PRM_DPV1 func-
tion block.” on page 2463

Visualization
ACS_PN_READ_N_PRM_DPV1_VISU_PH shows
the actual values of all inputs and outputs of the
instance of ACS_PN_READ_N_PRM_DPV1 function
block

ACS_PN_WRITE_N_PRM_DPV1_VIS
U_PH Ä Chapter 1.5.6.7.5.2
“ACS_PN_WRITE_N_PRM_DPV1_VIS
U_PH visualization to run the
ACS_PN_WRITE_N_PRM_DPV1 func-
tion block.” on page 2465

Visualization
ACS_PN_WRITE_N_PRM_DPV1_VISU_PH shows
the actual values of all inputs and outputs of
the instance of the ACS_PN_WRITE_N_PRM_DPV1
function block.

POU name Function
ACS_PN_VERSION_INFOR-
MATION

Stores all the version information of the file along with the
change log. No variable is declared inside this section.

1.5.6.7.4 Function blocks
ACS_PN_READ_N_PRM_DPV1 read parameters from ABB drives via PROFINET DPV1

Function block ACS_PN_READ_N_PRM_DPV1 reads maximum 37 parameters from the drive
in a single query. The number of parameters to be read is specified at the input NVAR.

Available in runtime system: V2.4 and above

Included in library: ACSDrivesComPN_AC500_V24.lib

Function block type: Function block with historical values.

Function block ACS_PN_READ_N_PRM_DPV1 reads maximum 37 parameters from the drive
in a single query. The number of parameters to be read is specified at the input NVAR.
Parameters to read to the drive is specified at the DATA input.
ACS_PB_PN_PRM_DPV1_DATA_TYPE structure must be declared to a variable and con-
nected to DATA input using ADR, which is to be entered with Group, Index.
Read parameter type and values are stored in the same variable.
ACS_PB_PN_PRM_DPV1_DATA_TYPE structure has the following array elements:
● abyPrmGroup : Array of 37 BYTE for specifying parameter Group.
● abyPrmIndex : Array of 37 BYTE for specifying parameter Index

Visualizations

Global variables

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2453

● abyPrmType : Array of 37 BYTE
READ parameter data type will be available here. For
details refer to ACS_PB_PN_PRM_TYPE_ENUM Ä Chapter 1.5.6.2.5.2
“ACS_PB_PN_PRM_TYPE_ENUM” on page 2251

● adwPrmValue: Array of 37 DWORD
READ parameter value will be available here.

Currently user cannot use enumeration from
ACS_PB_PN_PRM_TYPE_ENUM.

Instead user need to use numerical values from
ACS_PB_PN_PRM_TYPE_ENUM only.

The values in the structure area are updated, when the READ job was performed without error.
This is indicated by DONE=TRUE and ERR=FALSE.

If the user need to read Parameter 10.01 and 11.05, then user need to enter the group and
index number separately in input DATA as below:
DataStructure : ACS_PB_PN_PRM_DPV1_DATA_TYPE
Parameter Group : DataStruct.abyPrmGroup[1]:= 10; DataStruct.abyPrmGroup[2]:= 11;
Parameter Index : DataStruct .abyPrmIndex [1]:= 01; DataStruct .abyPrmIndex [2]:= 05;
Parameter Type : Once read operation is complete parameter type will be stored inside
DataStruct. abyPrmType [1]:= xx; DataStruct. abyPrmType [2]:= xx;
Parameter Value : And the value will be stored inside DataStruct. adwPrmValue [1]:= xx;
DataStruct. adwPrmValue [2]:= xx;
The values in the structure area are updated once the read job is performed without error. This
is indicated by DONE=TRUE and ERR=FALSE.

Example

Input description

Data type: BOOL
In order to enable the function block processing, input EN has to be set from FALSE to TRUE.
While input is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.
Default value = FALSE.

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2454

If multiple ACS_PN_READ_N_PRM_DPV1 and / or multiple
ACS_PN_WRITE_N_PRM_DPV1 functions blocks enabled at the same time
it may cause for error Read / Write error.

Data type: BYTE, Default value: 1, Range: 1 to 6
At input SLOT the communication module SLOT (module number) is selected, which should be
used by the Function Block. All external communication modules are serially numbered from
right to left, starting with module number 1.
If the SLOT number is given incorrect or invalid, then the function block will displays an error. In
such case ERR=TRUE and ERNO=16#4020.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type: STRING, Default value: "Not Available", Range: 1 to 240
At input DEV_NAME, the name of the drive (slave) from which the parameter value to be read
must be specified.
The function block is designed to be used with a fix SLAVE device.
If the DEV_NAME is given incorrect or invalid, then the function block will displays an error. In
such case ERR=TRUE and ERNO=16#4030.

The DEV_NAME input should not be changed, while the program is running.
If changed, nevertheless the new value will become effective only after the
function block is enabled again.

Data type: ENUM, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM or INT. (Please refer
ACS_DRIVE_ENUM for details.) The input can be set either by the value directly or by using the
enum.

Data type: BYTE, Default value: 0, Range: 0 to 37
With input NVAR the function block can be configured to read between 0 to 37 drive parameter
values.
If the NVAR is given incorrect or invalid, then the function block will display an error. In such
case ERR=TRUE and ERNO=16#4040.

Data type: DWORD
Input Data must be connected to the variable of type ACS_PB_PN_PRM_DPV1_DATA_TYPE
for specifying READ parameter group and index. Each drive must have its own DATA variable.

SLOT (slot)

DEV_NAME
(device name)

DRIVE_TYPE
(drive type)

NVAR (number
of variables)

DATA (data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2455

Output description

Data type: BOOL
Output DONE indicates the processing of the function block. If DONE = FALSE, the function
block is not processed due to EN = FALSE and all outputs are set to 0.
For that reason, the other outputs always have to be considered together with output DONE. All
other outputs are only valid, if DONE = TRUE.
DONE is set to TRUE for one cycle. For that reason, the output always has to be considered
together with output ERR. If ERR is TRUE, an error occurred. In this case, the error number can
be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in a separate table Error
Messages of the ACS Drives function block libraries(see Ä Chapter 1.5.3 “Error messages of
the AC500 V2 function block libraries” on page 735).

Data type: WORD, Default value: 0, Range: ³0

Reserved output.

Data type: WORD, Default value: 0, Range: ³0

Reserved output.

dwAcsPnReadNPrmDpv1_DATA:= ADR (AcsPbPnPrmDpv1DataType)
ACS_PN_READ_N_PRM_DPV1 (EN :=
xAcsPnReadNPrmDpv1_EN,

 SLOT :=

DONE (done)

ERR (error)

ERNO (error
number)

ERNO1 (error
number 1)

ERNO2 (error
number 2)

Calling of
ACS_PN_READ
_N_PRM_DPV1
in ST

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2456

byAcsPnReadNPrmDpv1_SLOT,

 DEV_NAME :=
byAcsPnReadNPrmDpv1_DEV_NAME,

 DRIVE_TYPE :=
iAcsPnReadNPrmDpv1_DRIVE_TYPE,

 NVAR :=
byAcsPnReadNPrmDpv1_NVAR,

 DATA :=
dwAcsPnReadNPrmDpv1_DATA);

xAcsPnReadNPrmDpv1_DONE := ACS_PN_READ_N_PRM_DPV1.DONE;
xAcsPnReadNPrmDpv1_ERR := ACS_PN_READ_N_PRM_DPV1.ERR;
wAcsPnReadNPrmDpv1_ERNO := ACS_PN_READ_N_PRM_DPV1.ERNO;
wAcsPnReadNPrmDpv1_ERNO1 := ACS_PN_READ_N_PRM_DPV1.ERNO1;
wAcsPnReadNPrmDpv1_ERNO2 := ACS_PN_READ_N_PRM_DPV1.ERNO2;

ACS_PN_WRITE_N_PRM_DPV1 write parameters from ABB drives via PROFINET DPV1

Function block ACS_PN_WRITE_N_PRM_DPV1 writes maximum 37 parameters to the drive in
a single query. The number of parameters to be write is specified at the input NVAR.

Available in runtime system: V2.4 and above

Included in library: ACSDrivesComPN_AC500_V24.lib

Function block type: Function block with historical values.

Function block ACS_PN_WRITE_N_PRM_DPV1 writes maximum 37 parameters to the drive in
a single query. The number of parameters to be write is specified at the input NVAR.
Another limit while using the write function block is, it can process only up to 240 byte data in
one request or 37 drive parameters whichever is lower. If the write data length is more than 240
byte, the function block generates an error code 16#7012.
Parameters to write to the drive are specified at the DATA input.
ACS_PB_PN_PRM_DPV1_DATA_TYPE structure must be declared to a variable and con-
nected to DATA input using ADR, which is to be entered with Group, Index.
ACS_PB_PN_PRM_DPV1_DATA_TYPE structure has the following array elements:
● abyPrmGroup : Array of 37 BYTE for specifying parameter Group.
● abyPrmIndex : Array of 37 BYTE for specifying parameter Index

Function block
information

Block descrip-
tion

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2457

● abyPrmType : Array of 37 BYTE for specifying parameter type , Please refer the respective
Drives manual for parameter data type and enter the respective ENUM / VALUE . For
details about ENUM / VALUE please refer ACS_PB_PN_PRM_TYPE_ENUM Ä Chapter
1.5.6.2.5.2 “ACS_PB_PN_PRM_TYPE_ENUM” on page 2251

● adwPrmValue: Array of 37 BYTE for specifying parameter value
The values in the structure area are updated, when the WRITE job was performed without
error. This is indicated by DONE=TRUE and ERR=FALSE.

Currently user cannot use enumeration from
ACS_PB_PN_PRM_TYPE_ENUM.

Instead user need to use numerical values from
ACS_PB_PN_PRM_TYPE_ENUM only.

The values in the structure area are updated, when the WRITE job was performed without error.
This is indicated by DONE=TRUE and ERR=FALSE.

If the user need to read Parameter 10.01 and 11.05, then he need to enter the group and index
number separately in input DATA as below:
DataStructure : ACS_PB_PN_PRM_DPV1_DATA_TYPE
Parameter Group : DataStruct.abyPrmGroup[1]:= 10; DataStruct.abyPrmGroup[2]:= 11;
Parameter Index : DataStruct .abyPrmIndex [1]:= 01; DataStruct .abyPrmIndex [2]:= 05;
Parameter Type : DataStruct. abyPrmType [1]:= xx; DataStruct. abyPrmType [2]:= xx;
Parameter Value : DataStruct. adwPrmValue [1]:= xx; DataStruct. adwPrmValue [2]:= xx;
The values in the structure area are written to drive when the write job is performed without
error. This is indicated by DONE=TRUE and ERR=FALSE.

Example

Input description

Data type: BOOL
In order to enable the function block processing, input EN has to be set from FALSE to TRUE.
While input is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.
Default value = FALSE.

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2458

If multiple ACS_PN_READ_N_PRM_DPV1 and / or multiple
ACS_PN_WRITE_N_PRM_DPV1 functions blocks enabled at the same time
it may cause for error Read / Write error.

Data type: BYTE, Default value: 1, Range: 1 to 6
At input SLOT the communication module SLOT (module number) is selected, which should be
used by the Function Block. All external communication modules are serially numbered from
right to left, starting with module number 1.
If the SLOT number is given incorrect or invalid, then the function block will displays an error. In
such case ERR=TRUE and ERNO=16#4020.
For PM595 processor modules, internal PROFINET communication module with connector
ETH3 is slot 5, ETH4 is slot 6.

Data type: STRING, Default value: "Not Available", Range: 1 to 240
At input DEV_NAME, the name of the drive (slave) from which the parameter value to be read
must be specified.
The function block is designed to be used with a fix SLAVE device.
If the DEV_NAME is given incorrect or invalid, then the function block will displays an error. In
such case ERR=TRUE and ERNO=16#4030.

The DEV_NAME input should not be changed, while the program is running.
If changed, nevertheless the new value will become effective only after the
function block is enabled again.

Data type: ENUM, Default value: ACS_DRIVE_ACS355
At the input DRIVE_TYPE the type of ACS drive is specified with an ENUM or INT. (Please refer
ACS_DRIVE_ENUM for details.) The input can be set either by the value directly or by using the
enum.

Data type: BYTE, Default value: 0, Range: 0 to 37
With input NVAR the function block can be configured to read between 0 to 37 drive parameter
values.
If the NVAR is given incorrect or invalid, then the function block will display an error. In such
case ERR=TRUE and ERNO=16#4040.

Data type: DWORD
Input Data must be connected to the variable of type ACS_PB_PN_PRM_DPV1_DATA_TYPE
for specifying READ parameter group and index. Each drive must have its own DATA variable.

SLOT (slot)

DEV_NAME
(device name)

DRIVE_TYPE
(drive type)

NVAR (number
of variables)

DATA (data)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2459

Output description

Data type: BOOL
Output DONE indicates the processing of the function block. If DONE = FALSE, the function
block is not processed due to EN = FALSE and all outputs are set to 0.
For that reason, the other outputs always have to be considered together with output DONE. All
other outputs are only valid, if DONE = TRUE.
DONE is set to TRUE for one cycle. For that reason, the output always has to be considered
together with output ERR. If ERR is TRUE, an error occurred. In this case, the error number can
be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in a separate table Error
Messages of the ACS Drives function block libraries(see Ä Chapter 1.5.3 “Error messages of
the AC500 V2 function block libraries” on page 735).

Data type: WORD, Default value: 0, Range: ³0

Reserved output.

Data type: WORD, Default value: 0, Range: ³0

Reserved output.

DONE (done)

ERR (error)

ERNO (error
number)

ERNO1 (error
number 1)

ERNO2 (error
number 2)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2460

dwAcsPnWriteNPrmDpv1_DATA:= ADR (AcsPbPnPrmDpv1DataType)
ACS_PN_WRITE_N_PRM_DPV1 (EN :=
xAcsPnWriteNPrmDpv1_EN,

 SLOT :=
byAcsPnWriteNPrmDpv1_SLOT,

 DEV_NAME :=
byAcsPnWriteNPrmDpv1_DEV_NAME,

 DRIVE_TYPE :=
iAcsPnWriteNPrmDpv1_DRIVE_TYPE,

 NVAR :=
byAcsPnWriteNPrmDpv1_NVAR,

 DATA :=
dwAcsPnWriteNPrmDpv1_DATA);

xAcsPnWriteNPrmDpv1_DONE := ACS_PN_WRITE_N_PRM_DPV1.DONE;
xAcsPnWriteNPrmDpv1_ERR := ACS_PN_WRITE_N_PRM_DPV1.ERR;
wAcsPnWriteNPrmDpv1_ERNO := ACS_PN_WRITE_N_PRM_DPV1.ERNO;
wAcsPnWriteNPrmDpv1_ERNO1 := ACS_PN_WRITE_N_PRM_DPV1.ERNO1;
wAcsPnWriteNPrmDpv1_ERNO2 := ACS_PN_WRITE_N_PRM_DPV1.ERNO2;

1.5.6.7.5 Visualization
In the application program, the user can add the visualization object in the project. In this object,
the user needs to add faceplate of the desired function block, as shown in the figure.

Calling of
ACS_PN_WRITE
_N_PRM_DPV1
in ST

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2461

Fig. 174: Visualization

Fig. 175: Visualization: file selection

In the following chapter, overall visualization and visualization for each individual function block
are discussed in detail.

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2462

ACS_PN_READ_N_PRM_DPV1_VISU_PH faceplate of ACS_PN_READ_N_PRM_DPV1 function block.

Fig. 176: Visualization in offline / online mode

Available in runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_PN_READ_N_PRM_DPV1_VISU_PH is used to show the actual
values of all inputs and outputs of the instance of ACS_PN_READ_N_PRM_DPV1_VISU_PH
function block.
The visualization is also used to control the function block by those inputs, which are not
connected inside the program.

Parameters
Access R/W

Access via: Toggle
Description: EN input
Enables the function block by TRUE value of input EN.

Access via: Text
Description: SLOT, in which the PROFIBUS master communication module is mounted.

Data type: STRING, Default value: "Not Available", Range: 1 to 240
At input DEV_NAME, the name of the drive (slave) from which the parameter value to be read
must be specified.
The function block is designed to be used with a fix SLAVE device.

Visualization
information

Visualization
description

EN

SLOT

DEV_NAME
(device name)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2463

If the DEV_NAME is given incorrect or invalid, then the function block will displays an error. In
such case ERR=TRUE and ERNO=16#4030.

The DEV_NAME input should not be changed, while the program is running.
If changed, nevertheless the new value will become effective only after the
function block is enabled again.

Access via: Text
Description: DRIVE_TYPE input

Access via: Text
Description: Number of drive parameters to be read from drive using PROFIBUS.

Access R
Description: DONE output.
To indicate, the Function Block processing is completed.

Description: ERR output.
Function Block processed with error.

Description: ERNO output.

Description: Data input to connect structure ACS_PB_PN_PRM_DPV1_DATA_TYPE for speci-
fying READ parameter group and index.

All inputs of ACS_PN_READ_N_PRM_DPV1_VISU_PH function block, which are not con-
nected to a variable (left open), can be written from this faceplate. The function block can
be controlled from the visualization as long as the inputs are left open.

DRIVE_TYPE

NVAR

DONE

ERR

ERNO

DATA

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2464

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

ACS_PN_WRITE_N_PRM_DPV1_VISU_PH visualization to run the ACS_PN_WRITE_N_PRM_DPV1 function
block.

Fig. 177: Visualization in offline / online mode

Available in runtime system: V2.4

Included in library: ACSDrivesBase_AC500_V20.lib

Visualization element ACS_PN_WRITE_N_PRM_DPV1_VISU_PH is used to show the actual
values of all inputs and outputs of the instance of ACS_PN_WRITE_N_PRM_DPV1_VISU_PH
function block.
The visualization is also used to control the function block by those inputs, which are not
connected inside the program.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2465

Parameters
Access R/W

Access via: Toggle
Description: EN input
Enables the function block by TRUE value of input EN.

Access via: Text
Description: SLOT, in which the PROFIBUS master communication module is mounted.

Data type: STRING, Default value: "Not Available", Range: 1 to 240
At input DEV_NAME, the name of the drive (slave) from which the parameter value to be read
must be specified.
The function block is designed to be used with a fix SLAVE device.
If the DEV_NAME is given incorrect or invalid, then the function block will displays an error. In
such case ERR=TRUE and ERNO=16#4030.

The DEV_NAME input should not be changed, while the program is running.
If changed, nevertheless the new value will become effective only after the
function block is enabled again.

Access via: Text
Description: DRIVE_TYPE input

Access via: Text
Description: Number of drive parameters to be read from drive using PROFIBUS.

All inputs of ACS_PN_WRITE_N_PRM_DPV1_VISU_PH function block, which are not con-
nected to a variable (left open), can be written from this faceplate. The function block can be
controlled from the visualization as long as the inputs are left open.

Access R
Description: DONE output.
To indicate, the Function Block processing is completed.

Description: ERR output.
Function Block processed with error.

Description: ERNO output.

Data type: DWORD
Input Data must be connected to the variable of type ACS_PB_PN_PRM_DPV1_DATA_TYPE
for specifying READ parameter group and index. Each drive must have its own DATA variable.

EN

SLOT

DEV_NAME
(device name)

DRIVE_TYPE

NVAR

DONE

ERR

ERNO

DATA (data)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2466

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

1.5.6.8 DCS drives library

1.5.6.8.1 Preconditions for the use of the DCS drives library

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

Some of the blocks can only be used in combination with one
of the ACSDrivesComXXX_AC500_Vyy libraries, e.g. the ACSDrivesCom-
ModRTU_AC500_V20.lib.

The library is released for the following products:
● CPUs: AC500 and AC500-eCo

Connection of more drives depends on performance of used CPU, communication type and
settings.

● Fieldbus: PROFIBUS DP, Modbus RTU, Modbus TCP, PROFINET, CANopen

To check the compatiblity of drives and their communication modules, please refer to the
following table that shows the tested combinations:

Communi-
cation

PLC communica-
tion modules

PLC Fieldbus Adapter of drive Drive

 PLC
commu-
nication
module

Firm-
ware
Ver-
sion

Fieldbus
Adapter
(FBA)

FBA
comm
sw ver

FBA
appl sw
ver

Drive Firm-
ware
Ver-
sion

Drive
Rating
ID

PROFIBUS CM572-
DP

V1.0.97 RPBA 132h 307h DCS5
50

-1.3

 V1.0.97 RPBA 132h 307h DCS8
00

-3.6

Compatibility

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2467

Communi-
cation

PLC communica-
tion modules

PLC Fieldbus Adapter of drive Drive

 PLC
commu-
nication
module

Firm-
ware
Ver-
sion

Fieldbus
Adapter
(FBA)

FBA
comm
sw ver

FBA
appl sw
ver

Drive Firm-
ware
Ver-
sion

Drive
Rating
ID

 V01.09
7

RPBA-01 132 h 307h DCS8
00

3.7 DCS800
-
S02-005
0-05

PROFIBUS CM592-
DP

V1.1.1.
21

RPBA-01 132h 308h DCS8
00

3.7 DCS800
-
S02-005
0-05

Modbus Onboard RMBA-01 DCS8
00

3.7 DCS800
-
S02-005
0-05

Modbus TCP Onboard RETA-01 130h 306h DCS8
00

3.7 DCS800
-
S02-005
0-05

PROFINET CM579-
PNIO

V2.6.5 RETA-02 130h 305h DCS8
00

3.7 DCS800
-
S02-005
0-05

CANopen CM578 V01.22
0

RCAN-01 131h 114h DCS8
00

3.7 DCS800
-
S02-005
0-05

CANopen CM598-
CN

V1.11.1
.21

RCAN-01 131h 114h DCS8
00

3.7 DCS800
-
S02-005
0-05

1.5.6.8.2 Components of the DCS drives library

DCS_DRIVES_CTRL Ä Chapter 1.5.6.8.4.1
“DCS_DRIVES_CTRL Control of DCS Drives
with ABB-Drives profile using a communica-
tion block” on page 2470

Control of DCS Drives with ABB-Drives Profile
using additional communication block

DCS_DRIVES_CTRL_GEN Ä Chapter
1.5.6.8.4.2 “DCS_DRIVES_CTRL_GEN con-
trol of DCS drives with ABB-Drives profile via
generic fieldbus” on page 2477

Control of DCS Drives with ABB-Drives Profile

DCS_DRIVE_ENUM Ä Chapter 1.5.6.8.5.1
“DCS_DRIVE_ENUM enumerations to
be used at the input DRIVE_TYPE
of ACS_COM_xxx function blocks”
on page 2484

Enumeration of DCS drive type

Function blocks

Enumeration

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2468

DCS_DRIVES_CTRL_VISU_PH Ä Chapter
1.5.6.8.6.1 “DCS_DRIVES_CTRL_VISU_PH
faceplate of function block
DCS_DRIVES_CTRL” on page 2484

Faceplate for the function block

DCS_DRIVES_CTRL_GEN_VISU_PH
Ä Chapter 1.5.6.8.6.2
“DCS_DRIVES_CTRL_GEN_VISU_PH face-
plate of function block
DCS_DRIVES_CTRL_GEN” on page 2489

Faceplate for the function block

1.5.6.8.3 Overview of the DCS Drives library components according to their call names
Used abbreviations:

FBhv Function block with historical values
FBnohv Function block without historical values
F Function
Enum Enumeration
Struct Structure
Visu Visualization

VE name Type Function
DCS_DRIVES_CTRL
Ä Chapter 1.5.6.8.4.1
“DCS_DRIVES_CTRL Control of
DCS Drives with ABB-Drives
profile using a communication
block” on page 2470

FBhv DCS Drives Control via communication block

DCS_DRIVES_CTRL_GEN
Ä Chapter 1.5.6.8.4.2
“DCS_DRIVES_CTRL_GEN
control of DCS drives with
ABB-Drives profile via generic
fieldbus” on page 2477

FBhv DCS Drives Control direct via Status and Control
word

DCS_DRIVES_CTRL_GEN_VIS
U_PH Ä Chapter 1.5.6.8.6.2
“DCS_DRIVES_CTRL_GEN_VI
SU_PH faceplate of function
block
DCS_DRIVES_CTRL_GEN”
on page 2489

Visu Faceplate for DCS_DRIVES_CTRL_GEN

Visualizations

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2469

VE name Type Function
DCS_DRIVES_CTRL_VISU_PH
Ä Chapter 1.5.6.8.6.1
“DCS_DRIVES_CTRL_VISU_P
H faceplate of function block
DCS_DRIVES_CTRL”
on page 2484

Visu Faceplate for DCS_DRIVES_CTRL

DCS_DRIVE_ENUM
Ä Chapter 1.5.6.8.5.1
“DCS_DRIVE_ENUM enumer-
ations to be used at
the input DRIVE_TYPE of
ACS_COM_xxx function blocks”
on page 2484

Enum Enumarations for DCS_DRIVES types

1.5.6.8.4 Function blocks
DCS_DRIVES_CTRL Control of DCS Drives with ABB-Drives profile using a communication block

Function block DCS_DRIVES_CTRL is used for controlling DCS Drives with ABB Drives Profile
connected to a communication block via a DRIVE_DATA variable.

Available as of runtime system: V2.3.3

Included in library: DCSDrives_AC500_V24.lib

Function block with historical values

Block data

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2470

The function block DCS_DRIVES_CTRL is used for controlling DCS Drives with ABB Drives
profile.
The function block provides standard start/stop signals to control the drive and standard diag-
nosis signals read from the drive.
According to the input signals and the actual Status Word (SW), read from the DRIVE_DATA
variable, the ABB drives profile state machine is executed. The Control Word (CW) is build and
written to the DRIVE_DATA variable. For diagnosis purpose the CW is also written to the output
USED_CW.
SPEED_REF input has to be given in the fieldbus range of -20000 .. +20000, according to the
scaling parameter in the drive (e.g. Par. 11.05 of ACS355).ACT_SPEED provides the actual
speed in the fieldbus range of -20000 .. +20000, according to the scaling parameter in the drive
(e.g. Par. 11.05 of ACS355). ACS_REF_SCALING function block could be used to scale the
fieldbus range to a physical value.
If the connected communication block (via DRIVE_DATA variable) is disabled or not parameter-
ized correctly, all outputs except DONE, ERR and ERNO are reset to zero. This can be checked
by the ERNO output.

The function block is only working for DCS drives using ABB Drive profile. The data transfer
to the drive is realized via the IN_OUT variable DRIVE_DATA, which must be connected to
an ACS_COM_MOD_RTU Ä Chapter 1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for
ACS / DCS drives via Modbus RTU” on page 2301 or an ACS_COM_MOD_TCP Ä Chapter
1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives via Modbus TCP”
on page 2360 function block.
For the necessary configuration of parameters in the drive see table below.

Description

Preconditions

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2471

Drive Parameter DCS800 DCS550 Comment
EXT1 COM-
MANDS

10.01 = ManCtrlWord 10.01 = ManCtrlWord Fieldbus interface as
source for start and stop

EXT1/EXT2 SEL 10.07 (HandAuto)
MCW: Bit11
11.02 (Ref1Mux) MCW:
Bitt11
11.12 (Ref2Mux) Invert
11.02

10.07 (HandAuto)
MCW: Bit11
11.02 (Ref1Mux)
MCW:
Bitt11 11.12
(Ref2Mux) Invert
11.02

Fieldbus interface as
source to switch to
EXT2 control place.
Tbd / tbc

REF1 SELECT 11.03 = SpeedRef2301 11.03 = Spee-
dRef2301

Fieldbus interface as
source for speed refer-
ence

FAULT RESET
SEL

NA NA Fieldbus interface as
source for fault reset

PROFILE NA NA Control Profile to ABB
Drives Profile classic or
enhanced.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the function block is active, the current values are available at the outputs.
If the function block has been deactivated, all outputs are set to 0, with the exception of the
USED_CW output to 1024 (hex 0400 - only remote bit).

EN (enable)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2472

Data type: BOOL
With a rising edge of the input ON (FALSE->TRUE) the DCS Drive Contactors are closed, field
exciter and fans are started. (depending on the drive configuration, it might directly starts, if
RUN = TRUE). (bit 0 of the Control Word On / OFF1N)
If ON = FALSE, the drive is stopped via Off1Mode (21.02). After reaching zero speed, the main
Contactors will be switched off.
According to the ABB Drives Profile a new rising edge of input ON will be ignored, until zero
speed was reached.
With the AUTO_START function an automatically internally rising edge of this input can be
generated to avoid waiting for and detecting zero speed.

Data type: BOOL, Default value: TRUE
STOP_EMCY_COAST=TRUE enables normal operation of the drive.
Input STOP_EMCY_COAST=FALSE will coast the drive (bit 1 of the Control Word OFF2). A
new rising edge of the START input is needed to start the drive again.

Data type: BOOL, Default value: TRUE
STOP_EMCY_RAMP = TRUE enables normal operation of the drive.
Input STOP_EMCY_RAMP = FALSE will stop the drive along the emergency ramp, defined in
the drive (bit 2 of the Control Word OFF3). A new rising edge of the START input is needed to
start the drive again.

Data type: BOOL, Default value: TRUE
STOP_EMCY_RAMP = TRUE enables normal operation of the drive.
Input STOP_EMCY_RAMP = FALSE will stop the drive along the emergency ramp, defined in
the drive (bit 2 of the Control Word OFF3). A new rising edge of the START input is needed to
start the drive again.

Data type: BOOL
Input RUN = TRUE will start the drive (bit 3 of the Control Word RUN / INHIBIT_OP).
RUN = FALSE will stop the drive depending on the StopMode configuration (Par. 21.03)
Depending on the drive configuration a new rising edge of the input ON might be needed to
restart the drive. With the AUTO_START function an automatically internally rising edge of this
input can be generated each 1 sec.

Data type: BOOL
Input RESET is used to reset the drive (bit 7 in the Control Word RESET).
RESET = TRUE resets faults and warnings in the drive. It does not reset the function block
itself.
For DCS drives to reset the drive the input ON and the input RUN must be reset to FALSE.

Data type: BOOL
Input CW_BIT11 = TRUE sets the Control Word Bit11. The meaning is according to the user
specific drive configuration.

Data type: BOOL

ON (switch on)

STOP_EMCY_C
OAST (stop
emergency
coast)

STOP_EMCY_R
AMP (stop
emergency
ramp)

STOP_EMCY_R
AMP (stop
emergency
ramp)

RUN (run)

RESET (reset)

CW_BIT11 (Con-
trol Word bit 11)

CW_BIT12 (Con-
trol Word bit 12)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2473

Input CW_BIT12 = TRUE sets the Control Word Bit12. The meaning is according to the user
specific drive configuration.

Data type: BOOL
Input CW_BIT13 = TRUE sets the Control Word Bit13. The meaning is according to the user
specific drive configuration.

Data type: BOOL
Input CW_BIT14 = TRUE sets the Control Word Bit14. The meaning is according to the user
specific drive configuration.

Data type: BOOL
Input CW_BIT15 = TRUE sets the Control Word Bit15. The meaning is according to the user
specific drive configuration.

Data type: BOOL
Input AUTO_START enables the auto start function of the function block.
The AUTO_START function internally creates cyclically switch on / start commands on the Con-
trol Word. So that the ON and RUN input of the function block can be used as level sensitive
inputs.
They don´t need to be reset to FALSE and back to TRUE to restart the drive after a normal stop.
The AUTO_START function is not working, if the stop was caused by an emergency stop, e.g.
STOP_EMCY_COAST or STOP_EMCY_RAMP input or STO. The time of cyclically retries is
1second.

WARNING!
Automatically start!
Be aware, that the drive starts automatically, if the AUTO_START func-
tion is enabled and additionally ON, RUN, STOP_EMCY_COAST and
STOP_EMCY_RAMP inputs are set to TRUE.

Details of implementation:
The function will internally reset the ON or RUN bit of the Control Word to create a rising edge
on one of these bits to the drive.
The ON bit (bit 0 of Control Word OFF1) is reset to FALSE in case that the ON input is set, but
the RDY_ON (bit 0 of Status Word) feedback from drive was still missing after 1sec. Then the
ON bit (bit 0 of Control Word OFF1) is set to the value of the ON input again. The RUN bit (bit
3 of Control Word INHIBIT_OP) is reset to FALSE in case that the ON and RUN inputs are set,
but the RDY_REF (bit 2 of Status Word) feedback from drive is still missing. Then after 1 sec
the RUN bit (bit 3 of Control Word INHIBIT_OP) is set to the value of the RUN input again.
Use Case:
This function is especially useful in e.g. the following situation:
● The drive is running and local control is enabled by the panel on the drive. There the drive is

stopped and after a time the control is switched back to the PLC.
Then the auto start function restarts the drive automatically without the need to give an
external rising edge to the input ON and RUN.

CW_BIT13 (Con-
trol Word bit 13)

CW_BIT14 (Con-
trol Word bit 14)

CW_BIT15 (Con-
trol Word bit 15)

AUTO_START
(auto start)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2474

Data type: INT
Input SPEED_REF must be given in fieldbus equivalent value between -20000 .. +20000.
20000 = the value, defined in the drive as Ref1 Max (e.g. Par.11.05 Ref1 Max for ACS3XX).
Tbc for DCS and RMBA: For drive types ACS3XX, ACS550 and ACH550 using a Modbus RTU
connection the speed reference value send to the drive is limited to 20000 or +20000. If the
input exceeds this limits, the ERR output is set to TRUE, output ERNO is set to the message
that indicates that the input of SPEED_REF is out of range.
Nevertheless the function block is processed normally.

Data type: INT
Input REF_VALUE2 must be given in fieldbus equivalent value between -10000 .. +10000.
10000 = the value defined in the drive as Ref2 Max (e.g. Par.11.08 Ref2 Max for ACS3XX).
Tbc for DCS and RMBA: For the drive types ACS3XX, ACS550 and ACH550 using a Modbus
RTU connection the Reference Value2, send to the drive is limited to 10000 or + 10000. If the
input exceeds this limits, the ERR output is set to TRUE, output ERNO is set to the message
that indicates that the input of REF_VALUE2 is out of range.
Nevertheless the function block is processed normally.

Data type: ACS_DRIVE_DATA_TYPE Ä Chapter 1.5.6.2.6.2 “ACS_DRIVE_DATA_TYPE struc-
ture to exchange data between function blocks for 1 Drive” on page 2253

The combined input/output DRIVE_DATA must be connected to the variable of type
ACS_DRIVE_DATA_TYPE of the related ACS drive (slave). Each drive must have its own
DRIVE_DATA variable.
The DRIVE_DATA variable contains the data of the drive and must be connected to all related
function blocks of this drive.

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

SPEED_REF
(speed refer-
ence)

REF_VALUE2
(reference value
2)

DRIVE_DATA
(drive data)

DONE (done)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2475

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output READY=TRUE indicates that the drive is ready to switch on (Bit 0 in the status word
from the drive).

Data type: BOOL
Output OPERATING=TRUE indicates, that the drive is modulating. The drive is enabled and
running (Status Word of drive bit: RDY_REF = TRUE).
This indication works, even if the drive is controlled from another control place, e.g. local panel.

This is different to the ACS_DRIVES_CTRL_STANDARD or
ACS_DRIVES_CTRL_STANDARD_GEN.

Data type: BOOL
Output ON_INHIBITED=TRUE indicates, that the OnInhibited state is active (Bit 6 in the Status
Word from the drive).
This is the case after a fault or an Emergency Off / Coast Stopp (Off2) or an E-stop (Off3) or via
digital input “Off2” (10.08) or E Stop (10.09).

Data type: BOOL
Output AT_SETPOINT=TRUE indicates, that the actual value (MotSpeed (1.04)) and the set-
point (SpeedRef4 (2.18)) are in the tolerance zone.

Data type: BOOL
Output TRIPPED=TRUE indicates, that the drive is tripped (Bit 3 in the Status Word from the
drive).

Data type: BOOL
Output ALARM=TRUE indicates, that the drive has an alarm (Bit 7 in the Status Word from the
drive).

Data type: BOOL

ERR (error)

ERNO (error
number)

READY (ready)

OPERATING
(operating)

ON_INHIBIT (on
is inhibited)

AT_SETPOINT
(actual value is
at setpoint)

TRIPPED
(tripped)

ALARM (alarm)

LOCAL_CTRL
(local control)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2476

Output LOCAL_CTRL = TRUE indicates, that the drive is not controlled from remote control
e.g. PLC (LOCAL_CTRL = inverted bit 9 in the Status Word from the drive - REMOTE).
LOCAL_CTRL might be set to TRUE due to no connection to the drive or the drive was set
to local control via the drive panel or a drive configuration tool from PC.

Data type: INT
Output ACT_SPEED returns the actual speed value from the drive. The scaling depends on the
drive settings.

Data type: INT
Output ACT_VALUE2 returns the value from the drive parameterized in the drive for Actual
Value2 on the fieldbus.

Data type: WORD
Output ACT_SW returns the actual Status Word read from the drive.

Data type: WORD
Output USED_CW returns the Control Word, that was build in the function block due to the
inputs and Status Word according the ABB Drives Profile state machine.
The USED_CW is sent to the drive as Control Word.

Data type: STRING
Output MESSAGE gives information about the actual state of the function block. This string also
indicates what would be the next steps to continue to start the drive, or which signal from the
drive is missing.

DCS_DRIVES_CTRL_GEN control of DCS drives with ABB-Drives profile via generic fieldbus

Function block DCS_DRIVES_CTRL is used for controlling DCS Drives with ABB Drives profile
connected to a communication block via a DRIVE_DATA variable.

ACT_SPEED
(actual speed)

ACT_VALUE2
(actual value 2)

ACT_SW (actual
status word)

USED_CW
(used control
word)

MESSAGE
(message)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2477

Available as of runtime system: V2.3.3

Included in library: DCSDrives_AC500_V24.lib

Function block with historical values

The function block DCS_DRIVES_CTRL is used for controlling DCS Drives with ABB Drives
profile.
The function block provides standard start/stop signals to control the drive and standard diag-
nosis signals read from the drive.
According to the input signals and the actual Status Word (SW), read from the DRIVE_DATA
variable, the ABB Drives profile state machine is executed. The Control Word (CW) is build and
written to the DRIVE_DATA variable. For diagnosis purpose the CW is also written to the output
USED_CW.
SPEED_REF input has to be given in the fieldbus range of -20000 .. +20000, according to the
scaling parameter in the drive (e.g. Par. 11.05 of ACS355).ACT_SPEED provides the actual
speed in the fieldbus range of -20000 .. +20000, according to the scaling parameter in the drive
(e.g. Par. 11.05 of ACS355). ACS_REF_SCALING function block could be used to scale the
fieldbus range to a physical value.
If the connected communication block (via DRIVE_DATA variable) is disabled or not parameter-
ized correctly, all outputs except DONE, ERR and ERNO are reset to zero. This can be checked
by the ERNO output.

The function block is only working for DCS drives using ABB Drive profile. The data transfer
to the drive is realized via the IN_OUT variable DRIVE_DATA, which must be connected to
an ACS_COM_MOD_RTU Ä Chapter 1.5.6.3.5.2 “ACS_COM_MOD_RTU communication for
ACS / DCS drives via Modbus RTU” on page 2301 or an ACS_COM_MOD_TCP Ä Chapter
1.5.6.4.3.1 “ACS_COM_MOD_TCP communication for ACS / DCS drives via Modbus TCP”
on page 2360 function block.

Table 138: Necessary configuration of parameters in the drive
Drive Parameter DCS800 DCS550 Comment
EXT1 COM-
MANDS

10.01 = ManCtrlWord 10.01 = ManCtrlWord Fieldbus interface as
source for start and stop

EXT1/EXT2 SEL 10.07 (HandAuto)
MCW: Bit11
11.02 (Ref1Mux) MCW:
Bitt11
11.12 (Ref2Mux) Invert
11.02

10.07 (HandAuto)
MCW: Bit11
11.02 (Ref1Mux)
MCW:
Bitt11 11.12
(Ref2Mux) Invert
11.02

Fieldbus interface as
source to switch to
EXT2 control place.
Tbd / tbc

Block data

Description

Preconditions

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2478

Drive Parameter DCS800 DCS550 Comment
REF1 SELECT 11.03 = SpeedRef2301 11.03 = Spee-

dRef2301
Fieldbus interface as
source for speed refer-
ence

FAULT RESET
SEL

NA NA Fieldbus interface as
source for fault reset

PROFILE NA NA Control Profile to ABB
Drives Profile classic or
enhanced.

Input description

Data type: BOOL
The function block is activated (EN = TRUE) or deactivated (EN = FALSE) via input EN.
If the function block is active, the current values are available at the outputs.
If the function block has been deactivated, all outputs are set to 0, with the exception of the CW
output to 1024 (hex 0400 - only remote bit).

Data type: BOOL
With a rising edge of the input ON (FALSE->TRUE) the DCS Drive Contactors are closed, field
exciter and fans are started. (depending on the drive configuration, it might directly starts, if
RUN = TRUE). (bit 0 of the Control Word On / OFF1N)
If ON = FALSE, the drive is stopped via Off1Mode (21.02). After reaching zero speed, the main
Contactors will be switched off.
According to the ABB Drives Profile a new rising edge of input ON will be ignored, until zero
speed was reached.
With the AUTO_START function an automatically internally rising edge of this input can be
generated to avoid waiting for and detecting zero speed.

EN (enable)

ON (switch on)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2479

Data type: BOOL, Default value: TRUE
STOP_EMCY_COAST=TRUE enables normal operation of the drive.
Input STOP_EMCY_COAST=FALSE will coast the drive (bit 1 of the Control Word OFF2). A
new rising edge of the START input is needed to start the drive again.

Data type: BOOL, Default value: TRUE
STOP_EMCY_RAMP = TRUE enables normal operation of the drive.
Input STOP_EMCY_RAMP = FALSE will stop the drive along the emergency ramp, defined in
the drive (bit 2 of the Control Word OFF3). A new rising edge of the START input is needed to
start the drive again.

Data type: BOOL
Input RUN = TRUE will start the drive (bit 3 of the Control Word RUN / INHIBIT_OP).
RUN = FALSE will stop the drive depending on the StopMode configuration (Par. 21.03)
Depending on the drive configuration a new rising edge of the input ON might be needed to
restart the drive. With the AUTO_START function an automatically internally rising edge of this
input can be generated each 1 sec.

Data type: BOOL
Input RESET is used to reset the drive (bit 7 in the Control Word RESET).
RESET = TRUE resets faults and warnings in the drive. It does not reset the function block
itself.
For DCS drives to reset the drive the input ON and the input RUN must be reset to FALSE.

Data type: BOOL
Input CW_BIT11 = TRUE sets the Control Word Bit11. The meaning is according to the user
specific drive configuration.

Data type: BOOL
Input CW_BIT12 = TRUE sets the Control Word Bit12. The meaning is according to the user
specific drive configuration.

Data type: BOOL
Input CW_BIT13 = TRUE sets the Control Word Bit13. The meaning is according to the user
specific drive configuration.

Data type: BOOL
Input CW_BIT14 = TRUE sets the Control Word Bit14. The meaning is according to the user
specific drive configuration.

Data type: BOOL
Input CW_BIT15 = TRUE sets the Control Word Bit15. The meaning is according to the user
specific drive configuration.

STOP_EMCY_C
OAST (stop
emergency
coast)

STOP_EMCY_R
AMP (stop
emergency
ramp)

RUN (run)

RESET (reset)

CW_BIT11 (Con-
trol Word bit 11)

CW_BIT12 (Con-
trol Word bit 12)

CW_BIT13 (Con-
trol Word bit 13)

CW_BIT14 (Con-
trol Word bit 14)

CW_BIT15 (Con-
trol Word bit 15)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2480

Data type: BOOL
Input AUTO_START enables the auto start function of the function block.
The AUTO_START function internally creates cyclically switch on / start commands on the Con-
trol Word. So that the ON and RUN input of the function block can be used as level sensitive
inputs.
They don´t need to be reset to FALSE and back to TRUE to restart the drive after a normal stop.
The AUTO_START function is not working, if the stop was caused by an emergency stop, e.g.
STOP_EMCY_COAST or STOP_EMCY_RAMP input or STO. The time of cyclically retries is
1second.

WARNING!
Automatically start!
Be aware, that the drive starts automatically, if the AUTO_START func-
tion is enabled and additionally ON, RUN, STOP_EMCY_COAST and
STOP_EMCY_RAMP inputs are set to TRUE.

Details of implementation:
The function will internally reset the ON or RUN bit of the Control Word to create a rising edge
on one of these bits to the drive.
The ON bit (bit 0 of Control Word OFF1) is reset to FALSE in case that the ON input is set, but
the RDY_ON (bit 0 of Status Word) feedback from drive was still missing after 1sec. Then the
ON bit (bit 0 of Control Word OFF1) is set to the value of the ON input again. The RUN bit (bit
3 of Control Word INHIBIT_OP) is reset to FALSE in case that the ON and RUN inputs are set,
but the RDY_REF (bit 2 of Status Word) feedback from drive is still missing. Then after 1 sec
the RUN bit (bit 3 of Control Word INHIBIT_OP) is set to the value of the RUN input again.
Use Case:
This function is especially useful in e.g. the following situation:
● The drive is running and local control is enabled by the panel on the drive. There the drive is

stopped and after a time the control is switched back to the PLC.
Then the auto start function restarts the drive automatically without the need to give an
external rising edge to the input ON and RUN.

Data type: WORD
Input Status Word from drive. Connect Status Word from fieldbus to this input.

AUTO_START
(auto start)

SW (Status
Word)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2481

Output description

Data type: BOOL
Output DONE indicates the state of the job processing. After completing or aborting the pro-
cessing (due to an error), DONE is set to TRUE for one cycle. For that reason, the output
always has to be considered together with output ERR. If ERR is TRUE, an error occurred. In
this case, the error number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during block processing. This output always
has to be considered together with output DONE. If DONE = TRUE and ERR = TRUE, an error
occurred. In this case, the error number can be read at output ERNO.

Data type: WORD
Output ERNO provides an error identifier, if an invalid value was applied to an input or if an
error occurred during request processing. ERNO always has to be considered together with the
outputs DONE and ERR. The value output at ERNO is only valid, if DONE is TRUE and ERR is
TRUE.
The encoding of the error messages output at ERNO is explained in the chapter Ä Chapter
1.5.3 “Error messages of the AC500 V2 function block libraries” on page 735.

Data type: BOOL
Output READY=TRUE indicates that the drive is ready to switch on (Bit 0 in the status word
from the drive).

Data type: BOOL
Output OPERATING=TRUE indicates, that the drive is modulating. The drive is enabled and
running (Status Word of drive bit: RDY_REF = TRUE).
This indication works, even if the drive is controlled from another control place, e.g. local panel.

DONE (done)

ERR (error)

ERNO (error
number)

READY (ready)

OPERATING
(operating)

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2482

This is different to the ACS_DRIVES_CTRL_STANDARD or
ACS_DRIVES_CTRL_STANDARD_GEN.

Data type: BOOL
Output ON_INHIBITED=TRUE indicates, that the OnInhibited state is active (Bit 6 in the Status
Word from the drive).
This is the case after a fault or an Emergency Off / Coast Stopp (Off2) or an E-stop (Off3) or via
digital input “Off2” (10.08) or E Stop (10.09).

Data type: BOOL
Output AT_SETPOINT=TRUE indicates, that the actual value (MotSpeed (1.04)) and the set-
point (SpeedRef4 (2.18)) are in the tolerance zone.

Data type: BOOL
Output TRIPPED=TRUE indicates, that the drive is tripped (Bit 3 in the Status Word from the
drive).

Data type: BOOL
Output ALARM=TRUE indicates, that the drive has an alarm (Bit 7 in the Status Word from the
drive).

Data type: BOOL
Output LOCAL_CTRL = TRUE indicates, that the drive is not controlled from remote control
e.g. PLC (LOCAL_CTRL = inverted bit 9 in the Status Word from the drive - REMOTE).
LOCAL_CTRL might be set to TRUE due to no connection to the drive or the drive was set
to local control via the drive panel or a drive configuration tool from PC.

Data type: WORD
Output CW returns the Control Word that was build in the function block using the inputs and
Status Word according to the ABB Drives Profile state machine.
Connect CW directly to the fieldbus. The CW output will keep it´s value, even if the drive is not
controlled from this block anymore. E.g., if local control or EXT2 is enabled.

This is different to the ACS_DRIVES_CTRL_STANDARD or
ACS_DRIVES_CTRL_STANDARD_GEN.

Data type: STRING
Output MESSAGE gives information about the actual state of the function block. This string also
indicates what would be the next steps to continue to start the drive, or which signal from the
drive is missing.

ON_INHIBIT (on
is inhibited)

AT_SETPOINT
(actual value is
at setpoint)

TRIPPED
(tripped)

ALARM (alarm)

LOCAL_CTRL
(local control)

CW (Control
Word)

MESSAGE
(message)

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2483

1.5.6.8.5 Enumerations
DCS_DRIVE_ENUM enumerations to be used at the input DRIVE_TYPE of ACS_COM_xxx function blocks

Enumerations DCS_DRIVE_ENUM can be used at the input of any communication block
ACS_COM_xxx e.g. ACS_COM_MOD_RTU, ACS_COM_MOD_TCP or ACS_COM_PB.

Table 139: Enumeration data
Available as of runtime system: V1.3.2

Included in library: DCSDrives_AC500_V24.lib

Table 140: ENUMs
Enumeration Type Value Description
DCS_DRIVE_DCS800 INT 12

DCS_DRIVE_DCS550 INT 13

These Enumerations can be used at the input DRIVE_TYPE of any communication block
ACS_COM_xxx e.g. ACS_COM_MOD_RTU, ACS_COM_MOD_TCP or ACS_COM_PB, for a
better reading.

1.5.6.8.6 Visualization
DCS_DRIVES_CTRL_VISU_PH faceplate of function block DCS_DRIVES_CTRL

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2484

Visualization element DCS_DRIVES_CTRL_VISU_PH can be used to show the actual values of
all inputs and outputs of the instance of an DCS_DRIVES_CTRL function block, which instance
was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

Available in runtime system: V1.3.2

Included in library: DCSDrivesBase_AC500_V24.lib

Visualization element DCS_DRIVES_CTRL_VISU_PH can be used to show the actual values of
all inputs and outputs of the instance of an DCS_DRIVES_CTRL function block which instance
was used to replace the placeholder FB.
All inputs of that DCS_DRIVES_CTRL function block which are not connected to a variable
(left open) can be written from this faceplate. So the function block can be controlled from the
visualization as long as the inputs are left open. The DRIVE_DATA variable must be connected
to the function block.
Additionally, a text message of the actual state, e.g. missing input or missing feedback from
drive, is given by the variable MESSAGE, shown next to label MESSAGE.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2485

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Toggle
Description: ON input

Access via: Toggle
Description: EMCY_COAST input

Access via: Toggle
Description: EMCY_RAMP input

EN

ON

EMCY_COST

EMCY_RAMP

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2486

Access via: Toggle
Description: RUN input

Access via: Toggle
Description: RESET input

Access via: Toggle
Description: CW_BIT 11 input

Access via: Toggle
Description: CW_BIT 12 input

Access via: Toggle
Description: CW_BIT 13 input

Access via: Toggle
Description: CW_BIT 14 input

Access via: Toggle
Description: CW_BIT 15 input

Access via: Toggle
Description: AUTO_START input

Access via: Text, -32768...+32768
Description: SPEED_REF input

Access via: Text, -32768...+32768
Description: REF_VALUE 2 input

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_BASIC_CTR
L

Access R
Description: DONE output

Description: ERR output

Description: ERNO output

RUN

RESET

CW_BIT 11

CW_BIT 12

CW_BIT 13

CW_BIT 14

CW_BIT 15

AUTO_START

SPEED_REF

REF_VALUE2

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2487

Description: READY output

Description: OPERATING output

Description: ON_INHIBITED output

Description: AT_SETPOINT output

Description: TRIPPED output

Description: ALARM output

Description: LOC_CTRL output

Description: ACT_SPEED output

Description: ACT_VALUE 2 output

Description: MESSAGE output

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

READY

OPERATING

ON_INHIBITED

AT_SETPOINT

TRIPPED

ALARM

LOC_CTRL

ACT_SPEED

ACT_VALUE2

MESSAGE

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2488

DCS_DRIVES_CTRL_GEN_VISU_PH faceplate of function block DCS_DRIVES_CTRL_GEN

Visualization element DCS_DRIVES_CTRL_GEN_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an DCS_DRIVES_CTRL_GEN function block,
which instance was used to replace the placeholder FB.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2489

Available in runtime system: V1.3.2

Included in library: DCSDrivesBase_AC500_V24.lib

Visualization element DCS_DRIVES_CTRL_GEN_VISU_PH can be used to show the actual
values of all inputs and outputs of the instance of an DCS_DRIVES_CTRL_GEN function block
which instance was used to replace the placeholder FB.
All inputs of that DCS_DRIVES_CTRL_GEN function block which are not connected to a var-
iable (left open) can be written from this faceplate. So the function block can be controlled
from the visualization as long as the inputs are left open. The DRIVE_DATA variable must be
connected to the function block.
Additionally, a text message of the actual state, e.g. missing input or missing feedback from
drive, is given by the variable MESSAGE, shown next to label MESSAGE.

Visualization
information

Visualization
description

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2490

Parameters
Access R/W

Access via: Toggle
Description: EN input

Access via: Toggle
Description: ON input

Access via: Toggle
Description: EMCY_COAST input

Access via: Toggle
Description: EMCY_RAMP input

Access via: Toggle
Description: RUN input

Access via: Toggle
Description: RESET input

Access via: Toggle
Description: CW_BIT 11 input

Access via: Toggle
Description: CW_BIT 12 input

Access via: Toggle
Description: CW_BIT 13 input

Access via: Toggle
Description: CW_BIT 14 input

Access via: Toggle
Description: CW_BIT 15 input

Access via: Toggle
Description: AUTO_START input

Access via: Text
Description: SW input (Status Word)

EN

ON

EMCY_COST

EMCY_RAMP

RUN

RESET

CW_BIT 11

CW_BIT 12

CW_BIT 13

CW_BIT 14

CW_BIT 15

AUTO_START

SW

PLC Automation with V2 CPUs

Libraries and solutions > ACS / DCS drives libraries

2022/01/20 3ADR010582, 3, en_US 2491

Placeholder Replacement Example
FB Instance name of the function

block
PRG_Drive1.FB_BASIC_CTR
L

Access R
Description: DONE output

Description: ERR output

Description: ERNO output

Description: READY output

Description: OPERATING output

Description: ON_INHIBITED output

Description: AT_SETPOINT output

Description: TRIPPED output

Description: ALARM output

Description: LOC_CTRL output

Description: CW output (Control Word)

Description: MESSAGE output

DONE

ERR

ERNO

READY

OPERATING

ON_INHIBITED

AT_SETPOINT

TRIPPED

ALARM

LOC_CTRL

CW

MESSAGE

PLC Automation with V2 CPUs
Libraries and solutions > ACS / DCS drives libraries

2022/01/203ADR010582, 3, en_US2492

Colors
The color of the variables have the following meaning:

white Actual FALSE and should be FALSE in normal operation
green Actual TRUE and should be TRUE in normal operation
yellow Actual FALSE but should be TRUE in normal operation
red Actual TRUE but should be FALSE in normal operation

The color of the background can be changed by writing a value to the global variable "dwAcsVi-
suBackgroundColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitle-
Color global variables to set the background and title colors for the visualization elements”
on page 2255.
The color of the title can be changed by writing a value to the global variable "dwAcsVisuTi-
tleColor" Ä Chapter 1.5.6.2.7.1 “dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global
variables to set the background and title colors for the visualization elements” on page 2255.

1.5.6.9 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

1.5.7 BACnet B-ASC library

1.5.7.1 System technology
BACnet B-ASC library allows to integrate an AC500 processor module into a BACnet network
and to exchange data between the processor module and other devices connected to BACnet
network. The library provides the BACnet B-ASC profile which enables the processor module to
act as a server. The processor module receives client requests, performs them and reports back
the results.
You can use BACnet IP or MS/TP as communication protocol. For BACnet IP communication
use a device with onboard Ethernet. For MS/TP communication use a device with onboard
serial interface.
A proprietary BACnet protocol stack is embedded into some interface implementation which
connects the protocol stack to system resources like operating system and communication
interfaces.

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2493

Processor Module

Communication
module

Wrapper for
protocol stack

Proprietary
BACnet protocol stack

BACnet
Object Data Base

BACnet
objects

Function blocks for
BACnet devices and data points

BACnet B-ASC library

Fig. 178: BACnet B-ASC model

BACnet B-ASC library acts as follows.
● BACnet server protocol stack runs in AC500 system task context.
● BACnet request messages are received and responded via IP or serial interface.
● Execution of BACnet protocol state machine by protocol stack.
● Servicing received requests in detail by BACnet B-ASC library object implementation.

The BACnet B-ASC library provides a set of function blocks representing the server, device and
data points. The function blocks are the programming interface to the user application.

BACnet IP or MS/TP network

BACnet B-ASC Library

B-ASC
Device

B-ASC
Server

PLC output
channels

Binary
Output

Binary
Output

Analog
Output

Analog
Output

Binary
Output

Analog
Output

Function
Block

B-ASC Analog
Output

B-ASC Binary
Output

B-ASC Binary
Value

B-ASC Analog
Input

B-ASC Binary
Input

B-ASC Analog
Value

Function
Block

PLC input
channels

Binary
Input

Binary
Input

Analog
Input

Analog
Input

Binary
Input

Analog
Input

Function blocks BASC_SERVER and BASC_DEVICE are mandatory. The other function blocks
are optional Ä Chapter 1.5.7.2 “Function blocks” on page 2495.

When initializing the function blocks via downloading to the processor module, the function
blocks evaluate their inputs OBJ_ID and OBJ_NAME and register at the object database.
Later changes at these inputs are not evaluated. With each further call by the application
the function blocks synchronize the inputs and outputs with the associated BACnet property
Present_Value. Received BACnet requests will be serviced by the protocol stack. If an object
is addressed that is registered at the object database the request is routed to this object to be
handled in detail.

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2494

The communication module provides a network layer which acts as interface between propri-
etary BACnet protocol stack and communication drivers.

For BACnet IP no special configuration is needed. The onboard Ethernet interface will be
selected via function block input.

1. Configure serial interface to use with protocol "COM1 - SysLibCom".
2. Adjust the settings as it is required for RS-485 communications. For further details see

Ä Chapter 1.6.5.2.11 “Serial interfaces COM1 and COM2” on page 6098.

All function blocks have to be called in tasks with cyclically processing.
You can use the function blocks with:
● PLC_PRG with automatic task configuration or manual task configuration.
● One single program or different programs.
● One single task or different tasks.
With different programs assigned to different tasks you can define different cycle times and
priorities.
Executing BACnet protocol stack is decoupled from IEC task execution. BACnet protocol stack
runs in a system task. IEC task cycle times and priorities do not influence receiving of requests
and sending of responses. Function block BASC_SERVER does the initialization work only.
Function block BASC_DEVICE provides static settings of the BACnet device only. Therefore it
does not matter in which IEC task these function blocks are placed.
For the other function blocks the IEC task cycle time and priority are important. These function
blocks update their present values while be called by the IEC task.

● No support of COV (change of value), alarms and events reporting.
● Supported string lengths: up to 40 characters for object names.
● Supports UTF-8 character set.
● Maximum number of object instances depends on available user memory of the processor

module.
● The response of a readProperty service on the device object property Object_List

can transfer maximum 93 object instances even if more objects are used. Due to limitations
of used BACnet protocol stack.

● No support of message segmentation due to used BACnet protocol stack.
● The supported baud rates are 9600 Baud, 19200 Baud and 38400 Baud.

1.5.7.2 Function blocks
The function blocks in this library can only be executed in RUN mode of the processor module,
not in simulation mode.
BACnet B-ASC library is based on BACnet data communication protocol according to ISO
16484-5.

Configuration in
Automation
Builder
For BACnet
MS/TP

Task configura-
tion in
CODESYS

Limitations

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2495

1.5.7.2.1 BASC_SERVER

Parameter Value
Included in library BACnet_B-ASC_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group C interface

Function block BASC_SERVER encapsulates the BACnet protocol stack. This function block
can be instantiated only once. The input parameters of the function block are used to configure
the BACnet protocol and the desired network type.

Input description

Data type Default value Range Unit
BOOL FALSE - -

In order to enable the function block processing, input EN has to be continuously set to TRUE. If
input EN = TRUE BACnet protocol stack is initialized and system background task is started. As
long as EN remains TRUE BACnet protocol stack execution is active. BACnet messages will be
received and responded. The function block is not processed if input EN = FALSE.

Data type Default value Range Unit
BASC_COM_TYPE_
ENUM

BASC_IP_COM BASC_IP_COM,
BASC_MSTP_COM

-

Set communication type Ä “BASC_COM_TYPE_ENUM” on page 2517.

EN (enable)

COM_TYPE
(communication
type)

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2496

Data type Default value Range Unit
BYTE 1 Depends on the used

processor module
-

Set port number.
If COM_TYPE = IP, 1 = ETH1, 2 = ETH2...
If COM_TYPE = MS/TP, 1 = COM1, 2 = COM2...

Data type Default value Range Unit
WORD 47808(16#BAC0) 0 ... 65535 -

Set BACnet port number to act at the BACnet network.
If COM_TYPE = IP, set the BACnet port number to be used.
If COM_TYPE = MS/TP, input will be ignored.

Data type Default value Range Unit
STRING(15) 0.0.0.0 - -

Set IP address of BACnet Brodcast Management Device to register as foreign device.
If COM_TYPE = IP, set the IP address to be used.
If COM_TYPE = MS/TP, input will be ignored.

Data type Default value Range Unit
WORD 47808(16#BAC0) 0 ... 65535 -

Set BACnet port number of BACnet Brodcast Management Device to register as foreign device.
If COM_TYPE = IP, set the port number to be used.
If COM_TYPE = MS/TP, input will be ignored.

Data type Default value Range Unit
BYTE 1 1-127 -

Set BACnet master address for MS/TP protocol to act as master at the MS/TP network.
If COM_TYPE = IP, input will be ignored.
If COM_TYPE = MS/TP, set the master address to be used.

Data type Default value Range Unit
BYTE 127 1-127 -

Set BACnet maximum master address for MS/TP protocol. Used when scanning the MS/TP
network for other master devices.
If COM_TYPE = IP, input will be ignored.
If COM_TYPE = MS/TP, set the maximum master address to be used.

PORT

BACNET_PORT

BBMD_IP
(broadcast man-
agement device
IP)

BBMD_PORT
(broadcast man-
agement device
port)

MSTP_MSTR_A
DR (MS/TP
master address)

MSTP_MAX_MS
TR (MS/TP max-
imum master
address)

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2497

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BASC_STA-
TISTIC_COUNTER_T
YPE

- - -

Statistic data Ä “BASC_STATISTIC_COUNTER_TYPE” on page 2518.

DONE

ERR

ERNO

STATISTIC

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2498

1.5.7.2.2 BASC_DEVICE

Parameter Value
Included in library BACnet_B-ASC_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group C interface

BASC_DEVICE represents the BACnet server device provided by BACnet B-ASC library. The
inputs are used to configure corresponding BACnet device object properties. The outputs pro-
vide the BACnet device status.

Table 141: Device object properties provided at the BACnet network by BASC_DEVICE
Property Characteristics Value BACnet con-

formance code
Object_Identifier Set via input OBJ_ID - R - read

Object_Name Set via input
OBJ_NAME

- R - read

System_Status Updates output
SYS_STATUS

- R - read

Object_Type Constant DEVICE (8) R - read

Vendor_Name Constant ABB R - read

Vendor_Identifier Constant 808 R - read

Model_Name Constant AC500-PM5xx R - read

Firmware_Revision Constant B-ASC library
V1.0.0

R - read

Application_Software_Version Constant 0.0.0 R - read

Protocol_Version Constant 1 R - read

Protocol_Revision Constant 12 R - read

Protocol_Services_Supported Constant Who-Is / I-Am
Who-Has / I-
Have
Read property
Write property
Device commu-
nication control

R - read

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2499

Property Characteristics Value BACnet con-
formance code

Protocol_Object_Types_Supported Constant Analog input
Analog output
Analog value
Binary input
Binary output
Binary value
Device

R - read

Object_List Depends on used
objects

- R - read

Max_APDU_Length_Accepted Constant 480 R - read

Segmentation_Supported Constant No segmenta-
tion (3)

R - read

APDU_Timeout Constant 10000 R - read

Number_Of_APDU_Retries Constant 0 R - read

Device_Address_Binding Constant Empty list R - read

Database_Revision Constant 1 R - read

Max_Master Depends on setting in
BASC_SERVER

127 R - read

Max_Info_Frames Constant 1 R - read

Input description

Data type Default value Range Unit
BOOL FALSE - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE.

Data type Default value Range Unit
WORD 0 0...4194302 -

Defines the BACnet object ident number. The object ident number has to be unique within the
BACnet network.

EN (enable)

OBJ_ID (object
ident number)

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2500

Data type Default value Range Unit
STRING(40) Empty string - -

Defines the BACnet object name. The object name has to be unique within BACnet network.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
BASC_DEV_STATUS
_ENUM

BASC_NON_OPERA-
TIONAL

BASC_NON_OPERA-
TIONAL,
BASC_OPERA-
TIONAL

-

Indicates the current state of the BACnet device Ä “BASC_DEV_STATUS_ENUM”
on page 2518.

OBJ_NAME
(object name)

DONE

ERR

ERNO

SYS_STATUS
(system status)

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2501

1.5.7.2.3 BASC_ANALOG_IN

Parameter Value
Included in library BACnet_B-ASC_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group C interface

BASC_ANALOG_IN allows to connect an IEC variable with a BACnet object type "analog input".
This object represents a physical analog input of the device. Connect the variables mapped to
the physical analog inputs to this function block only.

Table 142: Analog input object properties provided at the BACnet network by
BASC_ANALOG_IN
Property name Characteristics Value BACnet conform-

ance code
Object_Identifier Set via input OBJ_ID - R - read

Object_Name Set via input
OBJ_NAME

- R - read

Units Set via input UNIT - R - read

Present_Value Set via input IN - R - read

Status_Flags Updates output
STATUS_FLAG

- R - read

Object_Type Constant ANALOG_INPUT (0) R - read

Event_State Constant NORMAL (0) R - read

Out_Of_Service Set via BACnet write
services

- W - read/write

If property Out_Of_service = TRUE the property Present_Value becomes
writable.

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2502

Input description

Data type Default value Range Unit
BOOL FALSE - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input EN is set to TRUE input IN
is evaluated and used to update BACnet object property Present_Value.

Data type Default value Range Unit
WORD 0 0...4194302 -

Defines the BACnet object ident number. The object ident number has to be unique within the
BACnet network.

Data type Default value Range Unit
STRING(40) Empty string - -

Defines the BACnet object name. The object name has to be unique within BACnet network.

Data type Default value Range Unit
BASC_ENG_UNITS_
ENUM

BASC_NO_UNITS All units defined in
BACnet standard.

-

Indicates the engineering unit of the Present_Value property of the object. In BACnet network
the value connected to the function block input IN will be interpreted as value of this engineering
unit.

Data type Default value Range Unit
REAL 0.0 -3.40282347E38...3.4

0282347E38
-

To be connected to an IEC variable representing a physical input of the processor module. The
value will be used to update BACnet property Present_Value.

EN (enable)

OBJ_ID (object
ident number)

OBJ_NAME
(object name)

UNIT

IN

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2503

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

BACnet B-ASC library supports property Status_Flags. The current value of this property will
be provided at output STATUS_FLAG.

1.5.7.2.4 BASC_ANALOG_OUT

DONE

ERR

ERNO

STATUS_FLAG

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2504

Parameter Value
Included in library BACnet_B-ASC_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group C interface

BASC_ANALOG_OUT allows to connect an IEC variable with a BACnet object type "analog
output". This object represents a physical analog output of the device. Connect the variables
mapped to the physical analog outputs to this function block only.

Table 143: Analog output object properties provided at the BACnet network by
BASC_ANALOG_OUT
Property Characteristics Value BACNet conform-

ance code
Object_Identifier Set via input OBJ_ID - R - read

Object_Name Set via input
OBJ_NAME

- R - read

Units Set via input UNIT - R - read

Present_Value Updates output OUT - W - read/write

Status_Flags Updates output
STATUS_FLAG

- R - read

Object_Type Constant ANALOG_OUTPUT
(1)

R - read

Event_State Constant NORMAL (0) R - read

Out_Of_Service Set via BACnet write
services

- W - read/write

Priority_Array Set via BACnet write
services

- R - read

Relinquish_Default Constant 0.0 R - read

Input description

Data type Default value Range Unit
BOOL FALSE - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input EN is set to TRUE output
OUT is updated with current value of BACnet object property Present_Value.

EN (enable)

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2505

Data type Default value Range Unit
WORD 0 0...4194302 -

Defines the BACnet object ident number. The object ident number has to be unique within the
BACnet network.

Data type Default value Range Unit
STRING(40) Empty string - -

Defines the BACnet object name. The object name has to be unique within BACnet network.

Data type Default value Range Unit
BASC_ENG_UNITS_
ENUM

BASC_NO_UNITS All units defined in
BACnet standard.

-

Indicates the engineering unit of the Present_Value property of the object. In BACnet network
the value connected to the function block input IN will be interpreted as value of this engineering
unit.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

OBJ_ID (object
ident number)

OBJ_NAME
(object name)

UNIT

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2506

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

BACnet B-ASC library supports property Status_Flags. The current value of this property will
be provided at output STATUS_FLAG.

Data type Default value Range Unit
REAL 0.0 -3.40282347E38...3.4

0282347E38
-

To be connected to an IEC variable representing a physical output of the processor module.
This output will be updated with the BACnet object property Present_Value.

1.5.7.2.5 BASC_ANALOG_VAL

Parameter Value
Included in library BACnet_B-ASC_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group C interface

BASC_ANALOG_VAL allows to connect an IEC variable with a BACnet object type "analog
value". This object represents an analog value that is neither physical input nor physical output
of the device. Connect the internal IEC variables to this function block only.

Table 144: Analog value object properties provided at the BACnet network by
BASC_ANALOG_VAL
Property Characteristics Value BACNet conform-

ance code
Object_Identifier Set via input OBJ_ID - R - read

Object_Name Set via input
OBJ_NAME

- R - read

Units Set via input UNIT - R - read

STATUS_FLAG

OUT

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2507

Property Characteristics Value BACNet conform-
ance code

Present_Value Set via input
VALUE, Updates
output VALUE

- W – read/write

Status_Flags Updates output
STATUS_FLAG

- R - read

Object_Type Constant ANALOG_VALUE (2) R - read

Event_State Constant NORMAL (0) R - read

Out_Of_Service Set via BACnet write
services

- W - read/write

Priority_Array Set via BACnet write
services

- R - read

Relinquish_Default Constant 0.0 R - read

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input EN is set to TRUE input
VALUE is evaluated and used to update BACnet object property Present_Value.

Data type Default value Range Unit
WORD 0 0...4194302 -

Defines the BACnet object ident number. The object ident number has to be unique within the
BACnet network.

Data type Default value Range Unit
STRING(40) Empty string - -

Defines the BACnet object name. The object name has to be unique within BACnet network.

EN (enable)

OBJ_ID (object
ident number)

OBJ_NAME
(object name)

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2508

Data type Default value Range Unit
BASC_ENG_UNITS_
ENUM

BASC_NO_UNITS All units defined in
BACnet standard.

-

Indicates the engineering unit of the Present_Value property of the object. In BACnet network
the value connected to the function block input IN will be interpreted as value of this engineering
unit.

Data type Default value Range Unit
BYTE 1 1...16 -

Defines the BACnet priority that will be used on updating the property Present_Value of the
analog value object.

Data type Default value Range Unit
REAL 0.0 -3.40282347E38….3.

40282347E38
-

To be connected to an IEC variable representing this object type. The value will be used to
update BACnet property Present_Value.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

UNIT

PRIO

VALUE

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2509

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

BACnet B-ASC library supports property Status_Flags. The current value of this property will
be provided at output STATUS_FLAG.

1.5.7.2.6 BASC_BINARY_IN

Parameter Value
Included in library BACnet_B-ASC_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group C interface

BASC_BINARY_IN allows to connect an IEC variable with a BACnet object type "binary input".
This object represents a physical binary input of the device. Connect the variables mapped to
physical binary inputs to this function block only.

Table 145: Binary input properties provided at the BACnet network by BASC_BINARY_IN
Property Characteristics Value BACNet conform-

ance code
Object_Identifier Set via input OBJ_ID - R - read

Object_Name Set via input
OBJ_NAME

- R - read

Polarity Set via input POLAR - R - read

Present_Value Set via input IN - R - read

Status_Flags Updates output
STATUS_FLAG

- R - read

Object_Type Constant BINARY_INPUT (3) R - read

Event_State Constant NORMAL (0) R - read

Out_Of_Service Set via BACnet write
services

- W - read/write

STATUS_FLAG

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2510

If property Out_Of_service = TRUE the property Present_Value becomes
writable.

Input description

Data type Default value Range Unit
BOOL FALSE - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input EN is set to TRUE input IN
is evaluated and used to update BACnet object property Present_Value.

Data type Default value Range Unit
WORD 0 0...4194302 -

Defines the BACnet object ident number. The object ident number has to be unique within the
BACnet network.

Data type Default value Range Unit
STRING(40) Empty string - -

Defines the BACnet object name. The object name has to be unique within BACnet network.

Data type Default value Range Unit
BASC_POLAR_ENU
M

BASC_NORMAL BASC_NORMAL,
BASC_REVERSE

-

Defines the polarity of the value that is connected to the input IN. Polarity is defined according
to BACnet standard Ä “BASC_POLAR_ENUM” on page 2518.

Data type Default value Range Unit
BOOL FALSE - -

To be connected to an IEC variable representing a physical input of the processor module. The
value will be used to update BACnet property Present_Value.

EN (enable)

OBJ_ID (object
ident number)

OBJ_NAME
(object name)

POLAR

IN

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2511

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

BACnet B-ASC library supports property Status_Flags. The current value of this property will
be provided at output STATUS_FLAG.

1.5.7.2.7 BASC_BINARY_OUT

DONE

ERR

ERNO

STATUS_FLAG

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2512

Parameter Value
Included in library BACnet_B-ASC_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group C interface

BASC_BINARY_OUT allows to connect an IEC variable with a BACnet object type "binary
output". This object represents a physical binary output of the device. Connect the variables
mapped to physical binary outputs to this function block only.

Table 146: Binary output properties provided at the BACnet network by BASC_BINARY_OUT
Property name Characteristics Value BACNet conform-

ance code
Object_Identifier Set via input OBJ_ID - R - read

Object_Name Set via input
OBJ_NAME

- R - read

Polarity Set via input POLAR - R - read

Present_Value Updates output OUT - W - read/write

Status_Flags Updates output
STATUS_FLAG

- R - read

Object_Type Constant BINARY_OUTPUT (4) R - read

Event_State Constant NORMAL (0) R - read

Out_Of_Service Set via BACnet write
services

- W - read/write

Priority_Array Set via BACnet write
services

- R - read

Relinquish_Default Constant INACTIVE R - read

Input description

Data type Default value Range Unit
BOOL FALSE - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input EN is set to TRUE output
OUT is updated with current value of BACnet object property Present_Value.

EN (enable)

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2513

Data type Default value Range Unit
WORD 0 0...4194302 -

Defines the BACnet object ident number. The object ident number has to be unique within the
BACnet network.

Data type Default value Range Unit
STRING(40) Empty string - -

Defines the BACnet object name. The object name has to be unique within BACnet network.

Data type Default value Range Unit
BASC_POLAR_ENU
M

BASC_NORMAL BASC_NORMAL,
BASC_REVERSE

-

Defines the polarity of the value that is connected to the input IN. Polarity is defined according
to BACnet standard Ä “BASC_POLAR_ENUM” on page 2518.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

OBJ_ID (object
ident number)

OBJ_NAME
(object name)

POLAR

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2514

Data type Default value Range Unit
WORD - - -

BACnet B-ASC library supports property Status_Flags. The current value of this property will
be provided at output STATUS_FLAG.

Data type Default value Range Unit
BOOL FALSE - -

To be connected to an IEC variable representing a physical output of the processor module.
This output will be updated with the BACnet object property Present_Value.

1.5.7.2.8 BASC_BINARY_VAL

Parameter Value
Included in library BACnet_B-ASC_AC500_V25.lib

Available as of firmware V2.5

Type Function block with historical values

Group C interface

BASC_BINARY_VAL allows to connect an IEC variable with a BACnet object type "binary
value". This object represents a binary value that is neither physical input nor physical output of
the device. Connect the internal IEC variables to this function block only.

Table 147: Binary value object properties provided at the BACnet network by
BASC_BINARY_VAL
Property name Characteristics Value BACNet conform-

ance code
Object_Identifier Set via input OBJ_ID - R - read

Object_Name Set via input
OBJ_NAME

- R - read

Present_Value Set via input VALUE
Updates output
VALUE

- W – read/write

Status_Flags Updates output
STATUS_FLAG

- R - read

Object_Type Constant BINARY_VALUE (5) R - read

Event_State Constant NORMAL (0) R - read

STATUS_FLAG

OUT

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2515

Property name Characteristics Value BACNet conform-
ance code

Out_Of_Service Set via BACnet write
services

- W - read/write

Priority_Array Set via BACnet write
services

- R - read

Relinquish_Default Constant INACTIVE R - read

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE - -

In order to enable the function block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input EN is set to TRUE input
VALUE is evaluated and used to update BACnet object property Present_Value.

Data type Default value Range Unit
WORD 0 0...4194302 -

Defines the BACnet object ident number. The object ident number has to be unique within the
BACnet network.

Data type Default value Range Unit
STRING(40) Empty string - -

Defines the BACnet object name. The object name has to be unique within BACnet network.

Data type Default value Range Unit
BYTE 16 1...16 -

Defines the BACnet priority that will be used on updating the property Present_Value of the
analog value object.

EN (enable)

OBJ_ID (object
ident number)

OBJ_NAME
(object name)

PRIO

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2516

Data type Default value Range Unit
BOOL FALSE - -

To be connected to an IEC variable representing this object type. The value will be stored in
BACnet property Present_Value.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type Default value Range Unit
WORD - - -

BACnet B-ASC library supports property Status_Flags. The current value of this property will
be provided at output STATUS_FLAG.

1.5.7.3 Structures and enumerations
Enumeration for BACnet communication layers Ä “COM_TYPE (communication type)”
on page 2496.

VALUE

DONE

ERR

ERNO

STATUS_FLAG

BASC_COM_TY
PE_ENUM

PLC Automation with V2 CPUs

Libraries and solutions > BACnet B-ASC library

2022/01/20 3ADR010582, 3, en_US 2517

Parameter Value Description
BASC_IP_COM 0 Use BACnet IP communica-

tion.

BASC_MSTP_COM 1 Use BACnet MS/TP communi-
cation.

Enumeration for BACnet device status values Ä “SYS_STATUS (system status)” on page 2501.

Parameter Value Description
BASC_OPERATIONAL 0 The device is initialized suc-

cessfully and in operation.

BASC_NON_OPERATIONAL 4 The device is not in operation.

Enumeration for BACnet units Ä “UNIT” on page 2509. This enumeration lists all units defined
in BACnet standard Ä Further information on page 2495.

Enumeration of BACnet values for polarity of Present_Value property Ä “POLAR”
on page 2514.

Parameter Value Description
BASC_NORMAL 0 Physical state relation. ACTIVE = physical on.

BASC_REVERSE 1 Physical state relation. ACTIVE = physical off.

Structure of statistic data Ä “STATISTIC” on page 2498.

Parameter Type Value Description
dwNumReceivedRe-
quests

DWORD 0 Number of received
request.

dwNumRepliesSuccess DWORD 0 Number of replies with
success.

dwNumRepliesFailure DWORD 0 Number of replies with
failure.

1.5.7.4 Hardware
An AC500 processor module equipped with an integrated Ethernet or serial interface is
required. Only one communication protocol at a time is supported.

1.5.7.5 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

BASC_DEV_STA
TUS_ENUM

BASC_ENG_UNI
TS_ENUM

BASC_POLAR_
ENUM

BASC_STA-
TISTIC_COUNT
ER_TYPE

PLC Automation with V2 CPUs
Libraries and solutions > BACnet B-ASC library

2022/01/203ADR010582, 3, en_US2518

1.5.8 FM502-CMS library

1.5.8.1 System technology
The WAV File and CMS-IO libraries are libraries to enable the work with the Ä Chapter 1.6.4.4.3
“FM502-CMS function module” on page 5723. A measurement can be started using the CMS-IO
library. The results are stored by the Function Module FM502-CMS on the processor module
flash disk as WAV files. Data handling of the WAV files is possible with the WAV-File Library.
For immediate local analysis an application library for signal processing is available. SP_Library
on www.abb.com/PLC. The application program then may use signal processing blocks to read
and analyze the data, to calculate status and trends of the monitored equipment already locally
on the PLC. Typically the measurement need to be labeled with the operation point details
from a control program section and the signal processing needs further information, values or
parameters also used in the control section (e.g. rated values of the equipment, speed if not
measured with the FM502 counter functions).

Fig. 179: CMS application and programming

1.5.8.1.1 CMS-IO library
The CMS-IO library contains all function blocks necessary for using the Function Module
FM502-CMS.
In addition, it is possible to change the configuration of the analog channels during run time via
function blocks.
Once a FM502-CMS has been added to the configuration, the CMS-IO library is automatically
included with the next compilation of the project.

1.5.8.1.2 WAV File library
The WAV File library is used for reading, writing and handling the the stored WAV files.

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2519

http://www.abb.com/PLC

Fig. 180: Process map

To unzip the generated WAV files, the archive function blocks of the Ä Chapter 1.5.4.4
“CAA_File library” on page 789 are needed in addition. Example: Function block Ä Chapter
1.5.4.4.2.6 “FILE_ArchiveUnpack” on page 801. The CAA_File libraries (CAA_...lib) are auto-
matically included when configuring the FM502-CMS.

Internally the WAV File library uses the four chunk structure model of the WAV files to handle
the data in the read and write operations.
To perform the correct data handling the WAV File library uses a structure internally. This
structure is a group of data stored in the following order:
● RIFF Chunk ID,
● File Size,
● RIFF Type,
● Format Chunk ID,
● Channel Information,
● Sampling Frequency,
● Block Align,
● Bits per Sample,
● Data Chunk ID,
● Data,
● Label Information.

Architecture

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2520

Fig. 181: Internal data type of the library

A single READ or WRITE functionality in this library is executed in the following steps:

1. Open the file to create the handle.

ð Validates the file, if already present (except in function block CREATE).

2. Set the pointer to the file position from where the desired READ or WRITE operation is to
be executed.

3. Assign the inputs of the function block to the internal structure.

ð Stores the data in the proper structure before writing (in function blocks CREATE and
APPEND).

4. Perform the READ/WRITE operation.

ð Stores the data in the proper structure after reading (in function blocks INFO and
READ)

5. Assign the outputs to the function block.
6. Close the file.

With the development of the WAV-File library the user can get the following benefits:
● Specific function blocks to perform the specific task.
● Either a function block or the visualization can be used.

Read and write
WAV files

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2521

● The function blocks internally take care of four important tasks
– Opening the file and validating it.
– Preparing the proper data structure at the time of reading or writing, according to the

WAV file standards.
– Performing the READ or WRITE operation.
– Closing the file.

● Simple to understand and execute.

1.5.8.1.3 WAV file format
The wave audio file format or commonly known as the WAV files are the type of audio files
which was developed by Microsoft and IBM. It stores the data in the structured format in the
dedicated memory area called as chunks.

The measurement data will be stored in the WAV file format. One WAV file will be created for
each active channel.

Table 148: RIFF header
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 0 (0x00) bfChunkID "RIFX"

DWORD Little 4 4 (0x04) dwChunkSize Data length -
8

BYTE[4] Big 4 8 (0x08) bfRiffType "WAVE"

Table 149: Format chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 12 (0x0C) bfChunkID "fmt"

DWORD Little 4 16 (0x10) dwChunkSize Data length -
8

INT Little 2 18 (0x12) wFormatTag 0x0001
(PCM)

INT Little 2 20 (0x14) wChannels 0x0001 (1 ch.)

DWORD Little 4 24 (0x18) dwSamples-
PerSec

100 Hz -
50.000 kHz

DWORD Little 4 28 (0x1C) dwBytes-
PerSec

Sample rate *
block align

WORD Little 2 32 (0x1E) wBlockAlign 4 byte

WORD Little 2 34 (0x20) wBitsPer-
Sample

32 bit

Table 150: Data chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 36 (0x24) bfChunkID "data"

DWORD Little 4 40 (0x28) dwChunkSize Data length -
8

BYTE[] Big Undefined 44 (0x2C) bfData Measurement
data

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2522

Table 151: Label chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 44+sz(bfData) bfChunkID “labl”

DWORD Little 4 48+sz(bfData) dwChunkSize Data length -8

DINT Little 4 52+sz(bfData) dwIdentifier Identifier

BYTE[256] Little 255 56+sz(bfData) bfText „Label Text“

The unique and structured architecture is of a great help in the condition monitoring systems
(CMS). The CMS monitors the stability of the mechanical system. The vibration data of the
machine/system can be recorded using the sensors. These sensors will convert the physical
data into the analog inputs to the CPU and its modules. These data is stored in the WAV file
structure and can be re-read for the analysis purpose using the mathematical tools.

The main purpose of the WAV files is to do the analysis in the CMS. For this purpose the WAV
File Library is developed. This would help the user to perform the READ/WRITE operations on
the WAV file using the AC500 PLC and its programming tool.

1.5.8.1.4 Limitations
Although the file size can be 128 MB, however the amount of data which the user wants to read
or write is limited due to the user data capacity of the processor module.
The maximum user data capacity of the processor module is up to 4 MB which also includes the
application program. In any case the WAV file will be able to handle less than 4 MB data.

The WAV File library can only READ/APPEND a single channel WAV file. In case the user tries
to READ/APPEND the multi-channel WAV file, the function block will throw an error message.

All measured data is read and stored in the buffer as bytes and not as real values. In the same
way while writing, the library accepts the data in the buffer as bytes.

No error occurs, when the user creates a new file with the same name of an already existing
file. This is due to the limitation of the CAA_File library WRITE functionality. The user needs to
take care, otherwise the existing file might get overwritten with the new data.

The CAA_File library restricts the usage of more than 20 CAA functions at a time. Since the
WAV File library function blocks consists of CAA functions internally, the user might get an error
(error code 5803) from the library. Also simultaneous enabling of the WAV File function blocks
on the same file may generate the error from the CAA_File library.

1.5.8.2 CMS-IO library for modul handling

The function blocks of the CMS-IO library are only working in the RUN mode of the processor
module. Using the library in the SIMULATION mode will not provide any valid or usable diag-
nosis information.
The encoder/counter interface inside the FM502-CMS can be used in different configurable
operation modes. The operation mode is activated during the initialization phase (power-on,
cold start, warm start).

Use of the WAV
file

Main purpose of
the WAV file

Memory

WAV files
(Single/Multi
Channel)

Measured data

Data loss when
using function
block
WAV_FILE_CRE
ATE
Usage of func-
tion blocks

Preconditions

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2523

The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when the Function Module
is added into the configuration.

Inputs and outputs which are not used by the counters are available for other tasks.
Table legend: A = input channel A, B = input channel B, Z = output channel Z.

Opera-
tion
Mode

Function Used inputs Description Function block

0-1 No counter None This operating mode is
selected, if the integrated
high-speed counter is not
needed.

-

1-1 Up/down
counter (A)

A = Counting
input

1 bidirectional 32-bit
counter on input A
(dynamic changes) with
set and reset input
operation, end value
reached indicator, touch/
catch value and overflow
flag.

CMS_IO_32BIT_CN
T

2-1 Up/down with
release input
(B)

A = Counting
input
B = Enable
input

1 bidirectional 32-bit
counter with enable input.
Counting is valid when
input B is TRUE. Dynamic
up/down count possibility,
with set and reset input
operation, end value
reached indicator, touch/
catch value and overflow
flag.

CMS_IO_32BIT_CN
T

3-2 Up/down coun-
ters (A,B)

A = Counting
input 0
B = Counting
input 1

2 bidirectional 16-bit
counter (on rising edge
count) functions, with sep-
arate up/down, reset oper-
ation and overflow flag.

CMS_IO_16BIT_2C
NT

4-2 Up/down (A, B
on falling
edges)

A = Counting
input 0
B = Counting
input 1

2 bidirectional 16-bit
counter functions (with A
on rising edge count and
B on falling edge count),
With separate up/down,
reset operation and over-
flow flag.

CMS_IO_16BIT_2C
NT

5-1 Up/down
dynamic set
(B) / rising
edge

A = Counting
input
B = Dynamic
set input

1 bidirectional 32-bit
counter with set and
reset input, end value
reached indicator, touch/
catch value and overflow
flag. Additional function to
mode 1 is the dynamic set
input (B) on rising edge
sets START_VALUE.

CMS_IO_32BIT_CN
T

Operation
modes

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2524

Opera-
tion
Mode

Function Used inputs Description Function block

6-1 Up/down
dynamic set
(B) / falling
edge

A = Counting
input
B = Dynamic
set input

1 bidirectional 32-bit
counter with set and
reset input, end value
reached indicator, touch/
catch value and overflow
flag. Additional function to
mode 1 is the dynamic set
input (B) on falling edge
sets START_VALUE.

CMS_IO_32BIT_CN
T

7-1 Reserved None - -

8-1 Up/down with
release (B), 0
cross detection

A = Counting
input
B = Enable
input

1 bidirectional 16-bit
counter (in range of
-32768 to 32767) with
enable input and zero
crossover detection (CF).
Counting is valid when
input B is TRUE. With set
and reset input operation
and touch/catch value.

CMS_IO_16BIT_CN
T

9-1 Reserved None - -

10-1 Reserved None - -

11-1 Incremental
encoder

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
encoder x1 count, touch/
catch value, RPI function,
reset and set
Function block counts
rising edges at input A.

CMS_IO_32BIT_EN
CODER

12-1 Incremental
encoder X2

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
position sensor x2 count,
with possibility of touch/
catch value, RPI function,
set and reset actions.
Function block counts
rising and falling edges at
input A.

CMS_IO_32BIT_EN
CODER

13-1 Incremental
encoder X4

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
position sensor x4 count,
with possibility of touch/
catch value, RPI function,
set and reset actions.
Function block counts
rising and falling edges at
input A and B.

CMS_IO_32BIT_EN
CODER

14-1 SSI, absolute
encoder

A = Data signal
B = Clock
signal

Absolute positioning
sensor using SSI interface

CMS_IO_SSI_CNT

15-1 Time frequency
meter

Z = Input signal Time measurement of Z
signal, rising edge, falling
edge, rotation per minute
and frequency calculation

CMS_IO_FREQ_SC
AN

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2525

The function blocks have to identify every FM502-CMS connected to the processor module.
Therefore the Automation Builder automatically creates an instance description of the module.
This instance description is available as a global variable in CODESYS. Use the input INST to
connect the address of the instance Ä “INST (instance)” on page 2527.

Fig. 182: Global variable in Automation Builder

Fig. 183: Global variable in CODESYS

1.5.8.2.1 Function blocks
CMS_IO_16BIT_2CNT

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0, FM502-CMS firmware: V1.0

Type Function block with historical values

Group Counters

The module FM502-CMS provides Ä Chapter 1.6.4.4.3.4.3 “Two 16 bit up/down counters”
on page 5738 functions.
Possible operation modes: 3-2, 4-2 Ä “Operation modes” on page 2524

Identifying a
FM502-CMS at
the function
block

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2526

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

Fig. 184: Example

Data type: BOOL
If EN_CNT=TRUE , pulse counting of counter is enabled. If EN_CNT=FALSE, no pulse counting
is performed and the pulses are lost. If counting has already started and EN_CNT = FALSE,
the pulse counting stops and counter value ACT is stored. If EN_CNT = TRUE again, the pulse
counting will start again and counter value ACT will continue since previous value.

Data type: BOOL
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at digital inputs DI0, DI1, DC2, DC3 (for counters A and B)
causes the function block to store the actual counter value ACT1 and ACT2 and to display this
value at output CNT_TOUCH1 and CNT_TOUCH2.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL

EN

INST (instance)

EN_CNT (enable
counter)

EN_TOUCH
(enable touch)

EDGE_TOUCH

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2527

If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of the configured
digital input (for counters A and B).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of the configured
digital input (for counters A and B).

Data type: BOOL
At input UD1, the counting selection is set for up/down counting mode for counter A:
UD1=FALSE: count up
UD1=TRUE: count down

Data type: BOOL
At input UD2, the counting selection is set for up/down counting mode for counter B:
UD2=FALSE: count up
UD2=TRUE: count down

Data type: BOOL
If input RESET1 = TRUE, the counter value (ACT1) is reset to 0. As long as input RESET1 =
TRUE, no pulses are counted because the counter is always overwritten by the value 0.
A rising edge at input DI0, DI1, DC2, DC3 (for counter A) causes the function block to reset the
value at output ACT1.

Data type: BOOL
If input RESET2 = TRUE, the counter value (ACT2) is set to 0.As long as input RESET2 =
TRUE, no pulses are counted because the counter is always overwritten by the value 0.
A rising edge at input DI0, DI1, DC2, DC3 (for counter B) causes the function block to reset the
value at output ACT2.

Output description

UD1 (up/down
mode for
counter 1)

UD2 (up/down
mode for
counter 2)

RESET1 (reset
counter 1)

RESET2 (reset
counter 2)

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2528

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: INT
The current counter value (actual value) from counter A can be retrieved at any time using the
output ACT1 of the function block.

Data type: INT
The current counter value (actual value) from counter B can be retrieved at any time using the
output ACT2 of the function block.

Data type: INT
The output CNT_TOUCH1 (counter touch value 1) displays the result of the catch/touch trigger
measurement for counter A.

Data type: INT
The output CNT_TOUCH2 displays the result of the catch/touch trigger measurement for
counter B.

Data type: BOOL
The overflow from counter A is specified at the output OFL1.
The counter operates as infinite counter. It is set to TRUE, when an overflow occurs, i. e. the
counter value ACT1 rises to value 16#FFFF= -1. Any exceeding or falling below this value
(depending on use up and use down) will set OFL1=TRUE. The output OFL1 is reset when the
configuration is changed, and if counter value ACT1 is set or reset.

Data type: BOOL
The overflow from counter B is specified at the output OFL2.

DONE

ERR

ERNO

ACT1 (actual
value 1)

ACT2 (actual
value 2)

CNT_TOUCH1

CNT_TOUCH2
(counter touch
value 2)

OFL1 (overflow
counter 1)

OFL2 (overflow
counter 2)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2529

The counter operates as infinite counter. It is set to TRUE when an overflow occurs, i. e. the
counter value ACT2 rises to value 16#FFFF= -1. Any exceeding or falling below this value
(depending to use up and use down) will set OFL2=TRUE. The output OFL2 is reset when the
configuration is changed, and if counter value ACT2 is set or reset.

Data type: BOOL
The output RDY_TOUCH is set to TRUE, when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
The output RESET_IN1 is set to TRUE, if one of the digital inputs DI0, DI1, DC2, DC3 is
configured as RESET input for counter A and has a TRUE signal or the input RESET of
CMS_IO_16BIT_2CNT is set to TRUE.

Data type: BOOL
The output RESET_IN2 is set to TRUE, if one of the digital inputs DI0, DI1, DC2, DC3 is
configured as RESET input for counter B and has a TRUE signal or the input RESET of
CMS_IO_16BIT_2CNT is set to TRUE.

CMS_IO_16BIT_CNT

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0, FM502-CMS firmware: V1.0

Type Function block with historical values

Group Counter & Encoder

The FM502-CMS provides one Ä Chapter 1.6.4.4.3.4.2 “16-bit bidirectional counter”
on page 5737 function.
Possible operation modes: 8-1 Ä “Operation modes” on page 2524

RDY_TOUCH
(ready catch/
touch value)

RESET_IN1
(reset input
counter 1)

RESET_IN2
(reset input
counter 2)

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2530

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

Fig. 185: Example

Data type: BOOL
If EN_CNT=TRUE , pulse counting of counter is enabled. If EN_CNT=FALSE, no pulse counting
is performed and the pulses are lost. If counting has already started and EN_CNT = FALSE,
the pulse counting stops and counter value ACT is stored. If EN_CNT = TRUE again, the pulse
counting will start again and counter value ACT will continue since previous value.

Data type: BOOL
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at digital inputs DI0, DI1, DC2, DC3 (for counters A and B)
causes the function block to store the actual counter value ACT1 and ACT2 and to display this
value at output CNT_TOUCH1 and CNT_TOUCH2.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of the configured
digital input (for counters A and B).

EN

INST (instance)

EN_CNT (enable
counter)

EN_TOUCH
(enable touch)

EDGE_TOUCH

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2531

If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of the configured
digital input (for counters A and B).

Data type: BOOL
At input UD, the counting selection is set for up/down counting mode:
UD=FALSE: count up
UD=TRUE: count down

Data type: BOOL
If set input SET=TRUE, the counter takes the values from input START_VALUE to transfer it to
output ACT. As long as input SET=TRUE, no pulses are counted because the counter is always
overwritten by the input START_VALUE.
A rising edge at input causes the function block to store the START_VALUE value and to
display this value at output ACT.

Data type: BOOL
If input RESET = TRUE, the counter value (ACT) is reset to 0. As long as input RESET = TRUE,
no pulses are counted because the counter is always overwritten by the value 0.
A rising edge at digital input DI0, DI1, DC2, DC3 causes the function block to reset the value at
output ACT.

Data type Default value Range Unit
INT - - -

The counter can be set to a start value. This value must be applied to the input CNT_SET.
If input SET=TRUE, counter takes this value.
Input START_VALUE corresponds to output low word in "counter settings".

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

UD (up/down
mode)

SET (set
counter)

RESET (reset
counter)

CNT_SET

DONE

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2532

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
If the zero crossover indicator CF=TRUE, this output indicates the sign of the actual counter
value ACT. It is set to FALSE, when counter value ACT is less than or equal to zero. It is set to
TRUE otherwise.

Data type: BOOL
The output SET_IN is set to TRUE, if one of the inputs is configured as SET input.

Data type: BOOL
The output RDY_TOUCH is set to TRUE, when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
If input RESET = TRUE, the counter value (ACT) is reset to 0. As long as input RESET = TRUE,
no pulses are counted because the counter is always overwritten by the value 0.
A rising edge at digital input DI0, DI1, DC2, DC3 causes the function block to reset the value at
output ACT.

Data type: INT
The current counter value (actual value) can be retrieved at any time using the output ACT of
the function block.

Data type: INT
The output CNT_TOUCH displays the result of the catch/touch trigger action.

Data type: DINT
The output CNT_TOUCH displays the result of the catch/touch trigger action.

ERR

ERNO

CF (carry flag)

SET_IN (set
input counter)

RDY_TOUCH
(ready catch/
touch value)

RESET (reset
counter)

ACT (actual
value)

CNT_TOUCH
(counter touch
value)

CNT_TOUCH
(counter touch
value)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2533

CMS_IO_32BIT_CNT 32-bit counter

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0, FM502-CMS firmware: V1.0

Type Function block with historical values

Group Counter & Encoder

The FM502-CMS provides one Ä Chapter 1.6.4.4.3.4.1 “32-bit bidirectional counter”
on page 5736 functions.
Possible operation modes: 1-1, 2-1, 5-1, 6-1 Ä “Operation modes” on page 2524

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2534

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

Fig. 186: Example

Data type: BOOL
If EN_CNT=TRUE , pulse counting of counter is enabled. If EN_CNT=FALSE, no pulse counting
is performed and the pulses are lost. If counting has already started and EN_CNT = FALSE,
the pulse counting stops and counter value ACT is stored. If EN_CNT = TRUE again, the pulse
counting will start again and counter value ACT will continue since previous value.

Data type: BOOL
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at digital inputs DI0, DI1, DC2, DC3 (for counters A and B)
causes the function block to store the actual counter value ACT1 and ACT2 and to display this
value at output CNT_TOUCH1 and CNT_TOUCH2.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of the configured
digital input (for counters A and B).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of the configured
digital input (for counters A and B).

Data type: BOOL
At input UD, the counting selection is set for up/down counting mode:
UD=FALSE: count up
UD=TRUE: count down

Data type: BOOL
If input RESET = TRUE, the counter value (ACT) is reset to 0. As long as input RESET = TRUE,
no pulses are counted because the counter is always overwritten by the value 0.
A rising edge at digital input DI0, DI1, DC2, DC3 causes the function block to reset the value at
output ACT.

Data type: BOOL
If set input SET=TRUE, the counter takes the values from input START_VALUE to transfer it to
output ACT. As long as input SET=TRUE, no pulses are counted because the counter is always
overwritten by the input START_VALUE.

INST (instance)

EN_CNT (enable
counter)

EN_TOUCH
(enable touch)

EDGE_TOUCH

UD (up/down
mode)

RESET (reset
counter)

SET_START (set
start value)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2535

A rising edge at input causes the function block to store the START_VALUE value and to
display this value at output ACT.

Data type: BOOL
If input SET_END=TRUE, the counter is set to the value specified at input END_VALUE.

Data type: DINT
The counter can be set to a start value. This value must be applied to the input START_VALUE.

Data type: DINT
If the counter reaches the planned input END_VALUE, the binary output CF is set to TRUE and
the value is stored.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

SET_END (set
end value)

START_VALUE

END_VALUE

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2536

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: DINT
The current counter value (actual value) can be retrieved at any time using the output ACT of
the function block.

Data type: DINT
The output CNT_TOUCH displays the result of the catch/touch trigger action.

Data type: BOOL
If the zero crossover indicator CF=TRUE, this output indicates the sign of the actual counter
value ACT. It is set to FALSE, when counter value ACT is less than or equal to zero. It is set to
TRUE otherwise.

Data type: BOOL
The output RDY_TOUCH is set to TRUE, when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
The overflow is specified at the output OFL.
The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648. Any exceeding or falling below of this value (depending to up
and down use) will set OFL to TRUE.

Fig. 187: Detection for output OFL

Data type: BOOL
The output SET_IN is set to TRUE, if one of the inputs is configured as SET input.

ACT (actual
value)

CNT_TOUCH
(counter touch
value)

CF (carry flag)

RDY_TOUCH
(ready catch/
touch value)

OFL (overflow)

SET_IN (set
input counter)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2537

Data type: BOOL
The output RESET_IN is set to TRUE, if one of the inputs is configured as RESET input.

CMS_IO_32BIT_ENCODER

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0, FM502-CMS firmware: V1.0

Type Function block with historical values

Group Counter & Encoder

The FM502-CMS provides one Ä Chapter 1.6.4.4.3.5.1 “Incremental encoder” on page 5740
function for relative positioning with 3 signals.
Possible operation modes: 11-1, 12-1, 13-1 Ä “Operation modes” on page 2524

Input description

RESET_IN (reset
input counter)

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2538

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

Fig. 188: Example

Data type: BOOL
If EN_CNT=TRUE , pulse counting of counter is enabled. If EN_CNT=FALSE, no pulse counting
is performed and the pulses are lost. If counting has already started and EN_CNT = FALSE,
the pulse counting stops and counter value ACT is stored. If EN_CNT = TRUE again, the pulse
counting will start again and counter value ACT will continue since previous value.

Data type: BOOL
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at digital inputs DI0, DI1, DC2, DC3 (for counters A and B)
causes the function block to store the actual counter value ACT1 and ACT2 and to display this
value at output CNT_TOUCH1 and CNT_TOUCH2.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of the configured
digital input (for counters A and B).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of the configured
digital input (for counters A and B).

Data type: BOOL
A rising edge at input EN_RPI enables a reference point initiator measurement. If input EN_RPI
= TRUE, a rising edge at digital inputs DI0, DI1, DC2, DC3 (for counter 0) validates the counter
value capture and the counter reset during the capture.
Only one function may be enabled at a time, either the RPI (reference point indicator) or
TOUCH (touch trigger measurement). If both functions are enabled simultaneously or if the
execution of one function is not yet completed when enabling the other function, a RPI function
will have a higher priority than TOUCH.

Data type: BOOL
If input RESET = TRUE, the counter value (ACT) is reset to 0. As long as input RESET = TRUE,
no pulses are counted because the counter is always overwritten by the value 0.

EN

INST (instance)

EN_CNT (enable
counter)

EN_TOUCH
(enable touch)

EDGE_TOUCH

EN_RPI (enable
reference point
initiator)

RESET (reset
counter)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2539

A rising edge at digital input DI0, DI1, DC2, DC3 causes the function block to reset the value at
output ACT.

Data type: BOOL
If set input SET=TRUE, the counter takes the values from input START_VALUE to transfer it to
output ACT. As long as input SET=TRUE, no pulses are counted because the counter is always
overwritten by the input START_VALUE.
A rising edge at input causes the function block to store the START_VALUE value and to
display this value at output ACT.

Data type: BOOL
If input SET_END=TRUE, the counter is set to the value specified at input END_VALUE.

Data type: DINT
The counter can be set to a start value. This value must be applied to the input START_VALUE.

Data type: DINT
If the counter reaches the planned input END_VALUE, the binary output CF is set to TRUE and
the value is stored.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.

SET_START (set
start value)

SET_END (set
end value)

START_VALUE

END_VALUE

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2540

It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: DINT
The current counter value (actual value) can be retrieved at any time using the output ACT of
the function block.

Data type: BOOL
If the zero crossover indicator CF=TRUE, this output indicates the sign of the actual counter
value ACT. It is set to FALSE, when counter value ACT is less than or equal to zero. It is set to
TRUE otherwise.

Data type: BOOL
The output RDY_TOUCH is set to TRUE, when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
The output RDY_RPI is set to TRUE, when the RPI operation is done. If input EN_RPI is set to
FALSE, the output RDY_RPI is set to FALSE.

Data type: BOOL
The overflow is specified at the output OFL.
The output OFL is set to TRUE, when the counter value ACT passes from -1 to 0 or from 0 to
-1.

Fig. 189: Detection for output OFL (overflow)

ERNO

ACT (actual
value)

CF (carry flag)

RDY_TOUCH
(ready catch/
touch value)

RDY_RPI (ready
reference point
initiator)

OFL (overflow)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2541

Data type: BOOL
The output SET_IN is set to TRUE, if one of the inputs is configured as SET input.

Data type: BOOL
The output RESET_IN is set to TRUE, if one of the inputs is configured as RESET input.

Data type: DINT
The output CNT_TOUCH displays the result of the catch/touch trigger action.

CMS_IO_FREQ_SCAN

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0, FM502-CMS firmware: V1.0

Type Function block with historical values

Group Counter & Encoder

The FM502-CMS provides one channel Z which can be used to measure times, frequencies and
rotational speeds with a resolution of 1 µs. The function block should be used to control with
input EN_CNT, configure the capture on falling edge with input EN_0 or rising edge with input
EN_1 of signal, and the specification of the mode of the measurement (Ä Chapter 1.6.4.4.3.6
“FM502-CMS used as time frequency meter” on page 5747) with input EN_FREQ.
Possible operation modes: 15-1 Ä “Operation modes” on page 2524

Input description

SET_IN (set
input counter)

RESET_IN (reset
input counter)

CNT_TOUCH
(counter touch
value)

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2542

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

Fig. 190: Example

Data type: BOOL
If EN_CNT=TRUE , pulse counting of counter is enabled. If EN_CNT=FALSE, no pulse counting
is performed and the pulses are lost. If counting has already started and EN_CNT = FALSE,
the pulse counting stops and counter value ACT is stored. If EN_CNT = TRUE again, the pulse
counting will start again and counter value ACT will continue since previous value.

Data type: BOOL
If EN_0=TRUE, the time frequency measurement will be captured on the falling edge of signal.

Data type: BOOL
If EN_1=TRUE, the time frequency measurement will be capture on rising edge of signal.

Data type: BOOL
If EN_FREQ=FALSE, the time frequency measurement will be specified in time mode and
displayed on output DUR (in µs).
If EN_FREQ= TRUE, the time frequency measurement will be specified in frequency and rpm
modes and displayed on output FREQ (in Hz) and RPM (in rotation per minute).

Output description

EN

INST (instance)

EN_CNT (enable
counter)

EN_0 (enable 0)

EN_1 (enable 1)

EN_FREQ

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2543

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
If output NEW=TRUE, a new timing value is available.

Data type: REAL
The output DUR (duration) is used for display the result of timing measurement. If the input
EN_FREQ=FALSE, measured time is in µs.

Data type: REAL, unit: Hz
The output FREQ is used to display the result of time measurement. If the input EN_FREQ =
TRUE, measured frequency is shown.

Data type: REAL, unit: rpm
The output RPM is used to display the result of timing measurement. If the input EN_FREQ =
TRUE, measured speed of rotation is shown.

DONE

ERR

ERNO

NEW

DUR

FREQ (fre-
quency)

RPM (rotations
per minute)

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2544

CMS_IO_SSI_ENC

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0, FM502-CMS firmware: V1.0

Type Function block with historical values

Group Counter & Encoder

The FM502-CMS Ä Chapter 1.6.4.4.3.5.2 “Absolute SSI encoder” on page 5744function.
Possible operation modes: 14-1 Ä “Operation modes” on page 2524

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2545

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

Fig. 191: Example

Data type: BOOL
If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and the pulses are lost.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.

Data type: BOOL
A rising edge at input EN_TOUCH enables a catch/touch trigger measurement. If input
EN_TOUCH = TRUE, a rising edge at digital inputs DI0, DI1, DC2, DC3 (for counters A and B)
causes the function block to store the actual counter value ACT1 and ACT2 and to display this
value at output CNT_TOUCH1 and CNT_TOUCH2.
If input EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
If EDGE_TOUCH = FALSE, a catch/touch value will be operate on falling edge of the configured
digital input (for counters A and B).
If EDGE_TOUCH = TRUE, a catch/touch value will be operate on rising edge of the configured
digital input (for counters A and B).

Data type: BOOL
If input RESET = TRUE, the counter value (ACT) is reset to 0. As long as input RESET = TRUE,
no pulses are counted because the counter is always overwritten by the value 0.
A rising edge at digital input DI0, DI1, DC2, DC3 causes the function block to reset the value at
output ACT.

Data type: BOOL
If input SET_END=TRUE, the counter is set to the value specified at input END_VALUE.

Data type: DWORD
If the counter reaches the planned input END_VALUE, the binary output CF is set to TRUE and
the value is stored.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

INST (instance)

EN_COUNT
(enable fre-
quency output)

EN_TOUCH
(enable touch)

EDGE_TOUCH

RESET (reset
counter)

SET_END (set
end value)

END_VALUE

DONE

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2546

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: DWORD
The current counter value (actual value) can be retrieved at any time using the output ACT of
the function block.

Data type: DWORD
The output CNT_TOUCH (counter touch value) displays the result of the catch/touch trigger
action.

Data type: BOOL
If the zero crossover indicator CF=TRUE, this output indicates the sign of the actual counter
value ACT. It is set to FALSE, when counter value ACT is less than or equal to zero. It is set to
TRUE otherwise.

Data type: BOOL
The output RDY_TOUCH is set to TRUE, when a new catch/touch value is available. If input
EN_TOUCH is set to FALSE, the output RDY_TOUCH is set to FALSE.

Data type: BOOL
The output SET_IN is set to TRUE, if one of the inputs is configured as SET input.

Data type: BOOL
The output RESET_IN is set to TRUE, if one of the inputs is configured as RESET input.

ERR

ERNO

ACT (actual
value)

CNT_TOUCH

CF (carry flag)

RDY_TOUCH
(ready catch/
touch value)

SET_IN (set
input counter)

RESET_IN (reset
input counter)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2547

CMS_IO_MEASMNT_CTRL

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0, FM502-CMS firmware: V1.0

Type Function block with historical values

Group Measurement

Possible operation modes: 1-1, 2-1 Ä “Operation modes” on page 2524

Control for Ä Chapter 1.6.4.4.3.3 “FM502-CMS analog measurement” on page 5730.
CMS_IO_MEASMNT_CTRL needs the destination path where to store the measurement files.
When EN = TRUE the configured measurement starts and the files are stored at destination
path as ZIP file. The ZIP file includes the WAV files. Each WAV file per activated channel and
encoder. When there are activated channels with different sample rate, there will be another
encoderWAV file for every channel with different sample rate. The time for measurement and
transmitting depends on the number of active channels, the sample rate, the record length
value.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

EN

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2548

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

Fig. 192: Example

Data type: STRING
To store the measurement files after the measurement progress. Example: flashdisk/Meas.zip.
Filename in 8.3 characters.

Data Type: BOOL
A rising edge at input stops the measurement or transmitting. When ABORT = TRUE, measure-
ment data will be deleted.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

INST (instance)

DESTINATION

ABORT

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2549

Data type: BYTE
Percentage of transmitting the measurement files from Function Module to processor module.

CMS_IO_CFG_READ

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0

Available as of device firm-
ware

V1.0

Type Function block with historical values

Group Configuration

Read configuration of analog channels from FM502-CMS.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

PROGRESS

EN

INST (instance)

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2550

Fig. 193: Example

Data type: DWORD (address of CMS_IO_CFG_FM502_TYPE)
Address where channel configuration data will be read from and written into the function
module.

Ä Chapter 1.6.4.4.3.2.2.1 “Parameter set” on page 5726

Output description

Fig. 194: Function block CMS_IO_CONFIG_READ

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: WORD
Version index of configuration data.

CH_CFG
(channel config-
uration)

DONE

ERR

ERNO

VER (version
index)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2551

CMS_IO_CFG_WRITE

Parameter Value
Included in library CMS_IO_AC500_V24.lib

Available as of firmware V2.4.0

Available as of device firm-
ware

V1.0

Type Function block with historical values

Group Configuration

With this function block you can change the configuration of the function module also
during the run time of the CODESYS. Configuration cannot be written while function block
CMS_IO_MEASMNT_CTRL is active. When configuration data has an error (plausibility will
be checked in function module) or will be sent while CMS_IO_MEASMNT_CTRL is active,
configuration data will be deleted and the old one will be used. If the function module
gets an error while configuration data is written to the function module, the function block
CMS_IO_CFG_READ output DONE will be TRUE, but errors can be seen in diagnosis system
of processor module. Encoder/counter function blocks will be reset, when the configuration is
written.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2552

Instance description of the Function Module that should be controlled via this function block.
The variable is automatically generated during the configuration with the Automation Builder.
Use the operator ADR to get the address of the variable.

Fig. 195: Example

Data type: DWORD (address of CMS_IO_CFG_FM502_TYPE)
Address where channel configuration data will be read from and written into the function
module.

Ä Chapter 1.6.4.4.3.2.2.1 “Parameter set” on page 5726

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

INST (instance)

CH_CFG
(channel config-
uration)

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2553

Data type: WORD
Version index of configuration data.

1.5.8.3 WAV file library for data handling

1.5.8.3.1 Function blocks
WAV_FILE_INFO

Parameter Value
Included in library WAV_FILE_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group -

Function block WAV_FILE_INFO is used to retrieve the WAV file properties. This function block
does not read the measured data values present in the file. The user can get the file information
on the WAV file which may be needed before performing the read and write operations.
Function block WAV_FILE_INFO works with the file in the READ mode.

VER (version
index)

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2554

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: STRING
Input is used to enter the absolute path and name of the file whose information is required.
If the path or the file name given is incorrect or invalid, an error occurs at output ERNO and
output ERR = TRUE.

File is present on the flash: flashdisk\Sample.wav
File is present on the memory card: SDCard\Sample.wav

Example of the
value of FILE

Output description

EN

FILE (file path
and name)

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2555

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
Output BUSY stays TRUE, till the processing of the function block is in progress. Once the
processing is done, output BUSY becomes FALSE and output DONE becomes TRUE. In the
course of output ERR=TRUE, or the input EN=FALSE, output BUSY becomes FALSE.

Data type: UDINT
Output SAMLING_FREQ captures the sampling frequency of the WAV file. The sampling fre-
quency is the number of samples of data, stored in one second.

Data type: UDINT
Output BLOCK_ALIGN captures the respective value of the WAV file. The value gives the
number of bytes present in one sample of data recorded in the WAV file.
The BLOCK_ALIGN value is a function of bits per sample, number of channels and sampling
frequency Ä Chapter 1.5.8.1 “System technology” on page 2519.

Data type: UINT
Output BITS_PER_SAMPLE stores the number of bits present in one sample of the data.

Data type: UDINT
Output DATA_SIZE stores the value of number of bytes from the measured data which is
present in the WAV file.

Data type: STRING[255]
Output LABEL_INFO captures the label information, which stores the channel and encoder
information.

DONE

ERR

ERNO

BUSY

SAM-
PLING_FREQ
(sampling fre-
quency)

BLOCK_ALIGN

BITS_PER_SAM
PLE

DATA_SIZE

LABEL_INFO

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2556

Function call in ST
Inst_File_Info(
 EN:=TRUE,
 FILE:=:= 'flashdisk\Sample.WAV',
 xInfoDone:= Inst_File_Info.DONE,
 xInfoError:= Inst_File_Info.ERR,
 wInfoErNo:= Inst_File_Info.ERNO
 dwInfoSamplingFreqInst_File_Info.SAMPLING_FREQ
 wInfoBlockAlign:= Inst_File_Info.BLOCK_ALIGN
 wInfoResolution:= Inst_File_Info.BITS_PER_SAMPLE
 dwInfoDataSize:= Inst_File_Info.DATA_SIZE
 sInfoLable:= Inst_File_Info.LABLE_INFO);

WAV_FILE_READ

Parameter Value
Included in library WAV_FILE_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group -

Function block WAV_FILE_READ is used to retrieve the WAV file properties and to read the
measured data stored in the file.

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2557

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: STRING
Input is used to enter the absolute path and name of the file whose information is required.
If the path or the file name given is incorrect or invalid, an error occurs at output ERNO and
output ERR = TRUE.

File is present on the flash: flashdisk\Sample.wav
File is present on the memory card: SDCard\Sample.wav

Example of the
value of FILE

Data type: DWORD, Default value = 0
Input BUFFER contains the memory address of the array where all the measured data is stored
after reading.

If the measured data is stored in the array 'abyReadData[1..100]', then BUFFER=ADR(abyR-
eadData).

Example

Data type: UDINT, Default value = 1, Range ³ 1 (block align) and £ data size of the file.

Input SIZE gives the number of bytes of the measured data to be read and stored in the buffer.
The function block would throw an error, if value of SIZE given as 0. For a given file, the input
SIZE value must always be the integral multiple of its block align value.

With data size = 1000 and block align = 4, the valid value of SIZE is in the range from 4 to
1000.

Example

SIZE must not exceed the data size of the WAV file.

EN

FILE (file path
and name)

BUFFER
(memory buffer)

SIZE (size of
data to be read)

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2558

Data type: UDINT, Default value = 0, Range ³ 0 and £ data size of the file.

Input OFFSET is an offset in terms of number of bytes. It points to the byte from where the
reading should start.

If the value of OFFSET = 10, the function block will read from the 11th measured data present
inside the file.

Example

OFFSET is an integral multiple of the block align
OFFSET must not exceed the data size of the WAV file.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL

OFFSET
(memory offset)

DONE

ERR

ERNO

BUSY

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2559

Output BUSY stays TRUE, till the processing of the function block is in progress. Once the
processing is done, output BUSY becomes FALSE and output DONE becomes TRUE. In the
course of output ERR=TRUE, or the input EN=FALSE, output BUSY becomes FALSE.

Data type: UDINT
Output SAMLING_FREQ captures the sampling frequency of the WAV file. The sampling fre-
quency is the number of samples of data, stored in one second.

Data type: UDINT
Output BLOCK_ALIGN captures the respective value of the WAV file. The value gives the
number of bytes present in one sample of data recorded in the WAV file.
The BLOCK_ALIGN value is a function of bits per sample, number of channels and sampling
frequency Ä Chapter 1.5.8.1 “System technology” on page 2519.

Data type: UINT
Output BITS_PER_SAMPLE stores the number of bits present in one sample of the data.

Data type: UDINT
Output DATA_SIZE stores the value of number of bytes from the measured data which is
present in the WAV file.

Data type: STRING[255]
Output LABEL_INFO captures the label information, which stores the channel and encoder
information.

Data type: UDINT
Output COPIED_BYTES stores the number of bytes, the function block read and stored in the
buffer area.

Function call in ST
Inst_File_READ(
 EN:=TRUE,
 FILE:=:= 'flashdisk\Sample.WAV',
 BUFFER:= ADR(abyReadData),
 SIZE:= 100,
 OFFSET:= 0,
 xReadDone:= Inst_File_Read.DONE,
 xReadError:= Inst_File_Read.ERR,
 wReadErNo:= Inst_File_Read.ERNO,
 dwReadSamplingFreq:= Inst_File_Read.SAMPLING_FREQ,
 wReadBlockAlign:= Inst_File_Read.BLOCK_ALIGN,
 wReadResolution:= Inst_File_Read.BITS_PER_SAMPLE,
 dwReadDataSize:= Inst_File_Read.DATA_SIZE,
 ReadLabel:= Inst_File_Read.LABEL_INFO,
 udiReadBytes:= Inst_File_Read.COPIED_BYTES);

SAM-
PLING_FREQ
(sampling fre-
quency)

BLOCK_ALIGN

BITS_PER_SAM
PLE

DATA_SIZE

LABEL_INFO

COPIED_BYTES

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2560

WAV_FILE_CREATE

Parameter Value
Included in library WAV_FILE_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group -

Function block WAV_FILE_CREATE is used to create a new file by giving the required proper-
ties of the file.
This function block creates a new WAV file by handling the file in the WRITE mode. It is possible
to write the data in the big or the little endian format.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2561

Data type: STRING
Input is used to enter the absolute path and name of the file whose information is required.
If the path or the file name given is incorrect or invalid, an error occurs at output ERNO and
output ERR = TRUE.

File is present on the flash: flashdisk\Sample.wav
File is present on the memory card: SDCard\Sample.wav

Example of the
value of FILE

Data type: DWORD, Default value = 0
Input BUFFER contains the memory address of the array where all the measured data is stored
after reading.

If the measured data is stored in the array 'abyReadData[1..100]', then BUFFER=ADR(abyR-
eadData).

Example

Data type: UDINT, Default value = 1, Range ³ 1 (block align) and £ data size of the file.

Input SIZE gives the number of bytes of the measured data to be read and stored in the buffer.
The function block would throw an error, if value of SIZE given as 0. For a given file, the input
SIZE value must always be the integral multiple of its block align value.

With data size = 1000 and block align = 4, the valid value of SIZE is in the range from 4 to
1000.

Example

SIZE must not exceed the data size of the WAV file.

Data type: BOOL, default value: FALSE = little endian
Input BIG_ENDIAN decides if the file to be created will be a big endian or a little endian.
BIG_ENDIAN = TRUE = big endian data file.

Data type: UDINT, default value: 1, range: > 0.
Input SAMPLING_FREQ enters the sampling frequency of the WAV file to be created. The
sampling frequency is the number of samples of data stored in one second.

Data type: UINT
Input BITS_PER_SAMPLE enters the number of bits present in one sample of the data.
● 16, 24, 32 or 64 are the valid values for this input.

Data type: STRING[255]
Input LABEL_INFO enters the label information. The label information normally stores the
channel and encoder information.

FILE (file path
and name)

BUFFER
(memory buffer)

SIZE (size of
data to be read)

BIG_ENDIAN

SAM-
PLING_FREQ
(sampling fre-
quency)

BITS_PER_SAM
PLE

LABEL_INFO

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2562

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
Output BUSY stays TRUE, till the processing of the function block is in progress. Once the
processing is done, output BUSY becomes FALSE and output DONE becomes TRUE. In the
course of output ERR=TRUE, or the input EN=FALSE, output BUSY becomes FALSE.

Function call in ST
Inst_File_CREATE(
 EN:=TRUE,
 FILE:=:= 'flashdisk\Sample.WAV',
 BUFFER:= ADR(abyCreateData),
 SIZE:= 100,
 BIG_ENDIAN:= FALSE,
 SAMPLING_FREQ:= 50000,

DONE

ERR

ERNO

BUSY

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2563

 BITS_PER_SAMPLE:= 16,
 xCreateDone:= Inst_File_Info.DONE
 xCreateError:= Inst_File_Info.ERR
 wCreateErNo:= Inst_File_Info.ERNO
 dwCreateBusy:= Inst_File_Create.BUSY);

WAV_FILE_APPEND

Parameter Value
Included in library WAV_FILE_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group -

Function block WAV_FILE_APPEND is used if you want to add more data samples to an
existing WAV file.
This function block appends the WAV file by handling the file in the WRITE mode.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2564

Data type: STRING
Input is used to enter the absolute path and name of the file whose information is required.
If the path or the file name given is incorrect or invalid, an error occurs at output ERNO and
output ERR = TRUE.

File is present on the flash: flashdisk\Sample.wav
File is present on the memory card: SDCard\Sample.wav

Example of the
value of FILE

Data type: DWORD, Default value = 0
Input BUFFER contains the memory address of the array where all the measured data is stored
after reading.

If the measured data is stored in the array 'abyReadData[1..100]', then BUFFER=ADR(abyR-
eadData).

Example

Data type: UDINT, Default value = 1, Range ³ 1 (block align) and £ data size of the file.

Input SIZE gives the number of bytes of the measured data to be read and stored in the buffer.
The function block would throw an error, if value of SIZE given as 0. For a given file, the input
SIZE value must always be the integral multiple of its block align value.

With data size = 1000 and block align = 4, the valid value of SIZE is in the range from 4 to
1000.

Example

SIZE must not exceed the data size of the WAV file.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

FILE (file path
and name)

BUFFER
(memory buffer)

SIZE (size of
data to be read)

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2565

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.5.3 “Error messages of the AC500 V2 function block libraries”
on page 735).

Data type: BOOL
Output BUSY stays TRUE, till the processing of the function block is in progress. Once the
processing is done, output BUSY becomes FALSE and output DONE becomes TRUE. In the
course of output ERR=TRUE, or the input EN=FALSE, output BUSY becomes FALSE.

Function call in ST
Inst_File_APPEND(
 EN:=TRUE,
 FILE:=:= 'flashdisk\Sample.WAV',
 BUFFER:= ADR(abyAppendData),
 SIZE:= 100,
 xAppendDone:= Inst_File_Append.DONE
 xAppendError:= Inst_File_Append.ERR
 wAppendErNo:= Inst_File_Append.ERNO
 dwAppendBusy:= Inst_File_Append.BUSY);

WAV_FILE_APPEND_LABEL

Parameter Value
Included in library WAV_FILE_AC500_V24.lib

Available as of firmware V2.4.0

Type Function block with historical values

Group -

Function block WAV_FILE_APPEND_LABEL is used if you want to add a label to an existing
WAV file.
This function block appends the WAV file by handling the file in the WRITE mode.

ERNO

BUSY

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2566

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The function block is activated by a TRUE at the input EN.
A FALSE keeps the function block deactivated.
Is the function block activated, the values being present at the inputs are processed and the
output values are delivered.

Data type: STRING
Input is used to enter the absolute path and name of the file whose information is required.
If the path or the file name given is incorrect or invalid, an error occurs at output ERNO and
output ERR = TRUE.

File is present on the flash: flashdisk\Sample.wav
File is present on the memory card: SDCard\Sample.wav

Example of the
value of FILE

Data type: STRING
Input is used to append the information as a label to the WAV file.
If the total length of the label information is bigger than 256 signs, an error occurs at output
ERNO and output ERR = TRUE.

Output description

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Output DONE indicates the processing state of the function block.

EN

FILE (file path
and name)

LABEL_INFO

DONE

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2567

After completion or abortion of processing (due to an error), DONE is set to TRUE, for one
cycle, as long as input EN = TRUE.
This output always has to be considered together with output ERR. If ERR is TRUE, then the
corresponding error code is displayed by output ERNO.

Data type Default value Range Unit
BOOL - TRUE / FALSE -

Output ERR indicates, whether an error occurred during control processing.
In case of error, the error number can be read at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

Output ERNO provides an error identifier, if an invalid value was applied to an input, or if an
error occurred during request processing. Then the error number is displayed at the output (see,
error messages).
Output ERNO always has to be considered together with output ERR. The value output at
ERNO is only valid, if output ERR is TRUE.

Data type: BOOL
Output BUSY stays TRUE, till the processing of the function block is in progress. Once the
processing is done, output BUSY becomes FALSE and output DONE becomes TRUE. In the
course of output ERR=TRUE, or the input EN=FALSE, output BUSY becomes FALSE.

Function call in ST
Inst_File_APPEND_LABEL(
 EN:=TRUE,
 FILE:= 'flashdisk\Sample.WAV',
 LABEL INFO:= 'Label information',
 xAppendDone:= Inst_File_Append_Label.DONE
 xAppendError:= Inst_File_Append_Label.ERR
 wAppendErNo:= Inst_File_Append_Label.ERNO
 dwAppendBusy:= Inst_File_Append_Label.BUSY);

zWAV_FILE_BYTES_TO_STRING
Internal function block to retrieve the string of label section of the WAV-File. The data stored in
terms of bytes is converted into the string equivalent.

1.5.8.3.2 Structures

Structure Function
zWAV_FILE_LOOKUP_TYPE Internal structure not for the user access. To create a look

up table of ASCII format and characters.

zWAV_FILE_STRING_TO_ASCII_
TYPE

Internal structure not for the user access. Has the ele-
ments for ASCII format and character of a string.

zWAV_FILE_STRUCT_TYPE Internal structure not for the user access. Has the struc-
ture same as the WAV-File standards

ERR

ERNO

BUSY

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2568

1.5.8.3.3 Variables
Table 152: Global variables
Variable Function
WAV_FILE_VERSION_INFORMA-
TION

Stores all the version information of the file along with
the change log. It has no variable declared inside this
section.

dwWAV_FILE_VisuBackground-
Color
Group:
WAV_FILE_VISU_COLOR_INFO

Visualization elements: background color
16#00<G><R>

dwWAV_FILE_VisuTitleColor
Group:
WAV_FILE_VISU_COLOR_INFO

Visualization elements: title background color
16#00<G><R>

1.5.8.3.4 Visualization
A visualization object can be used to show the actual values of all inputs and outputs of the
instance of the function block. The visualization can also be used to control the function block
by those inputs which are not connected inside the program.

In CODESYS, you can add a visualization object in the project and select the required function
block visualization.

Fig. 196: Visualization: Selection of function blocks

PLC Automation with V2 CPUs

Libraries and solutions > FM502-CMS library

2022/01/20 3ADR010582, 3, en_US 2569

Fig. 197: Example: WAV_FILE_READ_VISU_PH

Fig. 198: Example: WAV_FILE_READ_VISU_PH in offline and online mode

● WHITE: Current FALSE and should be FALSE in normal operation.
● GREEN: Current TRUE and should be TRUE in normal operation.
● YELLOW: Current FALSE but should be TRUE in normal operation.
● RED: Current TRUE but should be FALSE in normal operation.
Color of the background can be changed by writing a value to the global variable
dwWAV_FILE_VisuBackgroundColor.
Color of the title can be changed by writing a value to the global variable dw WAV_FILE_VisuTi-
tleColor.

1.5.8.4 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

Colors

PLC Automation with V2 CPUs
Libraries and solutions > FM502-CMS library

2022/01/203ADR010582, 3, en_US2570

1.5.9 Motion control library

● All pertinent state, regional, and local safety regulations must be observed when installing
and using this product. When functions or devices are used for applications with technical
safety requirements, the relevant instructions must be followed.

● Read the complete safety instructions of the user's manuals for the drives you are using,
before installation and commissioning.

● Read all safety instructions of the AC500 PLC. See System description AC500 or chapter
Ä Chapter 1.6.1.4 “Regulations” on page 3709 in the online help.

● Read the Important user Information. See chapter Ä Chapter 1.6.1.1 “Safety instructions”
on page 3697 in the online help.

1.5.9.1 Preconditions for the use of the libraries
The user has to read the following instructions and documents before using the libraries:
The library package has been released for the software and firmware versions listed in the
readme file of Automation Builder only (see “Help ➔ Automation Builder Release Notes”) . In no
event will ABB or its representatives be liable for loss of data, profits, revenue or consequential,
incidental or other damage that may result from the use of other versions of product, software
or firmware versions. The error-free operation of the HA library with other devices, software or
firmware versions should be possible but cannot be guaranteed and may need adaptations e. g.
of example programs.
The first version of Motion Control Library Package PS5611-Motion has been released with
Automation Builder 2.4.0.There after the package is updated with several changes. For details
on all changes please refer PS5611-Motion release note area from Automation Builder release
notes.
The Motion control package contains follows libraries:

Library Automation Builder PLC firmware
ABB_MotionControl_AC500

AB 2.4.0 or higher

AC500 V3 firmware version 3.3.1
or higher
AC500-eCo V3 firmware version
3.4.0 or higher

ABB_Ecat_CiA402_AC500

ABB_MathFunctions_AC500

ABB_MotionContro-
lEco_AC500 (kernel
blocks for Eco V3 PLCs)

ABB_MotionControl-
Load_AC500 AB 2.5.0 or higher AC500 V3 firmware version 3.5.0

or higher

The version 3.0.0 of the Motion Control Library Package PS552-MC-E has been released for:
● AC500 and AC500-eCo, AC500 Firmware version 2.3
● Control Builder Plus V2.3
● CODESYS V2.3.9.x

The PS552-MC libraries V3.0.0 have been tested with the following product / firmware / soft-
ware versions:
● CM579-ETH EtherCAT Communication Module firmware 2.6.7
● Bosch Indra Drive Cs FW MPB-16V20-D5-1-NNN-NN
● ACSM1 FW 1510 + FECA-01 FW 109
● ACS355 FW 5040 + FECA-01 FW 109
● ACS355 FW 4050 + FPBA-01 FW 201B

Safety
instructions

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2571

● ACSM1 Motion FW 1510 + FPBA-01 FW 201B
● ACSM1 FW v1.8.2

In no event will ABB or its representatives be liable for loss of data, profits, revenue or conse-
quential, incidental or other damage that may result from the use of other versions of product /
software / firmware versions. The error-free operation of the PS552-MC-E V3.0.0 with other
devices / software / firmware versions should be possible but can not be guaranteed and may
need adaptations e.g. of example programs.

CAUTION!
Generally, the user in all applications is fully and alone responsible for checking
all functions carefully, especially for safe and reliable operation.

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

There are limits on the minimum EtherCAT cycle time, user can configure in each PLC type.

Table 153: Details on the limits on the minimum EtherCAT cycle time
PLC type PM5630 PM5650 PM5670
Min. EtherCAT master cycle
time

2 ms 1 ms 0,5 ms

Other than the above limits, there is also limits on configuring the number of synchronized axis
in each PLC type. This limits is based on the EtherCAT master cycle time configured under
EtherCAT master.

Table 154: Details on the limits for each PLC type
PLC type PM5630 PM5650 PM5670
Number of synchronized
axis in 1 ms

- 8 16

Number of synchronized
axis in 2 ms

4 16 32

Number of synchronized
axis in 4 ms

8 32 64

“Number of axis” is counted in Automation Builder is based on the number of Kernel function
block instance declared in the IEC application. In this way, it is made sure all real and virtual
axis are counted.

User can increase the EtherCAT cycle time to accommodate more “Number of
axis” in the same PLC type.

User can use the [Statistics] tab from Automation Builder to see how many axis are supported
for the particular PLC type and for the EtherCAT master cycle time configured. Once the axis
is configured user need to update the [Statistics] tab by “Generate Code” to get the updated
information.

Limits on
number of
synchronized
axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2572

Automation Builder allows an additional axis than what is mentioned in the above table to
support one virtual axis additionally.

Please remove any Kernel function block instance which is declared but
not used in the application to get the correct number of axis calculated by
Automation Builder under the [Statistics] tab.

1.5.9.2 Overview
The PS552-MC is a Motion Control software to create Motion Control applications based
on function blocks according to the standard of PLCopen Motion Control Ä Chapter 1.5.9.3
“PLCopen” on page 2587.These function blocks can be used for Central Motion Control as well
as for drive-based Motion Control axis implementations.

Central Motion Control

PLCopen Motion Control
Function Blocks

supports PLCopen Coordinated Motion
Drive-based Motion Control

Fig. 199: Use of PLCopen function blocks for different axis implementations provided by PS552-
MC

The Central Motion Control axis implementation covers a wide range of possible Motion Control
functionalities starting from single axis movements to master-follower axes to perform electronic
gearing and CAM functions up to coordinated Motion Control in cartesian coordinates with
optional kinematic transformations to realize even a portal or robotic application.
There are different drive-based Motion Control implementations for specific ABB drives.
PLCopen function blocks can be used to control the motion capabilities of the drives from
AC500 PLC.

This documentation contains the following chapters:
● Overview

In the subsequent chapters general information are provided for a better understanding
of Motion Control with AC500 PLC and PS552-MC. There is also an overview of the avail-
able PLCopen function blocks and their compatibility with Central Motion Control and the
provided drive-based Motion Control axis implementations.

● PLCopen
The principle of the PLCopen Motion Control standard is explained as well as how PLCopen
function blocks can be used to create PLC Motion Control application programs.

● Central Motion Control (PLC-Based)
This chapter explains how PLC-based Motion Control with AC500 can be realized and how
it can be used in combination with the available PLCopen function blocks.

● PLC-based Motion Control Fluid Power Extension or Load Control
This chapter explains how the PLCopen part 6 Fluid Power - extension also called “Load
Control” can be used to practically realize also a form of Torque control (or -profiling) and
how it can be used in combination with the available PLCopen function blocks and switch
between Torque/Load control and position control.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2573

● Drive-Based Motion
Control Different realizations for specific drives and modules are introduced and explained.
Drive or module dependent restictions as well as device dependent commissioning instruc-
tion are given.

● PLCopen function blocks
This chapter covers the documentation of all included PLCopen Motion Control function
blocks of this product.

● Glossary
All abbreviations used in this documentation are listed here.

1.5.9.2.1 Motion Control with PS552-MC
With PS552-MC different Motion Control system structures are possible. Independently of the
system structure a typical Motion Control application consists of the following system elements:
● An application program which contains PLCopen function blocks that defines the general

application behavior and logics.
● A profile generator which generates a position profile based on the dynamic specifications of

the application program to guide the axis to the desired positions.
● A position control loop which outputs a speed reference signal to minimize the following

error.
To achieve the best system structure for an application these components can be separated into
different devices. Each type of structure has its own kind of interface and type of signals which
need to be transferred between the interacting devices.

All shown Motion Control system structures (drive based or central Motion Con-
trol with or without position control loop) can be combined together in the same
application program for a Motion Control project.

1.5.9.2.2 PLC-based motion control
With central Motion Control based on an AC500 PLC and PS552-MC the application program
is done in the PLC but also the profile generator. The implementation of the profile generator is
based on a set of function blocks which are named Compact Motion (CMC).
The profile generator of many possible axes is centrally placed inside the AC500 PLC. There-
fore multiaxis motion functionalities become easily available and can be accessed by PLCopen
function blocks. As a result, Motion Control functionalities are almost drive independent.
Available motion control functionalities:
● Simple axis Movements
● Electronic Gearin
● Electronic CAMs
● Position Profiles
● Velocity Profiles
● Acceleration Profiles
● Load control (Torque profilling)
● Simple Movements in 3D
● Path Movements in 3D
● Kinematic Transformations for Roboitc Applications
Then the output is a position reference signal which the drive will follow. A new position refer-
ence value will be calculated with every cycle of the PLC and has to be transferred to the
drive, which demands real time capabilities to the PLC and to the communication channel. A
real time fieldbus like EtherCAT is needed. The feedback of the actual position can be used
for supervision purposes during operation and is needed to adjust the value of the position
reference before the drive will be enabled.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2574

Fig. 200: System structure of Central Motion Control with AC500 PLC and PS552-MC

With central Motion Control it is also possible to include the position control loop to the AC500
PLC. In this case a speed reference signal will be transferred to the drive which makes it
possible to perform the full range of motion functionalities with standard drives. To close the
position control loop a feedback of the actual position is mandatory.

Fig. 201: Central Motion Control with AC500 PLC and PS552-MC, closed position control loop

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2575

Velocity

Standard Drives/
Stepper/Hydraulics

Servo Drives

Position Control

Profiler
Function Block

Position

EtherCAT®

analog, frequency

Position
e.g. incremental encoder

Application Program
with PLCopen
Function Blocks

Profiler
Function Block

Fig. 202: PLC-based Motion Control with AC500 PLC and PS552-Motion, different axis imple-
mentations at the same time

1.5.9.2.3 Drive-Based Motion Control
For drive-based Motion Control the application program is done in the AC500 PLC with
PLCopen function blocks included in PS552-MC. Based on this program commands and param-
eters will be transferred to the drive. Then the drive will act on its own during operation. Actual
values and parameters can be read by the PLC. The commanded movement will be performed
by the drive itself using its own profile generator for positioning drives or speed ramps in case of
standard drives.

AC500 as PLC (Drive-based Motion Control)

Servo Drive (Intelligent, without Application Programming)

Application Program (PLCopen)

Profile
Generator

Position
Control

Speed
Control

Torque
Control

Parameters

Commands

Fig. 203: System structure of drive-based Motion Control with AC500 PLC and PS552-MC

The available Motion Control functionalities depend on the used drive system.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2576

Inte rpola tor

Interpola tor
PROFIBUS®

Position/VelocityACSM1
Control

Function Block

ACS355 Velocity Target

Generic Drive Interface
Blocks

Modbus TCP/RTU
Generic Drive Interface

Function Block

e100 & e150

Application Program
with PLCopen Function Blocks

*

Control
Function Block

Control
Function Block

PROFIBUS®

Position/Velocity

Fig. 204: Drive-based Motion Control with AC500 PLC and PS552-MC, different axis implemen-
tations at the same time

The generic drive interface is an implementation which is not part of PS552-MC, but is available
as application note for MicroFlexTM e100 and MicroFlex e150 drives.

1.5.9.2.4 Overview of PLCopen function blocks
The following tables give an overview of the defined function blocks, divided into administrative
(not driving motion) and motion related sets. They give an overview which function block could
be used for the different possible configurations.
The function blocks are part of the library MC_Block_AC500_V11.

Function blocks for PLCopen Coordinated Motion are compabible with PLC-
based central Motion Control only. Ä Chapter 1.5.9.4.9 “PLCopen coordinated
motion” on page 2679

If there are restrictions concerning a certain drive ("XXX") which lead to a different or limited
behavior compared to the standard the respective chapter is supplemented with an additional
paragraph "Notes for XXX".

Table 155: Administrative function blocks
Function block Central Motion Control

(PLC-based)
Decentralized Motion Control
(drive-based)

CMC_MOTI
ON_KERNE
L_REAL

CMC_MOTI
ON_KERNE
L_INT

ACS35
x

ACS80
0

ACSM1 FM562

MC_Power
Ä Chapter 1.5.9.6.3.2
“MC_Power” on page 2835

X X X X X X

MC_ReadStatus
Ä Chapter
1.5.9.6.3.3 “MC_Read-
Status” on page 2837

X X X X X X

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2577

Function block Central Motion Control
(PLC-based)

Decentralized Motion Control
(drive-based)

CMC_MOTI
ON_KERNE
L_REAL

CMC_MOTI
ON_KERNE
L_INT

ACS35
x

ACS80
0

ACSM1 FM562

MC_ReadAxisError
Ä Chapter 1.5.9.6.3.4
“MC_ReadAxisError”
on page 2840

- - X X X -

MC_ReadParameter
Ä Chapter 1.5.9.6.3.6
“MC_ReadParameter”
on page 2844

X X X X X -

MC_ReadBoolParameter
Ä Chapter 1.5.9.6.3.7
“MC_ReadBoolParameter”
on page 2846

X X X X X -

MC_WriteParameter
Ä Chapter 1.5.9.6.3.8
“MC_WriteParameter”
on page 2848

X X X X X -

MC_WriteBoolParameter
Ä Chapter 1.5.9.6.3.9
“MC_WriteBoolParameter”
on page 2850

X X X X X -

MC_Reset
Ä Chapter 1.5.9.6.3.5
“MC_Reset” on page 2842

X X X X X X

MC_ReadActualPosition
Ä Chapter 1.5.9.6.3.10
“MC_ReadActualPosition”
on page 2852

X X X X X X

MC_ReadActualVelocity
Ä Chapter 1.5.9.6.3.11
“MC_ReadActualVelocity”
on page 2854

X X X X X -

MC_SetOverride
Ä Chapter
1.5.9.6.3.12 “MC_SetO-
verride” on page 2856

X X X X X -

MC_SetPosition
Ä Chapter
1.5.9.6.3.13 “MC_SetPosi-
tion” on page 2858

X X - - - X

MC_CamTableSelect
Ä Chapter 1.5.9.6.3.1
“MC_CamTableSelect”
on page 2832

X - - - - -

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2578

Table 156: Single-Axis function blocks
Function block Central Motion Control

(PLC-based)
Decentralized Motion Control
(drive-based)

CMC_MOTI
ON_KERNE
L_REAL

CMC_MOTI
ON_KERNE
L_INT

ACS35
x

ACS80
0

ACSM1 FM562

MC_MoveAbsolute
Ä Chapter 1.5.9.6.1.1
“MC_MoveAbsolute”
on page 2747

X X - X X X

MC_MoveRelative
Ä Chapter 1.5.9.6.1.2
“MC_MoveRelative”
on page 2751

X X - X X X

MC_MoveAdditive
Ä Chapter 1.5.9.6.1.3
“MC_MoveAdditive”
on page 2756

- - - X X -

MC_MoveSuperimposed
Ä Chapter 1.5.9.6.1.4
“MC_MoveSuperImposed”
on page 2760

X X - - - -

MC_HaltSuperimposed
Ä Chapter 1.5.9.6.1.5
“MC_HaltSuperimposed”
on page 2764

X X - - - -

MC_MoveVelocity
Ä Chapter 1.5.9.6.1.6
“MC_MoveVelocity”
on page 2767

X X X X X X

MC_MoveContinuousAb-
solute
Ä Chapter
1.5.9.6.1.7 “MC_Move-
ContinuousAbsolute”
on page 2771

X - - - - -

MC_MoveContinuousRela-
tive
Ä Chapter
1.5.9.6.1.8 “MC_Move-
ContinuousRelative”
on page 2776

X - - - - -

MC_Stop
Ä Chapter 1.5.9.6.1.9
“MC_Stop” on page 2781

X X X X X X

MC_PositionProfile
Ä Chapter 1.5.9.6.1.11
“MC_PositionProfile”
on page 2787

X - - - - -

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2579

Function block Central Motion Control
(PLC-based)

Decentralized Motion Control
(drive-based)

CMC_MOTI
ON_KERNE
L_REAL

CMC_MOTI
ON_KERNE
L_INT

ACS35
x

ACS80
0

ACSM1 FM562

MC_VelocityProfile
Ä Chapter 1.5.9.6.1.12
“MC_VelocityProfile”
on page 2791

X - - - - -

MC_AccelerationProfile
Ä Chapter 1.5.9.6.1.13
“MC_AccelerationProfile”
on page 2794

X - - - - -

MC_Halt
Ä Chapter 1.5.9.6.1.10
“MC_Halt” on page 2784

X X X X X -

Table 157: Multi-Axis function blocks
Function block Central Motion Control (PLC-based)

CMC_MOTION_KERNEL_RE
AL

CMC_MOTION_KERNEL_IN
T

MC_CamIn
Ä Chapter 1.5.9.6.2.1
“MC_CamIn” on page 2799

X -

MC_CamOut
Ä Chapter 1.5.9.6.2.2
“MC_CamOut” on page 2803

X -

MC_GearIn
Ä Chapter 1.5.9.6.2.3
“MC_GearIn” on page 2805

X X

MC_GearInPos
Ä Chapter
1.5.9.6.2.4 “MC_GearInPos”
on page 2809

X X

MC_GearOut
Ä Chapter 1.5.9.6.2.5
“MC_GearOut” on page 2814

X X

MC_PhasingAbsolute
Ä Chapter 1.5.9.6.2.6
“MC_PhasingAbsolute”
on page 2816

X -

MC_PhasingRelative
Ä Chapter 1.5.9.6.2.7
“MC_PhasingRelative”
on page 2821

X -

MC_CombineAxes
Ä Chapter
1.5.9.6.2.8 “MC_Combi-
neAxes” on page 2826

X X

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2580

Table 158: Homing function blocks
Function block Central Motion Control

(PLC-based)
Decentralized Motion Control
(drive-based)

CMC_MOTI
ON_KERNE
L_REAL

CMC_MOTI
ON_KERNE
L_INT

ACS35
x

ACS80
0

ACSM1 FM562

MC_Home
Ä Chapter 1.5.9.6.4.5
“MC_Home” on page 2876

- - - X X X

MC_StepAbsSwitch
Ä Chapter 1.5.9.6.4.1
“MC_StepAbsSwitch”
on page 2860

X X - - - -

MC_StepLimitSwitch
Ä Chapter 1.5.9.6.4.3
“MC_StepLimitSwitch”
on page 2867

X X - - - -

MC_StepRefPulse
Ä Chapter 1.5.9.6.4.4
“MC_StepRefPulse”
on page 2871

X X - - - -

MC_StepDirect
Ä Chapter
1.5.9.6.4.2 “MC_Step-
Direct” on page 2865

X X - - - -

Homing with FM562 can be realized by the application program. An example
is provided in http://www.abb.com/plc under “Application Examples" (select Eng-
lish Langauge for page!).

Table 159: ABB specific function blocks
Function block Central Motion Control

(PLC-based)
Decentralized Motion Control
(drive-based)

CMC_MOTI
ON_KERNE
L_REAL

CMC_MOTI
ON_KERNE
L_INT

ACS35
x

ACS80
0

ACSM1 FM562

MCA_CAM_EXTRA
Ä Chapter 1.5.9.6.5.1
“MCA_CAM_EXTRA”
on page 2878

X - - - - -

MCA_Home
Ä Chapter
1.5.9.6.5.6 “MCA_Home”
on page 2887

- - - X X -

MCA_Indexing
Ä Chapter 1.5.9.6.5.8
“MCA_Indexing”
on page 2892

X X - X X -

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2581

http://www.abb.com/plc

Function block Central Motion Control
(PLC-based)

Decentralized Motion Control
(drive-based)

CMC_MOTI
ON_KERNE
L_REAL

CMC_MOTI
ON_KERNE
L_INT

ACS35
x

ACS80
0

ACSM1 FM562

MCA_JogAxis
Ä Chapter
1.5.9.6.5.9 “MCA_JogAxis”
on page 2895

X X X X X -

MCA_MoveByExternalRe-
ference
Ä Chapter
1.5.9.6.5.5 “MCA_Move-
ByExternalReference”
on page 2885

X X - - - -

MCA_MoveVelocityContin-
uous
Ä Chapter
1.5.9.6.5.4 “MCA_Move-
VelocityContinuous”
on page 2882

X X - - - X

MCA_Parameter
Ä Chapter
1.5.9.6.5.2 “MCA_Param-
eter” on page 2879

X X X X X -

MCA_Power
Ä Chapter
1.5.9.6.5.3 “MCA_Power”
on page 2880

X X X X X -

MCA_ReadParameterList
Ä Chapter 1.5.9.6.5.11
“MCA_ReadParameterList”
on page 2900

X X X X X -

MCA_WriteParameterList
Ä Chapter 1.5.9.6.5.10
“MCA_WriteParameterList”
on page 2898

X X X X X -

MCA_SetPositionContin-
uous
Ä Chapter
1.5.9.6.5.12 “MCA_Set-
PositionContinuous”
on page 2903

X - - - - -

MCA_GearInDirect
Ä Chapter 1.5.9.6.5.14
“MCA_GearInDirect”
on page 2909

X - - - - -

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2582

Function block Central Motion Control
(PLC-based)

Decentralized Motion Control
(drive-based)

CMC_MOTI
ON_KERNE
L_REAL

CMC_MOTI
ON_KERNE
L_INT

ACS35
x

ACS80
0

ACSM1 FM562

MCA_CamInDirect
Ä Chapter 1.5.9.6.5.15
“MCA_CamInDirect”
on page 2913

X - - - - -

MCA_SetOperatingMode
Ä Chapter 1.5.9.6.5.16
“MCA_SetOperatingMode”
on page 2917

X - - - - -

1.5.9.2.5 Overview of libraries
Add the following libraries for the listed applications.

ð In some cases by adding a library, there will be other libraries added automatically.

Application Library to be added man-
ually

Libraries added automati-
cally

Central Motion Control MC_Blocks_AC500_V11. lib -

CompactMotionCon-
trol_AC500_V12.lib

MC_Base_AC500_V11.lib

Central Motion Control,
optional for EtherCAT

ECAT_AC500_APPL_V21.lib -

Central Motion Control,
optional auxiliary

MathFunc-
tions_AC500_V23.lib

-

Central Motion Control - Coor-
dinated Motion Control

MC_Blocks_AC500_V11.lib -

MC_CoBlocks_AC500_V11.lib CompactMotionCon-
trol_AC500_V12.lib
MC_Base_AC500_V11.lib
CoordinatedMo-
tion_AC500_V23.lib
MathFunc-
tions_AC500_V23.lib
CMC_Ext_AC500_V23.lib

Central Motion Control -
Coordinated Motion Control,
optional for EtherCAT

ECAT_AC500_APPL_V21.lib -

Central Motion Control -
Coordinated Motion Control,
optional auxiliary

CMC_Transforma-
tionen_AC500_V23.lib

-

Drive-based Motion Control,
ACSM1 via PROFIBUS

MC_Blocks_AC500_V11.lib -

ACSM1_MC_sup-
port_AC500_V11.lib

ACSM1_AC500_V11.lib
MC_Base_AC500_V11.lib

Drive-based Motion Control,
ACS355 via PROFIBUS

MC_Blocks_AC500_V11.lib -

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2583

Application Library to be added man-
ually

Libraries added automati-
cally

ACS350_MC_sup-
port_AC500_V11.lib

ACS350_AC500_V11.lib
MC_Base_AC500_V11.lib

Drive-based Motion Control,
FM562 via AC500 I/O bus

MC_Blocks_AC500_V11.lib -

MC_Base_AC500_V11.lib -

PTO_FM562_MC_sup-
port_V22.lib

-

The features of the function blocks provided with PS552-MC can be used from the PLC program
according to PLCopen standard. Different drives and different Motion Control realizations could
be used and can be combined with each other as well as different fieldbusses.

Table 160: Libraries for all types of Motion Control
Application Library Version Drive Fieldbus Comment
Central Motion Control -
Coordinated Motion
or
Drive based Motion Con-
trol

MC_Base_
AC500_V11
.lib

1.1 Any Any

MC_Blocks
_AC500_V1
1.lib

1.1 Any Any

Application Library Version Drive Fieldbus Comment
Central Motion Control -
Coordinated Motion

CMC_Trans
forma-
tionen_AC5
00_V23.lib

2.3 Any Any

Coordina-
tedMo-
tion_AC500
_V23.lib

2.3 Any Any

MC_CoBloc
ks_AC500_
V23.lib

2.3 Any Any

Application Library Version Drive Fieldbus Comment
Central Motion Control Compact-

MotionCon-
trol_AC500
_V12.lib

1.2 Any Any

CMC_Ext_
AC500_V23
.lib

2.3 Any Any

ECAT_AC5
00_APPL_V
21.lib

2.3 Any Any

MathFunc-
tions_AC50
0_V23.lib

2.3 Any Any

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2584

Application Library Version Drive Fieldbus Comment
Drive based Motion Con-
trol

ACSM1_AC
500_V11.lib

1.1 ACSM1 PROFIBUS

ACSM1_M
C_sup-
port_AC500
_V11.lib

1.1 ACSM1 PROFIBUS

ACS350_A
C500_V11.li
b

1.1 ACS350,
ACS355

PROFIBUS

ACS350_M
C_sup-
port_AC500
_V11.lib

1.1 ACS35x PROFIBUS Can also be
used for
ACS355

ACS800_A
C500_V11.li
b

1.1 ACS800 PROFIBUS

ACS800_M
C_sup-
port_AC500
_V11.lib

1.1 ACS800 PROFIBUS

PTO_FM56
2_MC_sup-
port_V22.lib

2.2 FM562 AC500 I/O
bus

1.5.9.2.6 Overview of data types
The following data types are used for the PS552-MC Motion Control library. The data types are
defined in the library file MC_BASE_AC500_V11. The corresponding elements can be used for
the function blocks inputs.

Table 161: Structures
Data type Elements Element data type
CMC_AXIS_IO limitSwitchPos BOOL

limitSwitchNeg BOOL

absRefSwitch BOOL

MC_PPROFILE
Ä Chapter 1.5.9.4.6.1
“PositionPositionProfile”
on page 2653

master_position LREAL

interpolation_point LREAL

velocity_ratio LREAL

acceleration_ratio LREAL

MC_TPROFILE
Ä Chapter 1.5.9.4.6.2 “Posi-
tionTimeProfile” on page 2654

interpolation_point LREAL

first_derivative LREAL

second_derivative LREAL

delta_time TIME

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2585

Table 162: Enum
Data type Possible values
MC_ABB_iTYPES_ENUM
Ä Chapter 1.5.9.4.6.3 “Inter-
polation types for profiles”
on page 2654

MCA_SPLINE_COMPLETE

MCA_SPLINE_NATURAL

MCA_POLY5

MCA_POLY3

MCA_LINEAR

MC_BUFFERMODE mcABORTING

mcBUFFERED

mcBLENDINGlow

mcBLENDINGprevious

mcBLENDINGnext

mcBLENDINGhigh

MC_DIRECTION DEFAULT

POSITIVE

SHORTEST

NEGATIVE

CURRENT

MC_HOMING_DIRECTION MC_SwitchNegative

MC_SwitchPositive

MC_Positive

MC_Negative

MC_HOMING_EDGE MC_EdgeOn

MC_EdgeOff

MC_On

MC_Off

MC_HOMING_MODE MC_REFPULSE

MC_DIRECT

MC_SOURCE mcActualValue

mcSetValue

Data types of PLCopen Coordinated Motion Control: Ä Chapter 1.5.9.4.9.2.10 “ABB specific
data structures” on page 2701

1.5.9.2.7 Naming of function blocks and data structures
All function blocks and data types named MC_xxx are implemented according to PLCopen defi-
nition and follow the PLCopen documentation. They may have additional inputs but according to
PLCopen rules.
All function blocks and data types named MCA_xxx are implemented corresponding to
PLCopen rules with adaptations specific to AC500. They are AC500 specific extensions to the
PLCopen library.

PLCopen

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2586

All function blocks named CMC_xxx belong to the implementation of Central Motion Control.
All data types named CMC_xxx belong to the implementation of Central Motion Control.
All data types named MC_xxx are implemented according PLCopen definition and follow the
PLCopen documentation.
All data types named AXIS_xxx exist according to PLCopen definition. The content is ABB
specific and not documented.
All function blocks named zCMC_xxx belong to the implementation of Central Motion Control.
These are not documented and not intended for customer use.

All function blocks starting with a name of a specific product (e.g. PTO_FM562_xxx,
ACSM1_xxx, ACS800_xxx or ACS350_xxx) are intendend to be used with this product.

1.5.9.3 PLCopen
Based on application requirements and project specifications engineers are required to use
or select a wide range of Motion Control hardware. In the past this required unique software
to be created for each application even though the functions are the same. PLCopen motion
standard provide a way to have standard application libraries that are reusable for multiple
hardware platforms. This lowers development, maintenance and support costs while eliminating
confusion. In addition, engineering becomes easier, training costs decrease, and the software
is reusable across platforms. Effectively, this standardization is done by defining libraries of
reusable components. In this way the programming is less hardware dependent, the reusability
of the application software increased, the cost involved in training and support reduced, and
the application becomes scalable across different control solutions. Due to the data hiding and
encapsulation, it is usable on different architectures, for instance ranging from centralized to
distributed or integrated to networked control. It is not specifically designed for one application,
but will serve as a basic layer for ongoing definitions in different areas. As such it is open to
existing and future technologies.
ABB is a member of the PLCopen organization. More Information about PLCopen can be read
on the PLCopen website.

Fig. 205: PLCopen Motion Control logo

Function blocks according to PLCopen are designed for controlling axes via the language
elements consistent with those defined in the IEC 61131-3 standard. It was decided by the task
force that it would not be practical to encapsulate all the aspects of one axis into only one
function block. The retained solution is to provide a set of command-oriented function blocks
that have a reference to the axis, e.g. the abstract data type Axis, which offers flexibility, ease of
use and reusability.

Implementations based on IEC 61131-3 (for instance via function blocks and SFC) will be
focused towards the interface (look-and-feel/proxy) of the function blocks. This specification
does not define the internal operation of the function blocks.

Central Motion
Control

Drive-based
Motion Control

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2587

http://www.plcopen.org

PLCopen Motion Control function blocks can be used in any IEC 61131-3 programming lan-
guage. The following picture shows an example of a function block used in Function Block
Diagram (FBD) language.

Fig. 206: Command for absolute positioning according to PLCopen standard

Application programs which use the manufacturer independent function blocks according to
PLCopen will lead to the following advantages:
● Reusable software structure for different platforms.
● Programming based on function blocks.
● Function blocks can be used in any IEC 61131-3 language.
All function blocks which are defined by PLCopen will have the following qualities independently
to the manufacturer of the motion control system:
● Same inputs/outputs
● Same functional behavior
● Same name
The following parts of the PLCopen motion control definition are completely or partly included in
this product:
● Part 1: Function blocks for motion control
● Part 2: Extensions
● Part 3: User Guidelines
● Part 4: Coordinated Motion
● Part 5: Homing Procedures

1.5.9.3.1 Programming guidelines
This chapter explains some rules on the usage of the libraries and the structure Axis_Ref.
● In general, the kernel function block and the transfer of axis IO data should be processed

in a cyclic task. This task should be as short and real-time as possible to achieve the best
motion control performance. Always make sure Kernel function block is called at the highest
priority task and other applications must be at a lower priority task.

● If Axis_Ref is used as input on a user defined function block or program or function, always
use it as VAR_IN_OUT and never use it as VAR_INPUT or VAR_OUTPUT. The reason is
that this would
– Break the consistency and destroy data.
– Consume a lot of computing power by copying data.

● Any instance of a function block should be called only once per cycle and in only one
specific task.
If the instance is used in several tasks, it has to be checked that is not called several times.
Because this could corrupt the handshake from function block to Axis_Ref to
CMC_MOTION_KERNEL_REAL and vice versa.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2588

● Some PLCopen function blocks are only allowed to be called within the same task as
the CMC_MOTION_KERNEL_REAL function block. This is mentioned in the function block
descriptions.

● If PLCopen function blocks are called from a different task, they cycle time should be at
least 2 times the cycle time for CMC_MOTION_KERNEL_REAL function block is.

Axis data type Axis_Ref
The Axis_Ref is a structure that contains information on the corresponding axis. It is used as
a VAR_IN_OUT in all Motion Control function blocks defined in this document. The content of
this structure is implementation dependent and can ultimately be empty. If there are elements
in this structure, the supplier shall support the access to them, but this is outside of the scope
of this document. The refresh rate of this structure is also implementation dependent. According
to IEC 61131-3 it is allowed to switch the Axis_Ref for an active function block, for instance
from Axis1 to Axis2. However, the behavior of this can vary across different platforms, and is not
encouraged to do.

Axis_Ref data type declaration:
TYPE Axis_Ref : STRUCT
(Content is implementation dependent)
END_STRUCT

TYPE Axis_Ref : STRUCT
AxisNo: UINT; AxisName: STRING (255);
…….
END_STRUCT

Example:

1.5.9.3.2 The single axis state diagram
The following diagram normatively defines the behavior of the axis at a high level when multiple
motion control function blocks are simultaneously activated. This combination of motion profiles
is useful in building a more complicated profile or to handle exceptions within a program. (In
real implementations there may be additional states at a lower level defined). The basic rule is
that motion commands are always taken sequentially, even if the PLC had the capability of real
parallel processing. These commands act on the axis' state diagram.
The axis is always in one of the defined states (see diagram below). Any motion command that
causes a transition changes the state of the axis and, as a consequence, modifies the way the
current motion is computed. The single axis state diagram is an abstraction layer of what the
real state of the axis is, comparable to the image of the I/O points within a cyclic (PLC) program.
A change of state is reflected immediately when issuing the corresponding motion command.

The response time of immediately is system dependent, coupled to the state of
the axis, or an abstraction layer in the software.

The diagram is focused on a single axis. The multiple axis function blocks, MC_CamIn,
MC_GearIn and MC_Phasing, can be looked at, from a single axis state diagram point of view,
as multiple single-axes all in specific states. For instance, the CAM-master can be in the state
Continuous Motion. The corresponding slave is in the state Synchronized Motion. Connecting a
slave axis to a master axis has no influence on the master axis.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2589

The state Disabled describes the initial state of the axis. In this state the movement of the axis
is not influenced by the function blocks. The axis feedback is operational. If the MC_Power
function block is called with Enable=TRUE while being in state Disabled, this either leads to
Standstill if there is no error inside the axis, or to ErrorStop if an error exists.
Calling MC_Power with Enable=FALSE in any state, the axis goes to the state Disabled, either
directly or via any other state. If a motion generating function block controls an axis, while the
MC_Power function block with Enable=FALSE is called, the motion generating function block is
aborted (CommandAborted).
The intention of the state ErrorStop is that the axis goes to a stop, if possible. There are no
further inputs from function blocks accepted until a reset has been done from the ErrorStop
state.
The transition Error refers to errors from the axis and axis control, and not from the function
block instances. These axis errors may also be reflected in the output of the function blocks
instances errors.
Issuing MC_Home in any other state than StandStill will go to ErrorStop, even if MC_Home is
issued from the state Homing itself.
Function blocks which are not listed in the single axis state diagram do not affect the state of the
axis, meaning that whenever they are called the state does not change. They are:
MC_ReadStatus; MC_ReadAxisError; MC_ReadParameter; MC_ReadBoolParameter;
MC_WriteParameter; MC_WriteBoolParameter; MC_ReadActualPosition and MC_CamTable-
Select.
Calling the function block MC_Stop in state StandStill changes the state to Stopping and back
to Standstill when Execute = FALSE. The state Stopping is kept as long as the input Execute is
TRUE. The output Done is set when the stop ramp is finished.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2590

Fig. 207: Function block state behavior

1. In this state ErrorStop or Stopping, all function blocks can be called, although
they will not be executed, except MC_Reset and Error – they will generate the
transition to StandStill or ErrorStop respectively.

2. Power.Enable=TRUE and there is an error in the Axis.

3. Power.Enable=TRUE and there is no error in the Axis.

4. MC_Stop.Done AND NOT MC_Stop.Execute.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2591

1.5.9.3.3 Visualizations
For usage with the PLCopen Library, a set of visualization objects is defined. These visual-
izations use the placeholder concept, which means that they could be used in an actual
visualization several times and be instantiated by replacing the “placeholder” with an effective
data-structure.
Two types of visualizations exist:
● As placeholder, an instance of Axis_Ref should be used. These are named:

MC_VISU_Axis_name.
● As placeholder, an instance of the respective PLCopen function block should be used.

These visualizations are named MC_VISU_FB_name where "name" could be MoveAbso-
lute or MoveVelocity, so the complete element is named MC_VISU_FB_MoveAbsolute or
MC_VISU_FB_MoveVelocity.

The background colour and the colour for the title of each element could be changed. The
colours are defined in some global predefined variables in MC_VISU_COLOR_INFORMATION.
By changing these values, different colours will be used.

Below, some existing visualizations are shown.

This shows the state machine of the axis according to PLCopen definition. The active state is
shown green except the ErrorStop which is shown red. Usually, it starts with Disabled. When no
remote connection to the drive is available, it will switch to ErrorStop immediately.
The placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

This object shows some actual values.
The Placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

MC_VISU_Axis_
StateMachine

MC_VISU_Axis_
actual

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2592

This object shows the error information connected to the PLCopen function blocks. This is NOT
a drive error. If no error occurs in the execution of a function block, just the name is shown. If an
error occurred, it shows the name of the function block as well as the error number and a short
description. In the example below, the MC_Power function block recognized that no fieldbus
connection to the drive was available.
The Placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

1.5.9.3.4 Error codes
Besides the diagnosis information of the drive which is described in the respective drive docu-
mentation, there are a number of error codes directly related to the function blocks. These error
codes are displayed at the output “ErrorID” of the function block.

Error Code Mnemonic Explanation
0 MC_Ok No Error

1 WRONG_STATE A function block was activated not according
to the state machine, e.g. tried to start a
movement while in state Disabled.

2 DRIVE_PROBLEM The drive indicates an error, e.g. tripped.

3 PARAM-
ETER_EXCEEDS_LIMIT

A parameter at the function block is outside
the possible range. This does not refer to the
parameter range which is allowed for the drive
but just to the 32-Bit Integer which is used for
internal calculation.

4 NO_FIELD_ACCESS No fieldbus connection to the drive.

5 BUS_PROBLEM Not used

6 ABS_SWITCH_ERROR During Homing, (when done by function
blocks) limit switch not according to moving
direction e.g. the positive switch occurred
when moving in negative direction.

7 TIMEOUT Timeout in block execution.

MC_VISU_Axis_
FB_error

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2593

Error Code Mnemonic Explanation
8 NAK Parameter access not applicable

9 MC_TimeLimitExceeded Used by function blocks with TimeLimit.

10 MC_DistanceLimitEx-
ceeded

Used by function blocks with DistanceLimit.

11 MC_TorqueLimitExceeded Used by function blocks with TorqueLimit.

12 NOT_IMPLEMENTED Functionality not implemented for certain axis
type.

1.5.9.3.5 Error handling
All access to the drive/motion control is via function blocks. Internally these function blocks
provide basic error checking on the input data. Exactly, how this is done is implementation
dependent. For instance, if MaxVelocity is set to 6000, and the Velocity input to a function block
is set to 10,000, a basic error report is generated. In the case where an intelligent drive is
coupled via a network to the system, the MaxVelocity parameter is probably stored on the drive.
The function block must take care of the errors generated by the drive internally. With another
implementation, the MaxVelocity value could be stored locally. In this case the function block will
generate the error locally.
Both centralized and decentralized error handling methods are possible when using the motion
control function blocks.
Centralized error handling is used to simplify programming of the function block. Error reaction
is the same independent of the instance in which the error has occurred.

Fig. 208: Function blocks with centralized error handling

Decentralized error handling gives the possibility of different reactions depending on the func-
tion block in which an error occurred.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2594

Fig. 209: function blocks with decentralized error handling

1.5.9.3.6 PLCopen parameter
Additional parameters are available by ReadParameter and WriteParameter function blocks.

Please see the following function blocks to read and write parameters:

– MC_ReadParameter
Ä Chapter 1.5.9.6.3.6 “MC_ReadParameter” on page 2844

– MC_WriteParameter
Ä Chapter 1.5.9.6.3.8 “MC_WriteParameter” on page 2848

– MC_ReadBoolParameter
Ä Chapter 1.5.9.6.3.7 “MC_ReadBoolParameter” on page 2846

– MC_WriteBoolParameter
Ä Chapter 1.5.9.6.3.9 “MC_WriteBoolParameter” on page 2850

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2595

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

1 Com-
man-
ded-
Positi
on

DINT R Commanded
position.

2 SWLi
mitPo
s

DINT -214748364
7

2147483647 214748
3647

R/W Positive Software
limit switch posi-
tion.

3 SWLi
mitN
eg

DINT -214748364
7

2147483647 -21474
83647

R/W Negative Soft-
ware limit switch
position.

4 Ena-
bleLi-
mitPo
s

BOOL FALSE TRUE FALSE R/W Enable positive
software limit
switch.

5 Ena-
bleLi-
mitN
eg

BOOL FALSE TRUE FALSE R/W Enable negative
software limit
switch.

6 Ena-
ble-
Pos-
LagM
onitor
-ing

BOOL FALSE TRUE TRUE R/W Enable moni-
toring of position
lag (following
error).

7 Max-
Posi-
tionL
ag

DINT 1 2147483647

 R Maximal position
lag.

8 Max-
Veloc
ity-
Syste
m

DINT 32767 R Maximal allowed
velocity of the
axis in the motion
system.

9 Max-
Veloc
ityAp
pl

DINT 0** 32767 32767 R/W Maximal allowed
velocity of the
axis in the appli-
cation.

10 Actua
lVe-
locity

DINT -32767 32767 R Actual velocity.

11 Com-
man-
ded-
Veloc
ity

DINT -32767 32767 R Commanded
velocity.

12 Max-
Accel
era-
tion-
Syste
m

DINT 32767 R Maximal allowed
acceleration of
the axis in the
motion system.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2596

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

13 Max-
Accel
era-
tio-
nAppl

DINT 10 32767 32767 R/W Maximal allowed
acceleration of
the axis in the
application.

14 Max-
Decel
era-
tion-
Syste
m

DINT 32767 R Maximal allowed
deceleration of
the axis.

15 Max-
Decel
era-
tio-
nAppl

DINT 10 32767 32767 R/W Maximal allowed
deceleration of
the axis.

16 Max-
Jerk

DINT 0* 2147483647 214748
3647

R/W Maximal allowed
jerk of the axis.

2001 MOD
ULO
_NO
MIN-
ATO
R

DINT 1 2147483647 1 R/W ABB specific
parameter. Used
for Central Motion
Control imple-
mentation:
Gearbox modifier
to
MODULO_RANG
E

2002 MOD
ULO
_DE
NOM
INAT
OR

DINT 1 2147483647 1 R/W ABB specific
parameter. Used
for Central Motion
Control imple-
mentation:
Gearbox modifier
to
MODULO_RANG
E

2003 Ena-
ble-
Limit
2Dec
elerat
e

BOOL FALSE TRUE FALSE R/W Enable software
limit switches to
decelerate

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2597

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

2004 Ena-
bleLi-
mitA-
bort

BOOL FALSE TRUE FALSE R/W Enable that soft-
ware limit
switches will
abort ongoing
movement
FALSE = Limits
position and
velocity, deceler-
ates and shows a
warning until the
position limit is
reached, then
ERROR STOP
TRUE = Switches
off any ongoing
motion and decel-
erates to the
position limit,
then ERROR
STOP

2005 Ena-
ble-
Limt-
Veloc
ity

BOOL FALSE TRUE FALSE R/W If the velocity is
limited the
unmoved position
will be covered
whenever pos-
sible

2006 SWLi
mit2
DecP
os

LREAL -214748364
7

2147483647 214748
3647

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2007 SWLi
mit2
DecN
eg

LREAL -214748364
7

2147483647 214748
3647

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2008 Max-
Posi-
tion-
GapL
L

LREAL 0 2147483647
00

0 R/W Used to stop the
ongoing move-
ment if position is
behind

0* means: no limitation of jerk is performed.
**Axis will stay in stop.
***is modified by CMC_Axis_Control_Parameter, the max. Value is calculated in increments,
the value which is delivered by ReadParameter will be given in [u].

1.5.9.3.7 Limits
Table 163: Limitations for the inputs of PLCopen function blocks when used with
CMC_MOTION_KERNEL_INT
Parameter Min. Max. Comment
Velocity 1 32767 -

Acceleration, Deceleration 1 32767 -

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2598

Parameter Min. Max. Comment
Position -2147483647 2147483647 -

INC_PER_R
* U_PER__REV_DENOMI-
NATOR /U_PER_REV_NOMI-
NATOR

xxx 3276 The resolution could not be
higher than 3276 INC/u.

Table 164: Limitations for the inputs of PLCopen function blocks when used with
CMC_MOTION_KERNEL_REAL
Parameter Min. Max.
Velocity x x

Acceleration, Deceleration 1 x

Position -2147483647 2147483647

1.5.9.3.8 General restrictions
Restrictions for the available function blocks
● As buffered mode, MC_Aborting is realized as a default. This does NOT mean that the axis

stops when another movement is started while an ongoing movement is still active. It means
instead that the new movement will take control immediately and change the velocity to its
own velocity by using its own acceleration or deceleration.

● The buffered mode MC_Buffered could be reached with using the axis state StandStill as
enable signal for the Execute of the next block.

● From the Extended Inputs and Outputs at the function blocks, the following are not realized:
– BufferedMode: The realization just supports the MC_Aborting mode.
– The following Outputs at ReadStatus are not supported: ConstantVelocity, Accelerating

and Decelerating.
– TorqueLimit for Homing function blocks.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2599

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2600

The diagram shows the behavior with BufferMode MC_Aborting, which is the only available
BufferMode. When the second Block is activated, it will take control and will continue on its own
velocity. The velocity is changed by using the acceleration value from the second function block.
The movement will not be stopped in between. The first function block shows CommandAborted
when the second function block is activated.

A behavior according to BufferMode MC_Buffered could be reached by using the Done output
from the first function block to enable the Execute of the second function block.

1.5.9.3.9 Behavior of the function block inputs and outputs
General rules

Table 165: General rules
Output exclusivity The outputs Busy, Done, Error, and CommandAborted are mutually

exclusive:
Only one of them can be TRUE on one function block. If Execute
is TRUE, one of these outputs has to be TRUE. Only one of the out-
puts Active, Error, Done and CommandAborted is set at the same
time.

Output status The outputs Done, InGear, InSync, InVelocity, Error, ErrorID and
CommandAborted are reset with the falling edge of Execute. How-
ever, the falling edge of Execute does not stop or even influence
the execution of the actual function block. It must be guaranteed
that the corresponding outputs are set for at least one cycle if the
situation occurs, even if execute was reset before the function block
completed. If an instance of a function block receives a new exe-
cute before it has finished (as a series of commands on the same
instance), the function block will not return any feedback, like Done
or CommandAborted, for the previous action.

Input parameters The parameters are used with the rising edge of the execute input.
To modify any parameter, it is necessary to change the input param-
eter(s) and to trigger the motion again.

Missing input parame-
ters

According to IEC 61131-3, if any parameter of a function block input
is missing (open) then the value from the previous invocation of
this instance will be used. In the first invocation the initial value is
applied.

Position versus distance Position is a value defined within a coordinate system. Distance is a
relative measure related to technical units. Distance is the difference
between two positions.

Sign rules Velocity, Acceleration, Deceleration and Jerk are always positive
values. Position and Distance can be both positive and negative.

Error Handling Behavior All function blocks have two outputs, which deal with errors that can
occur while executing that function block. These outputs are defined
as follow:

Error Rising edge of Error informs that an error occurred during the
execution of the function block.
ErrorID: Error number

MC_Aborting
Mode

MC_Buffered

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2601

The outputs Done, InVelocity, InGear, and InSync mean successful
completion so these signals are logically exclusive to Error.
Types of errors:
● Function blocks (e.g. parameters out of range, state machine

violation attempted),
● Communication,
● Drive Instance errors do not always result in an axis error

(bringing the axis to StandStill). The error outputs of the relevant
function block are reset with falling edge of Execute.

Function block naming In case of multiple libraries within one system (to support multiple
drive/ motion control systems), the function block naming may be
changed to MC_FunctionBlockName_SupplierID.

Behavior of Done output The outputs Done, InGear, InSync... are set when the commanded
action has been completed successfully. With multiple function
blocks working on the same axis in a sequence, the following
applies:
When one movement on an axis is interrupted with another move-
ment on the same axis without having reached the final goal, Done
of the first function block will not be set.

Behavior of CommandA-
borted output

CommandAborted is set, when a commanded motion is interrupted
by another motion command. The reset-behavior of CommandA-
borted is like that of Done. When CommandAborted occurs, the
other output-signals such as InVelocity are reset.

Inputs exceeding appli-
cation limits

If a function block is commanded with parameters which result in
a violation of application limits, the instance of the function block
generates an error. The consequences of this error for the axis are
application specific and thus should be handled by the application
program.

Behavior of Busy output Every function block can have an output Busy, reflecting that the
function block is not finished. Busy is SET at the rising edge of
Execute and RESET when one of the outputs Done, Aborted, or
Error is set. It is recommended that this function block should be
kept in the active loop of the application program for at least as long
as Busy is true, because the outputs may still change. For one axis,
several function blocks might be busy, but only one can be active at
a time.
Exceptions are MC_SuperImposed and MC_Phasing, where more
than one function block related to one axis can be active.

Output Active The output Active is required on buffered function blocks. This
output is set at the moment the function block takes control of the
motion of the according axis. For un-buffered mode the outputs
Active and Busy can have the same value.

Enable and Valid/Status The input Enable is coupled to output Valid. Enable is level sensi-
tive, and Valid shows that a valid set of outputs is available at the
function block. The output Valid is TRUE as long as an output value
of Valid is available and the input Enable is TRUE. The relevant
output value can be refreshed as long as the input Enable is TRUE.
If there is a function block error, the output is not Valid (Valid set
to FALSE). When the error condition disappears, the values will
reappear and output Valid will be set again.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2602

Fig. 210: Behavior of the Execute/Done style function blocks.

Why is the command input edge sensitive?
The input Execute for the different function blocks described in this document always triggers
the function with its rising edge. The reason for this is that with edge triggered Execute new
input values may be commanded during execution of a previous command. The advantage
of this method is a precise management of the instant a motion command is performed. Com-
bining different function blocks is then easier in both centralized and decentralized models of
axis management. The output Done can be used to trigger the next part of the movement. The
example given below is intended to explain the behavior of the function block execution.
The following figure illustrates the sequence of three function blocks First, Second and Third
controlling the same axis. These three function blocks could be for instance various absolute
or relative move commands. When First is completed the motion its rising output First.Done
triggers Second.Execute. The output Second.Done AND In13 triggers the Third.Execute.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2603

Fig. 211: Function blocks to perform a complex movement

The input ContinuousUpdate
Like described in the previous chapter, the input Execute triggers a new movement. With a
rising edge of this input the values of the other function block inputs are defining the movement.
Until version 1.1 of PLCopen there was the general rule that a later change in these input
parameters does not affect the ongoing motion.
Nevertheless, there are numerous application examples, where a continuous change of the
parameters is needed. The user could retrigger the input Execute of the function block, but this
complicated the application.
Therefore, the input ContinuousUpdate has been introduced. It is an extended input to all
applicable function blocks. If it is TRUE, when the function block is triggered (rising Execute),
it will - as long as it stays TRUE – make the function block use the current values of the input
variables and apply it to the ongoing movement. This does not influence the general behavior
of the function block nor does it impact the single axis state diagram. In other words it only
influences the ongoing movement and its impact ends as soon as the function block is no longer
Busy or the input ContinuousUpdate is set to FALSE.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2604

It can be that certain inputs like BufferMode are not really intended to change
every cycle. However, this has to be dealt with in the application, and is not
forbidden in the specification

If ContinuousUpdate is FALSE with the rising edge of the input Execute, a change in the
input parameters is ignored during the whole movement and the original behavior of previous
versions is applicable. The ContinuousUpdate is not a retriggering of the input Execute of the
function block. A retriggering of a function block which was previously aborted, stopped, or
completed, would regain control on the axis and modify its single axis state diagram. Opposite
to this, the ContinuousUpdate only effects an ongoing movement. Also, a ContinuousUpdate of
relative inputs (e.g. Distance in MC_MoveRelative) always refers to the initial condition (at rising
edge of Execute).

● MC_MoveContinuousRelative is started at Position 0 with Distance 100, Velocity 10 and
ContinuousUpdate set TRUE. Execute is Set and so the movement is started to position
100.

● While the movement is executed (let the drive be at position 50), the input Distance is
changed to 130, Velocity 20.

● The axis will accelerate (to the new Velocity 20) and stop at Position 130 and set the
output Done and does not accept any new values.

Example

1.5.9.3.10 Unit of length
The only specification for physical quantities is made on the unit of length (noted as [u]) that
is to be coherent with its derivatives i.e. (velocity [u/s]; acceleration [u/s2]; jerk [u/s3]). Neverthe-
less, the unit [u] is not specified (manufacturer dependent). Only its relations with others are
specified.

1.5.9.3.11 Aborting versus buffered modes
Some of the function blocks have an input called BufferMode. With this input, the function block
can either work in a Non-buffered mode (default behavior) or in a Buffered mode. The difference
between those modes is when they should start their action:
● A command in a non-buffered mode acts immediately, even if this interrupts another motion,
● A command in a buffered mode waits till the current function block sets its output Done (or

InPosition, InVelocity...).
● The library just supports the mode "aborting" (MCAborting)

The following examples describe the different behavior of these modes:

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2605

Fig. 212: Basic example with two MC_MoveAbsolute on same axis

Example 1:
Standard
behavior of two
following abso-
lute move-
ments

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2606

Fig. 213: Timing diagram for example above without interference between function block 1 and function
block 2

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2607

Example 2:
Aborting
motion

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2608

Fig. 214: Timing diagram for example above with function block 2 interrupting function block 1 (McAborting
Mode)

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2609

If an on-going motion is aborted by another movement, it can occur that the braking distance is
not sufficient due to deceleration limits.
In rotary axis, a modulo can be added. A modulo axis could go to the earliest repetition of the
absolute position specified, in cases where the axis should not change direction and reverse to
attain the target position.
In linear systems, the resulting overshoot can be resolved by reversing, as each position is
unique and therefore there is no need to add a modulo to reach the correct position..

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2610

1.5.9.3.12 PLCopen examples

The following figure shows an example where the function block (MC_MoveVelocity) is used
to control AxisX with three different values of Velocity. In a Sequential Function Chart (SFC)
the velocity 10, 20, and 0 is assigned to V. To trigger the input Execute with a rising edge the
variable E is stepwise set and reset.

Fig. 215: Single function block with SFC

The following timing diagram explains how it works:

Example: A
function block
instance con-
trols different
motions of an
axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2611

Fig. 216: Timing diagram for a usage of single function block

The second InVelocity is set for only one cycle because the Execute has gone
low before the ActualVelocity equals CommandedVelocity.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2612

Different instances related to the same axis can control the motions on an axis. Each instance
will then be responsible for one part of the global profile.

Fig. 217: Cascaded function blocks

The timing diagram:

Example: Dif-
ferent function
blocks
instances con-
trol the
motions of an
axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2613

Fig. 218: Cascaded function blocks timing diagram

A corresponding solution written in LD looks like:

Fig. 219: Cascaded function blocks with LD

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2614

1.5.9.4 PLC-based motion control
1.5.9.4.1 Central Motion Control Architecture

The implementation of an axis for central Motion Control in the AC500 PLC is done by
the use of the function blocks from the Compact Motion library file (CompactMotionCon-
trol_AC500_V12.lib).
With the function blocks of Compact Motion Control a Motion Control profiler can be used inside
the PLC. As shown in the following figure it is needed to provide the actual position of the drive.
The output can be either a position or a velocity reference signal. The used output signal will
then be used to move the axis in the desired way.

There are 2 possibilities to send a reference value to the drive:
● When the position control loop is closed by the PLC by a CMC_MOTION_KERNEL_x

function block, the output Speed_Reference should be connected to the drive. The value
of Speed_Reference can be scaled with the axis parameters Max_Rpm and MAX_REFER-
ENCE.

● When the position control loop is closed by the drive, the output Position_Reference should
be connected to the drive. The unit for the output Position_Reference is incremented as well
as the input Drive_ActualPosition.

Fig. 220: Architecture for centralized motion control

In general the programming of a machine consists of two layers as shown in the figure above.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2615

In the application layer function blocks according to PLCopen Motion Control are used to
program the application sequences with all necessary types of movements and administrational
commands. Due to the standard PLCopen Motion Control this can be reused in any other
machine programs that used PLCopen function blocks.
The axis implementation layer is responsible for the execution of the commands from the
application layer and can be programmed for each axis in a different way depending on the
used hardware components.

Table 166: Needed function blocks for an application with central Motion Control
Library Content
CompactMotionControl_AC500_V12.lib Kernel function block, Parameters function

block, Axis Simulation function block

MC_Base_AC500_V11.lib Data types for AC500 Motion Control

MC_Blocks_AC500_V11.lib Motion Control function blocks according to
PLCopen

For a central motion axis implementation the use of the function
blocks CMC_Motion_Kernel_Real and CMC_Axis_Control_Parameter_Real or
CMC_Motion_Kernel_Int and CMC_Axis_Control_Parameter_Int is mandatory.

The Compact Motion function block design is independent from any bus architecture or any
specific drive features.

System Velocity reference Position feedback
System A Output via analog output channel

as voltage or current
From incremental encoder con-
nected to CD522 I/O module

System B Output via EtherCAT network Input via EtherCAT network

System C Output as frequency signal of
CD522 I/O module

From incremental encoder con-
nected to CD522 I/O module

System D Output via PROFINET IO network Input via PROFINET IO network

Example for a
possible
system archi-
tecture

In case the velocity reference value is used from the kernel function block the position control
loop is closed inside the drive. In this case, it is necessary to adjust the related parameters from
the parameters function block. When the position reference will be used the position control
loop is closed inside the drive. In this case, the internal control loop is just used to monitor the
position and velocity.

When the position reference is used for the drive the following aspects have to
be taken care of:

– It is necessary to use a real time fieldbus, like EtherCAT.
– The PLC cycle has to be synchronized to the fieldbus cycle.
– The task calculation times may not exceed the used cycle time.

The drive’s status should be managed by a specialized function block that supports the used
type of drive as shown in the figure above. The kernel function block is the main function
block which is needed to operate an axis with central Motion Control. It must be used with the
parameter function block which is the interface to input parameters which are used to setup the
axis.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2616

The corresponding function blocks for drive-based motion control are the func-
tion blocks <DriveName>_ACCESS.

The drive has to be accessed outside the CMC_MOTION_KERNEL function block. Actual
values and reference values might be transferred by a synchronized fieldbus or by I/Os. The
function block CMC_Motion_Kernel has to run inside the same task as the function blocks MC…
and to be called every cycle and at least once before any function block MC… is activated.
The following figure shows an example with an axis simulation. The main data signals are
drawn in bold lines. Here, the drive will receive a speed reference signal which means that
the position control loop is closed inside the PLC by the Compact Motion function blocks. The
time behavior of the simulated drive can be set by the parameter T1 at the axis simulation
function block. If the time constant is to slow and the axis parameter Control_Time is too short
the simulationed axis will run into instability – like a real drive. Sample values: Ä Chapter
1.5.9.4.2.3 “How to use the axis simulation” on page 2625

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2617

AXIS_REF

CMC_AXIS_IO

Application Layer

Axis
Implementation
Layer

Limit
Switches

MC_MoveAbsolute

......

......
Axis

MC_StepAbsSwitch

......

......
Axis

MC_MoveVelocityContinuous

......

......
Axis

CMC_MOTION_KERNEL_REAL

......

DRIVE_INOPERATION
DRIVE_ACTUALPOSITION
AXIS
CONTROL_PARAMETER
IO

......

DRIVE_RESET_FAULT
DRIVE_RELEASE

DRIVE_SET_POSITION

......

DRIVE_SET_REF

DRIVE_REF_OK

SPEED_REFERENCE

CMC_AXIS_SIMU_REAL

DRIVE_RESET_FAULT
DRIVE_RELEASE
DRIVE_SET_REF
DRIVE_SET_POSITION

......

DRIVE_REF_OK

......
DRIVE_INOPERATION

SPEED_REFERENCE

ACTUAL_POSITION

CMC_AXIS_CONTROL_PARAMETER_REAL

......

......

The following figure shows an example with a MicroFlex e150 on an EtherCAT network. The
main data signals are drawn in bold lines. Here, the drive will receive a position reference signal
which means that the position control loop is closed inside the drive.

AXIS_REF

CMC_AXIS_IO

Application Layer

Axis
Implementation
Layer

EtherCAT®
output

EtherCAT®

input

Limit
Switches

MC_MoveAbsolute

......

......
Axis

MC_StepAbsSwitch

......

......
Axis

MC_MoveVelocityContinuous

......

......
Axis

CMC_MOTION_KERNEL_REAL

......
DRIVE_INOPERATION
DRIVE_ACTUALPOSITION
AXIS
CONTROL_PARAMETER
IO

......
DRIVE_RESET_FAULT

DRIVE_RELEASE

POSITION_REFERENCE
......
......

ECAT_CiA402_CONTROL_e150_APP

......
drive_reset_fault
drive_release
SW

......

drive_inOperation
......

CW

CMC_AXIS_CONTROL_PARAMETER_REAL

......

......

In the example the main signals are to be transferred via EtherCAT network. The drive control
function block for the MicroFlex e150 can be found in the ECAT_AC500_APPL_V21 library.

Kernel function block
The Compact Motion Control function blocks are available in two variants. Function blocks with
the ending REAL use floating point arithmetic which results in a higher precision. These function
blocks are intended to be used with PM59x PLCs.
Function blocks with the ending INT use integer arithmetic which uses less calculation time
on PLCs without floating point CPUs. There are some restrictions connected with the use of
these function blocks as shown in the following table. Also the use of some PLCopen function
blocks will not be supported. Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks”
on page 2577

Kernel Arith-
metic

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2618

Function blocks with the prefix CMC always have to be used with others of the same kind.
Function blocks with the ending REAL should not be compined with those with the ending INT.

Topic CMC_Motion_Kernel
_Int

CMC_Motion_Kernel_Real

Arithmetic Integer arithmetic for
interpolation and con-
trol loop.

Real arithmetic for interpolation and control
loop.

Recommended PLC Recommended to use in PLC with floating-
point unit, e.g. PM59x.

Jerk Acceleration and
deceleration will be
changed in a single
step to the required
value.

The jerk input of MC_xxx will be used in posi-
tioning,
● Jerk=0 "Acceleration and deceleration will

be changed in a single step to the required
value.

● Jerk >0 "Acceleration and deceleration will
be changed regarding the maximum jerk.

● Every ramp will need a certain time longer
in case jerk>0. This time is: (acceleration /
jerk).

● The given acceleration at MC_xxx equates
the maximum acceleration which is
reached during the ramp.

Fig. 221: Velocity reference with different jerk values

The diagram shows the result with different jerk values and the same velocity and acceleration.
The time needed for acceleration with jerk=0 is:

How does the
parameter for
jerk influence
the axis move-
ments

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2619

Time1=velocity/acceleration=(20/100)s=0.2s
The additional time with jerk=500 will be:
Time2=acceleration/jerk=(100/500)s = 0.2s
So the total time is:
Time=Time1 + Time2=0.2s + 0.2s=0.4s
In the last example with jerk=100, the velocity and acceleration values are not reached.

1.5.9.4.2 Basic functionalities
How to connect a drive

The connection to a drive must be done with the inputs and outputs of the function block
CMC_Motion_Kernel_Real or CMC_Motion_Kernel_Int. All inputs and outputs of the kernel
function block with the prefix “Drive_” are intended to be used with a drive, but in some cases
not all of them are needed. In all cases the input Drive_ActualPosition has to be connected with
the actual position of the axis. This value can be received by an I/O module of the PLC or via a
fieldbus.
Depending on which device closes the position control loop either the output Speed_Reference
or Position_Reference output has to be used. The value of Speed_Reference can be connected
to an analog output module or be transferred via a fieldbus. The value of Position_Reference
should be exclusively sent via a real-time fieldbus like EtherCAT.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2620

In the example the position control loop will be closed by the PLC, therefore the input
Drive_ActualPosition and the output Speed_Reference are to be used.
In combination with the I/O module CD522 and the corresponding function block
CD522Encoder32Bit the position of the encoder can be used. For the effective resolution of
the encoder parameter Inc_Per_R of the parameter function block has to be used.
The output Speed_Reference can be written directly to the global variable of an output
channel of an analog module but can also be transferred via a fieldbus. The scaling of this
output value can be done with the parameters Ref_Max and Max_Rpm of the function block
CMC_Axis_Control_Parameter_Real or CMC_Axis_Control_Parameter_Int.
The scaling of the Speed_Reference value can be set with the inputs Ref_Max and Max_Rpm
of the parameter function block.

Example 1:
Analog drive -
Motor with
incremental
encoder

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2621

In order to finish a homing sequence which is done by the function block MC_StepRefPulse
the outputs Drive_Set_Ref and Drive_Set_Position from the kernel function block have to be
connected with the inputs EN_RPI and START_VALUE of the CD552 I/O module function
block. Also the output RdyRpi of the CD552 I/O module function block has to be connected
with Drive_Ref_Ok from the kernel function block.
To enable and disable the drive Drive_Release could be connected to a binary output to acti-
vate the drive. Drive_InOperation could be connected to a binary input to get the information
that Drive_Release was successful.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2622

In the example the position control loop will be closed by the drive, therefore the input
Drive_ActualPosition and the output Position_Reference are to be used. The inputs refering to
the position control loop of the parameter function block do not have to be set.

Example 2:
Servo Drive -
Microflex e150
via EtherCAT in
contiuous
positioning
mode (csp)

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2623

To enable and disable the drive Drive_Release and Drive_Inoperation have to be
connected to the control function block ECAT_CiA402_Control_App of the library
ABB_Ecat_CiA402_AC500.library, which controls the status and control word of the drive.
All function blocks from this library are not password protected and free to be changed in order
to be adapted for different drives. The library and the function blocks are marked with the
ending _APP.
For a precise homing finish, a position can be latched from the MicroFlex e150 drive, by the
use of the Touch Probe objects, which are available in the MicroFlex e150 EtherCAT configu-
ration. To use these Touch Probe objects the function block ECAT_CiA402_TouchProbe_APP
can be used.
In addition to the Touch Probe function block the homing can be executed with the function
block ECAT_HomingOnTouchProbe_APP, which uses the latched position from the Touch
Probe objects.

How to enable and disable a drive
In order to enable a drive the function block MC_Power has to be used within the applica-
tional layer. The kernel function block will then, if possible, output a rising edge on the output
Drive_Release which can be connected to the drive-control function block which performs the
needed actions on the drives control word to enable the drive. As soon the drive states enabled,
this signal can be connected to the input Drive_In_Operation of the kernel function block. The
axis state according to the single axis state diagram of PLCopen will then switch from Disabled
to Standstill.

MC_Power_inst.enable

Kernel_inst.DRIVE_ENABLE

Application Layer

Axis Implementation Layer

Drive will be enabled

Kernel_inst.DRIVE_IN_OPERATION

0

1

0

1

0

1

Axis State
disabled

standstill

Fig. 222: Enabling sequence of a drive

As long as the drive is in state Disabled or ErrorStop the input Drive_Actual_Position will be
copied to the output Position_Reference of the kernel function block. The output Speed_Refer-
ence will be zero.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2624

When the axis is in operation, which means it is not in state Disabled or ErrorStop, then
the output Position_Reference will be calculated by the kernel function block and the position
control loop will be closed, which outputs non zero value for the output Speed_Reference in
case of a following error. The input Actual_Position should then follow the position reference.
The difference of both values is the following error and will be supervised by the kernel function
block.
In case of drive problem, Drive_InOperation should be reset. The function block will open the
position control loop and Speed_Reference will be set to zero.
For the most drives the status is control by the drives control word whereas the drives status
word represents its actual status. In order to enable the drive it might be necessary to pass
through several drives states according a defined scheme which depends on the used drive.
Therefore the library ECAT_AC500_APPL_V21.lib is added to PS552-MC which contains func-
tion blocks to operate with different drives on an EtherCAT network. There is also the PS553-
DRIVES software which can be used to control the state of a drive.

How to use the axis simulation
It is possible to use a simulated axis instead of a real drive.
The axis simulation can be used in the following use cases:
● When the real drive is not available the simulation can be used to test all available motion

functionalities to verify the application program.
● The simulation can be used to create a virtual master axis and synchronize other axes to it.
The simulation is realized by the function block CMC_Axis_Simu_Real or CMC_Axis_Simu_Int.
Depending on the used version of the kernel function block the corresponding version of the
simulation function block has to be used.
Homing will be possible if the limit-switches (data type CMC_Axis_IO) are simulated also. This
is not done by CMC_Axis_Simu but could be realized in the PLC program.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2625

Fig. 223: Example for Simulation

The drive velocity is simulated by PT1-Characteristic. The input T1 gives the time constant
for this PT1 as multiple of the cycle time. All other properties are simulated according to the
CMC_Axis_Control_Parameter.

The value of the time behavior from the axis simulation function block set by
the input T1 has to be at least four times smaller than the value of the axis
parameter Control_Time from the parameter function block.

How to perform a homing
The homing of an axis is a procedure which consists of up to two phases. For each phase there
are different function blocks available. The available function blocks are according to PLCopen
and belong to the application layer.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2626

Table 167: Overview of the available homing function blocks
 Phase 1 Phase 2/Finish Homing

MC_StepAbsSwitch X

MC_StepDirect X

MC_StepLimitSwitch X

MC_StepRefPulse X

In order to create a complete homing sequence one function block of each phase can be used.

The used function blocks will change the axis state to Homing and will move the axis to
approach installed limit switches or a dedicated absolute switch in the desired directions. No
manipulation of a position value will be done in this phase. The use of function blocks of this
phase is optional for a homing.
The signals of the installed limit switches have to be written to a variable of the data type
CMC_Axis_IO.

Function blocks from this phase will also change the axis state to Homing if this has not already
happen and will finish the homing. Therefore a new position will be set to the axis. The axis
state will then switch back to Standstill.
The use of a function block of the second phase is mandatory for a homing.
In general with AC500 Central Motion Control there are two position values: One position value
will represent the encoder counts of a drive or the CD522 module which is connected to the
input Drive_ActualPosition of the kernel function block. The other position is a user defined
scaled unit which is used for PLCopen function blocks.
There are different ways to finish the homing by manipulate and adjust a position value. Which
value should be manipulated depends on the used drive or module and its capabilities. See the
following types A, B and C.

The user defined position unit will be changed only. The function block MC_StepDirect must be
used here. This type of homing is less complex than the other types but also less precise.

Applica tion Layer
Axis Implementa tion Layer

Scaled Pos ition
[units , LREAL]

Encoder Counts
[increments , DINT]

CD522

Drive

or

MC_StepDirect

......

......

......

......

......

......

MC_ReadActualPosition

......

......

......

......

......

......

CMC_MOTION_KERNEL_REAL

......

......

......

......

......

......

Fig. 224: Homing Type A

The Drive or the CD522 module will change its own position value, the encoder counts.

First phase

Second phase

Type A

Type B

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2627

Applica tion Layer
Axis Implementa tion Layer

Scaled Pos ition
[units , LREAL]

Encoder Counts
[increments , DINT]

e .g. Z-pulse

Prese t Value

CD522

Drive

or

MC_StepRefPulse

......

......

......

......

......

......
MC_ReadActualPosition

......

......

......

......

......

......

CMC_MOTION_KERNEL_REAL

......
DRIVE_REF_OK

DRIVE_ACTUALPOSITION

......
DRIVE_SET_REF

DRIVE_SET_POSITION
......
......

......

......

Fig. 225: Homing Type B

The process will be started by the execution of the function block MC_StepRefPulse.
The axis will start to move.
The output Drive_Set_Ref of the kernel function block will then set the drive to sense for a
digital signal. At the same time the kernel function block outputs a preset value which will
replace the actual encoder count value at the moment the digital signal occurs.
This signal can be a Z-pulse of an incremental encoder but also any other signal from a sensor.
This functionality may require a configuration of the drive or the CD522 module in order to be
used.
In the same cycle when the new position value is set there also has to be a boolean signal
stating a new position value at the input Drive_Ref_Ok of the kernel function block. The user
defined position value will then be shifted accordingly.
Example of type B for phase 2: Ä Chapter 1.5.9.4.2.1 “How to connect a drive” on page 2620

The encoder count position value will not be changed but involves registration capabilities of a
drive or the CD522 module.

Type C

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2628

CD522

Applica tion Layer
Axis Implementa tion Layer

Drive

Scaled Pos ition
[units , LREAL]

Encoder Counts
[increments , DINT]

e .g. Z-pulse

or

Touch Probe Command

Touch Probe
Pos ition Value

Touch Probe
Edge Detected

MC_ReadActualPosition

......

......

......

......

......

......

CMC_MOTION_KERNEL_REAL

......
DRIVE_REF_OK

DRIVE_ACTUALPOSITION

......
DRIVE_SET_REF

......

............

......

ECAT_HomingOnTouchProbe_APP

Execute
TP_DONE

......

DRIVE_SET_OK
......
......

......
TP_VALUE

Fig. 226: Homing Type C

The process will be started by the execution of the function block ECAT_HomingOnTouchP-
robe_APP (ABB_Ecat_CiA402_AC500.library).
The axis will start to move.
The output Drive_Set_Ref of the kernel function block will then command the drive or the
CD522 module to activate the Touch Probe functionality. This will configure the drive to latch
a position at the moment a digital signal occurs. The digital signal can be a Z-pulse of an
incremental encoder but also any other signal from a sensor. This functionality may require a
configuration of the drive or the CD522 module in order to be used.
In combination with the latched position value there is a boolean signal which states that a
new latch value has been received. In case of the module CD522 this encoder count position
value has to be converted from encoder counts to equivalent user scaled units by the use of the
function “CMC_Get_Units_From_Inc” (CompactMotionContral_AC500_V12.lib) before it can be
connected to the function block ECAT_HomingOnTouchProbe_APP.
To manage the Touch Probe objects of a drive within the CiA402 profile (e.g. MicroFlex e150)
the function block ECAT_HomingOnTouchProbe_APP (ECAT_AC500_V12.lib) can be used.
This will also cover the conversion from encoder counts to user scaled units.
At the end of the process the function block ECAT_HomingOnTouchProbe_APP will manipulate
the user scaled position value according to the latched position from the drive and the users
settings.
Example of type C for phase 2: Ä Chapter 1.5.9.4.2.1 “How to connect a drive” on page 2620

For further information see: AN00220-001 - AC500 and MicroFlex e150 - EtherCAT Homing
Methods

How to Use a CAM curve
The CAM functionality is only available in combination with the kernel function
block CMC_Motion_Kernel_Real Ä Chapter 1.5.9.4.8.1 “CMC_MOTION_KERNEL_REAL”
on page 2659.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2629

http://www.abbmotion.com/support/SupportMe/ApplicationNotes.asp
http://www.abbmotion.com/support/SupportMe/ApplicationNotes.asp

The usage of a CAM function is based on the following elements:
● CAM table defined with the data type MC_PProfile.
● An instance of the function block MC_CamTableSelect
Ä Chapter 1.5.9.6.3.1 “MC_CamTableSelect” on page 2832.

● An instance of the function block MCA_Cam_Extra (optional)
Ä Chapter 1.5.9.6.5.1 “MCA_CAM_EXTRA” on page 2878.

● An instance of function block MC_CamIn
Ä Chapter 1.5.9.6.2.1 “MC_CamIn” on page 2799.

● An instance of function block MC_CamOut
Ä Chapter 1.5.9.6.2.2 “MC_CamOut” on page 2803.

1. Declare a CAM table as an array of the data type MC_PProfile in the program.
2. Write data to this array.
3. Use the address of the CAM table at the input CamTable of the function block MC_Cam-

TableSelect.
4. Execute the function block MC_CamTableSelect to process the data of the CAM table with

the function block’s input parameters
5. Additionally you can execute the function block MCA_Cam_Extra for optional parameters

after the processing of the function block MC_CamTableSelect.
6. Execute the function block MC_CamIn to start the slave axis movement according to the

CAM table data and parameters.

ð The axis will operate in the axis state Synchronized Motion.

7. To leave the axis state you can execute the function block MC_CamOut.

ð The axis state will switch to state Continuous Motion and maintains its last velocity as
long as there is no other command.

8. You can also use any other motion command interrupt the Synchronized Motion.

CAM data is done with one table (two dimensional – describing master and slave positions
together).
The data of the elements (array of data type MC_PProfile) can either be assigned within the
declaration or can be assigned during run time before the execution of the function block
MC_CamTableSelect.
It can be filled with data in the following ways:
● To use a predefined variable list.
● To calculate the values within the program (before using the MC_CamTableSelect).
● To send values by any communication access to the PLC.
In order to use the new data it is necessary to execute the function block MC_CamTableSelect
again. In case the CAM table is executed the function block MC_CamTableSelect may not be
executed.
Elements of the data type MC_PProfile: Ä Chapter 1.5.9.2.6 “Overview of data types”
on page 2585

The inputs MasterSyncPosition and MasterSyncDistance of the function block MC_CamIn can
be used to define a distance to synchronize the slave axis onto the CAM table during the start.
In case master axis moves with negative velocity the parameter MasterSyncDistance can be
negative. The MasterSyncPosition should always be within the range of the CAM table master
position.
MasterSyncDistance = 0 will deactivate the synchronization. In this case the slave axis should
be moved on the CAM curve before MC_CamIn is executed, otherwise a following error can
occure.

General usage

The following
steps are neces-
sary to use a
CAM table

CAM table

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2630

Fig. 227: CAM profile figure

The master position in the CAM table must be strictly monotonic rising.
The length of a CAM table is just restricted by the memory size of the PLC. When long tables
are used, it is recommended to call CamTableSelect in a task with lower priority as it will need a
considerable computing time.
It is possible to hold several CamTables as a pool and to switch from one to another. This has to
be done at matching positions as no means for synchronization are available.
The offset and scaling values (except the time-scale) are transferred continuously. This will
allow to follow a "Moving Target" by adjusting these values.

The parameters at MC_CamTableSelect, MC_CamIn and function and MCA_Cam_Extra also
modify the behavior:

Parameter MC_Cam-
TableSelect

Type Default
value

Comment

MasterAbsolute BOOL FALSE TRUE=Master_position from MC_PProfile
equals the master axis absolute position.
FALSE=CAM is executed relative to the
master axis actual position at start.

SlaveAbsolute BOOL FALSE TRUE=interpolation_point from MC_PProfile
equals the slave axis absolute position.
FALSE=CAM is started from actual slave posi-
tion. The values "interpolation_point" are rela-
tive to the slave axis position at start.

iType MC_ABB_
iTypes_E
NUM

 Interpolationtype.

Number_of_pairs INT Number of points used in TimePosition Array.

Parameter
MC_CamIn

Type Default
value

Comment

MasterOffset LREAL 0 Just used with MasterAbsolute=TRUE,
ignored otherwise.
Used position for cam-table is: Master axis
position-Masteroffset.

SlaveOffset LREAL 0 Just used with SlaveAbsolute=TRUE, ignored
otherwise. Used position is slave axis posi-
tion=interpolation_point+Slaveoffset.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2631

Parameter
MC_CamIn

Type Default
value

Comment

MasterScaling LREAL 1 The position used for interpolation is multiplied
by MasterScaling, e.g MasterScaling=2, the
scaled master will pass the position range with
double velocity and within the half distance
compared to its real velocity and position.

SlaveScaling LREAL 1 Interpolation result is multiplied by Slave-
Scaling, e.g SlaveScaling=2: Slave axis will
run twice the distance.

MasterSyncPosition LREAL 0 Start synchronization at master
axis position=MasterSyncPosition-Master-
StartDistance+MasterOffset, meet the CamT-
able at master axis position=MasterSyncPosi-
tion.
In case of MasterAbsolute=FALSE: start
at "actualPosition+MasterSyncPosition-Mas-
terStartDistance", meet the CamTable at
"actualPosition+MasterSyncPosition"!!! It is
just possible to use the "sync" mechanism
when the axis is in StandStill on start.

MasterStartDistance LREAL 0 A negative value will create a reverse syn-
chronization mode, which means the master
should move in negative direction to syn-
chronize. It is independent from the Reverse-
Bit which indicates how to end the movement.

These 2 parameters are "extras" to be written with the MCA_Cam_Extra function. When the
parameters are used, the MCA_Cam_Extra has to be called after the MC_CamTableSelect.

Periodic BOOL TRUE for
master
“Modulo”,
FALSE for
master
linear axis

CamTable will not reach "EndOfProfile" but
will be repeated periodically. When the master
is a linear axis, it has to move forward and
backward within the CamTable position range,
but even when it leaves this position range,
the CamTable will stay active.

Reverse BOOL FALSE Just necessary when a CamTable is
NOT "periodic" and will run in reverse
direction (master with negative velocity)
Reverse=FALSE, the CamTable is ready when
the master leaves the position range in posi-
tive direction, e.g. when it moves from 359º
to 0º on a rollover axes Reverse=TRUE, the
CamTable is ready when the master leaves
the position range in negative direction.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2632

In the example, the slave will run from 0 to 2000 while the master runs from 0 to 1000. The
slave will start and end with velocity=0, no matter which velocity the master has during start.
The slave will reach the maximum velocity when it is at position 1000 and the master is at
position 500.

Example for
CAM curve

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2633

How to use an external axis
To use multiaxis PLCopen function blocks with an externally sensed axis as master axis the
following structure can be used for the axis implementation:

Fig. 228: Structure synchronization to an external axis

The use of a feed forward filter function block is needed if the slave axis has to follow the
position of the external axis. In this case there will be a time delay between sensing the position
of the external axis and moving the follower axis along the sensed position. The filter function
block will then add a certain distance to the external axis’ position depending of its speed.
The filter function block MATH_LINEAR_REGRESSION from the library MathFunc-
tions_AC500_V23 can be used here.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2634

Fig. 229: Filter function block to feed forward an externally sensed position

For an axis which is following the external axis, the value “mcActualValue” (from MC_Source
enumeration) for the input “MasterValueSource” for multi-axis PLCopen function blocks has to
be used.
When the filter function block MATH_LINEAR_REGRESSION is used to process an actual
position, 2 different purposes are fulfilled:
● A jitter or noise can be compensated
● It is possible to calculate a forecast-position to compensate for a delay in position measure-

ment

Process the actual position or any other master axis always before the slave
axis.

Otherwise, an additional one cycle-delay is introduced.

The MATH_LINEAR_REGRESSION function block calculates the progress for a variable which
is captured in equidistant periods of time and is assumed to follow a linear curve. It uses the
Gauss “least squares” -algorithm to do so. The line is calculated in a way that the sum of
squares for the distances from the measured points to the assumed straight line is minimized.
A noise or jitter influence of the value is compensated and a predictive value for the variable
with an adjustable forecast horizon can be calculated.
Linear equation:

Sum of squares:

The gradient and offset for the line are calculated in a way that “sum” is minimized. Then these
2 values are used to calculate the forecast value:

FORECAST=0 would mean: value right now, no future or past considered.
When the ACTUAL value is a modulo value, for example a single turn encoder or a rollover
axis, this has to be considered in the calculation. The 2 input values POSITIVE_LIMIT and
NEGATIVE_LIMIT can be used to configure this. They define the upper and lower limit for
ACTUAL. Also, the NEXT_BINARY will as a result be limited to these borders.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2635

Fig. 230: Next Value_Forecast

Example

How to use an encoder/drive with <> 32-bit position overrun
The incremental position as actual position at the function block CMC_Motion_Kernel_Real is
usually assumed as position with a 32-bit position overrun. As well as it is the reference position
which is sent to the drive.
Any modulo-axis configuration should be done inside the PLC.
Some drives are requested to correct their positions themselves for a non-linear axis which
should constantly run into the same direction.
In this case, the drive has to be configured as a modulo-axis and the function block
CMC_Motion_Kernel_Real needs some additional function blocks to create the 32-bit value
Ä Chapter 1.5.9.4.3.4 “Roll-Over axis” on page 2646.

Fig. 231: Kernel

The function block CMC_Modulo2Binary will convert any position with any Modulo_Range to a
32-bit binary position.
The actual_position is assumed to run between 0 to Modulo_Range.
The actual_position should not change > 1/4 Modulo_Range between two scan cycles.
The function block ZCMC_Modulo2Binary will convert the 32-bit binary position reference from
CMC_Motion_Kernel_Real to a position reference which runs from 0 to Modulo_Range.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2636

How to do position correction “on the fly”
Sometimes it is required to have a position correction "on the fly". For example, it can happen
that a position is wrong due to mechanical slip and that a switch which is passed by during the
movement is used to capture a position value.
In other cases, it is required to synchronize the position to a print mark, so an actual_position
has to be corrected, but not the movement of the printed material.
For both applications, the function block MCA_SetPositionContinuous can be used. It will use
ramps and a limited velocity for the correction, so it will be tolerable to execute it during an
ongoing movement and while the axis is activated in a multi-axis movement.

Fig. 232: MCA_Set PositionsContinuous

The block can be used in any axis state except ERRORSTOP and HOMING.
Two different operation modes are possible:
1. SuperImp=FALSE

● The actual_position will be modified.
● The block will not cause any movement.
● If a PLCopen block in DISCRETE_MOTION (positioning) is active during the execu-

tion, this block will not reach Done as the actual_position is modified.
● If a slave axis is coupled to an axis while MCA_SetPositionContinuous is executed

(with SuperImp=FALSE) it will follow.
● This mode is possible while the axis is in state DISABLED.

2. SuperImp=TRUE
● The actual_position will stay constant.
● A mechanical movement is executed (without changing the axis state machine).
● A slave axis will not follow.
● This behavior is similar to a superimposed movement.
● It is not possible when the axis is in state DISABLED.

The block can just be aborted by another MCA_SetPositionContinuous.

How to limit the movement
It is possible to limit the movement by position (software limit switches) and by velocity. By
default, no software limit switches are activated in PS552. It is possible to activate them by
accessing some PLCopen parameter.
The functionality described below is just available with linear axes.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2637

Parameter Data type Minimum Maximum Default R/W Description
2 SWLi-

mitPos
DINT 21474836

47
21474836
47

214748364
7

R/W Positive software
limit switch posi-
tion.

3 SWLi-
mitNeg

DINT 21474836
47

21474836
47

214748364
7

R/W Negative soft-
ware limit switch
position.

4 EnableLi-
mitPos

BOOL FALSE TRUE FALSE R/W Enable positive
software limit
switch.

5 EnableLi-
mitNeg

BOOL FALSE TRUE FALSE R/W Enable negative
software limit
switch.

2003 Enable-
Limit2Dec
elerate

BOOL FALSE TRUE FALSE R/W Enable software
limit switches to
decelerate

2004 EnableLi-
mitAbort

BOOL FALSE TRUE FALSE R/W Enable that soft-
ware limit
switches will
abort ongoing
movement
FALSE = Limits
position and
velocity, deceler-
ates and shows
a warning until
the position limit
is reached, then
ERROR STOP
TRUE =
Switches off any
ongoing motion
and decelerates
to the position
limit, then
ERROR STOP

2005 Enable-
LimtVe-
locity

BOOL FALSE TRUE FALSE R/W If the velocity is
limited the
unmoved posi-
tion will be cov-
ered whenever
possible

2006 SWLimit2
DecPos

LREAL -21474836
47

21474836
47

214748364
7

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2007 SWLimit2
DecNeg

LREAL -21474836
47

21474836
47

214748364
7

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2008 MaxPosi-
tionGap

LREAL 0 21474836
4700

0 R/W Used to stop the
ongoing move-
ment if position
is behind

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2638

The following different behavior is possible:
● No limitation at all (default)
● Limit position with ERRORSTOP:

– Limit position between SWLimitNeg to SWLimitPos, axis to state ERRORSTOP in case
the position range is left.

● Limit velocity and acceleration:
– Limit velocity to paraMaxVelocityAppl and acceleration/deceleration to paraMaxDeceler-

ationAppl, create WARNING_VELOCITY, not state changes for axis, abort movement is
optional when MaxPositionGap is reached due to limitation.

● Limit Position with ramp-down:
– In addition, it is possible to limit the position between SWLimit2DecNeg and

SWLimit2DecPos. paraMaxDecelerationAppl is used to ramp down.
When activated with EnableLimitPos or EnableLimitNeg, the reaction will be as follows:
● When the control position reaches the respective limit switch, the axis will go to state

ERRORSTOP, and Drive_Release will be switched off. The actual_position might be behind,
depending on the following error. It is assumed that a drive or application specific braking is
performed. The axis will be stopped behind the limit.

● The axis could be switched on again by MC_Power. A movement in the opposite direction
will be possible.

● The functionality of EnableLimitPos and EnableLimitNegis unchanged.
You can use the limitation of movement to achieve a soft or adjustable braking in advance
before reaching the software limit switch. The limitation is activated by three Boolean parameter
and will calculate a position distance to the limit switch, which depends on the actual velocity
and given deceleration ramp. “paraMaxDecelerationAppl” is used for deceleration. It will decel-
erate the axis by the given deceleration ramp when the calculated position is reached and stop
at the software limit switch. The original behavior is not modified, so if also these software
limit-switches are activated, the axis might be set to state ERRORSTOP.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2639

There are 2 different modes:
● EnableLimitAbort = TRUE

Any ongoing motion will be aborted immediately (when the distance to stop is reached, as
shown in the above diagram), a warning is shown
The axis will be decelerated to reach the software limit switch.

● EnableLimitAbort =FALSE, EnableLimitDecelerate=TRUE
A warning is shown and the velocity is reduced, with respect to the given deceleration and
position limit.
The ongoing motion is not aborted. If it was just a “tight fit”, e.g. in a master slave movement
and the direction is turned soon enough, it might be possible to continue the movement.
As the ongoing movement is not interrupted, an activated movement might not be com-
pleted, for example a MC_MoveAbsolute will never reach its target position. A warning is
shown at function block CMC_Motion_Kernel_Real.

When EnableLimitPos = TRUE or EnableLimitNeg = TRUE, and the values for SWLimitPos or
SWLimitNeg are set, the axis will be set to state ERRORSTOP when these position limits are
reached.
In addition, the function block will allow to limit the velocity. With EnableLimitVelocity = TRUE,
it will monitor the velocity demand from the position reference and limit the position reference,
so the given velocity limit will not be exceeded. A warning will be shown. The velocity used for
limitation is MaxVelocityAppl.

The velocity limitation can be used to prevent short-term velocity peeks. The
limited position will be caught up later, whenever possible. This can result in
not-expected behavior. The WARNING issued by CMC_Motion_Kernel_Real
can be checked and used to stop a movement. The movement will be aborted
automatically when the position is by MaxPositionGap behind.

– For a single axis movement, the commanded velocity is limited at the begin-
ning. No position gap will occur.

– In a multi-axis movement, the slave axis follows a master. This can result
in a position gap. A velocity peek from the master axis can be reduced
by using the limitation. If the master is too fast because of the value for
MaxPositionGap, the movement will be aborted.

When EnableLimit2Decelerate or EnableLimitAbort are used, the velocity is limited to MaxVelo-
citySystem with EnableLimitVelocity = FALSE. The function modifies the position reference. This
modified position reference is used to control the drive. Whenever the limitation interferes the
kernel will show a warning or an error. The warning or error message will disappear when the
situation is cleared.

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos TRUE ERRORSTOP when positions
exceed, no previous warning
or deceleration.5 EnableLimitNeg TRUE

2003 EnableLimit2Decelerate FALSE

2004 EnableLimitAbort FALSE

2005 EnableLimtVelocity FALSE

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2640

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos FALSE/TRUE Reduce the velocity when
reaching a position limit within
the deceleration distance cal-
culated by using MaxDeceler-
ationAppl. Display a warning
at CMC_Motion_Kernel_Real.
The underlying movement
stays active. With EnableLi-
mitPos = TRUE or EnableLi-
mitNeg = TRUE: When the
Position limit is reached, the
axis is set to mode ERROR-
STOP also if EnableLimitPos
or EnableLimitNeg are used.
Otherwise, just the movement
is limited, without affecting the
state machine. An activated
positioning movement will not
reach its target. Velocity is
limited to MaxVelocitySystem.

5 EnableLimitNeg FALSE/TRUE

2003 EnableLimit2Decelerate TRUE

2004 EnableLimitAbort FALSE

2005 EnableLimtVelocity FALSE

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos FALSE/TRUE Reduce the velocity when
reaching a position limit within
the deceleration distance cal-
culated by using MaxDeceler-
ationAppl. Display a warning
at CMC_Motion_Kernel_Real.
The underlying movement
stays active. With EnableLi-
mitPos = TRUE or EnableLi-
mitNeg = TRUE: When the
Position limit is reached, the
axis is set to mode ERROR-
STOP also if EnableLimitPos
or EnableLimitNeg are used.
Otherwise, just the movement
is limited, without affecting the
state machine. An activated
positioning movement will not
reach its target. Velocity is
limited to MaxVelocitySystem.
The active PLCopen function
block is aborted as soon
as the warning is issued.
With EnableLimitPos = TRUE
or EnableLimitNeg = TRUE:
When the Position limit is
reached, the axis is set to
mode ERRORSTOP.

5 EnableLimitNeg FALSE/TRUE

2003 EnableLimit2Decelerate ---

2004 EnableLimitAbort TRUE

2005 EnableLimtVelocity FALSE

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2641

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos --- The velocity is checked and
also limited to the value Max-
VelocityAppl. A warning is
shown. The active movement
is not aborted. This function-
ality works independent from
software limit switches.

5 EnableLimitNeg ---

2003 EnableLimitDecelerate ---

2004 EnableLimitAbort ---

2005 EnableLimtVelocity TRUE

1.5.9.4.3 Axis parameters
The parameters for axis configuration and adjustment are set by the function
blocks CMC_AXIS_CONTROL_PARAMETRS_REAL Ä Chapter 1.5.9.4.8.3 “CMC_AXIS_CON-
TROL_PARAMETER_REAL” on page 2666 or CMC_AXIS_CONTROL_PARAMETRS_INT
Ä Chapter 1.5.9.4.8.4 “CMC_AXIS_CONTROL_PARAMETER_INT” on page 2669.
Depending on the version of the kernel function block the corresponding version of the parame-
ters function block has to be used. The instance will then be connected to the kernel function
block by its instance name.

● FF_PERCENTAGE=0
● INTEGRAL_PART=0
● HORIZON=0
In the example the control structure is a simple position control loop with just proportional
gain. When the application does not require minimized position following error it should
be used this way as it is simple to adjust, robust and requires minimal performance. The
proportional gain is then adjusted by Control_Time. Just change values at CMC_Axis_Con-
trol_Parameter when the position control loop is open (Drive_Release=FALSE, the axis state
is Disabled). The values are sending to the control loop whit a positive edge at "Enable". The
CMC_Motion_Kernel block needs to be already enabled.

Example

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2642

Supervision
This parameter configures the position window for the supervision of the following error.
The default value is 150[%]. A value of 0[%] will deactivate the supervision function.
The size of the position window depends on the setting of the parameters Control_Time and
Max_Rpm Ä “Control_Time” on page 2643.
Position Window [Increments] = (Inc_Per_R) * (Max_Rpm/60) * (Control_Time/1000)
Position Window [Units] = (U_Per_Rev_Nominator/ U_Per_Rev_Denominator) * (Max_Rpm/60)
* (Control_Time/1000)

Position Window [Increments] = (10000) * (6000/60) * (50/1000) = 50000 [Increments]
Position Window [Units] = (1/1) * (6000/60) * (50/1000) = 5 [Units]

Example

A value of 100% will result in a position window which corresponds to the expected following
error with the giving Control_Time at Max_Rpm. Therefore it is recommended to use values
higher than 100[%]. In case the parameter FF_Percentage is used smaller values can be used.
If the supervised position window is exceeded the axis state will change to ERRORSTOP.

After the configured time the drive’s actual velocity has to be at least 50 % of the commanded
velocity. This function can also be used in case the Position Reference is transferred to the
drive.
A value of 0 will deactivate this supervision function.
If the supervised velocity window is exceeded the axis state will change to ERRORSTOP.

Position control loop

Profile r

SPEED_REFERENCE

POSITION_REFERENCE

DRIVE_ACTUAL_POSITION

1000

CONTROL_TIME

INTEGRAL_TIME

Kerne l Function Block

FF_PERCENTAGE

Pos ition

Velocity

Drive /
Encoder

HORIZONT

REF_MAX
MAX_RPM

Fig. 233: Basic structure of position control loop

The default value is 100 which leads to a proportional gain of 10.

In case the value of Control Time is too short the position control loop will run
into instability.

Pos_Lag_Per-
centage

V_Check_Time

Control_Time

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2643

In case the position control loop is not used this parameter must not be set to 0.

Fig. 234: Control Time and static following error in case the feed forward of velocity and the
integrational part of the position control loop is not used.

The static following error depends on the axis velocity and can be calculated easily: Control
Time multiplied by the axis velocity (p_error = v * CT).
In general it should be aimed to reach a high position control loop gain with a short Control Time
to achieve a small following error. As the reaction times take account in the possible Control
Time of the complete system (parameters of the drive control loop, PLC cycle time as well as
the communication fieldbus) should be considered.
As a basic rule the Control Time should be at least four times longer than the reaction time
between the output of the Speed Reference and the input of actual position.

When the time Ts and Tt is measured, a control_time of 4 * (Ts + Tt) will result in an aperiodic
damping of the position control loop. It is important to measure the values from inside the PLC
(e.g. Trace) to have the complete reaction times included. Practical values for Control_Time
might be from 50 - 500ms. The PLC cycle time as well as bus cycle times and mechanical
reaction will influence the value.

The default value is 0.
In case a velocity feedforward has to be configured a value of up to 80 is recommended. For
larger values than 80 the parameter Horizon needs to be used as the resulted position will
overshoot otherwise.
A value of 100 adds a velocity to the Speed Reference output which corresponds exactly to the
ongoing Position Reference value.

time

position

velocity

FF_Percentage

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2644

The integral part of the position control loop can be used to eliminate a permanent positioning
error, e.g. in case of hanging loads.
The time value can be regarded as the time the integrator needs to sum up the input value to
reach the same value for its output.

In case the Integral Part Time is too short the position control loop will run into
instability.

A communication delay of the Speed Reference value to the drive system can cause an over-
shoot during positioning caused by the velocity feedforward gain.
This function will compensate this communication delay to prevent an overshoot by time shifting
the signals Velocity Feed Forward and Position Reference relatively to each other.
The value of Horizon can be approximately assumed to be the time delay of the communication
delay.
The delay time might be caused by the cycle time of the control loop and by any delay in
sending the speed reference, delay in the drive to build up the torque and delay to receive
the actual position. To overcome this delay, a Horizon > 0 might be used. The feed forward
reference will be created in advance, while the proportional gain is applied to the original motion
profile. The delay is then compensated.
This function should not be used if the feed forward parameter FF_Percentage is 0.
A value of 0 will deactivate this function, which is the default value.
While this function is used, it will increase the needed PLC calculation time for this axis.

Fig. 235: Result with Horizon=0

Integral_Part

Horizon

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2645

Fig. 236: Result with Horizon>0

PLC cycle time
This parameter represents the cycle time in which the kernel function block of the axis is called.
If the configured cycle time is not correct the resulting acceleration and speed of an axis will be
not correct also.
In case the task execution of the axis is synchronized to a fieldbus (e.g. EtherCAT) the cycle
time of the fieldbus has to be used.

Roll-Over axis
If the Position Reference value is used, the drive must able to perform a position over-run
after 32 bit. If the drive’s position over-run is different, it can be adapted with the func-
tion blocks CMC_Binary2Modulo and CMC_Modulo2Binary from the library ABB_MotionCon-
trol_AC500.library. Incompatibility can cause an axis to trip after hours of operation.
The possible position following error has to be smaller the ½ Modulo_Range. Make sure that the
modulo range is large enough.
Position following error = (100 - FF_Percentage) * Max_Rpm * Inc_Per_R * Con-
trol_Time/6000000. This is the maximum value at constant velocity.

With this parameter the axis can be configured as a roll-over axis.

The modulo range will be defined in drive position counts (DINT). It will result that the scaled
unit position which is used by the PLCopen function blocks will stay within the defined range.

En_Modulo = TRUE
Modulo_Range = 20000
Inc_Per_Rev = 10000
U_Per_Rev_Nominator = 360 (e.g. degree)
U_Per_Rev_Denominator = 1

The scaled unit's position will cover the range from 0 to 720 (degrees).

Example

In some cases it is not suitable to set the modulo range of an application with the DINT value
of the parameter Modulo_Range only. In such cases the parameters 2001 Modulo_Nominator
and 2002 Modulo_Denominator can be used to scale the parameter Modulo_Range to a more
precise value.

Cycle

En_Modulo

Modulo_Range

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2646

These parameters can be used to modify the Modulo_Range in a way that fractions of an
increment could be used for 1 modulo (=rollover) distance
● Default: Modulo_Nominator=1 and Modulo_Denominator=1: the actual position for an axis is

limited between 0 and Modulo_Range increments.
● Limitations: Modulo_Range*Modulo_Nominator < 2147483647. Otherwise: default values

will be used.
● When modifying these parameters, the position control loop should be opened.

En_Modulo = TRUE
Modulo_Range = 1024
Modulo_Nominator = 10
Modulo_Denominator = 3
Inc_Per_R = 1024
U_Per_Rev_Nominator = 80*5*3
U_Per_Rev_Denominator = 10

Motor / Encoder

5mm each tooth

3:10 ra tio

80 tee th Gearbox

1024 counts per revolution

Result of parameters Modulo_Range, Modulo_Nominator and Modulo_Denominator: The
modulo range will cover one revolution of the toothed-belt wheel.
Result of parameters U_Per_Rev_Nominator and U_Per_Rev_Denominator: One scaled unit
corresponds to one mm of the tooth belt.

Example

 Option1 Option2
En_Modulo TRUE TRUE

Modulo_Range 10240 10240

Modulo_Nominator 1 1

Modulo_Denominator 1 1

Inc_Per_R 1024 10240

U_Per_Rev_Nominator 36 360

U_Per_Rev_Denominator 1 1

Max_Rpm 3000 300

The two options above describe exactly the same configuration. The Modulo_Range is equiva-
lent to 10 motor revolutions and is 10240 increments. For the position, 1u means 1° and the
resolution is 360°/10240inc = 0,035°/Inc = 1°/28,44 Inc.

Example:
Gearbox 10.1

Parameter
Modulo_Nomi-
nator and
Modulo_Denom-
inator (sup-
ported with
CMC_Motion_K
ernel_Real)

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2647

 Option1 Option2
En_Modulo TRUE TRUE

Modulo_Range 1024 10240

Modulo_Nominator 10 1

Modulo_Denominator 3 3

Inc_Per_R 1024 10240

U_Per_Rev_Nominator 108 1080

U_Per_Rev_Denominator 1 1

Max_Rpm 3000 300

The two options above describe exactly the same configuration. The gearbox is 10:3, so the
Modulo_Range is equivalent to 1024*10/3 = 3413 + 1/3 increments. For the first option, the
resulting modulo range is calculated 1024*10/3, for option2, it is 10240*1/3. For the position,
1u means 1° and the resolution is 108°/1024inc = 0,105°/Inc = 1°/9.481 Inc.

Example:
Gearbox 10.3

Scaling of the unit of length
With this parameter the number of the drive position counts each revolution of the motor (DINT)
have to be entered.

With these two parameters the number of units which correspond to one revolution of the motor
have to be entered.
The units of length can be scaled to values like: mm, inch, degree, …
All dynamic parameters of the PLCopen function blocks like velocity, acceleration and jerk are
based on seconds. Velocity [units/s], acceleration [units/s²], jerk [units/s³]

Inc_Per_Rev = 10000
U_Per_Rev_Nominator = 360
U_Per_Rev_Denominator = 1

This will scale one unit to one degrees of the motor shaft. Correspondingly a velocity [units/s]
of 360 will turn the motor shaft one revolution per second.

Example 1

In the example one unit will be scaled to one millimeter of the conveyor.

Motor/Encoder

5 mm each tooth

1:5 ratio

80 teeth Gearbox

1024 counts per revolution

Fig. 237: Scaling units

How many units will pass after one revolution of the motor? (80*5mm) / 5 = 80
Inc_Per_Rev = 1024
U_Per_Rev_Nominator = 80
U_Per_Rev_Denominator = 1

Example 2

Inc_Per_R

U_Per_Rev_Den
ominator &
U_Per_Rev_No
minator

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2648

In the example one unit will be scaled to one millimeter of the conveyor.

Motor/Encoder

5 mm each tooth

1:32 ratio

80 teeth
Gearbox

1024 counts per revolution

Fig. 238: Scaling units

How many units will pass after one revolution of the motor? (80*5mm) / 32 = 12,5 = 125 / 10
Inc_Per_Rev = 1024
U_Per_Rev_Nominator = 125
U_Per_Rev_Denominator = 10

Example 3

Scaling of the speed reference output
These two parameters are used to scale Speed Reference output of the kernel FB in order to
reach the intended velocity by the output value and to limit the highest possible output value.

Highest possible output value of the Speed Reference output. The Speed Reference value that
corresponds to the parameter Max_Rpm should be used.

Maximum speed of the motor in revolutions per minute.

● Analog Drive: 1000 rpm at 2 Volts, 3200 rpm at 6,4 Volts (max.)
● Analog output module: 10 Volts output at digital value 27648
● Ref_Max = 17695 (= 27648 / 10 * 6,4)
● Max_Rpm = 3200

Example

Access and modify parameters

All modifications will be effective immediately. There is no extra plausibility
check and values are not checked for limitations.

Use this functionality with care.

Some parameters are collected inside a structure in Axis_Ref, and can be accessed and
modified immediately. They are the same parameters as used with function blocks MC_Write-
Parameter and MC_ReadParameter Ä Chapter 1.5.9.3.6 “PLCopen parameter” on page 2595.
The differences are:
● Only available with CMC_Motion_Kernel_Real
● The parameter values are LREAL instead of DINT and can be used with decimals.
● The parameters will be effective immediately.
● There is no check for consistency or limits.
● The parameters for position control can be checked and modified by accessing the structure

Axis_Parameter.CMC_Pos_Control in addition.

Ref_Max

Max_Rpm

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2649

Parameter for position con-
trol

Description

KP Proportional gain in positive direction. Used directly to multiply
the following error and create the Reference_Prop.

KF Feed forward in positive direction. Used directly to multiply the
speed reference and create the Reference_FF.

KP_BACK Proportional gain in negative direction. Used directly to multiply
the following error and create the Reference_Prop.

KF_BACK Feed forward in negative direction. Used directly to multiply the
speed reference and create the Reference_FF.

TI Integration time. When parameter is used the position con-
trol loop has an additional integral part. In TI cycle, the Ref-
erence_ITG will reach the value of Reference_Prop, when
KI=100*KP.

KI Proportional gain, used for integral part of position control loop.

KF_100 Value for feed forward gain, if 100% would be used.

Max_Time Delay time used for supervision of velocity. With Max_Time=0,
no supervision is executed.

D_XS_Max Maximum possible velocity in [u/cycle].
The maximum allowed following error is part of the parameter
structure, PLCopen parameter paraMaxPositionLag.

Ref_Max Limit for Speed_Reference.

The element actual represents actual values from inside the position control loop.

Value Description
Position Actual position in [u] to control the axis.

Control_Position Reference position in [u] which is actually used for control
loop.

D_XS Distance in [u] to be moved per cycle.

D_XSS Following error in [u].

Reference_Prop Proportional part for Speed_Reference.

Reference_FF Feed forward part for Speed_Reference.

Reference_ITG Integral part for Speed_Reference.

See parameter KP/KP_BACK and KF/KF_BACK.

From library version 3.1 on, these values are not limited to the 16-bit range of values (32767).
The limit for velocity is calculated by the values given at CMC_Axis_Control_Parameter_Real
and the acceleration is limited such that this velocity can not be reached faster than 1 cycle.

Element actual
of Axis_Ref

Possible to use
different gain
for forward/
backward move-
ment , possible
improvement for
hydraulic axis
or vertical
movement
Limitation for
velocity and
acceleration and
deceleration

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2650

1.5.9.4.4 Programming guidelines
To achieve the best results for Motion Control the actual position has to be transferred in best
possible quality (with minimal jitter) to the PLC. The position feedback is expected to be in
increments as the data type is a DINT.
The kernel function block (CMC_Motion_Kernel_Real or CMC_Motion_Kernel_Int) has to be
called every cycle and its task requires a fixed cycle time.
A variable of type Axis_Ref is used to connect to the PLCopen function blocks and their kernel
function block.
The function block CMC_Axis_Control_Parameter_Real or CMC_Axis_Control_Parameter_Int
has be used for the axis configuration. Ä Chapter 1.5.9.4.3 “Axis parameters” on page 2642

The signal of the limits switches and the absolute switch should be connected to the elements
of the data type CMC_Axis_IO. The signal of the absolute switch must be TRUE in case the
axis hits the sensor. The signal of a corresponding limit switch has to be true when the axis
leaves the area surrounded by the limit switches. If needed the signal has to be inverted before
it is connected to the elements of the data type.

The kernel function block and the transfer of axis IO data should be processed in a cyclic
task. This task should be as short and real-time as possible to achieve the best motion control
performance. Always make sure Kernel function block is called at the highest priority task and
other applications must be at a lower priority task.
In order to save PLC processing time the most PLCopen function blocks as well as the applica-
tion logic can also be processed in a task which runs on a lower priority than the real-time task
with the axis implementation as shown in the figure below.

All PLCopen function blocks which must be called in the same task than the kernel function
block:
● MC_CombineAxes
● MCA_MoveByExternalReference
● MCA_SetCoordinateTransformation
● MCA_SetDynamicFollower
● MCA_SyncInfeedToPath
● MCA_SyncCamToPath
● MC_SetCoordinateTransform
● MC_SetCartesianTransform (only if the transformation will be changed during run time)
● MC_SyncAxisToGroup
In case the position reference is transferred to the drive the task of the axis implementation
should be synchronized to the fieldbus cycle. The following figures show an example for
EtherCAT:

Task configura-
tion

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2651

Fig. 239: Task of axis layer

Fig. 240: Task of application implementation

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2652

1.5.9.4.5 Visualization
The structure of the position control loop is also as visualization element Visu_CMC_POSI-
TION_CONTROL. included in CompactMotionControl_AC500_V21.lib. As placeholder, an
instance of CMC_Motion_Kernel_Real or CMC_Motion_Kernel_Int has to be used. The visuali-
zation shows all numbers as they are really used inside the block, the adjustment for different
resolution or cycle times is already included.

1.5.9.4.6 ABB specific data structures
Not all data structures are defined by PLCopen. Some specific structures are described in the
following chapter. In addition to the data in these arrays, the movement is modified by offset
and scaling values at the respective function block. These offset and scaling values (except the
time-scale) are transferred continuously. This will allow to follow a "Moving Target" by adjusting
these values.

PositionPositionProfile
The data type MC_PProfile is used for CamTable. An array has to be defined and provided at
MC_CamTableSelect. Several CamTables could be defined and the axis could change between
them on the fly. There is no routine of smooth movement from one table to the next so the
user has to take care just to switch on appropriate positions. Details are described in the
documentation included with the library.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2653

ARRAY[1..3] OF MC_PProfile:=
 (Master_position:= 0 ,interpolation_point :=
0 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0),
(Master_position:= 50 ,interpolation_point :=
25 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0),
(Master_position:= 100 ,interpolation_point :=
0 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0);

Declaration
example
CAM_table

PositionTimeProfile
This structure is used for time based profiles, e.g. MC_PositionProfile:

Interpolation types for profiles
The curves defined by an array of MC_PProfile hold master position points and according
slave positions. When the master position is between 2 points, the according position for
the slave is interpolated. Different types of interpolation are possible. The type is defined in
MC_ABB_iTypes_Enum . The master could be a real axis or some virtual axis which could be
created by just writing values for position and velocity to the Axis_Master variable as shown in
the example. The same interpolation types could be used on MC_TProfile.

Table 168: Overview of different interpolations
Interpolation Types Results in Requires
MCA_LINEAR Linear interpolation

with constant velocity
between interpolation
points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

MCA_SPLINE_NAT-
URAL

Cubic spline interpola-
tion without jerk.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

MCA_SPLINE_COM-
PLETE

Cubic spline interpola-
tion without jerk, start
and end of profile with
velocity=0.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2654

Interpolation Types Results in Requires
MCA_POLY3 Polynomial interpola-

tion with linear velocity
between interpolation
points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].inter-
polation_point, profile.MC_PPro-
file_Array[x].velocity_ratio

MCA_POLY5 Polynomial interpola-
tion with linear accel-
eration between inter-
polation points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].inter-
polation_point, profile.MC_PPro-
file_Array[x].velocity_ratio,
profile.MC_PProfile_Array[x].accelera-
tion_ratio

The interpolations allow to run on smooth curves without the need to define a large number
of points. The following chapter shows the results with different interpolation modes for a
sinus-curve with 10 interpolation points. The following table gives the mean deviation.

Interpolation Type Mean deviation [ppm]

MCA_LINEAR 19686 =1.9%

MCA_SPLINE_NATURAL 151=0.0151%

MCA_SPLINE_COMPLETE 25510=2.5%

MCA_POLY3 131=0.0131%

MCA_POLY5 0.37

The original curve is represented by y_sinus for position and v_sinus for velocity. The diagrams
show the result which is achieved by different interpolation types.
MCA_LINEAR

Fig. 241: Results from linear interpolation

The velocity is constant between the interpolation points.
MCA_POLY3

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2655

Fig. 242: Results from polynomial interpolation

The result looks almost identical to the original curve. The mean deviation shows that
MCA_POLY3, MCA_POLY5 and MCA_SPLINE_NATURAL produce results which follow the
original curve really good and are almost identical. The spline interpolation produces a jerk-free
curve without the need of providing velocity values and acceleration values in advance.
MCA_COMPLETE

Fig. 243: Results from complete spline interpolation

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2656

In the beginning and the end, the curve does not follow the original curve. The reason is that it
starts with velocity=0 and produces a jerk free result.
So the favoured result has to be considered in advance to choose the right interpolation
method. With these different methods it is not necessary to provide a large number of interpola-
tion points to get good results and smooth acceleration and deceleration ramps.

1.5.9.4.7 Appendix
List of all PLCopen and ABB specific function blocks in PS552-MC (for V2 PLC) and PS5611-
Motion (for V3)

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

1 PLCopen MC_Power x x

2 PLCopen MC_Home x -

3 PLCopen MC_Stop x x

4 PLCopen MC_Halt x x

5 PLCopen MC_MoveAbsolute x x

6 PLCopen MC_MoveRelative x x

7 PLCopen MC_MoveAdditive x x

8 PLCopen MC_MoveSuperImposed x x

9 PLCopen MC_HaltSuperImposed x x

10 PLCopen MC_MoveVelocity x x

11 PLCopen MC_MoveContinuousAb-
solute

x x

12 PLCopen MC_MoveContinuousRela-
tive

x x

13 PLCopen MC_PositionProfile x x

14 PLCopen MC_VelocityProfile x x

15 PLCopen MC_AccelerationProfile x x

16 PLCopen MC_SetPosition x x

17 PLCopen MC_SetOverride x x

18 PLCopen MC_ReadParameter x x

19 PLCopen MC_ReadBoolParameter x x

20 PLCopen MC_WriteBoolParameter x x

21 PLCopen MC_WriteParameter x x

22 PLCopen MC_ReadActualPosition x x

23 PLCopen MC_ReadActualVelocity x x

24 PLCopen MC_ReadStatus x x

25 PLCopen MC_ReadAxisError x x

26 PLCopen MC_Reset x x

27 PLCopen MC_CamTableSelect x x

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2657

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

28 PLCopen MC_CamIn x x

29 PLCopen MC_CamOut x x

30 PLCopen MC_GearIn x x

31 PLCopen MC_GearOut x x

32 PLCopen MC_GearInPos x x

33 PLCopen MC_PhasingAbsolute x x

34 PLCopen MC_PhasingRelative x x

35 PLCopen MC_HaltPhasing - x

36 PLCopen MC_LoadControl - x

37 PLCopen MC_LimitLoad - x

38 PLCopen MC_LimitMotion - x

39 PLCopen MC_LoadSuperImposed - x

40 PLCopen MC_LoadProfile - x

41 PLCopen MC_TorqueControl - x

42 ABB MCA_CamInDirect x x

43 ABB MCA_CamInfo - x

44 ABB MCA_Cam_Extra x x

45 ABB MCA_DriveBasedHome x x

46 ABB MCA_GearInDirect M x x

47 ABB CA_Indexing x x

48 ABB MCA_JogAxis x x

49 ABB MCA_MoveByExternalRe-
ference

x x

50 ABB MCA_MoveVelocityContin-
uous

x x

51 ABB MCA_MoveRelativeOpti x x

52 ABB MCA_Parameter x x

53 ABB MCA_PhasingbyMaster - x

54 ABB MCA_ReadParameterList x x

55 ABB MCA_SetOperatingMode x x

56 ABB MCA_SetPositionContin-
uous

x x

57 ABB MCA_WriteParameterList x x

58 ABB MCA_CamGetInterpola-
tionPosition

- x

59 ABB MCA_Home x -

60 ABB MCA_Power x -

61 ABB ECAT_402Parameter-
Homing_APP

x x

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2658

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

62 ABB ECAT_HomingOnTouchP-
robe_APP

x x

63 ABB ECAT_CiA402_TouchP-
robe_App

x x

PLCopen Part 4 –Coordinated Motion is only available for V2 PLC and not yet available for V3
PLC.

1.5.9.4.8 Function blocks for central motion control implementation
CMC_MOTION_KERNEL_REAL

Fig. 244: Function block CMC_MOTION_KERNEL_REAL

Table 169: General information
Available as of runtime system V1.2

Included in library CompactMotionControl_AC500_V21.LIB

Type Function block with historical values

The kernel function block is the fundamental part of the Central Motion Control axis implemen-
tation named Compact Motion. It performs floating point artithmetic for all calculations. More
detailed information about this function block and the use of it: Ä Chapter 1.5.9.4 “PLC-based
motion control” on page 2615

Input description

Fig. 245: Function block CMC_MOTION_KERNEL_REAL

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2659

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

If the function block is stored in a RETAIN memory area, the connected AXIS
has to be RETAIN.

Data type: BOOL
Release of function block. Enable has to be set before new control parameters are released by
CMC_AXIS_CONTROL_PARAMETER.

Data type: BOOL
Indication for homing.

Data type: BOOL
Indication that drive is running.

Data type: DINT
Actual position in increments.

Data type: AXIS_REF
Reference to the axis.

Data type: CMC_AXIS_CONTROL_PARAMETER
Parameters for configuration and adjustment of the control loop.Fig. 233

Data type: CMC_AXIS_IO
By the structure IO (CMC_AXIS_IO), some binary inputs are provided. The PLC program has to
define a variable of type CMC_AXIS_IO and to assign the inputs.

Output description

Fig. 246: Function block CMC_MOTION_KERNEL_REAL

ENABLE

DRIVE_REF_OK

DRIVE_INOPER-
ATION

DRIVE_ACTUAL
POSITION

Axis

CON-
TROL_PARAM-
ETER

IO

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2660

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.
The error codes ERRORID also sets the output-bit ERROR=TRUE and sets the axis in state
ERROR_STOP. To allow a new movement the error codes ERRORID require that either the
axis is disabled/enabled by MC_Power or the error reset is disabled/enabled by MC_Reset.
The error codes ErrorID_WARNING will not set ERROR=TRUE, and will not set the axis
to ERROR_STOP. The error codes ErrorID_WARNING do not require the MC_Reset or
MC_Power. It is possible the axis is stopped and ongoing motion is aborted by a WARNING.
The value will be shown until:
● An other error or warning occurs
● MC_Reset or MC_Power is used

ErrorCode Value Description
ErrorID_POSI-
TION_FOLLOW

1 The position lag was to large (parameter POS_LAG_PER-
CENTAGE) or the velocity had a wrong value by 50% for a
certain time (parameter V_CHECK_TIME).

ErrorID_POSSW 2 The actual position did exceed the positive Software limit
switch position.This supervision has to be activated with
MC_WriteParameter.

ErrorID_NEGSW 3 The actual position did exceed the negative Software limit
switch position. This supervision has to be activated with
MC_WriteParameter.

ErrorID_VELOCIT
Y_FAULT

4 The measured velocity and commanded velocity are >
50% (related to maximum velocity) apart.

ErrorID_INTERPO-
LATION_FAULT

5 Position following error occurred, but reason most likely a
interpolation problem, not drive problem (e.g. CAM Table,
position step).

ErrorID_WARNING
_POSITIONO-
VERRUN

13 A linear axis has a 32bit position overrun (configure
modulo instead).

ErrorID_WARNING
_VELOCITYLIMIT

10 Velocity or acceleration/deceleration are in limitation, set
by parameter EnableLimitVelocity.

ErrorID_WARNING
_POSITIONLI-
MITPOS

11 Velocity or acceleration/deceleration are in limitation, set
by parameter EnableLimitVelocity (MaxVelocityAppl, Max-
DecelerationAppl) Position is in limitation towards position
limit (SWLimit2DecPos) .

ErrorID_WARNING
_POSITIONLI-
MITNEG

12 Position is in limitation towards position limit
(SWLimit2DecNeg).

ErrorID_WARNING
_ABORT

14 Axis has been aborted due to too large position gap in
velocity limit.

Data type: BOOL
Binary signal to be used for resetting the drive error, if applicable.

Error

ERRORID

DRIVE_RESET_
FAULT

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2661

Data type: BOOL
Activate the drive.

Data type: BOOL
Activate homing.

Data type: DINT
Position to be used at homing.

Data type: DINT
Reference value for the drive.

Data type: DINT
Position reference value for the drive in increments.

CMC_MOTION_KERNEL_INT

Fig. 247: Function block CMC_MOTION_KERNEL_INT

Table 170: General information
Available as of runtime system V1.2

Included in library CompactMotionControl_AC500_V21.LIB

Type Function block with historical values

The kernel function block is the fundamental part of the Central Motion Control axis implemen-
tation named Compact Motion. It performs integer based calculations which use less CPU pro-
cessing time on the following PLCs: eCo, PM57x, PM58x. As a result of the integer based cal-
culations the available motion control functions are limited. More detailed information about this
function block and the use of it: Ä Chapter 1.5.9.4 “PLC-based motion control” on page 2615

DRIVE_RELEAS
E

DRIVE_SET_RE
F

DRIVE_SET_PO
SITION

SPEED_REFER-
ENCE

POSITION_REF-
ERENCE

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2662

Input description

Fig. 248: Function block CMC_MOTION_KERNEL_INT

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Release of function block. Enable has to be set before new control parameters are released by
CMC_AXIS_CONTROL_PARAMETER.

Data type: BOOL
Indication for homing.

Data type: BOOL
Indication that drive is running.

Data type: DINT
Actual position in increments.

Data type: AXIS_REF
Reference to the axis.

Data type: CMC_AXIS_CONTROL_PARAMETER
Parameters for configuration and adjustment of the control loop.Fig. 233

Data type: CMC_AXIS_IO
By the structure IO (CMC_AXIS_IO), some binary inputs are provided. The PLC program has to
define a variable of type CMC_AXIS_IO and to assign the inputs.

ENABLE

DRIVE_REF_OK

DRIVE_INOPER-
ATION

DRIVE_ACTUAL
POSITION

Axis

CON-
TROL_PARAM-
ETER

IO

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2663

Output description

Fig. 249: Function block CMC_MOTION_KERNEL_INT

Data type: BOOL
Signals that an error has occurred within the function block.

Error

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2664

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.
The error codes ERRORID also sets the output-bit ERROR=TRUE and sets the axis in state
ERROR_STOP. To allow a new movement the error codes ERRORID require that either the
axis is disabled/enabled by MC_Power or the error reset is disabled/enabled by MC_Reset.
The error codes ErrorID_WARNING will not set ERROR=TRUE, and will not set the axis
to ERROR_STOP. The error codes ErrorID_WARNING do not require the MC_Reset or
MC_Power. It is possible the axis is stopped and ongoing motion is aborted by a WARNING.
The value will be shown until:
● An other error or warning occurs
● MC_Reset or MC_Power is used

ErrorCode Value Description
ErrorID_POSI-
TION_FOLLOW

1 The position lag was to large (parameter POS_LAG_PER-
CENTAGE) or the velocity had a wrong value by 50% for a
certain time (parameter V_CHECK_TIME).

ErrorID_POSSW 2 The actual position did exceed the positive Software limit
switch position.This supervision has to be activated with
MC_WriteParameter.

ErrorID_NEGSW 3 The actual position did exceed the negative Software limit
switch position. This supervision has to be activated with
MC_WriteParameter.

ErrorID_VELOCIT
Y_FAULT

4 The measured velocity and commanded velocity are >
50% (related to maximum velocity) apart.

ErrorID_INTERPO-
LATION_FAULT

5 Position following error occurred, but reason most likely a
interpolation problem, not drive problem (e.g. CAM Table,
position step).

ErrorID_WARNING
_POSITIONO-
VERRUN

13 A linear axis has a 32bit position overrun (configure
modulo instead).

ErrorID_WARNING
_VELOCITYLIMIT

10 Velocity or acceleration/deceleration are in limitation, set
by parameter EnableLimitVelocity.

ErrorID_WARNING
_POSITIONLI-
MITPOS

11 Velocity or acceleration/deceleration are in limitation, set
by parameter EnableLimitVelocity (MaxVelocityAppl, Max-
DecelerationAppl) Position is in limitation towards position
limit (SWLimit2DecPos) .

ErrorID_WARNING
_POSITIONLI-
MITNEG

12 Position is in limitation towards position limit
(SWLimit2DecNeg).

ErrorID_WARNING
_ABORT

14 Axis has been aborted due to too large position gap in
velocity limit.

Data type: BOOL
Binary signal to be used for resetting the drive error, if applicable.

Data type: BOOL
Activate the drive.

ERRORID

DRIVE_RESET_
FAULT

DRIVE_RELEAS
E

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2665

Data type: BOOL
Activate homing.

Data type: DINT
Position to be used at homing.

Data type: DINT
Reference value for the drive.

Data type: DINT
Position reference value for the drive in increments.

CMC_AXIS_CONTROL_PARAMETER_REAL

Fig. 250: Function block CMC_AXIS_CONTROL_PARAMETER_REAL

Interface function block for axis configuration and adjustment of the control loop.

Enable the function block before any PLCopen-block is used.

To change parameters follow these steps:
1. MC_Power.ENABLE=FALSE, this will disable the axis.
2. CMC_AXIS_CONTROL_PARAMETER_REAL.ENABLE=FALSE.
3. Modify the parameter.
4. CMC_AXIS_CONTROL_PARAMETER_REAL.ENABLE=TRUE.

DRIVE_SET_RE
F

DRIVE_SET_PO
SITION

SPEED_REFER-
ENCE

POSITION_REF-
ERENCE

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2666

Some of these parameters result in position control loop parameters.
These can also be modified directly (while CMC_AXIS_CONTROL_PARAM-
ETER_REAL.ENABLE = TRUE) by using the axis parameter structure.

This function block must be used in combination with the function block
CMC_MOTION_KERNEL_REAL Ä Chapter 1.5.9.4.8.1 “CMC_MOTION_KERNEL_REAL”
on page 2659.

Functional group Parameter
Axis supervision POS_LAG_PERCENTAGE

V_CHECK_TIME

Position Control Loop CONTROL_TIME

FF_PERCENTAGE

INTEGRAL_TIME

HORIZON

PLC system CYCLE

Rollover axis EN_MODULO

MODULO_RANGE

Scaling units of length INC_PER_R

U_PER_REV_NOMINATOR

U_PER_REV_DENOMINATOR

Scaling the Speed Reference output REF_MAX

MAX_RPM

Input description

Fig. 251: Function block CMC_AXIS_CONTROL_PARAMETER_REAL

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2667

Data type: BOOL
Enable new parameters with a positive edge.

Data type: WORD, default: 150, unit: %
Value for supervision of position difference. 100 is at least necessary to reach the maximum
velocity with FF_PERCENTAGE = 0.

Data type: TIME, default: 100, unit: ms
Delay time for the supervision of actual velocity. With V_CHECK_TIME = 0, this supervision will
be disabled.

Data type: LREAL, default: 100, unit: ms
Determines the gain for position control loop. A lower time means a larger proportional gain
for position control loop. The value means: In case FF_PERCENTAGE = 0, the drive will run
CONTROL_TIME ms behind its position reference.

Data type: WORD, default: 0, unit: %
Feed-forward gain, usually should be <80%. For larger values, the parameter HORIZON needs
to be used as the position will overshoot otherwise.

Data type: WORD, default: 0, unit: ms
Integration time for position control loop, 0 means no integral part is used.

Data type: LREAL, default: 0, unit: ms
Gives a time in advance for the feed-forward. This could compensate reaction times. HORIZON
> 0 requires more computing power.

Data type: LREAL, default: 10, unit: ms
Cycle time of the PLC program.

Data type: BOOL, default: FALSE
Enable rollover axis.

Data type: DINT, unit: increment
Distance for rollover, maximum value is 0x3FFFFFFF.

Data type: DWORD, default: 1024
Increments per revolution for actual position.

Data type: DINT, default: 1024
Units per revolution.

ENABLE

POS_LAG_PER-
CENTAGE

V_CHECK_TIME

CONTROL_TIME

FF_PER-
CENTAGE

INTE-
GRAL_TIME

HORIZON

CYCLE

EN_MODULO

MODULO_RAN
GE

INC_PER_R

U_PER_REV_N
OMINATOR

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2668

Data type: DINT, default: 1
Units per revolution.

Data type: WORD, default: 32767
Maximum value for SPEED_REFERENCE.

Data type: WORD, default: 1500, unit: 1/m
Maximum value for rotations per minute, has to be the value which is reached at SPEED_REF-
ERENCE = REF_MAX.

CMC_AXIS_CONTROL_PARAMETER_INT

Fig. 252: Function block CMC_AXIS_CONTROL_PARAMETER_INT

Interface function block for axis configuration and adjustment of the control loop.
This function block must be used in combination with the function block
CMC_MOTION_KERNEL_INT Ä Chapter 1.5.9.4.8.2 “CMC_MOTION_KERNEL_INT”
on page 2662.

Functional group Parameter
Axis supervision POS_LAG_PERCENTAGE

V_CHECK_TIME

Position Control Loop CONTROL_TIME

FF_PERCENTAGE

INTEGRAL_TIME

HORIZON

PLC system CYCLE

Rollover axis EN_MODULO

MODULO_RANGE

U_PER_REV_DE
NOMINATOR

REF_MAX

MAX_RPM

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2669

Functional group Parameter
Scaling units of length INC_PER_R

U_PER_REV_NOMINATOR

U_PER_REV_DENOMINATOR

Scaling the Speed Reference output REF_MAX

MAX_RPM

Input description

Fig. 253: Function block CMC_AXIS_CONTROL_PARAMETER_INT

Data type: BOOL
Enable new parameters with a positive edge.

Data type: WORD, default: 150, unit: %
Value for supervision of position difference. 100 is at least necessary to reach the maximum
velocity with FF_PERCENTAGE = 0.

Data type: TIME, default: 100, unit: ms
Delay time for the supervision of actual velocity. With V_CHECK_TIME = 0, this supervision will
be disabled.

Data type: LREAL, default: 100, unit: ms
Determines the gain for position control loop. A lower time means a larger proportional gain
for position control loop. The value means: In case FF_PERCENTAGE = 0, the drive will run
CONTROL_TIME ms behind its position reference.

ENABLE

POS_LAG_PER-
CENTAGE

V_CHECK_TIME

CONTROL_TIME

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2670

Data type: WORD, default: 0, unit: %
Feed-forward gain, usually should be <80%. For larger values, the parameter HORIZON needs
to be used as the position will overshoot otherwise.

Data type: WORD, default: 0, unit: ms
Integration time for position control loop, 0 means no integral part is used.

Data type: LREAL, default: 0, unit: ms
Gives a time in advance for the feed-forward. This could compensate reaction times. HORIZON
> 0 requires more computing power.

Data type: LREAL, default: 10, unit: ms
Cycle time of the PLC program.

Data type: BOOL, default: FALSE
Enable rollover axis.

Data type: DINT, unit: increment
Distance for rollover, maximum value is 0x3FFFFFFF.

Data type: DWORD, default: 1024
Increments per revolution for actual position.

Data type: WORD, default: 1024
Units per revolution.

Data type: WORD, default: 1
Units per revolution.

Data type: WORD, default: 32767
Maximum value for SPEED_REFERENCE.

Data type: WORD, default: 1500, unit: 1/m
Maximum value for rotations per minute, has to be the value which is reached at SPEED_REF-
ERENCE = REF_MAX.

FF_PER-
CENTAGE

INTE-
GRAL_TIME

HORIZON

CYCLE

EN_MODULO

MODULO_RAN
GE

INC_PER_R

U_PER_REV_N
OMINATOR

U_PER_REV_DE
NOMINATOR

REF_MAX

MAX_RPM

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2671

CMC_AXIS_SIMU_REAL

Fig. 254: Function block CMC_AXIS_SIMU_REAL

Function block to simulate a drive. This function block can be used in combi-
nation with the function block CMC_MOTION_KERNEL_REAL Ä Chapter 1.5.9.4.8.1
“CMC_MOTION_KERNEL_REAL” on page 2659. Detailed information: Ä Chapter 1.5.9.4.2.3
“How to use the axis simulation” on page 2625

CMC_AXIS_SIMU_INT

Fig. 255: Function block CMC_AXIS_SIMU_INT

Function block to simulate a drive. This function block can be used in combi-
nation with the function block CMC_MOTION_KERNEL_INT Ä Chapter 1.5.9.4.8.2
“CMC_MOTION_KERNEL_INT” on page 2662. Detailed information: Ä Chapter 1.5.9.4.2.3
“How to use the axis simulation” on page 2625

CMC_SInterpolation

The function block can be used for a simple interpolation. Alternatively, the function block
CMC_SIPosi_Loop can be used Ä Chapter 1.5.9.4.8.8 “CMC_SIPosiLoop” on page 2676.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2672

The function block allows to create a very simple, basic axis for linear movement. The function
block can be either used independent to create a basic axis with/without position control loop or
it can be used in combination with PLCopen function blocks.
The function block creates a positioning interpolation towards TargetPosition and uses the
given velocity and acceleration values. The funciton block has to be used within the real-time
cycle, same as CMC_MOTION_KERNEL_REAL. The result is given to output Position. The
TargetPosition and also Velocity and Acceleration can be changed anytime and will be used at
once. With Enable = FALSE, the funciton block sets the output Position to ActualPosition, this is
similar to an open loop.

Table 171: Behavior of inputs
Enable Stop Behavior
FALSE - Output Position = ActualPosition

TRUE FALSE Interpolates output Position to reach Target-
Position with the given velocity and accelera-
tion.

TRUE TRUE Ramps down to velocity = 0.

Table 172: Behavior of outputs
InSync Active Behavior
FALSE TRUE Function block is activated, position and

velocity is not yet reached.

TRUE FALSE Funciton block is activated, position is
reached, output Position = TargetPosition.

FALSE FALSE Funciton block is either disabled or stopped,
velocity = 0.

This way, a positioning axis can be created with modifying the parameters for positioning “on the
fly”, without the need of a certain state machine to follow.

The function block will smooth the movement when a group has to follow a conveyor. It will
create defined ramps to accelerate to the conveyors position and also can be used to prevent a
position jump when switching between 2 conveyors or before switching of the follower.

A very basic, simple positioning axis can be created this way. Be aware that there is not
additional check if the axis really follows, also no scaling for the position is included. If function
block CMC_SIPosiLoop is used, it will check for position or velocity following error.

Use in combina-
tion with
MC_MoveByEx-
ternalReference
Use in combina-
tion with
MCA_SetDyna-
micFollower

Use to create a
simple, basic
positioning axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2673

Fig. 256: Cycle time which was used for a PM590 when calculating 100 simple axes in a PLC task and priority 10.

Input description

Data type: BOOL
Enables the interpolation.

Data type: BOOL

Data type: LREAL

Data type: LREAL

Enable

Stop

TargetPosition

ActualPosition

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2674

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, default: 10, unit: ms
Cycle time of the PLC program.

Output description

Data type: LREAL, unit: u
New absolute position.

Data type: BOOL
Iindicates that Position reached TargetPosition.

Data type: BOOL
Interpolation is activated.

Velocity

Acceleration

CYCLE

Position

InSync

Active

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2675

CMC_SIPosiLoop

The function block can be used as a position control loop and can create a simple positioning
axis if combined with CMC_SInterpolation. The CMC_SIPosiLoop uses same parameter setup
as the parameter block CMC_AXIS_CONTROLPARAMETER_REAL.

Input description

Data type: BOOL
Enable the block while TRUE, will close the position control loop.

Data type: BOOL
The block will use new input parameter with a positive edge.

Enable

NewPara

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2676

Data type: LREAL
Reference position

Data type: LREAL
Actual position

Data type: WORD, default: 150, unit: %
Value for supervision of position difference. 100 is at least necessary to reach the maximum
velocity with FF_PERCENTAGE = 0.

Data type: TIME, default: 100, unit: ms
Delay time for the supervision of actual velocity. With V_CHECK_TIME = 0, this supervision will
be disabled.

Data type: LREAL, default: 100, unit: ms
Determines the gain for position control loop. A lower time means a larger proportional gain
for position con- trol loop. The value means: In case FF_PERCENTAGE = 0, the drive will run
CONTROL_TIME ms behind its position reference.

Data type: WORD, default: 0, unit: %
Feed forward gain, usuallz shoul be <80%. For larger values, the paramter HORIZON needs to
be used as the position will overshoot otherwise.

Data type: LREAL, default: 10, unit: ms
Cycle time of the PLC program.

Data type: DINT, default: 1024
Units per revolution.

Data type: DINT, default: 1
Units per revolution.

Data type: WORD, default: 32767
Maximum value for SPEED_REFERENCE.

Data type: WORD, default: 1500, unit: 1/m
Maximum value for rotations per minute, has to be the value which is reached at SPEED_REF-
ERENCE = REF_MAX.

Position

ActualPosition

POS_LAG_PER-
CENTAGE

V_CHECK_TIME

CONTROL_TIME

FF_PER-
CENTAGE

CYCLE

U_PER_REV_N
OMINATOR

U_PER_REV_DE
NOMINATOR

REF_MAX

MAX_RPM

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2677

Output description

Data type: BOOL
Position control loop is closed, no active error.

Data type: BOOL
Indicates wrong input parameter.

Data type: BOOL
Indicates position following error.

Data type: BOOL
Indicates velocity following error.

Data type: LREAL
Speed Reference value which should be send to the drive. This value is scaled with MAX_RPM
and REF_MAX: SpeedReference=REF_MAX => the axis should move with MAX_RPM.

CMC_GET_UNITS_FROM_INC
This function converts the drive’s position value (DINT) which is exchanged between drive and
PLC to the corresponding scaled position unit (LREAL) which is used by the PLCopen function
blocks.

Fig. 257: CMC_GET_UNITS_FROM

Use case:

Closed

ParaError

PosFollowin-
gError

VelFollowin-
gError

SpeedReference

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2678

● The drive or an I/O module is used to capture an axis encoder position in relation to a binary
signal (touch trigger). This position is delivered in [increments].
If then the position is to be used in the PLCopen context, a unit position is required.
It can be difficult to calculate this unit-position. Not just the scaling position units
has to be considered but also the position might have experienced several correction
measures. Measures like “SetPositionContinuous” or corrections due to modulo position
overrun. To create the unit-value which matches a certain increment-value, the function
CMC_GET_UNITS_FROM_INC has to be used.

Data type: DINT
A position [increments], for example captured by the drive as result for a touch trigger

Data type: CMC_MOTION_KERNEL_REAL
Kernel block instance which belongs to the specific axis.

The position [u], which describes exactly the same position as ACTUAL_POSIITON_INC, just
transferred in to the axis coordinate system and delivered in [u].

1.5.9.4.9 PLCopen coordinated motion
Principles of coordinated motion
Coordinate system and kinematic transformation

The essence of a trajectory is the coordinated motion of two or more axes from a starting
point to a target point via a defined path with a specified path velocity. As path one can think
of a straight line, a circular movement, or via a spline function. The definition of a path -or
any position information - in space requires a coordinate system. Within this specification three
coordinate systems are defined:
ACS - Axis related
MCS - Machine related
PCS - Product or workpiece related

Input:

ACTUAL_POSI-
TION_INC

KERNEL

Result:

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2679

Fig. 258: Overview of the coordinate systems and transformations

Fig. 259: Example for specifying point P in PCS, MCS or ACS assuming a SCARA robot with two rotary axes

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2680

Actual position of the physical axis (after homing).

Cartesian coordinate system with the origin is a fixed position relative to the machine. (Some-
times called “World Coordinate System” or “Base Coordinate System”). (Note: with Cartesian
build machines, MCS may be identical to ACS, or mapped via a trivial transformation). The
coordinate system from the physical multiple axes ACS is linked to the MCS via a kinematic
transformation (forward and backward conversion).

The real work piece can have a rotation or shift to the MCS or even might be moving relative
to the MCS, and often one wants to describe the trajectory independent from the machine
situation. To map these two worlds (MCS to PCS and vice versa), a cartesian or cylindrical
transformation is normally done. The coordinate system of the product can be called PCS:
"Product Coordinate System", or "Program Coordinate System" in CNC world. There can be
more than one PCS transformation applicable at the same time. In this case the ENUM to
specify the coordinate system (CS) has to be extended. A PCS can be a static or a dynamic
transformation.
In order to specify a point or orientation in space a position always has to be related to a coordi-
nate system. By means of transformations this position can be transformed to other coordinate
systems. Within this specification, function blocks are defined for these transformations, hiding
the complexity of these transformations to the programmer in its day to day use. All multi axes
motion commands are related to only one of the coordinate systems at the same time.

ACS: Axes
Coordinate
System
MCS: Machine
Coordinate
System

PCS: Product
Coordinate
System

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2681

Point P is situated on a 2D workpiece. It can be described equivalent in PCS, MCS and ACS.
Point P could be specified by referring to PCS resulting in the position PPCS = (xPCS, yPCS).
Given the shift and orientation of PCS relative to MCS, point P equivalently could be speci-fied
by PMCS = (xMCS, yMCS). Assuming a SCARA robot with two rotary axes point P also could be
described by the angles of the axes PACS = (ɸ1, ɸ2).

Fig. 260: Specifying point P in PCS, MCS or ACS assuming a SCARA robot with two rotary axes

Red trapezoid Point P, situated on a 2 D workpiece
Blue PCS
Black MCS
Green ACS

Example for
specifying
point P in PCS,
MCS or ACS
assuming a
SCARA robot
with two rotary
axes

Kinematic transformation
Axes are connected via mechanical links providing movements of the ‘Tool Center Point’, TCP
in space. TCP is a dis-tinguished point of the machine, sometimes also called ‘Point of Interest’,
POI, or ‘effector’. The physical assembly of the axes and therefore the position of the TCP
in MCS is described by a so called kinematic transformation. The kinematic transformation
connects ACS to MCS (forward conversion). By applying the kinematic transformation on a
position related to ACS, this position can be transformed into a position in MCS. The other
way round, applying the inverse kinematic transformation, a position related to MCS can be
transformed into a position in ACS (backward conversion).
With simple cartesian machine constructions, in which axes are directly oriented in X-, Y-,
and Z-directions of MCS, the kinematic transformation can easily be specified. One just has
to define which axis is in the X-direction, which in Y, and which in the Z-direction. In the
simplest case ACS is identically to MCS and one needn’t distinguish between both. But in praxis
there are many non-cartesian structures, like SCARA robots or Tripods, where the kinematic
transformation is more complex.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2682

Fig. 261: Example for reaching the same position in space with a) a cartesian handling (2 linear axes) and b) a
SCARA (2 rotary axes) with two possible configurations (elbow down and elbow up). (Note: the orientation is fixed
in both examples)

Above example demonstrates how a position in space could be reached by a cartesian han-
dling or a SCARA. Whereas the positions of the linear axes are more or less identical to the
coordinates of the position in MCS, the positions of the axes of the SCARA are not that easy
to calculate. Additionally there are two possible solutions of the backward kinematic transforma-
tion, different configurations of the machine: elbow down and elbow up.

How do commands behave in dynamic coordinate systems?
If the TCP should follow a moving target, this can be achieved by a dynamic coordinate
transformation, leading to a PCS which is moving in relation to the MCS.
The activation of a dynamic transformation is done by activating MCA_SetDynamicFollower
(ABB specific function block).
If there is a dynamic transformation active, the axis may follow the dynamic transformation or
stay in the static ACS or MCS. The following example is showing the behavior. The example
describes a robot fetching a screw from a fixed position and mounting it on a product that is
moving on a belt.

Step Move command Axes (group) behavior Application example
1 Activating Transformation

ACS to MCS
Group is staying still (not
moving)

Initialization, MCS is static

2 MC_MoveAbsolute in MCS Group moves to the com-
manded position in MCS
and stays in static MCS
(not moving)

Moving to standby position
and waiting for products

3 Motion command in static
MCS

Group moves to the com-
manded position in MCS
and stays in static MCS
(not moving)

Moving to a fixed box of
screws

4 Motion command in static
MCS

Picking command Picking up a screw

5 Activating a dynamic PCS PCS is active and moves
synchronized with the belt

PCS is ready for use

6 Motion command in
dynamic PCS

Group moves to com-
manded position in PCS
and is moving together
with the dynamic PCS

Placing the screw and fol-
lowing the product on the
belt

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2683

Step Move command Axes (group) behavior Application example
7 Screwing command Group is still following the

product on the belt
Screw is being screwed
into the product

8 Motion command in static
MCS

Group moves to com-
manded position in MCS at
the fixed screw box

Moving to the fixed box of
screws and waiting for the
next product on the belt

9 Motion command in
dynamic PCS

Group moves to com-
manded position in PCS
and is moving together
with the dynamic PCS

Placing the screw to the
new product and following
the product on the belt

Rule: An axis group stays in the coordinate system which is specified with the last motion
command. If this is a PCS with dynamic transformation, it will follow the PCS (keeping the same
position in this PCS).

Movements
Applying a movement on a machine via a function block causes the TCP to move towards the
new commanded position. The kind of function block applied specifies the path via which the
new target position is reached. (Note: the coordinate system in which the new commanded
position is specified does not have an influence on the path.)
Basically there are two types of movements which have to be distinguished:
● Point - to - Point movements, PTP (also referred to as Joint Interpolated Movements)

With this type the essence is to reach the commanded position as fast as possible. This
can be achieved by moving each axis on the shortest way from its starting position to its
target position. Usually this kind of movement is the fastest way to reach a new commanded
position, because at any time at least one axis moving at it’s dynamic limit. The path and
the path velocity of the TCP are not important. They are determined by the process of the
positions of the axes and the kinematic transformation of the machine. Therefore this kind of
movement is applicable for handlings and whenever the path of the TCP is not crucial. It is
recommended that all axes will arrive at the commanded position at the same point in time
(synchronized).
The applicable function blocks as specified herein are:
– MC_MoveDirectAbsolute
– MC_MoveDirectRelative

● Cartesian Path movements, CP (also referred to as Continuous Path movements):
CP movements cause the TCP to move along a defined path in Cartesian space. A path
can be (a set of) a straight line, a circular movement, or a spline function. The path via
which the new commanded position is reached is important. For example, this is essential
if a workpiece is being processed. Further, the path velocity of the TCP can be controlled
directly. Contrary to point-to-point movements the process of the position of each axis is
determined by the desired path and the inverse kinematic transformation.
The applicable function blocks as specified herein are:
– MC_MoveLinearAbsolute
– MC_MoveLinearRelative
– MC_MoveCircularAbsolute
– MC_MoveCircularRelative
– MC_MovePath

The figure below illustrates the differences between different types of movement by means of a
theoretical machine.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2684

Fig. 262: Different types of movements MC_MoveDirect (black), MC_MoveLinear (green) and MC_MoveCircular
(blue) and typical positions of one of the axis of the machine participating in the movement

Blending and buffering of movements
General information

A fundamental part of interpolated motion control is blending of (buffered) consecutive motion
commands on an axes group. Without blending the TCP of an axes group moves towards the
commanded position, decelerates and comes to standstill exactly at the commanded position.
The following buffered motion command doesn’t become active until now. Obviously the axes
group has to accelerate again. In many applications a different behavior of the TCP is desired
and one wants to concatenate movements without stopping.
Reasons for this are:
● Reduction of the process cycle time (e.g. pick and place)
● Generate a smoother movement in order to reduce the mechanical stress
● Some applications demand a constant Velocity of the TCP (e.g. applying glue, painting,

welding, etc.)

All this can be achieved by different types of blending. Common to all types of blending is a
modification of the origi-nal path, resulting in a smooth trajectory without corners.
Blending of motion commands in interpolated motion control differs from blending of motion
commands on single axes. With single axes the commanded position is always reached. Just
the velocity at the time when the commanded position is reached (or passed) can be changed
according to the input parameter BufferMode.
With interpolated motion control several types of blending can be thought of, depending on
the application and proc-ess. Therefore new types of blending have to be introduced for interpo-
lated motion control.
The input parameter for blending might vary due to the kind of interpolation method applied. So
this input is ABB specific.
The type of inserted curve that modifies the original path (the ‘contour curve’) is not part of this
specification and can be defined by the ABB specific input parameter for blending.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2685

Fig. 263: Trajectories and process of Velocity in principle of two consecutive motion commands in three modes

AC500 realization
No buffered modes are realized. As no buffered mode is realized, the Transition modes are
unavailable as well.
● The default mode which is used is “Aborting”. The TCP will move directly towards the next

commanded position and use the next commanded velocity/acceleration/deceleration.
● Behavior according to “Buffered without Blending” can be reached by using the output

DONE of the previous block to activate the next movement.
● A behavior as shown above in “Blending” could be achieved by using MC_MovePath and a

dedicated corner distance.

Realization in AC500
Overview

This chapter describes the usage of PLCopen function blocks for motion control with ABB-PLC
AC500. These function blocks are based on Part4_CoordinatenMotion_V10.pdf, V. 1.1.
The features could be used from the PLC program according to PLCopen standard. Different
drives could be used and could be combined with each other as well as different fieldbusses.
The following table gives an overview about the available features.
PLCopen Coordinated Motion and Principles of Coordinated Motion
Some information in this chapter require knowledge from the following chapters:
● Ä Chapter 1.5.9.4.9.1 “Principles of coordinated motion” on page 2679

The library is not restricted to the use with a specific fieldbus, but it is recommended to use a
synchronized bus.

Library Version Drive Fieldbu
s

Description

MC_Base_AC500 1.1 Any Any Data types

MC_Blocks_AC500 1.1 Any Any PLCopen function blocks for
single and multi axis

MC_CoBlocks_AC500 2.1 Any Any PLCopen function blocks for
coordinated motion

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2686

Library Version Drive Fieldbu
s

Description

CompactMotion_AC500 1.2 Any Any Motion control for single and
multi axis

CoordinatedMotion_AC500 2.1 Any Any Motion control for coordinated
motion

CMC_Ext_AC500 2.1 Any Any External libray, just used by
other libraries

CMC_Transforma-
tionen_AC500_APPL

2.1 Any Any Exemplary implementation for
transformations

MathFunctions_AC500 2.1 Any Any Vector and matrix mathematic
used by other libraries

The CMC_Transformation_AC500_APPL_V21.lib holds some kinematical transformations
which are used to connect the MCS and ACS axes. This library is open, the integrated transfor-
mations might be copied and modified to match the specific requirements.

General rules
The following chapter explains some rules on the usage of the libraries.
● A general rule is that ALL PLCOpen function blocks which are used for a specific drive

are to be used in the same PLC-task. When multitasking is used for the PLC, it is allowed
to have different drives in different tasks, but all Funciton Blocks belonging to a specific
drive need to be in the same task. There is no multithreading protection for the AXIS_REF
instance.

● The CMC_MotionKernel… and the COMC_Group… function blocks might be in a different
task then the PLCopen Blocks (MC…). All function blocks belonging to the same fieldbus
Communication Module have to be called from the same task.

● When AXIS_REF or AXES_GROUP_REF is used as input on a user defined FUNC-
TION_BLOCK or PROGRAM or FUNCTION, then ALLWAYS use it as VAR_IN_OUT and
NEVER use it as VAR_INPUT or VAR_OUTPUT. The reason is that this would
– Break the consistency and destroy data
– Consume a lot of computing power by copying data.

● The "Min update time" update time for the fieldbus, defined under “PLC Configuration
è Communication Modules[FIX] è <fieldbus master type>” must not exceed the half of the
scantime of the PLC-task. E.g. scantime of PLC-task is 5ms, then "Min update time" should
not be greater than 2ms.

● The functionality of CompactMotion_AC500 library may be combined with the Coordinated-
Motion_AC500 library. All single axis functions could still be used for an axis, even when it is
combined with others to a group .

Create a group
The basic functionality in coordinated motion is to combine several axes in a movement in
3D-cartesian space. The combination of axes is named “group” and the movement is executed
by the group.
Several axes could be combined to realize a group which performs coordinated motions in a
specific coordinate sys-tem. The single axis block from CompactMotion_AC500 Library will be
available too, and have to be combined with the group-block to realize the complete function-
ality. The Group-Block does not realize a position control or direct access to an axis, therefore
the CompactMotion_AC500 library is used for this.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2687

Fig. 264: architecture

The COMC_GROUP_CARTESIAN supports interpolation in a 3-dimensional Cartesian space.
The MCS AXES repre-sent the 3 axes for this system. Depending on the mechanical construc-
tion, 3 or more real axes are necessary to realize the 3 dimensional movement. These are
named ACS AXES and linked by a kinematical transformation to the MCS AXES.

State transitions
As the single axis and the group are related, the state machines for both are connected. The
following description gives an overview:

Fig. 265: state machine for group

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2688

● Precondition: The ACS axes are in state StandStill
● Postcondition:

– The group changes to state GroupStandby.
– The ACS axes and MCS axes changed to Synchronized Motion. All axes could be

moved by the group.

● Precondition: None
● Postcondition:

– The group changes to state GroupDisabled.
– The ACS axes change from Synchronized Motion to StandStill or keep their state if not

in Synchronized Motion.
– The MCS axes change to state Disabled.

● Precondition: The group is in state Standby or GroupMotion.
● The group changes to state GroupMotion.
● When a MCS or ACS movement was executed, the group state has to be checked before a

group block can be started.

● Precondition: The group was in a state other then Disabled or ErrorStop.
● Postcondition: The group is changed to AXES_MOVING_MCS or AXES_MOVING_ACS, as

soon as ALL axes are in StandStill again, they will automatically be changed to Synchron-
ized Motion and the group will change to GroupStandby.

● Precondition: None
● Postcondition: The group state is set to Disabled. The MCS axes are set to Disabled.

● Precondition: None
● Postcondition: The group state is set to ErrorStop.

● Precondition: None
● Postcondition: The group state is set to Disabled. The MCS axes are set to Disabled.

General restrictions
Table 173: Function blocks realized in CoordinatedMotion_AC500
Administrative Motion
Coordinated Coordinated Synchronized
MC_GroupEnable MC_GroupStop MC_SyncAxisToGroup

MC_GroupDisable MC_GroupHalt MC_SyncGroupToAxis

MC_SetCartesianTransform MC_GroupInterrupt

MC_SetCoordinateTransform MC_GroupContinue

MC_ReadCartesianTransform MC_MoveLinearAbsolute

MC_ReadCoordinateTrans-
form

MC_MoveLinearRelative

MC_GroupReadActualPosi-
tion

MC_MoveCircularAbsolute

MC_GroupReadActualVelocity MC_MoveCircularRelative

MC_GroupEn-
able

MC_GroupDis-
able

MC_Move…
applied to
GROUP

Any axis
changes its
state (other then
Disabled or
ErrorStop)

Any ACS axis
changes its
state to Error-
Stop
Any MCS axis
changes its
state to Error-
Stop
Any axis
changes its
state to Disa-
bled

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2689

Administrative Motion
Coordinated Coordinated Synchronized
MC_GroupReadStatus MC_MoveDirectAbsolute

MC_PathSelect MC_MoveDirectRelative

 MC_MovePath

Table 174: Additional ABB specific function blocks
Function block Comment
MCA_SetCoordinateTransformation
Ä Chapter 1.5.9.7.3.3 “MCA_Set-
CoordinateTransformation”
on page 3016

Replaces MC_SetCartesianTransform

MCA_SetDynamicFollower
Ä Chapter 1.5.9.7.3.4 “MCA_SetDy-
namicFollower” on page 3018

Replaces MC_TrackRotaryTable, MC_TrackConveyor-
Belt and MC_SetDynCoordTransform

MCA_PathEvent
Ä Chapter 1.5.9.7.3.2 “MCA_PathE-
vent” on page 3015

Set a binary signal output related to path positions

MCA_MoveHelixRelative
Ä Chapter 1.5.9.7.3.1 “MCA_Move-
HelixRelative” on page 3008

Allows a circular movement > 2Pi and a coordinated
vertical movement

MCA_MovePathPos
Ä Chapter 1.5.9.7.3.5 “MCA_Move-
PathPos” on page 3022

A path movement with an included previous positioning
to start position

The following extended inputs and outputs at the function blocks are not realized:
● BufferedMode: The realization just supports by default the “Aborting” mode.
● TransitionMode: The realization just supports by default a transition starting with the actual

velocity.
● TransitionParameter: Not supported.
● CoordSystem: Set by default when using the specific group or function block.

When CoordSystem is available as an input, the type is MC_COORD_SYSTEM with values:
● MC_DEFAULT_COORD = the last activated coordinate system, MCS or PCS
● MC_MCS_COORD
● MC_PSC_COORD
A movement which is executed in a specific coordinate system also switches the group to the
specified system.
To access the axes in ACS system, specific function blocks are used or the information has to
be retrieved from the ACS axes directly.

Usage of function blocks
The basic function block is COMC_GROUP_CARTESIAN. Ä Chapter 1.5.9.7.1.20
“COMC_GROUP_CARTESIAN” on page 2994 It has to be called every cycle and at least once
before any MC… function block is activated.

Restrictions to
be considered

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2690

Coordinate transformations
Different transformations may be used to transfer the data from MCS to ACS (axes coordinate
system) and back. Just the actual positions and reference positions are transferred, as shown in
the diagram below.

COMC_GROUP_CARTESIANX_AXIS (AXIS_REF)
Y_AXIS (AXIS_REF)
Z_AXIS (AXIS_REF)

CMC_MOTION_KERNEL_REAL

AXIS[N]
(AXIS_REF)

.

.

.

MC_MoveLinear…
MC_MovePath

Actua l Pos ition

fwd

Coordina ted Cartes ian
move

inv

Control pos ition
controlMode=1

Single
cartes ian
move

direct
move

ACS AXES

controlMode
=2

MCS AXES

CMC_MOTION_KERNEL_REAL

CMC_MOTION_KERNEL_REAL

CMC_MOTION_KERNEL_REAL

CMC_MOTION_KERNEL_REAL

Kinematica l Trans formation

Fig. 266: Data flow for actual and reference position

The controlMode is switched internally and creates a different flow for control position,
depending on the required movement, e.g if a direct movement on joints or a cartesian move-
ment is required.

The actual position is always received from the ACS axes and transferred to the MCS axes by
the forward transformation.
In a coordinated group movement or in a movement of cartesian axes, the reference position is
transferred from the MCS axes to the ACS axes by the inverse transformation.
In case of a direct movement or a movement of ACS axes, the reference position is transferred
by the forward transformation from ACS axes to MCS axes.
The calculation of actual positions is executed as follows:

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2691

Fig. 267: Calculation of actual positions and reference positions for coordinated axes

The user is free to define an own algorithm for transformation of coordinates.
The basic structure is given by the function block TRANSFORMATION_1_1. It does a 1:1
transformation. Any other transformation has to be created following the same structure.
For 1_1 Transformation, no different configurations are possible, nextCONFIGURATION = 0.

Structure of TRANSFORMATION_1_1
As an example, the TRANSFORMATION_1_1 is shown. To create an own transformation, this
function block could be used and modified. The modified function block may have additional
inputs and outputs. The functionality is realized by using different actions. Actions named
ACTION_GENERIC_xxx are not allowed to change. Actions named ACTION_APP_xxx have to
be changed according to the required transformation.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2692

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: WORD
Required configuration, if more than 1 solution for forward transformation is possible.

Data type: LREAL
Minimal position for Cartesian axis 1.

Data type: LREAL
Maximal position for Cartesian axis 1.

Data type: LREAL
Minimal position for Cartesian axis 2.

Data type: LREAL
Maximal position for Cartesian axis 2.

Data type: LREAL
Minimal position for Cartesian axis 3.

Data type: LREAL
Maximal position for Cartesian axis 3.

setConfigura-
tion

MIN_POS_1

MAX_POS_1

MIN_POS_2

MAX_POS_2

MIN_POS_3

MAX_POS_3

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2693

Data type: POINTER TO LREAL
Actual position, to be used at the corresponding CMC_MOTION_KERNEL… function block.

Data type: POINTER TO LREAL
Actual position, to be used at the corresponding CMC_MOTION_KERNEL… function block.

Data type: POINTER TO LREAL
Actual position, to be used at the corresponding CMC_MOTION_KERNEL… function block.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description
Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: WORD
Active configuration.

Data type: WORD
Configuration which will be reached by the next direct movement, if more than one solution for
forward transformation is possible and isConfiguration differs from setConfiguration.

Data type: BOOL
PCS (Product Coordinate System) is activated, group movements are executed related to PCS
instead MCS and tracking (e.g. Conveyor tracking) is possible.

pACT_X_POSI-
TION

pACT_Y_POSI-
TION

pACT_Z_POSI-
TION

AxesGroup

Error

ErrorID

isCONFIGURA-
TION

nextCONFIGU-
RATION

isActivePCS

Structure of
actions within a
transformation

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2694

The functionality is realized in different actions. All actions named “ACTION_GENEREC_xxx”
don´t need to be changed for different transformations. The actions “ACTION_APP_xxx” need
to be changed according to the transformation needed. A constant is needed to define the
number of ACS axes. This has to be modified according to the transformation.
VAR CONSTANT
 (**NUMBER*)
 N_ACS_AXES:WORD:=3;
END
The minimal and maximal positions are not mandatory. It depends on the transformation if these
are necessary or if additional limits have to be considered.

● ACTION_APP_INDEX calculates the index and address for the used TRANSFORMATION-
Block. The name of the actual block has to be used
– TransformationIndex:=INDEXOF(Transformation_1_1).
– Use the name of your own transformation block here.

● ACTION_APP_CONF_GET_ACT: Take the actual positions of ACS axes and determine the
mechanical configuration actually used, write the result to isCONFIGURATION.

● ACTION_APP_FORWARD: Hold the forward transformation and calculates the actual posi-
tion by using the actual positions from ACS axes and creating X_FORWARD, Y_FORWARD
and Z_FORWARD.

● ACTION_APP_INVERSE: Holds the inverse transformation and calculates the positions
POS1, POS2 and POS3 from the input in X_FORWARD, Y_FORWARD and Z_FORWARD.
POS1, POS2 and POS3 are used as reference positions to the ACS axes or as destination
positions to the ACS axes in case of a direct movement.

● ACTION_GENERIC_ACTUAL: Not to be modified. Uses X_FORWARD, Y_FORWARD and
Z_FORWARD and calculates the actual positions ACT_X_POSITION, ACT_Y_POSITION
and ACT_Z_POSITION by involving the dynamic transformation, if activated. These position
values are calculated in [u]. They have to be used at position input for the MCS axes,
instead of an actual position directly received from the drive.

● ACTION_GENERIC_CONF_CHANGE: Not to be modified.
● ACTION_GENERIC_CONF_USE_ACT: Not to be modified
● ACTION_GENERIC_FWD_DEST: Not to be modified.
● ACTION_GENERIC_STATE: Not to be modified.

Responsibilities
of different
actions

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2695

All input
paranmeters

ok?

ERROR:=TRUE
ERRORID:=3 RETURN

doDest? ACTION_GENERIC_CONF_CHANGE
ACTION_GENERIC_INV_DEST RETURN

ACTION_GENERIC_STATE

doWriteControl

NO

YES

NO

ACTION_GENERIC_CONF_USE_ACT

MCS_AXES
<> 0?

YES

ControlMode=
2 ?

YES

Read actual_control_position from ACS axes
ACTION_APP_FORWARD

isActivePCS ?

Use result from ACTION_APP_FORWARD and
perform forward transformation from

GROUP.TRANSFORMATION.dynamik

Write result to reference position
REFERENCE_POSx

YES

ERROR:=TRUE
ERRORID:=1 RETURN

ControlMode=1
?

YES

isActivePCS ?

perform inverse transformation from
GROUP.TRANSFORMATION.dynamik with

actual_control_position from MCS axes

YES

Use actual_control_position
from MCS axes

ACTION_APP_INVERSE
Write result to reference position

REFERENCE_POSx

ACTION_GENERIC_ACTUAL
ACTION_GENERIC_STATE

Write REFERENCE_POSx to
actual_control_Position of MCS_AXES

ERROR ? RETURN
YES

ControlMode=2
?

RETURN

YES

Write REFERENCE_POSx to
actual_control_Position of ACS_AXES

ControlMode=1
?

RETURN

YES

TRANSFORMATION_user

YES

Fig. 268: Flowchart for the transformations implementation

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2696

Change of configurations
It might be possible to reach the same target position by using different mechanical configura-
tions, e.g. elbow_up and elbow_down in a SCARA robot.

For changing the configuration, a direct movement has to be executed.
When different configurations are possible, the following situations have to be considered:
● No change in configuration is required: setConfiguration=nextConfiguration=isConfiguration
● The configuration should be changed: setConfiguration<>nextConfigurtion=isConfiguration

start a direct movement: setConfiguration=nextConfiguration<> isConfiguration
movement to required position is ready: setConfiguration=nextConfiguration=isConfiguration

Different actions have to consider the configuration:
● ACTION_APP_CONF_GET_ACT: generate a value for the actual active configuration form

the ACS axes actual positions. Write the result to isCONFIGURATION.
● A new desired configuration could be written to the input setCONFIGURATION. This will be

used when a di-rect movement is performed and will be written to nextCONFIGURATION.
● When no change in configuration is performed, the values setCONFIGURATION, nextCON-

FIGURATION and isCONFIGURATION will be identical.
● The action ACTION_APP_FORWARD should use the value from nextCONFIGURATION to

calculate its result.

PCS (Product Coordinate System)
Basically, the MCS axes represent a 3 dimensional Cartesian space.
It is linked with the used “TRANSFORMATION” function block to the ACS axes which are the
real movement axes.
The MCS has a fixed origin and the 3 axes X,Y,Z follow the right hand rule.
It is possible to use a PCS for all movements of the cartesian axes.
The PCS is activated with MCA_SetCoordinateTransformation.
The calculation is implemented by a homogeneous transformation using a FORWARD matrix to
transform MCS to PCS and an INVERSE matrix to transform PCS to MCS coordinates.
The PCS is a Cartesian system as well and might be turned and shifted and use different
scaling compared to the MCS system.
A matrix without modification would have the following values:

A matrix which does a shift of the coordinate system will look as follows:

Sequence in
changing the
configuration

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2697

For transformation from MCS to PCS, the forward matrix means:
● The first line points the direction of PCS X-Axis, with respect to MCS
● The second line points the direction of PCS Y-Axis, with respect to MCS
● The third line points direction of PCS Z-axis, with respect to MCS
So the lines represent the vector for the new coordination systems axes. If the length for a line
is different from "1", it means the new system has also a different scaling.
The matrix might be created by using the function “COMC_TeachCartesianTransformation”.
This block allows teaching the relation between MCS and PCS.

How to switch the coordinate system
The PCS coordinate system allows to move the group in relation to a certain product workspace
and not just in relation to the machines coordinates. It is also possible to follow a moving
product by utilizing the PCS coordinate system. And move it continuously.

Table 175: Available function blocks for doing so
Function
block

Step Activation
time

Used data
format

Dynamic From ➙ To

MCA_Set-
Coordinate-
Transforma-
tion

Step 1 Enable Matrix Yes MCS ➙ PCS

MC_SetCoor-
dinateTrans-
form

Step 1 Execute Matrix While Exe-
cute=true

MCS ➙ PCS

MCA_SetDy-
namicFol-
lower

Step 2 Enable Translation/
Rotation

Yes PCS ➙ PCS'

MC_SetCarte-
sianTransform

Step 2 Execute Translation/
Rotation

While Exe-
cute=true

PCS ➙ PCS'

The function blocks with input Enable will be activated immediately with Enable=TRUE. The
function blocks with “Execute” will be enabled with the next movement after Execute=TRUE.
The function blocks with “Enable” will be deactivated with Enable=FALSE. The function blocks
with “Execute” will be deactivated when an other transformation is activated.

Any step 2 transformation can just be active while a step 1 transformation is in place. The step 1
transformation function blocks will allow dynamic transformation while Execute=TRUE. “Frozen”
values will be used with Execute=FALSE after once activated.
It is possible to do the transformation in 2 steps.
Step 1 is a precondition for any of the step 2 Funciton Blocks. The matrix used in step 1 is
a more complete way to setup a PCS coordinate system, as it would also allow modifying the
scaling for any axis in addition to translation and rotation. The forward and inverse matrix can be
gained by using the COMC_TeachCartesianTransformation function block.
It is also possible to use the matrix in a dynamic way, e.g. modifying the values on the fly, but
as usually the dynamic requirement is restricted to a specific translation or rotation, a step 2
function block can be used for this, once the PCS system has been set up.

Activation time

Step

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2698

The step 2 function blocks allow to use translation vectors in X, Y, Z direction and rotation
angles for a rotation around X, Y, Z coordinate axis.

This transformation would modify the actual position as follows, when it is applied to the group
in StandStill with the given parameter.

 PCS, PCS' PCS, PCS'
X 0, 0 0, -18

Y 0, 0 0, 10

Z 0, 0 0, 0

A group-movement to position 0,0,0 will move the group to the origin of the new PCS coordinate
system.
When the function block MCA_SetDynamicFollower is enabled with TransX=0 and TransY=0
and the values are applied to the activated function block, the group will keep its PCS position
constant and follow the translation. This will result in a real movement and modify the ACS and
MCS positions.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2699

 PCS, PCS' PCS, PCS'
X 0, 0 18, 0

Y 0, 0 -10, 0

Z 0, 0 0, 0

When an additional rotation is applied (in this case RotAngleZ), this rotation is done with respect
to the original PCS coordinate system. When a rotation should be done related to the “new”
PCS’ system, the translation vector has to be applied to the matrix which builds the PCS
system.

In the forward matrix, the values a,b,c match –TransX, -TransY and –TransZ. In the inverse
matrix, the values a,b,c match TransX,TransY and TransZ.

How to teach the conversion matrix
When the group is activated in the MCS coordinate system, it is possible to teach the matrix
(inverse and forward) which is necessary to reach the PCS coordinate system. 4 points are
needed to do so. They should not be in a line or on the same level, they need to be
3-dimensional independent. Ä Chapter 1.5.9.7.1.21 “COMC_TeachCartesianTransformation”
on page 2996

Dynamic coordinate transformation
When a PCS is active, it is also possible to activate a dynamic coordinate transformation in
addition which would allow move the axes in relation to a moving product. To do this, the
function block “MCA_SetDynamicFollower” has to be used (also MC_SetCartesianTransform
would be possible). With this function block, a movement in X and Y direction (related to PCS
coordinates) and a rotation around the z-axis is possible.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2700

Related to the FORWARD_MATRIX, this would mean:

With c = cos(alpha) and s = sin(alpha). Alpha is the angle used to turn around the z-axis. When
transformations beyond the “MCA_SetDynamicFollower” options are needed, the matrix could
be directly modified.
1. To move the product in the PCS X/Y plane, use MCA_SetDynamicFollower.
2. To turn the product around the Z-axis of PCS (e.g. rotary table), use MCA_SetDynamic-

Follower.
3. To do both above movements, use MCA_SetDynamicFollower.

The product is moved in 3 dimensions.
Use MC_SetCartesianTransform or manipulate FORWARD_MATRIX and
INVERSE_MATRIX accordingly.

ABB specific data structures
Not all data structures are defined by PLCopen. Some specific structures are described in the
following chapter.

Data structures to be used for MCS-PCS transformation
The data type MC_COORD_REF is foreseen for the MCS->PCS transformation in forward
(MCS to PCS) and inverse (PCS to MCS) direction. The data type is defined as follows:

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2701

The INVERSE_MATRIX should be the inverted matrix to FORWARD_MATRIX. It is not checked
if this is really true, but when this rule is not followed it will not be possible to control the MCS
axes as actual positions and reference positions would differ. According to the formal rules
of matrices math, a square matrix would be necessary to allow inversion. The homogeneous
transformation which is used for coordinate transformations expands the matrices to 4x4, so the
rules are fulfilled.

CoordTransform_neutral:MC_COORD_REF:=
(INVERSE_MATRIX :=(m:=1,0,0,0,1,0,0,0,1,0,0,0),
 FORWARD_MATRIX :=(m:=1,0,0,0,1,0,0,0,1,0,0,0));

Declaration
example

Data structures to be used for moving the group on a path
MC_PATH_REF

This structure is used for moving a Cartesian group on a path. It is evaluated by MC_PathSe-
lect, which creates the structure MC_PATH_DATA_REF to be used for the path movement.
A path movement can be done with the following function blocks:
● MC_MovePath: Move on a path with a defined velocity/in a defined time.
● MC_MovePathPos: Move on a path with a defined velocity/in a defined time including the

movement to the path start position.
● MC_SyncGroupToAxis: Move on a path following a master axis.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2702

For PathMovement and BufferedMovement, the TMConstantVelocity can be used as Transi-
tionMode and will influence the path-movement in a way that the velocity is kept constant,
no matter the angle, as described with buffered movement. It is applied in combination with
mode CORNER_MODE=0 (use CORNER_DISTANCE). This special TransitionMode is added
to MC_PATH_REF. Any other value at TRANSITION_MODE will result in default behavior,
which means a deceleration during a corner, depending on the angle Ä Chapter 1.5.9.7.3.9
“MCA_MoveBuffered” on page 3030.

Data type: LREAL, unit: u
Distance at which the velocity vector start to leave the actual direction and turning towards the
next point. The value has to be >=0.

Data type: LREAL, unit: ms
Time which is used to reach the path-velocity.

Data type: POINTER TO MC_PATH _POINT
Pointer to an array which hold the points on the path.

Data type: DINT
Number of points.

Data type: DWORD
=0 => use CORNER_DISTANCE.
=1 => use CORNER Interpolation.
=0x100 => use CORNER_DISTANCE, but related to MASTER_POSITION (ignore V_PATH).
=0x101 => use CORNER Interpolation, but related to MASTER_POSITION (ignore V_PATH).

Table 176: Available options
CORNER_MOD
E

MC_MovePath/MCA_Move-
PathPos

MC_SyncGroupToAxis

0,1 The movement is executed by time,
calculated based on V_PATH.

The movement is executed by
synchronizing to a master axis.
The master positions are calcu-
lated based on V_PATH which
means V_PATH gives the relation
from slave/master velocity [u(slave)/
u(master)] instead of [u/s].

0x100, 0x101 The movement is executed
by time, calculated based on
MASTER_POSITION. The given
values are interpreted as [s].

The movement is executed by
synchronizing to a master axis.
MASTER_POSITION is used. The
group will reach the given X/Y/Z
point when the master axis reaches
MASTER_POSITION. The points
are not reached exactly but modi-
fied by CORNER_DISTANCE or the
CORNER algorithm.

CORNER_DIS-
TANCE

ACCELERA-
TION_TIME

pPATHPOINTS

NUMBER_OF_P
OINTS

CORNER_MODE

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2703

MC_PATH_POINT
Data type: LREAL, unit: u/s
Path velocity which should be reached from this point to the following point.
The velocity V_PATH is used when the movement is executed by MC_MovePath or
MCA_MovePathPos. The interpolation aims to reach V_PATH as path velocity, so V_PATH
determines the interpolation progress. When using a path movement controlled by a master axis
(MC_SyncGroupToAxis), the MASTER_POSITION is used instead, according to a CAM Table
movement. V_PATH is then ignored.

Data type: LREAL, unit: u
Position for the X-Axis.

Data type: LREAL, unit: u
Position for the Y-Axis.

Data type: LREAL, unit: u
Position for the Z-Axis.

Data type: LREAL
Position for master axis used by MC_SyncGroupToAxis, unit: u.
Time when used with MC_MovePath or MCA_MovePathPos, unit: ms.

Data type: DWORD
Binary pattern which would be displayed by function block MCA_PathEvent.

MC_PATH_DATA_REF
Filled by MC_PATH_SELECT, not to be modified.
The structure MC_PATH_DATA_REF is completely filled out by the function block
MC_PATH_SELECT. The basic data which has to be provided in an array of MC_PATH_POINT
is prepared to be used by the function block MC_MOVE_PATH.

V_PATH

X

Y

Z

MASTER_POSI-
TION

EVENT

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2704

Example for using the path data
1. Create an element of type MC_PATH_REF.

path_description: MC_PATH_REF;
2. Create an array of type MC_PATH _POINT.

path_array: ARRAY[1..7] OF MC_PATH _POINT;
3. Fill the MC_PATH_REF with data.

path_description.ACCELERATION_TIME:=100;(*ms*)
path_description.corner_mode:=0;
path_description.CORNER_DISTANCE:=50;(*mm*)
path_description.N:=7;
path_description.Path:=ADR(path_array);

4. Initialize the path_array itself.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2705

The PathDescription has to be evaluated by MC_PathSelect. The resulting information is trans-
ferred by PathDataRef to the function block MC_MovePath which starts the movement. The
MC_PathSelect just needs to be called once when the PathDescription has been changed.
When the same data is used several times, it is enough to just call the MC_MovePath.
The MCA_PathEvent is an additional ABB specific function block which allows writing an
“Event” value (32Bit) according to the position which is actually reached by the path interpola-
tion. “Event” matches the respective value of EVENT as element of MC_PATH_POINT, when
the group reaches this point.

Interpolation modes available for MC_MovePath
Two different interpolation modes are available:

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2706

Fig. 269: Behavior with CORNER_MODE=0

When CORNER_MODE in MC_PATH_REF is =0, the movement will be executed on the given
path between 2 points until the given CORNER_DISTANCE is reached. Then the direction will
be changed and the TCP will again reach the path from point 2 to point 3 at CORNER_DIS-
TANCE behind point 2.

Fig. 270: Behavior with CORNER_MODE=1

When CORNER_MODE=1 in MC_PATH_REF, the interpolation will meet every given point
but will modify the velocity before the corner to direct the movement towards the next point
and to reach a continuous ve-locity profile while doing so. A cubic interpolation is used from
point-to-point in a way that a smooth velocity curve is achieved in every single direction (X/Y/Z).
The acceleration is not taken in to account and just 3 consecutive points influence every specific
movement.

The following diagram shows the 2 different interpolations for a very simple path.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2707

Fig. 271: POSITION comparison

Table 177: The points are:
X Y
0 0

50 50

100 50

150 50

200 0

150 -50

100 -50

50 -50

0 0

The yellow curve shows the original points, the pink curve the interpolation result for
CORNER_MODE=1 and the blue curve the result for CORNER_MODE=0 with CORNER_DIS-
TANCE=10.
-CORNER_MODE=0: the given path, as a linear movement from point-to-point, is followed, just
at the given distance from the corner (predefined X/Y-point) this path is left and the movement
turned into the direction of the next point.
-CORNER_MODE=1: the interpolation meets the given points, but the linear path is left as a
cubic interpolation is performed to achieve a smooth movement.

A second example is shown with far more points to define the curve. In this case, it seems
almost as if there was no difference between the 2 modes:

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2708

Fig. 272: POSITION comparison

The difference is to be seen when exploring the curve in more detail. In this case, a
CORNER_DISTANCE=1 is used, so the interpolation follows the path somehow “edgy”, while
CORNER_MODE=1 creates a rounded curve.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2709

Fig. 273: POSITION comparison in detail

An even clearer difference is to be seen in the velocity curve:

Fig. 274: VELOCITY comparison

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2710

-with CORNER_MODE=0, a constant velocity is maintained during the linear parts of the path.
Just the section de-scribed by CORNER_DISTANCE (in this case, CORNER_DISTANCE=1) is
used to change direction and velocity.
-with CORNER_MODE=1, a continuous velocity transition is achieved.

Model
Group state diagram

The group state diagram describes the commanded state of the group of axes. It is on top of
the single axis state diagram Ä Chapter 1.5.9.3.2 “The single axis state diagram” on page 2589.
While axes are in a group state, the single axis state diagram is also active per axis. Therefore
interdependencies between the two types of state diagrams exist.
GroupDisabled is the initial state at power up where a group can be created. Issuing
MC_GroupEnable leaves this state.
The next state is GroupStandby. In this state the group is enabled and no function block has
control on one of the axes in the group. In this state the group can additionally be altered and
homed if needed (State GroupHoming).
In the state GroupHoming a homing sequence can be defined for a group of axis. This can be
applicable due to the mechanical constraints of multiple motors. For example in an mechanical
construct looking like the letter “I“ with two motor mechanically coupled via one band or belt
moving over the form of the letter I, need to be homed differently.
If a function block has control on (one of the axis of) the group, the state changes to Group-
Moving.
GroupStopping is a special state that deals with the MC_GroupStop command, which automat-
ically tranfers to the state GroupStandby as soon as Done = SET and Execute = FALSE in
MC_GroupStop.
In case an error arises (in one of the axis) the state changes to GroupErrorStop, which can only
be left via issuing MC_ResetGroup.

Group motion commands will always lead to a Synchronized Motion state in the single axis state
diagram. In case of a GroupStandby all axes of the group are also in single axis state StandStill.
A GroupErrorStop will not lead to ErrorStops of the grouped axes as the error may only affect
the group. In case of a single axis ErrorStop the Group will also change to GroupErrorStop as
the single error effects the group.

The group state diagram reflects the state of the group and the issued function blocks.

Explanations

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2711

Fig. 275: The group state diagram

Relationship single axis and group state diagrams
Example of the relationship between three single axes combined in an axes group.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2712

Fig. 276: Relationship single axis and group state diagrams

When a number of axes are grouped, and a single axis command, like MC_MoveAbsolute, is
issued to an axis in this group, there are basically three options:
● Not allowed. Issuing a single axis command is not accepted and not performed: it signals

this by setting the er-ror output of the applicable (issued) single axis function block. There is
no change to the group, and as such continues their movements.

● Aborting the current group command(s), as well as following group commands, and con-
tinue with the single axis command only. The remaining axes of the group move to the state
StandStill (via an implicit MC_Halt per axis). The original trajectory will not be finalized.

● Superimpose the single axis commands to the group commands.

This specification does not restrict to any of these options. This means that different implemen-
tations of this behavior will exists, and the supplier of the system has to specify what their
system does support.

General rules for the interaction between a single axis towards its groups (for all 3 options
above):
● If at least one axis in the group is moved by a command then the group is in the state

GroupMoving.
● If all axes are in StandStill, the group can be in the state GroupStandby, GroupDisabled or

GroupErrorStop.
● If one axis in a group is in ErrorStop, the whole group is in GroupErrorStop.
● If a single axis MC_Home is issued the group is in state GroupMoving.
● If a single axis MC_Stop is issued the group is in state GroupMoving.
● If supported by the system, it is allowed to disable a single axis of the axis group without

influencing the axes group state. This can be useful to save energy or to apply a mechanical
brake for a single axis not involved in the on-going motion.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2713

General rules for the interaction between a group and the single axis in it (for all 3 options
above):
● If the group is commanded by a group moving command, all the single axes in the group are

in the state Synchronized Motion.
● If the group is in the state GroupStandby, the states of the single axes do not have to be all

in StandStill.
● If the group is in the state GroupErrorStop the state of the single axis is not affected.

Table 178: Overview of the influence of group motion commands on a single axis state
Command Group State Axis State
MC_MoveLinearXxx
MC_MoveCircularXxx
MC_MoveDirectXxx
MC_MovePath
MC_GroupHalt
MC_TrackConveyorBelt
MC_TrackRotaryTable

GroupMoving Synchronized Motion

MC_GroupStop GroupStopping / Group-
Standby

Synchronized Motion / Stand-
Still

MC_GroupReset GroupErrorStop / Group-
Standby

Not relevant for Axis

MC_GroupHome GroupHoming Synchronized Motion

Explanation: A stopping group leaves the single axis in Synchronized Motion as none of the
single axis performs a single axis stop.

Input execution mode
The input MC_EXECUTION_MODE is an ENUM providing information on the behavior of
administrative function blocks.
The modes are:
● Immediately - the functionality is immediately valid and may influence the on-going motion

but not the state.
● Delayed - The functionality is valid when the ongoing motion command sets one of the

following output parame-ters: Done, Aborted or Error. This also implies that the output
parameter Busy is set to FALSE.

● Queued - The new functionality becomes valid when all previous motion commands sets
one of the following output parameters: Done, Aborted or Error. This also implies that the
output parameter Busy is set to FALSE.

General rules
The following chapter explains some rules on the usage of the libraries.
● A general rule is that ALL PLCOpen function blocks which are used for a specific drive

are to be used in the same PLC-task. When multitasking is used for the PLC, it is allowed
to have different drives in different tasks, but all Funciton Blocks belonging to a specific
drive need to be in the same task. There is no multithreading protection for the AXIS_REF
instance.

● The CMC_MotionKernel… and the COMC_Group… function blocks might be in a different
task then the PLCopen Blocks (MC…). All function blocks belonging to the same fieldbus
Communication Module have to be called from the same task.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2714

● When AXIS_REF or AXES_GROUP_REF is used as input on a user defined FUNC-
TION_BLOCK or PROGRAM or FUNCTION, then ALLWAYS use it as VAR_IN_OUT and
NEVER use it as VAR_INPUT or VAR_OUTPUT. The reason is that this would
– Break the consistency and destroy data
– Consume a lot of computing power by copying data.

● The "Min update time" update time for the fieldbus, defined under “PLC Configuration
è Communication Modules[FIX] è <fieldbus master type>” must not exceed the half of the
scantime of the PLC-task. E.g. scantime of PLC-task is 5ms, then "Min update time" should
not be greater than 2ms.

● The functionality of CompactMotion_AC500 library may be combined with the Coordinated-
Motion_AC500 library. All single axis functions could still be used for an axis, even when it is
combined with others to a group .

Axes grouping
Within this specification for interpolation, the related axes are grouped in an “AxesGroup”, and
can be accessed via the type AXES_GROUP_REF. The relationship between the different axis
levels and groups is shown hereunder.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2715

Fig. 277: Overview AxesGroup

The AxesGroup shown in red above provides the interface to the user of the group of axes.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2716

AC500: All group movement is applied to the MCS or PCS axes. The output
“isActivePCS” from the transfor-mation block shows if a PCS system is active.

– isActivePCS=true => all group movement is done in the PCS (product coor-
dinate system).

– isActivePCS=false => all group movement is done in the MCS (machine
coordinate system).

A movement in ACS coordinates could be done by using single axis blocks and
the respective ACS axis as AXIS_REF.

Parameters in the AxesGroupRef can include remaining time and remaining distance before
target position (or velocity or equal) is reached.

Ä Chapter 1.5.9.7.1.20 “COMC_GROUP_CARTESIAN” on page 2994

Axes group synchronized motion
The function blocks MC_SyncGroupToAxis Ä Chapter 1.5.9.7.1.18 “MC_SyncGroupToAxis”
on page 2988 and MC_SyncAxisToGroup Ä Chapter 1.5.9.7.1.19 “MC_SyncAxisToGroup ”
on page 2991 deal with a master/slave relationship between a single or group of axes and a
single or group of axes for coordination purposes.

Fig. 278: Graphical explanation of coordination

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2717

There are two kinds of coordinated motion that have to be distinguished from a programming
point of view and in the realization of the motion control itself. These two modes are identified
here through their names:
● Synchronization
● Tracking

Synchronization
1. Single-axis synchronized to an Axes-Group, Linear synchronization,
2. Single-axis synchronized to an Axes-Group, Non-Linear synchronization (using

MC_CamIn),
3. Axes-Group axis synchronized to a Single-axis, Linear synchronization,
4. Axes-Group axis synchronized to a Single-axis, Non-Linear synchronization (using

MC_CamIn)
5. Axes-Group axis synchronized to an Axes-Group, Linear synchronization,
6. Axes-Group axis synchronized to an Axes-Group, Non-Linear synchronization (using

MC_CamIn).

The relationship
between single
axis commands
and synchron-
ized motion is
shown here.
There are 6 pos-
sibilities of
associations:

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2718

Synchronization of single axis to an axes group
This is an example of a single axis (as slave) synchronized to an axes group (master). The
master follows its path and the slave is linked to the position, velocity, acceleration, or any
other magnitude of the master. An example is glue dispensing, where the amount of glue to
be dispensed is coupled to the velocity of the TCP of the robot. The single axis slave motor
movement of the glue dispenser is coupled to the trajectory of the TCP of the group over the
surface of the object via MC_AxisFollowGroup. Alternatively, if the position information is not
critical, one can use MC_GroupReadActualVelocity, perhaps combined with a gearing factor,
and thus providing the input to the motor of the glue dispenser.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2719

Synchronization of an axes group to a single axis
This mode combines an axes group (as slave) with an axis as master in order that the slave
executes its path with synchronization to the progress of the master, meaning linked to a
1-dimensional source for synchronization.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2720

The robot has to synchronize to the opening phase of the press. A second robot also synchro-
nizes to take the material out. The master is the (single or virtual) axis controlling the press.
The axes group for both robot 1 and robot 2 has to follow the press in a certain area of the
master movement:
Opening for robot 2 to take the product out and closing for robot 1 to add the new product. For
this synchronization the function block MC_SyncGroupToAxis is defined.

Examples here
include press
synchroniza-
tion. As an
example of
synchroniza-
tion between a
master single
axis and a
group can be
the robot
which places
material in a
press machine:

In case the slave is an axes group, a transformation to a virtual axis can be
applicable to generate the 1-dimensional synchronization data. In case both
the master and the slave are axes groups, a virtual master axis on the slave
side is applicable (linked via cam profiles to the different axes) to use the
1-dimensional synchronization data of the master side.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2721

Tracking
Tracking is characterized by an axis group (A) that follows with its movement the movement of a
single axis or another axis group (B). During the coordinated following A is performing a move-
ment/task relative to the movement of B. The tracking data is a multidimensional source incl.
position and orientation. Solutions can include a moving coordinate system or a multidimen-
sional gear functionality. Tracking can be seen as a superposition of two movements, although
these movements are independent. One, which is the movement of the product (moving PCS)
and the second one, which describes the path of the TCP that would be executed if the product
is standing still (Positions have to be defined in PCS). The Position of the PCS and therefore
also the movement of the PCS relative to MCS is described by the coordinate transformation
MCS to PCS. For tracking the following function blocks are defined here: MC_SetDynCoord-
Transform as a general one, and MC_TrackConveyorBelt plus MC_TrackRotaryTable for spe-
cific applications.

The considerations on the limitations of the dynamics or mechanics are imple-
mentation specific.

The basic example for the tracking of an axis group and a single axis is conveyor tracking,
where the robot picks or places parts on the moving conveyor or is putting some crème on
a cake moving on the belt. An example for the tracking of another axes group is having two
robots, where robot B is holding a work piece, and robot A is performing some welding on the
part at the same time B is moving the work piece (see figure.

Basic example:

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2722

Generally there is no difference if A is tracking a single axis or an axis group, when thinking of a
single axis as an axis group having only one axis but also a kinematic (even if it is very simple).
Then concepts of the motion planning as well as of programming are the same.

A second tracking example deals with synchronization of a group and a transportation belt.
The group synchronizes to the belt, which is the master. We have a (simple) Cartesian robot,
consisting of 3 motors moving 3 axis. Application examples are to pick something from the belt
(with a correction in the Z-position), or to put some cream on a cookie that is lying on the belt.

Example:

1 Motor
2 X-axis
3 Y-axis
4 Z-axis
5 TCP

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2723

1.5.9.5 Drive-Based motion control
1.5.9.5.1 Drive-based motion architecture

To connect a real axis to the PLCopen function blocks, a certain driver function block has to be
used for every axis type. These function blocks are named XXX_ACCESS and are realized for
a variety of drives. By creating new driver function blocks, additional drives or additional types of
motion control software might be included.

Fig. 279: Architecture

The usage of the “XXX_ACCESS” is dependent on the different drive types. For all drives,
the structure AXIS_REF holds an element parameter from type AXIS_PARAMETER. This is
initialized with some default values but might be adjusted to the specific application. Ä Chapter
1.5.9.5.2.3 “ACSM1_ACCESS_dc driver unit in decentralized motion control” on page 2725
Ä Chapter 1.5.9.5.3.3 “ACS350_ACCESS_dc” on page 2736

1.5.9.5.2 Realization with ACSM1 on PROFIBUS DP network
General restrictions

Restrictions for the available function blocks
● As buffered mode, MCAborting is realized as a default.
● The “Jerk” is not available at the function block. When it is used, it is possible to send

the respective parameter separately to the drive or to adjust it with the drives configuration
software.

● From the Extended inputs and outputs at the function blocks, the following are not realized:
– BufferedMode: The realization for ACSM1 just supports by default the MCAborting

mode.
– Jerk: A maximum jerk could be adjusted by parameters of the drive.

● For the parameter number (WriteParameter, ReadParameter), the following options are
available:
– The PROFIDRIVE parameter number.
– The ACSM1 parameter number + 40000

This manipulation of the parameter number is necessary to distinguish between the
different types of parameter number.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2724

Preconditions
● An instance of the AXIS_REF structure has to be created.
● A connection to the drives fieldbus interface has to be established.
● The drives parameter need to be adjusted to match the requirements.

Fig. 280: Usage of function blocks

ACSM1_ACCESS_dc driver unit in decentralized motion control

Fig. 281: Function block ACSM1_ACCESS_dc

To make this function block work, the following additional information should be considered:
Ä Chapter 1.5.9.5.3.5 “Adjustment of parameters for drive” on page 2739

Ä Chapter 1.5.9.5.3.6 “MC_VISU_ACS350_mcw, MC_VISU_ACS350_msw” on page 2740

This function block is used as driver unit for PLCopen function blocks with ACSM1 in decentral-
ized Motion Control.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2725

During normal operation, the drive will be completely controlled by the fieldbus interface. For
safety reasons, this could be combined with additional measures through binary inputs on the
drive. So the drive would be in defined state when the fieldbus is not yet initialized or in case of
communication problems. For coordination, the inputs OFF1, OFF2 and OFF3 are available at
the driver unit function block ACSM1_ACCESS_dc. Adjust parameters in Group 10 of the drive
when this additional control should be used. Then connect the binary values OFF1, OFF2 and
OFF3 to the respective inputs.
When the fieldbus interface is ok (shown by REMOTE_OK) OFF1, OFF2 and OFF3 should be
switched to TRUE before the MC_Power function block is enabled. When an emergency stop
should be executed, the sequence depends on the required Stopping mode. (Details can be
found in the drive manual.)
The priority of the signals is as follows: OFF2 > OFF3 > OFF1

CAUTION!
When switching off the drive ACSM1 via the MC_Power and ACSM1_ACC-
SESS_dc blocks, the drive is completely switched off. This results in limited
use of the “brake holding function” of the drive, as for example the drive param-
eter 35.04 BRAKE CLOSE DELAY is no longer effective. This can result in
increased wear of the holding brake depending on the application, in particular
with suspended loads.

1. Use this sequence to power on the drive.
2. Use the following sequence to power on the drive:

Set OFF1 or OFF2 or OFF3 or a combination to FALSE, depending on required stop
mode. This will already reset the internal power-on state machine to the respective
state and change the signals in the fieldbus CW (control word). In addition, disable the
MC_Power function block. A sequence for these two actions is not required, but the
MC_Power will show an error message when it is not disabled while the drive is already
stopped.

If the Enable input at MC_Power is set to FALSE, bit 3 (ENABLE) in the control
word is set to zero.

– If the input OFF1 at the block ACSM1_ACCSESS_dc is set to FALSE: Bit 3
(ENABLE) and Bit 0 (OFF1) in the control word are set to zero.

– If the input OFF2 at the block ACSM1_ACCSESS_dc is set to FALSE: Bit 3
(ENABLE) Bit 0 (OFF1) and Bit 1 (OFF2) in the control word are set to zero.

– If the input OFF3 at the block ACSM1_ACCSESS_dc is set to FALSE: Bit 3
(ENABLE), Bit 0 (OFF1), Bit 1 (OFF2) and Bit 2 (OFF3) in the control word
are set to zero.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2726

Input description

Fig. 282: Function block ACSM1_ACCESS_dc

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: POINTER TO WORD
At this input, the address of the input data from drive to PLC should be connected.

Data type: POINTER TO WORD
At this input, the address of the output data from PLC to drive should be connected.

Data type: BOOL
Stop along the currently active deceleration ramp.

Data type: BOOL
Power off the motor.

Data type: BOOL
Matches Bit3 in parameter POS_STYLE1 (62.09), refer to ACSM1 documentation. Just use it
combined with absolute positioning.

Data type: BOOL
Matches Bit5 in parameter POS_STYLE1 (62.09), refer to ACSM1 documentation. Just use it
combined with absolute positioning.

In case of a linear positioning axis, use input-parameter Direction=SHORTEST
for absolute positioning.

Data type: AXIS_REF
This data structure is needed to connect this driver unit to the PLCopen function blocks.

field_in

field_out

OFF1

OFF2

RESET_POS_SY
S

ROLLOVER

Axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2727

Output description

Fig. 283: Function block ACSM1_ACCESS_dc

Data type: BOOL
This output indicates that no fieldbus connection to the drive is available. When this is shown,
the PLC is not able to control the drive via fieldbus. This has to be considered in the PLC
application to switch off the drive by other measures.

Data type: BOOL
This output indicates that a parameter access was not successful. The reason could be a wrong
parameter number at function block or the drive configuration.

Adjustment of parameters for drive
The drive has to be adjusted to use the PROFIDRIVE profile. To do this and to establish
the PROFIBUS connection to the PLC follow the according documentation. In addition, some
parameters have to be adjusted. These are listed in the following tables. For further commis-
sioning, follow the chapter “Start-Up” in the drives manual (Link setzen auf?).

Parameter Name Value Mnemonic Comment
START/STOP
10.1 EXT1 START

FUNC
3 FBA FBA, 2.12 FBA MAIN CW.

10.4 EXT2 START
FUNC

3 FBA FBA, 2.12 FBA MAIN CW.

REFERENCE CTRL
34.01 Ext1/Ext2 Sel 0 False Select External 1.

34.02 Ext1 Mode 1 or
2 Sel

0 False Model

PROFILE REFERENCE
65.01 PROF REF

SOURCE
2 Fieldbus Means Fieldbus for 65.02..

65.05, the others are configured.

65.22 PROF VEL
REF SEL

4 FBA REF2 Take fieldbus reference for
velocity in PROF VEL MODE.

PROFILE GENERATOR
66.05 POS ENABLE 0 False Logical OR or with CW.

ERR_REMOTE

ERR_PARA

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2728

POS REF LIMIT
77.03 POS REF ENA 0 False Logical OR with reject traversing

task bit.

77.06 POS DECEL
LIM

 Value for deceleration on reject
trav-ersing task.

FIELDBUS
51.01 FBA TYPE 1 Enable

50.02 COMM LOSS
FUNC

1 Fault Trips the drive.

50.03 COMM LOSS
TIMEOUT

X Any timeout.

50.04 FBA REF1
MODESEL

3 Position Ref1 and Act1 as Position.

50.05 FBA REF2
MODESEL

4 Velocity Ref2 and Act2 as Velocity.

50.06, 50.07 x anyway?

50.8,50.9,50.10
,50.11

 to be defined

FBA Settings
51.01 FBA TYPE 1 =PROFIBUS DP Displays the

type of the fieldbus adapter
module.

51.02 NODE
ADDRESS

 According to PLC configuration.

51.03 BAUDRATE According to PLC configuration.

51.04 TELEGRAM
TYPE

5 (= PPO5) Displays telegram type
selected by PLC configuration
tool.

51.05 PROFILE 4 (= PROFIdrive Positioning)Con-
trol word according to the PRO-
FIdrive Positioning mode.

51.27 FPBA PARAM-
ETER
REFRESH

1 Refreshes the fieldbus parame-
ters. Will be set to 0 (done) by
drive.

FBA Data In
52.01 FBA DATA IN1 4 Status word.

52.02 FBA DATA IN2 15 Actual value 1 Position(HW).

 (LW)

52.04 FBA DATA IN4 16 Actual value 2 Velocity(HW)

 (LW)

52.06 FBA DATA IN6 413 POS REF PROF GEN

52.08 FBA DATA IN8 801 ACTIVE FAULT

52.09

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2729

FBA Data Out
53.01 FBA DATA

OUT2
1 Control word.

53.02 FBA DATA
OUT2

12 Reference 1 Position (HW).

 (LW)

53.04 FBA DATA
OUT4

13 Reference 2 Velocity (HW)

 (LW)

53.06 FBA DATA
OUT6

65.06 Acceleration (HW)

53.07 FBA DATA
OUT7

 Acceleration (LW)

53.08 FBA DATA
OUT8

65.07 Deceleration (HW)

53.09 FBA DATA
OUT9

 Deceleration (LW)

53.10 FBA DATA
OUT10

65.09 POS STYLE

POS CORRECTION
62.02 HOMING

STARTFUNC
0 Normal

Start and stop the drive
The following table shows the additional control bits which could be linked to OFF1 and OFF3 at
the function block ACSM1_ACCESS_dc. These additional control bits could be set to "TRUE" to
have full control through Fieldbus interface or could be mapped to binary inputs.

Parameter Name Value Mnemonic Function
START/STOP
10.10 EM STOP

OFF3
1 True

Bit pointer
Default, controlled by Fieldbus.
The drive is stopped along
the emergency stop ramp time,
25.11 EM STOP TIME.

10.11 EM STOP
OFF1

1 True
Bit pointer

Default, controlled by Fieldbus.
Stop along the currently active
deceleration ramp.

The drive will execute an OR-Connection from 10.10 and the OFF3-Bit at the
ACSM1_ACCESS_dc Block to stop along the emergency ramp. With 10.10 = Bit pointer, the
drive might be forced to stop along an emergency ramp without using the PLC to initialize this.
This measure allows managing emergency situations without the PLC.

For example:

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2730

Units for position, velocity, acceleration and deceleration
The PLCopen definition uses as unit for position an abstract unit u, for velocity u/s (u per
second) and for acceleration u/s2 (u per squared second). So it does not matter which unit is
selected, but they need to be in certain relations. To get more information, Technical Units (Link
setzen). The ACSM1 supports this strategy. Adjustments have to be made in group 60. As a
constraint, it has to be considered that although the values are in LREAL-Format at the function
block, they will be transferred as 32-Bit Integer so the 32-Bit Integer defines the limits.

Table 179: Parameters for unit adjustment
Parameter Name Value Mnemonic Comment
POS FEEDBACK
60.01 POS ACT SEL 0, 1 Depends on the drive configura-

tion.

60.02 POS AXIS
MODE

0, 1 Depends on the drive configura-
tion.

60.03 LOAD GEAR
MUL

 Ä Chapter 1.5.9.5.2.7 “Gear
functions” on page 2732

60.04 LOAD GEAR
DIV

 Ä Chapter 1.5.9.5.2.7 “Gear
functions” on page 2732

60.05 POS UNIT 0, 1, 2,
3

REVOLUTION,
DEGREE,
METER, INCH

Determines the abstract unit u.

60.06 FEED CONST
NUM

 Scaling for speed.

60.07 FEED CONST
DEN

60.08 POS2INT
SCALE

 Power of ten Scaling for position (u/s)

60.09 POS RESOLU-
TION

 Determines the number of bits
used for one revolution. Should
be at least 16. The Bits
remaining of the 32-bit integer is
used for the count of whole revo-
lutions.

60.10 POS SPEED
UNIT

0 u/s Speed in units per second or
minute or hour.

60.11 POS
SPEED2INT

 Power of ten Scaling for speed (rev/s)

60.12 POS SPEED
SCALE

1 Scaling for speed, acceleration
and deceleration.

60.13 MAXIMUM
POS

 Depends on the drive configura-
tion.

60.14 MINIMUM POS Depends on the drive configura-
tion.

60.15 POS
THRESHOLD

 Depends on the drive configura-
tion.

● The encoder has 1024 Bits per evolution, that are 10 bits (not relevant for PLCopen),
● The load moves 40 mm per revolution,
● The abstract unit u should be mm.

Some exam-
ples:

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2731

Table 180: Example for unit adjustment
Parameter Name Value Mnemonic Comment
60.05 POS UNIT 2 METER Determines the abstract unit u.

60.06 FEED CONST
NUM

40 Scaling for speed.

60.07 FEED CONST
DEN

1000

60.08 POS2INT
SCALE

1000 1000 (Power of Ten). Scaling for
position.

60.09 POS RESO-
LUTION

16 18 Determines the number of Bits
used per revolution. (Should
be at least 16). Bits used for
number of whole revolutions is
(32 -18 =14) No influence on
PLCopen.

60.10 POS SPEED
UNIT

0 u/s Units per Seconde (per minute,
per hour).

60.11 POS
SPEED2INT

1000 1000 (Power of Ten) Scaling for
speed.

The following
table shows
the adjustment
which are rele-
vant for this
configuration:

Gear functions
In use with a load gear and encoder signals directly from the motor some adjustment of drive
parameters have to be done. The actual position POS ACT (Par 1.12) is calculated as shown,
depending on the load gear parameters 60.03 and 60.04.

Example of gear 1:7 , 7 rev on motor side leads to 1 rev. on load side: Par.60.03 = 1, Par. 60.04
= 7.

In use with a load gear and encoder signals from the load side the actual speed is calculated as
the load speed. This should be compensated with the motor gear function, Par. 22.03 and 22.04
for the speed control.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2732

Example of gear 1:7 , 7 rev on motor side leads to 1 rev. on load side: Par.22.03 = 1, Par. 22.04
= 7.
As POS ACT, Par 1.12 (set in Par 71.01) is used as position input for speed reference the gear
ratio function has to be used to adapt the position for internal speed reference. Par 71.07 =
60.04 x 22.03 and Par. 71.08 = 60.03. x 22.04.

Table 181: Parameters for gear functions
Parameter Name Value Mnemonic Comment
SPEED FEEDBACK
22.03 MOTOR

GEAR MUL
 Numerator for load gear if

load encoder is used for
speed feedback.

22.04 MOTOR
GEAR DIV

 Denominator for load gear
function if load encoder is
used for speed feedback.

POS FEEDBACK
60.03 Numerator for load gear func-

tion if mo-tor encoder is used
for pos. feedback.

60.04 Denominator for load gear
function if motor encoder is
used for pos. feedback.

POSITION CTRL
71.07 GEAR RATIO

MUL
=60.04 x
22.03

 Gear ration function to com-
pensate gear calculation for
speed and/or position 71.07 =!
(60.04 * 22.03).

71.08 GEAR RATIO
DIV

=60.03 x
22.04

 Scaling ratio for load gear
71.08 =!

(60.03*22.04)

● The load gear has 1:7 (7rev of motor =1 rev. of load),
● Encoder on motor side is used for position and speed control.

Some exam-
ples:

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2733

Just the adjustments which are relevant for this configuration are shown below:

Table 182: Example for gear functions
Param-
eter

Name Value Mnemonic Comment

22.03 MOTOR GEAR
MUL

1 Motor gear function if encoder on
load side is used.

22.04 MOTOR GEAR
NOM

1

60.03 LOAD GEAR
NOM

1 Scaling for mech. gear for position
1:7 (7 rev. motor=1 rev. load).

60.04 LOAD GEAR DIV 7

71.07 GEAR RATIO
MUL

7 Scaling for mech. Gear 1:7 (7 rev.
motor=1 rev. load).

71.08 GEAR RATIO
DIV

1

MC_VISU_ACSM1_msw, MC_VISU_ACSM1_mcw
These objects show the main status word and main control word of the drive as it is defined for
Profidrive Profile.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2734

Fig. 284: MC_VISU_ACSM1_mcw, MC_VISU_ACSM1_msw

The colour coding is as follows:
● When the state differs from the expected state (for an active drive) it is shown yellow.
● When the state is equivalent to the expected state (for an active drive) it is shown green.
● An error is shown red.

1.5.9.5.3 Realization with ACS35x on PROFIBUS-DP network
General restrictions

Restrictions for the available function blocks
● As buffered mode, MC_Aborting is realized as a default.
● From the Extended Inputs and Outputs at the function blocks, the following are not realized:
● BufferMode: The realization for ACS35x just supports by default the MC_Aborting mode.
● For all supported PLCopen function blocks the input parameter Jerk will not be used.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2735

● Active
● For the parameter number (WriteParameter, ReadParameter), the following options are

available:
– The PLCopen parameter number
– The ACS35x parameter number: + 40000

This manipulation of the parameter number is necessary to distinguish between the
different types of parameter number.

Preconditions
The usage of function blocks is like the usage for ACSM1 Ä Chapter 1.5.9.5.2.2 “Preconditions”
on page 2725. The corresponding function block ACS350_ACCESS_DC is used to connect
AXIS to the drive.

ACS350_ACCESS_dc

Fig. 285: Function block ACS350_ACCESS_dc

Table 183: General information
Available as of runtime system V1.2

Included in library ACS350_MC_support_AC500_V11.lib

Type Function block without historical values

To make this function block work, the following additional information should be considered:
Ä Chapter 1.5.9.5.3.5 “Adjustment of parameters for drive” on page 2739

Ä Chapter 1.5.9.5.3.6 “MC_VISU_ACS350_mcw, MC_VISU_ACS350_msw” on page 2740

The function block ACS350_ACCESS_dc is used as driver unit for PLCopen function blocks
with ACS35x in decentralized motion control.
During normal operation, the drive will be completely controlled by the fieldbus interface. For
safety reasons, this could be combined with additional measures through binary inputs on the
drive. So the drive would be in defined state when the fieldbus is not yet initialized or in case of
communication problems. For coordination, the inputs EN_OFF1, EN_OFF2 and EN_OFF3 are
available at the driver unit function block ACS350_ACCESS_dc. When the fieldbus interface is
ok (shown by ERR_REMOTE=FALSE) EN_OFF1, EN_OFF2 and EN_OFF3 should be switched
to "true" before the MC_Power function block is enabled. When an emergency stop should be
executed, the sequence depends on the required Stopping mode. (Details could be found in the
drive manual.) The priority of the signals is as follows:
EN_OFF2 >EN_OFF3> EN_OFF1

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2736

Do the following to power off:
Set EN_OFF1 or EN_OFF2 or EN_OFF3 or a combination to "false", depending on required
stop mode. This will already reset the internal power-on state machine to the respective state
and change the signals in the fieldbus CW. In addition, disable the MC_POWER function block.
A sequence for these 2 actions is not required, but the MC_POWER will show an error message
when it is not disabled while the drive is already stopped.

Input description

Fig. 286: Function block ACS350_ACCESS_dc

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: POINTER TO WORD
At this input, the address of the input data from drive to PLC should be connected.

Data type: POINTER TO WORD
At this input, the address of the output data from PLC to drive should be connected.

Data type: BOOL
Stop along the currently active deceleration ramp.

Data type: BOOL
Power off the motor.

Data type: BOOL
The drive is stopped along the emergency stop ramp time.

Data type: WORD
Units per revolution.

Data type: WORD
Units per revolution.

field_in

field_out

EN_OFF1

EN_OFF2

EN_OFF3

PARA_u_per_re
v_nominator

PARA_u_per_re
v_denominator

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2737

Data type:WORD
Maximum value for rotations per minute.

Data type: AXIS_REF
This data structure is needed to connect this driver unit to the PLCopen function blocks.

Output description

Fig. 287: Function block ACS350_ACCESS_dc

Data type: BOOL
This output indicates that no fieldbus connection to the drive is available. When this is shown,
the PLC is not able to control the drive via fieldbus. This has to be considered in the PLC
application to switch off the drive by other measures.

Data type: BOOL
This output indicates that a parameter access was not successful. The reason could be a wrong
parameter number at function block or the drive configuration.

Units for position, velocity, acceleration and deceleration
The PLCopen definition uses as unit for position an abstract unit [u], for velocity [u/s](u per
second) and for acceleration [u/s2](u per squared second). So it does not matter which unit is
selected, but they need to be in certain relations. The ACS35x follows a different this strategy.
To establish the conversion of different units, the parameters:
● PARA_MAX_RPM
● PARA_U_PER_REV_NOMINATOROR
● PARA_U_PER_REV_DENOMINATOR

Have to be adjusted at the function block ACS350_ACCESS_DC.

PARA_max_rpm

Axis

ERR_REMOTE

ERR_PARA

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2738

● The motor moves at maximum with 1500 rpm.
● It is planned to use revolutions as unit, so the velocity will be in revolutions/second and

the acceleration and deceleration will be in revolutions/s2

– PARA_MAX_RPM=1500
– PARA_U_PER_REV_NOMINATOR=1
– PARA_U_PER_REV_DENOMINATOR=1

● It is planned to use degrees as unit, so the velocity will be in degrees/second and the
acceleration and deceleration will be in degrees/s2

– PARA_MAX_RPM=1500
– PARA_U_PER_REV_NOMINATOR=360
– PARA_U_PER_REV_DENOMINATOR=1

Some example:

Adjustment of parameters for drive
The drive has to be adjusted to use the ABBdrive profile. To do this, and to establish the
PROFIBUS connection to the PLC you have to follow the according documentation. In addition,
some parameters have to be adjusted. These are listed in the following tables. For further
commissioning, follow the chapter "Start-Up" in the drives manual.

Table 184: Parameter adjustment for ACS35x
START/STOP
Parameter Name Value Mnemonic Comment
10.1 EXT1 START

FUNC
10 KOMM Fieldbus Interface

11.2 EXT1/EXT2 0 EXT1 FBA, 2.12 FBA MAIN
CW

11.3 AUSW.EXT
SOLLW1

8 KOMM

16.1 FREIGABE 8 KOMM

16.4 FEHL QUIT 8 KOMM

22.1 BE/VERZ 1/2
AUSW

0 False Select 22.02..22.04

FIELDBUS
FBA Settings
Parameter Name Value Mnemonic
51.01 FBA TYPE 1 =PROFIBUS DP Dis-

plays the type of
the fieldbus adapter
module.

51.02 NODE
ADDRESS

 According to PLC
configuration.

51.03 BAUDRATE According to PLC
configuration.

51.04 TELEGRAM
TYPE

2 (= PPO2) Dis-
plays telegram type
selected by PLC
configuration tool.

51.05 PROFILE 1 (= ABB drive)

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2739

FIELDBUS
FBA Data In
Parameter Name Value Mnemonic
54.01 FBA DATA IN1 4 Status word

54.02 FBA DATA IN2 5 Actual value 1

54.03 FBA DATA IN3 401 Actual fault

54.04 FBA DATA IN4

54.05 FBA DATA IN5

54.06 FBA DATA IN6

FIELDBUS
FBA Data Out
Parameter Name Value Mnemonic
55.01 FBA DATA

OUT2
1 Control word

55.02 FBA DATA
OUT3

2 Reference 1

55.03 FBA DATA
OUT4

2202 Acceleration

55.04 FBA DATA
OUT5

2203 Deceleration

55.05 FBA DATA
OUT6

55.06

FIELDBUS
Options
Parameter Name Value Mnemonic Comment
98.02 Comm Prot Sel 2 EXT FBA Select of external

fieldbus adapter

MC_VISU_ACS350_mcw, MC_VISU_ACS350_msw
These objects show the main status word and main control word of the drive as it is defined for
Profidrive Profile.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2740

Fig. 288: MC_VISU_ACS350_mcw, MC_VISU_ACS350_msw

The colour coding is as follows:
● When the state differs from the expected state (for an active drive) it is shown yellow.
● When the state is equivalent to the expected state (for an active drive) it is shown green.
● An error is shown red.

1.5.9.5.4 Realization with FM562
Special function blocks are available to manage and control the function of the FM562 module.
These function blocks are contained in PTO Library PTO_FM562_MC_support_V22.lib and
PLCopen Libraries MC_Base_AC500_V11.lib and MC_Blocks_AC500_V11.lib.
PLCopen Library contains modular function blocks based on PLCopen motion control standard
and can be used for various motion devices e.g: ACSM1, ACS35x, ACS800, E100, E150 and
FM562.
PTO Library provides function blocks that adapts specific PLCopen function blocks to FM562
PTO module and also adds other specialized function for FM562.

Restrictions for the available function blocks
● Buffered mode is not implemented
● The Jerk is defined as a fixed value. When it is to be used, set “0” as “Jerk off” and “1” as

Jerk on.
● State cannot be changed between Discrete Motion and Continuous Motion directly, state

error will be generated.
● By executing function block MC_Reset, the state will transfer from ErrorStop to StandStill as

well as resetting the current axis position to 0.

General restric-
tions

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2741

PTO_FM562_ACCESS adapts specific PLCopen blocks to FM562

Table 185: General information
Available as of runtime system V2.2

Included in library PTO_FM562_MC_support_V22.lib

Type Function block without historical values

The function block PTO_FM562_ACCESS is used to adapt specific PLCopen blocks to FM562
module and also adds other specialized function for FM562.
PLCopen function blocks must be used with function block PTO_FM562_ACCESS for realizing
positioning and speed control with FM562. PTO_FM562_ACCESS supported PLCopen function
blocks are:
● MC_MoveAbsolute Ä Chapter 1.5.9.6.1.1 “MC_MoveAbsolute” on page 2747
● MC_MoveRelative Ä Chapter 1.5.9.6.1.2 “MC_MoveRelative” on page 2751
● MC_MoveVelocity Ä Chapter 1.5.9.6.1.6 “MC_MoveVelocity” on page 2767
● MC_Power Ä Chapter 1.5.9.6.3.2 “MC_Power” on page 2835
● MC_Reset Ä Chapter 1.5.9.6.3.5 “MC_Reset” on page 2842
● MC_Stop Ä Chapter 1.5.9.6.1.9 “MC_Stop” on page 2781
● MC_SetPosition Ä Chapter 1.5.9.6.3.13 “MC_SetPosition” on page 2858
● MC_ReadStatus Ä Chapter 1.5.9.6.3.3 “MC_ReadStatus” on page 2837
● MC_ReadActualPosition Ä Chapter 1.5.9.6.3.10 “MC_ReadActualPosition” on page 2852
● MCA_MoveVelocityContinuous Ä Chapter 1.5.9.6.5.4 “MCA_MoveVelocityContinuous”

on page 2882

Description

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2742

Input description

Data type: BOOL
In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The function block is not processed if input EN = FALSE. While input is set to TRUE, the inputs
are continuously checked for validity and plausibility.

Data type: DINT, range: 0001 to FFFF hex (1 to 2147483647)
These three parameters shall be used together for scaling, which are only be changed when
PLCopen state machine is in “Disable” or when MC_Power is OFF.
Pulses per revolution depend on specific stepper drive/motor, how many pulses need to be
created to turn 1 revolution.
When 1 revolution move e.g 40 mm, 1 mm is used as unit: UNITS_PER_REV_NOM=40 and
UNITS_PER_REV_DENOM=1
When using additional gearbox 1:3: UNITS_PER_REV_NOM=40 and
UNITS_PER_REV_DENOM=3
When using angle as unit: U_PER_REV_NOMINATOR=360, UNITS_PER_REV_DENOM=1
When working with revolutions 1 u = 1: UNITS_PER_REV_NOM=1,
UNITS_PER_REV_DENOM= 1

Data type: WORD, range: 0001 to FFFF hex (1 to 65,535 u/s2)
Fast deceleration for stopping CPU, set before the operation starts. The fast deceleration ramp
is "FAST_DEC" multiples "increments per unit" (scaling).

Data type: WORD, range: 0001 to FFFF hex (1 to 65,535 u/s2)
Emergency deceleration: for configurable digital input 1 "DI1" is configured as "Stop". When
"emergency stop" DI1 is triggered (DI1=TRUE), PTO will decelerate with "EMCY_DEC" decel-
eration. The emergency deceleration ramp is "EMCY_DEC" multiples "increments per unit"
(scaling).

EN (enable)

PULSE_PER_RE
VO (pulse per
revolution),
UNITS_PER_RE
VO_NOM DINT
(units per revo-
lution nomi-
nator),
UNITS_PER_RE
VO_DENOM
DINT (units per
revolution
denominator)

FAST_DEC (fast
deceleration)

EMCY_DEC
(emergency
deceleration)

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2743

Data type: WORD, range: 0001 to FFFF hex (1 to 65,535 u/s2)
Limit deceleration: for configurable digital input 0 "DI0" is configured as "Enable (external hard-
ware enable)". During operation digital input DI0=TRUE which shows external 24 V digital input.
When "right/left limit stop" is triggered which means the external 24 V digital input is disabled
(DI0=FALSE), PTO will decelerate with "LIM_DEC" deceleration rate. The limit deceleration
ramp is "LIM_DEC" multiples "increments per unit" (scaling).

Data type: POINTER TO WORD
Pointer to structure of FM562 inputs. At this input, the address of the first input data from the
structure of FM562 input should be connected. The use of an ADR operator is needed.

Data type: POINTER TO WORD
Pointer to structure of FM562 outputs. At this input, the address of the first output data from
the structure of FM562 output should be connected. The use of an ADR operator is needed.
The operand address of the first input and output data of each axis of FM562 must be mapped
to input ADR_IN and ADR_OUT. Define and create configuration data will be emerged automati-
cally as global variable after creating configuration data.

Data type: AXIS_REF
Reference to the axis.

Output description

Data type: BOOL
The output DONE signals the completion of the process triggered with the EN input. After
finishing of the process (pulse output finished or pulse output stopped), DONE is TRUE.

Data type: BOOL
Output BUSY shows pulse output status, after pulse output start and before it finished/stopped/
error occurred, the BUSY output will continuously be TRUE.

LIM_DEC (limit
deceleration)

ADR_IN
(address of
process image
input)

ADR_OUT
(address of
process image
output)

Axis

DONE (done)

BUSY (busy)

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2744

Data type: BOOL
Output DI0 indicates the status of digital input0 or input2. The digital input0 or input2 can be
configured by FM562 configuration in CBP. If input0 or input2 is configured as "Axis enable/
Limit switch" (external hardware enable), then DI0=TRUE or DI2=TRUE indicates that input0 or
input2 is connected with 24 V input; DI0=FALSE or DI2=FALSE indicates input0 or input2 is not
connected with 24 V, so PTO will stop output. If input0 or input2 is configured as "No function",
PTO will be in operation without reading status of input0 or input2.

Fig. 289: Output DI0

DI0 (digital input
0 or digital input
2)

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2745

Data type: BOOL
Output DI1 indicates the status of digital input1 or digital input3. The digital input1 or input3 can
be configured by FM562 configuration in CBP. If DI1 is configured as “Stop”, then if DI1=TRUE,
PTO output is emergently stopped. If DI1 is configured as “No function”, PTO will be in opera-
tion without reading states of DI1. If DI1 is configured as “Registration”, current pulse number is
recorded and can be checked on FM562 IO mapping when DI1=TRUE.

Fig. 290: Output DI1

Data type: BOOL
Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an
error occurred, the error number can be read at output ERNO.

Data type: WORD
ERNO always has to be considered together with the output ERR. The value output at ERNO is
only valid if ERR is TRUE.

Quick start documentation for FM562
A quick start documentation for FM562 can be found in the folder C:\Users\Public\Docu-
ments\AutomationBuilder\Examples.

DI1 (digital input
1 or digital input
3)

ERR (error)

ERNO (error
number)

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2746

1.5.9.6 PLCopen function blocks (Single and multi axis)
1.5.9.6.1 Single-Axis function blocks
MC_MoveAbsolute

Fig. 291: Function block MC_MoveAbsolute

Table 186: General information
Available as of runtime system V2.2

Included in library MC_Block_AC500_V11.lib

Type Function block with historical values

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

This function block commands a controlled motion to a specified absolute position.

– This action completes with velocity zero if no further action are pending,
– If there is only one mathematical solution to reach the commanded position

(like in linear systems), the value of the input direction is ignored,
– For modulo axis - valid absolute position values are in the range of [0, [360,

(360 is excluded), or corresponding range. The application, however, may
shift the commanded position of MC_MoveAbsolute into the corresponding
modulo range. For relative positions, modulo 360 is applicable.

– The Enum type "shortest_way" is focused to a trajectory which will go
through the shortest route. The decision which direction to go is based on
the current position where the command is issued.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2747

The following figure shows two examples of the combination of two function blocks MC_Move-
Absolute.
The left part of timing diagram illustrates the case if the second function block is called after
the first one. If first reaches the commanded position of 6000 (and the velocity is 0) then the
output Done causes the second Functino Block to move to the position 10000.
The right part of the timing diagram illustrates the case if the second move function block starts
the execution while the first function block is still executing. In this case the first motion is
interrupted and aborted by the test signal during the constant velocity of the first function block.
The second function block moves directly to the position 10000 although the position of 6000
is not yet reached.

Fig. 292: These examples are based on two instances of the function block:
Instance ”First“ and ”Second“.

Example

Input Jerk: 1 = jerk on, 2 = jerk off
Input Direction: 0 = DEFAULT, 1 = POSITIVE, 3 = NEGATIVE
Input BufferMode: Not implemented

Using this func-
tion block with
FM562

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2748

Input description

Fig. 293: Function block MC_MoveAbsolute

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Reference position.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_Direction, range: DEFAULT, POSITIVE, SHORTEST, NEGATIVE, CURRENT
Enum type.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2749

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 294: Function block MC_MoveAbsolute

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Axis

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2750

MC_MoveRelative

Fig. 295: Function block MC_MoveRelative

Table 187: General information
Available as of runtime system V2.2

Included in library MC_Block_AC500_V11.lib

Type Function block with historical values

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

This function block commands a controlled motion of a specified distance relative to the actual
position at the time of the execution.

This action completes with velocity zero if no further action are pending.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2751

1.) The left part of timing diagram illustrates the case if the second function block is called after
the first one. If the first one reaches the commanded distance 6000 (and the velocity is 0) then
the output Done causes the second function block to move to the distance 10000.
2.) The right part of the timing diagram illustrates the case if the second move function blocks
starts the execution while the first function block is still executing. In this case the first motion
is interrupted and aborted by the test signal during the constant velocity of the first function
block. The second function block adds on the actual position of 3250 the distance 4000 and
moves the axis to the resulting position of 7250.

The following
figure shows
the example of
the combina-
tion of two
MC_MoveRela-
tive function
blocks:

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2752

Fig. 296: Timing diagram for MC_MoveRelative

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2753

Input Jerk: 1 = jerk on, 2 = jerk off
Input BufferMode: Not implemented

Input description

Fig. 297: Function block MC_MoveRelative

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Relative distance for the motion.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Using this func-
tion block with
FM562

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2754

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 298: Function block MC_MoveRelative

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Axis

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2755

MC_MoveAdditive

Fig. 299: Function block MC_MoveAdditive

This function block commands a controlled motion of a specified relative distance additional to
the most recent commanded position in the state Discrete Motion. The most recent commanded
position may be the result of a previous MC_MoveAdditive motion which was aborted. If the
function block is activated in the Continuous Mode the specified relative distance is added to the
actual position at the time of the execution.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2756

1.) The left part of timing diagram illustrates the case if the second function block is called after
the first one. If the first one reaches the commanded distance 6000 (and the velocity is 0) then
the output "Done" causes the second function block to move to the distance 10000.
2.) The right part of the timing diagram illustrates the case if the second move function blocks
starts the execution while the first function block is still executing. In this case the first motion
is interrupted and aborted by the test signal during the constant velocity of the first function
block. The second function block adds on the previous commanded position of 6000 the
distance 4000 and moves the axis to the resulting position of 10000.

Fig. 300: Timing diagram for MC_MoveAdditive

Examples of
the combina-
tion of two
function blocks
while the axis
is in state dis-
crete motion

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2757

Input description

Fig. 301: Function block MC_MoveAdditive

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Relative distance for the motion.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2758

Output description

Fig. 302: Function block MC_MoveAdditive

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2759

MC_MoveSuperImposed

Fig. 303: Function block MC_MoveSuperimposed

This function block commands a controlled motion of a specified relative distance additional to
an existing motion. The existing motion is not interrupted, but is superimposed by the additional
motion.

– If MC_MoveSuperImposed is active, then any other command in aborting
mode except MC_MoveSuperImposed will abort both motion commands:
Both the MC_MoveSuperImposed and the underlying motion command. In
any other mode, the underlying motion command is not aborted

– If MC_MoveSuperImposed is active and another MC_MoveSuperImposed
is commanded, only the on-going MC_MoveSuperImposed command is
aborted, and replaced by the new MC_MoveSuperImposed, but not the
underlying motion command

– The function block MC_MoveSuperimposed causes a change of the velocity
and, if applicable, the commanded position of an on-going motion in all
relevant states

– In the state StandStill the function block MC_MoveSuperimposed acts like
MC_MoveRelative

– The values of Acceleration, Deceleration, and Jerk are additional values to
the on-going motion, and not absolute ones. With this, the underlying func-
tion block always finishes its job in the same period of time regardless of
whether a MC_MoveSuperimposed function block takes place concurrently

– MC_MoveSuperimposed acts on the slave axis, while MC_Phasing acts on
the master side, as seen from the slave

– •The output "Active" has a different behavior as in buffered function blocks

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2760

Fig. 304: Timing diagram for MC_MoveSuperimposed

– The CommandAborted is not visible here, because the new command
works on the same instance. Ä Chapter 1.5.9.3.9.1 “General rules”
on page 2601

– The end position is between 7000 and 8000, depending on the timing of the
aborting of the second command set for the MC_MoveSuperimposed.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2761

Fig. 305: Timing diagram of effect of MC_MoveSuperImposed on same axis

Example of
MC_MoveSu-
perImposed
during cam-
ming:

At Slave velocity, the double line shows the effect of MoveSuperimposed while
in Synchronized Motion during Camming. The same is valid for the related slave
position.

Input description

Fig. 306: Function block MC_MoveSuperimposed

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2762

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Relative distance for the motion.

Data type: LREAL, unit: u/s
Value of the maximum velocity difference to the ongoing motion (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 307: Function block MC_MoveSuperimposed

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Execute

Distance

VelocityDiff

Acceleration

Deceleration

Jerk

Axis

Done

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2763

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_HaltSuperimposed

Fig. 308: Function block MC_HaltSuperimposed

This function block commands a halt to all superimposed motions of the axis. The underlying
motion is not interrupted.

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2764

Input description

Fig. 309: Function block MC_HaltSuperimposed

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Execute

Deceleration

Jerk

BufferMode

Axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2765

Output description

Fig. 310: Function block MC_HaltSuperimposed

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished and new output values are to be expected.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2766

MC_MoveVelocity

Fig. 311: Function block MC_MoveVelocity

Table 188: General information
Available as of runtime system V2.2

Included in library MC_Block_AC500_V11.lib

Type Function block with historical values

This function block commands a never ending controlled motion at a specified velocity.

– To stop the motion, the function block has to be interrupted by another
function block issuing a new command.

– The signal "InVelocity" has to be reset when the block is aborted by another
block or at the falling edge of "Execute".

– In combination with MC_MoveSuperimposed, the output “"nVelocity" stays
TRUE once the velocity setpoint of the axis has reached the commanded
velocity.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2767

The left part of timing diagram illustrates the case if the second function block is called after
the first one is completed. If first reaches the commanded velocity 3000 then the output
First.InVelocity AND the signal Next causes the second function block to move to the velocity
2000.
The right part of the timing diagram illustrates the case if the second function block starts the
execution while the first function block is not yet InVelocity. The following sequence is shown:
The first motion is started again by Go at the input First.Execute. While the first function block
is still accelerating to reach the velocity 3000 the first function block will be interrupted and
aborted because the test signal starts the Run of the second function block. Now the second
function block runs and decelerates the velocity to 2000.

Fig. 312: MC_MoveVelocity timing diagram

Examples of
the combina-
tion of two
function blocks
MC_MoveVe-
locity

Input Jerk: 1 = jerk on, 2 = jerk off
Input Direction: Enum type: 0 = DEFAULT, 1 = POSITIVE, 3 = NEGATIVE
Input BufferMode: Not implemented

Using this func-
tion block with
FM562

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2768

Input description

Fig. 313: Function block MC_MoveVelocity

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_Direction, range: DEFAULT, POSITIVE, SHORTEST, NEGATIVE, CURRENT
Enum type.

Shortest way not applicable, DEFAULT is equivalent with CURRENT

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Execute

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2769

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 314: Function block MC_MoveVelocity

Data type: BOOL
Commanded velocity reached (first time reached).

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Axis

InVelocity

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2770

MC_MoveContinuousAbsolute

Fig. 315: Function block MC_MoveContinuousAbsolute

This function block commands a controlled motion to a specified absolute position ending with
the specified velocity.

– If the commanded position is reached and no new motion command is put
into the buffer, the axis continues to run with the specified "EndVelocity".

– The function block will start the axis with state DiscreteMotion, while posi-
tioning.

– It will change to state Continuous Motion (meaning: it will not stop by itself)
with EndVelocity <> 0.

– It will change to standstill with EndVelocity=0.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

One use case for MC_MoveContinuousAbsolute is a linear cutter. One linear axis that is car-
rying a laser device that is used to cut a workpiece.

Start from lrIdlePos.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2771

1. Move the laser with fast velocity over the position lrStartCutPos. The laser is off during this
movement.

2. Turn back and make sure to have the speed lrCutVelocity when at lrStartCutPos. At this
position, switch the laser on.

3. Travel over the work piece with this constant speed while the laser is on.

4. When reaching lrEndCutPos switch off the laser and move back to idle position with fast
velocity.

During the cutting process the laser must be moved with a fix velocity, no acceleration or
deceleration phase can be tolerated. The laser must be moved to its waiting position after the
cutting was done.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2772

The explained movement can be achieved with the function block MC_MoveContinuousAbso-
lute in the following way:

Fig. 316: Example MC_MoveContinuousAbsolute

Started with a rising edge of xStartCuttingCycle, the instance mca of MC_MoveContinuousAb-
solute will move the axis with lrFastVelocity over lrStartCutPos, turn back and have the speed
lrCutVelocity when reaching lrStartCutPos again in negative direction. In this point in time,
InEndVelocity is set, and the laser is switched on. As no other motion function block inter-
rupts this movement, MC_MoveContinuousAbsolute will keep travelling in negative direction
with the current speed. After the axis has overstepped the position lrEndPos, where the laser
is switched off, the MC_MoveAbsolute instance ma moves the axis with high speed to its idle
position.

Fig. 317: Example MC_MoveContinuousAbsolute timing diagram

Example
MC_MoveCon-
tinuousAbso-
lute

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2773

Input description

Fig. 318: Function block MC_MoveContinuousAbsolute

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: BOOL
Ä Chapter 1.5.9.3.9.3 “The input ContinuousUpdate” on page 2604

Data type: LREAL, unit: u
Reference position.

Data type: LREAL
Value of the end velocity [u/s]. Signed value.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Execute

ContinousUp-
date

Position

EndVelocity

Velocity

Acceleration

Deceleration

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2774

Jerk is not supported with this function block.

Data type: MC_Direction, range: DEFAULT, POSITIVE, SHORTEST, NEGATIVE, CURRENT
Enum type.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 319: Function block MC_MoveContinuousAbsolute

Data type: BOOL
Commanded distance reached and running at requested end velocity .

Data type: BOOL
The function block is not finished and new output values are to be expected.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Jerk

Direction

BufferMode

Axis

InEndVelocity

Busy

Active

CommandA-
borted

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2775

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_MoveContinuousRelative

Fig. 320: MC_MoveContinuousRelative

This function block commands a controlled motion of a specified relative distance ending with
the specified velocity.

– If the commanded position is reached and no new motion command is put
into the buffer, the axis continues to run with the specified "EndVelocity".

– The function block will start the axis with state DiscreteMotion, while posi-
tioning.

– It will change to state Continuous Motion (meaning: it will not stop by itself)
with EndVelocity <> 0.

– It will change to standstill with EndVelocity=0.
– This function block is specified here for systems without the support for the

"BufferMode".

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2776

Fig. 321: Timing diagram

Input EndVe-
locity with pos-
itive direction

Sampling traces
showing the
effect of the
sign of the value
of the input
EndVelocity

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2777

Fig. 322: Timing diagram

Input EndVe-
locity with neg-
ative direction

MC_MoveContinuousRela tive
Axis
Execute

Velocity
Acce le ra tion
Dece le ra tion
Jerk

ContinuousUpdate

Buffe rMode

InEndVelocity

Error
ErrorID

CommandAborted

Busy
ActiveDis tance

EndVelocity

Axis

MC_MoveContinuousRela tive
Axis
Execute

Velocity
Acce le ra tion
Dece le ra tion
Jerk

ContinuousUpdate

Buffe rMode

InEndVelocity

Error
ErrorID

CommandAborted

Busy
ActiveDis tance

EndVelocity

Axis

FB1

MC_MoveRela tive
Axis Axis
Execute Done

Dis tance
Velocity
Acce le ra tion
Dece le ra tion
Jerk

Error
ErrorID

Axis
Sta rt

1000 500

50
20

20
CommandAborted

ContinuousUpdate

Buffe rMode

700
20

Busy
Active

10

FB2 FB3

FB1.Start

FB1.InEndVelocity = Execute FB2

FB1.Aborted

FB2.InEndVelocity = FB3.Execute

20

Veloc ity
50

20

Example for
MC_MoveCon-
tinuousRela-
tive

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2778

Input description

Fig. 323: MC_MoveContinuousRelative

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: BOOL
Ä Chapter 1.5.9.3.9.3 “The input ContinuousUpdate” on page 2604

Data type: LREAL, unit: u
Relative distance for the motion.

Data type: LREAL
Value of the end velocity [u/s]. Signed value.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Execute

ContinousUp-
date

Distance

EndVelocity

Velocity

Acceleration

Deceleration

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2779

Jerk is not supported with this function block.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 324: MC_MoveContinuousRelative

Data type: BOOL
Commanded distance reached and running at requested end velocity .

Data type: BOOL
The function block is not finished and new output values are to be expected.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Jerk

BufferMode

Axis

InEndVelocity

Busy

Active

CommandA-
borted

Error

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2780

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_Stop

Fig. 325: Function block MC_Stop

Table 189: General information
Available as of runtime system V2.2

Included in library MC_Block_AC500_V11.lib

Type Function block with historical values

This function block commands a controlled motion stop and transfers the axis to the state
Stopping. It aborts any ongoing function block execution. While the axis is in state Stopping,
no other function block can perform any motion on the same axis. After the axis has reached
velocity zero, the Done output is set to TRUE immediately. The axis remains in the state
Stopping as long as Execute is still TRUE or velocity zero is not yet reached. As soon as Done
is SET and Execute is FALSE the axis goes to state StandStill.

As long as Execute is high, the axis remains in the state Stopping and may not
be executing any other command.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2781

● A rotating axis is ramped down with function block MC_Stop.
● The axis rejects motion commands as long as MC_Stop parameter Execute = TRUE.

Function block MC_MoveVelocity reports an error indicating the busy MC_Stop com-
mand.

Veloc ity
Axis _1

MC_Stop

AxisAxis_1

Decele ra tion20
Jerk0

Error
ErrorID

ExecuteExe_2

50

InVel_1

Exe_1

1
0
1
0

1
0

Exe_2

Done_2
1
0

t

Done_2Done

MC_MoveVeloc ity

AxisAxis_1

Velocity50
Accele ra tion10
Decele ra tion10
Jerk0
Direction1

ErrorID

ExecuteExe_1
CommandAborted Abort_1

FB1

InVel_1InVelocity

FB2

FB1

FB2

t

t

t

t

t
Abort_1

0
1

1
0

Error_1Error

t
Error_1

BusyBusy

a b

Example:
Behavior of
MC_Stop in
combination
with MC_Move-
Velocity

Input Jerk: Not implemented
Input BufferMode: Not implemented

Input description

Fig. 326: Function block MC_Stop

Using this func-
tion block with
FM562

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2782

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 327: Function block MC_Stop

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Execute

Deceleration

Jerk

BufferMode

Axis

Done

Busy

Active

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2783

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_Halt

Fig. 328: Function block MC_Halt

This function block commands a controlled motion stop. The axis is moved to the state Discrete
Motion, until the velocity is zero. With the Done output set, the state is transferred to StandStill.

– MC_Halt is used to stop the axis under normal operation conditions. In
non-buffered mode it is possible to set another motion command during
deceleration of the axis, which will abort the MC_Halt and will be executed
immediately.

– If this command is active the next command can be issued. E.g. a driverless
vehicle detects an obstacle and needs to stop. MC_Halt is issued. Before
the standstill is reached the obstacle is removed and the motion can be
continued by setting another motion command, so the vehicle does not
stop.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2784

● A rotating axis is ramped down with function block MC_Halt.
● Another motion command overrides the MC_Halt command. MC_Halt allows this, in

contrast to MC_Stop. The axis can accelerate again without reaching standstill.

Velocity
Axis _1

MC_Halt

AxisAxis_1

Deceleration5
Jerk0

Error
ErrorID

ExecuteExe_2

50

InVel_1

Exe_1

1
0

1
0

1
0

Exe_2

Done_2

1
0

t

Done_2Done

MC_MoveVelocity

AxisAxis_1

Velocity50
Acceleration10
Deceleration10
Jerk0
Direction1

Error
ErrorID

ExecuteExe_1

CommandAborted Abort_1

FB1

InVel_1InVelocity

FB2

FB1

FB2

t

t

t

t

t
Abort_2

0
1

CommandAborted Abort_2

t
Abort_1

1
0

Busy Busy

a b

BufferMode

Active Active

BufferMode

Fig. 329: Example MC_Halt

Example:
Behavior of
MC_Halt in
combination
with MC_Move-
Velocity

Input description

Fig. 330: Function block MC_Halt

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2785

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 331: Function block MC_Halt

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Execute

Deceleration

Jerk

BufferMode

Axis

Done

Busy

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2786

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_PositionProfile

Fig. 332: Function block MC_PositionProfile

This function block commands a time-position locked motion profile .

– MC_TPROFILE is an ABB specific data type.
– This functionality does not mean it runs one profile over and over again: It

can shift between different profiles.
– Alternatively to this function block, the CAM function block coupled to a

virtual master can be used.

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2787

Example of
time/position
profile

The Time / Velocity and Time / Acceleration Profiles are similar to the Position
Profile, with sampling points on the Velocity or Acceleration lines.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2788

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 333: Function block MC_PositionProfile

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: MC_TP_REF
Reference to Time/Position. Description: Ä Further information on page 2787

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: t.u.
Overall time scaling factor of the profile.

Data type: LREAL, unit: t.u.
Overall Position scaling factor.

Data type: LREAL, unit: u/s
Overall offset for profile.

Data type: INT
Number of points used in TimePosition Array.

TimePosition

Execute

TimeScale

PositionScale

Offset

Number_of_pair
s

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2789

Data type: BOOL
TRUE ® Profile holds absolute position values.

Data type: MC_ABB_iTypes_ENUM
Interpolationtype, possible values are:
● MCA_SPLINE_COMPLETE
● MCA_SPLINE_NATURAL
● MCA_POLY5
● MCA_POLY3
● MCA_LINEAR

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 334: Function block MC_PositionProfile

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

isAbsolute

iTYPE

BufferMode

Axis

Done

Busy

Active

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2790

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_VelocityProfile

Fig. 335: MC_VelocityProfile

This function block commands a time-velocity locked motion profile.

– MC_TPROFILE is an ABB specific data type.
– This functionality does not mean it runs one profile over and over again: It

can shift between different profiles.
– Alternatively to this function block, the CAM function block coupled to a

virtual master can be used.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2791

Input description

Fig. 336: Function block MC_VelocityProfile

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: t.u.
Overall time scaling factor of the profile.

Data type: LREAL
Overall velocity scaling factor of the profile.

Data type: LREAL, unit: u/s
Overall offset for profile.

Data type: INT
Number of points used in TimeVelocity Array.

Data type: MC_ABB_iTypes_ENUM
Interpolationtype, possible values are:
● MCA_SPLINE_COMPLETE
● MCA_SPLINE_NATURAL
● MCA_POLY5
● MCA_POLY3
● MCA_LINEAR

Execute

TimeScale

VelocityScale

Offset

Number_of_pair
s

iTYPE

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2792

Data type: POINTER TO MC_TPROFILE
Reference to time/velocity. MC_TPROFILE is an ABB specific data type.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 337: Function block MC_VelocityProfile

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

TimeVelocity

BufferMode

Axis

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2793

MC_AccelerationProfile

Fig. 338: Function block MC_AccelerationProfile

This function block commands a time-acceleration locked motion profile

– MC_TPROFILE is an ABB specific datatype.
– Alternatively to this function block, the CAM function block coupled to a

virtual master can be used.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2794

A profile is made from a number of sequential "A to B" positioning points. It is simple to
visualize, but requires a lot of sequences for a smooth profile. These requirements are often
beyond the capability of low-end servos. Alternatively, by using a modest amount of constant
acceleration segments it is possible to define a well-matching motion profile. With this method
the capability range of low-end servos can be extended. It is possible to make matching to
either:
1.) Position versus time profile
2.) Master versus slave axis
Advantages:
● Compact description of a profile.
● Smooth profile properties by nature.
● Low processor power requirements.
Disadvantages:
● Higher programming abstraction level with existing tools.

Fig. 339: Acceleration Profile, 10 segments only

Example of an
acceleration
profile

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2795

Fig. 340: Resulting Position Profile

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 341: Function block MC_AccelerationProfile

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2796

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: t.u.
Overall time scaling factor of the profile.

Data type: LREAL
Scale factor for acceleration amplitude.

Data type: LREAL, unit: u/s
Overall offset for profile.

Data type: INT
Number of points used in TimeAcceleration Array.

Data type: MC_ABB_iTypes_ENUM
Interpolationtype, possible values are:
● MCA_SPLINE_COMPLETE
● MCA_SPLINE_NATURAL
● MCA_POLY5
● MCA_POLY3
● MCA_LINEAR

Data type: MC_TA_REF
Reference to Time / Acceleration. Description: Ä “Example of an acceleration profile”
on page 2795

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Execute

TimeScale

Acceleration-
Scale

Offset

Number_of_pair
s

iTYPE

TimeAccelera-
tion

BufferMode

Axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2797

Output description

Fig. 342: Function block MC_AccelerationProfile

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

1.5.9.6.2 Multi-Axis function blocks
With Multi-Axis function blocks a synchronized relationship exists between two or more axes.
The synchronization can be related to time or position. Often this relationship is between a
master axis and one or more slave axes. A master axis can be a virtual axis. From the single
axis state diagram point of view, the multi-axis function blocks related to camming and gearing
can be looked at as a master axis in one state (for instance: MC_MoveContinuous) and the
slave axis in a specific synchronized state, called SychronizedMotion. Ä Chapter 1.5.9.3.2 “The
single axis state diagram” on page 2589

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2798

MC_CamIn

Fig. 343: Function block MC_CamIn

This function block engages the CAM.

– It is not required that the master is stationary.
– If the actual master and slave positions do not correspond to the offset

values when MC_CamIn is executed, either an error occurs or the system
deals with the difference automatically.

– The Cam is placed either absolute or relative to the current master and
slave positions.
Absolute: The profile between master and slave is seen as an absolute
relationship.
Relative: The relationship between master and slave is in a relative mode.

– If a cam-table is to be used "relative", the first position has to be =0.
– This function block is not merged with the MC_CamTableSelect function

block because this separation enables changes on the fly.
– A mechanical analogy to a slave offset is a cam welded with additional con-

stant layer thickness. Because of this the slave positions have a constant
offset and the offset could be interpreted as axis offset of the master shaft, if
linear guided slave tappets are assumed.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

In case MasterSyncPosition and MasterStartDistance are = 0 (default value), the Cam-Function
is started with the rising edge of “Execute”. When the master did not yet reach a position in the
cam area, the slave axis is stopped.
With MasterStartDistance <> 0 the slave axis needs to be in state StandStill when activating
MC_CamIn. The function block will wait until the master axis reaches the position MasterSync-
Position-MasterStartDistance. The slave will then be started and be synchronized to the CAM
table, to the position and velocity which is indicated by the master position MasterSyncPosition.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2799

masterpos ition

s lavepos ition

Maste rSta rtDis tance

Maste rSyncPos ition

CamTable
SlaveMovement

The MC_CamIn has parameters to scale the cam-table values (MasterScaling,
SlaveScaling). It has to be considered that MasterOffset and SlaveOffset are
scaled exactly like the corresponding cam-table values. The MasterSyncPosi-
tion and MasterStartDistance are not scaled at all, these positions are related
to the actual master position whereas the MasterOffset and SlaveOffset are
related to the cam-table.

Input description

Fig. 344: Function block MC_CamIn

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2800

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL
Offset of master table. Angular offset of the master shaft to cam.

Data type: LREAL, default: 0
Offset of slave table. Sharpened cam (i.e higher elevation and deeper depression).

Data type: LREAL, default: 1.0
Factor for the master profile. From the slave point of view the master overall profile is multiplied
by this factor.

Data type: LREAL, default: 1.0
Factor for the slave profile. The overall slave profile is multiplied by this factor.

Data type: LREAL
The position of the master in the path where the group is insync with the master. (If the
‘MasterSyncPosition’ does not exist, at the first point of the path the master and slave are
synchronized).

The inputs acceleration, deceleration and jerk are not added here.

Data type: LREAL
The master distance for the slave to start to synchronize to the master.

Data type: MC_SOURCE
Defines the source for synchronization:
mcSetValue - Synchronization on master set value.
mcActualValue - Synchronization on master actual value.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the master axis.

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

MasterSyncPo-
sition

MasterStartDis-
tance

MasterValue-
Source

BufferMode

Master

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2801

Data type: AXIS_REF
Reference to the slave axis.

Data type: MC_CAM_ID
Identifier of CAM Table to be used in the MC_CamIn function block.

Output description

Fig. 345: Function block MC_CamIn

Data type: BOOL
Cam is engaged for the first time.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Slave

CamTableID

InSync

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2802

Data type: BOOL
Pulsed output signaling the cyclic end of the CAM Profile.

MC_CamOut

Fig. 346: Function block MC_CamOut

This function block disengages the Slave axis from the Master axis immediately.

It is assumed that this command is followed by another command, for instance
MC_Stop, MC_GearIn, or any other command. If there is no new command, the
default condition should be: Maintain last velocity. If there is no new command
the axis will maintain its last velocity.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 347: Function block MC_CamOut

EndOfProfile

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2803

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: AXIS_REF
Reference to the slave axis.

Output description

Fig. 348: Function block MC_CamOut

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Execute

Slave

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2804

MC_GearIn

Fig. 349: Function block MC_GearIn

This function block commands a ratio between the VELOCITY of the slave and master axis.

– The slave ramps up to the ratio of the master velocity and locks in when this
is reached. Any lost distance during synchronization is not caught up.

– The gearing ratio can be changed while MC_GearIn is running, using a
consecutive MC_GearIn command without the necessity to MC_GearOut
first

– InGear is set the first time the ratio is reached.
– After being InGear, a position locking is performed.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2805

Fig. 350: Gear timing diagram

Example

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2806

Input description

Fig. 351: Function block MC_GearIn

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: INT
Gear Ratio Numerator.

Data type: INT
Gear Ratio Denominator.

Data type: MC_SOURCE
Defines the source for synchronization:
mcSetValue - Synchronization on master set value.
mcActualValue - Synchronization on master actual value.

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Execute

RatioNumerator

RatioDenomi-
nator

MasterValue-
Source

Acceleration

Deceleration

Jerk

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2807

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the master axis.

Data type: AXIS_REF
Reference to the slave axis.

Output description

Fig. 352: Function block MC_GearIn

Data type: BOOL
Commanded gearing completed.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

BufferMode

Master

Slave

InGear

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2808

MC_GearInPos

Fig. 353: Function block MC_GearInPos

This function block commands a gear ratio between the position of the slave and master axes
from the synchronization point onwards.

– If MasterStartDistance is implemented, any previous motion is continued
until master crosses "MasterSyncPosition – MasterStartDistance" in the cor-
rect direction (according to the sign of MasterStartDistance). At that point
in time the output StartSync is set. When a "Stop" command is executed
on the "Slave" axis before the synchronization has happened, it inhibits the
synchronization and the Function Bock issues "CommandAborted".

– If the MasterStartDistance is not specified, the system itself could calculate
the set point for StartSync based on the other relevant inputs.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2809

Fig. 354: Timing Diagram of MC_GearInPos

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2810

Different exam-
ples of
MC_GearInPos

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2811

Input description

Fig. 355: Function block MC_GearInPos

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: INT
Gear Ratio Numerator.

Data type: INT
Gear Ratio Denominator.

Data type: MC_SOURCE
Defines the source for synchronization:
mcSetValue - Synchronization on master set value.
mcActualValue - Synchronization on master actual value.

Data type: LREAL
The position of the master in the path where the group is insync with the master. (If the
‘MasterSyncPosition’ does not exist, at the first point of the path the master and slave are
synchronized).

The inputs acceleration, deceleration and jerk are not added here.

Execute

RatioNumerator

RatioDenomi-
nator

MasterValue-
Source

MasterSyncPo-
sition

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2812

Data type: LREAL
Slave Position at which the axes are running in sync.

Data type: INT
This function block does not support different modes. Synchronization direction is determined by
the sign of MasterStartDistance.

Data type: LREAL
The master distance for the slave to start to synchronize to the master.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the master axis.

Data type: AXIS_REF
Reference to the slave axis.

Output description

Fig. 356: Function block MC_GearInPos

Data type: BOOL
Commanded gearing starts.

Data type: BOOL
Commanded gearing completed.

SlaveSyncPosi-
tion

SyncMode

MasterStartDis-
tance

BufferMode

Master

Slave

StartSync

InSync

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2813

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_GearOut

Fig. 357: Function block MC_GearOut

This function block disengages the Slave axis from the Master axis.

– It is assumed that this command is followed by another command, for
instance MC_Stop, MC_GearIn, or any other command. If there is no new
command, the default condition should be: maintain last velocity.

– After issuing the function block there is no function block active on the
slave axis till the next function block is issued (what can result in problems
because no motion command is controlling the axis). Alternatively, one can
read the actual velocity via MC_ReadActualVelocity and issue MC_MoveVe-
locity on the slave axis with the actual velocity as input. The function block
is here because of compatibility reasons.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2814

See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 358: Function block MC_GearOut

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: AXIS_REF
Reference to the slave axis.

Output description

Fig. 359: Function block MC_GearOut

Execute

Slave

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2815

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_PhasingAbsolute

Fig. 360: Function block MC_PhasingAbsolute

This function block creates an absolute phase shift in the master position of a slave axis. The
master position is shifted in relation to the real physical position. This is analogous to opening
a coupling on the master shaft for a moment, and is used to delay or advance an axis to its
master. The phase shift is seen from the slave. The master does not know that there is a phase
shift experienced by the slave. The phase shift remains until another "Phasing" command
changes it again.

Phase, Velocity, Acceleration, Deceleration and Jerk of a phase shift are con-
trolled by the function block.

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2816

The following graph shows the effect of "Phasing".

Timing
example of
MC_Phasing

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2817

Fig. 361: Example of MC_Phasing

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 362: Function block MC_PhasingAbsolute

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2818

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Absolut phase difference in master.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2819

Output description

Fig. 363: Function block MC_PhasingAbsolute

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: LREAL
Displays the covered distance since it was started continuously.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

AbsolutePhase-
Shift

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2820

MC_PhasingRelative

Fig. 364: Function block MC_PhasingRelative

This function block creates a relative phase shift in the master position of a slave axis. The
master position is shifted in relation to the real physical position. This is analogous to opening
a coupling on the master shaft for a moment, and is used to delay or advance an axis to its
master. The phase shift is seen from the slave. The master does not know that there is a phase
shift experienced by the slave. The phase shift remains until another "Phasing" command
changes it again.

Phase, Velocity, Acceleration, Deceleration and Jerk of a phase shift are con-
trolled by the function block.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2821

The following graph shows the effect of "Phasing".

Timing
example of
MC_Phasing

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2822

Fig. 365: Example of MC_Phasing

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 366: Function block MC_PhasingRelative

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2823

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Absolut phase difference in master.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Execute

PhaseShift

Velocity

Acceleration

Deceleration

Jerk

BufferMode

Axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2824

Output description

Fig. 367: Function block MC_PhasingRelative

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: LREAL
Displays the covered distance since it was started continuously.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

CoveredPhase-
Shift

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2825

MC_CombineAxes

Fig. 368: Function block MC_CombineAxes

This function block combines the motion of 2 axes into a third axis with selectable combina-
tion method. Basically, it is a calculation of a new position setpoint based on the 2 position
setpoints of the input axes. This function block is reflected in the single axis state diagram
like a Synchronized Motion type. As application example one can work with a separate profile
synchronized to an object on a moving belt, or a rotating knife with flexible covered distance to
be cut.

To stop the motion, the function block has to be interrupted by another function
block issuing a new command.

This block has to be called from the same task as
CMC_MOTION_KERNEL_REAL.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2826

MC_CombineAxes can generate special synchronized movements that are not possible or
complex to generate in other ways. In the following example, a CAM function block and the
result of a Gear function block are both synchronized to a conveyor master, are added to
generate a virtual master for a MC_GearInPos function of the final axis that will execute
the movement. The particular application of this example could be a machine to deposit the
icecream waving layers on top of the icecream base travelling through the freezer line in
icecream factory. The dosing axis has to synchronize with a waving manner to the conveyor
carrying the icecream base block. And it has to do this in a particular starting position and
wave phase to achieve the expected result (therefore the GearInPos). With the CAM function
block one can define different wave patterns easily (like the one longer in the top of icecream).
Another case application can be chocolate bars with decoration (individual bars in mouldings).
The dosificator makes the wave synchronized with conveyor and returns for the next.

Example ice
cream

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2827

Application
example of
MC_Combi-
neAxes

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2828

The corre-
sponding
timing diagram
for MC_Combi-
neAxes
example

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2829

See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 369: Function block MC_CombineAxes

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: BOOL
Defines the type of combination applied to AxisOut:
FALSE: Addition of the 2 input axes positions
TRUE: Substraction of the 2 input axes positions.

Data type: INT
Numerator for the gear factor for master axis 1 towards the slave.

Data type: INT
Corresponding denominator for master axis 1.

Data type: INT
Numerator for the gear factor for master axis 2 towards the slave.

Execute

CombineMode

GearRatioNu-
meratorM1

GearRatioDeno-
minatorM1

GearRatioNu-
meratorM2

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2830

Data type: INT
Corresponding denominator for master axis 2.

Data type: MC_SOURCE
Defines the source for synchronization for master axis 1:
mcSetValue: Synchronization on master set value.
mcActualValue. Synchronization on master actual value .

Data type: MC_SOURCE
Defines the source for synchronization for master axis 2:
mcSetValue: Synchronization on master set value.
mcActualValue: Synchronization on master actual value .

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the first master axis.

Data type: AXIS_REF
Reference to the second master axis.

Data type: AXIS_REF
Reference to the resulting combined axis. Can be a virtual axis or linked directly to a real axis.

Output description

Fig. 370: Function block MC_CombineAxes

GearRatioDeno-
minatorM2

MasterValue-
SourceM1

MasterValue-
SourceM2

BufferMode

Master1

Master2

Slave

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2831

Data type: BOOL
Is TRUE if the set value = the commanded value.

Data type: BOOL
The function block is not finished and new output values are to be expected.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

1.5.9.6.3 Administrative function blocks
MC_CamTableSelect

Fig. 371: Function block MC_CamTableSelect

This function block selects the CAM tables by setting the connections to the relevant tables.

– A virtual axis can be used as master axis.
– MC_PPROFILE is an ABB specific data type.
– CamTableSelect makes data available. This can include:

– Starting point of a download of a profile.
– Start to generate a CAM profile.
– PC – based : No function. It is referenced by a pointer.

InSync

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2832

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 372: Function block MC_CamTableSelect

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: BOOL
1=absolute
0 = relative coordinates

Data type: BOOL
1=absolute
0 = relative coordinates

Data type: INT
Number of points used in CamTableTimeAcceleration array.

Execute

MasterAbsolute

SlaveAbsolute

Number_of_pair
s

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2833

Data type: MC_ABB_iTypes_ENUM
Interpolationtype, possible values are:
● MCA_SPLINE_COMPLETE
● MCA_SPLINE_NATURAL
● MCA_POLY5
● MCA_POLY3
● MCA_LINEAR

Data type: POINTER TO MC_PPROFILE
Reference to CAM description.

Data type: AXIS_REF
Reference to the master axis.

Data type: AXIS_REF
Reference to the slave axis.

Output description

Fig. 373: Function block MC_CamTableSelect

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

iTYPE

CamTable

Master

Slave

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2834

Data type: MC_CAM_ID
Identifier of CAM Table to be used in the MC_CamIn function block.

MC_Power

Fig. 374: Function block MC_Power

Table 190: General information
Available as of runtime system V2.2

Included in library MC_Block_AC500_V11.lib

Type Function block with historical values

This function block controls the power stage (on or off). If this function block is called with
Enable=TRUE while being in Disabled, this either leads to StandStill if there is no error inside
the axis or to ErrorStop if an error exists.

– If the function block MC_Power is called with the Enable true while being in
Disabled, this either leads to Standstill if there is no error in the axis, or to
ErrorStop if an Error exists.

– It is possible to set an error variable when the Command is TRUE for
a while and the Status remains FALSE with a Timer function block and
an AND Function (with inverted Status input). It indicates that there is a
hardware problem with the power stage.

– If power fails (also during operation) it will generate a transition to the state
ErrorStop.

– When MC_Power is called with Enable FALSE the axis goes to state Disa-
bled for every state including ErrorStop.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input variable AXIS of MC_Power must be the same with input variable AXIS of
PTO_FM562_ACCESS. Therefore, the specific axis information contained in AXIS_REF struc-
ture can be transferred from PLCopen Library to PTO Library and then to FM562 IO mapping.

CamTableID

Using this func-
tion block with
FM562

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2835

Input description

Fig. 375: Function block MC_Power

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
As long as Enable = TRUE, power is on.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 376: Function block MC_Power

Data type: BOOL
Effective state of the power stage.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Enable

Axis

Status

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2836

MC_ReadStatus

Fig. 377: MC_ReadStatus

This function block returns in detail the status of the axis with respect to the motion currently in
progress.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Output SynchronizedMotion: Not implemented
Output Homing: Not implemented
Output ConstantVelocity: Not implemented
Output Accelerating: Not implemented
Output Decelerating: Not implemented

Using this func-
tion block with
FM562

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2837

Input description

Fig. 378: Function block MC_ReadStatus

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the value of the parameter continuously while enabled.

Data type: AXIS_REF
Reference to the axis.

Enable

Axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2838

Output description

Fig. 379: Function block MC_ReadStatus

Data type: BOOL
Parameter available.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: BOOL
See single axis state diagram. Ä Chapter 1.5.9.3.2 “The single axis state diagram”
on page 2589

Data type: BOOL
Is SET if the axis is in the Disabled state.

Data type: BOOL
See single axis state diagram. Ä Chapter 1.5.9.3.2 “The single axis state diagram”
on page 2589

Data type: BOOL
See single axis state diagram. Ä Chapter 1.5.9.3.2 “The single axis state diagram”
on page 2589

Valid

Error

ErrorID

ErrorStop

Disabled

Stopping

StandStill

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2839

Data type: BOOL
See single axis state diagram. Ä Chapter 1.5.9.3.2 “The single axis state diagram”
on page 2589

Data type: BOOL
See single axis state diagram. Ä Chapter 1.5.9.3.2 “The single axis state diagram”
on page 2589

Data type: BOOL
See single axis state diagram. Ä Chapter 1.5.9.3.2 “The single axis state diagram”
on page 2589

Data type: BOOL
See single axis state diagram. Ä Chapter 1.5.9.3.2 “The single axis state diagram”
on page 2589

Data type: BOOL
Motor moves with constant velocity.

Data type: BOOL
Increasing energy of the motor.

Data type: BOOL
Decreasing energy of the motor.

MC_ReadAxisError

Fig. 380: Function block MC_ReadAxisError

This function block describes general axis errors not relating to the function blocks.

This function block is the equivalent to read the AxisErrorID parameter using
MC_ReadParameter.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

DiscreteMotion

ContinuousMo-
tion

Synchronized-
Motion

Homing

ConstantVe-
locity

Accelerating

Decelerating

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2840

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 381: Function block MC_ReadAxisError

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
As long as Enable = TRUE, power is on.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 382: Function block MC_ReadAxisError

Data type: BOOL
Parameter available.

Data type: BOOL
Error flag.

Enable

Axis

Valid

Error

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2841

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: WORD
The value of the axis error. These values are drive specific and only valid when it is possible to
read an error from the drive (e.g. by fieldbus).
In Drive-based motion, the AxisErrorID shows the value which is configured for the process
image.
In PLC-based motion, the AxisErrorID shows the CMC_MOTION_KERNEL… ErrorID.

MC_Reset

Fig. 383: Function block MC_Reset

Table 191: General information
Available as of runtime system V2.2

Included in library MC_Block_AC500_V11.lib

Type Function block with historical values

This function block makes the transition from the state ErrorStop to StandStill by resetting all
internal axis-related errors. It does not affect the output of the function block instances.

In addition, a reset message is sent to the drive (e.g. output
DRIVE_RESET_FAULT at CMC_MOTION_KERNEL... or by ACCESS function
block).

If used with FM562, MC_Reset also gives a command to reset position data on
FM562 IO mapping and offset position set by MC_SetPosition.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

ErrorID

AxisErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2842

Input description

Fig. 384: Function block MC_Reset

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 385: Function block MC_Reset

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Error flag.

Execute

Axis

Done

Busy

Error

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2843

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_ReadParameter

Fig. 386: Function block MC_ReadParameter

When a drive based axis implementation is used, the function block returns the value of a drive
specific parameter or a PLCopen parameter. When the Central Motion Control axis implemen-
tation is used, a parameter according to the list PLCopen parameter is returned. Ä Chapter
1.5.9.3.6 “PLCopen parameter” on page 2595

All available parameters are listed in this table: Ä Chapter 1.5.9.3.6 “PLCopen
parameter” on page 2595

See also:

– MC_WriteParameter to write parameters Ä Chapter 1.5.9.6.3.8 “MC_Write-
Parameter” on page 2848

– MC_ReadBoolParameter to read Boolean parameter Ä Chapter 1.5.9.6.3.6
“MC_ReadParameter” on page 2844

– MC_WriteBoolParameter to write Boolean parameter Ä Chapter 1.5.9.6.3.9
“MC_WriteBoolParameter” on page 2850

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2844

Input description

Fig. 387: Function block MC_ReadParameter

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the value of the parameter continuously while enabled.

Data type: INT
Number of the parameter. One can also use as symbolic parameter names which are declared
as VAR CONST.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 388: Function block MC_ReadParameter

Data type: BOOL
Parameter available.

Enable

Parameter-
Number

Axis

Valid

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2845

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: DINT
Value of the specified parameter in the datatype.

MC_ReadBoolParameter

Fig. 389: Function block MC_ReadBoolParameter

When a drive based axis implementation is used, the function block returns the value of a drive
specific BOOL parameter or a PLCopen BOOL parameter. When the Central Motion Control
axis implementation is used, a BOOL parameter according to the list PLCopen parameter is
returned. Ä Chapter 1.5.9.3.6 “PLCopen parameter” on page 2595

All available parameters are listed in this table: Ä Chapter 1.5.9.3.6 “PLCopen
parameter” on page 2595

See also:

– MC_ReadParameter to read parameters Ä Chapter 1.5.9.6.3.6 “MC_Read-
Parameter” on page 2844

– MC_WriteParameter to write parameters Ä Chapter 1.5.9.6.3.8 “MC_Write-
Parameter” on page 2848

– MC_WriteBoolParameter to write Boolean parameters Ä Chapter
1.5.9.6.3.9 “MC_WriteBoolParameter” on page 2850

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

Busy

Error

ErrorID

Value

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2846

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 390: Function block MC_ReadBoolParameter

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: AXIS_REF
Reference to the axis.

Data type: BOOL
Get the value of the parameter continuously while enabled.

Data type: INT
Number of the parameter. One can also use as symbolic parameter names which are declared
as VAR CONST.

Output description

Fig. 391: Function block MC_ReadBoolParameter

Axis

Enable

Parameter-
Number

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2847

Data type: BOOL
Parameter available.

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: DINT
Value of the specified parameter in the datatype.

MC_WriteParameter

Fig. 392: Function block MC_WriteParameter

When a drive based axis implementation is used, the function block writes the value of a drive
specific parameter or a PLCopen parameter. When the Central Motion Control axis implemen-
tation is used, a parameter according to the list PLCopen parameter is written. Ä Chapter
1.5.9.3.6 “PLCopen parameter” on page 2595

All available parameters are listed in this table: Ä Chapter 1.5.9.3.6 “PLCopen
parameter” on page 2595

See also:

– MC_ReadParameter to read parameters Ä Chapter 1.5.9.6.3.6 “MC_Read-
Parameter” on page 2844

– MC_ReadBoolParameter to read Boolean parameters Ä Chapter
1.5.9.6.3.6 “MC_ReadParameter” on page 2844

– MC_WriteBoolParameter to write Boolean parameters Ä Chapter
1.5.9.6.3.9 “MC_WriteBoolParameter” on page 2850

Valid

Busy

Error

ErrorID

Value

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2848

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 393: Function block MC_WriteParameter

Data type: BOOL
Starts the function block at rising edge.

Data type: INT
Number of the parameter (correspondence between number and parameter is to be specified
later).

Data type: LREAL
New value of the specified parameter.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 394: Function block MC_WriteParameter

Execute

Parameter-
Number

Value

Axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2849

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_WriteBoolParameter

Fig. 395: Function block MC_WriteBoolParameter

When a drive based axis implementation is used, the function block writes the value of a drive
specific BOOL parameter or a PLCopen BOOL parameter. When the Central Motion Control
axis implementation is used, a BOOL parameter according to the list PLCopen parameter is
written. Ä Chapter 1.5.9.3.6 “PLCopen parameter” on page 2595

All available parameters are listed in this table: Ä Chapter 1.5.9.3.6 “PLCopen
parameter” on page 2595

See also:

– MC_ReadParameter to read parameters Ä Chapter 1.5.9.6.3.6 “MC_Read-
Parameter” on page 2844

– MC_WriteParameter to write parameters Ä Chapter 1.5.9.6.3.8 “MC_Write-
Parameter” on page 2848

– MC_ReadBoolParameter to read Boolean parameters Ä Chapter
1.5.9.6.3.6 “MC_ReadParameter” on page 2844

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2850

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 396: Function block MC_WriteBoolParameter

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: INT
Number of the parameter (correspondence between number and parameter is to be specified
later).

Data type: LREAL
New value of the specified parameter.

Data type: AXIS_REF
Reference to the axis.

Execute

Parameter-
Number

Value

Axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2851

Output description

Fig. 397: Function block MC_WriteBoolParameter

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_ReadActualPosition

Fig. 398: MC_ReadActualPosition

Table 192: General information
Available as of runtime system V2.2

Included in library MC_Block_AC500_V11.lib

Type Function block with historical values

This function block returns the actual position.

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2852

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 399: MC_ReadActualPosition

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the value of the parameter continuously while enabled.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 400: MC_ReadActualPosition

Data type: BOOL
Parameter available.

Enable

Axis

Valid

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2853

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: LREAL, unit: u
New absolute position.

MC_ReadActualVelocity

Fig. 401: MC_ReadActualVelocity

This function block returns the value of the actual velocity as long as Enable is set. Valid is
true when the data-output “Velocity” is valid. If Enable is reset, the data loses its validity, and all
outputs are reset, no matter if new data is available.

The output ActualVelocity can be a signed value.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Busy

Error

ErrorID

Position

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2854

Input description

Fig. 402: MC_ReadActualVelocity

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the value of the parameter continuously while enabled.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 403: MC_ReadActualVelocity

Data type: BOOL
Parameter available.

Data type: BOOL
The function block is not finished and new output values are to be expected.

Data type: BOOL
Signals that an error has occurred within the function block.

Enable

Axis

Valid

Busy

Error

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2855

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: LREAL, unit: u/s
The value of the actual velocity.

MC_SetOverride

Fig. 404: Function block MC_SetOverride

This function block sets the values of override for the whole axis. The override parameters are
applied as a factor that is multiplied to the set velocity, acceleration, deceleration and jerk during
the executing of a motion function block. Ongoing motion commands are not affected when
override factors are changed.
● The Input AccFactor acts on positive and negative acceleration (deceleration).
● This function block sets the factor. The override factor is valid until a new override is set.
● The default values of the override factors are 1.0.
● The value of the overrides can be between 0.0 and 1.0. Values > 1.0 and values < 0.0 are

not allowed. The value 0.0 is not allowed for AccFactor and JerkFactor.

– Override does not act on slave axes. (Axes in the state Synchronized
Motion).

– The function block does not influence the single axis state diagram.
– The override factors are just effective to modify the velocity, acceleration,

deceleration and jerk which are provided as explicit values by PLCopen
function blocks. They do not modify a movement which is commanded
by other means as camming, gearing, profiling, where no explicit velocity,
acceleration,deceleration and jerk is in place.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

ErrorID

ActualVelocity

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2856

Input description

Fig. 405: Function block MC_SetOverride

Data type: BOOL
If SET, it writes the value of the override factor continuously. If RESET it should keep the last
value.

Data type: LREAL
New override factor for the velocity.

Data type: LREAL
New override factor for the acceleration or deceleration.

Data type: LREAL
New override factor for the velocity.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 406: Function block MC_SetOverride

Data type: BOOL
Signals that the override factor(s) is (are) set successfully.

Enable

VelFactor

AccFactor

JerkFactor

Axis

Enabled

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2857

Data type: BOOL
The function block is not finished and new output values are to be expected.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_SetPosition

Fig. 407: Function block MC_SetPosition

This function block shifts the coordinate system of an axis by manipulating both the set-point
position as well as the actual position of an axis with the same value without any movement
caused. (Re-calibration with same following error). This can be used for instance for a reference
situation. This function block can also be used during motion without changing the commanded
position, which is now positioned in the shifted coordinate system.
The function block may just be called in: StandStill, Continuous Motion, ErrorStop or Disabled.

– RELATIVE means that position is added to the actual position value of the
axis at the time of execution. This results in a recalibration by a specified
distance.

– ABSOLUTE means that the actual position value of the axis is set to the
value specified in the position parameter.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Busy

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2858

Input description

Fig. 408: Function block MC_SetPosition

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Position unit (Means ‘Distance’ if Relative= TRUE).

Data type: BOOL, default: FALSE
Relative distance if TRUE. Absolute position if FALSE.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 409: Function block MC_SetPosition

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Execute

Position

Relative

Axis

Done

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2859

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

1.5.9.6.4 Homing function blocks
For further information see: AN00220-001 - AC500 and MicroFlex e150 - EtherCAT Homing
Methods

MC_StepAbsSwitch

Fig. 410: Function block MC_StepAbsSwitch

This function block performs a homing function by searching for an absolute positioned external
physical switch. (An Absolute Switch has two “Off” (or “On”) areas – see example). For central
Motion Control implementation: The signal of the Absolute Switch has to be written to the
variable “absRefSwitch” of the data type CMC_AXIS_IO.

Inside the operation area the limit switches have to be logically FALSE and out-
side the borders the signal of the corresponding limit switch has to be logically
TRUE.

If needed the signal from the sensor must be inverted before it is connected to
an element the AXIS_IO data type.

Busy

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2860

http://www.abbmotion.com/support/SupportMe/ApplicationNotes.asp
http://www.abbmotion.com/support/SupportMe/ApplicationNotes.asp

This physical layout has the risk that homing is started in the wrong direction (escaping the
switch). To support such case, it implements a special behavior when Limit Switches are found
(or the AbsSwitch itself is "On" at Execute):
● Axis State is set to Homing,
● The homing is commanded in the most likely direction were the sensor can be found. In the

example (-),
● The velocity is defined by the input,
● Both time and distance limits can cause an error if exceeded,
● If any LimitSwitch is found during Homing (any of them), then a special process is started

in the opposite direction, the AbsSwitch is searched to switch off (or "On" depending on
SwitchMode setting). The Edge (passed by), and homing process is restarted in the original
direction and with the same conditions. This ensures that the end conditions are always
same,

● If the SwitchMode is either MC_SwitchNegative or MC_SwitchPositive, then the special
process is also started in opposite direction depending from the switch state at "Execute",

● The direction changes only when the specified Velocity is reached (InVelocity),
● This function block does not modify the actual position,
● This function block does not leave the Homing State when done.
● This function block can only be used once for a homing sequence.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2861

An overlapping switch configuration is also possible. This has same the behavior as working on
the limit switches:

If the input direction is set to a fixed direction (MC_Positive or MC_Negative), then the initial
switch state is ignored (used for example in rotary axis where only one sense of rotation is
allowed):

With an overlapping switch configuration either MC_EdgeOn or MC_EdgeOff
can be used for the input SwitchMode. This depends on the switching behavior
of the absolute switch and the used option for the input Direction.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2862

Input description

Fig. 411: Function block MC_StepAbsSwitch

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: MC_HOMING_DIRECTION
Specifies the direction of the motion if any:
● MC_Positive = Starts in positive direction always.
● MC_Negative = Starts in negative direction always.
● MC_SwitchPositive = Depends on Switch status at Execute edge. If Switch is "Off", direc-

tion is positive, if "On" it is negative.
● MC_SwitchNegative = Like previous, but opposite.

Data type: MC_HOMING_SWITCH
Sensor condition to finalize this function block in any switch mode:
● MC_On = When sensor is ON.
● MC_Off = When sensor is OFF.
● MC_EdgeOn = When Off to On transition in sensor.
● MC_EdgeOff = When On to Off transition in sensor.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, unit: t.u.
Maximum torque or force. 0 = No torque limit.
Central Motion Control implementation (Compact Motion Control): TorqueLimit value will not be
used.

Execute

Direction

SwitchMode

Velocity

TorqueLimit

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2863

Data type: LREAL, unit: s
If the function block condition is not met in the TimeLimit, an error is issued.
0 = No time limit.

Data type: LREAL
If the Funciton Block condition is not met within a DistanceLimit travel, an error is issued.
0 = No distance limit.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 412: Function block MC_StepAbsSwitch

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

TimeLimit

DistanceLimit

BufferMode

Axis

Done

Busy

Active

CommandA-
borted

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2864

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.
Specific error numbers:
● MC_TimeLimitExceeded
● MC_DistanceLimitExceeded
● MC_TorqueLimitExceeded

MC_StepDirect

Fig. 413: Function block MC_StepDirect

This function block performs a static homing by directly forcing an actual position. No physical
motion is performed in this mode. This is equivalent to a MC_SetPosition action, but clears the
Homing State.

– This function block modifies actual position and sets to the "SetPosition"
input value at the end.

– This function block clears the Homing State when Done.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2865

Input description

Fig. 414: Function block MC_StepDirect

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Value of the absolute position to be set when homing is done.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 415: Function block MC_StepDirect

Execute

SetPosition

BufferMode

Axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2866

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_StepLimitSwitch

Fig. 416: Function block MC_StepLimitSwitch

This function block performs a homing function by searching for sensor using only limit
switches. (A limit switch has 1 "Off" (or "On") area). The signal of the Limit Switches have to be
written to the variables “limitSwitchPos” and “limitSwitchNeg” of the data type CMC_AXIS_IO.

Inside the operation area the limit switches have to be logically FALSE and out-
side the borders the signal of the corresponding limit switch has to be logically
TRUE.

If needed the signal from the sensor must be inverted before it is connected to
an element the AXIS_IO data type

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2867

In this case the limit switches (always active once moving part working area has been sur-
passed) are used for homing procedure.
● The axis State is changed to Homing.
● Home is commanded by user in the desired homing direction at the selected Velocity.
● If LimitSwitch is found "On" on rising "Execute", then the process is started in the opposite

direction as specified, LimitSwitch is search for "Off" (or On depending in LimitSwitchMode
setting) Edge (released), and process is restarted again in original direction. This ensures
that the end conditions are always the same.

● The time and distance limits can cause error if exceeded.
● The direction changes only when the specified velocity is reached, this ensures acceleration

and deceleration spaces are fixed.
● This function block does not modify actual position.
● This function block does not leave the Homing State when done.
● This function block can only be used once for a homing sequence.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2868

Input description

Fig. 417: Function block MC_StepLimitSwitch

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: MC_HOMING_DIRECTION
Specifies the direction of the motion and corresponding LimitSwitch to search for, just MC_Posi-
tive and MC_Negative are possible:
● MC_Positive = Positive direction searching positive LimitSwitch.
● MC_Negative = Negative direction searching negative LimitSwitch.

Data type: MC_HOMING_EDGE
Sensor condition to finalize this function block:
● MC_On = When sensor is ON.
● MC_EdgeOn = When Off to On transition in sensor.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Execute

Direction

SwitchMode

Velocity

Acceleration

Deceleration

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2869

Data type: LREAL, unit: t.u.
Maximum torque or force. 0 = No torque limit.
Central Motion Control implementation (Compact Motion Control): TorqueLimit value will not be
used.

Data type: LREAL, unit: s
If the function block condition is not met in the TimeLimit, an error is issued.
0 = No time limit.

Data type: LREAL
If the Funciton Block condition is not met within a DistanceLimit travel, an error is issued.
0 = No distance limit.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 418: Function block MC_StepLimitSwitch

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

TorqueLimit

TimeLimit

DistanceLimit

BufferMode

Axis

Done

Busy

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2870

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.
Specific error numbers:
● MC_TimeLimitExceeded
● MC_DistanceLimitExceeded
● MC_TorqueLimitExceeded

MC_StepRefPulse

Fig. 419: Function block MC_StepRefPulse

This function block performs homing by searching for zero pulse (also called Marker or ref-
erence pulse) in encoder. The reference pulse appears once per encoder revolution. The
advantage in using Reference Pulse for homing is the higher accuracy and precision that can
be achieved compared to traditional optical, mechanical or magnetic sensors.

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2871

● The axis state is changed to Homing if not already in.
● Home is commanded by user in the desired homing direction at the programmed velocity.
● First occurrence of the Reference Pulse, Homing is finished.
● Torque is limited. Time and Distance Limits can cause error if exceeded.
● This Function modifies actual position and sets to the "SetPosition" input value at the end
● This function block clears the Homing State when Done.
It is common that a first approach is performed against a mechanical sensor at higher velocity,
and after a Reference Pulse, at a lower velocity. This is a traditional 2-Step homing (Coarse
by external Switch in reverse and Fine by Reference Pulse in forward). For ease of use both
functions could be grouped together in single function block. Advantage having the function
blocks separate is that any combination is possible (MC_Block and after MC_RefPulse, etc.),
stating different velocity and conditions for each Step (higly flexible), without increasing homing
function block complexity too much.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2872

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 420: Function block MC_StepRefPulse

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Execute

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2873

Data type: MC_HOMING_DIRECTION
Specifies the direction to start the motion, just MC_Positive and MC_Negative are possible to
use:
● MC_Positive = Starts in positive direction always
● MC_Negative = Starts in negative direction always

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, unit: u
Value of the absolute position to be set when homing is done.

Data type: LREAL, unit: t.u.
Maximum torque or force. 0 = No torque limit.
Central Motion Control implementation (Compact Motion Control): TorqueLimit value will not be
used.

Data type: LREAL, unit: s
If the function block condition is not met in the TimeLimit, an error is issued.
0 = No time limit.

Data type: LREAL
If the Funciton Block condition is not met within a DistanceLimit travel, an error is issued.
0 = No distance limit.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Direction

Velocity

Acceleration

Deceleration

SetPosition

TorqueLimit

TimeLimit

DistanceLimit

BufferMode

Axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2874

Output description

Fig. 421: Function block MC_StepRefPulse

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.
Specific error numbers:
● MC_TimeLimitExceeded
● MC_DistanceLimitExceeded
● MC_TorqueLimitExceeded

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2875

MC_Home

Fig. 422: Function block MC_Home

This function block commands the axis to perform the search home sequence. The details of
this sequence are manufacturer dependent and can be set by the axis’ parameters. The input
Position is used to set the absolute position when reference signal is detected. This Function
Bock completes at StandStill.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 423: Function block MC_Home

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Execute

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2876

Data type: LREAL, unit: u
New absolute position.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output description

Fig. 424: Function block MC_Home

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Position

BufferMode

Axis

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2877

1.5.9.6.5 ABB specific function blocks
The ABB specific function blocks follow the general rules defined by PLCopen and implement
some additional features.

MCA_CAM_EXTRA

Fig. 425: Function MCA_CAM_EXTRA

This function is just usable together with MC_CamTableSelect and should be called right after
MC_CamTableSelect to modify 2 mode-bits which define the behavior for the MC_CamIn more
precise. Without this function, the default values will be used instead.
This Function modifies the CAM Table behavior.

– With ENABLE = TRUE, the 2 bits will be written all the time and will be
effective. So a cam table could be used in PERIODIC=TRUE mode and will
come to a stop when the master leaves its position range when PERIODIC
= FALSE is used.

– With MODULO-AXIS:
Uusage with PERIODIC = FALSE and position range for master equals
MODULORANGE: When the master reaches 360º, the movement will be
ready, even when it was started just at 359º.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input Description

Fig. 426: Function MCA_CAM_EXTRA

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2878

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Writes the values while ENABLE = TRUE.

Data type: BOOL
Default value=FALSE, just relevant with PERIODIC = FALSE, the cam-table will reach "EndOf-
Profile" when the master axis leaves the position range in the given direction
REVERSE = FALSE: positive direction
REVERSE= TRUE: negative direction.

Data type: BOOL
Default value = TRUE for master axis= MODULO, FALSE otherwise PERIODIC= TRUE, the
CAM table will not reach EndOfProfile.

Data type: MC_CAM_ID
Identifier of CAM Table to be used in the MC_CamIn function block.

MCA_Parameter

Fig. 427: Function MCA_Parameter

This function can be used to change the default values of the following parameters:
● Target position window. The default value is 10 units.
● Target velocity window. The default vaule is 10 units.
● Maximum fieldbus delay. If this value will be exceeded then it will be assumed that there is a

communication error.

The block MCA_Parameter has to be used to adjust the velocity limit when
velocities < 10 u/s should be used (10 u/s: default value).

The parameter v_Window defines the limit for the axis to reach its target velocity or standstill.

ENABLE

REVERSE

PERIODIC

CamTableID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2879

CAUTION!
This detection will not work properly when smaller velocities are used, espe-
cially the block MC_StepLimitSwitch will not stop the axis when reaching the
switch!

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input Description
Data type: TIME
A delay time to wait for fieldbus data. When the delay time is to long, the reaction time of
function blocks might be increased, while when it is to short an error might be indicated although
everything is ok.

Data type: DWORD
A position window to indicate that the movement is ready. It is a supervision additional to the
drives control. When this value is too small, e.g. 1 increment, it might happen that a movement
never indicates to be ready.

Data type: DWORD
A velocity window to indicate that the axis reached the commanded velocity.

MCA_Power

Fig. 428: Function block MCA_Power

This function block controls the power stage (on or off).

– The basic behavior is the same as MC_Power.
– The additional input "Deceleration" is used to ramp the axis down to velocity

= 0 in case it was moving when the MCA_Power was activated by a positive
edge on "Enable"

busdelay

posWindow

v_Window

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2880

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input Description

Fig. 429: Function block MCA_Power

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
As long as Enable = TRUE, power is on.

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: AXIS_REF
Reference to the axis.

Output Description

Fig. 430: Function block MCA_Power

Enable

Deceleration

Axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2881

Data type: BOOL
Effective state of the power stage.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_MoveVelocityContinuous

Fig. 431: Function block MCA_MoveVelocityContinuous

Table 193: General Information
Available as of runtime system V2.2

Included in library MC_Block_AC500_V11.lib

Type Function block with historical values

This function block commands a never ending controlled motion at a specified velocity.
The difference to function block MC_MoveVelocity Ä Chapter 1.5.9.6.1.6 “MC_MoveVelocity”
on page 2767 is that the values for Velocity, Acceleration and Deceleration can be modified
continuously. If there is a change of the velocity, the reaction on the signal InVelocity will be
delayed for 1 cycle.

– To stop the motion, the function block has to be interrupted by another
function block issuing a new command.

– The signal "InVelocity" has to be reset when the block is aborted by another
block or at the falling edge of "Execute".

– In combination with MC_MoveSuperimposed, the output “"nVelocity" stays
TRUE once the velocity setpoint of the axis has reached the commanded
velocity.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.

Status

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2882

See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input Jerk: 1 = jerk on, 2 = jerk off
Input Direction: 0 = DEFAULT, 1 = POSITIVE, 3 = NEGATIVE
Input BufferMode: Not implemented

Input Description

Fig. 432: Function block MCA_MoveVelocityContinuous

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Using this func-
tion block with
FM562

Execute

Velocity

Acceleration

Deceleration

Jerk

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2883

Data type: MC_Direction, range: DEFAULT, POSITIVE, SHORTEST, NEGATIVE, CURRENT
Enum type.

Shortest way not applicable, DEFAULT is equivalent with CURRENT

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output Description

Fig. 433: Function block MCA_MoveVelocityContinuous

Data type: BOOL
Commanded velocity reached (first time reached).

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Direction

BufferMode

Axis

InVelocity

Busy

Active

CommandA-
borted

Error

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2884

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_MoveByExternalReference

Fig. 434: Function block MCA_MoveByExternalReference

This function block gives a reference position to the axis which is directly passed to the position
control loop. The axis will follow the given position without a ramp but immediately. The refer-
ence position is evaluated continuously.

To stop the motion, the function block has to be interrupted by another function
block issuing a new command.

This block has to be called from the same task as
CMC_MOTION_KERNEL_REAL.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input Description

Fig. 435: Function block MCA_MoveByExternalReference

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2885

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Reference position.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output Description

Fig. 436: Function block MCA_MoveByExternalReference

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command.

Execute

Position

BufferMode

Axis

Done

Busy

Active

CommandA-
borted

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2886

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_Home

Fig. 437: Function block MCA_Home

The difference to the MC_Home is that the values for velocity, acceleration and deceleration can
be set as inputs. The velocity is normally set by a parameter in the drive, so the input Velocity
often does not influence the homing procedure. Acceleration and Deceleration are at start of
the system zero as no other movement was done before. To performe a homing with defined
Acceleration and Deceleration the inputs Acceleration and Decelerationcan be used.
This function block commands the axis to perform the «search home» sequence. The details
of this sequence are manufacturer dependent and can be set by the axis’ parameters. The
input Position is used to set the absolute position when reference signal is detected. The inputs
Velocity, Acceleration, Deceleration are to define the homing motion start parameters. This
Function Bock completes at StandStill.

The Homing procedure is executed according the definition in the drive.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2887

Input Description

Fig. 438: Function block MCA_Home

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u/s
Value of the maximum velocity (not necessarily reached). The homing sequence in some drives
uses Velocity from an internal parameter, so this input than has no influence .

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, unit: u
Absolute position when the reference signal is detected.

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Execute

Velocity

Acceleration

Deceleration

Position

Jerk

BufferMode

Axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2888

Output Description

Fig. 439: Function block MCA_Home

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2889

MCA_DriveBasedHome

Fig. 440: Function block MCA_DriveBasedHome

This function block can be used to execute a homing procedure directly in the drive. It requires
the drive supports 402-profile specific homing sequences.
The function block can be used in combination with:
● ECAT_402ParameterHoming_APP to send parameters
● ECAT_CiA402_CONTROL_APP to control the drive state machine and to set it to the

appropriate operating mode

Input Description

Fig. 441: Function block MCA_DriveBasedHome

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, default: 0
Position value in units, which will be used as home offset for the drive.

Execute

Position

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2890

Data type: LREAL, default: 0
A time in seconds, which will be used as an upper limit for the time available to do the homing.
If the time is exceeded, the function block will show an Error.
With TimeLimit = 0, the limit is ignored.

Data type: AXIS_REF
Reference to the axis.

Output Description

Fig. 442: Function block MCA_DriveBasedHome

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

TimeLimit

Axis

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2891

MCA_Indexing

Fig. 443: MCA_Indexing

This function block will – upon R_Trig on Execute – do a number of relative or absolute
moves, listed in a table (Array of MCA_POS_REF). The function block will position the axis to
a complete stop at target position and continue with the next move from the table upon next
R_Trig signal or automatically.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2892

Input Description

Fig. 444: MCA_Indexing

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: POINTER
Pointer to an array of MCA_POS_REF. The array needs to have at least (TableIndex + Move-
sToDo-1) elements.

Data type: WORD
Number of moves to be performed one after another.

Data type: WORD
Index to an array of MCA_POS_REF, points to the movement to be performed on rising edge of
Execute, start with 1 for the first entry.

Data type: AXIS_REF
Reference to the axis.

Execute

pPositions

MovesToDo

TableIndex

Axis

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2893

Output Description

Fig. 445: MCA_Indexing

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: WORD
Indicates the number of moves still to execute.

Data type: WORD
Index executing or last index completed, starts with 1.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

MovesPending

IndexNo

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2894

MCA_POS_REF
This structure is used to define the movement performed by MCA_Indexing. An array of this
structure has to be created. Every single element holds the data for a complete movement. The
address of this array has to be connected to input pPositions of MCA_Indexing.

MCA_POS_REF Type Comment
Position LREAL

Velocity LREAL

Acceleration LREAL

Deceleration LREAL

Mode BOOL TRUE = Use absolute positoning.
FALSE = Use relative positoning.

MCA_JogAxis

Fig. 446: Function block MCA_JogAxis

This function block jogs an axis for at least a given distance forward or backward with the
selected jog velocity and acceleration.

This function block will, after rising edge on JogForward or JogBackward, start
a continuous move (at least for the minimum distance) and continue upon
high-level on these inputs with a continuous motion, until they are FALSE, then
on their falling edge, the axis is regularly decelerated to stop. The movement is
carried out on Jog velocity for the minimum distance or longer.

– In case of both Enable signals are high, the function block will assume the
result to be low as in an EXOR conjunction.

– In case of MinJogDistance= 0, no specified distance is moved and the
movement will stop as soon as the JogForward and JogBackward= FALSE.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2895

Input Description

Fig. 447: Function block MCA_JogAxis

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Moves forward while “JogForward” =TRUE.

Data type: BOOL
Moves backward while “JogBackward” =TRUE.

Data type: LREAL
Velocity to jog .

Data type: LREAL
Acceleration.

Data type: LREAL
Deceleration.

Data type: LREAL
Jerk.

Data type: LREAL
Minimum distance to jog (in t.u. [u]).

Data type: AXIS_REF
Reference to the axis.

JogForward

JogBackward

JogVelo

JogAcc

JogDec

JogJerk

MinJogDistance

Axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2896

Output Description

Fig. 448: Function block MCA_JogAxis

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2897

MCA_WriteParameterList

Fig. 449: Function block MCA_WriteParameterList

The function block writes a list of parameters by using the MC_WriteParameter. The rules
for utilizing the function block correspond to MC_WriteParameter as well as the ErrorIds.
All parameters and parameter numbers have to be stored in an array of type MCA_PARAM-
ETER_STRUCT. The address of the first element is to be given to the function block's input
“parameters”. The number of elements to be written is declared at input Num.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input Description

Fig. 450: Function block MCA_WriteParameterList

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Execute

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2898

Data type: WORD
Number of the parameters to be written.

Data type: POINTER
Points to an array of type MCA_Parameter_STRUCT which holds the parameter numbers and
values.

Data type: AXIS_REF
Reference to the axis.

Output Description

Fig. 451: Function block MCA_WriteParameterList

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Num

pParameters

Axis

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2899

MCA_ReadParameterList

Fig. 452: Function block MCA_ReadParameterList

The function block reads a list of parameters by using the MC_ReadParameter. The rules
for utilizing the function block correspond to MC_ReadParameter as well as the ErrorIds.
All parameters and parameter numbers have to be stored in an array of type MCA_PARAM-
ETER_STRUCT. The address of the first element is to be given to the function block's input
parameters. The number of elements to be read is declared at input Num.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input Description

Fig. 453: Function block MCA_ReadParameterList

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: WORD
Number of the parameters to be written.

Execute

Num

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2900

Data type: POINTER
Points to an array of type MCA_Parameter_STRUCT which holds the parameter numbers and
values.

Data type: AXIS_REF
Reference to the axis.

Output Description

Fig. 454: Function block MCA_ReadParameterList

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block with Busy = TRUE has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_PARAMETER_STRUCT
This structure is used to define the parameter list used by MCA_ReadParameterList or
MCA_WriteParameterList. An array of this structure has to be created. The address of this
array has to be connected to input Parameters of MCA_ReadParameterList or MCA_WritePar-
ameterList

pParameters

Axis

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2901

MCA_PARAM-
ETER_STRUCT

Type Comment

ParameterNumber WORD

Value DINT In case of WriteParameterList, Value will be
written to the Parameter indicated by Param-
eterNumber. In case of ReadParameterList,
the function block will read the Parameter indi-
cated by ParameterNumber and write it to
Value.

This example
write 2 parame-
ters to
“achse1” and
reads them
back after-
wards:

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2902

MCA_SetPositionContinuous

This function block shifts the coordinate system of an axis by manipulating either the set-point
position or the actual position of an axis. This can be used for instance for a reference situation
“on the fly” where no abrupt position change is allowed, eg when a slave axis is linked to
the modified axis. This function block can also be used during motion without changing the
commanded position, which is now positioned in the shifted coordinate system. A continuous
position correction will be achieved, with a defined profile.

– The function block is allowed in any state except ErrorStop or Homing. In
Discrete Motion, just mode SUPER = TRUE is possible.

– The block will not change the axis state even when it results in a movement.
– With Super = TRUE, the axis will hold the setpoint position while an offset is

applied to the actual position. This will result in a movement as the position
control loop will keep the distance between setpoint- and actual position
constant. A slave axis will not see this movement and will not follow. When
the block is ready, the axis will have moved physically by -Distance but the
positions in AXIS_REF will not have been changed.

– With Super = FALSE, the behavior equals MC_SetPosition, but executed
continuously. The axis will physically stay where it is but the actual position
and setpoint-position are modified. A slave axis will follow.

– With Super = FALSE: When it is acceptable and required to correct the
position with a jump, use Acceleration = -1.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2903

Input Description

Fig. 455: Function block MCA_SetPositionContinuous

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: BOOL
Defines 2 different modes.

Data type: LREAL, unit: u
Relative distance for the motion.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Execute

Super

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2904

Data type: AXIS_REF
Reference to the axis.

Output Description

Fig. 456: Function block MCA_SetPositionContinuous

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: LREAL
Shows the progress, starts with 0 and ends with Covered-Distance= Distance. The value is just
valid while the function block is active.

Axis

Done

Busy

Active

CommandA-
borted

Error

ErrorID

CoveredDis-
tance

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2905

MCA_MoveRelativeOpti

This function block is designed to allow an easier setup for positioning movement. The input
MoveTime which receives the allowed time to move the given distance. The other inputs, as
Velocity, Acceleration, Deceleration and Jerk can be left "0", then the movement will use the
system limits and perform an as “soft” as possible positioning.
● It will always use a Jerk (when possible).
● To switch off the usage of Jerk, use Jerk = -1 as input parameter.
● Use the smallest possible acceleration/deceleration.
● Use the smallest possible velocity.
If it is not required to create a movement with limited Jerk, the input Jerk = -1 should be used.
The acceleration and deceleration is applied with a "jump" but a smaller maximum value is
reached.
If parameters as Velocity, Acceleration and Deceleration are set, these will be considered to be
the upper limits during the movement. If it is not possible to execute the movement in the given
time, an error will be shown. The function block gives also a suggestion which values could be
used to execute the movement within the time limitations.
If the velocity was too small, the internal variable usedVelocity will hold the smallest possible
value to execute the movement in the given time. This would mean execute it without any
ramps. usedAcceleration and usedDeceleration will be "0" in this case.
If the velocity was ok, but acceleration and deceleration too small, usedVelocity will show the
value from input Velocity and variables usedAcceleration and usedDeceleration will hold the
necessary values to execute the movement in the given time.

With move_Time = 0, the behavior for the function block is identical with
MC_MoveRelative Ä Chapter 1.5.9.6.1.2 “MC_MoveRelative” on page 2751.

It is possible to use just Distance and MoveTime as input parameters. In this
case, the function block will take the axis configuration parameters as limitations
for the movement and always create the smoothest possible interpolation.

If parameters are given which are not possible to use, e.g. velocity is too small to reach the
target in the given time, the function block´s internal variables usedJerk, usedVelocity, usedAc-
celeration and usedDeceleration will show a possible solution.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2906

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input Description

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, unit: u
Relative distance for the motion.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Execute

Distance

Velocity

Acceleration

Deceleration

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2907

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: LREAL, range: > 0, unit: s
Time to be used for the movement.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the axis.

Output Description

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Jerk

MoveTime

BufferMode

Axis

Done

Busy

Active

CommandA-
borted

Error

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2908

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_GearInDirect

Fig. 457: MCA_GearInDirect

This function block commands a gear ratio between the position of the slave and master axes
from the synchronization point onwards.
The function block behaves as follows:
● Synchronization starts right away, no matter if the master moves or is in standstill.
● The synchronization is limited by the given velocity and acceleration, and achieved as fast

as possible, so it can happen that:
– The 2 axes are synchronized earlier then the 2 given positions
– The 2 axes are synchronized later then the 2 given positions

● Following formula is used:
– slavePosition = (masterPosition-MasterSyncPosition)*RatioNumerator/RatioDenumer-

ator+SlaveSyncPosition
● In a modulo-axis, it is possible to reach the synchronization point in different directions.

The input parameter SyncDirection with its possible values: POSITIVE, NEGATIVE or
SHORTEST can be used to set this direction.
Inside the SyncWindow, automatically the direction SHORTEST will be used. It is important
to set a SyncWindow>0 for a modulo axis, because otherwise, slightest deviations could
result in moving a complete modulo distance.
– Inside SyncWindow, the slave axis will move SHORTEST to reach the SlaveSyncPosi-

tion
– Outside SyncWIndow, it will move the given SyncDirection, which can be POSITIVE or

NEGATIVE
● If a direction POSITIVE or NEGATIVE is used in a linear axis, the slave will wait until the

master reaches a position which allows the slave to move the required direction.

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2909

Input Description

Fig. 458: MCA_GearInDirect

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: INT
Gear Ratio Numerator.

Data type: INT
Gear Ratio Denominator.

Data type: MC_SOURCE
Defines the source for synchronization:
mcSetValue - Synchronization on master set value.
mcActualValue - Synchronization on master actual value.

Data type: LREAL
The position of the master where the slave is insync with the master.

Data type: LREAL
Slave Position at which the axes are running in sync.

Data type: MC_DIRECTION

Execute

RatioNumerator

RatioDenomi-
nator

MasterValue-
Source

MasterSyncPo-
sition

SlaveSyncPosi-
tion

SyncDirection

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2910

Moving direction for the slave to start the movement.
POSITIVE, NEGATIVE or SHORTEST are applicable.

Data type: LREAL
● when the slave is outside the SyncWindow, it will move the direction which is given in

SyncDirection
● when the slave is inside the SyncWindow, it will move SHORTEST to meet the SlaveSync-

Position.

Data type: LREAL
Velocity which limits the synchronization movement.

The slave has to be able to move faster than the master axis, otherwise it
is possible the SlaveSyncPosition is never reached when the master starts to
move.

Data type: LREAL
Acceleration which limits the synchronization movement.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the master axis.

Data type: AXIS_REF
Reference to the slave axis.

SyncWindow

Velocity

Acceleration

BufferMode

Master

Slave

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2911

Output Description

Fig. 459: MCA_GearInDirect

Data type: BOOL
Commanded gearing starts.

Data type: BOOL
Commanded gearing completed.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

StartSync

InSync

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2912

MCA_CamInDirect

Fig. 460: MCA_CamInDirect

This function block engages the Cam.

– It is not required that the master is stationary.
– If the actual master and slave positions do not correspond to the offset

values when MC_CamIn is executed, either an error occurs or the system
deals with the difference automatically.

– The Cam is placed either absolute or relative to the current master and
slave positions.
Absolute: The profile between master and slave is seen as an absolute
relationship.
Relative: The relationship between master and slave is in a relative mode.

– This function block is not merged with the MC_CamTableSelect function
block because this separation enables changes on the fly.

– A mechanical analogy to a slave offset is a cam welded with additional con-
stant layer thickness. Because of this the slave positions have a constant
offset and the offset could be interpreted as axis offset of the master shaft, if
linear guided slave tappets are assumed.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

The function block behaves as follows:
● If the master is inside the position range which is described in the cam-table data, synchro-

nization starts right away, no matter if the master moves or is in standstill.
● If the master is outside the position range which is described in the cam-table data, the

slave position is not modifed.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2913

● The synchronization is limited by the given Velocity and Acceleration, and achieved as fast
as possible.
The function block will show InSync when synchronization process is completed and the
slave axes reference position matches the cam-table data for the current master position.

● In a modulo-axis, it is possible to reach the synchronization point in different directions.
The input parameter SyncDirection with its possible values: POSITIVE, NEGATIVE or
SHORTEST can be used to set this direction.
Inside the SyncWindow, automatically the direction SHORTEST will be used.
It is important to set a SyncWindow>0 for a modulo axis, because otherwise, slightest
deviations could result in moving a complete modulo distance.
– Inside SyncWindow, the slave axis will move SHORTEST to reach the SlaveSyncPosi-

tion
– Outside SyncWIndow, it will move the given SyncDirection, which can be POSITIVE or

NEGATIVE
● If a direction POSITIVE or NEGATIVE is used in a linear axis, the slave will wait until the

master reaches a position which allows the slave to move the required direction.

The MC_CamIn has parameters to scale the cam-table values (MasterScaling,
SlaveScaling).

It has to be considered that MasterOffset and SlaveOffset are scaled exactly
like the corresponding cam-table values.

Input Description

Fig. 461: MCA_CamInDirect

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Execute

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2914

Data type: LREAL
Offset of master table. Angular offset of the master shaft to cam.

Data type: LREAL, default: 0
Offset of slave table. Sharpened cam (i.e higher elevation and deeper depression).

Data type: LREAL, default: 1.0
Factor for the master profile. From the slave point of view the master overall profile is multiplied
by this factor.

Data type: LREAL, default: 1.0
Factor for the slave profile. The overall slave profile is multiplied by this factor.

Data type: MC_SOURCE
Defines the source for synchronization:
mcSetValue - Synchronization on master set value.
mcActualValue - Synchronization on master actual value.

Data type: MC_DIRECTION
Moving direction for the slave to start the movement.
POSITIVE, NEGATIVE or SHORTEST are applicable.

Data type: LREAL
● when the slave is outside the SyncWindow, it will move the direction which is given in

SyncDirection
● when the slave is inside the SyncWindow, it will move SHORTEST to meet the SlaveSync-

Position.

Data type: LREAL
Velocity which limits the synchronization movement.

The slave has to be able to move faster than the master axis, otherwise it
is possible the SlaveSyncPosition is never reached when the master starts to
move.

Data type: LREAL
Acceleration which limits the synchronization movement.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the master axis.

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

MasterValue-
Source

SyncDirection

SyncWindow

Velocity

Acceleration

BufferMode

Master

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2915

Data type: AXIS_REF
Reference to the slave axis.

Data type: MC_CAM_ID
Identifier of CAM Table to be used in the MC_CamIn function block.

Output Description

Fig. 462: MCA_CamInDirect

Data type: BOOL
Cam is engaged for the first time.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Slave

CamTableID

InSync

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2916

Data type: BOOL
Pulsed output signaling the cyclic end of the CAM Profile.

MCA_SetOperatingMode

Fig. 463: Function block MCA_SetOperatingMode

This function block changes the axis mode from positioning to velocity mode and vice versa.
By default, an axis is always a positioning axis which has to follow either the drives or the PLCs
position control loop. In some applications, the movement is limited (e.g. by torque restrictions)
so the position can´t be reached.
A position controlled axis would first speed up, and then create a following error, both caused by
the increasing position lag.
The function block MCA_SetOperatingMode can be used to prevent this behavior and will
switch between velocity- and position controlled behavior “on the fly”.

To use the function block MCA_SetOperatingMode, the drive has to be used
in CSV (ContinuousSyncronuousVelocity), or an analog drive has to be used,
which means it has to move controlled by SPEED_REFERENCE (Kernel).

If the function block is called in StandStill, ErrorStop or Disabled, it will be effective immediately.
In any other mode, it will be effective with the next “Execute” rising edge on a function block
which activates a movement. It can be called while the axis is moving and will create a bump-
less transition between the velocity- and position controlled mode.
In velocity mode:
● The SPEED_REFERENCE is created by feed-forward, in an open loop. (It is not

required to set FF_PERCENTAGE parameter) REFERENCE_POSITION will follow the
DRIVE_ACTUAL_POSITION Position following error is not supervised.

● REFERENCE_POSITION will follow the DRIVE_ACTUAL_POSITION.
● Position following error is not supervised.

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

For this function block there is a visualization in the Library MC_Blocks_AC500_V11.
See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

EndOfProfile

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2917

Input Description

Fig. 464: Function block MCA_SetOperatingMode

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Enables the function block to switch the operating mode. A rising edge is not required, the block
will be operate if Enable=TRUE and will react to the VeloctiyMode/PositioningMode inputs.
VelocityMode=TRUE/PositioningMode=FALSE=> switch axis to velocity mode.
VelocityMode=FALSE/PositioningMode=TRUE=> switch axis to positioning mode.
VelocityMode=PositioningMode => no change.

Data type: BOOL, default: FALSE
Demands the axis to be set in VelocityMode.

Data type: BOOL, default: FALSE
Demands the axis to be set in PositioningMode.

Data type: AXIS_REF
Reference to the axis.

Enable

VelocityMode

Positioning-
Mode

Axis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2918

Output Description

Fig. 465: Function block MCA_SetOperatingMode

Data type: BOOL
Shows the axis state.

Data type: BOOL
Shows the axis state.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_PhasingByMaster

Fig. 466: Function block MCA_PhasingByMaster

This function block performs a movement for the relation to the master axis of the specified axis.
A real movement is just performed in case the axis is in synchronized motion.

InVelocityMode

InPositioning-
Mode

Active

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2919

This function block creates a relative phase shift in the master position of a slave axis. The
master position is shifted in relation to the real physical position. This is analogous to opening a
coupling on the master shaft for a moment and is used to delay or advance an axis to its master.
The phase shift is seen from the slave. The master does not know that there is a phase shift
experienced by the slave. The phase shift remains, until another “Phasing” command changes it
again.

The phasing is executed with respect to a master movement and will use a
polynomial interpolation

See the following chapter to check if this function block is supported by the used axis implemen-
tation: Ä Chapter 1.5.9.2.4 “Overview of PLCopen function blocks” on page 2577

See the following chapter for a list of available data types: Ä Chapter 1.5.9.2.6 “Overview of
data types” on page 2585

Input description

Fig. 467: Function block MCA_PhasingByMaster

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge

Data type: LREAL
[u] = Technical unit, phase difference in master

Data type: LREAL
[u] Distance master has to move

Data type: MC_ABB_iTypes_Enum
Interpolationtype, possible values are:
● MCA_SPLINE_COMPLETE
● MCA_SPLINE_NATURAL
● MCA_POLY5

Execute

Phaseshift

MasterDistance

iType

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2920

● MCA_POLY3
● MCA_LINEAR

Data type: MC_Source
Decide to use the actual position or reference position of master axis

Data type: MC_BufferMode
Not supported, default mcABORTING used

Data type: Axis_Ref
Reference to axis

Data type: Axis_Ref
Reference to master axis

Output description

Fig. 468: Function block MCA_PhasingByMaster

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished

Data type: BOOL
The function block is not finished

Data type: BOOL
Indicates that the function block has control on the axis

Data type: BOOL
Command is aborted by another command from other PLCopen function block

Data type: BOOL
Signals that error has occurred within function block

MasterValue-
Source

BufferMode

Axis

Master

Done

Busy

Active

CommandA-
borted

Error

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2921

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593

Data type: LREAL
Actual phase shift of master axis to slave axis, valid while function block is busy

1.5.9.7 PLCopen function blocks (Coordinated motion control)
1.5.9.7.1 Standard function blocks
MC_GroupEnable

Fig. 469: MC_GroupEnable

This function block changes the state for a group from GroupDisabled to GroupStandby. This is
an administrative function block, since no movement is generated.

The command does not influence the power state of any of the single axes in
the group.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 470: MC_GroupEnable

ErrorID

CoveredPhase-
Shift

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2922

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 471: MC_GroupEnable

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Execute

AxesGroup

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2923

MC_GroupDisable

Fig. 472: MC_GroupDisable

This function block changes the state for a group to GroupDisabled, although it is an administra-
tive FB, since no movement is generated. If the axes are not standing still while issuing this
command, it is up to the application to take the necessary precautions.

The command does not influence the power state of any of the single axes in
the group.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 473: MC_GroupDisable

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Execute

AxesGroup

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2924

Output description

Fig. 474: MC_GroupDisable

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_GroupReadActualPosition

Fig. 475: Function block MC_GroupReadActualPosition

This function block returns the actual position in the selected coordinate system of an axes
group. This is an administrative function block, since no movement is generated.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2925

Input description

Fig. 476: Function block MC_GroupReadActualPosition

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the actual position in the selected coordinate system of the axes group continuously while
enabled.

Data type: MC_COORD_SYSTEM; range: MC_DEFAULT_COORD, MC_MCS_COORD,
MC_PCS_COORD
Reference to the coordinate system (MCS, PCS).

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 477: Function block MC_GroupReadActualPosition

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Enable

CoordSystem

AxesGroup

Done

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2926

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: ARRAY [1..3] OF REAL
Current position of the group.

MC_GroupReadActualVelocity

Fig. 478: MC_GroupReadActualVelocity

This function block returns the actual velocity in the selected coordinate system of an axes
group. This is an ad-ministrative function block, since no movement is generated.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 479: MC_GroupReadActualVelocity

Busy

Error

ErrorID

Position

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2927

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the actual position in the selected coordinate system of the axes group continuously while
enabled.

Data type: MC_COORD_SYSTEM; range: MC_DEFAULT_COORD, MC_MCS_COORD,
MC_PCS_COORD
Reference to the coordinate system (MCS, PCS).

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 480: MC_GroupReadActualVelocity

Data type: BOOL
True if valid outputs are available.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: ARRAY [1..3] OF REAL
Current velocity of the group:
● in ACS the velocities of the different axes,
● in MCS and PCS it provides the velocity of the TCP .

Enable

CoordSystem

AxesGroup

Valid

Error

ErrorID

Velocity

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2928

Data type: REAL
Current path velocity (speed, combined result) of the TCP.

MC_GroupStop

Fig. 481: MC_GroupStop

This function block commands a controlled motion stop and transfers the axes group to the
state GroupStopping. It aborts any ongoing function block execution. While the axes group is in
state GroupStopping, no other function block can perform any motion on the same axes group.
After the axes group has reached velocity zero, the Done output is set to TRUE immediately.
The axes group remains in the state GroupStopping as long as Execute is still TRUE or velocity
zero is not yet reached. As soon as Done is SET and Execute is FALSE the axes group goes to
state GroupStandby. The command can only be aborted by MC_GroupDisable.

– The relevant axes stay on the path.
– If Deceleration is set to zero, the minimum value = 1 is used instead.
– If issued during a MoveDirectXxx command, the velocity/acc-/decelera-

tion/jerk values as properties of the AxisRef of each axis are used, and
not specified within this function block, and not to be exceeded during the
movement.

– Any synchronization of the group to a master is cancelled by issuing
MC_GroupStop

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Timing diagram
A typical timing diagram for MC_GroupStop is shown below, including the relevant states and
state-transitions:

PathVelocity

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2929

Fig. 482: MC_GroupStop timing diagram

The example below shows the behavior in combination with a MC_MoveLinearRelative:
● An axes group in linear movement is ramped down with function blocks MC_GroupStop.

The group stops on the original path,
● The axes group rejects motion commands as long as MC_GroupStop parameter “Execute”

= TRUE. Function block MC_MoveLinearRelative reports an error indicating the busy
MC_GroupStop command. This error is an function block error, so the group is not moving
to the state GroupErrorStop,

● At the 3rd “Exe1” rising edge, the group starts the next movement.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2930

Fig. 483: Behavior of MC_GroupStop in combination with MC_MoveLinearRelative

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2931

Time Description
t0 Two function blocks MC_MoveLinearAbsolute are commanded on axes group

MyAxesGroup. The first function block becomes active immediately and MyAx-
esGroup starts to move from its actual position (20.0; 20.0) towards the first
target position.

t1 Shortly after the TCP has started to move on the blending contour blending Lin1
into Lin2, a FB MC_GroupStop is issued in buffermode Aborting. The state of
the axes group changes from GroupMoving to GroupStopping. MyAxesGroup
decelerates, following the path which would have been executed without having
issued MC_GroupStop. Though the path velocity of MyAxesGroup decreases
strictly monotonic while stopping, single axes of the group might accelerate in
between due to the given path and kinematic transformation of MyAxesGroup.

t2 MyAxesGroup comes to standstill. The Done output of the function block
MC_GroupStop is set. Since the input Execute of the function block Stop is
still set the group stays in state GroupStopping.

t3 The input Execute of the function block Stop is reset. All outputs of the function
block Stop are reset. The group state changes to GroupStandby.

The following
example dem-
onstrates the
behavior of
MC_GroupStop
in combination
with two
MC_MoveLi-
nearAbsolute
which are
blended with
defined con-
stant path
velocity:

Fig. 484: Example of MC_GroupStop in combination with two MC_MoveLinearAbsolute

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2932

Input description

Fig. 485: MC_GroupStop

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Execute

Deceleration

Jerk

BufferMode

AxesGroup

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2933

Output description

Fig. 486: MC_GroupStop

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by disabling MC_Power of one or more of the axes in the group. The state
changes to GroupDisabled.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2934

MC_GroupHalt

Fig. 487: MC_GroupHalt

This function block commands a controlled motion stop. It aborts any ongoing function block
execution. Ax-esGroup is moved to the state GroupMoving, until the velocity is zero. With the
DONE output set, the state is transferred to GroupStandby.

– MC_GroupHalt is used to stop the axes group under normal operation con-
ditions. In non-buffered mode: during deceleration of the axes group it is
possible to set another motion command, which will abort the MC_Group-
Halt and will be executed immediately,

– If this command is active the next command can be issued. For example
a driverless vehicle detects an obstacle and needs to stop. MC_GroupHalt
is issued. Before the StandStill is reached the obstacle is removed and
the motion can be continued by setting another motion command, so the
vehicle does not stop,

– The relevant axes stay on the same path which would have been executed
without having issued MC_GroupHalt.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

MyAxesGroup starts at Position (10.0; 10.0; 0.0). A FB MC_MoveCircularAbsolute is com-
manded with aux-iliary position (30.0; 30.0; 0.0) and end position (50.0; 10.0; 0.0). This results
in a 180° circular motion within the xy-plane of any coordinate system.

The following
example shows
the behavior of
MC_GroupHalt
in combination
with a
MC_MoveCir-
cularAbsolute:

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2935

Point of Time Description
th The circular motion is aborted by FB MC_GroupHalt. MyAxesGroup stays

on the path during halt.

tr R) MC_MoveCircularAbsolute is executed again and aborts MC_Group-
Halt. MC_GroupHalt allows this, in con-trast to MC_GroupStop. AxesGroup
can accelerate again without reaching StandStill. (MC_MoveCircularAbso-
lute can be retriggered in order to continue the original circular motion as
long as MyAxesGroup didn’t pass the auxiliary position.)

te E) MyAxesGroup reaches end position (50.0; 10.0; 0.0)

Fig. 488: Behavior of MC_GroupHalt in combination with MC_MoveCircularAbsolute

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2936

Input description

Fig. 489: MC_GroupHalt

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Execute

Deceleration

Jerk

BufferMode

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2937

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 490: MC_GroupHalt

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by disabling MC_Power of one or more of the axes in the group. The state
changes to GroupDisabled.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

AxesGroup

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2938

MC_GroupInterrupt

Fig. 491: MC_GroupInterrupt

This function block interrupts the on-going motion and stops the group from moving, however
does not abort the interrupted motion (meaning that at the interrupted function block the output
CommandAborted will not be Set, Busy is still high and Active is reset). It stores all relevant
track or path information internally at the moment it becomes active. The AxesGroup stays in
the original state even if the velocity zero is reached and the DONE output set.

– This function block is coupled to MC_GroupContinue. Issuing MC_Group-
Continue transfers the program back to the situation at issuing MC_Group-
Interrupt.

– Further motion commands may be accepted by the group.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 492: MC_GroupInterrupt

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2939

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 493: MC_GroupInterrupt

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by disabling MC_Power of one or more of the axes in the group. The state
changes to GroupDisabled.

Data type: BOOL
Signals that an error has occurred within the function block.

Execute

Deceleration

Jerk

AxesGroup

Done

Busy

Active

CommandA-
borted

Error

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2940

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_GroupContinue

Fig. 494: MC_GroupContinue

This function block transfers the program back to the situation at issuing MC_GroupInterrupt.
It uses internally the data set as stored at issuing MC_GroupInterrupt, and at the end (output
DONE set) transfer the control on the group back to the original function block doing the
movement on the axes group, meaning also that at the originally inter-rupted function block the
output Busy is still high and Active is set again.

– The dynamics of the function block that is continued can be used for the
Velocity, Acceleration, Deceleration and Jerk,

– This function block can also be used to continue after an error in case the
necessary set of data is stored at the occurrence of the error.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 495: MC_GroupContinue

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2941

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 496: MC_GroupContinue

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Command is aborted by disabling MC_Power of one or more of the axes in the group. The state
changes to GroupDisabled.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Execute

AxesGroup

Done

Busy

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2942

MC_GroupReadStatus

Fig. 497: MC_GroupReadStatus

This function block returns the status of an axes group according to the active Group-Functiom
Block. This is an administrative Funcion Block, since no movement is generated.

The outputs reflect the commanded state of the group.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2943

Input description

Fig. 498: MC_GroupReadStatus

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the actual position in the selected coordinate system of the axes group continuously while
enabled.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Enable

AxesGroup

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2944

Output description

Fig. 499: MC_GroupReadStatus

Data type: BOOL
True if valid outputs are available.

Data type: BOOL
The function block is not finished.

Data type: BOOL
See group state diagram. Ä Chapter 1.5.9.4.9.3.1 “Group state diagram” on page 2711

Data type: BOOL
See group state diagram. Ä Chapter 1.5.9.4.9.3.1 “Group state diagram” on page 2711

Data type: BOOL
See group state diagram. Ä Chapter 1.5.9.4.9.3.1 “Group state diagram” on page 2711

Data type: BOOL
See group state diagram. Ä Chapter 1.5.9.4.9.3.1 “Group state diagram” on page 2711

Data type: BOOL
See group state diagram. Ä Chapter 1.5.9.4.9.3.1 “Group state diagram” on page 2711

Valid

Busy

GroupMoving

GroupHoming

GroupErrorStop

GroupStandby

GroupStopping

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2945

Data type: BOOL
See group state diagram. Ä Chapter 1.5.9.4.9.3.1 “Group state diagram” on page 2711

Data type: BOOL
Moving with constant velocity on commanded path.

Data type: BOOL
Increasing Velocity on commanded path.

Data type: BOOL
Decreasing Velocity on commanded path.

Data type: BOOL
Movement has reached target position .

Data type: BOOL
At least 1 MCS axis is in single axis movement.

Data type: BOOL
At least 1 ACS axis is in single axis movement.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_MoveLinearAbsolute

Fig. 500: MC_MoveLinearAbsolute

GroupDisabled

ConstantVe-
locity

Accelerating

Decelerating

InPosition

MovingMCS

MovingACS

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2946

This function block commands an interpolated linear movement on an axes group from the
actual position of the TCP to an absolute position in the specified coordinate system.

– This function block applies to the MCS or PCS System, depending which is
activated and also follows the dynamic transformation when activated,

– The behavior on interrupting an ongoing motion corresponds Buffer-
Mode=MC_Aborting, TransitionMode = TMDefinedVelocity, TransitionPara-
meter = 100%.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2947

Fig. 501: MC_MoveLinearAbsolute Example

MC_MoveLi-
nearAbsolute -
Example

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2948

Timing dia-
gram for
example above
(the dots on
the red line are
based on the
same timing
difference and
representing
the velocity)

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2949

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2950

Input description

Fig. 502: MC_MoveLinearAbsolute

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: ARRAY [1..3] OF REAL
Array of absolute end positions for each dimension in the specified coordinate system. Ä “Posi-
tion” on page 3038

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2951

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 503: MC_MoveLinearAbsolute

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by disabling MC_Power of one or more of the axes in the group. The state
changes to GroupDisabled.

Data type: BOOL
Signals that an error has occurred within the function block.

TransitionMode

TransitionPara-
meter

AxesGroup

Done

Busy

Active

CommandA-
borted

Error

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2952

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_MoveLinearRelative

Fig. 504: MC_MoveLinearRelative

This function block commands an interpolated linear movement on an axes group from the
actual position of the TCP to a relative position in the specified coordinate system.

This function block applies to the MCS or PCS System, depending which is
activated and also follows the dynamic trans-formation when activated

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2953

Fig. 505: Example MC_MoveLinearRelative

MC_MoveLi-
nearRelative -
Example 1

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2954

Veloc ity
3000

Sequence of two comple te motions

Veloc ity

2 00 0
D

ist
Ar

ra
y_

1

S ta rting
point

S e c ond
point

Firs t
point

DistArra y_1

X

Y

DistArra y_2

D
ist

Ar
ra

y_
2

Ve loc ity
3000

Second motion inte rrupts firs t motion

D
ist

Ar
ra

y_
1

S ta rting
point

S e c ond
point

Firs t
point

DistArra y_1

X

Y

DistArra y_2

D
is

tA
rra

y_
2

Velocity

2 00 0

Sha pe de pe nds on ble nding se ttings
He re :
Buffe rMode = Aborting
Tra nsitionMode = TMDe fine d Ve locity

Inte rrupt
point

(Te s t)

Second point
(Re la tive to
F irs t point)

Fig. 506: Timing diagram for example above. The dots on the red line are based on the same
timing difference and represent the velocity.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2955

Fig. 507: Second example with MC_MoveLinearRelative and Blending

Timing diagram for example below (the dots on the red line are based on the same timing
difference and representing the velocity):

MC_MoveLi-
nearRelative -
Example 2

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2956

Input description

Fig. 508: MC_MoveLinearRelative

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2957

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: ARRAY [1..3] OF LREAL
Array of relative distances for each dimension in the specified coordinate system.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

TransitionMode

TransitionPara-
meter

AxesGroup

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2958

Output description

Fig. 509: MC_MoveLinearRelative

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2959

MC_MoveCircularAbsolute

Fig. 510: MC_MoveCircularAbsolute

This function block commands an interpolated circular movement on an axes group from the
actual position of the TCP. The end point as well as the auxiliary point (meaning depending on
applied mode, see below) are defined absolutely in the specified coordinate system.

This function block applies to the MCS or PCS System, depending which is
activated and also follows the dynamic transformation when activated

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

CircMode =
BORDER

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2960

The user defines the end point and a border point (= input 'AuxPoint') on the sector of the circle,
which shall be cruised by the machine.
Advantages of this mode:
● The border point usually can be reached by the machine, i.e. it can be teached.
Inconvenience of this mode:
● Restriction to angles<2π in one single command.

The user defines the end point and the center point (= input 'AuxPoint') of the circle. When using
this mode, the input 'PathChoice' defines, if the short or the long sector has to be cruised by the
machine.
Inconveniencies of this mode:
● Restriction to angles < 2π and ≠ π in one single command,
● Overdetermination of circle equation,
● The center point usually cannot be teached in due to collisions with obstacles.

CircMode =
CENTER

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2961

The user defines the end point and the perpendicular vector of the circle plane according to the
rule of right thumb (see figure below). The length of the vector corresponds to the radius of the
circle. The spearhead point of the vector is the input signal 'AuxPoint' in absolute coordinates,
i.e. referring to the origine of the coordinate system specified in 'CoordSystem'. If the diameter
is larger than the distance between starting and end point, two different circles have to be
considered. When using this mode, the input 'PathChoice' defines, if the circle with the short
sector or the circle with the long sector to reach the end point has to be cruised by the machine.
With positive radius value the shortest possible circle is determined, and with negative radius
value the largest possible circle.

Inconvenience of this mode:
● Restriction to angles < 2π in one single command,
● Overdetermination of circle equation.

AuxPoint = (50,0,0) ®Circle in plane parallel to y-z plane with radius 50 and rotation around
axis parallel to x-axis according to the rule of right thumb (CoordSystem = MCS).

Example:

CircMode =
RADIUS

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2962

Sequenced example of 2 MC_MoveCircularAbsolute function blocks:

Fig. 511: Example MC_MoveCircularAbsolute

Timing diagram of example above. The dots on the red line are based on the same timing
difference and representing thevelocity:

MC_MoveCir-
cularAbsolute -
Sequenced
example

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2963

Fig. 512: Example MC_MoveCircularAbsolute

Input description

Fig. 513: MC_MoveCircularAbsolute

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2964

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: MC_CIRC_MODE
Specifies the meaning of the input signals 'AuxPoint' and 'CircDirection'.
● MC_BORDER:

'AuxPoint' defines a point on the circle which is crossed on the path from the starting to the
end point.

● MC_CENTER:
'AuxPoint' defines the center point of the circle.

● MC_RADIUS:
'AuxPoint' defines the spearhead point of the perpendicular of the circle plane according to
the rule of right thumb. The radius of the circle is the length of the vector.

In the function block MC_MoveCircularAbsolute, the points are specified absolutely, i.e. the
perpendicular vector begins in the origine and ends in the spearhead point specified at the input
signal 'AuxPoint'.

Data type: ARRAY [1..3] OF REAL
Array of positions for each dimension in the coordinate system specified by the input signal
CoordSystem. These positions are defined relatively to the according positions of the starting
point.

Data type: ARRAY [1..3] OF REAL
Array of absolute positions for each dimension in the coordinate system specified by the input
signal CoordSystem. These positions are defined relatively to the according positions of the
starting point.

Data type: BOOL
Choice of path: False = clockwise, true = counterclockwise.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Execute

CircMode

AuxPoint

EndPoint

PathChoice

Velocity

Acceleration

Deceleration

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2965

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 514: MC_MoveCircularAbsolute

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Jerk

BufferMode

TransitionMode

TransitionPara-
meter

AxesGroup

Done

Busy

Active

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2966

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_MoveCircularRelative

Fig. 515: MC_MoveCircularRelative

This function block commands an interpolated circular movement on an axes group from the
actual position of the TCP. The end point as well as the auxiliary point (meaning depending
on applied mode, see below) are defined in the specified coordinate system relatively to the
starting point.

This function block applies to the MCS or PCS System, depending which is
activated and also follows the dynamic transformation when activated.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2967

The user defines the end point and a border point (= input 'AuxPoint') on the sector of the circle,
which shall be cruised by the machine. Both points are defined relatively to the starting point.
Advantages of this mode:
● The border point usually can be reached by the machine, i.e. it can be teached.
Inconvenience of this mode:
● Restriction to angles <2π in one single command.

The user defines the end point and the center point (= input 'AuxPoint') of the circle. Both points
are defined relatively to the starting point When using this mode, the input 'PathChoice' defines,
if the short or the long sector has to be cruised by the machine.
Inconveniencies of this mode:
● Restriction to angles < 2π and ≠ π in one single command,
● Overdetermination of circle equation,
● The center point usually cannot be teached-in due to collisions with obstacles.

CircMode =
BORDER

CircMode =
CENTER

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2968

The user defines the end point and the perpendicular vector of the circle plane according to the
rule of right thumb (see figure below). The length of the vector corresponds to the radius of the
circle. The spearhead point of the vector is defined relatively to the starting point at the input
signal 'AuxPoint'. If the diameter is larger than the distance between starting and end point, two
different circles have to be considered. When using this mode, the input 'PathChoice' defines,
if the circle with the short sector or the circle with the long sector to reach the end point has to
be cruised by the machine. With positive radius value the shortest possible circle is determined,
and with negative radius value the largest possible circle

Inconvenience of this mode:
● Restriction to angles <2π in one single command,
● The perpendicular vector has to be computed,
● Overdetermination of circle equation.

AuxPoint = (starting_point[0], starting_point[1] - 30, starting_point[2]) ® Circle in plane parallel
to x-z plane with radius 30 and rotation around axis parallel to y-axis contrariwise the rule of
right thumb (CoordSystem = MCS).

Example:

CircMode =
RADIUS

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2969

With CircMode=MC_RADIUS, Endpoint is a point at the circle and Auxpoint a vector which is
perpendicular of the circle plane according to the rule of right thumb. The radius of the circle is
the length of Auxpoint. The moving direction is always positive (counterclockwise), PathChoice
determines if the long or short distance is moved.

MC_RADIUS PathChoice Auxpoint Endpoint
1 FALSE (short) 0,0,200 200,200,0

2 TRUE (long) 0,0,200 200,200,0

3 FALSE (short) 0,0,-200 200,200,0

4 TRUE (long) 0,0,-200 200,200,0

MC_RADIUS

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2970

With CircMode=MC_CENTER, Endpoint is a point at the circle where the movement stops and
Auxpoint is the center point. Both are relative to the start point. The circle plane is defined by
Auxpoint x Endpoint. Restriction to angles <2π and ≠ πas the definition is not unique otherwise.

MC_CENTER PathChoice Auxpoint Endpoint
1 FALSE (short) 0,200,0 200,200,0

2 FALSE (short) 200,0,0 200,200,0

3 TRUE (long) 0,200,0 200,200,0

4 TRUE (long) 200,0,0 200,200,0

MC_CENTER

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2971

With CircMode=MC_BORDER, Endpoint is a point at the circle where the movement stops and
Auxpoint is a point on the circle. Both are relative to the start point.

MC_RADIUS PathChoice Auxpoint Endpoint
1 - 0,400,0 200,200,0

2 - 400,0,0 200,200,0

3 - 141,59,0 200,200,0

4 - 59,141,0 200,200,0

MC_BORDER

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2972

Input description

Fig. 516: MC_MoveCircularRelative

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: MC_CIRC_MODE
Specifies the meaning of the input signals 'AuxPoint' and 'CircDirection'.
● MC_BORDER:

'AuxPoint' defines a point on the circle which is crossed on the path from the starting to the
end point.

● MC_CENTER:
'AuxPoint' defines the center point of the circle.

● MC_RADIUS:
'AuxPoint' defines the spearhead point of the perpendicular of the circle plane according to
the rule of right thumb. The radius of the circle is the length of the vector.

In the function block MC_MoveCircularAbsolute, the points are specified absolutely, i.e. the
perpendicular vector begins in the origine and ends in the spearhead point specified at the input
signal 'AuxPoint'.

Data type: ARRAY [1..3] OF REAL
Array of positions for each dimension in the coordinate system specified by the input signal
CoordSystem. These positions are defined relatively to the according positions of the starting
point.

Execute

CircMode

AuxPoint

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2973

Data type: ARRAY [1..3] OF REAL
Array of absolute positions for each dimension in the coordinate system specified by the input
signal CoordSystem. These positions are defined relatively to the according positions of the
starting point.

Data type: BOOL
Choice of path: False = clockwise, true = counterclockwise.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Data type: AXES_GROUP_REF
Reference to a group of axes.

EndPoint

PathChoice

Velocity

Acceleration

Deceleration

Jerk

BufferMode

TransitionMode

TransitionPara-
meter

AxesGroup

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2974

Output description

Fig. 517: MC_MoveCircularRelative

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2975

MC_MoveDirectAbsolute

Fig. 518: MC_MoveDirectAbsolute

This function block commands a movement of an axes group to the specified absolute position
in the specified coordinate system without taking care of how (on which path) the target position
is reached.

– The velocity/acceleration/deceleration/jerk of every axis are properties of
each axis and not specified within this function block, but not to be
exceeded during the move.

– This function block applies to the MCS or PCS System, depending which is
activated and does not follow the dynamic transformation when activated.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 519: MC_MoveDirectAbsolute

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2976

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: ARRAY [1..3] OF REAL
Array of absolute end positions for each dimension in the specified coordinate system. Ä “Posi-
tion” on page 3038

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

BufferMode

TransitionMode

TransitionPara-
meter

AxesGroup

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2977

Output description

Fig. 520: MC_MoveDirectAbsolute

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2978

MC_MoveDirectRelative

Fig. 521: MC_MoveDirectRelative

This function block commands a movement of an axes group to a relative position without taking
care of how (on which path) the target position is reached. Start position is the actual position of
the TCP.

– The velocity/acceleration/deceleration/jerk of every axis are properties of
each axis and not specified within this function block, but not to be
exceeded during the move.

– This function block applies to the MCS or PCS System, depending which is
activated and does not follow the dynamic transformation when activated.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2979

Following example shows the behavior of MC_MovePositionDirectRelative. All positions are
related to MCS:
● Starting at position p0 (10; 10) a MC_MoveLinearAbsolute to position p1 (80; 35) is

commanded,
● While the TCP is moving towards p1, the MC_MoveLinearAbsolute command is aborted

by a MC_MovePositionDirectRelative command. The actual position of the TCP, when
MC_MovePositionDirectRelative becomes active, is (44.5; 21.63),

● The TCP leaves the line p0p1 and moves to the new target position p2 (54.5; 41.63). The
resulting trajectory depends on the kinematic transformation of the axes group.

Fig. 522: Example MC_MoveDirectRelative

Behavior of
MC_MovePosi-
tionDirectRela-
tive

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2980

Input description

Fig. 523: MC_MoveDirectRelative

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: ARRAY [1..3] OF LREAL
Array of relative distances for each dimension in the specified coordinate system.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Execute

Distance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2981

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 524: MC_MoveDirectRelative

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

TransitionMode

TransitionPara-
meter

AxesGroup

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2982

MC_PathSelect

Fig. 525: MC_PathSelect

This function block prepares the relevant path data and makes these available to the system as
an output (PathData). Administrative function block.

MC_PATH_DATA_REF and MC_PATH_REF are ABB specific data types.

PathSelect makes data available.This can include:

1.) Starting point of a download of a path profile, as represented in PathData
and referenced by PathDescription,

2.) Start to generate a path profile.

This function block applies to the MCS or PCS System, depending which is
activated.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 526: MC_PathSelect

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2983

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: MC_PATH_REF
Reference to the path description.

Data type: MC_PATH_DATA_REF
Reference to the path data which can be prepared by MC_PathSelect.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 527: MC_PathSelect

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Execute

PathDescription

PathDataRef

AxesGroup

Done

Busy

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2984

MC_MovePath

Fig. 528: MC_MovePath

This function block commands an AxesGroup to move according to the path specified in the
PathData.

This function block applies to the MCS or PCS System, depending which is
activated and also follows the dynamic transformation when activated

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

The complete path could be moved with PositionOffset and could be stretched with Position-
Scaling. The path velocity could be modified with the value VelocityScaling. The used velocity
will be the pathvelocity (V_PATH) multiplied by VelocityScaling. When the path movement is
started, the actual position for each axis should be equal to: PathPosition * PositionScaling +
PositionOffset

Position-
Offset

Position-
Scaling

1.Path posi-
tion

Actual axis
position

Behavior

0 1 0 0 Ok, movement starts at
position 0.

0 1 1000 1000 Ok, movement starts at
position 1000.

0 2 500 1000 Ok, movement starts at
position 1000.

1000 1 0 1000 Ok, movement starts at
position 1000.

-1000 1 1000 0 Ok, movement starts at
position 0.

-1000 2 500 0 Ok, movement starts at
position 0.

Explanation:

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2985

Input description

Fig. 529: MC_MovePath

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: ARRAY [1..3] OF LREAL
Allows to define an offset to the position in PathData. The movement starts at actual position
and positionOffset. This position should be the same as the first Path Position.

Data type: LREAL, default: 1
Allows to increase or decrease the path velocity.

Data type: LREAL, default: 1
Allows to scale the position values defined in PathData.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Execute

PositionOffset

VelocityScaling

PositionScaling

BufferMode

TransitionMode

TransitionPara-
meter

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2986

Data type: MC_PATH_DATA_REF
Reference to the path data which can be prepared by MC_PathSelect.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 530: MC_MovePath

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

PathDataRef

AxesGroup

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2987

MC_SyncGroupToAxis

Fig. 531: Function block MC_SyncGroupToAxis

This function block commands an interpolated path movement on an axes group in the appli-
cable coordinate system. The multi axes motion is synchronized with the Master motion like in a
cam function.

– This synchronization of the axes group can be stopped via MC_GroupStop
or any other motion command,

– The interpolation executed corresponds to MC_MovePath, just that
MC_MovePath processes the path data in relation to time while MC_Syn-
cGroupToAxis processes the path data in relation to the master position,

– It is possible to start the movement in advance and ramp-in to reach the
path at position MasterSyncPosition. This functionality is executed with
MasterStartDistance < > 0.

Input description

Fig. 532: Function block MC_SyncGroupToAxis

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2988

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL
Offset of master table. Angular offset of the master shaft to cam.

Data type: ARRAY [1..3] OF LREAL
Offset of slave table. The slave will start at the 1. path position + SlaveOffset.

Data type: LREAL, default: 1.0
Factor for the master profile. From the slave point of view the master overall profile is multiplied
by this factor.

Data type: LREAL, default: 1.0
Factor for the slave profile. The overall slave profile is multiplied by this factor.

Data type: LREAL
The position of the master in the path where the group is insync with the master. (If the
‘MasterSyncPosition’ does not exist, at the first point of the path the master and slave are
synchronized).

The inputs acceleration, deceleration and jerk are not added here.

Data type: LREAL
The master distance for the slave to start to synchronize to the master.

Data type: MC_SOURCE
Defines the source for synchronization:
mcSetValue - Synchronization on master set value.
mcActualValue - Synchronization on master actual value.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXIS_REF
Reference to the master axis.

Execute

MasterOffset

SlaveOffset

MasterScaling

SlaveScaling

MasterSyncPo-
sition

MasterStartDis-
tance

MasterValue-
Source

BufferMode

Master

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2989

Data type: MC_PATH_DATA_REF
Reference to the path data which can be prepared by MC_PathSelect.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 533: Function block MC_SyncGroupToAxis

Data type: BOOL
The axes group follows the master axis.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

PathDataRef

AxesGroup

InSync

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2990

MC_SyncAxisToGroup

Fig. 534: MC_SyncAxisToGroup

This function block maps a single axis to a group. The single axis output represents the path
length progression of the axes group. There is the ability to set a ratio between group and single
axis.

– This function block equals the mileage counter (odometer) in a car of the
group and shows this via the Slave axis,

– The slave ramps up to the ratio of the path speed and locks in position
when this is reached,

– The gearing ratio can be changed while function block is running, using a
consecutive call of the function block,

– InSync is set the first time the ratio is reached,
– After being InSync, a position locking or just a speed locking is system

specific. The function block is stopped by issuing a single axis function
block.

This function block applies to the MCS or PCS System, depending which is activated and also
follows the dynamic transformation when activated.

This function block has to be called within the real-time task.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2991

Input description

Fig. 535: MC_SyncAxisToGroup

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: INT
Gear Ratio Numerator.

Data type: INT
Gear Ratio Denominator.

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Execute

RatioNumerator

RatioDenomi-
nator

Acceleration

Deceleration

Jerk

BufferMode

AxesGroup

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2992

Data type: AXIS_REF
Reference to the axis (real or virtual).

Output description

Fig. 536: MC_SyncAxisToGroup

Data type: BOOL
The (virtual) slave generates valid values.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Slave

InSync

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2993

COMC_GROUP_CARTESIAN

Fig. 537: Function block COMC_GROUP_CARTESIAN

Table 194: General information
Available as of runtime system V1.2 and above

Included in library CoordinatedMotion_AC500_V21.LIB

Type Function block with historical values

This function block has to be called every cycle and at least once before any MC… function
block is activated.
The MCS axes form a cartesian system according to the “right hand rule”. These axes are
fix, so it is not possible to add or remove an axis. When just 2 dimensions are needed, a
dummy-axis which runs on simulation should be created.
The addresses should be calculated as follows:

This should be done every cycle as on an online change, addresses of variables might be
changed. The actual address has to be provided to the block in every cycle.
The different elements are linked by ADR operator.

The number of ACS axes is flexible, although an array with 3 elements is used as type. A larger
array could be used instead and the number of elements be provided at N_ACS.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2994

Input description

Fig. 538: Function block COMC_GROUP_CARTESIAN

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Release of function block.

Data type: INT
Cycle time of the PLC task in ms.

Data type: INT
Number of ACS Axes

Data type: POINTER TO ARRAY[1..3] OF POINTER TO AXIS_REF
Access to the machine axes, the number is variable and the array might have a different
number of elements. It depends on the used coordinate transformation

Data type: POINTER TO ARRAY[1..3] OF POINTER TO AXIS_REF
Access to the Cartesian axes. These have to be 3 axes, for X, Y, Z coordinate in a right handed
coordinate system

Data type: AXES_GROUP_REF
Group reference

Output description

Fig. 539: Function block COMC_GROUP_CARTESIAN

Enable

CYCLE

N_ACS

ACS_AXES

MCS_AXES

GROUP

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2995

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

COMC_TeachCartesianTransformation

Fig. 540: Function COMC_TeachCartesianTransformation

The function calculates matrices to be used for Cartesian coordinate transformation.

Four teach points from both coordinate systems are necessary to do so. The
points need to be linearly independent, which means it is not possible to have
3 points on a line or all 4 points on a plane. As result, the Function will calcu-
late FORWARD_MATRIX and INVERSE_MATRIX which could be used with
Funciton Block “MCA_SetCoordinateTransformation” to switch over from MCS
to PCS. The Function has a BOOL value as return value which is TRUE in case
of success. When FALSE is returned, the condition of linear independent points
needs to be checked.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Activates the Funcion.

Done

Error

ErrorID

Enable

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2996

Data type: ARRAY[1..3] OF LREAL
Teach point for x, y, z values in MCS. Refers to the same point as TeachPoint1_PCS in PCS
coordinates.

Data type: ARRAY[1..3] OF LREAL
Teach point for x, y, z values in MCS. Refers to the same point as TeachPoint2_PCS in PCS
coordinates.

Data type: ARRAY[1..3] OF LREAL
Teach point for x, y, z values in MCS. Refers to the same point as TeachPoint3_PCS in PCS
coordinates.

Data type: ARRAY[1..3] OF LREAL
Teach point for x, y, z values in MCS. Refers to the same point as TeachPoint4_PCS in PCS
coordinates.

Data type: ARRAY[1..3] OF LREAL
Teach point for x, y, z values in PCS.

Data type: ARRAY[1..3] OF LREAL
Teach point for x, y, z values in PCS.

Data type: ARRAY[1..3] OF LREAL
Teach point for x, y, z values in PCS.

Data type: ARRAY[1..3] OF LREAL
Teach point for x, y, z values in PCS.

Data type: MATRIX_4_3
Result of the Function, a matrix with 4 lines and 3 columns, to be used for transform PCS to
MCS coordinates.

Data type: MATRIX_4_3
Result of the Function, a matrix with 4 lines and 3 columns, to be used for transform MCS to
PCS coordinates.

1.5.9.7.2 Transformation function blocks
Although the transformation function blocks are administrative function blocks, they can be
buffered. Additional transformation function blocks are available as ABB specific function blocks
MCA_.... Ä Chapter 1.5.9.7.3 “ABB specific function blocks” on page 3008

Teach-
Point1_MCS

Teach-
Point2_MCS

Teach-
Point3_MCS

Teach-
Point4_MCS

Teach-
Point1_PCS

Teach-
Point2_PCS

Teach-
Point3_PCS

Teach-
Point4_PCS

INVERSE_MATR
IX

FOR-
WARD_MATRIX

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2997

MC_SetCartesianTransform MCS to PCS

Fig. 541: Function block MC_SetCartesianTransform

This function block sets a Cartesian transformation between the MCS and PCS.
The transformation will be activated on the next group movement, e.g. MC_MoveLinearAbso-
lute. When the block is activated, it first will be “Busy”. The Group will activate the transforma-
tion on the next movement, the block changes to “Done”. The transformation will be used until
an other transformation is activated.
● First, the rotation is applied in Z/Y/X direction and then the translation, with respect to the

already rotated coordinate system. When it is more reasonable to apply first the translation,
this could be done with feeding the translation values to MC_SetCoordinateTransform.
This function block (or MCA_SetCoordinateTransformation) is a precondition for the use of
MC_SetCartesianTransform.

● De-selection of PCS can be done by a execution of this function block with {TransX, TransY,
TransZ, RotAngleX, RotAngleY, RotAngleZ }={0, 0, 0, 0, 0, 0} as translation and rotation
input values.

● The values could as well be modified dynamically.
● A precondition for the use of MC_SetCartesianTransform is to activate a PCS first by

MC_SetCoordianteTransform or MCA_SetCoordinateTransformation. A neutral transforma-
tion could be used for this which is available from the library as CoordTransform_neutral.

● The transformation is combined with a block using “CoordTransform” but it is not possible
to combine it with a different block using translation vectors and rotation angles. In combina-
tion with CoordTransform, the CoordTransform is executed first.

The transformation will be activated on the next group movement, e.g. MC_MoveLinearAbso-
lute. When the function block is activated, it first will be “Busy”. The Group will activate the
transformation on the next movement, the function block changes to “Done”. The transformation
will be used until an other transformation is activated.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US2998

Fig. 542: Definition of the translation

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Fig. 543: The rotation is defined by a subsequent rotation around every coordinate direction
beginning with the Z-direction.

Fig. 544: Definition of the rotation

Example of the
definition fo
the rotation

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 2999

Input description

Fig. 545: Function block MC_SetCartesianTransform

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL
X-component of Translation Vector.

Data type: LREAL
Y-component of Translation Vector.

Data type: LREAL
Z-component of Translation Vector.

Data type: LREAL, unit: rad
Rotation angle in X-direction.

Data type: LREAL, unit: rad
Rotation angle in Y-direction.

Data type: LREAL, unit: rad
Rotation angle in Z-direction.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Execute

TransX

TransY

TransZ

RotAngleX

RotAngleY

RotAngleZ

AxesGroup

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3000

Output description

Fig. 546: Function block MC_SetCartesianTransform

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_SetCoordinateTransform MCS to PCS

Fig. 547: MC_SetCoordinateTransform

This function block sets a coordinate transformation between the MCS and PCS.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3001

● CoordTransform refers to a coordinate transformation including the parameters. The details
of the transformation and of the parameters are outside the scope of PLCopen.

● The system may supports a neutral transformation. With activating the neutral transforma-
tion the axes are referenced in the MCS system again.

● The Transformation could as well be dynamic.
● This function block does not start a movement (administrative function block). The move-

ment is initiated by a command in PCS.
The transformation will be activated on the next group movement, e.g. MC_MoveLinearAbso-
lute. When the block is activated, it first will be “Busy”. The Group will activate the transforma-
tion on the next movement, the block changes to “Done”. The transformation will be used until
an other transformation is activated.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 548: MC_SetCoordinateTransform

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: MC_COORD_REF
Reference to a Coordinate Transformation. ABB specific datatype.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Execute

CoordTransform

AxesGroup

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3002

Output description

Fig. 549: MC_SetCoordinateTransform

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MC_ReadCartesianTransform MCS to PCS

Fig. 550: Function block MC_ReadCartesianTransform

Done

Busy

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3003

This function block reads the parameter of the cartesian transformation that is active between
the MCS and PCS. .It combines the used matrix (MC_SetCoordinateTransform or MCA_Set-
CoordinateTransformation) and rotation angles (MCA_SetDynamicFollower or MC_SetCarte-
sianTransform) to a rotation angles and translation vector result.

This result is just valid when an orthogonal matrix has been used. Any matrix
with non-orthogonal vectors included could not be represented this way.

● When a dynamic transformation is activated, the function block will as well display the actual
dynamic values.

● When different transformations are active, the function block will give the combined result.
● The function block will give the FORWARD (from MCS to PCS) transformation.
● Several rotations are possible to achieve the same result, so it might happen that the angles

which are displayed do not match the given angel values at function block MCA_SetDyna-
micFollower. The possible rotation angles to achieve the same result are not unique.

 1. 2.
RotAngleX 0 90°

RotAngleY 90° 90°

RotAngleZ 90° 0

or

Example: The
following rota-
tions achieve
the same
result:

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3004

Input description

Fig. 551: Function block MC_ReadCartesianTransform

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the cartesian transformation parameter of the axes group continuously while enabled.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 552: Function block MC_ReadCartesianTransform

Data type: BOOL
True if valid outputs are available.

Enable

AxesGroup

Valid

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3005

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: LREAL
X-component of Translation Vector.

Data type: LREAL
Y-component of Translation Vector.

Data type: LREAL
Z-component of Translation Vector.

Data type: LREAL, unit: rad
Rotation angle in X-direction.

Data type: LREAL, unit: rad
Rotation angle in Y-direction.

Data type: LREAL, unit: rad
Rotation angle in Z-direction.

MC_ReadCoordinateTransform MCS to PCS

Fig. 553: Function block MC_ReadCoordinateTransform

This function block reads the coordinate transformation that is active between the MCS and
PCS.

Busy

Error

ErrorID

TransX

TransY

TransZ

RotAngleX

RotAngleY

RotAngleZ

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3006

● When a dynamic transformation is activated, the function block will as well display the actual
dynamic values.

● When different transformations are active, the function block will give the combined result.
● The function block will give the FORWARD (from MCS to PCS) and INVERSE (from PCS to

MCS) transformation.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 554: Function block MC_ReadCoordinateTransform

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Get the actual coordinate transformation reference of the axes group continuously while ena-
bled.

Data type: MC_COORD_REF
Reference to a Coordinate Transformation. ABB specific datatype.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description
Data type: BOOL
True if valid outputs are available.

Data type: BOOL
The function block is not finished.

Enable

CoordTransform

AxesGroup

Valid

Busy

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3007

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

1.5.9.7.3 ABB specific function blocks
The ABB specific function blocks follow the general rules defined by PLCopen and implement
some additional features.

MCA_MoveHelixRelative

Fig. 555: Function block MCA_MoveHelixRelative

This function block commands an interpolated circular movement on an axes group from the
actual position of the TCP. Two auxiliary points (meaning depending on applied mode, see
below) are defined in the specified coordinate system relatively to the starting point. The 1.
auxiliary point has a meaning accordingly to the CircMode input while the 2. auxiliary point just
represents any point on the circle to define the plane, it does not define the end point.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3008

Input description

Fig. 556: Function block MCA_MoveHelixRelative

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: MC_CIRC_MODE
Specifies the meaning of the input signals 'AuxPoint' and 'CircDirection'.
● MC_BORDER:

'AuxPoint' defines a point on the circle which is crossed on the path from the starting to the
end point.

● MC_CENTER:
'AuxPoint' defines the center point of the circle.

● MC_RADIUS:
'AuxPoint' defines the spearhead point of the perpendicular of the circle plane according to
the rule of right thumb. The radius of the circle is the length of the vector.

In the function block MC_MoveCircularAbsolute, the points are specified absolutely, i.e. the
perpendicular vector begins in the origine and ends in the spearhead point specified at the input
signal 'AuxPoint'.

Data type: ARRAY [1..3] OF LREAL
Array of positions for each dimension in the coordinate system specified by the input signal
CoordSystem. These positions are defined relatively to the according positions of the starting
point.

Execute

CircMode

AuxPoint1

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3009

Data type: ARRAY [1..3] OF LREAL
Array of positions for each dimension in the coordinate system specified by the input signal
CoordSystem. These positions are defined relatively to the according positions of the starting
point.

Data type: LREAL
The radian measure to be moved. This allows to move > 360° with a single block.

Data type: BOOL
On mode MC_RADIUS, PathChoice=TRUE defines that Auxpoint2 is to be reached on the
longer sector of the circle. In other modes, the input is ignored.

Data type: LREAL
Distance to be move for the 3. direction. A basic circle is moved on a plane and with VerticalDis-
tance <>0, an additional movement vertical to the plane is performed which combines to a helix.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Data type: AXES_GROUP_REF
Reference to a group of axes.

AuxPoint2

Radian

PathChoice

VerticalDistance

Velocity

Acceleration

Deceleration

Jerk

BufferMode

TransitionMode

TransitionPara-
meter

AxesGroup

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3010

Output description

Fig. 557: Function block MCA_MoveHelixRelative

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Auxpoint1 and Auxpoint2
The Auxpoint1 and Auxpoint2 define a plane at which the circle is to be moved. The positive
direction is determined by the “right hand rule”. When the thumb points in direction of the
perpendicular vector, the fingers show the positive direction.

Done

Busy

Active

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3011

Fig. 558: Right hand rule

Examples for different input parameters with start at position 0/0/0
Circ-
Mode=MC_RADI
US

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3012

With CircMode=MC_RADIUS, Auxpoint2 is a point at the circle and Auxpoint1 a vector which is
perpendicular of the circle plane according to the rule of right thumb. The radius of the circle is
the length of Auxpoint1. Two different cricles are possible.
● PathChoice = FALSE:: when moving in positive direction, the Auxpoint2 is reached on the

short sector.
● PathChoice = TRUE: when moving in positive direction, Auxpoint2 is reached on the longer

sector.
The direction is determined by the right thumb rule according to the perpendicular vector
(Auxpoint1)

MC_RADIUS PathChoice Radian Auxpoint1 Auxpoint2
1 FALSE 2 PI 0,0,200 200,200,0

2 TRUE 2 PI 0,0,200 200,200,0

3 FALSE - 2 PI 0,0,200 200,200,0

4 TRUE - 2 PI 0,0,200 200,200,0

Fig. 559: CircMode=MC_CENTER

With CircMode=MC_CENTER, Auxpoint2 is a point at the circle and Auxpoint1 is the center
point. Both are relative to the start point. The circle plane is defined by Auxpoint1 x Auxpoint2

Circ-
Mode=MC_CEN
TER

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3013

MC_CENTER PathChoice Radian Auxpoint1 Auxpoint2
1 - 2 PI 0,200,0 200,200,0

2 - 2 PI 200,0,0 200,200,0

3 - - 2 PI 0,200,0 200,200,0

4 - - 2 PI 200,0,0 200,200,0

Fig. 560: CircMode=MC_BORDER

With CircMode=MC_BORDER, Auxpoint1 and Auxpoint2 are points at the circle. The circle
plane is defined by Auxpoint1 x (Auxpoint1-Auxpoint2).

MC_BORDER PathChoice Radian Auxpoint1 Auxpoint2
1 - 2 PI 0,400,0 200,200,0

2 - 2 PI 400,0,0 200,200,0

3 - - 2 PI 0,400,0 200,200,0

4 - - 2 PI 400,0,0 200,200,0

Circ-
Mode=MC_BOR
DER

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3014

MCA_PathEvent

Fig. 561: Function block MCA_PathEvent

When moving the axes group on a path, it might be necessary to activate some digital event
while certain positions are passed. To do so, the event is filled as a bit pattern the element
EVENT in MC_PATH_POINT. Ä Chapter 1.5.9.4.9.2.10.2.2 “MC_PATH_POINT” on page 2704

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 562: Function block MCA_PathEvent

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
As long as Enable = TRUE, power is on.

Data type: MC_PATH_DATA_REF
Reference to the path data which can be prepared by MC_PathSelect.

Enable

PathDataRef

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3015

Output description

Fig. 563: Function block MCA_PathEvent

Data type: BOOL
The function block is not finished.

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: DWORD
Bit pattern which is specified at the actually crossed path section.

MCA_SetCoordinateTransformation

Fig. 564: Function block MCA_SetCoordinateTransformation

This function block is used to fulfill the functionality of MC_SetCoordinateTransformation by a
different implementation. It will activate a PCS. The PCS system is active while Enabled=TRUE.
All blocks related to the group movement or to a movement of an axis linked to the cartesian
coordinate system (MCS axes of group) will then be executed using the PCS.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Busy

Error

ErrorID

Event

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3016

Input description

Fig. 565: Function block MCA_SetCoordinateTransformation

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Activate the PCS.

Data type: MC_COORD_REF
Reference to a Coordinate Transformation. ABB specific datatype.

Data type: MC_COORD_REF
Holds a matrix which is used to perform a homogenous coordinate transform from PCS to MCS
and a matrix to transform MCS to PCS.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 566: Function block MCA_SetCoordinateTransformation

Data type: BOOL
The PCS is used.

Enable

CoordTransform

CoordTransform

AxesGroup

Enabled

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3017

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_SetDynamicFollower

Fig. 567: Function block MCA_SetDynamicFollower

This function block activates a dynamic coordinate transformation and allows to follow a moving
product. It replaces the functionality of MC_TrackConveyorBelt and MC_TrackRotaryTable.

Activate a PCS first by MC_SetCoordianteTransform or MCA_SetCoordinateTransforma-
tion.

● The group is not allowed to be in any moving state when the block is activated.
● As soon as “Busy” is shown, it is allowed to start a movement.
When a synchronization to a moving coordinate system is performed, the function block allows
to synchronize the group to this movement with a ramp. The two inputs SyncStartTime and
SyncStartOption are available to configure the synchronization process.
A synchronization is performed with SyncStartTime > 0. The group will need SyncStartTime
ms to do this. A polynomial movement is used and the result is superimposed to any other
movement. The PCS position will stay constant during this process, just the ACS is moving. The
process is ready when the function block shows INSYNC. A group movement can be started as
soon as Busy = TRUE.
With Enable = FALSE, the function block is deactivated. This is always done without any ramp.
When a ramp is needed, this has to be achieved by activating an other instance of this function
block.

CommandA-
borted

Error

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3018

SyncStartTime SyncStartOption Behavior
0 - The group will follow the PCS

coordinate system without
synchronization process.

> 0 FALSE After the synchronization, the
ACS and MCS positions will
have the same values as
if SyncStartTime = 0 would
have been used.

> 0 TRUE After the synchronization, the
ACS and MCS positions will
be shifted by the position dis-
tance which was needed to
synchronize.

The function block performs first a rotation with the X/Y/Z-axis as axis of rotation and then a
translation in X/Y/Z-direction. The result is a modified PCS coordinate system.
The transformation moves the coordinate system in parallel to the X/Y plane when no rotation
using the X- or Y-axis is performed.

RotAngleZ

X

Y

X

Y

TransY

TransX

Fig. 568: MCA_SetDynamicFollower Rotation angle

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3019

Input description

Fig. 569: Function block MCA_SetDynamicFollower

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

This block has to be called from the same task as
CMC_MOTION_KERNEL_REAL.

Data type: BOOL
Activate/deactivate the dynamic coordinate transformation.

Data type: LREAL
Distance in X-direction.

Data type: LREAL
Distance in Y-direction.

Data type: LREAL
Distance in Z-direction.

Data type: LREAL, unit: rad
Rotation angle in X-direction.

Data type: LREAL, unit: rad
Rotation angle in Y-direction.

Data type: LREAL, unit: rad
Rotation angle in Z-direction.

Enable

TransX

TransY

TransZ

RotAngleX

RotAngleY

RotAngleZ

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3020

Data type: LREAL, unit: ms
A time used to synchronize to a moving transformation.

Data type: BOOL
This option will result in a different synchronization profile. FALSE: Synchronize to the position
where the function block was enabled, move opposite direction if necessary, this is a "CATCH
UP" mode. TRUE: Allow a distance to synchronize. A later movement will nevertheless reach
the same positions, just the synchronization process differs.

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 570: Function block MCA_SetDynamicFollower

Data type: BOOL
Dynamic coordinate transformation is active and synchronization ready.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

SyncStartTime

SyncStartOption

AxesGroup

InSync

Busy

Active

CommandA-
borted

Error

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3021

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_MovePathPos

Fig. 571: Function block MCA_MovePathPos

This function block commands an AxesGroup to move according to the path specified in the
PathData. The functionality is identical to MC_MovePath with the additional feature to move the
group to the path start position first, using the given velocity, acceleration and deceleration.
This function block applies to the MCS or PCS System, depending which is activated and also
follows the dynamic transformation when activated.

This function block is only supported for PLC-based central Motion Control with Coordinated
Motion structures.

Input description

Fig. 572: Function block MCA_MovePathPos

ErrorID

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3022

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
Starts the function block at rising edge.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s2

Value of the deceleration (decreasing energy of the motor).

Data type: LREAL, range: > 0, unit: u/s3

Value of the Jerk.

Data type: ARRAY [1..3] OF LREAL
Allows to define an offset to the position in PathData. The movement starts at actual position
and positionOffset. This position should be the same as the first Path Position.

Data type: LREAL, default: 1
Allows to increase or decrease the path velocity.

Data type: LREAL, default: 1
Allows to scale the position values defined in PathData.

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: MC_TRANSITION_MODE
The realization just supports by default a transition starting with the actual velocity.

Data type: LREAL
Additional parameter for the transition mode.

Data type: MC_PATH_DATA_REF
Reference to the path data which can be prepared by MC_PathSelect.

Execute

Velocity

Acceleration

Deceleration

Jerk

PositionOffset

VelocityScaling

PositionScaling

BufferMode

TransitionMode

TransitionPara-
meter

PathDataRef

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3023

Data type: AXES_GROUP_REF
Reference to a group of axes.

Output description

Fig. 573: Function block MCA_MovePathPos

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

Data type: BOOL
This output = TRUE when the function block starts to interpolate on the given path, so the prior
positioning to the first path position is completed.

AxesGroup

Done

Busy

Active

CommandA-
borted

Error

ErrorID

OnPath

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3024

MCA_SyncInfeedToPath

This function block maps a single axis to a group. The axis will follow a group in a path-move-
ment.
It will either use the value given as Distance and move this distance while the groups moves the
given path. When RatioNumerator and RatioDenumerator are both different from 0, the groups
moving distance will be used instead and the axis be couple like GearIn to the group movement.
The axis will then move the groups total distance, modified by the given ratio. The slave axis will
always follow the master-group in a MCA_LINEAR mode, as a continuous master movement is
expected. The slave movement is limited by the given velocity and acceleration.

This function block has to be called within the real-time task.

Input description

Data type: BOOL
Starts the function block at rising edge.

Data type: INT
Gear Ratio Numerator.

Data type: INT
Gear Ratio Denominator.

Execute

RatioNumerator

RatioDenomi-
nator

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3025

Data type: LREAL, unit: u
Relative distance for the motion.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: MC_BUFFERMODE, default: MC_Aborting, no other modes supported
Defines the behavior of the axis.

Data type: MC_Path_Data_Ref
Reference to the path data which can be prepared by MC_PathSelect.

Data type: AXIS_REF
Reference to the slave axis.

Output description

Data type: BOOL
Dynamic coordinate transformation is active and synchronization ready.

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Distance

Velocity

Acceleration

BufferMode

MasterPathDa-
taRef

Slave

InSync

Busy

Active

CommandA-
borted

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3026

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_SyncCamToPath

This function block maps a single axis to a group. The axis is coupled with an own path to
the group path. It will follow the group movement from point-to-point with respect to it´s own
paths definition. The slave axis will always follow the master in a MCA_LINEAR mode, as a
continuous movement is expected. The slave movement is limited by the given velocity and
acceleration.

This function block has to be called within the real-time task.

Input description

Data type: BOOL
Starts the function block at rising edge.

Error

ErrorID

Execute

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3027

Data type: LREAL, default: 0
Offset of slave table. Sharpened cam (i.e higher elevation and deeper depression).

Data type: LREAL, default: 1.0
Factor for the slave profile. The overall slave profile is multiplied by this factor.

Data type: LREAL, range: > 0, unit: u/s
Value of the maximum velocity (not necessarily reached).

Data type: LREAL, range: > 0, unit: u/s2

Value of the acceleration (increasing energy of the motor).

Data type: INT
Number of points used in CamTableTimeAcceleration array.

Data type: POINTER TO MC_PPROFILE
Reference to CAM description.

Data type: MC_BUFFERMODE, range: MC_Aborting, MC_Buffered, MC_Blending, default:
MC_Aborting
Defines the behavior of the axis.

Data type: MC_Path_Data_Ref
Reference to the path data which can be prepared by MC_PathSelect.

Data type: AXIS_REF
Reference to the slave axis.

Output description

Data type: BOOL
Dynamic coordinate transformation is active and synchronization ready.

SlaveOffset

SlaveScaling

Velocity

Acceleration

Number_of_pair
s

CamTable

BufferMode

MasterPathDa-
taRef

Slave

InSync

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3028

Data type: BOOL
The function block is not finished.

Data type: BOOL
Indicates that the function block has control on the axis.

Data type: BOOL
Command is aborted by another command (PLCopen function block).

Data type: BOOL
Signals that an error has occurred within the function block.

Data type: WORD
Error identification Ä Chapter 1.5.9.3.4 “Error codes” on page 2593.

MCA_CreateBuffer

A movement with move buffers which can be modified on the fly, and which are executed in a
FIFO mode, is possible for coordinated motion with the two function blocks: MCA_CreateBuffer
and MCA_MoveBuffered Ä Chapter 1.5.9.7.3.9 “MCA_MoveBuffered” on page 3030. The func-
tion block MCA_CreateBuffer is used to create a buffer with NumEntry placeholders to store
the different movements. The function block will fill the variable BufferRef. This variable can be
used with function block MCA_MoveBuffered. The buffers will be used as a ring, in a FIFO way,
so any number of movements can be executed, just NumEntry to be stored in advance. The
number of entries can be changed on a rising edge. This should not be done while the buffer is
in use, as the function block will delete the contents and create a new, empty buffer.

Input description

Data type: BOOL
Starts the function block at rising edge.

Busy

Active

CommandA-
borted

Error

ErrorID

Execute

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3029

Data type: DWORD
BufferRef

Data type: CMC_BUFFER_REF
Container for move buffers

Output description

Data type: BOOL
Shows the status of the function block. Done = TRUE if the execution is finished.

Data type: BOOL
Signals that an error has occurred within the function block.

MCA_MoveBuffered

The function block triggers an absolute, linear movement at a rising edge of input Execute. The
first movement will be started directly. Any following rising edge on input Execute will store the
given movement to input BufferRef. The output MovesPending will indicate how many entries in
BufferRef are occupied and wait for execution. They will be executed automatically and move-
ments will be blended. The behavior of blending can be modified by the inputs EndVelocity,
CornerDistance, BufferMode, TransitionMode.

NumEntry

BufferRef

Done

Error

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3030

The movement will start at position (1) with velocity = 0. Different behavior will be reached
depending on the value for EndVelocity. The velocity which is reached at position (4) depends
on the chosen BufferMode. The velocity curve is also modified by the TransitionMode.
Legend for all examples: s = distance to move, v = velocity, a = deceleration

Example

With input EndVelocity = 0, the movement will be planned in a way that it could stop at the
corner (position). So the blending might be executed in a lower velocity.
With input EndVelocity > 0, the movement will be executed in a way that at the corner EndVe-
locity would be reached. An EndVelocity > 0 should not be used for the last intended movement
as this will mean that no deceleration ramp is planned.

Behavior of
blending modi-
fied by EndVe-
locity

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3031

With EndVelocity = 0, depending on the value for Deceleration, it might be necessary to start
a brake ramp at a certain position (2). The ramp is calculated in a way that a stop would be
reached at the corner:
s = 0.5*v*v/a
s < input CornerDistance: No deceleration ramp.
s > input CornerDistance: Decelerate from a distance s from the corner, a smaller velocity is
reached at position 3.
At CornerDistance, position (3), the blending to the next movement is executed.

With EndVelocity = Velocity, the movement will continue at constant speed. When CornerDis-
tance is reached, the blending to the next movement is executed.

Example

With CornerDistance D = 0, the movement will stop at the given position and then continue with
the next movement. This requires EndVelocity = 0.
With CornerDistance D > 0: If the distance between two positions is < 2*CornerDistance, half
position distance is used instead as CornerDistance. At a distance CornerDistance from the
target position of a given movement, the direction is changed towards the next position. It is
assumed that the velocity for the next movement can be reached within the CornerDistance D.

The input BufferMode will determine which velocity will be reached at the end of the corner,
when the next movement is running. It can be either the actual velocity at position (3) or the
commanded velocity for the next movement.

Option Description
mcBlendingLow Default. The smaller velocity is used.

mcBlendingHigh The higher velocity is used.

Behavior of
blending modi-
fied by Corner-
Distance

Behavior of
blending modi-
fied by Buffer-
Mode

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3032

Option Description
mcBlendingPrevious The current velocity at positioin (3) is used.

mcBlendingNext The commanded velocity for the next move-
ment is used.

At input TransitionMode you can choose TMConstantVelocity or other values.
With TransitionMode = TMConstantVelocity, the velocity will be kept constant if for position (3)
and (4) an identical value is commanded. In case of two different values, a linear transition is
performed. The position movement will be circular.
With TransitionMode = NOT TMConstantVelocity: Depending on the angle between the two
movements, the velocity will decelerate. A smaller angle will mean a slower movement at the
corner.

Angle Velocity corner
0° 0

60° 0.5*v

90° 0.67*v

135° 0.87*v

180° 1*v = a straight line

Behavior of
blending modi-
fied by Transi-
tionMode

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3033

Fig. 574: Movement in X/Y coordinates modified with CornerDistance.

Fig. 575: Resulting velocity curves when CornerDistance = 50, TransitionMode = TMCon-
stantVelocity and EndVelocity = Velocity. In this case, BufferMode does not make a difference
as the velocity values are identical.

Example 1

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3034

Fig. 576: Resulting velocity curves when CornerDistance = 0 and EndVelocity = 0. In this
case, BufferMode and TransitionMode do not make a difference.

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3035

Fig. 577: Movement in X/Y coordinates modified with CornerDistance.

Fig. 578: Resulting velocity curves with different velocity values for each segment. Buffer-
Mode = MCBlendingLow and TransitionMode = TMConstantVelocity.

Example 2

BufferMode Transition-
Mode

EndVelocity CornerDis-
tance

Behavior

x x 0 0 Stop at the corner, use decel-
eration.

x x > 0 0 Reach EndVelocity at the
corner, switch direction
without ramp.

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3036

BufferMode Transition-
Mode

EndVelocity CornerDis-
tance

Behavior

! TMConstant-
Velocity

=Velocity > 0 Move at commanded velocity
until CornerDistance is
reached, decide next velocity
depending on BufferMode,
perform any velocity transition
during the corner (if different
velocity are commanded).

! NOT TMCon-
stantVelocity

= Velocity > 0 As above, but movement
during the corner will be
slower.

! ! > 0 > 0 Plan the movement to reach
EndVelocity at the corner,
use the BufferMode and Tran-
sitionMode parameter when
CornerDistance is.

1.5.9.8 Glossary
Axes Coordinate System: The system of coordinates related to the physical motors and the
single movements caused by the single drives.

A way that consecutive function blocks cooperate in the transition from the first to the next.

Inserted curve that modifies the original path. It is the resulting curve after blending.

The reference system in which a coordinate or path is described.

The shortest distance between the programmed corner point and the contour curve.

Distance of the start point of the contour curve to the programmed target point.

The orientational components of a vector in space. (Note: this is different from the MC_Direction
input as used in part 1).

A unit controlling a motor via the current and timing in its coils.

The set of function blocks that can work on a group of axes.

Machine Coordinate System: The system of coordinates that is related to the machine. A
Cartesian coordinate system with the origin in a fixed position relative to the machine (the origin
is defined during the machine setup).
Sometimes called "World Coordinate System" or "Base Coordinate System".
(Note: with Cartesian build machines, MCS is a Cartesian Coordinate system and may be iden-
tical to ACS, or mapped via a trivial transformation). The coordinate system from the physical
multiple axes ACS is linked to the MCS via a kinematic transformation (forward and backward
conversion). The MCS represents an imaginable space with up to 6 dimensions.

ACS

Blending

Contour curve

Coordinate
system

Corner devia-
tion

Corner distance

Direction

Drive

Group-FB

MCS

PLC Automation with V2 CPUs

Libraries and solutions > Motion control library

2022/01/20 3ADR010582, 3, en_US 3037

An actuator focused to a movement, converting electrical energy in a force or torque.

The rotational components of a vector in space.

Set of continuous positions and orientation information in multi-dimensional space. Geometrical
description of a space curve that the TCP of an axesgroup moves along.

Description of a path which can include additional information like velocity and acceleration.

The coordinate system of the product can be called PCS: Product Coordinate System (or
"Program Coordinate System" in CNC world, or Programmers Coordinate System).
The PCS is based on the MCS typically by shifting and maybe rotating the MCS. The Zero point
of the PCS is related to the product and can be changed during run time by the program.
The real work piece can have a rotation or shift to the MCS (machine coordinate system)
or even might be moving relative to the MCS (machine coordinate system). By specifying a
trajectory in PCS one is able to describe the trajectory independent from the machine situation.
To map these two worlds (MCS to PCS and vice versa), a cartesian or cylindrical transformation
is normally done.

Apoint in space which is described by different coordinates. Depending on the used system
and transformation it can consist of up to 6 dimensions (coordinates) meaning 3 Cartesian
coordinates in space and 3 coordinates for the orientation.
In ACS there can be even more than 6 coordinates.
If the same position is described in different coordinate systems the values of the coordinates
are different.

Position and orientation (DIN EN ISO 8373). Position is used instead in this document.

A special kinematic for robot or handling applications.

The absolute value of the velocity without direction.

Combines an axis or axes group (as slave) with an axis as master in order that the slave
executes its path with synchronization to the progress of the master, meaning linked to a
one-dimension source for synchronization.

Tool Centre point, the point in the machine that is commanded to move, typically the center or
the head of the tool. It can be described in different coordinate systems.

Is characterized by an axis group that follows with its movement the movement of another axis
group.

Time dependent description of the path the TCP of an axes group moves along. Additionally
to the geometrical description of the space curve, time dependent state variables like velocity,
acceleration, jerk, forces etc. are specified.

In ACS: For a group of axes this means the velocities of the different axes.

Motor

Orientation

Path

PathData

PCS

Position

Pose (not used)

Scara

Speed

Synchronization

TCP

Tracking

Trajectory

Velocity

PLC Automation with V2 CPUs
Libraries and solutions > Motion control library

2022/01/203ADR010582, 3, en_US3038

Iin MCS and PCS: It provides the velocity of the TCP.

1.5.9.9 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

1.5.10 Process control object (PCO) library

1.5.10.1 PCO library - System technology

1.5.10.1.1 Introduction
800xA Connect in combination with AC500 Process Control Object (PCO) library allows to
easily integrate AC500 into 800xA for process control:

The AC500 PCO Library contains function blocks for Process Control Objects like motors,
valves, PID controllers, alarms, etc. Those function blocks are integrated into 800xA via OPC.
A corresponding 800xA aspect object allows control and monitoring of the Process Control
Objects with 800xA User Interface like faceplates and graphic elements:

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3039

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3040

1.5.10.1.2 Installation
For integration of AC500 into 800xA it is recommended to have at least two nodes:
● AC500 engineering node with Automation Builder and PCO library
● 800xA engineering node for engineering and operation of 800xA. The OPC server for

AC500 (“Codesys OPC Server V3.5”) must be installed on this node for connectivity with
AC500.

It is also possible to install the AC500 Automation Builder on the 800xA engi-
neering node,

but this document describes the general case with two nodes.

Install Automation Builder on AC500 engineering node
Latest Automation Builder installation files and instructions can be found here.
During installation the PCO library can be chosen as an option.

Install AC500 PCO Library on AC500 engineering node
If the PCO library is not yet installed from the beginning it can be installed using the Automation
Builder Installation Manager:

Install AC500 connect on 800xA node

The information can be found in the corresponding chapter in the ABB
Ability™ System 800xA User Manual 2PAA119792.

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3041

https://new.abb.com/plc/automationbuilder

Install AC500 OPC server on 800xA node
The AC500 OPC Server (“Codesys OPC Server 3.5”) must be installed on the 800xA
engineering node. The AC500 OPC server is part of the Automation Builder installation, but
it is not required to install the full Automation Builder on the 800xA engineering node.
Latest Automation Builder installation files can be found here.

1. Before starting the installation ensure that all OPC clients from previous versions are
closed:
● “ABB OPC Tunnel”
● Gateway (CODESYS gateway server)

This can be checked in the Windows Task Manager.

The following processes must have disappeared:
● “Gateway.exe”,
● “CoDeSysOPC.exe”,
● “WinCoDeSysOPC.exe” and
● “OCTsvc.exe”

ð If not:
● End the processes with the Windows Task Manager.
● Stop “ABB OPC Tunnel Windows Component Service” in Services (local).

2. Start the Automation Builder installation.

Checkpoint 1

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3042

https://new.abb.com/plc/automationbuilder

3. Select [Install Additional Tools] and install the “CODESYS OPC Server 3.5” which includes
the “AC500 Gateway Drivers”:

4. Alternatively, you can select [Prepare Offline Installation Additional Tools] to create an
USB-stick containing the “CODESYS OPC Server 3.5” and use this for installation on the
800xA engineering node.

5. During installation on the 800xA engineering node select all features.

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3043

1.5.10.1.3 Prerequesites
800xA license

The information can be found in the corresponding chapter in the ABB
Ability™ System 800xA User Manual 2PAA119792.

AC500 license

A separate license is not required for the PCO library.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3044

1.5.10.1.4 Configuration
This chapter descibes the configuration of AC500 engineering node and 800xA engineering
node.

Configure AC500 OPC server
Communication of AC500 to 800xA is done through OPC. Therefore it is required to install the
AC500 OPC server (see Ä Chapter 1.5.10.1.2.4 “Install AC500 OPC server on 800xA node”
on page 3042) and to configure it accordingly.
Basic configuration workflow for AC500 OPC Server: The definition of the items (symbols) to
be exchanged over OPC DA are stored in the symbol file “*.sdb”. The symbol file is generated
by the AC500 engineering tool Automation Builder which is running on the AC500 engineering
node. When downloading the application to the AC500 PLC the “*.sdb” file is stored on the user
disk of the PLC. Finally, the OPC Server running on the 800xA engineering node uploads the
“*.sdb” file in order to configure the tags accordingly.

This chapter describes how to setup the OPC connection on the AC500 engineering node as
well as on the 800xA engineering node.

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3045

AC500 engineering node
It is assumed that a simple AC500 project was configured with an AC500 engineering
node running the Automation Builder. For more information please check chapter Ä Chapter
1.5.10.1.5.1 “Create function blocks in AC500 V2” on page 3057.
As a quick start the simple motor example “PCO_Motor_Demo_AB223.project” can be used
which comes with the PCO library package, see folder
C:\Users\Public\Documents\AutomationBuilder\Examples\PS573-PCO.
The following chapter describes the configuration steps to prepare the AC500 for OPC
communication to the 800xA engineering node.

Configure symbol file in Automation Builder

1. Open Automation Builder and start the application of the project which will open
CODESYS.

2. Select “Options” in menu “Project”.

3. Configure symbol file according to the instructions in the Automation Builder help:
Ä Chapter 1.6.5.5.1.2.5.1.1 “Configure a symbol file” on page 6285

For the example “PCO_Motor_Demo_AB223.project” it should look like this:

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3046

Create and download symbol file
1. Follow the instruction in the Automation Builder help: Ä Chapter 1.6.5.5.1.2.5.1.2 “Create

and download a symbol file” on page 6287

2. Verify that the symbol file is downloaded to the PLC by opening the “PLC-Browser” in
“CODESYS” (online mode) and entering “fdir userdisk”:

Checkpoint 2

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3047

800xA engineering node
Configure OPC server

1. Start “OPC Configurator”.

2. Default values of the server need not to be changed.

ð
“Update Rate” may should not be “0 ms”! The default value of
“200 ms” is suitable value of many applications. The adjustment for
the update rate depends on the number of symbols (variables). For a
big number of symbols it would be better to increase the update rate.

3. Configure the PLC1.

4. ● Choose “Interface” “GATEWAY”.
This is the V2 Gateway which communicates with the AC500 V2.

● “Project name” can be empty.
● Increase “Buffer Size [Byte]” to “4800”
● The checkboxes “Active”, “Motorola Byteorder” must be checked.
● The checkbox “Enable logging [Defaultevents]” allows a later diagnosis.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3048

5. Configure connection. Click [Edit] and [New] to configure a new “Tcp/Ip” connection.

ð Address must be the IP address of the connected Ethernet port of AC500.

6. Click [Gateway] and configure “Tcp/Ip”.

7. Final configuration looks like this:

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3049

8. Save the configuration.

Read OPC data with matrikon test client (optional)
This chapter describes how to install and configure the Matrikon OPC test client. This is an
optional step but it is recommended to test the basic OPC communication before doing any
800xA specific configuration.
The AC500 must be connected to the 800xA engineering node and its IP address must be in
the same LAN.

1. Test if you can ping the PLC from 800xA engineering node:

2. Install an OPC test client, for example from Matrikon.

More information on test clients can be found in the the Automation
Builder help: Ä Chapter 1.6.5.5.1.2.3.3 “OPC clients for tests”
on page 6284

Checkpoint 3

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3050

3. Start the OPC test client (here: “Matrikon OPC Explorer”) and connect the
“CoDeSys.OPC.DA”:

4. After clicking [eConnect] the “Tray Icon” of the CODESYS gateway turns from idle to
active .
Furthermore, the sdb file is uploaded from the PLC to the following Gateway folder:
C:\ProgramData\Gateway Files\Upload

Checkpoint 4

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3051

5. Add tags.

6. Watch the values of the added tags.

7. Quality of the tag must be “Good”Checkpoint 5

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3052

Register OPC server as system service
For use with 800xA it is important that the OPC server runs with Session ID 0 (like all other
800xA services).
Therefore OPC server must be registered as service.
1. Start a command prompt as administrator.

2. Go to the CoDeSysOPC V3 installation folder.
3. Unregister the OPC server with “WinCoDeSysOPC/UnRegServer”.
4. Register the OPC server as system service with “WinCoDeSysOPC/Service”

5. During this procedure there should be no errors, terminal should look like this:

ð
Same information in Automation Builder online help: Ä Chapter
1.6.5.5.1.2.3.2.1 “Register OPC server V3 as a system service”
on page 6284

Checkpoint 6

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3053

6. Open Task Manager and select “CoDeSysOPCDAService” from the “Service” menu.
Right-click the “CoDeSysOPCDAService” and select “Open Services”:

7. Double-click “CoDeSysOPCDAService” and configure properties, logon with
800xAService account.

“800xAService” in the example, maybe different!

8. Restart the service (right-click).
9. Now the process runs with User name “800xAService” and Session ID “ 0”.Checkpoint 7

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3054

Troubleshooting
In case of any problems please check the potential issues in the Automation Builder help:
Ä Chapter 1.6.5.5.1.3 “Potential issues” on page 6303

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3055

Create PLC generic control network object
This configuration is done on the 800xA node.

The information can be found in the corresponding chapter in the ABB
Ability™ System 800xA User Manual 2PAA119792.

Configure PLC connect services
This configuration is done on the 800xA node.

The information can be found in the corresponding chapter in the ABB
Ability™ System 800xA User Manual 2PAA119792.

Create AC500 controller and GCN configuration
This configuration is done on the 800xA node.

The information can be found in the corresponding chapter in the ABB
Ability™ System 800xA User Manual 2PAA119792.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3056

1.5.10.1.5 Engineering workflow
Engineering is done in the following steps:
1. Create application in AC500 using the AC500 PCO library.
2. Create equivalent structure in “Bulk Data Manager”.
3. Populate PLC objects to control structure using the 800xA PLC object library.

Create function blocks in AC500 V2
1. For general introduction to AC500 configuration please refer to the chapter Ä Chapter 1.2

“Getting started” on page 12.
2. Create a new project: Ä Chapter 1.6.5.1.1 “Project handling” on page 5757

3. Transfer data to CODESYS: Ä Chapter 1.6.5.4.1 “Data transfer and CODESYS program-
ming” on page 6196

4. Program your application in Ä Chapter 1.4.1 “Development system” on page 145

Function blocks of PCO library
The PCO library contains the AC500 function blocks (motors, valves, …) which can be
integrated into 800xA.
The function blocks can be controlled and monitored by 800xA during operation.
Installation of the PCO library is described in Ä Chapter 1.5.10.1.2.2 “Install AC500 PCO
Library on AC500 engineering node” on page 3041.
All function blocks are described in Ä Chapter 1.5.10.2 “PCO library - function block description
(V2)” on page 3062.

Create instances using bulk data manager

The information can be found in the corresponding chapter in the ABB
Ability™ System 800xA User Manual 2PAA119792.

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3057

1.5.10.1.6 Capacity and Performance
AC500 function block performance

The PCO (Process Control Object) Library is usable on the whole range of AC500 platform
including AC500-eCo PLC’s.
The maximum number of function blocks per CPU is limited:
● By the available program memory for each CPU type.
● By the available speed for each CPU type.
● By the PLC cycle time which needs to be set to achieve desired CPU load.
The table below portrays the performance overview of various CPU’s. It shows two typical
configurations as examples.
These examples can be used by user to understand the performance of PLC’s and choose the
PLC based on application.

Small configuration
It uses 39 instances of function blocks. The various blocks used are:

Function block Number of Instances
PCO_BINSET 1

PCO_BIN 12

PCO_ALARM 6

PCO_ANASET 1

PCO_ANA 1

PCO_ANAALM 9

PCO_ANALIM 1

PCO_MOT 3

PCO_VALV 2

PCO_MOTCON 1

PCO_PIDCON 1

PCO_VALVCON 1

Total 39

When these instances of function blocks were downloaded the memory coverage in various
PLC’s is shown in the following table:

PLC Required User Data Memory
(% used from total available)

PM564-ETH 7730 ® 75 %

PM573-ETH 7730 ® 3 %

PM591-ETH 7730 ® 0.18 %

PM595-4ETH 7730 ® 0.05 %

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3058

The cycle time versus the CPU load for various PLC’s are shown in table below. The user needs
to select the cycle time based on desired CPU load. Cycle time and CPU load are inversely
proportional and are depicted in the following figure. It is not desirable for the CPU load to be
100 % and hence the cycle time needs to be chosen likewise.

Medium configuration
It uses 49 instances of function blocks. The various blocks used are:

Function block Number of Instances
PCO_BINSET 3

PCO_BIN 6

PCO_ALARM 2

PCO_ANASET 2

PCO_ANA 1

PCO_ANAALM 9

PCO_ANALIM 1

PCO_MOT 2

PCO_VALV 1

PCO_MOTCON 7

PCO_PIDCON 1

PCO_VALVCON 14

Total 49

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3059

When these instances of function blocks were downloaded the memory coverage in various
PLC’s is shown in the following table:

PLC Required User Data Memory
(% used from total available)

PM573-ETH 18258 ® 7 %

PM591-ETH 18258 ® 0.44 %

PM595-4ETH 18258 ® 0.11 %

Here the program could not be downloaded to PM564-ETH because of the less memory
available (Program Code Memory Max - 131072 Bytes) and here it is 18258 Bytes and hence
PM573-ETH, PM591-ETH and PM595-4ETH were used for testing.

The cycle time versus the CPU load for various PLC’s are shown in table below. The user needs
to select the cycle time based on desired CPU load. Cycle time and CPU load are inversely
proportional and are depicted in the following figure. It is not desirable for the CPU load to be
100 % and hence the cycle time needs to be chosen likewise.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3060

Memory usage per function block
The table below shows the memory size of each function block of the PCO library.
This information can be used by the user to select the CPU type based on its application.

Component Required User
Program Memory
(Bytes)
(Max - 524288)

Required User Data Memory
(Bytes) (Max - 65536)

Size of
individual
FB (Bytes)Number of

1 Function Block
Instance

Number of
5 Function Block
Instances

Project
no program

4338 (0 %) 1958 (2 %)

Project with
Library

4354 (0 %) 1962 (2 %)

PCO_BINSET 5070 (0 %) 1976 (3 %) 2008 (3 %) 14

PCO_BIN 5174 (0 %) 1991 (3 %) 2087 (3 %) 29

PCO_ALARM 5206 (0 %) 1991 (3 %) 2087 (3 %) 29

PCO_ANASET 5018 (0 %) 1978 (3 %) 2010 (3 %) 16

PCO_ANA 5174 (0 %) 1974 (3 %) 1998 (3 %) 12

PCO_ANAALM 19522 (3 %) 2166 (3 %) 2870 (4 %) 204

PCO_ANALIM 12498 (2 %) 2078 (3 %) 2510 (3 %) 116

PCO_MOT 10922 (2 %) 2288 (3 %) 3488 (5 %) 326

PCO_VALV 11402 (2 %) 2326 (3 %) 3670 (5 %) 364

PCO_MOTCON 30814 (5 %) 2772 (4 %) 5748 (8 %) 810

PCO_PIDCON 25310 (4 %) 2468 (3 %) 4324 (6 %) 506

PCO_VALVCON 26686 (5 %) 2550 (3 %) 4678 (7 %) 588

The percentages in the bracket denote the memory consumed out of the total
available. Tested using PM566-ETH.

800xA performance

The information can be found in the corresponding chapter in the ABB
Ability™ System 800xA User Manual 2PAA119792.

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3061

1.5.10.2 PCO library - function block description (V2)

1.5.10.2.1 Scope and structure of this document
The purpose of this library description is to explain different components of the Process Control
Object (PCO) library.

1.5.10.2.2 Process control object (PCO) library
Process Control Object (PCO) Library is developed for use in any process application.
It includes function blocks for controlling motors, valves and measurements.
There are no prerequisites.

The PCO library contains the following function blocks and structures:Components of
the PCO library

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3062

Function blocks
Controllers
PCO_MOTCON

This function block is designed for controlling a variable speed drive motor.
The function block is similar to PCO_MOT (Fixed speed motor controller), but in addition to
PCO_MOT the function block has a built in PID controller used for speed control of the motor.

The PID controller can be switched between three different setpoints:
● Internal Setpoint

Set from SCADA faceplate, variable in SCADA side is SPI_PAR.
● External Setpoint

Function block input SP_EXT, calculated setpoint or output from another PID controller
(e.g. PIDCON) in a cascade control system.

● Tracking Setpoint
The output of the PID controller follows the function block input tracking setpoint,
TRACK_SP and if TRACK input is active.

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3063

To make the controller follows various setpoints, the following variables need to be set:

The values set below are default values, the user can change based on the
application.

Settings in SCADA
side

Data type When the controller must follow
Internal
Setpoint

External
Setpoint

Tracking
Setpoint

SCADA.KP_PAR INT 1 1 1

SCADA.TD_PAR INT 0 0 0

SCADA.TI_PAR INT 1 1 1

SCADA.OH_PAR INT 10000 10000 10000

SCADA.OL_PAR INT 0 0 0

SCADA.CI_CMDON BOOL TRUE - -

SCADA.SPI_PAR INT Needs to be set - -

SCADA.CX_CMDON BOOL - TRUE -

Settings in FB side Data type When the controller must follow
Internal
Setpoint

External
Setpoint

Tracking
Setpoint

EN_AUTO BOOL TRUE TRUE TRUE

SP_EXT INT - Needs to be set -

TRACK BOOL - - TRUE

TRACK_SP INT - - Needs to be set

EN_ACC BOOL TRUE TRUE TRUE

EN_DEC BOOL TRUE TRUE TRUE

By switching to one of these setpoints, when command from SCADA,
i.e. SCADA.SPIACT or SCADA.SPXACT or SCADA.CTACT is active, the
PID controller will be put into automatic mode.

It is possible to set the PID controller into manual mode from the SCADA
system to allow manual positioning.

The following variable needs to be configured to set the controller to manual mode.

Settings in FB side Data type Controller Manual Mode
No settings need to be done.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3064

Setting in SCADA side Data type Controller Manual Mode
SCADA.CM_CMDON BOOL Variable

Rising edge needs to be given to reset auto
mode.

The manual positioning can be done in two ways, both controlled form the SCADA faceplate.
1. Stepwise 1 % up / down or 5 % up / down.

This is manually set by the following variables on the SCADA faceplate:
● SCADA.CMDUP1
● SCADA.CMDUP5
● SCADA.CMDDW1
● SCADA.CMDDW5
The controller output varies based on the command given.

2. Download a new position. Manual position is set through OUT_PAR variable on the
SCADA faceplate. The controller output varies accordingly.

If BAL (Input) of the function block is TRUE, then controller output varies according to BAL_SP
entered at the input of the function block. This has higher priority over manual commands or
external or internal setpoints.
But if TRACK input is selected then the controller follows the TRACK_SP.
When the controller is set to TRACK mode, the controller gets set to auto mode, whereas when
the controller is set to BAL mode, the controller is not in auto mode. In both cases the controller
output is not dependent on the actual process value.
The function block has built in a ramp to slow down the manual positioning. The ramp can be
switched ON by the input RAMP_ACTIVE by setting the RAMP_ACTIVE high. The ramp time
can be entered at RAMP_TIME input of the function block.

Cycle time for the program must be faster than RAMP_TIME / 100 to calculate
the actuator time correctly!

Utilizing the inputs of the function block BEHAVE_ON_ERROR and OUTPUT_HANDLING dif-
ferent modes of CMD_START and CMD_STOP can be configured. E.g. if CMD_START and
CMD_STOP should be pulsed or persistent signals. In addition, 6 different alarms can be
connected to the function block (ALARM_1 to ALARM_6, thermal switch etc.)

The motor can be switched to automatic mode or manual mode, if EN_AUTO
input is TRUE in the function block.

Settings in FB side Data type Set Motor to Auto Mode
EN_AUTO BOOL ACTIVE

REMOTE BOOL ACTIVE

RDY BOOL ACTIVE

Set motor to
auto mode

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3065

Settings in SCADA side Data type Set Motor to Auto Mode
SCADA.CMDAUT BOOL Rising edge needs to be given.

Settings in FB side Data type Start / Stop Motor in Auto Mode
INHIB_FCT_ERR_TIME TIME The value of INHIB_FCT_ERR_TIME has to

be greater than 0 s to avoid functional error.

EN_START BOOL ACTIVE

EN_STOP BOOL ACTIVE

AUTO_CMD_START BOOL Rising edge needs to be given to
AUTO_CMD_START input of FB to start the
motor.

AUTO_CMD_STOP BOOL Rising edge needs to be given to
AUTO_CMD_STOP input of FB to stop the
motor.

Settings in SCADA side Data type Start / Stop Motor in Auto Mode
No settings need to be done.

The motor is forced to manual mode. EN_AUTO = FALSE.

The motor can be operated in manual mode if EN_AUTO is either TRUE or
FALSE.

The difference is that if EN_AUTO is TRUE, the switching between Auto and
Manual is possible, else the motor and controller are both to Manual.

Settings in FB side Data type Set Motor to Manual Mode
REMOTE BOOL ACTIVE

RDY BOOL ACTIVE

Settings in SCADA side Data type Set Motor to Manual Mode
SCADA.CMDMAN BOOL Rising edge of SCADA.CMDMAN input

to reset auto mode if it was set before

Start / stop
motor in
auto mode

Set motor to
manual mode

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3066

Settings in FB side Data type Start / Stop Motor in Manual Mode
INHIB_FCT_ERR_TIME TIME The value of INHIB_FCT_ERR_TIME has to

be greater than 0 s to avoid functional error.

EN_START BOOL ACTIVE

EN_STOP BOOL ACTIVE

Settings in SCADA side Data type Start / Stop Motor in Manual Mode
CMDSTR BOOL Rising edge of CMDSTR needs to be given.

CMDSTP BOOL Rising edge of CMDSTP needs to be given.

In automatic mode the motor can be started/stopped using the function block inputs
(AUTO_CMD_START/AUTO_CMD_STOP).
In manual mode the motor can be started and stopped from the SCADA faceplate.
The function block includes supervision of the feedback signals RUN and STOP from the motor.
If the motor fails to run or stop within the supervision time INHIB_FCT_ERR_TIME, it will
generate a functional error.
If the function block input RDY is FALSE, then an external error is generated. This func-
tion block can be used in combination with the object type MOTCON_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

The function block is used for controlling a variable speed drive motor, which in turn can be
used for controlling the level of fluid in a tank.
These components are included in the following example:
● Tank
● Level measurement
● Pump
● Main power supply, circuit breaker (or similar)
Manual mode:
● Pump controlled by the operator.
Automatic mode:
● Pump controlled by the AC500 controller.

Start / stop
motor in
manual mode

Examples

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3067

PCO_MOTCON
manual mode
example

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3068

Scaling of the SCADA Parameters
In the 800xA system the values coming from the PLC are shown by default 1:1 in the operator
screens and faceplates.
The default scaling is 0 ... 100 from PLC is shown as 0 % … 100 %
or 0 % ... 100.00 % for the operator (SCADA). Therefore a scaling must be
done for most signals either in the “Bulk Data Manager” or directly in the
Engineering Workplace > Control Structure > … > Signal Configuration > Range.
Assuming that all signals on the operator workplace should be shown in 0 % … 100 % the
following table gives an overview of the scaling of the PLC values in the 800xA system.
PVmin and PVmax are here the minimum and maximum of the PV input, reflecting the process
value in the PLC program. The PV typically comes from the output of the function block
PCO_ANAALM. This scales its IN, coming directly from the analog input, to the OUT according
to the inputs SCALE_MIN and SCALE_MAX.

PCO_MOTCON
automatic mode
example

Scaling

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3069

The process value, e.g. 0 bar ... 16 bar can so be rescaled to the value 0 ... 16000
(SCALE_MIN … SCALE_MAX).

OPC FB AC500 800xA Remark
Signal name
SCADA.x

In/Output-
name

Range
default

Range
actual program

PLC Range
def.: 0…100

SCADA Range
def: 0…100%
or 0…100.00%

PV_VALUE PV 0…27648 PVmin…PVmax
PVmin … PVmax

PVmin…PVmax 0…100

SPX_VALUE SP_EXT 0…27648 PVmin…PVmax PVmin…PVmax 0…100

 TRACK_S
P

0…10000 0…10000 fix

 BAL_SP 0…10000 0…10000 fix

ACT_VALUE ACT_POS 0…10000 ACTmin…
ACTmax

ACTmin…ACTmax 0…100

OUT_PAR - 0…10000 0…10000 fix 0…10000 0…100

OL_PAR - 0…10000 0…10000 fix 0…10000 0…100 Set from
800xA

OH_PAR - 0…10000 0…10000 fix 0…10000 0…100 Set from
800xA

 OUT 0…27648 - -

OUT_VALUE - 0…10000 0…10000 0…100 Scaled
from OUT.
Seen in
800xA

SPI_PAR - 0…27648 - PVmin…PVmax 0…100.00 Set from
800xA

KP_PAR - 0…100 0…(27648 /
(PVmax- PVmin))

PVmin…PVmax
or
PVmin/100…PVmax/100

0…100.00 (%)
or
0..1.00
(as factor)

TD_PAR - 0...1000 0...1000.00

TI_PAR - 0...1000 0...1000.00

Scaling of the SCADA.PV_VALUE
The output from the controller is based on 0 % ... 100 % ® 0 ... 27648 for connection direct to
an analog output of the AC500 I/Os.
To show the PV in % in 800xA, it must be scaled accordingly in the 800xA signal configuration:
SCADA.Signal_Configuration.Range.Low limit = 0
SCADA.Signal_Configuration.Range.High limit = 100
SCADA.Signal_Configuration.Range.Low limit in PLC = 0
SCADA.Signal_Configuration.Range.High limit in PLC = 27648

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3070

Scaling of the Setpoints, SCADA.SPI_PAR and SCADA.SPX_VALUE
SCADA.SPI_PAR and SCADA.SPX_VALUE must have the same scaling as the process value
PV.

Scaling of the Parameter SCADA.KP_PAR
If the setpoint and the process value (PV) do not have equal scaling (0 ... 27648), there is a
need for scaling the SCADA.KP_PAR parameter in 800xA to achieve the right proportional gain.
The scaling of the coefficient of proportionality (SCADA.KP_PAR) is dependent on the scaling of
the process value (PV).
The PV typically comes from the output of the function block PCO_ANAALM. This scales the
IN, coming directly from the analog input, to the OUT according to the inputs SCALE_MIN and
SCALE_MAX.
The process value, e.g. 0 bar ... 16 bar can so be rescaled to the value 0 ... 16000
(SCALE_MIN ... SCALE_MAX).
The scaling of the KP [%] is then calculated by the formula:

In the mentioned example, 100 % of KP.

If the wanted range of SCADA.KP_PAR in SCADA is chosen to be 100 %, then the range in
SCADA control structure should be adapted to
SCADA.Signal Configuration.Range.Low limit = 0
SCADA.Signal Configuration.Range.High limit =100
SCADA.Signal Configuration.Range.Low limit in PLC = 0
SCADA.Signal Configuration.Range.High limit in PLC = [27648 - 0] / [16000 - 0] × 100 = 172.8

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3071

Scaling of the TRACK_SP AND BAL_SP
Input range of TRACK_SP or BAL_SP is 0 ... 10000 and the controller OUT range is 0 ... 27648.
So if the TRACK/BAL_SP is x then the controller output is defined as:

Input description

Data type Default value Range Unit
INT 0 0 ... 27648 -

External setpoint.
Calculated setpoint or output from another PID controller (e.g. PCO_PIDCON) in a cascade
control system.

SP_EXT

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3072

Data type Default value Range Unit
INT 0 0 ... 27648 -

Process value (PV) to be controlled.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Tracking mode.
PCO_MOTCON can be set in Tracking mode if the value of TRACK is TRUE.
Output of the controller will be set to TRACK_SP.
Tracking mode has higher priority compared to balancing mode.
TRACK is independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
INT 0 0 ... 10000 -

Tracking setpoint.
Output of the controller will be set to TRACK_SP if value of TRACK is TRUE.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Balancing mode.
PCO_MOTCON can be set in Balancing mode if value of BAL is TRUE and value of TRACK is
FALSE.
Output of the controller will be set to BAL_SP.
BAL is independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
INT 0 0 ... 10000 -

Balancing setpoint.
Output of the controller will be set to BAL_SP if value of BAL is TRUE.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Reverse Action
Value of REVACT is FALSE, Controller will increase output if Setpoint is less than
Process value.
Value of REVACT is TRUE, Controller will decrease output if Setpoint is greater than
Process value.

PV

TRACK

TRACK_SP

BAL

BAL_SP

REVACT

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3073

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable automatic mode of the PCO_MOTCON.
PCO_MOTCON can be set in automatic mode if value of EN_AUTO is TRUE.
PCO_MOTCON is forced in manual mode if value of EN_AUTO is FALSE.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force the motor to start if it is in automatic mode.
E.g.AUTO_CMD_START could be activated from a sequence in the PLC program. The function
block reacts on "0" to "1" transition of this input.
If AUTO_CMD_START and AUTO_CMD_STOP are active at the same time, then the
commands CMD_START and CMD_STOP get reset.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force the motor to stop if the actuator is in automatic.
AUTO_CMD_STOP could be activated from a sequence in the PLC program. The function
block reacts on "0" to "1" transition of this input.
If AUTO_CMD_START and AUTO_CMD_STOP are active at the same time, then the
commands CMD_START and CMD_STOP get reset.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable start of the motor.
Motor can be started if value of EN_START is TRUE.
Motor cannot be started if value of EN_START is FALSE.
EN_START is independent of operation mode of PCO_MOTCON.
EN_START has no effect in case of emergency start of motor EMCY_START.
EN_START has no effect on a motor already running.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable stop of the motor.
Motor can be stopped if value of EN_STOP is TRUE.
Motor cannot be stopped if value of EN_STOP is FALSE.
EN_STOP is independent of operation mode of PCO_MOTCON.
EN_STOP has no effect in case of emergency stop of motor EMCY_STOP.
EN_STOP has no effect on an already stopped motor.

EN_AUTO

AUTO_CMD_
START

AUTO_CMD_
STOP

EN_START

EN_STOP

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3074

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable increase of controller output.
Controller can increase output if value of EN_ACC is TRUE.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable decrease of controller output.
Controller can decrease output if value of EN_DEC is TRUE.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Emergency start of motor.
Motor will start if value of EMCY_START is TRUE and value of EMCY_STOP is FALSE.
If value of EMCY_START is TRUE and value of EMCY_STOP is TRUE, the motor will stop.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Emergency stop of motor.
Motor will stop if value of EMCY_STOP is TRUE.
If value of EMCY_START is TRUE and value of EMCY_STOP is TRUE, the motor will stop.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
INT 0 0 ... 10000 -

Feedback speed of motor.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Feedback signal from the motor.
Motor is running if the value of RUN is TRUE.
Independent of operation mode of PCO_MOTCON.

EN_ACC

EN_DEC

EMCY_START

EMCY_STOP

ACT_POS

RUN

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3075

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Feedback signal from the motor.
Motor is stopped if the value of STOP is TRUE.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Motor is ready for operation.
Motor is ready for operation if value of RDY is TRUE.
Value of RDY is FALSE results in an external error.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Allow motor to be controlled from SCADA.
Value of REMOTE is TRUE, control from SCADA and function block is enabled.
Value of REMOTE is FALSE, motor is controlled only from function block.
PCO_MOTCON will align the block according to feedback signals.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of alarms.
If value of INHIB_ERR is TRUE, all alarms from PCO_MOTCON are suppressed.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

External acknowledge of alarms.
If value of EXT_ACK is TRUE, all alarms from PCO_MOTCON are acknowledged.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 1.
If value of ALARM_1 is TRUE Alarm_1 is active.
Independent of operation mode of PCO_MOTCON.

STOP

RDY

REMOTE

INHIB_ERR

EXT_ACK

Alarm_1

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3076

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 2.
If value of ALARM_2 is TRUE Alarm_2 is active.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 3.
If value of ALARM_3 is TRUE Alarm_3 is active.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 4.
If value of ALARM_4 is TRUE Alarm_4 is active.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 5.
If value of ALARM_5 is TRUE Alarm_5 is active.
Independent of operation mode of PCO_MOTCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 6.
If value of ALARM_6 is TRUE Alarm_6 is active.
Independent of operation mode of PCO_MOTCON.

Alarm_2

Alarm_3

Alarm_4

Alarm_5

Alarm_6

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3077

Data type Default value Range Unit
BYTE 0 0 ... 3 -

Actions that need to be executed by the FB at the event of error as set by the user.
The user can set a range of values from 0 ... 3.
BEHAVE_ON_ERROR = 0 causes the output to remain unaffected in case of a functional error
or an external error (Not ready).
BEHAVE_ON_ERROR = 1 causes a stop command in case of a functional error.
BEHAVE_ON_ERROR = 2 causes a stop command in case of an external error.
BEHAVE_ON_ERROR = 3 causes a stop command in case of a functional error or an
external error.
This parameter is independent of operation mode (whether Auto/ Manual) of PCO_MOTCON.

Data type Default value Range Unit
BYTE 0 0 ... 2 -

Behavior of command outputs, CMD_START / CMD_STOP.
The user can set a range of values from 0 ... 2
OUTPUT_HANDLING = 0 causes the output (CMD_START / CMD_STOP) to be reset at RUN
or STOP feedback.
OUTPUT_HANDLING = 1 causes the output (CMD_START / CMD_STOP)) to remain active at
RUN or STOP feedback.
With OUTPUT_HANDLING = 2 the output (CMD_START / CMD_STOP) is performed
as 1 s pulse. This parameter is independent of operation mode (whether Auto / Manual) of
PCO_MOTCON.

Data type Default value Range Unit
TIME TIME#5s - -

Maximum delay time from command to response from process.
If response is not received within this time limit, a function error will be generated.

Data type Default value Range Unit
TIME TIME#30s - -

Actuator ramp time from 0 % ... 100 %

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The value RAMP_ACTIVE is TRUE activates ramp under manual positioning.
The value RAMP_ACTIVE is FALSE activates no ramp.

BEHAVE_ON_
ERROR

OUTPUT_
HANDLING

INHIB_FCT_
ERR_TIME

RAMP_TIME

RAMP_ACTIVE

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3078

Output description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Command output start, to be connected to hardware output.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Command output stop, to be connected to hardware output.

Data type Default value Range Unit
INT 0 0 ... 27648 -

Controller output to the motor to attain the desired speed of the motor.

CMD_START

CMD_STOP

OUT

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3079

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Output max limit reached, controller at max limit.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Output min limit reached, controller at min limit.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Common alarm, including:
● Functional error
● External error (input RDY)
● Input Parameter error
● ALARM_1
● ALARM_2
● ALARM_3
● ALARM_4
● ALARM_5
● ALARM_6
● EMCY_START
● EMCY_STOP

Data type Default value Range Unit
WORD 0 - -

Error number
Output provides an error identifier if an invalid value was applied to an input.
ERNO always must be considered together with the output ERR.
The value output at ERNO is only valid if value of ERR is TRUE.

The error messages encoding is explained in “Standard Function Block Libraries AC500” in
“Error Messages of the Function Block Libraries”.

OUT_MAX

OUT_MIN

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3080

Input/output description

Data type Default value Range Unit
PCO_MOTCON_
TYPE

- - -

Structure variable for communication between AC500 and SCADA system.
To retain the variable value in case of power ON/OFF or download, the variable connected to
the SCADA In/Output should be declared as (global) retain persistant (or use %R area) variable
in the program.

Detailed information on the scaling see Ä “Scaling” on page 3089.

Parameter Data type Description In-/Output
SCADA.CMDSTR BOOL Start command in Manual mode Input

SCADA.CMDSTP BOOL Stop command in Manual mode Input

SCADA

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3081

Parameter Data type Description In-/Output
SCADA.CMDAUT BOOL Auto command Input

SCADA.CMDMAN BOOL Manual command Input

SCADA.CMDRES BOOL Acknowledge active alarms Input

SCADA.MAUTO BOOL Motor in automatic mode Output

SCADA.IN BOOL Motor is running Output

SCADA.OUT BOOL Motor is stopped Output

SCADA.REMOTE BOOL Motor can be controlled from OS
REMOTE = FALSE ® Local operation

Output

SCADA.READY BOOL Motor is ready for operation Output

SCADA.FNCERR BOOL Functional error Output

SCADA.EXTERR BOOL External error
(is generated when the motor is not ready)

Output

SCADA.AL1 BOOL Auxiliary alarm no. 1 Output

SCADA.AL2 BOOL Auxiliary alarm no. 2 Output

SCADA.AL3 BOOL Auxiliary alarm no. 3 Output

SCADA.AL4 BOOL Auxiliary alarm no. 4 Output

SCADA.AL5 BOOL Auxiliary alarm no. 5 Output

SCADA.AL6 BOOL Auxiliary alarm no. 6 Output

SCADA.OSMsg1 *) WORD Word representing the status of the
PCO_MOTCON

Output

SCADA.OSMsg2 *) WORD Word representing the status of the
PCO_MOTCON

Output

SCADA.CM_CMDON BOOL Manual command for the controller Input

SCADA.CI_CMDON BOOL Auto command to set the internal setpoint
for the controller

Input

SCADA.CX_CMDON BOOL Auto command to set the external setpoint
for the controller

Input

SCADA.CMDUP5 BOOL Manual command to increase output by 5 % Input

SCADA.CMDUP1 BOOL Manual command to increase output by 1 % Input

SCADA.CMDDW1 BOOL Manual command to decrease output by
1 %

Input

SCADA.CMDDW5 BOOL Manual command to decrease output by
5 %

Input

SCADA.CAUTO BOOL Controller is in automatic mode Output

SCADA.SPIACT BOOL Internal setpoint is active Output

SCADA.SPXACT BOOL External setpoint is active Output

SCADA.CTACT BOOL Tracking setpoint is active Output

SCADA.PV_H BOOL Process value at high limit Output

SCADA.PV_L BOOL Process value at low limit Output

SCADA.PV_ERR BOOL Process value error Output

SCADA.ERROR BOOL For future use Output

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3082

Parameter Data type Description In-/Output
SCADA.OUT_PAR INT Manual position setpoint

Scale 0 ... 10000
Input

SCADA.SPI_PAR INT Internal setpoint value Input

SCADA.KP_PAR INT Coefficient of proportionality (gain) % of the
controller

Input

SCADA.TD_PAR INT Time constant for D-part of the controller Input

SCADA.TI_PAR INT Time constant for integration of the
controller

Input

SCADA.OH_PAR INT Output high limit (0 ... 10000) of the
controller

Input

SCADA.OL_PAR INT Output low limit (0 ... 10000) of the
controller

Input

SCADA.OUT_VALUE INT Output from the controller
Scale 0 ... 10000

Output

SCADA.PV_VALUE INT Process value to be controlled Output

SCADA.SPX_VALUE INT External setpoint value Output

SCADA.ACT_VALUE INT Actual speed of the motor, scaling as input
ACT_POS (0 ... 10000)

Output

SCADA.LOAD_VALU
E

INT Load value of the motor, additional value to
be shown in SCADA

Output

AspectObjectType
_Motcon_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

*) structure described separately

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3083

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_MOTCON.

Bit Description
Bit 0 Motor is running

Bit 1 Motor is stopped

Bit 2 Motor is starting

Bit 3 Motor is stopping

Bit 4 External error (Not ready)

Bit 5 Functional error

Bit 6 Motor released for start

Bit 7 Motor released for stop

Bit 8 Local operation (Not remote)

Bit 9 Common alarm (External alarm + Functional alarm +
EMCY_START/EMCY_STOP + ALARM_1 ... ALARM_6)

Bit 10 Not used

Bit 11 Motor in automatic mode

Bit 12 Not used

Bit 13 Motor not released for automatic mode

Bit 14 Motor released for increase speed

Bit 15 Motor released for decrease speed

SCADA.OSMsg1

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3084

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_MOTCON.

Bit Description
Bit 0 Emergency In

Bit 1 Emergency Out

Bit 2 Internal setpoint (PID controller)

Bit 3 External setpoint (PID controller)

Bit 4 Track setpoint (PID controller)

Bit 5 Auxiliary alarm 1

Bit 6 Auxiliary alarm 2

Bit 7 Auxiliary alarm 3

Bit 8 Auxiliary alarm 4

Bit 9 Auxiliary alarm 5

Bit 10 PID controller in automatic mode

Bit 11 PID controller in manual mode

Bit 12 Auxiliary alarm 6

Bit 13 Not used

Bit 14 Not used

Bit 15 PID Controller

PCO PIDCON

This is a standard PID controller that can be used to control any component that has an analog
positioning option.

SCADA.OSMsg2

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3085

The PID controller can be switched between three different setpoints:
● Internal Setpoint

Set from SCADA faceplate, variable in SCADA side is SPI_PAR.
● External Setpoint

Function block input SP_EXT, calculated setpoint or output from another PID controller
(e.g. PIDCON) in a cascade control system.

● Tracking Setpoint
The output of the PID controller follows the function block input tracking setpoint,
TRACK_SP and if TRACK input is active.

To make the controller follows various setpoints, the following variables need to be set:

The values set below are default values, the user can change based on the
application.

Settings in SCADA
side

Data type When the controller must follow
Internal
Setpoint

External
Setpoint

Tracking
Setpoint

SCADA.KP_PAR INT 1 1 1

SCADA.TD_PAR INT 0 0 0

SCADA.TI_PAR INT 1 1 1

SCADA.OH_PAR INT 10000 10000 10000

SCADA.OL_PAR INT 0 0 0

SCADA.CI_CMDON BOOL TRUE - -

SCADA.SPI_PAR INT Needs to be set - -

SCADA.CX_CMDON BOOL - TRUE -

Settings in FB side Data type When the controller must follow
Internal Set-

point
External Set-

point
Tracking Set-

point
EN_AUTO BOOL TRUE TRUE TRUE

SP_EXT INT - Needs to be set -

TRACK BOOL - - TRUE

TRACK_SP INT - - Needs to be set

By switching to one of these setpoints, when command from SCADA,
i.e. SCADA.SPIACT or SCADA.SPXACT or SCADA.CTACT is active, the
PID controller will be put into automatic mode.

It is possible to set the PID controller into manual mode from the SCADA
system to allow manual positioning.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3086

The manual positioning can be done in two ways, both controlled form the SCADA faceplate.
1. Stepwise 1 % up / down or 5 % up / down.

This is manually set by the following variables on the SCADA faceplate:
● SCADA.CMDUP1
● SCADA.CMDUP5
● SCADA.CMDDW1
● SCADA.CMDDW5
The controller output varies based on the command given.

2. Download a new position. Manual position is set through OUT_PAR variable on the
SCADA faceplate. The controller output varies accordingly.

If BAL (Input) of the function block is TRUE, then controller output varies according to BAL_SP
entered at the input of the function block. This has higher priority over manual commands or
external or internal setpoints.
But if TRACK input is selected then the controller follows the TRACK_SP.
When the controller is set to TRACK mode, the controller gets set to auto mode, whereas when
the controller is set to BAL mode, the controller is not in auto mode. In both cases the controller
output is not dependent on the actual process value.
The function block has built in a ramp to slow down the manual positioning. The ramp can be
switched ON by the input RAMP_ACTIVE by setting the RAMP_ACTIVE high. The ramp time
can be entered at RAMP_TIME input of the function block.

Cycle time for the program must be faster than RAMP_TIME / 100 to calculate
the actuator time correctly!

6 different alarms can be connected to the function block
(ALARM_1 ® ALARM_6, Torque switch etc.).

The valve can be switched to automatic or manual mode from the SCADA faceplate, if the input
EN_AUTO = TRUE.
This function block can be used in combination with the object type PIDCON_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

The function block is used for controlling a PID controller which in turn controls the level of fluid
in a tank.
These components are included in the following example:
● Tank
● Level measurement
● Pump
Manual mode:
● Pump controlled by the operator.
Automatic mode:
● Pump controlled by theAC500 controller.

Examples

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3087

PCO_PIDCON
manual mode
example

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3088

Scaling of the SCADA Parameters
In the 800xA system the values coming from the PLC are shown by default 1:1 in the operator
screens and faceplates.
The default scaling is 0 ... 100 from PLC is shown as 0 % … 100 %
or 0 % ... 100.00 % for the operator (SCADA). Therefore a scaling must be
done for most signals either in the “Bulk Data Manager” or directly in the
Engineering Workplace > Control Structure > … > Signal Configuration > Range.
Assuming that all signals on the operator workplace should be shown in 0 % … 100 % the
following table gives an overview of the scaling of the PLC values in the 800xA system.
PVmin and PVmax are here the minimum and maximum of the PV input, reflecting the process
value in the PLC program. The PV typically comes from the output of the function block
PCO_ANAALM. This scales its IN, coming directly from the analog input, to the OUT according
to the inputs SCALE_MIN and SCALE_MAX.
The process value, e.g. 0 bar ... 16 bar can so be rescaled to the value 0 ... 16000
(SCALE_MIN … SCALE_MAX).

PCO_PIDCON
automatic mode
example

Scaling

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3089

OPC FB AC500 800xA Remark
Signal name
SCADA.x

In/Output-
name

Range
default

Range
actual program

PLC Range
def.: 0…100

SCADA Range
def: 0…100%
or 0…100.00%

PV_VALUE PV 0…27648 PVmin…PVmax
PVmin … PVmax

PVmin…PVmax 0…100

SPX_VALUE SP_EXT 0…27648 PVmin…PVmax PVmin…PVmax 0…100

 TRACK_S
P

0…10000 0…10000 fix

 BAL_SP 0…10000 0…10000 fix

ACT_VALUE ACT_POS 0…10000 ACTmin…
ACTmax

ACTmin…ACTmax 0…100

OUT_PAR - 0…10000 0…10000 fix 0…10000 0…100

OL_PAR - 0…10000 0…10000 fix 0…10000 0…100 Set from
800xA

OH_PAR - 0…10000 0…10000 fix 0…10000 0…100 Set from
800xA

 OUT 0…27648 - -

OUT_VALUE - 0…10000 0…10000 0…100 Scaled
from OUT.
Seen in
800xA

SPI_PAR - 0…27648 - PVmin…PVmax 0…100.00 Set from
800xA

KP_PAR - 0…100 0…(27648 /
(PVmax- PVmin))

PVmin…PVmax
or
PVmin/100…PVmax/100

0…100.00 (%)
or
0..1.00
(as factor)

TD_PAR - 0...1000 0...1000.00

TI_PAR - 0...1000 0...1000.00

Scaling of the SCADA.PV_VALUE
The output from the controller is based on 0 % ... 100 % ® 0 ... 27648 for connection direct to
an analog output of the AC500 I/Os.
To show the PV in % in 800xA, it must be scaled accordingly in the 800xA signal configuration:
SCADA.Signal_Configuration.Range.Low limit = 0
SCADA.Signal_Configuration.Range.High limit = 100
SCADA.Signal_Configuration.Range.Low limit in PLC = 0
SCADA.Signal_Configuration.Range.High limit in PLC = 27648

Scaling of the Setpoints, SCADA.SPI_PAR and SCADA.SPX_VALUE
SCADA.SPI_PAR and SCADA.SPX_VALUE must have the same scaling as the process value
PV.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3090

Scaling of the Parameter SCADA.KP_PAR
If the setpoint and the process value (PV) do not have equal scaling (0 ... 27648), there is a
need for scaling the SCADA.KP_PAR parameter in 800xA to achieve the right proportional gain.
The scaling of the coefficient of proportionality (SCADA.KP_PAR) is dependent on the scaling of
the process value (PV).
The PV typically comes from the output of the function block PCO_ANAALM. This scales the
IN, coming directly from the analog input, to the OUT according to the inputs SCALE_MIN and
SCALE_MAX.
The process value, e.g. 0 bar ... 16 bar can so be rescaled to the value 0 ... 16000
(SCALE_MIN ... SCALE_MAX).
The scaling of the KP [%] is then calculated by the formula:

In the mentioned example, 100 % of KP.

If the wanted range of SCADA.KP_PAR in SCADA is chosen to be 100 %, then the range in
SCADA control structure should be adapted to
SCADA.Signal Configuration.Range.Low limit = 0
SCADA.Signal Configuration.Range.High limit =100
SCADA.Signal Configuration.Range.Low limit in PLC = 0
SCADA.Signal Configuration.Range.High limit in PLC = [27648 - 0] / [16000 - 0] × 100 = 172.8

Scaling of the TRACK_SP AND BAL_SP
Input range of TRACK_SP or BAL_SP is 0 ... 10000 and the controller OUT range is 0 ... 27648.
So if the TRACK/BAL_SP is x then the controller output is defined as:

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3091

Input description

Data type Default value Range Unit
INT 0 0 ... 27648 -

External setpoint.
Calculated setpoint or output from another PID controller (e.g. PCO_PIDCON) in a cascade
control system.

Data type Default value Range Unit
INT 0 0 ... 27648 -

Process value (PV) to be controlled.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Tracking mode.
PCO_PIDCON can be set in Tracking mode if the value of TRACK is TRUE.
Output of the controller will be set to TRACK_SP.
Tracking mode has higher priority compared to balancing mode.
TRACK is independent of operation mode of PCO_PIDCON.

Data type Default value Range Unit
INT 0 0 ... 10000 -

Tracking setpoint.
Output of the controller will be set to TRACK_SP if value of TRACK is TRUE.

SP_EXT

PV

TRACK

TRACK_SP

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3092

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Balancing mode.
PCO_PIDCON can be set in Balancing mode if value of BAL is TRUE and value of TRACK is
FALSE.
Output of the controller will be set to BAL_SP.
BAL is independent of operation mode of PCO_PIDCON.

Data type Default value Range Unit
INT 0 0 ... 10000 -

Balancing setpoint.
Output of the controller will be set to BAL_SP if value of BAL is TRUE.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Reverse Action
Value of REVACT is FALSE, Controller will increase output if Setpoint is less than
Process value.
Value of REVACT is TRUE, Controller will decrease output if Setpoint is greater than
Process value.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable automatic mode of the PCO_PIDCON.
PCO_PIDCON can be set in automatic mode if value of EN_AUTO is TRUE.
PCO_PIDCON is forced in manual mode if value of EN_AUTO is FALSE.

Data type Default value Range Unit
INT 0 0 ... 10000 -

Feedback speed of motor.

Data type Default value Range Unit
TIME TIME#30s - -

Actuator ramp time from 0 % ... 100 %

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The value RAMP_ACTIVE is TRUE activates ramp under manual positioning.
The value RAMP_ACTIVE is FALSE activates no ramp.

BAL

BAL_SP

REVACT

EN_AUTO

ACT_POS

RAMP_TIME

RAMP_ACTIVE

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3093

Output description

Data type Default value Range Unit
INT 0 0 ... 27648 -

Controller output to the motor to attain the desired speed of the motor.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Output max limit reached, controller at max limit.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Output min limit reached, controller at min limit.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Common alarm, Input Parameter error.

Data type Default value Range Unit
WORD 0 - -

Error number
Output provides an error identifier if an invalid value was applied to an input.
ERNO always must be considered together with the output ERR.
The value output at ERNO is only valid if value of ERR is TRUE.

The error messages encoding is explained in “Standard Function Block Libraries AC500” in
“Error Messages of the Function Block Libraries”.

OUT

OUT_MAX

OUT_MIN

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3094

Input/output description

Data type Default value Range Unit
STRUCTURE - - -

Structure variable for communication between AC500 and SCADA system.
To retain the variable value in case of power ON/OFF or download, the variable connected to
the SCADA In/Output should be declared as (global) retain persistant (or use %R area) variable
in the program.
Detailed information on the scaling see Ä “Scaling” on page 3102.

Parameter Data type Description In-/Output
SCADA.CMDUP5 BOOL Manual command to increase output by 5 %

part of the PCO_PIDCON
Input

SCADA.CMDUP1 BOOL Manual command to increase output by 1 %
part of the PCO_PIDCON

Input

SCADA.CMDDW1 BOOL Manual command to decrease output by
1 % part of the PCO_PIDCON

Input

SCADA.CMDDW5 BOOL Manual command to decrease output by
5 % part of the PCO_PIDCON

Input

SCADA.CM_CMDON BOOL Manual command for the controller Input

SCADA.CI_CMDON BOOL Auto command to set the internal setpoint
for the controller

Input

SCADA.CX_CMDON BOOL Auto command to set the external setpoint
for the controller

Input

SCADA.CAUTO BOOL Controller of the PCO_PIDCON is in
automatic mode

Output

SCADA.SPIACT BOOL Internal setpoint of the PCO_PIDCON is
active

Output

SCADA.SPXACT BOOL External setpoint of the PCO_PIDCON is
active

Output

SCADA.CTACT BOOL Tracking setpoint of the PCO_PIDCON is
active

Output

SCADA.PV_H BOOL Process value at high limit Output

SCADA

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3095

Parameter Data type Description In-/Output
SCADA.PV_L BOOL Process value at low limit Output

SCADA.PV_ERR BOOL Process value error Output

SCADA.OUT_PAR INT Manual position setpoint
Scale 0 ... 10000

Input

SCADA.SPI_PAR INT Internal setpoint value Input

SCADA.KP_PAR INT Coefficient of proportionality (gain) % of the
controller

Input

SCADA.TD_PAR INT Time constant for D-part of the controller Input

SCADA.TI_PAR INT Time constant for integration of the
controller

Input

SCADA.OH_PAR INT Output high limit (0 ... 10000) of the
controller

Input

SCADA.OL_PAR INT Output low limit (0 ... 10000) of the
controller

Input

SCADA.ACT_VALUE INT Actual speed of the motor, scaling as input
ACT_POS (0 ... 10000)

Output

SCADA.OUT_VALUE INT Output from the controller
Scale 0 ... 10000

Output

SCADA.PV_VALUE INT Process value to be controlled Output

SCADA.SPX_VALUE INT External setpoint value Output

SCADA.OSMsg1 *) WORD Word representing the status of the
PCO_PIDCON

Output

AspectObjectType
_Pidcon_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

*) structure described separately

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3096

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_PIDCON.

Bit Description
Bit 0 Not used

Bit 1 Not used

Bit 2 Internal setpoint (PID controller)

Bit 3 External setpoint (PID controller)

Bit 4 Not used

Bit 5 Not used

Bit 6 Tracking setpoint (PID controller)

Bit 7 PID controller in manual mode

Bit 8 Not used

Bit 9 Not used

Bit 10 Not used

Bit 11 PID controller in automatic mode

Bit 12 Not used

Bit 13 PID controller not released for automatic mode

Bit 14 Not used

Bit 15 Not used

SCADA.OSMsg1

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3097

PCO_VALVCON

This function block is designed for controlling a variable position valve.
The function block is similar to PCO_VALV (open/close valve), but in addition to PCO_VALV the
function block has a built in PID controller, used for position control of the valve.

The PID controller can be switched between three different setpoints:
● Internal Setpoint

Set from SCADA faceplate, variable in SCADA side is SPI_PAR.
● External Setpoint

Function block input SP_EXT, calculated setpoint or output from another PID controller
(e.g. PIDCON) in a cascade control system.

● Tracking Setpoint
The output of the PID controller follows the function block input tracking setpoint,
TRACK_SP and if TRACK input is active.

To make the controller follows various setpoints, the following variables need to be set:

The values set below are default values, the user can change based on the
application.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3098

Settings in SCADA
side

Data type When the controller must follow
Internal
Setpoint

External
Setpoint

Tracking
Setpoint

SCADA.KP_PAR INT 1 1 1

SCADA.TD_PAR INT 0 0 0

SCADA.TI_PAR INT 1 1 1

SCADA.OH_PAR INT 10000 10000 10000

SCADA.OL_PAR INT 0 0 0

SCADA.CI_CMDON BOOL TRUE - -

SCADA.SPI_PAR INT Needs to be set - -

SCADA.CX_CMDON BOOL - TRUE -

Settings in FB side Data type When the controller must follow
Internal Set-

point
External Set-

point
Tracking Set-

point
EN_AUTO BOOL TRUE TRUE TRUE

SP_EXT INT - Needs to be set -

TRACK BOOL - - TRUE

TRACK_SP INT - - Needs to be set

By switching to one of these setpoints, when command from SCADA,
i.e. SCADA.SPIACT or SCADA.SPXACT or SCADA.CTACT is active, the
PID controller will be put into automatic mode.

It is possible to set the PID controller into manual mode from the SCADA
system to allow manual positioning.

The manual positioning can be done in two ways, both controlled form the SCADA faceplate.
1. Stepwise 1 % up / down or 5 % up / down.

This is manually set by the following variables on the SCADA faceplate:
● SCADA.CMDUP1
● SCADA.CMDUP5
● SCADA.CMDDW1
● SCADA.CMDDW5
The controller output varies based on the command given.

2. Download a new position. Manual position is set through OUT_PAR variable on the
SCADA faceplate. The controller output varies accordingly.

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3099

If BAL (Input) of the function block is TRUE, then controller output varies according to BAL_SP
entered at the input of the function block. This has higher priority over manual commands or
external or internal setpoints.
But if TRACK input is selected then the controller follows the TRACK_SP.
When the controller is set to TRACK mode, the controller gets set to auto mode, whereas when
the controller is set to BAL mode, the controller is not in auto mode. In both cases the controller
output is not dependent on the actual process value.
The function block has built in a ramp to slow down the manual positioning. The ramp can be
switched ON by the input RAMP_ACTIVE by setting the RAMP_ACTIVE high. The ramp time
can be entered at RAMP_TIME input of the function block.

Cycle time for the program must be faster than RAMP_TIME / 100 to calculate
the actuator time correctly!

6 different alarms can be connected to the function block
(ALARM_1 ® ALARM_6, Torque switch etc.).

The valve can be switched to automatic or manual mode from the SCADA faceplate, if the input
EN_AUTO = TRUE.
The position of the valve is controlled by the PID controller based on the process values.
If EN_Auto = FALSE, then the function block is forced to manual mode.
The position of the valve is controlled by the OUT_PAR value or by the commands CMDDW1,
CMDDW5, CMDUP5, CMDUP1.
In automatic mode the valve is position controlled using the SP_EXT input as the position
reference.
In manual mode the valve is position controlled using a setpoint from the SCADA interface,
OUT_PAR.
Using the function block inputs EN_OPN and EN_CLS it is possible to prevent the valve from
opening or closing by setting the respective input = FALSE. The inputs OPN and CLS are
feedback indicators of the valve open and valve closed position. This is only used as display
information for the SCADA faceplate.

When the controller is in automatic mode (following its internal, external or track setpoint) and
then either the EN_AUTO input or the READY input are reset to FALSE, the controller is forced
to manual mode. In this case a functional error is generated for three seconds. The three
seconds are long enough to ensure that the functional error is logged in the 800xA system.
This function block can be used in combination with the object type VALVCON_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3100

The function block is used for controlling variable position valve which in turn controls the level
of fluid in a tank.
These components are included in the following example:
● Tank
● Level measurement
● Valve
● Main power supply, circuit breaker (or similar)
Manual mode:
● Valve controlled by the operator.
Automatic mode:
● Valve controlled by the AC500 controller.

Examples

PCO_VALVCON
manual mode
example

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3101

Scaling of the SCADA Parameters
In the 800xA system the values coming from the PLC are shown by default 1:1 in the operator
screens and faceplates.
The default scaling is 0 ... 100 from PLC is shown as 0 % … 100 %
or 0 % ... 100.00 % for the operator (SCADA). Therefore a scaling must be
done for most signals either in the “Bulk Data Manager” or directly in the
Engineering Workplace > Control Structure > … > Signal Configuration > Range.
Assuming that all signals on the operator workplace should be shown in 0 % … 100 % the
following table gives an overview of the scaling of the PLC values in the 800xA system.
PVmin and PVmax are here the minimum and maximum of the PV input, reflecting the process
value in the PLC program. The PV typically comes from the output of the function block
PCO_ANAALM. This scales its IN, coming directly from the analog input, to the OUT according
to the inputs SCALE_MIN and SCALE_MAX.
The process value, e.g. 0 bar ... 16 bar can so be rescaled to the value 0 ... 16000
(SCALE_MIN … SCALE_MAX).

PCO_VALVCON
automatic mode
example

Scaling

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3102

OPC FB AC500 800xA Remark
Signal name
SCADA.x

In/Output-
name

Range
default

Range
actual program

PLC Range
def.: 0…100

SCADA Range
def: 0…100%
or 0…100.00%

PV_VALUE PV 0…27648 PVmin…PVmax
PVmin … PVmax

PVmin…PVmax 0…100

SPX_VALUE SP_EXT 0…27648 PVmin…PVmax PVmin…PVmax 0…100

 TRACK_S
P

0…10000 0…10000 fix

 BAL_SP 0…10000 0…10000 fix

ACT_VALUE ACT_POS 0…10000 ACTmin…
ACTmax

ACTmin…ACTmax 0…100

OUT_PAR - 0…10000 0…10000 fix 0…10000 0…100

OL_PAR - 0…10000 0…10000 fix 0…10000 0…100 Set from
800xA

OH_PAR - 0…10000 0…10000 fix 0…10000 0…100 Set from
800xA

 OUT 0…27648 - -

OUT_VALUE - 0…10000 0…10000 0…100 Scaled
from OUT.
Seen in
800xA

SPI_PAR - 0…27648 - PVmin…PVmax 0…100.00 Set from
800xA

KP_PAR - 0…100 0…(27648 /
(PVmax- PVmin))

PVmin…PVmax
or
PVmin/100…PVmax/100

0…100.00 (%)
or
0..1.00
(as factor)

TD_PAR - 0...1000 0...1000.00

TI_PAR - 0...1000 0...1000.00

Scaling of the SCADA.PV_VALUE
The output from the controller is based on 0 % ... 100 % ® 0 ... 27648 for connection direct to
an analog output of the AC500 I/Os.
To show the PV in % in 800xA, it must be scaled accordingly in the 800xA signal configuration:
SCADA.Signal_Configuration.Range.Low limit = 0
SCADA.Signal_Configuration.Range.High limit = 100
SCADA.Signal_Configuration.Range.Low limit in PLC = 0
SCADA.Signal_Configuration.Range.High limit in PLC = 27648

Scaling of the Setpoints, SCADA.SPI_PAR and SCADA.SPX_VALUE
SCADA.SPI_PAR and SCADA.SPX_VALUE must have the same scaling as the process value
PV.

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3103

Scaling of the Parameter SCADA.KP_PAR
If the setpoint and the process value (PV) do not have equal scaling (0 ... 27648), there is a
need for scaling the SCADA.KP_PAR parameter in 800xA to achieve the right proportional gain.
The scaling of the coefficient of proportionality (SCADA.KP_PAR) is dependent on the scaling of
the process value (PV).
The PV typically comes from the output of the function block PCO_ANAALM. This scales the
IN, coming directly from the analog input, to the OUT according to the inputs SCALE_MIN and
SCALE_MAX.
The process value, e.g. 0 bar ... 16 bar can so be rescaled to the value 0 ... 16000
(SCALE_MIN ... SCALE_MAX).
The scaling of the KP [%] is then calculated by the formula:

In the mentioned example, 100 % of KP.

If the wanted range of SCADA.KP_PAR in SCADA is chosen to be 100 %, then the range in
SCADA control structure should be adapted to
SCADA.Signal Configuration.Range.Low limit = 0
SCADA.Signal Configuration.Range.High limit =100
SCADA.Signal Configuration.Range.Low limit in PLC = 0
SCADA.Signal Configuration.Range.High limit in PLC = [27648 - 0] / [16000 - 0] × 100 = 172.8

Scaling of the TRACK_SP AND BAL_SP
Input range of TRACK_SP or BAL_SP is 0 ... 10000 and the controller OUT range is 0 ... 27648.
So if the TRACK/BAL_SP is x then the controller output is defined as:

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3104

Input description

Data type Default value Range Unit
INT 0 0 ... 27648 -

External setpoint.
Calculated setpoint or output from another PID controller (e.g. PCO_VALVCON) in a cascade
control system.

Data type Default value Range Unit
INT 0 0 ... 27648 -

Process value (PV) to be controlled.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Tracking mode.
PCO_VALVCON can be set in Tracking mode if the value of TRACK is TRUE.
Output of the controller will be set to TRACK_SP.
Tracking mode has higher priority compared to balancing mode.
TRACK is independent of operation mode of PCO_VALVCON.

SP_EXT

PV

TRACK

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3105

Data type Default value Range Unit
INT 0 0 ... 10000 -

Tracking setpoint.
Output of the controller will be set to TRACK_SP if value of TRACK is TRUE.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Balancing mode.
PCO_VALVCON can be set in Balancing mode if value of BAL is TRUE and value of TRACK is
FALSE.
Output of the controller will be set to BAL_SP.
BAL is independent of operation mode of PCO_VALVCON.

Data type Default value Range Unit
INT 0 0 ... 10000 -

Balancing setpoint.
Output of the controller will be set to BAL_SP if value of BAL is TRUE.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Reverse Action
Value of REVACT is FALSE, Controller will increase output if Setpoint is less than
Process value.
Value of REVACT is TRUE, Controller will decrease output if Setpoint is greater than
Process value.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable automatic mode of the PCO_VALVCON.
PCO_VALVCON can be set in automatic mode if value of EN_AUTO is TRUE.
PCO_VALVCON is forced in manual mode if value of EN_AUTO is FALSE.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable valve to open.
Valve can be opened if value of EN_OPN is TRUE.
Valve cannot be opened if value of EN_OPN is FALSE.

TRACK_SP

BAL

BAL_SP

REVACT

EN_AUTO

EN_OPN

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3106

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable valve to close.
Valve can be closed if value of EN_CLS is TRUE.
Valve cannot be closed if value of EN_CLS is FALSE.

Data type Default value Range Unit
INT 0 0 ... 10000 -

Position feedback of valve.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Feedback signal from the valve.
If the value of OPN is TRUE, the valve is open.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Feedback signal from the valve.
If the value of CLS is TRUE, the valve is closed.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Valve is ready for operation.
Valve is ready for operation if value of RDY is TRUE.
Value of RDY is FALSE results in an external error.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Allow valve to be controlled from SCADA.
Value of REMOTE is TRUE control from SCADA and function block is enabled.
Value of REMOTE is FALSE valve is controlled only from function block.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of alarms.
If value of INHIB_ERR is TRUE, all alarms from PCO_VALVCON are suppressed.

EN_CLS

ACT_POS

OPN

CLS

RDY

REMOTE

INHIB_ERR

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3107

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 1.
If value of ALARM_1 is TRUE Alarm_1 is active.
Independent of operation mode of PCO_VALVCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 2.
If value of ALARM_2 is TRUE Alarm_2 is active.
Independent of operation mode of PCO_VALVCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 3.
If value of ALARM_3 is TRUE Alarm_3 is active.
Independent of operation mode of PCO_VALVCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 4.
If value of ALARM_4 is TRUE Alarm_4 is active.
Independent of operation mode of PCO_VALVCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 5.
If value of ALARM_5 is TRUE Alarm_5 is active.
Independent of operation mode of PCO_VALVCON.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 6.
If value of ALARM_6 is TRUE Alarm_6 is active.
Independent of operation mode of PCO_VALVCON.

Data type Default value Range Unit
TIME TIME#30s - -

Actuator ramp time from 0 % ... 100 %

Alarm_1

Alarm_2

Alarm_3

Alarm_4

Alarm_5

Alarm_6

RAMP_TIME

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3108

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The value RAMP_ACTIVE is TRUE activates ramp under manual positioning.
The value RAMP_ACTIVE is FALSE activates no ramp.

Output description

Data type Default value Range Unit
INT 0 0 ... 27648 -

Controller output to the valve to attain the desired position of the valve.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Output max limit reached, controller at max limit.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Output min limit reached, controller at min limit.

RAMP_ACTIVE

OUT

OUT_MAX

OUT_MIN

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3109

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Common alarm, including:
● Functional error
● External error (input RDY)
● Input Parameter error
● ALARM_1
● ALARM_2
● ALARM_3
● ALARM_4
● ALARM_5
● ALARM_6

Data type Default value Range Unit
WORD 0 - -

Error number
Output provides an error identifier if an invalid value was applied to an input.
ERNO always must be considered together with the output ERR.
The value output at ERNO is only valid if value of ERR is TRUE.

The error messages encoding is explained in “Standard Function Block Libraries AC500” in
“Error Messages of the Function Block Libraries”.

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3110

Input/output description

Data type Default value Range Unit
PCO_VALVCON_
TYPE

- - -

Structure variable for communication between AC500 and SCADA system.
To retain the variable value in case of power ON/OFF or download, the variable connected to
the SCADA In/Output should be declared as (global) retain persistant (or use %R area) variable
in the program.
Detailed information on the scaling see Ä “Scaling” on page 3102.

Parameter Data type Description In-/Output
SCADA.OPEN BOOL Valve is open Output

SCADA.CLOSED BOOL Valve is closed Output

SCADA.REMOTE BOOL Valve can be controlled from OS
REMOTE = FALSE ® Local operation

Output

SCADA.READY BOOL Valve is ready for operation Output

SCADA.FNCERR BOOL Functional error Output

SCADA.EXTERR BOOL External error
(is generated when the valve is not ready)

Output

SCADA.AL1 BOOL Auxiliary alarm no. 1 Output

SCADA

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3111

Parameter Data type Description In-/Output
SCADA.AL2 BOOL Auxiliary alarm no. 2 Output

SCADA.AL3 BOOL Auxiliary alarm no. 3 Output

SCADA.AL4 BOOL Auxiliary alarm no. 4 Output

SCADA.AL5 BOOL Auxiliary alarm no. 5 Output

SCADA.AL6 BOOL Auxiliary alarm no. 6 Output

SCADA.ACT_VALUE INT Actual position of the valve, scaling as input
ACT_POS (0 ... 10000)

Output

SCADA.CM_CMDON BOOL Manual command for the controller Input

SCADA.CI_CMDON BOOL Auto command to set the internal setpoint
for the controller

Input

SCADA.CX_CMDON BOOL Auto command to set the external setpoint
for the controller

Input

SCADA.CMDUP5 BOOL Manual command to increase output by 5 % Input

SCADA.CMDUP1 BOOL Manual command to increase output by 1 % Input

SCADA.CMDDW1 BOOL Manual command to decrease output by
1 %

Input

SCADA.CMDDW5 BOOL Manual command to decrease output by
5 %

Input

SCADA.CAUTO BOOL Controller is in automatic mode Output

SCADA.SPIACT BOOL Internal setpoint is active Output

SCADA.SPXACT BOOL External setpoint is active Output

SCADA.CTACT BOOL Tracking setpoint is active Output

SCADA.PV_H BOOL Process value at high limit Output

SCADA.PV_L BOOL Process value at low limit Output

SCADA.PV_ERR BOOL Process value error Output

SCADA.OUT_PAR INT Manual position setpoint
Scale 0 ... 10000

Input

SCADA.SPI_PAR INT Internal setpoint value Input

SCADA.KP_PAR INT Coefficient of proportionality (gain) % of the
controller

Input

SCADA.TD_PAR INT Time constant for D-part of the controller Input

SCADA.TI_PAR INT Time constant for integration of the
controller

Input

SCADA.OH_PAR INT Output high limit (0 ... 10000) of the
controller

Input

SCADA.OL_PAR INT Output low limit (0 ... 10000) of the
controller

Input

SCADA.OUT_VALUE INT Output from the controller
Scale 0 ... 10000

Output

SCADA.PV_VALUE INT Process value to be controlled Output

SCADA.SPX_VALUE INT External setpoint value Output

SCADA.OSMsg1 *) WORD Word representing the status of the
PCO_VALVCON

Output

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3112

Parameter Data type Description In-/Output
SCADA.OSMsg2 *) WORD Word representing the status of the

PCO_VALVCON
Output

AspectObjectType
_Valvcon_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

*) structure described separately

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_VALVCON.

Bit Description
Bit 0 Valve is open

Bit 1 Valve is closed

Bit 2 Not used

Bit 3 Not used

Bit 4 External error (Not ready)

Bit 5 Functional error

Bit 6 Valve released for opening

Bit 7 Valve released for closing

Bit 8 Local operation (Not remote)

Bit 9 Common alarm (External alarm + Functional alarm +
ALARM_1 ... ALARM_6)

Bit 10 Not used

Bit 11 Motor in automatic mode

Bit 12 Not used

Bit 13 Motor not released for automatic mode

Bit 14 Motor released for increase speed

Bit 15 Motor released for decrease speed

SCADA.OSMsg1

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3113

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_VALVCON.

Bit Description
Bit 0 Not used

Bit 1 Not used

Bit 2 Internal setpoint (PID controller)

Bit 3 External setpoint (PID controller)

Bit 4 Track setpoint (PID controller)

Bit 5 Auxiliary alarm 1

Bit 6 Auxiliary alarm 2

Bit 7 Auxiliary alarm 3

Bit 8 Auxiliary alarm 4

Bit 9 Auxiliary alarm 5

Bit 10 PID controller in automatic mode

Bit 11 PID controller in manual mode

Bit 12 Auxiliary alarm 6

Bit 13 Not used

Bit 14 Not used

Bit 15 Not used

SCADA.OSMsg2

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3114

Indications
PCO_ALARM

The function block is used to send an alarm to the SCADA system.
The alarm sent to SCADA is extended minimum 3 seconds to ensure alarm detection in the
SCADA system, even if the alarm at the input goes off before 3 seconds. The variable that rep-
resents the alarm in the SCADA side is "Status". This function block can be used in combination
with the object type ALARM_PLC included in PLC Object Library (an object library for 800xA
based PLC Connect).

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Alarm input.
If value of IN is TRUE, then an alarm is sent to SCADA.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Alarm inhibit.
If value of INHIB_ALARM is TRUE, then no alarm is sent to SCADA regardless of the value on
IN.

IN

INHIB_ALARM

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3115

Input/output description

Data type Default value Range Unit
PCO_ALARM_TYPE - - -

Structure variable for communication between AC500 and SCADA system.

Parameter Data type Description In-/Output
SCADA.STATUS BOOL Alarm status, TRUE = Alarm Output

AspectObjectType
_Alarm_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

PCO_BIN

The function block is used to send an event or an indication to the SCADA system.
The event is entered at IN input of the function block and its presence is depicted as "Status"
variable in SCADA.
The event sent to SCADA is extended minimum 3 seconds to ensure detection in the SCADA
system.
This function block can be used in combination with the object type BIN_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

Input description

SCADA

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3116

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Event input.
If value of IN is TRUE, then an event is sent to SCADA.

Input/output description

Data type Default value Range Unit
PCO_BIN_TYPE - - -

Structure variable for communication between AC500 and SCADA system.

Parameter Data type Description In-/Output
SCADA.STATUS BOOL Event status.

If value is TRUE then event is depicted,
else no event.
The event is maintained for a minimum
of 3 seconds, even if the event becomes
FALSE before that.

Output

AspectObjectType
_Bin_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

IN

SCADA

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3117

Measurements
PCO_ANA

The function block is used to send an analog value to the SCADA system with hysteresis limits.
The hysteresis limit can be entered from the FB. The value of the analog signal is depicted in
SCADA through a variable named value. SCADA.VALUE is only updated, if IN input (analog
input) has changed more than the HYS input limits defined.
For example:
Let the analog input be defined as 2, the SCADA.VALUE gets assigned as 2. Suppose the
hysteresis is 3 then the range of up to which the input can vary is (2-3) and (2+3) which is
-1 ... 5.
If an input -1 is given, then the SCADA.VALUE does not change (as it is in the range of -1 ... 5).
If -2 is given at the input, then the SCADA.VALUE gets set to -2 and then the input range
becomes -5 ... 1.
There is no scaling in the function block.
This function block can be used in combination with the object type ANA_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

Input description

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Analog input that must be sent to the SCADA system.

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Dead band limit for input.

IN

HYS

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3118

Input/output description

Data type Default value Range Unit
PCO_ANA_TYPE - - -

Structure variable for communication to and from SCADA system.

Parameter Data type Description In-/Output
SCADA.VALUE INT Analog input within the hysteresis limits. Output

AspectObjectType
_Ana_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

SCADA

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3119

PCO_ANAALM

The function block is designed for controlling an analog input with limit supervision.
The function block can be configured to handle the different ranges of the analog input, due to
different electrical signals. E.g.
● 4 mA ... 20 mA
● 0 V ... 10 V or
● PT100 /PT1000

Please refer to AC500 hardware manual for detailed information regarding
analog input modules and different parameters.

This function block checks whether the analog output of the FB are within HH, H or LL , L limits.
The limits need to be entered from the SCADA side.
● SCADA.LIMH2
● SCADA.LIMH1
● SCADA.LIML1
● SCADA.LIML2
The function block rescales the analog input (IN) from the actual value at IN to SCALE_MIN ®
SCALE_MAX.
The IN range is from 0 ... 27648.The OUT is defined by:

If TEMP_PT100_PT1000 or PB are to be set = TRUE, no rescaling of IN is made.
If an analog input is connected to an I/O module and the module cannot detect live zero
(2 V ... 10 V), live zero can be set if value of EN_LIVE_ZERO is TRUE.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3120

Zero point suppression. The function block will force the input to zero when the input is between
0 and 0 - IN_HYS
The value can be preset to SCALE_MIN (FORCE_SCALE_MIN = TRUE) or SCALE_MAX
(FORCE_SCALE_MAX = TRUE).
The output value from the function block can be frozen to a specific value (FREEZE = TRUE
and the specific value on FREEZE_SP).
To retain the variable value in case of power ON/OFF or download, the variable connected to
the SCADA In/Output should be declared as global retain persistant (or use %R area) variable
in the program.

For PCO_ANAALM function block, the scaling needs to be taken care in the 800xA side.
Whatever value for SCALE_MAX and SCALE_MIN is entered in the function block the similar
setting needs to be done in the 800xA side scaling settings.
It is as shown in the figures below:

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3121

The same setting needs to be done for the other variables present in the ANAALM object tree.

The limit supervision consists of up to two high and two low alarms.
A SENSOR ERROR is generated in the SCADA side in the following conditions:
1. When the analog input is not within the tolerance of 1000, hence the input can vary over a
range of -1000 ... 28648, after which it generates an error.
2. The output obtained at the end is not within the limits of SCALE_MIN and SCALE_MAX.
3. When the PB input is activated and the PB_STATUS is not equal to 128.

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3122

Inputs and outputs can stay unconnected, if their functions are not needed.

This function block can be used in combination with the object type ANAALM_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

Input description

Data type Default value Range Unit
REAL 0.5 0 ... 100 %

Dead band for Alarm Limit. % of scale (SCALE_MAX – SCALE_MIN).

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of highhigh alarm.
If value of LIM_HH_INHIB is TRUE, then suppress highhigh alarm.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of high alarm.
If value of LIM_H_INHIB is TRUE, then suppress high alarm.

LIM_HYS

LIM_HH_INHIB

LIM_H_INHIB

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3123

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of low alarm.
If value of LIM_L_INHIB is TRUE, then suppress low alarm.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of lowlow alarm.
If value of LIM_LL_INHIB is TRUE, then suppress lowlow alarm.

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Analog input. The input must be in the range of 0 ... 27648.
Value to SCADA is scaled according to SCALE_MIN and SCALE_MAX.

Data type Default value Range Unit
INT 27648 -32768 ... 32767 -

Scaling parameter. Maximum value for output to SCADA and output of the function block.
IN will be rescaled to the range defined between SCALE_MIN and SCALE_MAX by the user.

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Scaling parameter. Minimum value for output to SCADA and output of the function block.
IN will be rescaled to the range defined between SCALE_MIN and SCALE_MAX by the user.

Data type Default value Range Unit
REAL 0.5 0 ... 100 %

Dead band for analog input.
If IN + IN_HYS > SCADA or IN - IN_HYS < SCADA, then SCADA value is updated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Enable live zero for analog input.
An analog input is connected to an I/O module or CPU and the module cannot detect live zero
(2 V ... 10 V), live zero can be set if value of EN_LIVE_ZERO is TRUE.

LIM_L_INHIB

LIM_LL_INHIB

IN

SCALE_MAX

SCALE_MIN

IN_HYS

EN_LIVE_ZERO

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3124

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of all alarms.
If value of INHIB_ERR is TRUE, all alarms are suppressed.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force output from function block.
If value of FORCE_SCALE_MIN is TRUE, output for SCADA and OUT are forced to
SCALE_MIN.
When FORCE_SCALE_MAX and FORCE_SCALE_MIN inputs are made high at the same time,
FORCE_SCALE_MAX has higher priority.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force output from function block.
If value of FORCE_SCALE_MAX is TRUE, output for SCADA and OUT are forced to
SCALE_MAX.
When FORCE_SCALE_MAX and FORCE_SCALE_MIN inputs are made high at the same time,
FORCE_SCALE_MAX has higher priority.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force output from function block.
If value of FREEZE is TRUE, output for SCADA and OUT are forced to FREEZE_SP.

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Freeze setpoint.
If value of FREEZE is TRUE, the SCADA and OUT will be forced to FREEZE_SP.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Select PROFIBUS type of input.
If value of PB is TRUE, the analog input is not from an I/O module but from a PROFIBUS
communication line.
No scaling of the SCADA and OUT value.

INHIB_ERR

FORCE_SCALE
_MIN

FORCE_SCALE
_MAX

FREEZE

FREEZE_SP

PB

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3125

Data type Default value Range Unit
BYTE 128 0 ... 255 -

Status of PROFIBUS communication.
If value of PB_STATUS is not equal to 128, a sensor error is generated.
If value of PB_STATUS is 128, measurement is ok.

Data type Default value Range Unit
TIME TIME#2s - -

Filter time. 1st order filter for the input damps the variation of input.

Output description

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Scaled output, output scaled according to SCALE_MIN and SCALE_MAX.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Common alarm, Input Parameter error.

PB_STATUS

FIL_TIME

OUT

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3126

Data type Default value Range Unit
WORD 0 - -

Error number
Output provides an error identifier if an invalid value was applied to an input.
ERNO always must be considered together with the output ERR.
The value output at ERNO is only valid if value of ERR is TRUE.

The error messages encoding is explained in “Standard Function Block Libraries AC500” in
“Error Messages of the Function Block Libraries”.

Input/output description

Data type Default value Range Unit
PCO_ANAALM_
TYPE

- - -

Structure variable for communication between AC500 and SCADA system.

Parameter Data type Description In-/Output
SCADA.VALUE INT Rescaled input value. Output

SCADA.SENSE_ERR BOOL Sensor error. Open circuit or short circuit. Output

SCADA.H2 BOOL High-high alarm (H2). Output

SCADA.H1 BOOL High alarm (H1). Output

ERNO

SCADA

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3127

Parameter Data type Description In-/Output
SCADA.L1 BOOL Low alarm (L1). Output

SCADA.L2 BOOL Low-low alarm (L2). Output

SCADA.LIMH2 INT Parameter from OS: Limit for H2 alarm. Input

SCADA.LIMH1 INT Parameter from OS: Limit for H1 alarm. Input

SCADA.LIML1 INT Parameter from OS: Limit for L1 alarm. Input

SCADA.LIML2 INT Parameter from OS: Limit for L2 alarm. Input

SCADA.H2_VALUE INT Parameter to SCADA: Limit for H2 alarm Output

SCADA.H1_VALUE INT Parameter to SCADA: Limit for H1 alarm Output

SCADA.L1_VALUE INT Parameter to SCADA: Limit for L1 alarm Output

SCADA.L2_VALUE INT Parameter to SCADA: Limit for L2 alarm Output

AspectObjectType
_Anaalm_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3128

PCO_ANALIM

The function block is designed for controlling an analog input without limit supervision.
The function block can be configured to handle the different ranges of the analog input, due to
different electrical signals. E.g.
● 4 mA ... 20 mA
● 0 V ... 10 V or
● PT100 /PT1000

Please refer to AC500 hardware manual for detailed information regarding
analog input modules and different parameters.

The function block rescales the analog input (IN) from the actual value to SCALE_MIN ®
SCALE_MAX.
The IN range is from 0 ... 27648.The OUT is defined by:

If TEMP_PT100_PT1000 or PB are to be set = TRUE, no rescaling of IN is made.
If an analog input is connected to an I/O module and the module cannot detect live zero
(2 V ... 10 V), live zero can be set if value of EN_LIVE_ZERO is TRUE.
Zero point suppression. The function block will force the input to zero when the input is between
0 and 0 - IN_HYS
A SENSOR ERROR is generated in the SCADA side in the following conditions:
1. When the analog input is not within the tolerance of 1000, hence the input can vary over a
range of -1000 ... 28648, after which it generates an error.
2. The output obtained at the end is not within the limits of SCALE_MIN and SCALE_MAX.
3. When the PB input is activated and the PB_STATUS is not equal to 128.

Inputs and outputs can stay unconnected, if their functions are not needed.

This function block can be used in combination with the object type ANALIM_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3129

Input description

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Analog input. The input must be in the range of 0 ... 27648.
Value to SCADA is scaled according to SCALE_MIN and SCALE_MAX.

Data type Default value Range Unit
INT 27648 -32768 ... 32767 -

Scaling parameter. Maximum value for output to SCADA and output of the function block.
IN will be rescaled to the range defined between SCALE_MIN and SCALE_MAX by the user.

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Scaling parameter. Minimum value for output to SCADA and output of the function block.
IN will be rescaled to the range defined between SCALE_MIN and SCALE_MAX by the user.

Data type Default value Range Unit
REAL 0.5 0 ... 100 %

Dead band for analog input.
If IN + IN_HYS > SCADA or IN - IN_HYS < SCADA, then SCADA value is updated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Enable live zero for analog input.
An analog input is connected to an I/O module or CPU and the module cannot detect live zero
(2 V ... 10 V), live zero can be set if value of EN_LIVE_ZERO is TRUE.

IN

SCALE_MAX

SCALE_MIN

IN_HYS

EN_LIVE_ZERO

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3130

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Select temperature sensor type of input.
If value of TEMP_PT100_PT1000 is TRUE, a temperature sensor is connected direct on an
I/O module.
No scaling of the SCADA and OUT value.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Select PROFIBUS type of input.
If value of PB is TRUE, the analog input is not from an I/O module but from a PROFIBUS
communication line.
No scaling of the SCADA and OUT value.

Data type Default value Range Unit
BYTE 128 0 ... 255 -

Status of PROFIBUS communication.
If value of PB_STATUS is not equal to 128, a sensor error is generated.
If value of PB_STATUS is 128, measurement is ok.

Data type Default value Range Unit
TIME TIME#2s - -

Filter time. 1st order filter for the input damps the variation of input.

Output description

TEMP_PT100_P
T1000

PB

PB_STATUS

FIL_TIME

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3131

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Scaled output, output scaled according to SCALE_MIN and SCALE_MAX.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Common alarm, Input Parameter error.

Data type Default value Range Unit
WORD 0 - -

Error number
Output provides an error identifier if an invalid value was applied to an input.
ERNO always must be considered together with the output ERR.
The value output at ERNO is only valid if value of ERR is TRUE.

The error messages encoding is explained in “Standard Function Block Libraries AC500” in
“Error Messages of the Function Block Libraries”.

Input/output description

Data type Default value Range Unit
PCO_ANALIM_TYPE - - -

Structure variable for communication to and from SCADA system.

OUT

ERR

ERNO

SCADA

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3132

Parameter Data type Description In-/Output
SCADA.VALUE INT Rescaled input value. Output

SCADA.SENSE_ERR BOOL Sensor error. Open circuit or short circuit. Output

AspectObjectType
_Analim_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3133

Motor
PCO_MOT

This function block is designed for controlling a fixed speed motor.
Utilizing the inputs of the function block BEHAVE_ON_ERROR and OUTPUT_HANDLING
different modes of CMD_START and CMD_STOP can be configured. E.g. if CMD_START
and CMD_STOP should be pulsed or persistent signals. In addition, 6 different alarms can be
connected to the function block (ALARM_1 to ALARM_6, thermal switch etc.).

The motor can be switched to automatic mode from the SCADA faceplate if the
input EN_AUTO is TRUE.

Settings in FB side Data type Set Motor to Auto Mode
EN_AUTO BOOL TRUE

REMOTE BOOL ACTIVE

RDY BOOL ACTIVE

Settings in SCADA side Data type Set Motor to Auto Mode
SCADA.CMDAUT BOOL Rising edge needs to be given.

Set motor to
auto mode

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3134

Settings in FB side Data type Start / Stop Motor in Auto Mode
INHIB_FCT_ERR_TIME TIME The value of INHIB_FCT_ERR_TIME has to

be greater than 0 s to avoid functional error.

EN_START BOOL ACTIVE

EN_STOP BOOL ACTIVE

AUTO_CMD_START BOOL Rising edge needs to be given to
AUTO_CMD_START input of FB

AUTO_CMD_STOP BOOL Rising edge needs to be given to
AUTO_CMD_STOP input of FB

Settings in SCADA side Data type Start / Stop Motor in Auto Mode
No settings need to be done.

The motor can be switched to manual mode.

If the input EN_AUTO is FALSE, then the function block is forced to manual
mode.

The motor can be operated in manual mode if EN_AUTO is either TRUE or
FALSE.

The difference is that if EN_AUTO is TRUE, the switching between Auto and
Manual is possible, else the motor and controller are both to Manual.

Settings in FB side Data type Set Motor to Manual Mode
REMOTE BOOL ACTIVE

RDY BOOL ACTIVE

Settings in SCADA side Data type Set Motor to Manual Mode
SCADA.CMDMAN BOOL Rising edge of SCADA.CMDMAN input

to reset auto mode if it was set before

Settings in FB side Data type Start / Stop Motor in Manual Mode
INHIB_FCT_ERR_TIME TIME The value of INHIB_FCT_ERR_TIME has to

be greater than 0 s to avoid functional error.

EN_START BOOL ACTIVE

EN_STOP BOOL ACTIVE

Settings in SCADA side Data type Start / Stop Motor in Manual Mode
CMDSTR BOOL Rising edge of CMDSTR needs to be given.

CMDSTP BOOL Rising edge of CMDSTP needs to be given.

Start / stop
motor in
auto mode

Set motor to
manual mode

Start / stop
motor in
manual mode

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3135

In automatic mode the motor can be started/stopped using the function block inputs
(AUTO_CMD_START/AUTO_CMD_STOP).
In manual mode the motor can be started and stopped from the SCADA faceplate.
The function block includes supervision of the feedback signals RUN and STOP from the motor.
If the motor fails to run or stop within the supervision time INHIB_FCT_ERR_TIME, it will
generate a functional error.
An external error is generated when READY input is false.
This function block can be used in combination with the object type MOT_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

The function block is used for controlling a fixed speed motor, which can be used for controlling
the level of fluid in a tank.
These components are included in the following example:
● Tank
● Level switch (high and low)
● Pump
● Main power supply, circuit breaker (or similar)
Manual mode:
● Pump controlled by the operator.
Automatic mode:
● Pump controlled by the AC500 controller.

Examples

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3136

PCO_MOT
manual mode
example

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3137

PCO_MOT
automatic mode
example

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3138

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force the motor to start if it is in automatic mode.
E.g.AUTO_CMD_START could be activated from a sequence in the PLC program. The function
block reacts on "0" to "1" transition of this input.
If AUTO_CMD_START and AUTO_CMD_STOP are active at the same time, then the
commands CMD_START and CMD_STOP get reset.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force the motor to stop if the actuator is in automatic.
AUTO_CMD_STOP could be activated from a sequence in the PLC program. The function
block reacts on "0" to "1" transition of this input.
If AUTO_CMD_START and AUTO_CMD_STOP are active at the same time, then the
commands CMD_START and CMD_STOP get reset.

AUTO_CMD_
START

AUTO_CMD_
STOP

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3139

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable automatic mode of the PCO_MOT.
PCO_MOT can be set in automatic mode if value of EN_AUTO is TRUE.
PCO_MOT is forced in manual mode if value of EN_AUTO is FALSE.
But the motor can also be operated in manual mode if EN_AUTO is TRUE provided that manual
start and stop selection is made on the SCADA side.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable start of the motor.
Motor can be started if value of EN_START is TRUE.
Motor cannot be started if value of EN_START is FALSE.
EN_START is independent of operation mode of PCO_MOT.
EN_START has no effect in case of emergency start of function block motor EMCY_START.
EN_START has no effect on a motor already running.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable stop of the motor.
Motor can be stopped if value of EN_STOP is TRUE.
Motor cannot be stopped if value of EN_STOP is FALSE.
EN_STOP is independent of operation mode of PCO_MOT.
EN_STOP has no effect in case of emergency stop of function block motor EMCY_STOP.
EN_STOP has no effect on an already stopped motor.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Emergency start of motor.
If value of EMCY_START is TRUE and value of EMCY_STOP is FALSE, the motor will start.
If value of EMCY_START is TRUE and value of EMCY_STOP is TRUE, the motor will stop.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Emergency stop of the motor.
If value of EMCY_STOP is TRUE, the motor will stop.
If value of EMCY_START is TRUE and value of EMCY_STOP is TRUE, the motor will stop.
Independent of operation mode of PCO_MOT.

EN_AUTO

EN_START

EN_STOP

EMCY_START

EMCY_STOP

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3140

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Feedback signal from the motor.
Motor is running if the value of RUN is TRUE.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Feedback signal from the motor.
Motor is stopped if the value of STOP is TRUE.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Motor is ready for operation.
Motor is ready for operation if value of RDY is TRUE.
Value of RDY is FALSE results in an external error.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Allow motor to be controlled from SCADA.
Value of REMOTE is TRUE control from SCADA and function block is enabled.
Value of REMOTE is FALSE motor is controlled only from function block.
PCO_MOT will align the block according to feedback signals.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of alarms.
If value of INHIB_ERR is TRUE, all alarms from PCO_MOT are suppressed.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

External acknowledge of alarms.
If value of EXT_ACK is TRUE, all alarms from PCO_MOTCON are acknowledged.
Independent of operation mode of PCO_MOT.

RUN

STOP

RDY

REMOTE

INHIB_ERR

EXT_ACK

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3141

Data type Default value Range Unit
TIME TIME#5s - -

Maximum delay time from command to response from process.
If response is not received within this time limit, a function error will be generated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 1.
If value of ALARM_1 is TRUE Alarm_1 is active.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 2.
If value of ALARM_2 is TRUE Alarm_2 is active.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 3.
If value of ALARM_3 is TRUE Alarm_3 is active.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 4.
If value of ALARM_4 is TRUE Alarm_4 is active.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 5.
If value of ALARM_5 is TRUE Alarm_5 is active.
Independent of operation mode of PCO_MOT.

INHIB_FCT_
ERR_TIME

Alarm_1

Alarm_2

Alarm_3

Alarm_4

Alarm_5

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3142

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 6.
If value of ALARM_6 is TRUE Alarm_6 is active.
Independent of operation mode of PCO_MOT.

Data type Default value Range Unit
BYTE 0 0 ... 3 -

Actions that need to be executed by the FB at the event of error as set by the user.
The user can set a range of values from 0 ... 3.
BEHAVE_ON_ERROR = 0 causes the output to remain unaffected in case of a functional error
or an external error (Not ready).
BEHAVE_ON_ERROR = 1 causes a stop command in case of a functional error.
BEHAVE_ON_ERROR = 2 causes a stop command in case of an external error.
BEHAVE_ON_ERROR = 3 causes a stop command in case of a functional error or an
external error.
This parameter is independent of operation mode (whether Auto/ Manual) of PCO_MOT.

Data type Default value Range Unit
BYTE 1 0 ... 2 -

Behavior of command outputs, CMD_START / CMD_STOP.
The user can set a range of values from 0 ... 2
OUTPUT_HANDLING = 0 causes the output (CMD_START / CMD_STOP) to be reset at RUN
or STOP feedback.
OUTPUT_HANDLING = 1 causes the output (CMD_START / CMD_STOP)) to remain active at
RUN or STOP feedback.
With OUTPUT_HANDLING = 2 the output (CMD_START / CMD_STOP) is performed
as 1 s pulse. This parameter is independent of operation mode (whether Auto / Manual) of
PCO_MOT.

Alarm_6

BEHAVE_ON_
ERROR

OUTPUT_
HANDLING

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3143

Output description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Command output start, to be connected to hardware output.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Command output stop, to be connected to hardware output.

CMD_START

CMD_STOP

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3144

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Common alarm, including:
● Functional error
● External error (input RDY)
● Input Parameter error
● ALARM_1
● ALARM_2
● ALARM_3
● ALARM_4
● ALARM_5
● ALARM_6
● EMCY_START
● EMCY_STOP

Data type Default value Range Unit
WORD 0 - -

Error number
Output provides an error identifier if an invalid value was applied to an input.
ERNO always must be considered together with the output ERR.
The value output at ERNO is only valid if value of ERR is TRUE.

The error messages encoding is explained in “Standard Function Block Libraries AC500” in
“Error Messages of the Function Block Libraries”.

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3145

Input/output description

Data type Default value Range Unit
PCO_MOT_TYPE - - -

Structure variable for communication between AC500 and SCADA system.

Parameter Data type Description In-/Output
SCADA.CMDSTR BOOL Start command in Manual mode Input

SCADA.CMDSTP BOOL Stop command in Manual mode Input

SCADA.CMDAUT BOOL Auto command Input

SCADA.CMDMAN BOOL Manual command Input

SCADA.CMDRES BOOL Acknowledge active alarms Input

SCADA.AUTO BOOL Motor in automatic mode Output

SCADA.IN BOOL Motor is running Output

SCADA.OUT BOOL Motor is stopped Output

SCADA.REMOTE BOOL Motor can be controlled from SCADA
REMOTE = FALSE ® Local operation

Output

SCADA.READY BOOL Motor is ready for operation Output

SCADA.FNCERR BOOL Functional error Output

SCADA.EXTERR BOOL External error
(is generated when the motor is not ready)

Output

SCADA

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3146

Parameter Data type Description In-/Output
SCADA.AL1 BOOL Auxiliary alarm no. 1 Output

SCADA.AL2 BOOL Auxiliary alarm no. 2 Output

SCADA.AL3 BOOL Auxiliary alarm no. 3 Output

SCADA.AL4 BOOL Auxiliary alarm no. 4 Output

SCADA.AL5 BOOL Auxiliary alarm no. 5 Output

SCADA.AL6 BOOL Auxiliary alarm no. 6 Output

SCADA.OSMsg1 *) WORD Word representing the status of the
PCO_MOT

Output

SCADA.OSMsg2 *) WORD Word representing the status of the
PCO_MOT

Output

AspectObjectType
_Mot_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

*) structure described separately

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_MOT.

Bit Description
Bit 0 Motor is running

Bit 1 Motor is stopped

Bit 2 Motor is starting

Bit 3 Motor is stopping

Bit 4 External error (Not ready)

Bit 5 Functional error

Bit 6 Motor released for start

Bit 7 Motor released for stop

Bit 8 Local operation (Not remote)

Bit 9 Common alarm (External alarm + Functional alarm +
EMCY_START/EMCY_STOP + ALARM_1 ... ALARM_6)

Bit 10 Unacknowledged alarm

Bit 11 Motor in automatic mode

Bit 12 Not used

Bit 13 Motor not released for automatic mode

Bit 14 Not used

Bit 15 Not used

SCADA.OSMsg1

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3147

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_MOT.

Bit Description
Bit 0 Emergency In

Bit 1 Emergency Out

Bit 2 Auxiliary alarm 1

Bit 3 Auxiliary alarm 2

Bit 4 Auxiliary alarm 3

Bit 5 Auxiliary alarm 4

Bit 6 Auxiliary alarm 5

Bit 7 Auxiliary alarm 6

Bit 8 Not used

Bit 9 Not used

Bit 10 Not used

Bit 11 Not used

Bit 12 Not used

Bit 13 Not used

Bit 14 Not used

Bit 15 Not used

SCADA.OSMsg2

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3148

Setpoints
PCO_ANASET

This function block is designed for receiving an analog setpoint from the SCADA system.
This value is entered at .PAR variable of the SCADA side. The actual analog setpoint is entered
at IN input of the function block and it is represented by .VALUE variable in the SCADA side.
To retain the variable value in case of power ON/OFF or download, the variable connected to
the SCADA In/Output should be declared as global retain persistant (or use %R area) variable
in the program.
This function block can be used in combination with the object type ANASET_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

Input description

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Actual setpoint.
Parameter is sent to SCADA.

Output description

Data type Default value Range Unit
INT 0 -32768 ... 32767 -

Setpoint received from SCADA.
Parameter received from SCADA.

IN

OUT

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3149

Input/output description

Data type Default value Range Unit
PCO_ANASET_TYPE - - -

Structure variable for communication between AC500 and SCADA system.

Parameter Data type Description In-/Output
SCADA.VALUE INT Actual setpoint Output

SCADA.PAR INT Setpoint from SCADA Input

AspectObjectType
_Anaset_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

PCO_BINSET

This function block is designed for receiving single command from the SCADA system.
EN_PULSE input is used to reset command from SCADA. CMD variable from SCADA side is
used to give command.
If value of EN_PULSE is TRUE, the command will only be active for one program cycle.
The CMD variable is connected to OUT (output) of function block.
This function block can be used in combination with the object type BINSET_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).

SCADA

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3150

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Actual status, that is the result of a command from SCADA side.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Pulse output.
If value of EN_PULSE is TRUE, CMD variable would be reset and OUT will only be active for
one program cycle.

Output description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Single command from SCADA.
If value of EN_PULSE is TRUE the single command will only be active for one program cycle.

IN

EN_PULSE

OUT

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3151

Input/output description

Data type Default value Range Unit
PCO_BINSET_TYPE - - -

Structure variable for communication between AC500 and SCADA system.

Parameter Data type Description In-/Output
SCADA.STATUS BOOL Actual status, feedback Output

SCADA.CMD BOOL Single command from SCADA Input

AspectObjectType
_Binset_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

SCADA

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3152

Valve
PCO_VALV

This function block is designed for controlling a motor controlled ON/OFF valve.
Utilizing the inputs of the function block BEHAVE_ON_ERROR and OUTPUT_HANDLING
different modes of CMD_OPN, CMD_STOP and CMD_CLS can be configured. E.g. if
CMD_OPN should be pulsed or persistent signals. In addition, 6 different alarms can be
connected to the function block (ALARM_1 to ALARM_6, thermal switch etc.)
There are two modes in which the valve can be operated, Auto mode or Manual mode.
In automatic mode the valve can be opened/stopped/closed using the function block inputs
(AUTO_CMD_OPN/AUTO_CMD_STOP/AUTO_CMD_CLS).

The valve is set to auto mode when the following conditions are satisfied:

Settings in FB side Data type Set Valve to Auto Mode
EN_AUTO BOOL TRUE

REMOTE BOOL ACTIVE

RDY BOOL ACTIVE

Set valve to
auto mode

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3153

Settings in SCADA side Data type Set Valve to Auto Mode
SCADA.CMDAUT BOOL Rising edge needs to be given.

Settings in FB side Data type Open / Stop / Close Valve in Auto Mode
INHIB_FCT_ERR_TIME TIME The value of INHIB_FCT_ERR_TIME has to

be greater than 0 s to avoid functional error.

EN_OPN BOOL ACTIVE

EN_CLS BOOL ACTIVE

AUTO_CMD_OPN BOOL Rising edge needs to be given to
AUTO_CMD_OPN input of FB

AUTO_CMD_STP BOOL Rising edge needs to be given to
AUTO_CMD_STP input of FB

AUTO_CMD_CLS BOOL Rising edge needs to be given to
AUTO_CMD_CLS input of FB

Settings in SCADA side Data type Open / Stop / Close Valve in Auto Mode
SCADA.CMDAUT BOOL Rising edge needs to be given.

In manual mode the valve can be opened and closed from the SCADA faceplate.
The valve is set to manual mode when the following conditions are satisfied:

Settings in FB side Data type Set Valve to Manual Mode
REMOTE BOOL ACTIVE

RDY BOOL ACTIVE

Settings in SCADA side Data type Set Valve to Manual Mode
SCADA.CMDMAN BOOL Rising edge of SCADA.CMDMAN input

to reset auto mode if it was set before

Settings in FB side Data type Open / Close Valve in Manual Mode
INHIB_FCT_ERR_TIME TIME The value of INHIB_FCT_ERR_TIME has to

be greater than 0 s to avoid functional error.

EN_OPN BOOL ACTIVE

EN_CLS BOOL ACTIVE

Settings in SCADA side Data type Open / Close Valve in Manual Mode
CMDOPN BOOL Rising edge of CMDOPN needs to be given.

CMDCLS BOOL Rising edge of CMDCLS needs to be given.

Open / stop /
close valve in
auto mode

Set valve to
manual mode

Open / close
valve in
manual mode

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3154

This function block can be used in combination with the object type VALVCON_PLC included in
PLC Object Library (an object library for 800xA based PLC Connect).
The function block includes supervision of the feedback signals OPN and CLS from the valve.
If the valve fails to open or close within the supervision time INHIB_FCT_ERR_TIME, it will raise
a functional error.
Actions in case of a functional error are controlled by the parameter BEHAVE_ON_ERROR.

The function block is used for controlling a valve which in turn controls the level of fluid in a tank.
These components are included in the following example:
● Tank
● Level switch (high and low)
● Valve
● Main power supply, circuit breaker (or similar)
Manual mode:
● Valve controlled by the operator.
Automatic mode:
● Valve controlled by the AC500 controller.

Examples

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3155

PCO_VALV
manual mode
example

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3156

PCO_VALV
automatic mode
example

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3157

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force the valve to open, if the valve is in automatic mode.
AUTO_CMD_OPN could be activated from a sequence in the PLC program. The function block
reacts on "0" to "1" transition of this input.
If AUTO_CMD_OPN and AUTO_CMD_CLS are active at the same time, then the commands
CMD_OPN and CMD_CLS get reset.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force the valve to close, if the valve is in automatic mode.
AUTO_CMD_CLS could be activated from a sequence in the PLC program. The function block
reacts on "0" to "1" transition of this input.
If AUTO_CMD_OPN and AUTO_CMD_CLS are active at the same time, then the commands
CMD_OPN and CMD_CLS get reset.

AUTO_CMD_
OPN

AUTO_CMD_
CLS

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3158

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Force the valve to stop, if the valve is in automatic mode.
Valve will stop in intermediate position.
AUTO_CMD_STOP could be activated from a sequence in the PLC program. The function
block reacts on "0" to "1" transition of this input.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable automatic mode of the PCO_VALV.
PCO_VALV can be set in automatic mode if value of EN_AUTO is TRUE.
PCO_VALV is forced in manual mode if value of EN_AUTO is FALSE.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable opening of the valve.
Valve can be opened if value of EN_OPN is TRUE.
Valve cannot be opened if value of EN_OPN is FALSE.
EN_OPN has no effect in case of emergency open of the valve, e.g. EMCY_OPN.
EN_OPN has no effect on an already opened valve.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Enable closing of the valve.
Valve can be closed if value of EN_CLS is TRUE.
Valve cannot be closed if value of EN_CLS is FALSE.
EN_CLSN has no effect in case of emergency close of the valve, e.g. EMCY_CLS.
EN_CLS has no effect on an already closed valve.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Emergency open of the valve.
If value of EMCY_OPN is TRUE and value of EMCY_CLS is FALSE, the valve will open.
If value of EMCY_OPN is TRUE and the value of EMCY_CLS is TRUE, the valve will close.
If value of EMCY_STOP is TRUE, the valve will stop.
Independent of operation mode of PCO_VALV.

AUTO_CMD_
STOP

EN_AUTO

EN_OPN

EN_CLS

EMCY_OPN

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3159

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Emergency close of the valve.
If value of EMCY_CLS is TRUE, the valve will close.
If value of EMCY_OPN is TRUE and value of EMCY_CLS is TRUE, the valve will close.
If value of EMCY_STOP is TRUE, the valve will stop.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Emergency stop of the valve.
If value of EMCY_STOP is TRUE, the valve will stop. Highest priority.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Feedback signal from the valve.
If the value of OPN is TRUE, the valve is open.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Feedback signal from the valve.
If the value of CLS is TRUE, the valve is closed.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Valve is ready for operation.
Valve is ready for operation if value of RDY is TRUE.
Value of RDY is FALSE results in an external error.
Independent of operation mode of PCO_VALV.

EMCY_CLS

EMCY_STOP

OPN

CLS

RDY

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3160

Data type Default value Range Unit
BOOL TRUE TRUE/FALSE -

Allow valve to be controlled from SCADA.
Value of REMOTE is TRUE control from SCADA and function block is enabled.
Value of REMOTE is FALSE valve is controlled only from function block.
PCO_VALV will align the block according to feedback signals.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Suppression of alarms.
If value of INHIB_ERR is TRUE, all alarms from PCO_VALV are suppressed.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

External acknowledge of alarms.
If value of EXT_ACK is TRUE all alarms from PCO_VALV are acknowledged.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
TIME TIME#5s - -

Maximum delay time from command to response from process.
If response is not received within this time limit, a function error will be generated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 1.
If value of ALARM_1 is TRUE Alarm_1 is active.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 2.
If value of ALARM_2 is TRUE Alarm_2 is active.
Independent of operation mode of PCO_VALV.

REMOTE

INHIB_ERR

EXT_ACK

INHIB_FCT_
ERR_TIME

Alarm_1

Alarm_2

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3161

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 3.
If value of ALARM_3 is TRUE Alarm_3 is active.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 4.
If value of ALARM_4 is TRUE Alarm_4 is active.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 5.
If value of ALARM_5 is TRUE Alarm_5 is active.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Auxiliary alarm no. 6.
If value of ALARM_6 is TRUE Alarm_6 is active.
Independent of operation mode of PCO_VALV.

Data type Default value Range Unit
BYTE 0 0 ... 3 -

Actions that need to be executed by the FB at the event of error as set by the user.
The user can set a range of values from 0 ... 3.
BEHAVE_ON_ERROR = 0 causes the output to remain unaffected in case of a functional error
or an external error (Not ready).
BEHAVE_ON_ERROR = 1 causes a stop command in case of a functional error.
BEHAVE_ON_ERROR = 2 causes a stop command in case of an external error.
BEHAVE_ON_ERROR = 3 causes a stop command in case of a functional error or an
external error.
This parameter is independent of operation mode (whether Auto/ Manual) of PCO_VALV.

Alarm_3

Alarm_4

Alarm_5

Alarm_6

BEHAVE_ON_
ERROR

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3162

Data type Default value Range Unit
BYTE 1 0 ... 2 -

Behavior of command outputs, CMD_START / CMD_STOP.
The user can set a range of values from 0 ... 2
OUTPUT_HANDLING = 0 causes the output (CMD_START / CMD_STOP) to be reset at RUN
or STOP feedback.
OUTPUT_HANDLING = 1 causes the output (CMD_START / CMD_STOP)) to remain active at
RUN or STOP feedback.
With OUTPUT_HANDLING = 2 the output (CMD_START / CMD_STOP) is performed
as 1 s pulse. This parameter is independent of operation mode (whether Auto / Manual) of
PCO_VALV.

Output description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Command output open to be connected to hardware output.

OUTPUT_
HANDLING

CMD_OPN

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3163

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Command output close to be connected to hardware output.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Command output stop, to be connected to hardware output.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Common alarm, including:
● Functional error
● External error (input RDY)
● Input Parameter error
● ALARM_1
● ALARM_2
● ALARM_3
● ALARM_4
● ALARM_5
● ALARM_6
● EMCY_OPN
● EMCY_CLS
● EMCY_STOP

Data type Default value Range Unit
WORD 0 - -

Error number
Output provides an error identifier if an invalid value was applied to an input.
ERNO always must be considered together with the output ERR.
The value output at ERNO is only valid if value of ERR is TRUE.

The error messages encoding is explained in “Standard Function Block Libraries AC500” in
“Error Messages of the Function Block Libraries”.

CMD_CLS

CMD_STOP

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3164

Input/output description

Data type Default value Range Unit
PCO_VALV_TYPE - - -

Structure variable for communication to and from SCADA system.

Parameter Data type Description In-/Output
SCADA.CMDOPN BOOL Open command Input

SCADA.CMDCLS BOOL Close command Input

SCADA.CMDSTP BOOL Stop command Input

SCADA.CMDAUT BOOL Auto command Input

SCADA.CMDMAN BOOL Manual command Input

SCADA.CMDRES BOOL Acknowledge active alarms Input

SCADA.AUTO BOOL Valve in automatic mode Output

SCADA.OPEN BOOL Valve is open Output

SCADA.CLOSED BOOL Valve is closed Output

SCADA.REMOTE BOOL Valve can be controlled from SCADA
REMOTE = FALSE ® Local operation

Output

SCADA.READY BOOL Valve is ready for operation Output

SCADA

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3165

Parameter Data type Description In-/Output
SCADA.FNCERR BOOL Functional error Output

SCADA.EXTERR BOOL External error
(is generated when the valve is not ready)

Output

SCADA.AL1 BOOL Auxiliary alarm no. 1 Output

SCADA.AL2 BOOL Auxiliary alarm no. 2 Output

SCADA.AL3 BOOL Auxiliary alarm no. 3 Output

SCADA.AL4 BOOL Auxiliary alarm no. 4 Output

SCADA.AL5 BOOL Auxiliary alarm no. 5 Output

SCADA.AL6 BOOL Auxiliary alarm no. 6 Output

SCADA.OSMsg1 *) WORD Word representing the status of the
PCO_VALV

Output

SCADA.OSMsg2 *) WORD Word representing the status of the
PCO_VALV
This includes the status of emergency
status and alarm status.

Output

AspectObjectType
_Valv_PLC

BOOL (* Name of the 800xA Aspect Object type
(AOT) to be used by the 800xA uploader,
the live value is not used, only the name is
relevant *)

Output

*) structure described separately

PLC Automation with V2 CPUs
Libraries and solutions > Process control object (PCO) library

2022/01/203ADR010582, 3, en_US3166

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_VALV.

Bit Description
Bit 0 Valve is open

Bit 1 Valve is closed

Bit 2 Valve opening

Bit 3 Valve closing

Bit 4 External error (Not ready)

Bit 5 Functional error

Bit 6 Valve released for opening

Bit 7 Valve released for closing

Bit 8 Local operation (Not remote)

Bit 9 Common alarm (External alarm + Functional alarm +
EMCY_OPN/EMCY_CLS/EMCY_STOP + ALARM_1 ... ALARM_6)

Bit 10 Unacknowledged alarm

Bit 11 Valve in automatic mode

Bit 12 Not used

Bit 13 Valve not released for automatic mode

Bit 14 Not used

Bit 15 Not used

SCADA.OSMsg1

PLC Automation with V2 CPUs

Libraries and solutions > Process control object (PCO) library

2022/01/20 3ADR010582, 3, en_US 3167

Data type Default value Range Unit
WORD - - -

Word representing the status of the PCO_VALV.
This includes the status of emergency status and alarm status.

Bit Description
Bit 0 Emergency open

Bit 1 Emergency close

Bit 2 Auxiliary alarm 1

Bit 3 Auxiliary alarm 2

Bit 4 Auxiliary alarm 3

Bit 5 Auxiliary alarm 4

Bit 6 Auxiliary alarm 5

Bit 7 Auxiliary alarm 6

Bit 8 Emergency stop

Bit 9 Not used

Bit 10 Not used

Bit 11 Not used

Bit 12 Not used

Bit 13 Not used

Bit 14 Not used

Bit 15 Not used

1.5.11 Solar library

1.5.11.1 Preconditions for the use of the Solar_AC500 library

PS562-SOLAR libraries are working on AC500 and AC500-eCo, but depending
on the application, number of axes and its total program, memory restrictions on
the AC500-eco can occur.

For the highly accurate NREL algorithm, meant for focusing systems with high
concentration factor, PM573 or larger should be chosen.

The included example programs "Example_Solar_2Axis_ACS3XX.project"
(uses NREL) and "ExamplePM564_NOAA_Solar_2Axis_ACS3XX.project" show
complete examples for different accuracies and CPU families, see example
program description pdf.

The function blocks of PS562-SOLAR libraries are usable and have been tested
for AC500 control systems with a runtime system of version V1.3 and above.

The libraries have been tested with PM564, PM573, PM583, PM592.

SCADA.OSMsg2

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3168

The function blocks of the solar library are only working in RUN mode of the PLC. Usage of
these libraries in the simulation mode will not provide always valid or usable behavior/values.
User needs to add DC541_AC500_V11 library along with Solar_AC500_V22 Library.
The above named examples need additionally the ACS Drives Libraries from the PS553-
DRIVES package, which can be downloaded from www.abb.com/PLC:
● On right side menu under heading "Your preferences": Select "English" as language ...

(country doesn´t matter).
● On right side menu under "More Info Links" : Click on "PS501 Updates".
● Select "PS501-UPDA: PS553-DRIVES…" to download *.zip file.

1.5.11.2 SOLAR_AC500 library

1.5.11.2.1 TRACK folder
SOLAR_NOAA

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function blocks without historical values.

Group Package of functions to get the position of the
sun

This function block calculates the position of the sun, elevation and azimuth, according to: date,
time and location, with an azimuth error = ± 0.01° and elevation error = ±0.03°. This function
embeds the SOLAR_NOAAs algorithm.
Output parameters are solar elevation and solar azimuth. These outputs are the topocentric
coordinates of the sun which use the observer's location as a centre of the coordinate system.
The end-user may use the RTC of the AC500 system by using the CLOCK function block of the
library named SysExt_AC500_V10.lib or may use any other source to calculate the position of
the sun.

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3169

Table 195: Size of used data for SOLAR_NOAA function block and execution time for each CPU
type
 PM583 PM591 PM564
Data Size 4299 bytes 4299 bytes 4299 bytes

Program Size 20622 bytes 10742 bytes 20834 bytes

Execution Time 3 ms 1 ms 5 ms

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Range of values: from 2000 to 6000.

Range of values: from 1 to 12.

Range of values: from 1 to 31.

Range of values: from 0 to 23.

Range of values: from 0 to 59.

Range of values: from 0 to 59.

Observer time zone (negative west of Greenwich).
Time zone = Standard Time - Universal Time
Format: hours.
Range of values: -12...12.
Resolution: 0.1 hour.

Observer latitude (negative south of equator).
Format: degrees.
Range of values: from -90.00 to 90.00.

Observer longitude (negative west of Greenwich).
Format: degrees.
Range of values: from -180.00 to 180.00.

EN

YEAR INT
 (year)

MON INT
 (month)

DAY INT (day)

HOUR INT
 (hour)

MINUTE INT
 (minute)

SEC INT
 (second)

TIMEZONE
 LREAL (time
zone)

LATITUDE
 LREAL (lati-
tude)

LONGITUDE
 LREAL (longi-
tude)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3170

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Topocentric azimuth. Eastward from north (0°=360°=north, 90°=east, 180°=south, 270°=west).
Format: degrees.
Range of values: from 0 to 359.9999.
Error values:
● Northern hemisphere: area between latitudes from 70° to 24°. In this area the accuracy of

function SOLAR_NOAA is ±0,02° azimuth.
● Southern hemisphere: area between latitudes from -70° to -24°. In this area the accuracy of

function SOLAR_NOAA is ±0,08° azimuth.
● Equator: area between 24° and -24°. In this area the accuracy of function SOLAR_NOAA is

0,08° azimuth. Note that in this area, around 12:00 h (solar time) maximum error values may
be greater because of the high speed of the azimuth axis at 12.00 h (solar time). It must
move from 90° to 270° in a few seconds.

Topocentric elevation angle (0°=sunrise, 90°=zenith).
Format: degrees.
Range of values: -90.00...90.00. Negative values=darkness.
Elevation error: ±0.015°.

If elevation goes through zero at special locations at sunset / sunrise, also
slightly larger errors can occur (mind that energy production is close to zero
anyway).

For latitudes greater than 72° north or less than 72° south, accuracy may be
lower due in part to the effects of atmospheric refraction.

DONE

ERR

ERNO

AZIMUTH
 LREAL (azi-
muth)

ELEVA-
TION_UNCOR-
RECTED
 LREAL (eleva-
tion_uncor-
rected)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3171

Topocentric elevation angle (0°=sunrise, 90°=zenith). This value includes atmospheric refraction
effects.
Format: degrees.
Range of values: -90.00...90.00. Negative values=darkness.
Elevation Error: ±0.015°.

If elevation goes through zero at special locations at sunset / sunrise, also
slightly larger errors can occur (mind that energy production is close to zero
anyway).

P = 1010 mBar.
Temp = 10°C.
Refraction = 0,5667.

Atmospheric refraction is the angular displacement of astronomical objects from
their true or geometrical position, because of the bending of rays in the earth's
atmosphere.

Function call in IL

CAL mySOLAR_NOAA (

 EN := mySOLAR_NOAA_EN,

 YEAR := mySOLAR_NOAA_YEAR,

 MON := mySOLAR_NOAA_MON,

 DAY := mySOLAR_NOAA_DAY,

 HOUR := mySOLAR_NOAA_HOUR,

 MINUTE :=
mySOLAR_NOAA_MINUTE,

 SEC := mySOLAR_NOAA_SEC,

 TIMEZONE := mySOLAR_NOAA_TIME-
ZONE,

 LATITUDE := mySOLAR_NOAA_LATI-
TUDE,

 LONGITUDE := mySOLAR_NOAA_LONGI-
TUDE)

LD
ST

mySOLAR_NOAA.DONE
mySOLAR_NOAA_DONE

LD
ST

mySOLAR_NOAA.ERR
mySOLAR_NOAA_ERR

LD
ST

mySOLAR_NOAA.ERNO
mySOLAR_NOAA_ERNO

LD
ST

mySOLAR_NOAA.AZIMUTH
mySOLAR_NOAA_AZIMUTH

ELEVA-
TION_COR-
RECTED
 LREAL (eleva-
tion_corrected)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3172

LD
ST

mySOLAR_NOAA.ELEVATION_UNCORRECTED
mySOLAR_NOAA_ELEVATION_UNCORRECTED

LD
ST

mySOLAR_NOAA.ELEVATION_CORRECTED
mySOLAR_NOAA_ELEVATION_CORRECTED

In IL, the function call has to be written in one line.

Function call in ST

mySOLAR_NOAA (

 EN := mySOLAR_NOAA_EN,

 YEAR := mySOLAR_NOAA_YEAR,

 MON := mySOLAR_NOAA_MON,

 DAY := mySOLAR_NOAA_DAY,

 HOUR := mySOLAR_NOAA_HOUR,

 MINUTE :=
mySOLAR_NOAA_MINUTE,

 SEC := mySOLAR_NOAA_SEC,

 TIMEZONE := mySOLAR_NOAA_TIME-
ZONE,

 LATITUDE := mySOLAR_NOAA_LATI-
TUDE,

 LONGITUDE := mySOLAR_NOAA_LONGI-
TUDE);

mySOLAR_NOAA_DONE := mySOLAR_NOAA.DONE;

mySOLAR_NOAA_ERR := mySOLAR_NOAA.ERR;

mySOLAR_NOAA_ERNO := mySOLAR_NOAA.ERNO;

mySOLAR_NOAA_AZIMUTH := mySOLAR_NOAA.AZI-
MUTH;

mySOLAR_NOAA_ELEVATION := mySOLAR_NOAA.ELEVA-
TION_UNCORRECTED;

mySOLAR_NOAA_ELEVATION_REFRACTION := mySOLAR_NOAA.ELEVA-
TION_CORRECTED;

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3173

1.5.11.2.2 AXIS folder
SOLAR_EW_AXIS_PRIM

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Functions

Group Package of functions to get the axis angle of
the tracker to follow the sun

This function block calculates the angle of east to west axis according to: azimuth, elevation and
correction alignment factor.

Input description
Topocentric azimuth angle. Eastward from north (0°=360°=north, 90°=east, 180°=south,
270°=west).
Format: degrees.
Range of values: from 0 to 359.9999.

Topocentric elevation angle (0°=sunrise, 90°=zenith).
Format: degrees.
Range of values: -90.00...90.00. Negative values=darkness.

Angle between system axis and east (clockwise).
Format: degrees.
Range of values: -180.00...180.00.

AZIMUTH
 LREAL (azi-
muth)

ELEVATION
 LREAL (eleva-
tion)

ALIGN-
MENT_COR-
RECTION
 LREAL (align-
ment correction)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3174

Output description
Angle of east to west axis (0°=zenith, -90°=north, 90°=south).
Format: degrees.

Function call in IL

LD EWAxis_AZIMUTH

SOLAR_EW_AXIS_PRIM EWAxis_ELEVATION, EWAxis_ALIGN-
MENT_CORRECTION

ST EWAxis_ANGLE

In IL, the function call has to be written in one line.

Function call in ST

EWAxis_ANGLE := SOLAR_EW_AXIS_PRIM(

 AZIMUTH := EWAxis_AZIMUTH,

 ELEVATION := EWAxis_ELEVATION,

 ALIGNMENT_CORRECTION := EWAxis_ALIGN-
MENT_CORRECTION);

(Output)
 LREAL

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3175

SOLAR_NS_AXIS_SEC

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function

Group Package of functions to get the axis angle of
the tracker to follow the sun

This function assumes the east to west axis as the main system axis.
This function provides the angle of secondary axis for solar tracking, in two axes, according
to: elevation, azimuth, correction alignment factor and angle of main axis. This function is valid
when east to west axis is acting as the main axis.
Output parameter is the angle of secondary axis.

Input description
Topocentric azimuth angle. Eastward from north (0°=360°=north, 90°=east, 180°=south,
270°=west).
Format: degrees.
Range of values: from 0 to 359.9999.

Topocentric elevation angle (0°=sunrise, 90°=zenith).
Format: degrees.
Range of values: -90.00...90.00. Negative values=darkness.

Angle between system axis and east (clockwise).
Format: degrees.
Range of values: -180.00...180.00.

AZIMUTH
 LREAL (azi-
muth)

ELEVATION
 LREAL (eleva-
tion)

ALIGN-
MENT_COR-
RECTION
 LREAL (align-
ment correction)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3176

Angle of main axis (0°=zenith, -90°=north, 90°=south).
Format: degrees.

Output description
The block output is the angle of secondary axis north "“ south, where zenith indicates 0°
position.
Format: degrees.
Range of values: -180.00...180.00.
Negative value indicates clockwise rotation about north "“ south axis. Otherwise, positive value
indicates anticlockwise rotation about the north "“ south axis.

SOLAR_EW_AXI
S_PRIM LREAL
 (angle of east
to west axis)

(Output)
 LREAL

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3177

Function call in IL

LD NSAxis2_AZIMUTH

SOLAR_NS_AXIS_SEC NSAxis2_ELEVATION, NSAxis2_ALIGN-
MENT_CORRECTION, NSAxis2_EW_AXIS

ST NSAxis2_ANGLE

In IL, the function call has to be written in one line.

Function call in ST

NSAxis2_ANGLE := SOLAR_NS_AXIS_SEC(

AZIMUTH := NSAxis2_AZIMUTH,

ELEVATION := NSAxis2_ELEVATION,

ALIGNMENT_CORRECTION := NSAxis2_ALIGNMENT_CORRECTION,

SOLAR_EW_AXIS_PRIM := NSAxis2_EW_AXIS);

SOLAR_NS_AXIS_PRIM

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3178

Type Function

Group Package of functions to get the axis angle of
the tracker to follow the sun

Function block to calculate the angle of north to south axis according to: azimuth, elevation and
correction alignment factor.
Output parameter is the angle of north to south axis.

Input description
Topocentric azimuth angle. Eastward from north (0°=360°=north, 90°=east, 180°=south,
270°=west).
Format: degrees.
Range of values: from 0 to 359.9999.

Topocentric elevation angle (0°=sunrise, 90°=zenith).
Format: degrees.
Range of values: -90.00...90.00. Negative values=darkness.

Angle between system axis and north (clockwise).
Format: degrees.
Range of values: -180.00...180.00.

Output description
Angle of north to south axis (0°=zenith, -90°=east, 90°=west).
Format: degrees.

AZIMUTH
 LREAL (azi-
muth)

ELEVATION
 LREAL (eleva-
tion)

ALIGN-
MENT_COR-
RECTION
 LREAL (align-
ment correction)

(Output)
 LREAL

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3179

Function call in IL

LD NSAxis_AZIMUTH

SOLAR_NS_AXIS_PRIM NSAxis_ELEVATION, NSAxis_ALIGN-
MENT_CORRECTION

ST NSAxis_ANGLE

In IL, the function call has to be written in one line.

Function call in ST

NSAxis_ANGLE := SOLAR_NS_AXIS_PRIM(

 AZIMUTH := NSAxis_AZIMUTH,

 ELEVATION := NSAxis_ELEVATION,

 ALIGNMENT_CORRECTION := NSAxis_ALIGN-
MENT_CORRECTION);

SOLAR_EW_AXIS_SEC

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3180

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function

Group Package of functions to get the axis angle of
the tracker to follow the sun

This function assumes the north to south axis as the main system axis.
This function provides the angle of secondary axis for solar tracking, in two axes, according
to: azimuth, elevation, correction alignment factor and angle of main axis. This function is valid
when north to south axis is acting as the main axis.
Output parameter is the angle of secondary axis.

Function

Input description
Topocentric azimuth angle. Eastward from north (0°=360°=north, 90°=east, 180°=south,
270°=west).
Format: degrees.
Range of values: from 0 to 359.9999.

Topocentric elevation angle (0°=sunrise, 90°=zenith).
Format: degrees.
Range of values: -90.00...90.00. Negative values=darkness.

Angle between system axis and north (clockwise).
Format: degrees.
Range of values: -180.00...180.00.

Angle of main axis (0°=zenith, -90°=east, 90°=west).
Format: degrees.

Block type

AZIMUTH
 LREAL (azi-
muth)

ELEVATION
 LREAL (eleva-
tion)

ALIGN-
MENT_COR-
RECTION
 LREAL (align-
ment correction)

SOLAR_NS_AXI
S_PRIM LREAL
 (angle of north
to south axis)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3181

Output description
The block output is the angle of secondary axis east "“ west, where zenith indicates 0° position.
Format: degrees.
Range of values: -180.00...180.00.
Negative value indicates clockwise rotation about the east "“ west axis. Otherwise, positive
value indicates anticlockwise rotation about the east "“ west axis.

(Output)
 LREAL

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3182

Function call in IL

LD EWAxis2_AZIMUTH

SOLAR_EW_AXIS_SEC EWAxis2_ELEVATION, EWAxis2_ALIGN-
MENT_CORRECTION, EWAxis2_NS_AXIS

ST EWAxis2_ANGLE

In IL, the function call has to be written in one line.

Function call in ST

EWAxis2_ANGLE :=
SOLAR_EW_AXIS_SEC(

 AZIMUTH := EWAxis2_AZIMUTH,

 ELEVATION := EWAxis2_ELEVATION,

 ALIGNMENT_CORRECTION := EWAxis2_ALIGN-
MENT_CORRECTION,

 SOLAR_NS_AXIS_PRIM := EWAxis2_NS_AXIS);

1.5.11.2.3 BACKTRACK folder
SOLAR_BACKTRACKING

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function

Group Package of functions to get the optimum
tracker position to avoid shadows

This function calculates the optimum tracker position to reduce shadowing by optimizing solar
panel position, when position of the sun gets low (early morning + late evening). Axis angle is
calculated according to: axis angle for solar tracking in one axis, calculated regardless shadows,
distance between rows of Solar Trackers and height of them.
Output parameter is the optimum axis angle which avoids shadowing between rows of Solar
Trackers.

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3183

Input description
Angle of main axis (0°=zenith, anticlockwise).
Format: degrees.

Value that indicates the total length of panels.
Format: meters.

Distance between rows of Solar Trackers.
Format: meters.

Output description
The block output is the optimum axis angle which avoids shadowing between rows of Solar
Trackers.
Format: degrees.
Dimensional features:

Example:

AXIS_ANGLE
 LREAL (axis
angle)

PANEL_LENGT
H REAL
 (panel length)

DIST_AXIS
 REAL (dis-
tance axis)

(Output) REAL

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3184

Shadow effects, early morning, on north to south single axis trackers positioned with the angle
calculated regardless shadows, using SOLAR_NS_AXIS_PRIM.

Position of the same tracker at the same date, time and location avoiding shadows between
rows of trackers by correcting the axis angle with the function block SOLAR_BACKTRACKING.

Function call in IL
LD
Backtracking_AXIS_ANGLE
SOLAR_BACKTRACKING Backtracking_PANEL_LENGHT,
Backtracking_DIST_AXIS
ST
 Backtracking_ANGLE

In IL, the function call has to be written in one line.

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3185

Function call in ST
Backtracking_ANGLE := SOLAR_BACKTRACKING (

AXIS_ANGLE :=
SOLAR_BACKTRACKING_AXIS_ANGLE,
 PANEL_HEIGHT :=
SOLAR_BACKTRACKING_PANEL_LENGHT,

DIST_AXIS :=
SOLAR_BACKTRACKING_DIST_AXIS);

1.5.11.2.4 POSITION folder
SOLAR_ENCODER_IO

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block with historical values.

Group Package of functions to get the position of the
sun

The SOLAR_ENCODER_IO is used to easily integrate, with any S500 I/O card, Incremental
encoders (A, B) plus inductive proximity sensor (Z) as positioning sensors for Solar Trackers.
This function uses the fast counters which have several I/O modules to integrate Incre-
mental encoders. The counting modules with fast counters, and its features, are described in
Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351.

The functionality 'Fast Counter' only works with communication interface
modules which are mounted at the I/O bus of an AC500 CPU. An exception
is the CS31 communication interface module DC551-CS31, which contains a
fast counter that is made operationally by the address setting on the module.

The I/O modules on the I/O bus have two inputs of fast counters per module, which are
activated via software in the PLC configuration. Each module counter can be configured up to
10 possible modes. After that, it is activated during the initialization phase (power-on, cold start,
warm start).

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3186

The function block SOLAR_ENCODER_IO should be used configuring the module parameter
"Fast counter" with the operating modes 7, 9 or 10, to determine the counting procedure in x1,
x2 or x4 count respectively. The different meanings of each fast counter mode are explained
down below:
Example: Configuration of module DC522 to use the fast counter to integrate an Incremental
encoder in x1 mode:

In Contol Builder Plus V2.0 and above:

The x1 counting mode is used. The encoder module discriminates the rotating way and count
one pulse for each rising edge of the A signal.
In this mode the maximum counting frequency is 35 kHz.
The rotation is identified with a shift angle (90°) between A and B signal. In the I/O module, the
clockwise rotation is identified with A signal in advance to B (see figure below).
Example: Direction identification using A and B signals:

Fast counter:
"7-1 UpDown
directional dis-
criminator"

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3187

The x2 counting mode is used. The module counts both the positive edges and the negative
edges of trace A.
The result is the double number of counting pulses, so the precision increases correspondingly.
In this operating mode, the maximum counting frequency is 30 kHz.

The x4 counting mode is used. The counter counts the positive and negative edges of the
traces A and B. In this operating mode, the maximum counting frequency is 15 kHz.
The I/O modules provide 2 fast counter inputs to use for relative positioning with 2 signals (A,
B).

To acquire the Z signal, a conventional input channel should be used.

Due to that, the Z signal will be set at least:

CPU Minimum time to warranty the Z signal will
be acquire

<583 T>10 ms

>590 T>1 ms

This table represents the time necessary to read the Z signal, using a task configured at the
maximum frequency for each CPU.

The following table shows the S500 modules that contain a fast counter and which of the digital
inputs are reserved for the counter.

MODULE ASIGNED INPUTS
 CHANNEL A CHANNEL B
DC522 C8 C9

DC523 C16 C17

DC532 C24 C25

DC524 I24 I25

DX522 I0 I1

DC531-CS31 C16 C17

Fast counter:
"9-1 UpDown
directional dis-
criminator X2"

Fast counter:
"10-1 UpDown
directional dis-
criminator X4"

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3188

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and pulses are not stored even the encoder device changes its position.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.

If set input SET_START = TRUE, the counter takes the values from input SET_START_VALUE
to transfer it to ACT. As long as input SET_START = TRUE, no pulses are counted because the
counter is always overwritten by the input SET_START_VALUE.
To synchronize the counter value with the mechanical zero reference based on signal Z, a
conventional input channel should be used to read the Z signal as follows:
Example: Use of conventional input channel to acquire the reference signal:
In Control Builder Plus V2.0 and above:

When the input channel which represents the Z channel is activated, the SET_START goes to
true, and ACT goes to the value which is indicated by SET_START_VALUE.

The counter can be set to a Start value. This value must be applied to the input
SET_START_VLAUE.
If input SET_START=TRUE, the counter takes this value.

If EN_CALIB = TRUE, when a rising edge is detected at the encoder´s reference point (Z)
signal, output Z_VALUE will take the stored value in POS_ACT and output RDY_CALIB is set to
TRUE. If this input is continuously set to TRUE, only one calibrating process will be done even
system reaches encoder´s reference point (Z) once again. In order to enable another calibrating
process, input EN_CALIB has to be set to FALSE and set to TRUE again.

EN

EN_CNT BOOL
 (enable
counter)

SET_START
 BOOL (set
start)

SET_START_VA
LUE REAL
 (set start
value)

EN_CALIB
 BOOL (ena-
bling calibrate)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3189

Calibrating process is executed out of CPU cycle, and it is able to detect the multiple rising
edges that appear when a simple limit switch is used. Due to that, it is recommended to use
devices assembled especially for this purpose (high accuracy limit switch).
Inputs used as reference point Z in the calibrating process are:
Counter0 -> I3
Counter1 -> I11

If input EN_SYNC = TRUE, when a rising edge is detected at the encoder´s reference point
(Z) signal, output POS_ACT will take the value stored at Z_VALUE, output RDY_SYNC is set
to TRUE only during a program cycle. While EN_SYNC is set to TRUE, POS_ACT output will
take the value stored at Z_VALUE every time that a rising edge is detected at the encoder´s
reference point (Z) signal.
Inputs used as reference point Z in the synchronisation process are:
Counter0 -> Z0
Counter1 -> Z1

Indicates the resolution of the encoder device (see technical data from manufacturer). For
example, using an incremental encoder with a resolution of 10000 pulses each 360° and x4
counting mode (software configuration), measuring step will use the following value:
360 / (4 x 10000) = 0,009
Format: Degrees.

The output Z_PULSE indicates that encoder's reference point Z has been reached. This signal
is only visible if programs execution time is slower than the signal of encoder's reference point
(Z).

First input data of counter input. The use of an ADR operator is not needed.
Example (for counter 0):
In Control Builder Plus V2.0 and above:

EN_SYNC
 BOOL (ena-
bling syn-
chronize)

MEAS-
URING_STEP
 REAL (meas-
uring step)

Z_PULSE
 BOOL (input
signal Z)

CNT_IN WORD
 (counter input)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3190

First output data of counter output. The use of an ADR operator is not needed.
Example (for counter 0):
In Control Builder Plus V2.0 and above:

The current position (actual position) can be retrieved at any time using the output POS_ACT
of the function block. If a shutdown occurs, value of actual position will be lost. Due to that, that
parameter must be declared as a retain variable.
If communications problem occurs between CPU and module CD522, position value stored in
POS_ACT will be lost.
Format: Degrees.

Indicates the position of the encoders reference point (Z). The user is able to configure where
the Z position is.
Format: Degrees.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

CNT_OUT
 WORD
 (counter
output)

POS_ACT
 REAL (posi-
tion_actual)

Z_VALUE
 REAL (z
value)

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3191

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

When the action of SET_START finishes, RDY_SET is set to TRUE for only one cycle.

The output RDY_CALIB displays the ready message of the calibrating process. While input
EN_CALIB is set to TRUE, RDY_CALIB = TRUE.
If EN_CALIB = TRUE and rising edge is detected at Z_PULSE signal, RDY_CALIB will be set to
TRUE until EN_CALIB = FALSE.

The output RDY_SYNC displays the ready message of the synchronisation process. It is set to
TRUE only for one cycle.

Function call in IL

CAL IOEncoder(

 EN := IOEncoder_EN,

 EN_CNT := IOEncoder_EN_CNT,

 SET_START := IOEncoder_SET_START,

 SET_START_VALUE := IOEn-
coder_SET_START_VALUE,

 EN_CALIB := IOEncoder_EN_CALIB

 EN_SYNC := IOEncoder_EN_SYNC,

 MEASURING_STEP := IOEncoder_MEAS-
URING_STEP,

 Z_PULSE := IOEncoder_Z_PULSE

 CNT_IN := IOEncoder_CNT_IN

 CNT_OUT := IOEncoder_CNT_OUT

 POS_ACT := IOEncoder_POS_ACT

 Z_VALUE := IOEncoder_Z_VALUE);

LD
ST

IOEncoder.DONE
IOEncoder_DONE

LD
ST

IOEncoder.ERR
IOEncoder_ERR

LD
ST

IOEncoder.ERNO
IOEncoder_ERNO

LD
ST

IOEncoder.RDY_SET
IOEncoder_RDY_SET

ERNO

RDY_SET
 BOOL (ready
set start)
RDY_CALIB
 BOOL (ready
calibration)

RDY_SYNC
 BOOL (ready
synchronisa-
tion)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3192

LD
ST

IOEncoder.RDY_CALIB
IOEncoder_RDY_CALIB

LD
ST

IOEncoder.RDY_SYNC
IOEncoder_RDY_SYNC

In IL, the function call has to be written in one line.

Function call in ST

IOEncoder(

 EN := IOEncoder_EN,

 EN_CNT := IOEncoder_EN_CNT,

 SET_START := IOEncoder_SET_START,

 SET_START_VALUE := IOEn-
coder_SET_START_VALUE,

 EN_CALIB := IOEncoder_EN_CALIB,

 EN_SYNC := IOEncoder_EN_SYNC,

 MEASURING_STEP := IOEncoder_MEAS-
URING_STEP,

 Z_PULSE := IOEncoder_Z_PULSE,

 CNT_IN := IOEncoder_CNT_IN,

 CNT_OUT := IOEncoder_CNT_OUT,

 POS_ACT := IOEncoder_POS_ACT,

 Z_VALUE := IOEncoder_Z_VALUE);

 IOEncoder_DONE := IOEncoder.DONE;

 IOEncoder_ERR := IOEncoder.ERR;

 IOEncoder_ERNO := IOEncoder.ERNO;

 IOEncoder_RDY_SET := IOEncoder.RDY_SET;

 IOEncoder_RDY_CALIB := IOEncoder.RDY_CALIB;

 IOEncoder_RDY_SYNC := IOEncoder.RDY_SYNC;

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3193

SOLAR_ENCODER_CD522

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block with historical values

Group Package of functions to get the position of the
sun

Function block to easily integrate, with the CD522 card, incremental encoders (A, B, Z) as
positioning sensors for Solar Trackers.
The SOLAR_ENCODER_CD522 is used to easily integrate, with the CD522 card, incremental
encoders (A, B, Z) as positioning sensors for Solar Trackers.
The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
In order to configure and use the function encoder of module CD522, different operating modes
are available. The function block SOLAR_ENCODER_CD522 should be used by configuring the
parameter 6 or 14 ("Mode counter 0" or "Mode counter 1") in modes 11, 12 or 13 to use the
incremental encoder as: Incremental encoder, Incremental encoder X2 or Incremental encoder
X4 respectively.
See user manual Ä Chapter 1.6.2.7.2.1 “CD522 - Encoder, counter and PWM module”
on page 4635

Example: Configuration of module CD522 to control an incremental encoder:
In Control Builder Plus V2.0 and above:

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3194

The meaning of the different operating modes available to control an incremental encoder is:
Operating Mode 11 "Incremental encoder"
Should be specified in PLC Configuration; parameter "Mode counter" in order to use one up/
down counter for position sensor x1 count.
Operating Mode 12 "Incremental encoder X2"
Should be specified in PLC Configuration; parameter "Mode counter" in order to use one
bidirectional counter for position sensor x2 count.
Operating Mode 13 "Incremental encoder X4"
Should be specified in PLC Configuration; parameter "Mode counter" in order to use one
bidirectional counter for position sensor x4 count.
The module CD522 provides 2 encoder functions for relative positioning with 3 signals. 2 signals
are used for rotation discrimination and pulse count, identified by A0 and B0 for counter0 and
A1 and B1 for counter1. The third one is used in multi-turn encoder to count the number of
rotation (mechanical zero), identified by Z0 for counter0 and Z1 for counter1. Signals Z0 and Z1
are used in synchronization process. Inputs I3 and I11 needs to be defined as touch input.

If the setup needs both Calibration & Synchronization then the Z pulse from the
encoder to be connected to both Z0 & I3 inputs for counter0 and Z1 & I11 inputs
for counter1.

The rotation is identified with a shift angle (90°) between A and B signal. In the module CD522,
the clockwise rotation is identified with A signal in advance to B (see figure below).
Example: Direction identification using A and B signals:

Depending on which kind of operating mode is specified, the counting procedure will be x1,
x2 or x4 count. Basically the x1 counting mode is used (mode 11). The encoder module
discriminates the rotating way and count one pulse for each rising edge of the A signal.
In order to increase resolution, the x2 counting mode can be specified (mode 12). The encoder
module counts both the positive edges and the negative edges of trace A. This results in the
double number of counting pulses. The precision increases correspondingly.

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3195

The resolution could be multiplied by 4, using the x4 counting mode (mode 13). The encoder
module counts a pulse on both rising and falling edge of A signal and B signal.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Indicates which counter is going to be used.
If CNT_NUM = 0, the counter 0 will be used.
If CNT_NUM = 1, the counter 1 will be used.

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and the pulses are lost.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value POS_ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and
counter value POS_ACT will continue since previous value.
While EN_CNT is set to FALSE, it is possible to modify the stored value in POS_ACT variable.
When EN_CNT is set to TRUE again, counter value POS_ACT will continue since previous
value.

If set input SET_ START = TRUE, the counter takes the values from input SET_START_VALUE
to transfer it to POS_ACT. After that, RDY_SET = TRUE. As long as input SET_ START
= TRUE, no pulses are counted because the counter is always overwritten by the input
SET_START_VALUE.

The counter can be set to a Start value. This value must be applied to the input
SET_START_VLAUE.
If input SET_START=TRUE, the counter takes this value.

If EN_CALIB = TRUE, when a rising edge is detected at the encoder´s reference point (Z)
signal, output Z_VALUE will take the stored value in POS_ACT and output RDY_CALIB is set to
TRUE. If this input is continuously set to TRUE, only one calibrating process will be done even
system reaches encoder´s reference point (Z) once again. In order to enable another calibrating
process, input EN_CALIB has to be set to FALSE and set to TRUE again.
Calibrating process is executed out of CPU cycle, and it is able to detect the multiple rising
edges that appear when a simple limit switch is used. Due to that, it is recommended to use
devices assembled especially for this purpose (high accuracy limit switch).
Inputs used as reference point Z in the calibrating process are:
Counter0 -> I3
Counter1 -> I11

EN

CNT_NUM
 WORD
 (counter
number)

EN_CNT BOOL
 (enable
counter)

SET_START
 BOOL (set
start)

SET_START_VA
LUE REAL
 (set start
value)

EN_CALIB
 BOOL (ena-
bling calibrate)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3196

If input EN_SYNC = TRUE, when a rising edge is detected at the encoder´s reference point
(Z) signal, output POS_ACT will take the value stored at Z_VALUE, output RDY_SYNC is set
to TRUE only during a program cycle. While EN_SYNC is set to TRUE, POS_ACT output will
take the value stored at Z_VALUE every time that a rising edge is detected at the encoder´s
reference point (Z) signal.
Inputs used as reference point Z in the synchronisation process are:
Counter0 -> Z0
Counter1 -> Z1

Indicates the resolution of the encoder device (see technical data from manufacturer). For
example, using an incremental encoder with a resolution of 10000 pulses each 360° and x4
counting mode (software configuration), measuring step will use the following value:
360 / (4 x 10000) = 0,009
Format: Degrees.

First input data of counter input. The use of an ADR operator is not needed.
Example (for counter 0):
In Control Builder Plus V2.0 and above:

First output data of counter output. The use of an ADR operator is not needed.
Example (for counter 0):
In Control Builder Plus V2.0 and above:

EN_SYNC
 BOOL (ena-
bling syn-
chronize)

MEAS-
URING_STEP
 REAL (meas-
uring step)

CNT_IN WORD
 (counter input)

CNT_OUT
 WORD
 (counter
output)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3197

The current position (actual position) can be retrieved at any time using the output POS_ACT
of the function block. If a shutdown occurs, value of actual position will be lost. Due to that, that
parameter must be declared as a retain variable.
If communications problem occurs between CPU and module CD522, position value stored in
POS_ACT will be lost.
Format: Degrees.

Indicates the position of the encoders reference point (Z). The user is able to configure where
the Z position is.
Format: Degrees.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

POS_ACT
 REAL (posi-
tion_actual)

Z_VALUE
 REAL (z
value)

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3198

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

When the action of SET_START finishes, RDY_SET is set to TRUE for only one cycle.

The output RDY_CALIB displays the ready message of the calibrating process. While input
EN_CALIB is set to TRUE, RDY_CALIB = TRUE.
If EN_CALIB = TRUE and rising edge is detected at Z_PULSE signal, RDY_CALIB will be set to
TRUE until EN_CALIB = FALSE.

The output RDY_SYNC displays the ready message of the synchronisation process. It is set to
TRUE only for one cycle.

The output Z_PULSE indicates that encoder's reference point Z has been reached. This signal
is only visible if programs execution time is slower than the signal of encoder's reference point
(Z).

Function call in IL

CAL CD522Encoder(

 EN := CD522Encoder_EN,

 CNT_NUM :=
CD522Encoder_CNT_NUM,

 SET_START :=
CD522Encoder_SET_START,

 SET_START_VALUE :=
CD522Encoder_SET_START
_VALUE,

 EN_CALIB :=
CD522Encoder_EN_CALIB,

 EN_SYNC :=
CD522Encoder_EN_SYNC,

 MEASURING_STEP := CD522Encoder_MEAS-
URING_STEP,

 CNT_IN := CD522Encoder_CNT_IN,

 CNT_OUT := CD522Encoder_CNT_OUT,

 POS_ACT := CD522Encoder_POS_ACT,

 Z_VALUE := CD522Encoder_Z_VALUE);

LD
ST

CD522Encoder.DONE
CD522Encoder_DONE

LD
ST

CD522Encoder.ERR
CD522Encoder_ERR

LD
ST

CD522Encoder.ERNO
CD522Encoder_ERNO

RDY_SET
 BOOL (ready
set start)
RDY_CALIB
 BOOL (ready
calibration)

RDY_SYNC
 BOOL (ready
synchronisa-
tion)
Z_PULSE
 BOOL (input
signal Z)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3199

LD
ST

CD522Encoder.RDY_SET
CD522Encoder_RDY_SET

LD
ST

CD522Encoder.RDY_CALIB
CD522Encoder_RDY_CALIB

LD
ST

CD522Encoder.RDY_SYNC
CD522Encoder_RDY_SYNC

LD
ST

CD522Encoder.RDY_Z_PULS
E
CD522Encoder_RDY_Z_PUL
SE

In IL, the function call has to be written in one line.

Function call in ST

CD522Encoder(

 EN := CD522Encoder_EN,

 CNT_NUM :=
CD522Encoder_CNT_NUM,

 SET_START :=
CD522Encoder_SET_START,

 SET_START_VALUE :=
CD522Encoder_SET_START
_VALUE,

 EN_CALIB :=
CD522Encoder_EN_CALIB,

 EN_SYNC :=
CD522Encoder_EN_SYNC,

 MEASURING_STEP := CD522Encoder_MEAS-
URING_STEP,

 CNT_IN := CD522Encoder_CNT_IN,

 CNT_OUT := CD522Encoder_CNT_OUT,

 POS_ACT := CD522Encoder_POS_ACT,

 Z_VALUE := CD522Encoder_Z_VALUE);

 CD522Encoder_DONE := CD522Encode.DONE;

 CD522Encoder_ERR := CD522Encoder.ERR;

 CD522Encoder_ERNO := CD522Encoder.ERNO;

 CD522Encoder_RDY_SET := CD522Encoder.RDY_SET;

 CD522Encoder_RDY_CALIB :=
CD522Encoder.RDY_CALIB;

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3200

 CD522Encoder_RDY_SYNC :=
CD522Encoder.RDY_SYNC;

 CD522Encoder_Z_PULSE := CD522Encoder.Z_PULSE;

SOLAR_ENCODER_CD522_SSI_GRAY

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block without historical values .

Group Package of functions to get the position of the
sun

Function block to easily integrate, with the CD522 card, absolute encoders SSI GRAY as
positioning sensors for Solar Trackers.
The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_SSI should be used configuring the parameter 6 or 14
("Mode counter 0" or "Mode counter 1") with the operating mode:
Operating Mode 14 "SSI, absolute encoder"
Should be specified in PLC Configuration; parameter "Mode counter" in order to use absolute
encoder with SSI interface.
The module CD522 provides 2 SSI absolute encoder functions. There is an interface for abso-
lute angle and linear encoders (displacement measurement systems).
It allows the transmission of absolute position information through a serial data transfer.
The transmission is based on synchronous serial communication. The device sends a clock
signal to the encoder and synchronously, the encoder returns the positioning data from the most
significant to the less significant bit.
The synchronization for a new data stream is based on time without clock pulse. This quiet time
depends on the encoder.
Chronogram with data organization with the clock pulse:

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3201

The resolution of the encoder device (see technical data from manufacturer) can be set (with
configuration, number of bits, etc.) in PLC Configuration, parameter "SSI resolution in bit" (see
figure below).
In Control Builder Plus V2.0 and above :

The trace B of module CD522 is switched as output signal (differential). On the rising edge of
the signal, the sensor shifts a new value, starting from the most significant bit.
The clock frequency can be set to 200 kHz, 500 kHz, and 1 MHz and should be specified in
PLC Configuration, parameter "SSI frequency" (see figure below).
In Control Builder Plus V2.0 and above:

The complete read sequence is launched regularly by the module CD522. The interval between
each sequence can be set from 1 ms to 255 ms in PLC Configuration, parameter "SSI polling
time" (see figure below).

SSI Polling time
definition

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3202

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Indicates which counter is going to be used:
If CNT_NUM = 0, the counter 0 will be used.
If CNT_NUM = 1, the counter 1 will be used.

IF EN_CNT = TRUE, communications process with SSI encoder is enabled. If EN_CNT =
FALSE, communications process with SSI encoder is not enabled.

This input is used to calibrate the positioning sensor. When rising edge is detected at
CALC_OFFSET, function block proceeds as follow:
OFFSET_VALUE = POS_CALC ACT_CNT,
where ACT_CNT is the read value directly from encoder (internal variable).
Once the system is calibrated, this value remains constant during the normal working of the
system. This value should be check to do a correct calibration after maintenance operations.

It is the right position of our tracker and it is used to calibrate the system. This value must
be obtained by using high accuracy tools (not assembled in the tracker) or by using a solar
radiation sensor to determine if tracker is right focused.
Format: Degrees.

The resolution of the encoder device setting by number of bits. Min. 8 bits, max. 32 bits.

Indicates the resolution of the encoder device (see technical data from manufacturer). For
example, using an incremental encoder with a resolution of 10000 pulses each 360° and x4
counting mode (software configuration), measuring step will use the following value:
360 / (4 x 10000) = 0,009
Format: Degrees.

First input data of counter input. The use of an ADR operator is not needed.
Example (for counter 0):

EN

CNT_NUM
 WORD
 (counter
number)

EN_CNT BOOL
 (enable
counter)

CALC_OFFSET
 BOOL (calcu-
lated offset)

POS_CALC
 REAL (posi-
tion_calculted)

SSI_RESOLU-
TION BYTE
 (SSI RESOLU-
TION)
MEAS-
URING_STEP
 REAL (meas-
uring step)

CNT_IN WORD
 (counter input)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3203

In Control Builder Plus V2.0 and above:

First output data of counter output. The use of an ADR operator is not needed.
Example (for counter 0):
In Control Builder Plus V2.0 and above:

Value added to ACT_CNT (internal variable) to obtain a calibrating process.
POS_ACT = ACT_CNT + OFFSET_VALUE,
where ACT_CNT is the directly read value from encoder (internal variable).
Format: Degrees.

CNT_OUT
 WORD
 (counter
output)

OFFSET_VALUE
 REAL (offset
value)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3204

The current position (actual position) can be retrieved at any time using the output POS_ACT
of the function block. If a shutdown occurs, value of actual position will be lost. Due to that, that
parameter must be declared as a retain variable.
If communications problem occurs between CPU and module CD522, position value stored in
POS_ACT will be lost.
Format: Degrees.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Function call in IL

CAL CD522SSI(

 EN := CD522SSI_EN,

 CNT_NUM := CD522SSI_CNT_NUM,

 EN_CNT := CD522SSI_EN_CNT,

 CALC_OFFSET :=
CD522SSI_CALC_OFFSET,

 POS_CALC := CD522SSI_POS_CALC,

 SSI_RESOLUTION := CD522SSI_SSI_RESOLU-
TION,

 MEASURING_STEP := CD522SSI_MEAS-
URING_STEP,

 CNT_IN := CD522SSI_CNT_IN,

 CNT_OUT := CD522SSI_CNT_OUT,

 OFFSET_VALUE :=
CD522SSI_OFFSET_VALUE)
;

POS_ACT
 REAL (posi-
tion_actual)

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3205

LD
ST

CD522SSI.DONE
CD522SSI_DONE

LD
ST

CD522SSI.ERR
CD522SSI_ERR

LD
ST

CD522SSI.ERNO
CD522SSI_ERNO

LD
ST

CD522SSI.POS_ACT
CD522SSI_POS_ACT

In IL, the function call has to be written in one line.

Function call in ST

CD522SSI(

 EN := CD522SSI_EN,

 CNT_NUM := CD522SSI_CNT_NUM,

 EN_CNT := CD522SSI_EN_CNT,

 CALC_OFFSET :=
CD522SSI_CALC_OFFSET,

 POS_CALC := CD522SSI_POS_CALC,

 SSI_RESOLUTION := CD522SSI_SSI_RESOLU-
TION,

 MEASURING_STEP := CD522SSI_MEAS-
URING_STEP,

 CNT_IN := CD522SSI_CNT_IN,

 CNT_OUT := CD522SSI_CNT_OUT,

 OFFSET_VALUE :=
CD522SSI_OFFSET_VALUE)
;

 CD522SSI_DONE := CD522SSI.DONE;

 CD522SSI_ERR := CD522SSI.ERR;

 CD522SSI_ERNO := CD522SSI.ERNO;

 CD522SSI_POS_ACT := CD522SSI.POS_ACT;

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3206

SOLAR_ENCODER_DC541

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block with historical values

Group Package of functions to get the position of the
sun

The SOLAR_ENCODER_DC541 is used to easily integrate, with the DC541 module, incre-
mental encoders (A, B, Z) as positioning sensors for Solar Trackers.
The module DC541 can be done a count of signals up to 60 kHz. Pulse multiplication (x2 or x4)
is not used.
The counter always uses the channels C0...C3 of the DC541:
C0: Track A of the incremental encoder
C1: Track B of the incremental encoder
C2: Track Z of the incremental encoder
In order to configure and use the function counter of module DC541, the module should be
configured as follow:
Configuration of module DC541 to control an incremental encoder.
Step 1:
In Control Builder Plus V2.0 and above:

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3207

The function block SOLAR_ENCODER_DC541 should be used configuring the module as a
"Counter mode".
In Control Builder Plus V2.0 and above:
Last step is to configure the "Channel 0" as "32-bit counter".

Configuration of module DC541 to control an incremental encoder.
Step 3:
In Control Builder Plus V2.0 and above:

The module DC541 provides an encoder function for relative positioning with 3 signals. 2 sig-
nals are used for rotation discrimination and pulse. The third one is used in multi-turn encoder to
count the number of rotation (mechanical zero).
The rotation is identified with a shift angle (90°) between A and B signal. In the module DC541,
the clockwise rotation is identified with A signal in advance to B (see figure below).
Example: Direction identification using A and B signals:

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3208

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 0 0 ... 4 (6) -

At input SLOT, the device slot is specified which should be used by the function block.
The internal device always has the index 0. All external devices are serially numbered from right
to left, starting with 1.

If EN_CNT = TRUE, pulse counting of counter is enabled. If EN_CNT = FALSE, no pulse
counting is performed and pulses are not stored even the encoder device changes its position.
If counting has already started and if EN_CNT = FALSE, the pulse counting stops and counter
value ACT is stored. If EN_CNT = TRUE again, the pulse counting will start again and counter
value ACT will continue since previous value.

If set input SET_ START = TRUE, the counter takes the values from input SET_START_VALUE
to transfer it to POS_ACT. After that, RDY_SET = TRUE. As long as input SET_ START
= TRUE, no pulses are counted because the counter is always overwritten by the input
SET_START_VALUE.

The counter can be set to a Start value. This value must be applied to the input
SET_START_VLAUE.
If input SET_START=TRUE, the counter takes this value.

If EN_CALIB = TRUE, when a rising edge is detected at the encoder´s reference point (Z)
signal, output Z_VALUE will take the stored value in POS_ACT and output RDY_CALIB is set to
TRUE. If this input is continuously set to TRUE, only one calibrating process will be done even
system reaches encoder´s reference point (Z) once again. In order to enable another calibrating
process, input EN_CALIB has to be set to FALSE and set to TRUE again.
Calibrating process is executed out of CPU cycle, and it is able to detect the multiple rising
edges that appear when a simple limit switch is used. Due to that, it is recommended to use
devices assembled especially for this purpose (high accuracy limit switch).

EN

SLOT

EN_CNT BOOL
 (enable
counter)

SET_START
 BOOL (set
start)

SET_START_VA
LUE REAL
 (set start
value)

EN_CALIB
 BOOL (ena-
bling calibrate)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3209

Inputs used as reference point Z in the calibrating process are:
Counter0 -> I3
Counter1 -> I11

If input EN_SYNC = TRUE, when a rising edge is detected at the encoder´s reference point
(Z) signal, output POS_ACT will take the value stored at Z_VALUE, output RDY_SYNC is set
to TRUE only during a program cycle. While EN_SYNC is set to TRUE, POS_ACT output will
take the value stored at Z_VALUE every time that a rising edge is detected at the encoder´s
reference point (Z) signal.
Inputs used as reference point Z in the synchronisation process are:
Counter0 -> Z0
Counter1 -> Z1

Indicates the resolution of the encoder device (see technical data from manufacturer). For
example, using an incremental encoder with a resolution of 10000 pulses each 360° and x4
counting mode (software configuration), measuring step will use the following value:
360 / (4 x 10000) = 0,009
Format: Degrees.

The current position (actual position) can be retrieved at any time using the output POS_ACT
of the function block. If a shutdown occurs, value of actual position will be lost. Due to that, that
parameter must be declared as a retain variable.
If communications problem occurs between CPU and module CD522, position value stored in
POS_ACT will be lost.
Format: Degrees.

Indicates the position of the encoders reference point (Z). The user is able to configure where
the Z position is.
Format: Degrees.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

EN_SYNC
 BOOL (ena-
bling syn-
chronize)

MEAS-
URING_STEP
 REAL (meas-
uring step)

POS_ACT
 REAL (posi-
tion_actual)

Z_VALUE
 REAL (z
value)

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3210

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

When the action of SET_START finishes, RDY_SET is set to TRUE for only one cycle.

The output RDY_CALIB displays the ready message of the calibrating process. While input
EN_CALIB is set to TRUE, RDY_CALIB = TRUE.
If EN_CALIB = TRUE and rising edge is detected at Z_PULSE signal, RDY_CALIB will be set to
TRUE until EN_CALIB = FALSE.

The output RDY_SYNC displays the ready message of the synchronisation process. It is set to
TRUE only for one cycle.

The output Z_PULSE indicates that encoder's reference point Z has been reached. This signal
is only visible if programs execution time is slower than the signal of encoder's reference point
(Z).

Function call in IL

CAL DC541Encoder(

 EN := CD522Encoder_EN,

 SLOT := DC541Encoder_SLOT,

 EN_CNT := DC541Encoder_EN_CNT,

 SET_START :=
DC541Encoder_SET_START,

 SET_START_VALUE := DC541Enco-
derSET_START_VALUE,

 EN_CALIB :=
DC541Encoder_EN_CALIB,

 EN_SYNC :=
DC541Encoder_EN_SYNC,

 MEASURING_STEP := DC541Encoder_MEAS-
URING_STEP,

 POS_ACT := DC541Encoder_POS_ACT,

 Z_VALUE := DC541Encoder_Z_VALUE);

LD
ST

DC541Encoder.DONE
DC541Encoder_DONE

LD
ST

DC541Encoder.ERR
DC541Encoder_ERR

LD
ST

DC541Encoder.ERNO
DC541Encoder_ERNO

ERNO

RDY_SET
 BOOL (ready
set start)
RDY_CALIB
 BOOL (ready
calibration)

RDY_SYNC
 BOOL (ready
synchronisa-
tion)
Z_PULSE
 BOOL (input
signal Z)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3211

LD
ST

DC541Encoder.RDY_SET
DC541Encoder_RDY_SET

LD
ST

DC541Encoder.RDY_CALIB
DC541Encoder_RDY_CALIB

LD
ST

DC541Encoder.RDY_SYNC
DC541Encoder_RDY_SYNC

LD
ST

DC541Encoder.RDY_Z_PULS
E
DC541Encoder_RDY_Z_PUL
SE

In IL, the function call has to be written in one line.

Function call in ST

DC541Encoder(

 EN := DC541Encoder_EN,

 SLOT := DC541Encoder_SLOT,

 EN_CNT := DC541Encoder_EN_CNT,

 SET_START :=
DC541Encoder_SET_START,

 SET_START_VALUE :=
DC541Encoder_SET_START
_VALUE,

 EN_CALIB :=
DC541Encoder_EN_CALIB,

 EN_SYNC :=
DC541Encoder_EN_SYNC,

 MEASURING_STEP := DC541Encoder_MEAS-
URING_STEP,

 POS_ACT := DC541Encoder_POS_ACT,

 Z_VALUE := DC541Encoder_Z_VALUE);

 DC541Encoder_DONE := DC541Encode.DONE;

 DC541Encoder_ERR := DC541Encoder.ERR;

 DC541Encoder_ERNO := DC541Encoder.ERNO;

 DC541Encoder_RDY_SET := DC541Encoder.RDY_SET;

 DC541Encoder_RDY_CALIB :=
DC541Encoder.RDY_CALIB;

 DC541Encoder_RDY_SYNC :=
DC541Encoder.RDY_SYNC;

 DC541Encoder_Z_PULSE := DC541Encoder.Z_PULSE;

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3212

SOLAR_NORMALIZE_ANALOG

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function

Group Package of functions to get the position of the
sun

The SOLAR_NORMALIZE_ANALOG function is used to easily integrate, with any S500 AI/AO
card, standard sensor type 4 "“ 20 mA or 0 "“ 10V as positioning sensors for Solar Trackers.
This function can be used to integrate analog sensors such as inclinometers.
According to the signal sensor provided and the movement range of the system, SOLAR_NOR-
MALIZE_ANALOG gets the current system position. Internally function SOLAR_NOR-
MALIZE_ANALOG uses the corresponding decimal values given by the AI/AO card when an
analog input is detected.

Table 196: Input values (analog signals) with their corresponding decimal values for AX/521 and
AX/522 modules
Range 0...10 V -10...+10 V 0...20 mA 4...20 mA Digital Input Decimal

Value

NORMAL
RANGE

10.0000 :
0.0004

10.0000 :
0.0004

20.0000 :
0.0007

20.0000 :
4.0006

ON 27648 : 1

0.0000 0.0000 0 4 OFF 0

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3213

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

The lower limit of the movement range.
Format: Degrees.

The upper limit of the movement range.
Format: Degrees.

Analog sensor signal.
Format: mA.

Function call in IL

LD AnalogSensor_LEV_LOW

SOLAR_NORMALIZE_ANALOG AnalogSensor_LEV_HIGH, Analog-
Sensor_INPUT_SIGNAL

ST AnalogSensor_POSITION

EN

LEV_LOW
 REAL (level
low)

LEV_HIGH
 REAL (level
high)

INPUT_SIGNAL
 REAL (input
signal)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3214

In IL, the function call has to be written in one line.

Function call in ST

AnalogSensor_POSITION := SOLAR_NOR-
MALIZE_ANALOG(

 LEV_LOW := SOLAR_NOR-
MALIZE_ANALOG_LEV_LO
W,

 LEV_HIGH := SOLAR_NOR-
MALIZE_ANALOG_LEV_HIG
H,

 INPUT_SIGNAL := SOLAR_NOR-
MALIZE_ANALOG_INPUT_SI
GNAL);

1.5.11.2.5 ACTUATOR folder
Preconditions for the use of the ACTUATOR folder

To communicate with ACS355 drive, use Ä Chapter 1.5.6 “ACS / DCS drives
libraries” on page 2192.

Refer example application for more details of configuration and programming.

Alternatively use Ä Chapter 1.5.4.22 “Modbus library” on page 1697 also for
communication with the drive.

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3215

SOLAR_POSITION_CTRL

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function

Group Package of functions to get the position of the
sun

Function block to manage the positioning control.
According to the positioning reference, it gets the speed parameters to set the system in the
desired position. Output parameters are Run-Stop, Direction and Speed to reach the calculated
position of the system.
Output parameters are Run, Direction and Speed to reach the desired position of the system.
Depends on the input parameters, the manipulated variable (SPEED) to control the actuators
will be:
● GO_TO_POS_REF = TRUE
Select pulse start for positioning: Start by rising edge of a pulse. The signal has to stay TRUE
during the positioning task.
According to the reference of positioning gets the SPEED parameter to set the system in this
position, by calculating the control action by using a proportional controller.
SPEED_REF = (POS_REF-POS_ACT) * KP * (limit of [SPEED_MIN and SPEED_MAX]).
● JOG_FWD = TRUE
SPEED_REF = JOG_SPEED. To move the system forward manually.
● JOG_BWD = TRUE
SPEED_REF = (-1) * JOG_SPEED. To move the system backward manually.

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3216

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

In order to use the proportional control system to reach the SETPOINT, input
GO_TO_POS_REF has to be set to TRUE.

In order to manually move the system forward, input JOG_FWD has to be set to TRUE. As long
as JOG_FWD is set to TRUE, and STOP_FWD is deactivated, SPEED = JOG_SPEED.
VIRTUAL_LIMIT_MAX is not considered when JOG_FWD is activated.

In order to manually move the system backward, input JOG_ BWD has to be set to TRUE.
As long as JOG_BWD is set to TRUE, and STOP_BWD is deactivated, SPEED = (-1) *
JOG_SPEED.
VIRTUAL_LIMIT_MAX is not considered when JOG_BWD is activated.

ACT indicates the current position of the system.
Format: Degrees.

SETPOINT indicates the desired position to locate the system.
Format: Degrees.

KP indicates the proportional gain of the proportional control system.

Minimum speed of the drive, expressed as a percent of the maximum speed of the drive. This
value is used during positioning control (GO_TO_POS_REF = TRUE).
This function block is having a speed range of 0 "“ 100 %. SPEED_MIN must be set between 0
"“ 100 %.

Maximum speed of the drive, expressed as a percent of the maximum speed of the drive. This
value is used during positioning control (GO_TO_POS_REF = TRUE).
This function block is having a speed range of 0 "“ 100 %. SPEED_MAX must be set between 0
"“ 100 %.

Indicates the area where the system is considered correctly enough positioned (the control
loop considers the POS_REF reached). The system is inside this window movement when the
position error is smaller than POS_REF. The position error indicates the difference between the
POS_REF and the POS_ACT.

EN

GO_TO_POS_R
EF BOOL (go
to position ref-
erence)
JOG_FWD
 BOOL (jog
forward)

JOG_BWD
 BOOL (jog
backward)

POS_ACT
 REAL (posi-
tion actual)

POS_REF
 REAL (posi-
tion reference)

KP REAL (kp)

SPEED_MIN
 REAL (speed
min)

SPEED_MAX
 REAL (speed
max)

POS_ERR
 REAL (posi-
tion error / posi-
tion window)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3217

POS_ERR value must be larger than resolution of the positioning devices
(encoders or inclinometers).

The lower limit of the movement range of the system. This value is only considered during
positioning control (GO_TO_POS_REF = TRUE). JOG movements are not influenced by this
limit value.
Format: Degrees.

The upper limit of the movement range of the system. This value is only considered during
positioning control (GO_TO_POS_REF = TRUE). JOG movements are not influenced by this
limit value.
Format: Degrees.

This input should be used in order to integrate the lower limit switch signal which indicates the
mechanical lower limit of the movement of the system.
If STOP_BWD = TRUE the mechanical lower limit of the movement range has been reached
and the output RUN will be set to 0. Forward movement is allowed.

This input should be used in order to integrate the upper limit switch signal which indicates the
mechanical upper limit of the movement of the system.
If STOP_FWD = TRUE the mechanical upper limit of the movement range has been reached
and the output RUN will be set to 0. Backward movement is allowed.

JOG_SPEED indicates the JOG speed of the drive. This value is expressed as a percent of the
maximum speed of the drive.
During a JOG movement this value will set to the SPEED output.
This function block is having a speed range of 0 "“ 100 %. JOG_SPEED must be set between 0
"“ 100 %.

Boolean signal that resets the ERR and ERNO outputs.

When the primary axis of the actuator (gear or hydraulic piston) changes its direction of rotation,
this axis covers an angular distance, POS_DEG_LIMIT, whereas the tracker will not change its
position. Only when POS_DEG_LIMIT is reached, the tracker starts its movement. This concept
is similar to "backlash" in gear trains.
Format: Degrees.

This value depends on each tracker and its actuator (motors, gears or hydraulic
systems).

POS_ACT (t) - POS_ACT (t + POS_TIME_LIMIT) | > POS_DEG_LIMIT,
where:
t = time.

VIR-
TUAL_LIMIT_MI
N REAL (vir-
tual limit min-
imum)

VIR-
TUAL_LIMIT_M
AX REAL (vir-
tual limit max-
imum)

STOP_BWD
 BOOL (stop
backward)

STOP_FWD
 BOOL (stop
forward)

JOG_SPEED
 REAL (jog
speed)

RESET_ALARM
 BOOL (reset
alarm / error)
POS_DEG_LIMI
T REAL (posi-
tion degrees
limit)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3218

Indicates the needed time to cover POS_DEG_LIMIT distance without any fault. The expected
distance must be covered in a time smaller than POS_TIME_LIMIT milliseconds. Otherwise, it
generates error and corresponding error is displayed.
Format: Milliseconds.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

POS_TIME_LIMI
T UNIT (posi-
tion time limit)

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3219

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

RUN output should be used as start command for the drive. It is set to TRUE, if no limit
is reached no error occurred and either a jog command is set or normal operation sets the
SPEED_REF not to zero.

To output parameter SPEED_REF indicates the input to the drive, the manipulated variable to
control the system positioning. Depending on the working mode SPEED_REF will be:

Input Parameters (Working
mode)

Additional Input Parameters
Considered

Output SPEED_REF

GO_TO_POS_REF = TRUE POS_ERR < (POS_REF
"“ POS_ACT)
VIRTUAL_LIMIT_MIN <
POS_ACT < VIR-
TUAL_LIMIT_MAX
STOP_BWD = FALSE
STOP_FWD = FALSE

SPEED_REF =
KP*(POS_REF - POS_ACT)

JOG_FWD = TRUE STOP_FWD = FALSE SPEED_REF = JOG_SPEED

JOG_BWD = TRUE STOP_BWD = FALSE SPEED = (-1) * JOG_SPEED

SPEED_REF is in terms of 0-100 %. User needs to convert this output to 0-50 Hz before giving
to the drive.

If SPEED >= 0 -> DIR = TRUE
If SPEED < 0 -> DIR = FALSE

POS_REF_REACHED is set to TRUE as long as the system has reached the POS_REF or it is
inside the area between POS_ERR > (POS_REF - POS_ACT).

Function call in IL

CAL PosControL(

 EN := PosControl_EN,

 GO_TO_POS_REF := PosCon-
trol_GO_TO_POS_REF,

 JOG_FWD := PosControl_JOG_FWD,

 JOG_BWD := PosControl_JOG_BWD,

 POS_ACT := PosControl_POS_ACT,

 POS_REF := PosControl_POS_REF,

 KP := PosControl_KP,

 SPEED_MIN := PosControl_SPEED_MIN,

ERNO

RUN BOOL
 (run)

SPEED_REF
 REAL (speed
reference)

DIR BOOL
 (direction)

POS_REF_REA
CHED BOOL
 (position refer-
ence reached)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3220

 SPEED_MAX := PosControl_SPEED_MAX,

 POS_REF := PosControl_POS_REF,

 VIRTUAL_LIMIT_MIN := PosControl_SPEED_MIN,

 VIRTUAL_LIMIT_MAX := PosControl_SPEED_MAX,

 STOP_BWD := PosControl_STOP_BWD,

 STOP_FWD := PosControl_STOP_FWD,

 JOG_SPEED := PosControl_JOG_SPEED,

 RESET_ALARM := PosCon-
trol_RESET_ALARM,

 POS_DEG_LIMIT := PosCon-
trol_POS_DEG_LIMIT,

 POS_TIME_LIMIT := PosCon-
trol_POS_TIME_LIMIT);

LD
ST

PosControl.DONE
PosControl_DONE

LD
ST

PosControl.ERR
PosControl_ERR

LD
ST

PosControl.ERNO
PosControl_ERNO

LD
ST

PosControl.RUN
PosControl_RUN

LD
ST

PosControl.SPEED_REF
PosControl_SPEED_REF

LD
ST

PosControl.DIR
PosControl_DIR

LD
ST

PosCon-
trol.POS_REF_REACHED
PosCon-
trol_POS_REF_REACHED

In IL, the function call has to be written in one line.

Function call in ST

PosControl(

 EN := PosControl_EN,

 GO_TO_POS_REF := PosCon-
trol_GO_TO_POS_REF,

 JOG_FWD := PosControl_JOG_FWD,

 JOG_BWD := PosControl_JOG_BWD,

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3221

 POS_ACT := PosControl_POS_ACT,

 POS_REF := PosControl_POS_REF,

 KP := PosControl_KP,

 SPEED_MIN := PosControl_SPEED_MIN,

 SPEED_MAX := PosControl_SPEED_MAX,

 POS_ERR := PosControl_POS_ERR,

 VIRTUAL_LIMIT_MIN := PosControl_VIR-
TUAL_LIMIT_MIN,

 VIRTUAL_LIMIT_MAX := PosControl_VIR-
TUAL_LIMIT_MAX,

 STOP_BWD := PosControl_STOP_BWD,

 STOP_FWD := PosControl_STOP_FWD,

 JOG_SPEED := PosControl_JOG_SPEED,

 RESET_ALARM := PosCon-
trol_RESET_ALARM,

 POS_DEG_LIMIT := PosCon-
trol_POS_DEG_LIMIT,

 POS_TIME_LIMIT := PosCon-
trol_POS_TIME_LIMIT);

 PosControl_DONE := PosControl.DONE;

 PosControl_ERR := PosControl.ERR;

 PosControl_ERNO := PosControl.ERNO;

 PosControl_RUN := PosControl.RUN;

 PosControl_SPEED_REF := PosControl.SPEED_REF;

 PosControl_DIR := PosControl.DIR;

 PosCon-
trol_POS_REF_REACHED

:= PosCon-
trol.POS_REF_REACHED;

SOLAR_HYD_CTRL

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3222

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function

Group Package of functions to get the position of the
sun

Function block to manage two pistons as actuator device.
● Hydraulic system to move the tracker.
Hydraulic system is based in the action of two hydraulic pistons (Piston A and Piston B) that are
controlled by four solenoid valves. Each hydraulic piston has two solenoid valves to control its
movement. These solenoid valves are two position valves.
A1: Backward piston A (piston A reduces its length).
A2: Forward piston A (piston A increases its length).
B1: Backward piston B (piston B reduces its length).
B2: Forward piston B (piston B increases its length).
Hydraulic system also has an oil pump to get pressure into the hydraulic circuit. This pumps
works for a few periods of time, it doesnt work continuously.

Movement range of tracker [-30° - 181°]:

Movement cycle of the hydraulic pistons:

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3223

During a part of the movement cycle, both pistons are running in the same direction (both are
pulling or pushing at the same time).
During a part of the movement cycle, one piston has reached its singular point. In this position,
the piston does not generate any torque in the system.
During a part of the movement cycle, both pistons are running in opposite directions (one of
them is pulling and the other one is pushing at the same time).
Figure below shows the movement cycle of the hydraulic pistons:

Movement cycle
of the hydraulic
piston is the fol-
lowing:

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3224

X-axis represents the allowed position range of Solar Tracker (these values are configurable by
the user).
Y-axis represents the length of the hydraulic pistons.
In this case, singular points are:
● Piston A: 49°.
● Piston B: 130°.
The singular point for piston A. Its value is ±2:

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3225

The singular point for piston B. Its value is ±1:

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3226

To control the movement of the hydraulic pistons, it is necessary to operate on the solenoid
valves. Depending on tracker position and direction of rotation, from east to west or from west to
east, it is necessary to operate on determined solenoid valves.
Table below shows sequence of solenoid valves.

Where:
A1: backward piston A A2: forward piston A.
B1: backward piston B B2: forward piston B.
1: solenoid valve is ON 0: solenoid valve is OFF.
Ïƒ: free-window (degrees) ±: angular position of the Solar Tracker (degrees).

Movement con-
trol:

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3227

All range position values that appear in the table above are configurable and
depend on each tracker. A previous geometrical analysis is needed due to there
are many kind of trackers. You can use this table as an example.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Boolean input that enables SOLAR_HYD_CTRL block.

Boolean input that indicates the direction movement of Solar Tracker.
TRUE: = forward, FALSE: = backward.

Lower limit of the movement range.
Format: Degrees.

Upper limit of the movement range.
Format: Degrees.

Indicates a position of the Solar Tracker (angular position). In that position, the mechanical
structure of Solar Tracker shows a singular point concerning to piston A. In that situation, piston
A does not generate any torque value. This value is given by tracker manufacturer.
Format: Degrees.

Indicates a position of the Solar Tracker (angular position). In that position, the mechanical
structure of Solar Tracker shows a singular point concerning to piston B. In that situation, piston
B does not generate any torque value. This value is given by tracker manufacturer.
Format: Degrees.

Hysteresis value to avoid unnecessary piston movement. This value is obtained by testing the
behavior of the Solar Tracker.
Format: Degrees.

Value of semi angle in which hydraulic piston does not generate any torque value. Movement of
hydraulic piston is free when is placed inside this window. This value is obtained by testing the
behavior of the Solar Tracker.
Format: Degrees.

EN

START_HYD_SY
S BOOL (start
hydraulic
system)
DIR BOOL
 (direction)

POS_MIN
 REAL (posi-
tion minimum)

POS_MAX
 REAL (max-
imum position)

SIN-
GULAR_POINT_
A REAL (sin-
gular_point_A)

SIN-
GULAR_POINT_
B REAL (sin-
gular_point_B)

HYS REAL
 (hysteresis)

FREE_WIN
 REAL (free
window)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3228

Time to achieve the correct hydraulic pressure in the circuit.
Format: Seconds.
Standard: 500ms.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Indicates that pump is working.

Indicates that hydraulic piston A is running forward.

Indicates that hydraulic piston B is running forward.

Indicates that hydraulic piston A is running backward.

Indicates that hydraulic piston B is running backward.

Function call in IL

CAL HydControl(

 EN := HydControl_EN,

 START_HYD_SYS := HydCon-
trol_START_HYD_SYS,

 DIR := HydControl_DIR,

PRES-
SURE_BUILD_U
P_TIME TIME
 (pressure build
up time)

DONE

ERR

ERNO

PUMP_RUN-
NING BOOL
 (pump run-
ning)
FWD_A BOOL
 (forward a)

FWD_B BOOL
 (forward b)

BWD_A BOOL
 (backward a)

BWD_B BOOL
 (backward b)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3229

 POS_ACT := HydControl_POS_ACT,

 POS_MIN := HydControl_POS_MIN,

 POS_MAX := HydControl_POS_MAX,

 SINGULAR_POINT_A := HydControl_SIN-
GULAR_POINT_A,

 SINGULAR_POINT_B := HydControl_SIN-
GULAR_POINT_B,

 HYS := HydControl_HYS,

 FREE_WIN := HydControl_FREE_WIN,

 PRES-
SURE_BUILD_UP_TIME

:= HydControl_PRES-
SURE_BUILD_UP_TIME);

LD
ST

HydControl.DONE
HydControl_DONE

LD
ST

HydControl.ERR
HydControl_ERR

LD
ST

HydControl.ERNO
HydControl_ERNO

LD
ST

HydControl.PUMP_RUNNING
HydControl_PUMP_RUN-
NING

LD
ST

HydControl.FWD_A
HydControl_FWD_A

LD
ST

HydControl.FWD_B
HydControl_FWD_B

LD
ST

HydControl.BWD_A
HydControl_BWD_A

LD
ST

HydControl.BWD_B
HydControl_BWD_B

In IL, the function call has to be written in one line.

Function call in ST

HydControl(

 EN := HydControl_EN,

 START_HYD_SYS := HydCon-
trol_START_HYD_SYS,

 DIR := HydControl_DIR,

 POS_ACT := HydControl_POS_ACT,

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3230

 POS_MIN := HydControl_POS_MIN,

 POS_MAX := HydControl_POS_MAX,

 SINGULAR_POINT_A := HydControl_SIN-
GULAR_POINT_A,

 SINGULAR_POINT_B := HydControl_SIN-
GULAR_POINT_B,

 HYS := HydControl_HYS,

 FREE_WIN := HydControl_FREE_WIN,

 PRES-
SURE_BUILD_UP_TIME

:= HydControl_PRES-
SURE_BUILD_UP_TIME);

 HydControl_DONE := HydControl.DONE;

 HydControl_ERR := HydControl.ERR;

 HydControl_ERNO := HydControl.ERNO;

 HydControl_PUMP_RUN-
NING

:= HydControl.PUMP_RUN-
NING;

 HydControl_FWD_A := HydControl.FWD_A;

 HydControl_FWD_B := HydControl.FWD_B;

 HydControl_BWD_A := HydControl.BWD_A;

 HydControl_BWD_B := HydControl.BWD_B;

1.5.11.2.6 MODE folder
SOLAR_MODE_POSITION

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block without historical values

Group Package of function blocks for different control
modes

This function block represents an operation mode that allows to move the Solar Tracker to a
position defined by the user. It shall keep the Solar Tracker in this position awaiting for new
commands or new position value.

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3231

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Position value defined by the user.

Boolean expression that indicates the process is able to move Solar Tracker.

Desired position to locate the tracker.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Function call in IL

CAL ModePosition (

 EN := ModePosition_EN,

 POS_SETPOINT := ModePosition_POS_SET-
POINT,

EN

POS_SETPOINT
 REAL (posi-
tion setpoint)
GO_TO_POS_R
EF BOOL (go to
position refer-
ence)
POS_REF
 REAL (posi-
tion_reference)

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3232

 GO_TO_POS_REF := ModePosi-
tion_GO_TO_POS_REF,

 POS_REF := ModePosition_POS_REF)

LD
ST

ModePosition.DONE
ModePosition_DONE

LD
ST

ModePosition.ERR
ModePosition_ERR

LD
ST

ModePosition.ERNO
ModePosition_ERNO

In IL, the function call has to be written in one line.

Function call in ST

ModePosition (

 EN := ModePosition_EN,

 POS_SETPOINT := ModePosition_POS_SET-
POINT,

 GO_TO_POS_REF := ModePosi-
tion_GO_TO_POS_REF,

 POS_REF := ModePosition_POS_REF);

 ModePosition_DONE := ModePosition.DONE;

 ModePosition_ERR := ModePosition.ERR;

 ModePosition_ERNO := ModePosition.ERNO;

SOLAR_MODE_MANUAL

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3233

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block without historical values

Group Package of function blocks for different control
modes

This function block represents an operation mode that allows to set the system in manual mode.
User is able to move the system by using drives directly. While this mode is active, system will
not respond to any commands from the solar control field.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

In order to move manually the system forward, input JOG_FWD has to be set to TRUE.

In order to move manually the system backward, input JOG_BWD has to be set to TRUE.

Boolean expression that enables position control block.

Desired position to locate the tracker.

Boolean expression that indicates that drive is running forward.

Boolean expression that indicates that drive is running backward.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

MANUAL_FWD
 BOOL
 (manual for-
ward)
MANUAL_BWD
 BOOL
 (manual back-
ward)
GO_TO_POS_R
EF BOOL (go
to position ref-
erence)
POS_REF
 REAL (posi-
tion_reference)
JOG_FWD
 BOOL (jog
forward)
JOG_BWD
 BOOL (jog
backward)

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3234

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Function call in IL

CAL ModeManual (

 EN := ModeManual_EN,

 MANUAL_FWD := ModeMa-
nual_MANUAL_FWD,

 MANUAL_BWD := ModeMa-
nual_MANUAL_BWD,

 GO_TO_POS_REF := ModeMa-
nual_GO_TO_POS_REF,

 POS_REF := ModeManual_POS_REF,

 JOG_FWD := ModeManual_JOG_FWD,

 JOG_BWD := ModeManual_JOG_BWD)

 LD
ST

ModeManual.DONE
ModeManual_DONE

 LD
ST

ModeManual.ERR
ModeManual_ERR

 LD
ST

ModeManual.ERNO
ModeManual_ERNO

In IL, the function call has to be written in one line.

Function call in ST

ModeManual (

 EN := ModeManual_EN,

 MANUAL_FWD := ModeMa-
nual_MANUAL_FWD,

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3235

 MANUAL_BWD := ModeMa-
nual_MANUAL_BWD,

 GO_TO_POS_REF := ModeMa-
nual_GO_TO_POS_REF,

 POS_REF := ModeManual_POS_REF,

 JOG_FWD := ModeManual_JOG_FWD,

 JOG_BWD := ModeManual_JOG_BWD)

 ModeManual_DONE := ModeManual.DONE;

 ModeManual_ERR := ModeManual.ERR;

 ModeManual_ERNO := ModeManual.ERNO;

SOLAR_MODE_HOMING

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block without historical values

Group Package of function blocks for different control
modes

Set the system to look for the reference point initialization (Z).
This function block represents an operation mode that allows to search the reference point
initialization. Systems moves until reference point is reached. This mode assumes that system
has a high accuracy mechanical limit switch to indicate that home position has been reached.
Figure below indicates how this operation mode works. In this document there are explained
four basics systems according to:
● Type of device to indicate reference point initialization.
● Direction of movement. (Negative direction left and positive direction to the right).

Modules DC541 and DC522 use rising edge to synchronization and initialization
process, so this four types use rising edge to calculate home position.

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3236

Type 1: Using encoder reference point Z_PULSE and limit switch to determinate home position.
First movement: Negative direction (left):

At the beginning, system is located at point 1 and limit switch is not active yet. When
SOLAR_MODE_HOMING is enabled, JOG_BWD is set to TRUE. As soon as Z_PULSE shows
rising edge, home position has been reached and system stops its movement at point 2.
If system is located between Z_ENCODER and LIMIT_SWITCH positions,
SOLAR_MODE_HOMING operates as figure below shows:

Type 2: Using encoder reference point Z_PULSE mechanical limit switch to determinate home
position.
First movement: Positive direction (right):

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3237

At the beginning, system is located at point 1 and limit switch is not active yet. When
SOLAR_MODE_HOMING is enabled, JOG_FWD is set to TRUE. As soon as Z_PULSE shows
rising edge, home position has been reached and system stops its movement at point 2.
If system is located between Z_ENCODER and LIMIT_SWITCH positions,
SOLAR_MODE_HOMING operates as figure below shows:

Figure below shows the logical sequence that implements SOLAR_MODE_HOMING Type 1 &
Type 2:

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3238

NEGATIVE Direction (left) POSITIVE Direction (right)

Type 3: Using Z_PULSE and cam switch to determinate home position.
First movement: Positive direction (right):

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3239

Home position has been reached when rising edge of the signal Z_PULSE is detected. Then,
movement is stopped. On the other hand, if system is located at the end of its movement range
and cam switch signal is set to TRUE (see figure below) home position is reached as follow:

Type 4: Using a cam switch to determinate home position.
First movement: Negative direction (left):

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3240

Home position has been reached when rising edge of the signal Z_PULSE is detected. Then,
movement is stopped. On the other hand, if system is located at the end of its movement range
and cam switch signal is set to TRUE (see figure below) home position is reached as follow:

Figure below shows the logical sequence that implements SOLAR_MODE_HOMING Type 3 &
Type 4:

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3241

POSITIVE Direction (right) NEGATIVE Direction (left)

Input description
Homing process starts as soon as rising edge is detected at signal EN.
In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The block is not processed if input EN = FALSE.
While input EN is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

This input indicates which kind of configuration sensors are going to be used to determinate
home positions (see figures above).
1 -> Z_Sensor is only one pulse signal. First movement: backward.

EN BOOL
 (enable block)

TYPE_MODE
 BYTE (type
mode)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3242

2 -> Z_Sensor is only one pulse signal. First movement: forward.
3 -> Z_Sensor uses cam switch. First movement: forward.
4 -> Z_Sensor uses cam switch. First movement: backward.

Boolean expression that indicates the positioning device has reached its Z position.
TYPE 1 & 2 -> Z_PULSE = RDY_SYNC (output variable of encoders function).
TYPE 3 & 4 -> Z_PULSE = Z_PULSE (variable that indicates the state of input Z).

Boolean expression that indicates home position has been reached. It is used in Type 1 & Type
2.
TYPE 1 -> LIMIT_SWITCH = LIMIT_SWITCH_MIN
TYPE 2 -> LIMIT_SWITCH = LIMIT_SWITCH_MAX

Boolean expression that enables position control block.

Desired position to locate the tracker.

In order to move manually the system forward, input JOG_FWD has to be set to TRUE.

In order to move manually the system backward, input JOG_BWD has to be set to TRUE.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Z_PULSE
 BOOL (z
pulse)

LIMIT_SWITCH
 BOOL (limit
switch)

GO_TO_POS_R
EF BOOL (go
to position ref-
erence)
POS_REF
 REAL (posi-
tion_reference)
JOG_FWD
 BOOL (jog
forward)
JOG_BWD
 BOOL (jog
backward)

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3243

Boolean expression that enables synchronization process and giving homing done signal to
subsequent blocks.

Function call in IL

CAL MODE_HOMING (

 EN := ModeHoming_EN,

 TYPE_MODE := Mode-
Homing_TYPE_MODE,

 Z_PULSE := ModeHoming_Z_PULSE,

 LIMIT_SWITCH := Mode-
Homing_LIMIT_SWITCH,

 GO_TO_POS_REF := Mode-
Homing_GO_TO_POS_REF,

 POS_REF := ModeHoming_POS_REF,

 JOG_FWD := ModeHoming_JOG_FWD,

 JOG_BWD := ModeHoming_JOG_BWD)

 LD
ST

ModeHoming.DONE Mode-
Homing_DONE

 LD
ST

ModeHoming.ERR
ModeHoming_ERR

 LD
ST

ModeHoming.ERNO
ModeHoming_ERNO

 LD
ST

ModeHoming.ERNO
ModeHoming_ERNO

In IL, the function call has to be written in one line.

Function call in ST

MODE_HOMING (

 EN := ModeHoming_EN,

 TYPE_MODE := Mode-
Homing_TYPE_MODE,

 Z_PULSE := ModeHoming_Z_PULSE,

 LIMIT_SWITCH := Mode-
Homing_LIMIT_SWITCH,

 GO_TO_POS_REF := Mode-
Homing_GO_TO_POS_REF,

 POS_REF := ModeHoming_POS_REF,

 JOG_FWD := ModeHoming_JOG_FWD,

HOMING_DONE
 BOOL
 (homing done)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3244

 JOG_BWD := ModeHoming_JOG_BWD)

 ModeHoming_DONE := ModeHoming.DONE;

 ModeHoming_ERR := ModeHoming.ERR;

 ModeHoming_ERNO := ModeHoming.ERNO;

 Mode-
Homing_HOMING_DONE

:= Mode-
Homing.HOMING_DONE;

SOLAR_MODE_CALIBRATION

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block without historical values

Group Package of function blocks for different control
modes

This function block represents an operation mode that allows to calibrate the tracker reference
point.
This function is necessary to calibrate the reference point (Z) when incremental encoders are
used for the first time.
Sequence of the calibration process.
Option 1:
1. Move the tracker by using SOLAR_MODE_MANUAL to a position that let you to measure

that position easily.
2. Get the angular position by using a high accuracy measurement device. Store this value in

POS_CALC variable.
3. Enabling function block to start calibrating process, then:

● System will be moved automatically towards reference point.
● System will stop as soon as reference point (Z) is reached. Encoders position function

will stored the calibrating value at Z_VALUE.

ð Calibrating process finished.

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3245

Option 2:
On the other hand, if you are not able to determinate tracker position by using a high accuracy
measurement device, it is possible to use a simple solar radiation sensor to determinate the
correct tracker position.
Proceed as follow:
1. Move the tracker using SOLAR_MODE _MANUAL to a position ahead of the sun.
2. Using a solar radiation sensor, you have to wait until tracker will be focused. At this

moment you store the calculated position of the sun (obtained by using a sun position
algorithm).

3. Enabling function block to start calibrating process, then:
● System will be moved automatically towards reference point.
● System will stop as soon as reference point (Z) is reached. Encoders position function

will stored the calibrating value at Z_VALUE.

ð Calibration process finished.

Option 2 needs a sunny day to complete the process.

Figure below shows the logical sequence that implements both options:

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3246

Figure below shows the logical sequence that implements SOLAR_MODE_CALIBRATION for
Type 1 & Type 2:

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3247

Figure below shows the logical sequence that implements SOLAR_MODE_CALIBRATION for
Type 3 & Type 4:

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3248

Type 1: Using encoder reference point Z_PULSE to determinate home position.
First movement: Negative direction (left):

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3249

At the beginning, system is located at point 1 and limit switch is not active yet. When zACTION-
TYPE1 is enabled, JOG_BWD is set to TRUE. As soon as shows rising edge, home position
has been reached and system stops its movement at point 2.
If system is located between Z_PULSE and LIMIT_SWITCH positions, SOLAR_MODE_CALI-
BRATION operates as figure below shows:

Type 2: Using encoder reference point Z_PULSE to determinate home position.
First movement: Positive direction (right):

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3250

At the beginning, system is located at point 1 and Z_PULSE is not active yet. When
SOLAR_MODE_HOMING is enabled, JOG_FWD is set to TRUE. As soon asZ_PULSE shows
rising edge, home position has been reached and system stops its movement at point 2.
If system is located between Z_PULSE and LIMIT_SWITCH positions, SOLAR_MODE_CALI-
BRATION operates as figure below shows:

Example: SOLAR_MODE_CALIBRATION + Encoder

ModeCalibrate.Z_PULSE = CD522Encoder.RDY_TO_CALIB

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3251

Type 3: Using Z_PULSE and cam switch to determinate home position.
First movement: Positive direction (right):

Home position has been reached when rising edge of the signal Z_PULSE is detected. Then,
movement is stopped. On the other hand, if system is located at the end of its movement range
and Z_PULSE signal is set to TRUE (see figure below) home position is reached as follow:

Type 4: Using Z_PULSE and cam switch to determinate home position.
First movement: Negative direction (left).

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3252

Home position has been reached when rising edge of the signal Z-PULSE is detected. Then,
movement is stopped. On the other hand, if system is located at the end of its movement range
and Z_PULSE signal is set to TRUE (see figure below) home position is reached as follow:

Example: SOLAR_MODE_CALIBRATION + Encoder.

ModeCalibrate.Z_PULSE = CD522Encoder.Z_PULSE

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3253

Input description
Calibrating process starts as soon as rising edge is detected at signal EN.
In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The block is not processed if input EN = FALSE.
While input EN is set to TRUE, the inputs are continuously checked for validity and plausibility.
If this is not the case, processing is aborted and corresponding error is displayed at output
ERR/ERNO.

This input indicates which kind of configuration sensors are going to be used to determinate
home positions (see figures above).
1 -> Z_Sensor is only one pulse signal. First movement: backward.
2 -> Z_Sensor is only one pulse signal. First movement: forward.
3 -> Z_Sensor uses cam switch. First movement: forward.
4 -> Z_Sensor uses cam switch. First movement: backward.

Calculated tracker position using a high accuracy measurement device or a sun position algo-
rithm.

Boolean expression that indicates the positioning device has reached its Z position.
TYPE 1 & 2 -> Z_PULSE = RDY_CALIB (output variable of encoders function).
TYPE 3 & 4 -> Z_PULSE = (variable that indicates the state of input Z).

Boolean expression that indicates home position has been reached. It is used in Type 1 & Type
2.
TYPE 1 -> LIMIT_SWITCH = LIMIT_SWITCH_MIN
TYPE 2 -> LIMIT_SWITCH = LIMIT_SWITCH_MAX

Boolean expression that indicates reading process of the encoder has finished (see
SOLAR_Encoder_CD522_RDY_SET Ä Chapter 1.5.11.2.4.2 “SOLAR_ENCODER_CD522”
on page 3194).
POS_ACT = POS_CALC.

Boolean expression that enables position control block.

Desired position to locate the tracker.

In order to manually move the system forward, input JOG_FWD has to be set to TRUE.

In order to manually move the system backward, input JOG_BWD has to be set to TRUE.

EN BOOL
 (enable block)

TYPE_MODE
 BYTE (type
mode)

POS_CALC
 REAL (posi-
tion calculated)

Z_PULSE
 BOOL (z
pulse)

LIMIT_SWITCH
 BOOL (limit
switch)

START_CALIB
 BOOL (start
calibration)

GO_TO_POS_R
EF BOOL (go
to position ref-
erence)
POS_REF
 REAL (posi-
tion_reference)
JOG_FWD
 BOOL (jog
forward)
JOG_BWD
 BOOL (jog
backward)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3254

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Output CALIB_STARTED indicates calibrating process has started.

The counter can be set to a start value. This value must be applied to the input
POS_START_VALUE.
If input CALIB_STARTED = TRUE, the counter takes this value.

Boolean expression that enables calibrating process.

Function call in IL

CAL ModeCalibrate (

 EN := ModeCalibrate_EN,

 TYPE_MODE := ModeCalibrate_TYPE_MODE,

 POS_CALC := ModeCalibrate_POS_CALC,

 Z_PULSE := ModeCalibrate_Z_PULSE,

 LIMIT_SWITCH := ModeCalibrate_LIMIT_SWITCH,

 RDY_TO_CALIB := ModeCalibrate_RDY_TO_CALIB,

 GO_TO_POS_REF := ModeCalibrate_GO_TO_POS_REF,

 POS_REF := ModeCalibrate_POS_REF,

 JOG_FWD := ModeCalibrate_JOG_FWD,

 JOG_BWD := ModeCalibrate_JOG_BWD)

DONE

ERR

ERNO

CALIB_STARTE
D BOOL (Cali-
bration_Started)
POS_START_VA
LUE REAL
 (position start
value)

RDY_FOR_CALI
B BOOL
 (ready for cali-
bration)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3255

 LD
ST

ModeCalibrate.DONE
ModeCalibrate_DONE

 LD
ST

ModeCalibrate.ERR
ModeCalibrate_ERR

 LD
ST

ModeCalibrate.ERNO
ModeCalibrate_ERNO

 LD
ST

ModeCalibrate.CALIB_STARTED
ModeCalibrate_CALIB_STARTED

 LD
ST

ModeCalibrate.POS_START_VALUE
ModeCalibrate_ERNO_VALUE

 LD
ST

ModeCalibrate.ERNO_RDY_FOR_CALIB
ModeCalibrate_ERNO_EN_RDY_FOR_CALIB

In IL, the function call has to be written in one line.

Function call in ST

ModeCalibrate (

 EN := ModeCalibrate_EN,

 TYPE_MODE := ModeCalibrate_TYPE_MODE,

 POS_CALC := ModeCalibrate_POS_CALC,

 Z_PULSE := ModeCalibrate_Z_PULSE,

 LIMIT_SWITCH := ModeCalibrate_LIMIT_SWITCH,

 RDY_TO_CALIB := ModeCalibrate_RDY_TO_CALIB,

 GO_TO_POS_REF := ModeCalibrate_GO_TO_POS_REF,

 POS_REF := ModeCalibrate_POS_REF,

 JOG_FWD := ModeCalibrate_JOG_FWD,

 JOG_BWD := ModeCalibrate_JOG_BWD)

 ModeCalibrate_DONE := ModeCalibrate.DONE;

 ModeCalibrate_ERR := ModeCalibrate.ERR;

 ModeCalibrate_ERNO := ModeCalibrate.ERNO;

 ModeCali-
brate_CALIB_STARTED

:= ModeCalibrate.CALIB_STARTED;

 ModeCali-
brate_POS_START_VALUE

:= ModeCalibrate.POS_START_VALUE;

 ModeCalibrateRDY_FOR_CALIB := ModeCalibrate.RDY_FOR_CALIB;

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3256

SOLAR_MODE_TRACKING

Available as of runtime system: V1.3 and above

Included in library: Solar_AC500_V22.lib

Type Function block without historical values

Group Package of function blocks for different control
modes

This function block represents an operation mode that allows to track the sun based on a
calculated position of the sun. This position is given by an SOLAR_NOAA algorithm depending
on date, latitude and longitude.
This function block calculates the absolute difference between the calculated position of the
sun and the actual tracker position. If the result is greater than the value of track error
(TRACK_ERR), system moves to the calculated position. Otherwise, system is stopped.
The figure below shows how this operation mode works.
Figure below shows the logical sequence that implements SOLAR_MODE_TRACKING:

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3257

It is possible to follow sun´s path with an offset. This value is indicated by the parameter
FOLLOW_OFFSET.

Figure below shows the logical sequence that implements SOLAR_MODE_TRACKING adding
an offset value.

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3258

Tracker follows the sun by using a discontinuous movement. It is a step by step
movement in order to save energy from actuators.

Chart below shows real behavior of azimuth tracker when is enabled
SOLAR_MODE_TRACKING. In this case TRACK_ERROR = 0,05°.

Red line -> Calculated position using SOLAR_NOAA algorithm.
Blue line -> Actual axis position.

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3259

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Calculated position of the sun.

Actual position of Solar Tracker.

Value of track error allowed.

Indicates that tracking has an offset concerning to real calculated position of the sun.

Boolean expression that enables position control block.

Desired position to locate the tracker.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

EN

POS_CALC
 REAL (posi-
tion_calculated)
POS_ACT
 REAL (posi-
tion actual)
TRACK_ERR
 REAL (track
error)
FOLLOW_OFFS
ET REAL
 (follow offset)
GO_TO_POS_R
EF BOOL (go
to position ref-
erence)
POS_REF
 REAL (posi-
tion_reference)

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3260

Function call in IL

CAL ModeTracking (

 EN := ModeTracking_EN,

 POS_CALC := Mode-
Tracking_POS_CALC,

 POS_ACT := ModeTracking_POS_ACT,

 TRACK_ERR := Mode-
Tracking_TRACK_ERR,

 FOLLOW_OFFSET := Mode-
Tracking_FOLLOW_OFFSET,

 GO_TO_POS_REF := Mode-
Tracking_GO_TO_POS_REF,

 POS_REF := ModeTracking_POS_REF)

 LD
ST

ModeTracking.DONE
ModeTracking_DONE

 LD
ST

ModeTracking.ERR
ModeTracking_ERR

 LD
ST

ModeTracking.ERNO
ModeTracking_ERNO

In IL, the function call has to be written in one line.

Function call in ST

ModeTracking (

 EN := ModeTracking_EN,

 POS_CALC := Mode-
Tracking_POS_CALC,

 POS_ACT := ModeTracking_POS_ACT,

 TRACK_ERR := Mode-
Tracking_TRACK_ERR,

 FOLLOW_OFFSET := Mode-
Tracking_FOLLOW_OFFSET,

 GO_TO_POS_REF := Mode-
Tracking_GO_TO_POS_REF,

 POS_REF := ModeTracking_POS_REF)

 ModeTracking_DONE := ModeTracking.DONE;

 ModeTracking_ERR := ModeTracking.ERR;

 ModeTracking_ERNO := ModeTracking.ERNO;

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3261

1.5.11.3 Solar_NREL library

1.5.11.3.1 Preconditions for the use of the Solar_NREL library

The blocks contained in the Solar_NREL library can only be executed in RUN
mode of the PLC, but not in simulation mode. NREL stands for National Renew-
able Energy Laboratory and SPA stands for Solar Position Algorithm.

The function blocks of the library SolarNREL_AC500_V22.lib Version 0.4 are
available in AC500 control systems with a runtime system of version V1.3 or
higher and S500 I/O devices (DC551) with firmware version V1.11 or higher.

Because of the complexity of the algorithm, this library is recommended to be
used with a PM583 at least.

NOTICE!
Notice about the algorithm
Copyright © 2008 Midwest Research Institute, All Rights Reserved
This computer software is code in development prepared by Midwest Research
Institute, (hereinafter the "Contractor"), under Contract DE-AC-99G010337
(Contract) with the Department of Energy (DOE). The United States Govern-
ment has been granted for itself and others acting on its behalf a paid-up, non-
exclusive, irrevocable, worldwide license in the Software to reproduce, prepare
derivative works, and perform publicly and display publicly. Beginning five (5)
years after the date permission to assert copyright is obtained from the DOE,
and subject to any subsequent five (5) year renewals, the United States Gov-
ernment is granted for itself and others acting on its behalf a paid-up, non-exclu-
sive, irrevocable, worldwide license in the Software to reproduce, prepare deriv-
ative works, distribute copies to the public, perform publicly and display publicly,
and to permit others to do so. If the Contractor ceases to make this computer
software available, it may be obtained from DOE's Office of Scientific and Tech-
nical Information's Energy Science and Technology Software Center (ESTSC)
at P.O. Box 1020, Oak Ridge, TN 37831-1020. THlS SOFTWARE IS PRO-
VIDED BY THE CONTRACTOR "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRAN-
TIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE CONTRACTOR OR THE
U.S. GOVERNMENT BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING
BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA
OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR
IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS
SOFTWARE.

The Application Version of the library Solar_AC500_V22.lib is tested with
the equipment and configuration used in the attached example programm
"Example_Solar_2Axis_ACS3XX.pro".

This example uses a PM583 with a CD522 counter module.

ABB ACS355 drive is used with AC500 PLC via Modbus RTU communication.

This example also has option to connect DC541 or DC522 as encoder module.

Any other combination with AC500 or drives equipment should work, but is not
tested and might however not work properly.

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3262

1.5.11.3.2 Special characteristics of the Solar_NREL library
The Solar_NREL library contains all blocks necessary to calculate the position of the sun
(azimuth and elevation) depending on the date, time and local environment.
A detailed description of the AC500 PLC configuration, can be found in the chapter Ä Chapter
1.6.5 “Configuration in Automation Builder for AC500 V2 products” on page 5757.

1.5.11.3.3 SOLAR_NREL

Available as of runtime system: V1.3 and above

Included in library: SolarNREL_AC500_V22.lib

Type Function block without historical values

Group Package of function blocks to get the position
of the sun

This function block calculates the position of the sun depending on the date, time, and localiza-
tion. It also includes a function that corrects the value of the elevation thanks to the local pres-
sure, temperature and refraction of atmosphere at sunrise and sunset. This function embeds
the NREL's algorithm which can be found on the NERLs website: http://rredc.nrel.gov/solar/
codesandalgorithms/spa.
The limitation of this function is the number of outputs which are the azimuth, elevation (uncor-
rected) and corrected elevation. These outputs are the topocentric coordinates of the sun which
use the observer's location as the center of the coordinate system.
The end-user may use the RTC of the AC500 system by using the CLOCK function block of the
library named SysExt_AC500_V10.lib or may use any other source to calculate the position of
the sun.
Any additional information about the algorithm can be found on the NREL website: http://
www.nrel.gov/

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3263

http://rredc.nrel.gov/solar/codesandalgorithms/spa
http://rredc.nrel.gov/solar/codesandalgorithms/spa
http://www.nrel.gov/
http://www.nrel.gov/

Table 197: Size of used data for NREL function block and execution time for each CPU type
 PM583 PM591 PM564
Data Size 4731 bytes 4731 bytes 4731 bytes

Program Size 79706 bytes 43270 bytes 80406 bytes

Execution Time 65 ms 1 ms 120 ms

In case of a PM58x and PM5X4 CPU´s, the program which calls this function block must be
integrated in a dedicated task with a correct value of watchdog (or with watchdog disabled).

Input description
In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The block is not processed if input EN = FALSE.
When calling the block the first time, the inputs are checked for validity and plausibility. If this is
not the case, processing is aborted and corresponding error is displayed at output ERR/ERNO.

Range of values: from 2000 to 6000.

Range of values: from 1 to 12.

Range of values: from 1 to 31.

Range of values: from 0 to 24.

Range of values: from 0 to 59.

Range of values: from 0 to 59.

Observer time zone (negative west of Greenwich) in hours and parts of hours.
Range of values: from -12 to 12.

ΔT = Terrestrial Time (TT) - Universal Time (UT) [seconds].
Difference between the earth rotation time and the terrestrial time. It is derived from observation
only and it is reported in this bulletin, where _T = 32.184 + (TAI-UTC) + _UT1.

Observer latitude (negative south of equator) in degrees.
Range of values: from -90 to 90.

Observer longitude (negative west of Greenwich) in degrees.
Range of values: from -180 to 180.

Observer elevation.
Range of values: -5000 to 5000

EN BOOL
 (enable block)

YEAR INT
 (year)

MON INT
 (month)

DAY INT (day)

HOUR INT
 (hour)

MINUTE INT
 (minute)

SEC INT
 (second)

TIMEZONE
 LREAL (time-
zone)

DELTA_TIME
 LREAL (ΔT)

LATITUDE
 LREAL (lati-
tude)

LONGITUDE
 LREAL (longi-
tude)

ALTITUDE
 LREAL (alti-
tude)

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3264

Local pressure in millibars.
Range of values: from 0 to 5000.

Local temperature in degrees Celsius.
Range of values: from -273 to 6000.

Atmospheric refraction at sunrise and sunset in degrees.
 Range of values: from -5 to 5. Typical: 0.5667

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Topocentric azimuth angle (eastward from north) in degrees.
Range of values: from 0 to 360.
Error : ± 0,0004°.

Topocentric elevation angle (uncorrected) in degrees.
Range of values: from -90° to 90°.
Error : ± 0,0004°.

Topocentric elevation angle (corrected) in degrees. This value includes the effects of: refraction,
pressure and temperature.
Range of values: from -90° to 90°.
Error : ± 0,0004°.

PRESSURE
 LREAL (pres-
sure)

TEMPERATURE
 LREAL (tem-
perature)

ATMOS_REFRA
CTION LREAL
 (atmosphere
refraction)

DONE

ERR

ERNO

AZIMUTH
 LREAL (azi-
muth)

ELEVA-
TION_UNCOR-
RECTED
 LREAL (eleva-
tion uncor-
rected)
ELEVA-
TION_COR-
RECTED
 LREAL (eleva-
tion corrected)

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3265

Function call in IL

CAL mySOLAR_NREL (

 EN := SOLAR_NREL_EN,

 YEAR :=
SOLAR__NREL_OBSERVER
_YEAR_CURRENT,

 MON :=
SOLAR__NREL_OBSERVER
_MON_CURRENT,

 DAY :=
SOLAR__NREL_OBSERVER
_DAY_CURRENT,

 HOUR :=
SOLAR__NREL_OBSERVER
_HOUR_CURRENT,

 MINUTE :=
SOLAR__NREL_OBSERVER
_MINUTE_CURRENT,

 SEC :=
SOLAR__NREL_OBSERVER
_SEC_CURRENT,

 TIMEZONE :=
SOLAR__NREL_OBSERVER
_TIMEZONE_CURRENT,

 DELTA_TIME :=
SOLAR__NREL_DELTA_TIM
E,

 LONGITUDE :=
SOLAR__NREL_OBSERVER
_LONGITUDE,

 LATITUDE :=
SOLAR__NREL_OBSERVER
_LATITUDE,

 ALTITUDE :=
SOLAR__NREL_OBSERVER
_ALTITUDE,

 PRESSURE :=
SOLAR_NREL_LOCAL_PRE
SSURE,

 TEMPERATURE :=
SOLAR_NREL_LOCAL_TEM-
PERATURE,

 ATMOS_REFRACTION :=
SOLAR_NREL_LOCAL_ATM
OSPHERE_REFRAC-
TION_AT_SUN-
RISE_AND_SUNSET)

LD
ST

mySOLAR_NREL.DONE
SOLAR_NREL_DONE

LD
ST

mySOLAR_NREL.ERR
SOLAR_NREL_ERR

PLC Automation with V2 CPUs
Libraries and solutions > Solar library

2022/01/203ADR010582, 3, en_US3266

LD
ST

mySOLAR_NREL.ERNO
SOLAR_NREL_ERNO

LD
ST

mySOLAR_NREL.AZIMUTH
SOLAR_NREL_AZIMUTH

LD
ST

mySOLAR_NREL.ELEVATION_UNCORRECTED
SOLAR_NREL_ELEVATION_UNCORRECTED

LD
ST

mySOLAR_NREL.ELEVATION_CORRECTED
SOLAR_NREL_ELEVATION_CORRECTED

In IL, the function call has to be written in one line.

Function call in ST

mySOLAR_NREL (

 EN := SOLAR_NREL_EN,

 YEAR :=
SOLAR_NREL_OBSERVER_
YEAR_CURRENT,

 MON :=
SOLAR_NREL_OBSERVER_
MON_CURRENT,

 DAY :=
SOLAR_NREL_OBSERVER_
DAY_CURRENT,

 HOUR :=
SOLAR_NREL_OBSERVER_
HOUR_CURRENT,

 MINUTE :=
SOLAR_NREL_OBSERVER_
MINUTE_CURRENT,

 SEC :=
SOLAR_NREL_OBSERVER_
SEC_CURRENT,

 TIMEZONE :=
SOLAR_NREL_OBSERVER_
TIMEZONE_CURRENT,

 DELTA_TIME :=
SOLAR_NREL_DELTA_TIME,

 LONGITUDE :=
SOLAR_NREL_OBSERVER_
LONGITUDE,

 LATITUDE :=
SOLAR_NREL_OBSERVER_
LATITUDE,

 ALTITUDE :=
SOLAR_NREL_OBSERVER_
ALTITUDE,

PLC Automation with V2 CPUs

Libraries and solutions > Solar library

2022/01/20 3ADR010582, 3, en_US 3267

 PRESSURE :=
SOLAR_NREL_LOCAL_PRE
SSURE,

 TEMPERATURE :=
SOLAR_NREL_LOCAL_TEM-
PERATURE,

 ATMOS_REFRACTION :=
SOLAR_NREL_LOCAL_ATM
OSPHERE_REFRAC-
TION_AT_SUN-
RISE_AND_SUNSET)

SOLAR_NREL_DONE := mySOALR_NREL.DONE

SOLAR_NREL_ERR := mySOLAR_NREL.ERR

SOLAR_NREL_ERNO := mySOLAR_NREL.ERNO

SOLAR_NREL_AZIMUTH := mySOLAR_NREL.AZI-
MUTH

SOLARSOLAR_NREL_ELEVATION_UNCORRECTED := mySOALR_NREL.ELEVA-
TION_UNCORRECTED

SOLAR_NREL_ELEVATION_CORRECTED := mySOLAR_NREL.ELEVA-
TION_CORRECTED

1.5.11.4 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

1.5.12 Temperature control library

1.5.12.1 System technology
1.5.12.1.1 Introduction

The Temperature Control library package contains several parts and is overall designed for the
demand of advanced temperature control for critical processes. It needs precise temperature
control and e.g. adaptive tuning for ease of handling and changing environmental or process
conditions.
The package consists of the following components:
● Libraries:

– TECT_TEMP_CONTROL_AC500_V24 library
– ADCTRL_AC500_V24 library (internal, automatically referenced and loaded)
– TECT_EXT_AC500_V24 library (internal, automatically referenced and loaded)

● One example project, consisting of four examples (incl. one advanced CB610 Panel project)
● Documentation
● License code for starting the licensing procedure

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3268

Examples for use can be found in many different applications, where processing at controlled
temperature levels has to be done, e.g. in extrusion and plastics but also in food & beverage
or chemical applications. Especially demanding are extrusion applications, where you can find
many temperature zones (up to 50) in different parts of the machinery and the overall process.
For those system there will also be requirement of handling several zones in a group and
several groups in a system in a structured way.
These processes require typically precise temperature control and therefore require PID instead
of simple 2- or 3-point control. For example, plastics processing and especially extrusion
requires the temperature to be controlled within +/- 0.5 degrees Celsius. High temp deviation
can deteriorate the product quality. As PID settings need to be different, depending on the
temperature zone’s position along the process, e.g. the extruder screw, the adaptive option
helps greatly.
Lots of machines are still using costly and difficult to setup dedicated and decentralized temper-
ature controllers, i.e. separate controller for each zone. Due to this approach, it is not possible
centrally monitoring, controlling and using data acquisition or alarm handling in a simple way.
Often even the PID settings of the temperature zones need to be changed, based on the
currently produced product. The decentralized system takes a much long time to make these
settings and needs more attendance and skilled persons during the production.

TECT_TEMP_CONTROL_AC500_V24 Library gives centralized control of all the temperature
zones using AC500 PLC.
TECT_TEMP_CONTROL_AC500_V24 is the main library, which provides the centralized con-
trol and auxiliary functions for all the temp zones. It also provides the AutoTune functionality
for the individual zones and includes differentiation for the often different heating and cooling
behavior. The blocks of this library internally call blocks of two other internal libraries (added
automatically).
As this library provides centralized control, also Log and recipe functions are implemented for
better user interaction and data collection. Process data can be logged on SD cardin “csv”
format, which can process further for better understanding and monitoring of the system. The
RECIPE function helps to store/select parameters setting for the different products.
This library also provides the option of a simplified interface to HMI´s for the CP600 Panels,
which allows in a structured, modular and simple way the configuration and monitoring of all
temperature zones.

1.5.12.1.2 Requirements
The TECT_TEMP_CONTROL_AC500_V24 library is meant to run on AC500 CPUs and CPU
firmware 2.4 or higher.
The number of temperature zones and auxiliary blocks, which can be used, is limited of course
by memory available for program and data. Therefore on the smaller AC500 eCo typically only 3
temperature zones are possible.
Further needed are an memory card for the logging, a battery for buffering and a CP635 Panel if
the panel project should be used.

For TECT_TEMP_CONTROL_AC500_V24 library Automation Builder 1.2 or higher is required
for programming purposes.

Main purpose of
TECT_TEMP_C
ONTROL_AC500
_V24 library

Hardware

Software

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3269

1.5.12.1.3 Control principle
State machine

Fig. 579: Control Principle of State Machine

The PS564 Temperature Control library uses a state machine to accomplish all work, including:
● Automatic PID control (state PID_Process): Normal operation (see Automatic PID Control
Ä Chapter 1.5.12.1.3.2 “Automatic PID control” on page 3270)

● Auto tuning procedure (state AutoTune): Can be used during the commissioning phase
to calculate the optimized parameters for PID controller. (see Auto Tuning Ä Chapter
1.5.12.1.3.3 “Auto tuning” on page 3271)

● Manual Control (state Manual): Open loop control with directly change of duty cycle
● Alarm handling

Automatic PID control
PID controller principle

A proportional-integral-derivative controller (PID controller) is a closed-loop control method,
widely used in industrial control systems. A PID controller manipulates a control variable to
minimize the error between process actual value and a desired process set point.
The PID controller algorithm involves three parameters: The proportional, the integral and
derivative values, abbreviated as P, I, and D.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3270

Fig. 580: PID Controller Principle

In the PS564 temperature control library, a PID controller with the first order delay T1 is used to
prevent spike of derivative part D.
In the world of temperature control, set point is the desired temperature of the process, actual
value is the actual temperature, and control variable is the PWM signal for controlling the heater
and cooler.
In the PS564 Temperature Control library, the PWM signal is presented in means of digital value
(binary outputs) as well as analogous value (duty cycle).

Set point selection
In the PS564 Temperature Control library are 3 set points available:
● Normal set point: For normal operation.
● Standby set point: For standby operation with a lower temperature to save energy, e.g.

during lunch time.
● Tune set point: For auto tuning.
The first two set points use the same PID controller and the same parameters (see figure
"Control Principle of State Machine"Fig. 579). The tune set point skip the PID controller and is
used during an auto tuning procedure (see Auto Tuning Ä Chapter 1.5.12.1.3.3 “Auto tuning”
on page 3271).

Auto tuning
A controller with adaptive functionality helps the user to find out the optimized controller param-
eters of an unknown system using auto tuning procedure. This simplifies the machine commis-
sioning and thus the user saves time and cost to reach an optimized result.

Function principle

Fig. 581: Function principle of Auto Tuning

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3271

The auto tuning process serves to determine optimized controller parameters for the PID con-
troller. The auto tuning identifies the parameters of one temperature zone (controlled system)
and calculates the optimized controller parameters for that zone. The dynamic behavior of
these thermal processes can be approximately acquired by means of the following characteristic
quantities, which can be defined on the basis of the transfer function:
● Tu: Delay time
● Tg: Stabilization time
● Ks: Transfer factor (controlled system gain)
At the end of the auto tuning process, the actual progression of the transfer function is replaced
by the linear-progressing reversing tangent placed at its turning point.

Fig. 582: Function principle of Auto Tuning

The figure above represents the transfer function, the reversing tangent and the resulting char-
acteristic quantities for a temperature control process. As long as Tu, Tg, Ks are acquired, PID
controller parameters like KP, TI, TD and T1 will be calculated.
Auto tuning is only allowed when the actual temperature has reached its steady state. The
auto tuning can be executed both during process start-up (initial settings) and when the value
of the desired set point changes. This allows auto tuning of the control parameters in case of
a process which must be operated at different set points and where the initially fixed control
parameters may lead to undesired control response due to set point change. In both cases, the
relative change should be as large as possible to ensure a precise measurement during the
auto tuning, thus a good result of PID parameters.
Continuous auto retuning of the controller parameters is not built in.

Auto tuning for heating and cooling
There are two possibilities for heating and cooling during auto tuning process:

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3272

Only heating

● System will be heated up with predefined Tune Output (100% duty cycle as default) until the
tune set point is reached.

● Control parameters KP, TI, TD, T1 will be calculated using the temperature change (ACT T
curve) during the auto tune.

● User can decide, if he would accept the auto tune result or not.
● After that he can change the KP, TI, TD, T1 parameters manually for fine tuning.

Heating and cooling

● System will be heated up with predefined Tune Output (100% duty cycle as default) until the
tune set point is reached.

● Then the system will be cooled down with predefined Tune Output (-100% duty cycle as
default) until the internal defined threshold is reached.

● Control parameters KP, TI, TD, T1 will be calculated for heat and a cool factor related to
heat will be calculated for cool.

● The user can decide if he would accept the auto tune result or not.
● After that he can change the KP, TI, TD, T1 parameters and cool factor manually for fine

tuning.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3273

Alarm handling
In the PS564 library are two categories of alarm:
● Fault: leads to stop of the process
● Warning: process continues with warning indication
Fault is triggered if something serious happens, which must stop the process, otherwise the
machine as well as the production material can be damaged.
In practice, the user can use the individual alarm bit to do some control or give some indication
out of PLC, e.g. switching off a contactor or switch on an alarm light.

Faults
The following faults are specified:
● Tune Fault

This happens, when there is something wrong during the tune process, e.g. the temperature
change is too small to calculate reasonable PID parameters.

● Thermal Coupler Fault 1
Plausibility check of the temperature value, if it is inside the plausible range for case like
wire cut.

● Thermal Coupler Fault 2
Plausibility check of the temperature change to avoid e.g. inverted connection of two sen-
sors.

● HighHigh Temperature Fault
Check, if the actual temperature reaches the allowed up limit of the process.

● LowLow Temperature Fault
Check, if the actual temperature reaches the allowed down limit of the process.

Temperature limits
There are different temperature limits for the process. They will trigger fault (red in following
figures) or warning (orange in following figures) depending on the severity.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3274

LOWLOW_TEMP check will only be active after the actual temperature has already exceeded
the LOW_TEMP limit.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3275

1.5.12.1.4 Zone management
Overview

Beside the Temperature Control process, a concept of 3-level zone management is offered by
the PS564 library.
In this concept, a Temperature Control system consists of up to 255 groups, and each group
consists of up to 255 zones.
The system refers to the whole machine. On the system level, it offers convenient monitoring as
well as operating.
The groups are also the physical groups of the process which are normally close to each other.
On the group level, several major functions are realised:
● Convenient monitoring as well as operating at group level.
● A group-wise programming of the control process (using function block TECT_GROUP)

instead of programming the control process for each zone separately.
● Fault monitoring at group level.
● Coordinated output at group level.
It is not mandatory to apply the zone management concept for the control process. Instead,
the user can apply it with full flexiblilty: He can apply 3 levels (system-group-zone) for a large
system, or 2 levels (group-zone) for a middle size system, or even 1 level (only zone) for a
small machine. However the more zones a system contains, the bigger the benefit of the zone
management concept will be experienced by the user.

One zone
The TECT_TEMP_CONTROL is the kernel control function block, which does the control
process. The input is the actual temperature feedback from the analogous sensor mounted
inside the temperature zone. The outputs of the control is a PWM signal, which controls the
process. It can be binary outputs, which switch the heater and cooler directly or analogous
signal in duty cycle (%).
The zone data structure contains all set and status values, which are relevant for the process.
The set values can be written from the user, whereas the status values can only be read, e.g.
using a CP600 HMI operating panel. It is also the common interface for most of other function
blocks in PS564 library.
The function block TECT_TEMP_SIMU can be used as one zone simulation instead of a real
zone for test purpose.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3276

Multiple zones

For a multiple zones system, it just needs to duplicate the engineering of a one zone system.
However, it is possible to use the TECT_PWM8 to coordinate the outputs.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3277

One group

With TECT_GROUP the control function block TECT_TEMP_CONTROL is called internally
multiple times for each zone.
A group data structure is needed, which contains the status of its zones as well as the control
commands for the whole group, e.g. enable/disable process, enable/disable auto tune etc.
A zone data structure is always necessary to be defined for each zone.
It is possible to activate the TECT_PWM8 in TECT_GROUP internally to coordinate the outputs
Ä Chapter 1.5.12.2.2 “TECT_GROUP” on page 3316.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3278

Multiple groups within a system

For a multiple groups system, it just needs to duplicate the engineering of a one group system.
However, it is necessary to call TECT_SYSTEM function block and define a system data
structure, which contains the status of its groups as well as the control commands for the whole
system, e.g. enable/disable process, enable/disable auto tune etc.
In this configuration, a TECT_HMI_MUX function block can be used as the direct communica-
tion interface to a HMI. It has the multiplexer principle and passes only one group of zone data
from AC500 PLC to HMI to reduce the communication load. The usage of TECT_HMI_MUX will
only make sense if more than 2 groups are defined.

1.5.12.1.5 How to realize in a program
This chapter tries to help the user to understand and combine the function blocks to realize
his application. This chapter explains the principle of how to use the function blocks. The
diagrams used in this chapter only demonstrate the principle instead of showing programming
in the program editor. For detailed explanation of each function block please refer to another
document Function Blocks Description. For how to program the application please refer to the
example document.

Interface for sensors and actuators
The temperature control with PS564 is a closed loop control, as shown in the figure, the
control function block TECT_TEMP_CONTROL sets the outputs as PWM signals for heater
and cooler for the temperature zone. The actual temperature is connected to the input of
TECT_TEMP_CONTROL as feedback.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3279

Use a real zone
For a real zone, there are two methods for output:
● digital outputs

Two digital outputs are available, one for heater and another for cooler. They can be
connected to AC500 digital modules which has transistor outputs.

● analogous output
o Duty Cycle as analogous output. It can be connected to AC500 analogous modules which
has analogous outputs.

As feedback, a temperature sensor, e.g. thermocouple or resistance temperature detectors
(RTDs), will be used. It can be connected to AC500 analog modules which supporting tempera-
ture sensor input.

Use zone simulation function block
The PS564 library has a simulation function block which can be used to simulate a temperature
zone.

Consider zone management
The zone management is a feature which not only helps the user to manage his system but also
give some add on functionality. But from another side, the zone management functionality as
well as any further functionality will need more resource in PLC.
There are several criteria to decide how many levels the user should apply as zone manage-
ment:
● Total number of zones
● Complexity of the machine
● The PLC type used (due to resources available in PLC)

Zone level programming
If the system has up to 5 zones, or if PLC type PM554 or PM564 is used, then only one level is
recommended.
For zone level programming, the function block TECT_TEMP_CONTROL is used for each zone
in the programming. The Zone Data which contains the important information of a zone needs to
be connected to the function block.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3280

For each zone, the digital outputs DO_HEAT and DO_COOL as well as the analogous output
DUTY_CYCLE can be used to connect to the output module. The temperature sensor feedback
is connected to function block input ACT_TEMP_RAW.
For each zone, it is possible to add a noise filter to prevent short disturbances.

For multiple zones, it is just a multiplication of the one zone application.
Another function block TECT_PWM8 can be connected up to 8 TECT_TEMP_CONTROL func-
tion blocks to coordinate the outputs in time behavior. They have not to be switched on at
the same time to avoid undesired voltage drop in the power supply system. At the same time,
it compensates the error between digital outputs and duty cycle due to CPU task cycle (as
resolution of digital outputs duration). For heating and cooling separate instances of this block
have to be used.

Group level programming
With group level, it will be possible to control as well as monitor the zones on group level.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3281

Using the group level programming, one instance of function block TECT_GROUP is called in
the program code instead of multiple calls of multiple zones in that group.
The first Zone Data and the Group Data structures need to be connected to the TECT_GROUP
function block. Beside those, an array of TECT_TEMP_CONTROL for all zones in the group is
to be declared and connected to the function block. Thus the TECT_TEMP_CONTROL function
blocks will be called internally in the TECT_GROUP.

With TECT_GROUP, TECT_PWM8 function block is called internally:
● The instance for heating and cooling needs to be defined. Each instance supports 8 zones.

For more than 8 zones, an array of TECT_PWM8 needs to be declared.
● This function can be enabled or disabled with input CO_OUTPUT. If it is disabled, then a

dummy instance of TECT_PWM for each FIRST_PWM8_HEAT and FIRST_PWM8_COOL
should be connected.

● The parameters for TECT_PWM8 are to be defined by inputs. For heating
instance, MIN_CYCLES_HEAT, PWM_PERIOD_CYCLES are used. For cooling instance,
MIN_CYCLES_COOL and PWM_PERIOD_CYCLES x rPeriod_Fact (in Machine Set of
Zone Data structure) as PWM period.

Besides that, the user can enable the group fault monitor with input EN_FAULT_MONITOR with
defined GROUP_FAULT_MASK. This function will set all zones in the group to fault state as
soon as one zone in the group has fault (according to GROUP_FAULT_MASK).
For multiple groups, it is just a multiplication of the one group application.
Another function block TECT_HMI_MUX can be used for multiple groups to reduce communica-
tion data as well as reduced engineering effort for Panel project.

It works as a multiplexer, group index decides the zone data of which group will be active for
user, so that it can be read to buffer as well as be written from buffer.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3282

In this way, the communication data between AC500 and HMI can be reduced from n group to
one group. At the same time the HMI project can also be programmed for one group instead of
n groups.

System level programming
With system level, it will be possible to control as well as monitor all the zones on system level.
This makes it convenient by a system with a lot of zones.
When using system level programming, the group function block TECT_GROUP will still be
applied as in group level programming. Also the TECT_HMI_MUX can be used. Thus the
functionalities on group level are still available.

The ADR_SYSTEM_INFO points to the ZONE_INFO which contains the actual temperature and
error word. They will be used directly in the HMI for alarm handling and trends because they
should be delivered to HMI without interruption by TECT_HMI_MUX.

Data and settings
Data structure

Depending on which level of zone management is applied, zone data, group data or system
data will be used for saving the status and settings of control.
Zone Data structure is essential structure which contain all information for a zone. It is highly
recommended to save zone data as retain variable for power safe. It has five sub structures:
● Internal status: status which is used internally in the function block, e.g. control state, group

and zone index
● Machine status: machine specific status, e.g. PID parameters calculated from AutoTune.
● Process status: process specific status, e.g. actual temperature, status word, error word,

duty cycle.
● Machine set values: machine specific set values, e.g. PID parameters, HighHigh and

LowLow temperature limits
● Process set values: process specific values, e.g. control word, set point, High and Low

limits.
● All status can only be read whereas all set values can be read and written by the user.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3283

For group level, there is group data which contains the status of the group (e.g. control state of
the whole group) and the control value of the group (e.g. enable / disable process of the zones
in the group).
For system level, there is system data which contains the status of the system (e.g. control state
of the whole system) and the control value of the system (e.g. enable / disable process of the
zones in the system).

Initial zone data settings
To simplify the start process of temperature control, it is highly recommended to have an
initialization procedure of relevant zone data values, as those values are necessary for starting
the process. Otherwise those values need to be set using HMI. For example:
● Set point:

ZoneData.tsProcessSet.rsetpoint:=55;
● Hysteresis to switch on and off cooling: ZoneData.tsMachineSet.rTemp_diff_cool:=1; (*If

value> 0: cooling will be ON with 100% when ACT_TEMP > set point + rtemp_diff_cool x
iCool_Off_Ratio. If value = 0: rtemp_diff_cool is deactivated, PID controller will be active for
cooling*)

● Values for Thermal Coupler Fault 2: ZoneData.tsMachineSet.uiMIN_TEMP_CHANGE:=1;
ZoneData.tsMachineSet.uiCHANGE_TIME:=60;
(*Inside uiCHANGE_TIME in seconds, a temperature change of 1 of raw value from sensor
should be detected, otherwise fault will be triggered*)

● Values for Thermal Coupler Fault 1:
ZoneData.tsMachineSet.rTC_max:=400;
ZoneData.tsMachineSet.rTC_min:=-50;
(*Measuring range of thermal sensor, e.g. -50°C to 400°C. If the detected sensor value is
out of *)

● Limits for temperature:
ZoneData.tsMachineSet.rhighhigh_temp:=120;
ZoneData.tsMachineSet.rlowlow_temp:=0;
ZoneData.tsProcessSet.rhigh_temp:=ZoneData.tsProcessSet.rsetpoint+10;
ZoneData.tsProcessSet.rlow_temp:=ZoneData.tsProcessSet.rsetpoint-10;
ZoneData.tsProcessSet.rhigh_deviation:=0.5;
ZoneData.tsProcessSet.rlow_deviation:=0.5;

● Necessary temperature change to do AutoTune: ZoneData.tsMachineSet.iTune_Step:=500;
(*This is a raw sensor value, for a RAW_FACTOR 10, it will be 50 degree.*)

● Set control bits:
ZoneData.tsProcessSet.wcontrolWord.1:=TRUE;(*heat enabled*)
ZoneData.tsProcessSet.wcontrolWord.2:=TRUE;(*cool enabled*)
ZoneData.tsProcessSet.wcontrolWord.6:=TRUE;(* accept autotune result*)

Please refer to the example for the detailed realization of this data initialization part.

1.5.12.1.6 How to start control process
To have a better overview of the control process, the zone data visualization element can be
used.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3284

Do AutoTune
Prepare the settings

Before start the auto tuning process, the following points should be made clear:
● Auto tuning only for heating or for both heating and cooling.
If only heating is enabled for auto tuning, the following values should be set:
● Control bit: ZoneData.tsProcessSet.wControlWord.1:=TRUE;(*heat enabled*)
● ZoneData.tsProcessSet.wControlWord.2:=FALSE;(*cool disabled*),

Or if cooling enabled with hysteresis:
ZoneData.tsProcessSet.wControlWord.2:=TRUE;(*cool enabled*)
ZoneData.tsMachineSet.rTemp_diff_cool>0;

If both heating and cooling are enabled for auto tuning, the following values should be set:
● Control bits: ZoneData.tsProcessSet.wControlWord.1:=TRUE;(*heat enabled*)

ZoneData.tsProcessSet.wControlWord.2:=TRUE;(cool enabled*)
● Cooling with hysteresis must be disabled with:

ZoneData.tsMachineSet.rTemp_diff_cool:=0;
Besides that, the necessary temperature change to do AutoTune needs to be checked: Zone-
Data.tsMachineSet.iTune_Step:=500; (*This is a raw sensor value, for a RAW_FACTOR 10, it
will be 50 degree.*) The larger the value, the better the result will be. It is recommended to have
500 as raw sensor value.

Start AutoTune
Enable the control bit ZoneData.tsProcessSet.wControlWord.5 to enable AutoTune, and enable
the control bit ZoneData.tsProcessSet.wControlWord.0 to start the control process.
As long the AutoTune is started, the control state machine ZoneData.tsInternalStatus.Con-
trolState will change from Ready to AutoTune. The tune setpoint ZoneData.tsInternal-
Status.rTune_SetPoint will be set internally: as long as the process set point ZoneData.tsPro-
cessSet.rsetpoint fulfills the necessary temperature change, namely the different against actual
temperature is greater than ZoneData.tsMachineSet.iTune_Step, then the AutoTune will take
the process set point as tune setpoint and transfer it to the active setpoint ZoneData.tsProcess-
Status.rActive_SetPoint. Otherwise it will set a higher tune setpoint, which is not lower than the
HighHigh temperature limit.
AutoTune needs a long time depending on the system. If the cooling is also activated, then it will
be even longer.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3285

AutoTune done
If the AutoTune is done with success, a status bit ZoneData.tsProcessStatus.wStatusWord.6 for
tune done is set and the PID parameters (KP, TI, TD, T1) will be calculated and the control state
will change back to ready. If the control bit ZoneData.tsProcessSet.wControlWord.6 (accept
AutoTune result) is TRUE, then the PID values will be copied from AutoTune result to PID
values for automatic PID process with an indication ZoneData.tsProcessStatus.wStatusWord.7
(AutoTune accepted) and at the same time the automatic process will start with changing
control state to PID_Process.
After accepting the AutoTune result, the control bit ZoneData.tsProcessSet.wControlWord.6 can
be disabled for a fine tuning of the PID parameters.
Even if the zone data is saved as retain variable, it is recommended to save the AutoTune
results and PID parameters into PLC internal flash or as a recipe file directly after AutoTune is
done. Because the values can be reset by cold resetting the PLC or by downloading new PLC
program. Please refer to the chapters for those two functionalities.
If AutoTune cannot be completed due to tune fault, the control state will change to Fault state
with fault bit ZoneData.tsProcessStatus.wStatusWord.15 and error code TECT_TuneFault in
ZoneData.tsProcessStatus.wErrors and ZoneData.tsProcessStatus.Latest_Error. To reset the
fault, the enable AutoTune control bit needs to be disabled first and a warm reset with Zone-
Data.tsProcessSet.wControlWord.13 of process is necessary.
The AutoTune fault can happen if the temperature change between actual temperature and set
point is not big enough. For such case, the user needs to wait until the machine temperature
has been cooled down.

Restart AutoTune
To restart AutoTune, the cold reset of process is necessary. The cold reset resets not only the
fault state but also the tune status including status bit tune done and tune accepted. After that, a
new AutoTune process can be started again.

Do PID Process
PID process is an automatic process with a PID controller which outputs control variables
according to actual temperature as feedback. To start PID process, the valid PID parameters
(KP, TI, TD, T1) are necessary. Internally, it check the following conditions for valid parameters:
● KP > 0,
● TI >= 0,
● (TD>0 AND T1>0) OR (TD=0)
If the values are not valid, then the PID process cannot be started with a warning: NoPIDPro-
cess.
The PID parameters can be accepted from AutoTune result, can be set during fine tuning or can
even be set manually without AutoTune process.
If the user has already write the PID parameters into internal flash or a recipe file, then they can
be read back from flash or a recipe file.
For PID process, two set points are possible. Normal set point for production and standby
set point for energy saving. The switch between both is done with a control bit ZoneData.tsPro-
cessSet.wControlWord.4 (enable standby set point). The currently used set point will be trans-
ferred to active set point.

Do manual control
The process can be controlled manually by changing duty cycle directly. The manual control can
even interrupt the AutoTune and PID process.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3286

To start manual control, the control bit ZoneData.tsProcessSet.wControlWord.3 (enable manual
control) is set and the control state will change to Manual. After that, the manual duty
cycle ZoneData.tsProcessSet. iManual_DutyCycle can be changed to output the control value
directly.

Observe the status
There are different status which indicate what is exactly going on in the process.

Process status
ZoneData.tsInternalStatus.ControlState is the main state machine for the whole process.

ZoneData.tsProcessStatus.wStatusWord for general status, e.g. tune done and tune accepted.

ZoneData.tsProcessStatus.OutputStatus indicates the status of PWM output, e.g. the output is
in automatic heat or manual cool.

ZoneData.tsProcessStatus.wErrors indicates all the errors (warnings and faults) which are
active.

ZoneData.tsProcessStatus.Latest_Error shows only the latest activated error out of error word.
There are two levels of errors: faults (ZoneData.tsProcessStatus.wStatusWord.15=TRUE) and
warnings (ZoneData.tsProcessStatus.wStatusWord.14=TRUE). Both will set the bits in error
word and latest error.
The difference is: Faults will interrupt the control state and change it to Fault state. To resume
the process, the control process needs to be warm reset to go to ready state first.
Warnings are only indications for the user and do not interrupt a running process.
Nevertheless, each bit in the error word can be programmed individually to control user defined
functions, e.g. to control a contactor / relay or switch on a warning light.
Besides the errors for an individual zone, it is also possible to combine the zone faults to group
faults.
This function will set all zones in the group to fault state and group fault bit (ZoneData.tsPro-
cessStatus.wStatusWord.13) to TRUE as soon as one zone in the group has fault. Please refer
to TECT_GROUP description for more details.

Function block status
For the function blocks in the library, there are different outputs for status of the function block,
e.g. DONE, ERR, ERNO and BUSY. For ERNO (function block error numbers), please refer to
that function block description. For certain special internal functionalities, e.g. CAA File Library
or Flash operation, there will be a link for the original error description of those part.

1.5.12.1.7 How to save control data
It is highly recommended to save the set values of zone data in case of power failure or reset of
PLC, especially the result of AutoTune and the process PID parameters. For this purpose, there
are to function blocks with different PLC resource demands are available for different function
range:

Control state

Status word

Output status

Errors (Error
Word)

Latest error

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3287

TECT_DATA_FLASH: saves/loads AutoTune result and PID parameters into/from internal flash.
TECT_RECIPE: saves/loads all relevant control parameters and settings into/from recipe file in
CSV format.

Save AutoTune and PID parameters into flash

Each PLC in AC500 range has a power safe internal flash data area which can be written, read
and deleted from AC500 program. TECT_DATA_FLASH uses the internal flash to save and load
the AutoTune results and PID parameters including:
● Internal parameters: rKS, rTU, rTG and wCoolFact_Tune
● Machine set parameters: wCoolFact, rKP, rTI, rTD, rT1
The user can perform the following operations by using this function block in the flash memory:
Read, Write, Delete, Check Read, Delete Write and Check Write.

The user can save the above variables into flash by the WRITE operation by selecting the flash
segment. When the WRITE command is enabled the parameters, which are listed above, will be
copied and stored in the flash memory of the PLC. If the PLC is restarted or a cold reset is done
these data will still be retained. Before a fresh set of data is written to the flash memory, it has to
be cleared. Hence delete operation has to be executed before rewrite of the flash data.

The user can copy the data from the flash memory of PLC into the structure TEMPZONE_DATA
by this command. When the READ operation is used, based on the flash block and segment
configuration, it will read the data from a respective location. This is useful to restore/ load the
settings of tune values.

This operation will clear all the data in the flash memory. It will delete data in the complete
selected flash segment. Before a fresh set of data is written to the flash memory, it has to be
cleared. Hence delete operation has to be executed before rewrite of the flash data.

This operation is a combination of operation DELETE and WRITE. It will clear the complete
segment first and then write the set of data into flash.

This operation is used, when data read has to be restricted. It will check if the values of
AutoTune results in Zone Data are valid. Only if they are invalid, it will read the values from flash
memory to the Zone Data structure, otherwise the operation will do nothing.

This operation is a combination of above two operations CHECK_READ and DELETE_WRITE.
When this operation is executed, it will check if the values of AutoTune results in Zone Data
are valid. Only if they are invalid, it will read the values from flash memory to the Zone Data
structure. After that, it clears the flash with DELETE operation and write the set of data into
flash.

WRITE

READ

DELETE

DELETE_WRITE

CHECK_READ

CHECK_WRITE

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3288

In total they are 32 bytes which a data block in the flash is used for one zone. As one segment
has 1927 data blocks, the maximum number of zones supported for the TECT_DATA_FLASH is
1927.
For a new data write processing to flash, the flash needs to be deleted first. This
can be done with TECT_DELETE before TECT_WRITE is to be executed. As an alterna-
tive, TECT_DELETE_WRITE combines the two operations in one. Ä Chapter 1.5.12.2.9
“TECT_DATA_FLASH” on page 3338

Save set values as recipe file
Function principle

The function block TECT_RECIPE can save/write the necessary control settings to a CSV file
and load/read the settings from the CSV file. The files can be accessed via an FTP client
connected to AC500 FTP server. After the configuration the data can be saved into a CSV file
by a WRITE operation. The same CSV file can be used in other configurations where similar
initializsation is required.

Work with recipe
The Recipe function block can READ/WRITE the following parameters into the CSV file: Group_
Name, Zone Index, Set temperature, Standby Set temperature, ControlWord, KS, TU, TG,
KP, TI, TD, T1, CoolFact, PeriodFact, HighHigh temperature, High temperature, Low tempera-
ture, LowLow temperature, High deviation, Low deviation, Change time, Minimum temperature
change, TCmax, TCmin, Temperature difference cool, Cool off ratio, Max output, Tune setpoint,
Tune output, Tune min KP, Tune max KP, Tune KP Scaling and Thermocouple offset. Only one
TECT_RECIPE is necessary for the whole system.
When the WRITE operation is selected, it will make a single copy of parameters listed above
for the whole system into a recipe file in CSV format. The file name can be decided by the
input FILE_PATH and SET_NO. If a folder is defined at FILE_PATH, e.g. ‘sdcard/Recipe’, the
recipe file will be created as TZD*.csv, * stands for SET_NO. If the user wants to define his
own recipe name, then a csv file name with folder needs to be defined at FILE_PATH, e.g.
‘sdcard/Recipe/MyRecipe.csv’.
The first line of the CSV file will have all the variable names and below lines list values of each
variable zone by zone (see figure below).

Fig. 583: Recipe data in the CSV file after WRITE operation

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3289

This function block can be used to save the dedicated settings of a Temperature Control
system. Furthermore, as its name says, it can also be used to manage multiple sets of control
settings using multiple recipe sets
Configure access to memory card through FTP client in the Automation Builder.

Fig. 584: Configuration of memory card access through FTP client in Automation Builder

For READ and WRITE operation on the memory card the access needs to be configured in the
Automation Builder using FTP client. At this place the password for the memory card access is
set.
For the following activities the tool "File Zilla" is used to access the memory card. But it is also
possible to use other FTP client tools.

Fig. 585: Access of memory card through FTP client

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3290

Enter the PLC IP address as Host, sdcard as Username, password which is configured in the
Automation Builder tool and Port number configured (default is 21).
After press “Quickconnect” button, the user can access the memory card data.

Fig. 586: Recipe files created in memory card accessed using FTP client

When the READ operation is selected, there must be a recipe file present in the Memory card
in .CSV format. The name of the file must be as per the Recipe function block guideline. The
Recipe block will copy the values of each variable to respective zone data structure. This will
help the user to configure the system faster after a restart.
The CSV file is generated, in which all the data is added into a single line for each zone,
separated by a semicolon (;) (see figure "Recipe files created in memory card accessed using
FTP client"

Fig. 587: Open CSV file without delimited

This CSV file can be displayed with separate columns using option “Text to Columns”:

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3291

Then follow the following steps:

1. To choose the data type, choose "Delimited- Characters such as commas or tabs sepa-
rate each field"

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3292

2. To set the delimiters, tick the box "Semicolon".

3. To set the data format, choose "General".

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3293

ð As a result:

1.5.12.1.8 How to do data logging
Function principle

The TECT_LOG_FILE function block can log the predefined process status and values together
with time stamp in a logging buffer as long as the trigger (LOG_TRIG as well as internal trigger
if enabled) has a rising edge.
The predefined process status and values logged are:
Control Word, Status Word, SET_TEMP, ACT_TEMP, Duty Cycle, Control State, Output Status,
Latest Error and Errors (Error Word).
The function block contains two major functionalities: logging data into a CSV file and live data
logging in the visualization.
For the live data logging visualization, all data will be displayed in the visualization as soon as a
trigger signal is active.
For logging data into a CSV file, the data based on the mode and selection set by the user will
be logged.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3294

There is a logging buffer for the system with a size of NUM_BUFFER_ENTRY (number of
entries) for each zone. As long as the logging entry reaches the end of logging buffer, the
entries in the logging buffer will be saved into a log file in .csv format under a user defined
folder. The file name is generated automatically from the zone index, its group index and the
month and date value while saving. This log file can be opened in e.g. Excel with semicolon as
delimiter and can be analyzed. When the TECT_LOG_FILE function block is enabled, the user
has to configure SELECTION input, where he can select which data is to be logged. There are
different modes of logging, which can be selected.

Logging data into a CSV file
There are some steps to start with logging data into a CSV file:
● Define what to be logged:

Input SELECTION types are: Selection of predefined values to be logged: bit 0 to bit 7 are
used for the current version. Bit x=TRUE: the corresponding value will be logged.
– Bit 0: Control Word
– Bit 1: Status Word
– Bit 2: SET_TEMP
– Bit 3: ACT_TEMP
– Bit 4: Duty Cycle
– Bit 5: Control State
– Bit 6: Output State
– Bit 7: Latest Error
– Bit 8: Errors (Error Word)

● Define the log trigger:
– Define an external trigger with LOG_TRIG, it is recommended to use a timer, e.g. BLINK

function block. The LOG_TRIG should be defined greater than 1s, otherwise log data
could get lost.

– Additional to LOG_TRIG, an internal trigger can be activated with bit 4 of input MODE,
which creates a trigger if and there is change in Control word or Status word.

● Define when to log data:
– With bit 1 and bit 0 of input MODE, it can be defined when to log data if log trigger is

active. This setting can be used to optimize the storage size for data logging by reducing
the number of data sets to be logged. Bit 1, Bit 0:
00: Log all items as long as log trigger is active.
01: Log, if one of the log values changes, when trigger is active.
11: Log, if CW or SW changes or ACT_TEMP changes out of threshold (+/-
THRESHOLD), when trigger is active.

– With above mode 11, the input THRESHOLD needs to be defined also.
● Define the log buffer:

A log buffer in data area needs to be defined for all zones to collect the log data before data
is written to a log file. The log buffer contains continuous area for each zone individually.
The first address of the log buffer needs to be assigned to input ADR_LOG_BUFFER. It is
recommended to use a data area with fixed address, e.g. %R or %M area.
The input NUM_BUFFER_ENTRY specifies the size of a log area for each zone in number
of log entries. A log entry stands for a data set containing the predefined log values
with input SELECTION. The total amount of log entries of the entire log buffer will be
NUM_BUFFER_ENTRY x NUM_OF_ZONE.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3295

Fig. 588: Input THRESHOLD

The NUM_BUFFER_ENTRY should be defined as large as possible to reduce the frequency
of saving the log buffer into log files, thus reducing CPU load. It is recommended to define
NUM_BUFFER_ENTRY > NUM_OF_ZONE x 2, otherwise log data could get lost.
The data size of a log entry depends on the input SELECTION, the size can be about 20 bytes
to 100 bytes. This information can be got at run time from the output ENTRY_SIZE and the total
size of the log buffer is displayed at output BUFFER_SIZE.
It is very important to check the BUFFER_SIZE output to make sure that enough data area
is available for the defined log buffer, otherwise undesired behavior can happen in PLC. The
following table shows the available %M and %R area of different CPU types (status of 10.2015).

● Define where to save the log files:
It is recommended to save log files on memory card. For CPU types PM592 and PM595 it is
possible to be saved on the Flashdisk.
The folder for saving is to be specified at input FILE_PATH, e.g. ‘SDCARD/folder’. The
physical disk like SDCARD or FLASHDISK must be specified in the FILE_PATH. The folder
following will be created if it does not exist yet as long as the function block is enabled with
EN input. But only one folder level will be created, this means the parent folder must already
exist.
Bit 8 and bit 9 of input MODE can be used to specify the subfolder.
– Bit 8: FALSE: Create subfolder automatically; TRUE: Do not create subfolder.
– Bit 9: Valid, if bit 8 is FALSE.

FALSE: subfolder name with index in DECIMAL.
For example, for group 10, index 3, subfolder name is G010Z003.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3296

Following is an example of FILE_PATH = ‘SDCARD/LOG_D’ and Bit 8 = FALSE, Bit 9 = FALSE:

● Define when to create a new log file:
The function block creates individual log files for each zone.
As soon as the log area for each zone is full, that area will be written into a CSV file in
the predefined folder. The file name contains the group and zone index as well as date
information: ggzzmmdd.csv. Where:
– ‘gg’ for group index in hexadecimal
– ‘zz’ for zone index in hexadecimal
– ‘mm’ for month of the year
– ‘dd’ for day of the month
At input NUM_FILE_ENTRY is to be defined how many entries a log files can have
before creating a new log file. Before creating a new log file, the existing one will be
backed up in changing the file extension without changing the name. For example, change
ggzzmmdd.csv into ggzzmmdd.E74. The extension is composed of the last three hexadec-
imal numbers of current time without seconds. In this way, the file overwriting is avoid and
all the log history is still available.
If NUM_FILE_ENTRY is 0, then a new log file will be created daily.
Following is an example of saved log files:

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3297

● Common inputs:
NUM_OF_ZONE: Number of zones to be logged into the .csv file or displayed in visualiza-
tion. If TECT_GROUP is used, then the range is 1…65535. If TECT_GROUP is not used,
then the range is 1…255. It is recommended to use one TECT_LOG_FILE for the whole
system.
FIRST_ZONEDATA: First structure of process data and parameters for the zone. See func-
tion block description for details.

● Manual operations:
– Save the log buffer into files manually: with a rising edge at input MANUAL_SAVE all the

data in the log buffer will be saved into the log files immediately.
– Clear log buffer: with a rising edge at input CLEAR_BUFFER all data in the log buffer

will be cleared. But before clearing, the new entries in the logging buffer are written into
the .csv file first. Then the .csv file is renamed into a backup file with the same file name
but different extension, which is composed of the last three hexadecimal numbers of
current time without seconds. In this way, even after a clear log buffer action, the history
in the buffer will not get lost.

● How to reduce the value of output NUM_LOG_LOST(number of logs which are lost):
– Don’t create subfolder (MODE.bit8=TRUE) or first enable the function block with

EN=TRUE until all folders are created (FOLDER_CREATED=TRUE) then start logging
with EN_LOG=TRUE.

– Increase the interval of LOG_TRIG if possible (recommendation: not less than 2 sec-
onds).

– Reduce the SELECTION to the necessity and increase the NUM_BUFFER_ENTRY if
possible.

– Increase the size of the second buffer (i2ndNEntry of TECT_LOGFILE_DATA_TYPE).
Recommendation: 0…4.

The second buffer will allocate dynamic memory on PLC. Depending on the
application, it could cause system error if the second buffer is so large that the
system cannot allocate memory any more.

Live data logging in the visualization
All available status in the logger will be displayed with log visualization, thus input SELECTION
has no influence on log visualization.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3298

The buffer for visualization is to be defined, which is independent of the log buffer for logging
data into CSV files. The first data address of visualization buffer needs to be assigned to input
ADR_VISU_BUFFER.
The size of each visualization buffer is specified at input NUM_VISU_ENTRY as number of
visualization entries.
The total size of the visualization buffer is depending on how many entries should be displayed
in the visualization and how many zones are defined.
For example, if there are 4 zones to be logged and each zone has 10 log visualization entries,
then a one dimensional or two dimensional array can be defined as the type “TECT_LOG-
INFO_TYPE”:
visu_array : ARRAY[1..40] OF TECT_LOGINFO_TYPE; (in one dimensional array).
visu_array : ARRAY[1..4, 1..10] OF TECT_LOGINFO_TYPE; (in two dimensional array).
In the library, there are two predefined visualization elements:
Log header:

Log entry:

Each entry needs to be attach to one element of the defined visu_array[i] as place holder.

Then the user can build his own log visualization according to his demand. For example one
zone with 5 log visualization entries:

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3299

Another variable FIRST_LOGFILE_DATA needs to be defined as an array of type “TECT_LOG-
FILE_DATA_TYPE” in size NUM_OF_ZONE. This variable contains internal log settings and
values for each zone individually.

Work with log file
The log files can be downloaded using a FTP client, e.g. FileZilla. For detailed operation of FTP
please refer to the chapter for recipe functionality.

Fig. 589: Log files created in memory card accessed using FTP client

After a log file downloaded to PC, it can be opened with Excel in separate columns (delimited by
semicolon) Ä Chapter 1.5.12.1.7.2 “Save set values as recipe file” on page 3289.
For the backup files (files without .CSV extension), they can be renamed into CSV file and
be opened with Excel. For example, can be 01011005.E42 renamed into 01011005.E42.CSV
(keeping the original extension to avoid duplicated file name).

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3300

Fig. 590: Log file example opened in Excel

The log data can be analyzed more easily with Excel, e.g. using line chart.

Fig. 591: Log file example opened in Excel with line chart

After editing the log file, it can be saved in .xlsx format to keep the line chart.

1.5.12.1.9 Current monitoring
Current monitoring feature is available with TECT_GROUP function block. Current can be
measured using common current sensor for all zones in the group or individual current sensor
for each zone. Single or three phase heaters system can be selected by user.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3301

Industry uses resistive heaters for acquiring desired process temperature. Resistive heaters
either become open or short circuited due to overheating and age over prolonged use. These
conditions can be detected and respective error message generated using current sensors.
Current sensors measures circuit current and sends it to AC500, which in turn compares it with
rated current of heaters. On faulty condition one of the following error generated for the zone.

Most of the time heater coil breaks due to continuous / overheating and causes open circuit.
In open circuit condition current will not flow. Hence we can safely assume a condition of open
circuit, if current is measurement is zero.

If heater coil comes in contact with its metal container, then it causes short circuit. In short circuit
condition, heater will try to draw max current capacity of the input supply. E.g. it will draw a max
current of the SSR / MCB.

If there is no supply at the input side of SSR and still we are able to measure current at the
output side, then it means there some problem in the control circuit.

Advantage of common current sensor: is less costs, as single current sensor is used for all
zones in the group. It also leads to less maintenance cost.
Disadvantage of common current sensor is slower recognition of faults, as single current sensor
is used for all zones in the group. Single current sensor will measure current for one zone at a
time. Once measurement is done sensor measure current for next zone.

Open circuit

Short circuit

Control circuit
failure

Single or
common current
sensors

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3302

Fig. 592: Individual current sensor for single phase heater

Fig. 593: Individual current sensor for Delta connected three phase heater

Example: Cir-
cuit diagrams
for individual
and common
current sen-
sors

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3303

Fig. 594: Common current sensor for single phase heaters

Fig. 595: Common current sensor for Delta connected three phase heater

Individual current sensor monitoring
Individual current sensor is connected to each zone. If three phase zone is used then three
current sensors are required for zone, one for each phase. User needs to define following
variables for individual current monitoring.

System will understand whether single or three phase heaters are used using
“TECT_PROCESS_SET_TYPE“ structure “wControlWord“ variable bit 14. If this bit is turned ON
then it means three phase current monitoring is selected else single phase current monitoring is
selected.

Selecting single
or three phase
current moni-
toring:

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3304

User must set “xEn_Indivi_Monitor“ variable TRUE in the group data to turn on current moni-
toring feature for individual current sensor.

User should use this variable from “TECT_MACHINE_SET_TYPE “ structure for connecting
rated current of the heater. For 3 phase heaters same rating is used for balancing. Hence only
one varaible for rated current is sufficient for all three phases.

User should use this variable from “TECT_MACHINE_STATUS_TYPE“ structure for connecting
actual current measured from the sensor. If single phase heater is used then only first array
element should be connected. For 3 phase heaters sensor input needs to be connected to 3
array elements respectively.

Monitor cycle can be defined in seconds by user in “ TECT_GROUP_DATA_TYPE“ structure
variable. At the start of this duration Zones enter in current monitoring function. One after
another zones are checked until all zones are checked. After this monitoring function is stopped,
and control of the zones goes back to process till “timMonitorCycle_Time“ elapsed. On next
cycle function will start monitoring from zone 1 again.

It is recommended that user should set a value around 150-300 seconds.
Each zone takes approx. 5 seconds time for current monitoring. Each monitoring cycle has 2
parts: current monitoring and process. It is recommended that process time should be at least
twice the current monitoring. As a thumb rule we can calculate minimum monitoring time as
timMonitorCycle_Time := Number of zones * 5 * 3

This variable in TECT_PROCESS_STATUS_TYPE structure shows current monitoring status of
the zone. If error is condition is removed, then error will be removed and it does not require
RESET.

This variable in “TECT_GROUP_DATA_TYPE“ structure shows time taken by all the zones to
complete monitoring function in the last measurement.

Common current sensor monitoring
Common current sensor is used for all the zones in the group. If three phase zones are used
then three current sensors are required for each phase. User needs to define following variables
for common sensor current monitoring.

System will understand whether single or three phase heaters are used using
“TECT_PROCESS_SET_TYPE“ Structure “wControlWord“ variable bit 14. If this bit is turned on
then it means three phase current monitoring is selected else single phase current monitoring is
selected.

User can must set “xEn_Co_Monitor“ variable TRUE in the group data to turn on current moni-
toring feature for common current sensor.

xEn_Indivi_Moni
tor:

rRated_Current:

arActual_Cur-
rent:

timMonitor-
Cycle_Time:

wErrors2:

timLastMea-
surement:

Selecting single
or three phase
current moni-
toring:

xEn_Co_Mon-
itor:

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3305

User should use this variable from “TECT_MACHINE_SET_TYPE “ structure for connecting
rated current of the heater. For 3 phase heaters same rating is used for balancing. Hence only
one variable for rated current is sufficient for all three phases.

User should use this variable from “ TECT_GROUP_DATA_TYPE“ structure for connecting
actual current measured from the sensor. If single phase heater is used then only first array
element should be connected. For 3 phase heaters sensor input needs to be connected to 3
array elements respectively.

Monitor cycle can be defined in seconds by user in “ TECT_GROUP_DATA_TYPE“ structure
varaiblevariable. At the start of this duration Zones enter in current monitoring function. One
after another zones are checked untilluntil “timMonitorStep_Time“ is elapsed. After this moni-
toring function is stopped, zone number is stored internally and control of the zones goes back
to process till “timMonitorCycle_Time“ elapsed. On next cycle monitoring function starts from
internally stored zone number. Once all zones are checked, function will start monitoring from
zone 1 again.

It is recommended that user should set a value around 150-300 seconds.

Monitor cycle can be defined in seconds by user in “ TECT_GROUP_DATA_TYPE“ structure
variable. In the monitoring cycle when this time is elapsed current monitoring function stops and
control of the zones goes back to process.

This variable in TECT_PROCESS_STATUS_TYPE structure shows current monitoring status of
the zone. If error is condition is removed, then error will be removed and it does not require
RESET.

This variable in “TECT_GROUP_DATA_TYPE“ structure shows time taken by all the zones to
complete monitoring function in the last measurement.

1.5.12.1.10 Explanation of zone data structure
Overview

Zone data values have been grouped into machine and process set, machine and process
status, and internal status. This chapter contains details for the initial configurationset values of
the Temperature Control system.

Set values / parameters
Process set values / parameters

TECT_PROCESS_SET_TYPE structure contains all the process related parameters.
This structure contains process set parameters of the zone data. User can define all parameters
which are related to the process, i.e. parameters which are set as per process properties. These
parameters will be changed continuously as per process requirement, e.g. in structure Control
Word.
PID Set Point, Control Word, High Temp, Low Temp settings comes under this structure.

rRated_Current:

arActual_Cur-
rent:

timMonitor-
Cycle_Time:

timMonitor-
Step_Time:

wErrors2:

timLastMea-
surement

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3306

The Control Word setting will define the working of the machine / process. The user needs to
set the Control Word bits per requirements .These settings will decide the working philosophy of
the machine. The user also needs to decide which parameters he want to set permanently and
which parameter he wants to change frequently.
E.g. Heat_en and Cool_en can be set permanently and Enable can be used to turn on and off
the temperature zone.
● Enable (Bit 0):

When this is TRUE, it will enable the process of temperature control. If this bit is FALSE, the
complete process will stop and wait for next on command in Ready State.

● Heat_en (Bit 1):
It will enable the zone as heat zone and the heating process starts when the duty cycle is
greater than 0.

● Cool_en (Bit 2):
It will enable the zone as a cooling zone and the cooling process starts when duty cycle is
greater than 0.

● Manual_en (Bit 3):
This is the highest priority mode. When this is TRUE, all the other modes are disabled and
the manual control becomes active.

● Standby_en (Bit 4):
When this bit is TRUE, the Standby set point becomes an active set point for the process.

● Tune_en (Bit 5):
It will enable the auto tune process for the system using a tune step. It will start the tuning of
the zone and calculate the optimal KP, TI, TD and T1 values.

● Accept_auto_tune (Bit 6):
If the TRUE system will accept the calculated auto tune parameters.

● Co_Output (Bit 7):
When this bit is TRUE, it will consider coordinated output for the particular group. It avoids
switching on all zones simultaneously, thus avoiding a voltage drop in the power supply
system. At the same time, it compensates the error between digital outputs and duty cycle
due to CPU task cycle.

● Control Optimization (Bit 10, Bit 9):
A combination of these two bits decide the working principle for the PID control.
– 00 – APERIODIC:
– 01 – OVERSHOOT:
– 10 – DEADTIME COMPENSATION:
– 11 – Default: APERIODIC

● Warm_Reset (Bit 13):
When this bit is TRUE, it will reset the all alarms and process in the zone, but it will retain
the auto tune status.

● En_3Phase_Monitor (Bit 14):
When this bit is true, 3 phase current monitoring is enabled. If false, then single phase
current monitoring is enabled.

● Cold_Reset (Bit 15):
When this bit is TRUE, it will reset everything in the control process and the Status Word of
the process will become zero. Auto tune has be carried out once again for the zone, as auto
tune values have been reseted by cold reset.

PWM output in Manual mode. The Manual duty cycle needs to be set by the user when the
manual mode (i.e. control word bit 3) is enabled for the process.
In the Manual mode the Manual duty cycle is passed on as a process duty cycle. That means
the process duty cycle is not dependent on the set point and actual temperature. If not moni-
tored properly, this can lead to accident.

This is a secondary process set point which has to be set by the user. This value is considered
for the process when Standby_en (control word bit 4) is TRUE.

Control Word
(wControlWord)

Set Point (rSet-
Point):

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3307

This is a secondary process set point which has to be set by the user, this value is considered
for the process when Standby_en (control word bit 4) is TRUE

The High Temperature value has to be set by the user as per process requirement. If the actual
temperature becomes more than a High temperature, then the heat output is disabled and an
alarm is generated.

The Low Temperature value has to be set by the user as per process requirement. If the
actual temperature becomes less than Low temperature, cool output is disabled and an alarm is
generated.

If a difference between the actual value and the set value is more than the High Deviation, then
an alarm is generated.

If a difference between the actual value and the set value is less than Low Deviation, then an
alarm is generated.

Machine set values / parameters
TECT_MACHINE_SET_TYPE structure contains all the process related parameters.
This structure contains machine set parameters of the zone data. The user can define all
parameters which are related to the machine, i.e. parameters which are set as per machine
properties and will be defined only once at the time of commissioning. These parameters need
to be changed, only when some machine property has changed, e.g. the temperature sensor
has changed.
PID parameter, HighHigh, LowLow temp, and temperature sensors settings come under this
structure.

Cool factor in percentage.

PID parameter for the machine, P in Real value.

PID parameter for control: I in seconds.

PID parameter for control: Filter for D in seconds.

This is the highest value of temperature the machine can reach and beyond that it could
damage the system / machine. When this value is reached HighHigh Temperature fault will be
generated, the control state will be in Fault state and all the outputs are disabled.

This is the lowest value of temperature the machine can reach and below that value it can
damage the system / the machine. When this value is reached, LowLow Temperature error is
generated, the control state will be in Fault state and all the outputs are disabled.

For the TC_FAULT_2 the time (in seconds) is taken to register the Minimum temperature
change when the duty cycle is greater than or equal to tune output value.

Standby set
point:
(rStandBy_Set-
Point):
High Tempera-
ture
(rHigh_Temp):

Low Tempera-
ture
(rLow_Temp):

High Deviation
(rHigh_Devia-
tion):

Low Deviation
(rLow_Devia-
tion):

Cool Factor
(wCoolFact):

KP (rKP):

TI (rTI):

TD (rTD):

HighHigh Tem-
perature (rHigh-
High_Temp):

LowLow Tem-
perature
(rLowLow_Temp
):

Change time
(uiChange_Time
):

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3308

For the TC_FAULT_2 the Minimum Temperature Change, that can happen in the change time,
is assigned when the duty cycle is greater than or equal to tune output value.

It corresponds to the maximum measurement range of the temperature sensor.
When the temperature of the zone reaches this value the fault TC_FAULT_1 is generated.

It corresponds to the minimum measurement range of the temperature sensor. When the tem-
perature of the zone reaches this value the fault TC_FAULT_1 is generated.

If value > 0: cooling will be ON with 100% when ACT_TEMP > set point + rtemp_diff_cool, and
will be OFF when ACT_TEMP < set point + rtemp_diff_cool x iCool_Off_Ratio. If value = 0:
rtemp_diff_cool is deactivated, PID controller will be active for cooling.

To be used with rTemp_Diff_Cool. Ä “Temperature Difference Cool (rTemp_Diff_Cool):”
on page 3309

This input defines the maximum value of the duty cycle for the respective zone.

Necessary temperature change in raw sensor value for auto tune process.

PWM duty cycle which is used during tuning.

Minimum allowable KP value for the auto tune to accept.

Maximum allowable KP value for the auto tune to accept.

Scaling for calculating KP value after tuning.

Compensation for the thermocouple in degree.

Period factor for cooling against heating.

Minimum time for which xDO_Cool output is ON.

Feed forward time ratio in percentage for internal set point ramp generator. The smaller the
value, the steeper is the ramp.

Rated current of phase 1, 2 and 3 of zone. Heaters have same current rating for all 3 phases.

Minimum Tem-
perature
Change
(uiMin_Temp_C
hange):
TC_Max
(rTc_Max):

TC_Min
(rTc_Min):

Temperature Dif-
ference Cool
(rTemp_Diff_Co
ol):

Cool Off Ratio
(iCool_Off_Ratio
):

Maximum
Output
(iMax_Output):
Tune Setpoint
(iTune_Step):

Tune Output
(iTune_Output):

Tune Minimum P
(rTune_MinP):

Tune Maximum
P (rTune_MaxP)

Tune P Multi-
plier
(rTune_PMult):
TC Offset
(rTc_Offset):

Period Factor
(rPeriod_Fact):

Minimum Cool
on Time
(timMin_Cool_O
n):
Feed Forward
Time Ratio
(iFF_Time_Ratio
):
Rated current
(rRated_Cur-
rent):

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3309

1.5.12.2 Function blocks
The temperature control library package (PS564-TEMP_CTRL) designed for the demand of
advanced temperature control for critical processes, which need precise temperature con-
trol and e.g. adaptive tuning for ease of handling and changing environmental or process
conditions. The package consists of libraries and examples. This document describes the
function blocks of the main library TECT_TEMP_CONTROL_V24.lib. All other library files:
(ADCTRL_AC500_V24.lib, TECT_EXT_AC500_V24.lib and TECT_EXT_AC500_V24…obj) are
internal and need not be called by the end user.

Table 198: Overview of function blocks
Function Block Description Use Range
TECT_TEMP_CONTROL Temperature control function

block.
For one zone

TECT_LOG_FILE Logging of process value
change.

For entire system

TECT_TEMP_SIMU Temperature zone simulation. For one zone

TECT_NOISE_FILTER Filter for short time noise. For one zone

TECT_GROUP Temperature control function
block for a group

For one group

TECT_PWM8 Coordination of PWM outputs
up to 8 zones.

For up to 8 zones

TECT_RECIPE Read/Write recipe data in a
file.

For entire system

TECT_DATA_FLASH Read/Write/Delete AutoTune
data on flash.

For entire system

TECT_HMI_MUX Manage data transfer of active
group to be monitored on
operating HMI.

For entire system

TECT_SYSTEM Function block for system
fault monitoring, system con-
trol and zone information.

For entire system

Overview of the
PS564-
TEMPCTRL
package

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3310

Fig. 596: Overview: Function blocks

Function blocks must be used.
Optional function blocks.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3311

1.5.12.2.1 TECT_TEMP_CONTROL

TECT_TEMP_CONTROL is the main control function block of temperature control process. An
input variable ADR_ZONEDATA saves all relevant parameters, settings and values for one tem-
perature zone. All function block for the zone interact with each other through ADR_ZONEDATA
variable.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: TIME, Range: > 1 ms, Default value: 2 s.
Interval of PID and AutoTune process.
For PID process: The interval time, at which the PID updates the duty cycle of output based
PWM_PERIOD.

EN

PID_INTERVAL

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3312

PID_INTERVAL

PWM_PERIOD

time

PID calculation

PWM_PERIOD

Fig. 597: PID Interval time

Data type: TIME, Range: > 1 ms, Default value: 2 s.
Pulse Width Modulation (PWM) output period.

PID_INTERVAL

PWM_PERIOD

time

PID calculation

PWM_PERIOD

Fig. 598: PWM output period

PWM_PERIOD should be always less than or equal to PID_INTERVAL.

Data type: BOOL
A TRUE at the input FAHRENHEIT of the Funktion Block displays the temperature in Fahren-
heit, a FALSE displays the temperature in Celsius.

Data type: INT
Actual raw temperature value from analogous input sensor.

Data type: INT, Default value: 10.
Sensor provides the the ACT_TEMP_RAW, this value doesn’t match to the temperature in
Celcius. Hence RAW_FACTOR is necessary to scale the temperature into Celsius scale.

If ACT_TEMP_RAW is 200 which indicates 20 degree, then the RAW_FACTOR will be 200 /
20 = 10.

Example for
RAW_FACTOR

The RAW_FACTOR should not be zero.

PWM_PERIOD

FAHRENHEIT

ACT_TEMP_RA
W

RAW_FACTOR

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3313

Data type: POINTER TO TECT_TEMPZONE_DATA_TYPE
POINTER TO ZONEDATA defined as TECT_TEMPZONE_DATA_TYPE.
Input as POINTER TO ZoneData. This variable can be connected to the output signal of the
ADR-Block. An input variable ZoneData saves all relevant parameters, settings and values
for one temperature zone. All function blocks for the zone interact with each other through
ZoneData variable Ä Chapter 1.5.12.3.1 “TECT_TEMPZONE_DATA_TYPE” on page 3343.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: INT
PWM (Pulse Width Modulation) output DUTY_CYCLE is displayed in percentage.
Positive value indicates heating, negative value indicates cooling.

Data type: BOOL
Pulse output for heating process. This variable can be connected to the digital output signal.

Data type: BOOL
Pulse output for cooling process. This variable can be connected to the digital output signal.

ADR_ZONE-
DATA

ERR

ERNO

DUTY_CYCLE

DO_HEAT

DO_COOL

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3314

Data type: BOOL
This variable is TRUE, when output HIGHHIGH temperature error is active. The limit
value is declared in the data type TECT_TEMPZONE_DATA_TYPE. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

Fig. 599: High temperature alarm and HighHigh temperature fault.

Data type: BOOL
This output variable is TRUE, when HIGH temperature alarm is active. The limit value
is declared in the data type TECT_TEMPZONE_DATA_TYPE. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

Data type: BOOL
This output variable is TRUE, when low temperature alarm (LOW_TEMP) is active. The limit
value is declared in the data type TECT_TEMPZONE_DATA_TYPE. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

LOWLOW_TEMP

LOW_TEMP

time

temperature

LowTemp LowTemp
LowLowTempFault

Fig. 600: LowTemp alarm, LowLowTempFault alarm

Example for
LowTemp
alarm and Low-
LowTempFault
alarm.

HIGHHIGH

HIGH

LOW

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3315

Data type: BOOL
This output variable is TRUE, when LOWLOW temperature error is active. Limit value
is declared in the data type TECT_TEMPZONE_DATA_TYPE. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

1.5.12.2.2 TECT_GROUP

Function block TECT_GROUP realizes the following functions:
● Group fault monitoring.
● Group control: enable process, reset process, enable AutoTune.
● Coordinated output of the zones in the group.

Function block TECT_GROUP calls the function block TECT_TEMP_CONTROL for each zone
internally. Thus a separate call of function block TECT_TEMP_CONTROL for each zone is not
necessary. Function block TECT_GROUP also calls separately Funktion Block TECT_PWM8
for heating and cooling.

Input description

LOWLOW

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3316

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BOOL
A TRUE at the input enables group fault monitoring.
A FALSE at the input disables group fault monitoring.
Group monitoring of faults is predefined through input GROUP_FAULT_MASK.

Data type: BYTE, Default value: 2#00001111
The first four Bits stand for four different error sources:
Bit 0: TC_Fault 1
Bit 1: TC_Fault2
Bit 2: HighHighTempFault
Bit 3: LowLowTempFault
This means, all of the four faults are monitored as group fault. Before enabling the group of
zones of the function block TECT_GROUP, define the faults to be masked.

Data type: TIME, Range: > 1 ms, Default value: 2 s.
Interval of PID and AutoTune process.
For PID process: The interval time, at which the PID updates the duty cycle of output based
PWM_PERIOD.

PID_INTERVAL

PWM_PERIOD

time

PID calculation

PWM_PERIOD

Fig. 601: PID Interval time

Data type: TIME, Range: >T#1 ms, Default value: T#2 s.

EN

EN_FAULT_MO
NITOR

GROUP
_FAULT_MASK

PID_INTERVAL

PWM_PERIOD

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3317

Pulse Width Modulation (PWM) output period.

PWM_PERIOD should be always less than or equal to PID_INTERVAL.

Data type: INT, Default value: 10.
Sensor provides the the ACT_TEMP_RAW, this value doesn’t match to the temperature in
Celcius. Hence RAW_FACTOR is necessary to scale the temperature into Celsius scale.

If ACT_TEMP_RAW is 200 which indicates 20 degree, then the RAW_FACTOR will be 200 /
20 = 10.

Example for
RAW_FACTOR

The RAW_FACTOR should not be zero.

Data type: BOOL
A TRUE at the input FAHRENHEIT of the Funktion Block displays the temperature in Fahren-
heit, a FALSE displays the temperature in Celsius.

Data type: BOOL
The Input CO_OUTPUT enables coordinated output for PWM8 output of a group. It avoids
switching on all zones simultaneously, thus avoiding a voltage drop in the power supply system.
At the same time, it compensates the error between digital outputs and duty cycle due to CPU
task cycle (as resolution of digital outputs duration). The coordination is realized with function
block TECT_PWM8 , called internally.
Input FIRST_PWM8_HEAT and FIRST_PWM8_COOL define the data area of the
FIRST_TECT_PWM8 input for heating and cooling. Each function block TECT_PWM8 sup-
ports maximum 8 zones. For more than 8 zones, two arrays of function block TECT_PMW8
must be defined for heating and cooling accordingly. If CO_OUTPUT is not used (FALSE),
then one dummy variable still needs to be defined for both Inputs FIRST_PWM8_HEAT and
FIRST_PWM8_COOL.

Data type: INT, Default value = 1, Range: > 0.
Minimum length of ON and OFF time of PWM signal in number of CPU task cycles for heating.

Minimum length = 100 ms; CPU task cycle = 50 ms, then the number of cycles for heating is
T_MIN_TZ_HEAT = 100 ms / 50 ms = 2.

Example

Data type: INT, Default value = 2, Range: > 0.
Minimum length of ON and OFF time of PWM signal in number of CPU task cycles for cooling.

Minimum length = 100 ms; CPU task cycle = 50 ms, then the number of cycles for heating is
T_MIN_TZ_HEAT = 100 ms / 50 ms = 2.

Example

Data type: INT, Default value = 20, Range: > MIN_CYCLES HEAT and MIN_CYCLES_COOL.
Duration of PWM signal period in number of CPU task cycles.

RAW_FACTOR

FAHRENHEIT

CO_OUTPUT

MIN_CYCLES_H
EAT

MIN_CYCLES_C
OOL

PWM_PERIOD_
CYCLES

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3318

PWM_PERIOD = 1 s, CPU task cycle = 50 ms, then the number of task cycles is PERIOD_TZ
= 1 s / 50 ms = 20.

Example

Data type: BYTE, Default value: 1, Range: > 0.
Size of the group or total number of zones in the particular group.

Data type: STRING[20]
The name of the group. It will be saved in TECT_TEMPZONE_DATA_TYPE structure.
Ä Chapter 1.5.12.3.1 “TECT_TEMPZONE_DATA_TYPE” on page 3343

Data type: TECT_PWM8
First instance of function block TECT_PWM8 for heating in the declaration. Each instance sup-
ports maximum 8 zones. The function block TECT_PWM8 is called internally. If more instances
are needed for one group, they must be defined in an array. If the coordinated output is not
used, a dummy instance is still needed. Please see also description of input CO_OUTPUT
Ä Chapter 1.5.12.2.6 “TECT_PWM8” on page 3327.

All instances must be defined without memory break. It is highly recommended
to define them in an array.

Data type: TECT_PWM8
First instance of function block TECT_PWM8 for cooling in the declaration. Each instance sup-
ports maximum 8 zones. The function block TECT_PWM8 is called internally. If more instances
are needed for one group, they must be defined in an array. If the coordinated output is not
used, a dummy instance is still needed. Please see also description of CO_OUTPUT Ä Chapter
1.5.12.2.6 “TECT_PWM8” on page 3327.

All instances must be defined without memory break. It is highly recommended
to define them in an array.

data type: TECT_TEMP_CONTROL
First instance of function block TECT_TEMP_CONTROL in the declaration. Each zone in the
group needs one instance. The function block TECT_TEMP_CONTROL is called internally.
Thus a separate call of function block TECT_TEMP_CONTROL for each zone is not necessary
Ä Chapter 1.5.12.2.1 “TECT_TEMP_CONTROL” on page 3312.

All instances must be defined without memory break. It is highly recommended
to define them in an array.

Data type: TECT_TEMPZONE_DATA_TYPE
Monitoring of the first zone data structure of the zone group. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

GROUP_SIZE

GROUP_NAME

FIRST_PWM8_H
EAT

FIRST_PWM8_C
OOL

FIRST_TEMP_C
ONTROL

FIRST_ZONE-
DATA

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3319

All zones must be declared one after another without break. It is highly recom-
mended to define an array of TECT_TEMPZONE_DATA_TYPE for the whole
system.

Data type: TECT_GROUP_DATA_TYPE
This inout structure of the group will have variables related to the complete group Ä Chapter
1.5.12.3.4 “TECT_GROUP_DATA_TYPE” on page 3352.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: BOOL
A TRUE at the output activates GROUP_FAULT. This will be TRUE only when input
EN_FAULT_MONITOR is enabled. It leads to disable the outputs of the whole group.

Data type: TECT_CONTROLSTATEMACHINE_ENUM

GROUPDATA

ERR

ERNO

GROUP_FAULT

GROUP_STATU
S

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3320

All status related to the group will be updated to each zone by the enumeration
TECT_CONTROLSTATEMACHINE_ENUM Ä Chapter 1.5.12.3.7 “TECT_CONTROLSTATE-
MACHINE_ENUM” on page 3357.

Data type: BYTE
This is the variable which differentiate each group by unique number.

1.5.12.2.3 TECT_SYSTEM

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

The function block TECT_SYSTEM can be used to configure and monitor all groups
and zones in the temperature control system. Status of the groups and zones in the
system can be monitored. Using the structure TECT_SYSTEM_DATA Ä Chapter 1.5.12.3.5
“TECT_SYSTEM_DATA_TYPE” on page 3355 different operations for all groups/zones can also
be configured.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

GROUP_INDEX

EN

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3321

Data type: STRING[20]
Configuration of system name. The name does not exceed 20 characters.

Data type: WORD, Default value: 1, Range: > 0.
Total number of zones in the system.

Data type: BYTE, Default value: 1, Range: > 0.
Number of groups to be operated in the system.

Data type: POINTER TO TECT_ZONE_INFO_TYPE.
It will point to the structure TECT_ZONE_INFO_TYPE Ä Chapter 1.5.12.3.6
“TECT_ZONE_INFO_TYPE” on page 3356.

All zones must be declared one after another without break. It is highly rec-
ommended to define an array of TECT_ZONE_INFO_TYPE for one groupthe
whole system, Maximum size of the array should be total number of zones in
the system.

Data type: TECT_TEMPZONE_DATA_TYPE
Monitoring of the first zone data structure of the zone group. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

All zones must be declared one after another without break. It is highly recom-
mended to define an array of TECT_TEMPZONE_DATA_TYPE for the whole
system.

Data type: TECT_GROUP_DATA_TYPE
First GROUPDATA of the system in the declaration. All groups must be declared one after
another without break Ä Chapter 1.5.12.3.4 “TECT_GROUP_DATA_TYPE” on page 3352.

All groups must be declared one after another without break. It is highly recom-
mended to define an array of TECT_GROUP_DATA_TYPE for one system.

Data type: TECT_SYSTEM_DATA_TYPE
Declaration of data which is common to the complete system Ä Chapter 1.5.12.3.4
“TECT_GROUP_DATA_TYPE” on page 3352.

SYSTEM_NAME

NUM_OF_ZONE

NUM_OF_GROU
P

ADR_SYSTEM_I
NFO

FIRST_ZONE-
DATA

FIRST_GROUP-
DATA

SYSTEMDATA

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3322

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: TECT_CONTROLSTATEMACHINE_ENUM
The status of the system including its zones and groups is updated to the enumeration
TECT_CONTROLSTATEMACHINE_ENUM Ä Chapter 1.5.12.3.7 “TECT_CONTROLSTATE-
MACHINE_ENUM” on page 3357.

1.5.12.2.4 TECT_TEMP_SIMU

The function block TECT_TEMP_SIMU simulates a temperature zone, e.g. for simulation of the
behavior during commissioning.
Connect DUTY_CYCLE input to DUTY_CYCLE output of TECT_TEMP_CONTROL function
block. The ACT_TEMP outputs data of the simulated zone temperature.

ERR

ERNO

SYSTEM_STATU
S

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3323

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: INT, Range: -100 ... +100, Default value: 0
The PWM duty cycle is for one temperature zone. The structure TECT_TEMP-
ZONE_DATA_TYPE defines the duty cycle parameters. Ä Chapter 1.5.12.3.1 “TECT_TEMP-
ZONE_DATA_TYPE” on page 3343

Data type: REAL, Default value: 0
Preset maximum temperature allowed for the simulation. The raw temperature value should be
used as in function block TECT_TEMP_CONTROL.

Input MAXIMUM should be greater than input MINIMUM.

Data type: REAL, Default value: 0
Preset minimum temperature allowed for the simulation. The raw temperature value should be
used as in function block TECT_TEMP_CONTROL.

Input MINIMUM should be less than input MAXIMUM.

Data type: INT
Internal control parameter for simulation. It has similar value as TU from structure
TECT_INTERNAL_STATUS_TYPE. Ä Chapter 1.5.12.3.1 “TECT_TEMPZONE_DATA_TYPE”
on page 3343

EN

DUTY_CYCLE

MAXIMUM

MINIMUM

TI_CYCLES

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3324

Data type: INT, Range: > 0, Default value: 20
Internal control parameter for simulation. It has a similar value as TG from structure
TECT_INTERNAL_STATUS_TYPE. Ä Chapter 1.5.12.3.1 “TECT_TEMPZONE_DATA_TYPE”
on page 3343

Data type: TIME, Range: >0 ms, Default value: 2 s
Interval of internal simulation control. Do the setting in the same way as for
input PID_INTERVAL from function block TECT_TEMP_CONTROL Ä Chapter 1.5.12.2.1
“TECT_TEMP_CONTROL” on page 3312.

Output description

Data type: REAL
The output simulates the actual temperature.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

T1_CYCLES

PID_INTERVAL

ACT_TEMP
(actual tempera-
ture)

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3325

1.5.12.2.5 TECT_NOISE_FILTER

The function block TECT_NOISE_FILTER can be used to filter the short disturbance on the
sensor input. The VALUE_IN will be ignored, if the change of the value is greater than TOLER-
ANCE for less than FILTER_TIME.

VALUE_OUT

TOLERANCE

FILTER_TIME

FILTER_TIMEVALUE_IN

Fig. 602: Noise Filter

Input description

Data type: INT
Input value from sensor to be filtered.

Data type: INT, Default value: 0.
Tolerance for input value.

Data type: TIME, Default value: 0 s, Range: ³ 0 ms.

Filter time.

VALUE_IN

TOLERANCE

FILTER_TIME

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3326

Output description

Data type: INT
Output value after filtering. It is the input value for ACT_TEMP_RAW in function block
TECT_TEMP_CONTROL .

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

1.5.12.2.6 TECT_PWM8

The function block TECT_PWM8 coordinates up to 8 PWM signals in time behavior. They have
not to be switched on at the same time to avoid undesired voltage drop in the power supply
system. At the same time, it compensates the error between digital outputs and duty cycle due
to CPU task cycle (as resolution of digital outputs duration). For heating and cooling separate
instances of this block have to be used.

VALUE_OUT

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3327

Input description

Data type: ARRAY[1..8] OF INT, Range: 0…100
PWM DUTY_CYCLE coordinates maximum 8 zones in a group. If there are more than 8 zones
in one group, more function blocks can be used.

Data type: INT, Default value: 100, Range: +10 ... + 100.
Maximum value for a duty cycle.

Data type: INT, Default value: 1, Range: > 1.
Minimum length of ON and OFF time of PWM signal in number of CPU task cycles.

Data type: INT, Default value: 20, Range: > MIN_CYCLES
Duration of PWM signal period in number of CPU task cycles.

Output description

Data type: ARRAY[1..8] OF BOOL
PWM signals for 8 zones.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.

DUTY_CYCLE

DUTY_MAX

MIN_CYCLES

PWM_PERIOD_
CYCLES

PULSE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3328

It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

1.5.12.2.7 TECT_LOG_FILE

Function block TECT_LOG_FILE logs the predefined process status and values together with
time stamp in a logging buffer when trigger LOG_TRIG has a rising edge. To execute this block
memory card is recommended for saving log files. The predefined process status and values
are:
● Control Word
● Status Word
● SET_TEMP
● ACT_TEMP
● Duty Cycle
● Control State
● Output Status
● Latest Error
● Errors (Error Word).
Please see “Description of Structure TECT_TEMPZONE_DATA_TYPE” for details of the
process status. Ä Chapter 1.5.12.3.1 “TECT_TEMPZONE_DATA_TYPE” on page 3343

The logging buffer has a size of NUM_BUFFER_ENTRY (number of entries) for each zone. As
long as the logging entry reaches the end of logging buffer, the entries in logging buffer will
be saved as a log file in .csv format under a user defined folder. The file name is generated
automatically from the zone index, its group index and the month and date value while saving.
This log file can be opened in e.g. Excel with comma as delimiter and can be analyzed.
The second function of this function block is to display entries in logging buffer using CODESYS
visualization as live log. This function block can be used not only to monitor the process but also
for system diagnosis.

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3329

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: BOOL
The function block is activated by a TRUE at the input EN. It enables live logging visualization.
With a rising edge, the folder to save log file is created. Depending on the MODE, a subfolder
will be created for each zone. With a falling edge, clear logging buffer action is executed and
backup file is created. After that, FOLDER_CREATED is reset to FALSE. See CLEAR_BUFFER
and FOLDER_CREATED for details.

Data type: BOOL
A TRUE at the input will enable logging to the buffer and copying of files from buffer to .csv file
when buffer is full.

Data Type: BOOL
A TRUE at the input executes logging a data entry into logging buffer with a rising edge.

Data type: POINTER TO BYTE
Start address of the logging buffer since this is POINTER TO BYTE. It is recommended to
connect the input through ADR and point it to %RB area.

Data type: WORD, Range: 1 ... 65535, Default value: 100.
The size of logging buffer for each zone is the number of entries.

Following conditions to be checked to avoid data loss while logging in the buffe:

– NUM_BUFFER_ENTRY should always be greater than NUM_OF_ZONE.
Recommendation: NUM_BUFFER_ENTRY > NUM_OF_ZONE x 2.

– Interval of trigger for logging LOG_TRIG must be greater than one second.
– Monitor the output NUM_LOG_LOST for the logs/data lost in the buffer as

indication of possible adaptation of log configuration.

EN (enable)

EN_LOG

LOG_TRIG

ADR_LOG_BUF
FER

NUM_BUFFER_
ENTRY

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3330

Data type: WORD, Default value: 2#11111111.
Selection of predefined values to be logged: bit 0 to bit 8 indicates the current version.
Bit x = TRUE: the corresponding value will be logged.
● Bit 0: Control Word,
● Bit 1: Status Word,
● Bit 2: SET_TEMP,
● Bit 3: ACT_TEMP,
● Bit 4: Duty Cycle,
● Bit 5: Control State,
● Bit 6: Output State,
● Bit 7: Latest Error.
● Bit 8: Errors

Data type: WORD, Default value: 2#00
Define different mode of logging.
This table defines the different modes of logging:
● Bit 1, Bit 0: Log mode

– 00: Log all items as long as log trigger is active.
– 01: Log, if one of the log values changes, when trigger is active.
– 11: Log, if CW or SW changes or ACT_TEMP changes out of threshold (+/-

THRESHOLD), when trigger is active.
● Bit 4: Internal log trigger, TRUE: It will provide internal trigger to log the files. When Bit 4 is

TRUE and there is change in Control word or Status word, a trigger signal will be created. It
is a trigger additional to LOG_TRIG.

●
● Bit 8: FALSE: Create subfolder automatically; TRUE: Do not create subfolder.
● Bit 9: Valid, if bit 8 is FALSE.

– FALSE: subfolder name with index in DECIMAL.
For example, for group 10, index 3, subfolder name is G010Z003.

– TRUE: subfolder name with index in HEXADECIMAL.
For example, for group 10, zone 12, subfolder name is G0AZ0C.

Data type: REAL
Threshold of actual temperature. Set the value in combination with MODE (log mode). Log
operation will be active when acutal temperature is out of +/- of the Threshold value. See the
below figure which explains when is active or inactive.
Bit 1-0: 11: Threshold of actual temperature.

SELECTION

MODE

THRESHOLD

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3331

Data type: DINT, Range: >= 0, Default value: 0
The logging of data depends on the value of NUM_FILE_ENTRY input is assigned.
● If NUM_FILE_ENTRY = 0, then a new log file is created daily, previous day file is backed

up with the same file name but a different suffix. The suffix is the last three HEX numbers of
current time (without second).

● If NUM_FILE_ENTRY >0, a new file is created when number of log entries is equal to
NUM_FILE_ENTRY defined. Old file will be backed up with the same file name but a
different suffix. The suffix is the last three HEX numbers of current time (without second).

● If NUM_FILE_ENTRY <0, it is a invalid condition and function block will generate error
16#4090.

Data type: STRING[80]
File Pathfor saving log file (followed with or without ‘/’), e.g. ‘SDCARD/folder’. The physical disk
like SDCARD or FLASHDISK must be specified in the FILE_PATH. The folder following will be
created if it does not exist yet. But only one folder level will be created, this means the parent
folder must already exist.
For Bit 8 of input MODE: FALSE: a subfolder will be created for each zone. The log files will be
saved under FILE_PATH/subfolder. See MODE, bit 8 and bit 9 for details. It is recommended to
save the log file on memory card.

Data type: BOOL
A rising edge at the input will save logging buffer to .csv log file manually.

Data type: BOOL
A rising edge at the input clears the logging buffer: New entries in the logging buffer are written
into the .csv file. The .csv file is renamed into a backup file with same file name but different
extension. The extension is composed of the last three HEX Numbers of current time without
seconds.

Data type: POINTER TO TECT_LOGINFO_TYPE
Start address of the log visualization data. It is recommended to define the log visualization
data in array. This can be used only with CODESYS visualization. For example, if there
are 4 zones to be logged and each zone has 10 log visualization entries, then a one dimen-
sional or two dimensional array can be defined Ä Chapter 1.5.12.3.3 “TECT_LOGINFO_TYPE”
on page 3351:

NUM_FILE_ENT
RY

FILE_PATH

MANUAL_SAVE

CLEAR_BUFFE
R

ADR_VISU_BUF
FER

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3332

visu_array : ARRAY[1..40] OF TECT_LOGINFO_TYPE; (in one dimensional array).
visu_array : ARRAY[1..4, 1..10] OF TECT_LOGINFO_TYPE; (in two dimensional array).

Data type: BYTE, Default value: 10.
Number of log entries displayed in log visualization for one zone.

Data type: WORD, Default value: 1.
If TECT_GROUP is used, then Range: 1…65535. If TECT_GROUP is not used, then Range:
1…255.
Number of zones to be logged into the .csv file or displayed in visualization.

Data type: TECT_LOGFILE_DATA_FILE
First structure of data logging internal settings and values Ä Chapter 1.5.12.3.2 “TECT_LOG-
FILE_DATA_TYPE” on page 3350.

It is highly recommended to define an array of TECT_LOGFILE_DATA_TYPE
for this input. The size of the array must be the same as the input
MUM_OF_ZONE.

Data type: TECT_TEMPZONE_DATA_TYPE
First structure of process data and parameters for the zone. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

All zones must be declared one after another without break. It is highly recom-
mended to define an array of TECT_TEMPZONE_DATA_TYPE for the whole
system.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

NUM_VISU_ENT
RY

NUM_OF_ZONE

FIRST_LOG-
FILE_DATA

FIRST_ZONE-
DATA

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3333

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: TECT_FILE_ENUM
Display the logging operation, during which the error occurs Ä Chapter 1.5.12.3.9
“TECT_FILE_ENUM” on page 3358.

Data type: WORD
Indicate the zone in which error is generated.

Data type: BOOL
This output variable is TRUE, if folder and subfolder have been created. Each time input EN
has a rising edge, creating folder action will be executed. Depending on the number of zones
and MODE 8, it could take some seconds to some minutes to create the folder and subfolders.
If the folder already exists, the files inside will be kept untouched. It is recommended to enable
logging (EN_LOG = TRUE) after FOLDER_CREATED is TRUE. Otherwise it could cause a loss
of log data.

Data type: BOOL
This output variable is TRUE, as long as input EN is TRUE and input EN_LOG is TRUE.
This output variable is FALSE, if input EN is TRUE and input EN_LOG is FALSE (pause), or if
input EN has a falling edge. Then LOG_BUSY will be FALSE as soon as the backup of all log
files have been created.

Data type: WORD
Number of log entries lost in the logging buffer due to busy of file operation, e.g. log saving
operation of other zones.

Data type: BOOL
This output variable is TRUE, as long as log files are getting saved to the log folder.
This output variable is FALSE, if no saving of files to log folder is ongoing.

Data type: WORD
The particular zone, for which the file operation is executing (require: SAVING_BUSY is TRUE)

Data type: BOOL
Clear logging buffer is done.

ERNO

ERR_OP

ERR_ZONE

FOLDER_CRE-
ATED

LOG_BUSY

NUM_LOG_LOS
T

SAVING_BUSY

ZONE_SAVING

CLEAR_DONE

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3334

Data type: DWORD
Size of one log entry in byte. The size depends on input data SELECTION.

Data type: DWORD
Size of whole buffer for all zones in byte. The size depends on output data ENTRY_SIZE and
input data NUM_BUFFER_ENTRY and NUM_OF_ZONE.

Check this value to make sure the BUFFER_SIZE doesn’t exceed the available
size of specified data area.

1.5.12.2.8 TECT_RECIPE

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

The function block can save/write the necessary control settings to a CSV file. It also can load/
read the settings from the CSV file.
This block will read/write from a file system, e.g. memory card. The files can be accessed via an
FTP client connected to AC500 FTP server. A backup copy of the CSV file will be created with
the same file name but with suffix .cpy after a WRITE operation and before a READ operation.
In case of file corruption, the CPY file can be renamed into CSV file manually.
This function block can be used to save the dedicated control settings and settings for a
temperature control system. Furthermore, it can also be used to manage recipes (multiple sets
of control settings).

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

ENTRY_SIZE

BUFFER_SIZE

EN

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3335

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type: TECT_OPERATION_ENUM
1: READ operation.
2: WRITE operation Ä Chapter 1.5.12.3.10 “TECT_OPERATION_ENUM” on page 3359.

Data type: WORD, Default value: 0, Range: 0 ... 65535
Recipe set number. This number will be used in the recipe CSV file name. See description of
FILE_PATH.

Data type: STRING[80]
There are two possibilities to define FILE_PATH, thus two methods to define the recipe file
name:
● Default recipe file name: define a folder for saving recipe file (followed with or without ‘\’).

The recipe file will be saved under FILE_PATH with a default name TZD*.csv (* stands for
SET_NO).
For example, if SET_NO = 3, FILE_PATH = SDCARD\RECIPE, then a recipe file
TZD3.csv will be created (OPERATION = WRITE) or read (OPERATION = READ) under
SDCARD\RECIPE.

● User defined recipe file name: define folder with CSV file name. In this case SET_NO has
no meaning.
For example, if FILE_PATH = SDCARD\RECIPE\myRecipe.csv, then a recipe file MYRE-
CIPE.csv will be created (OPERATION = WRITE) or read (OPERATION = READ) under
SDCARD\RECIPE.

The recipe file and the last level of the folder can be created by the function block, but the
parent folder must already exist.
For example, if FILE_PATH = SDCARD\Level1\Level2\Level3 or FILE_PATH =
SDCARD\Level1\Level2\Level3\myRecipe.csv, then SDCARD\Level1\Level2 must already exist
but \Level3 can be created by the function block.

Data type: WORD, Default value: 1, Range: > 0.
Total number of zones in the system.

Data type: TECT_TEMPZONE_DATA_TYPE
Monitoring of the first zone data structure of the zone group. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

All zones must be declared one after another without break. It is highly recom-
mended to define an array of TECT_TEMPZONE_DATA_TYPE for the whole
system.

OPERATION

SET_NO

FILE_PATH

NUM_OF_ZONE

FIRST_ZONE-
DATA

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3336

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: BOOL
TRUE: Will indicate that recipe operation READ/WRITE is ongoing and system is busy.

Data type: BYTE
Output of this block indicates status of the process in the recipe function block. This input is
helpful in displaying process status in the HMI.

Table 199: Function block TECT_RECIPE - STATUS description
STATUS Description
0 Function block is disabled or no process running.

1 Recipe function block is BUSY, either READ or WRITE process going on

2 Recipe process is complete

3 Wrong parameter at input OPERATION

4 Wrong parameter at input NUM_OF_ZONE

5 Timeout of the recipe operation state

6 Read data failed: no correct format of data items.

DONE

ERR

ERNO

BUSY

STATUS

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3337

STATUS Description
7 Mismatch in number of zones declared and zone data in recipe.

8 CAA file error: Time limit exceeded

9 CAA file error: Order has been aborted by activating input xAbort

10 CAA file error: Invalid handle

11 CAA file error: Directory or file does not exist

12 CAA file error: Directory or file already exists

13 CAA file error: No further entries are available

14 CAA file error: File or directory is not empty

15 CAA file error: Drive, file or directory is write-protected

16 CAA file error: Wrong parameter(s) at function block

17 CAA file error: Unknown Error

18 CAA file error: Not all data has been written

19 CAA file error: Function not supported

20 CAA file error: No file handles or user tasks available (too many files open or
tasks accessing file system)

21 CAA file error: Volume is full

22 CAA file error: Cannot open disk or no valid disk present

23 CAA file error: File/directory could not be accessed to execute operation

24 CAA file error: Internal or not further specified error

25 CAA file error: Source file could not be opened to execute required operation

26 CAA file error: Destination file could not be opened to execute required operation

27 CAA file error: Data could not be written to destination file

28 CAA file error: Data could not be read from source file

29 CAA file error: Formatting operation has not been confirmed as xEnable before
activation the Function block with xExecute.

1.5.12.2.9 TECT_DATA_FLASH

The function block TECT_DATA_FLASH can be used to save following data on flash:
● Internal parameters: rKS, rTU, rTG and wCoolFact_Tune Ä Chapter 1.5.12.3.1.1

“TECT_INTERNAL_STATUS_TYPE” on page 3343).
● Machine set parameters: wCoolFact, rKP, rTI, rTD, rT1 Ä Chapter 1.5.12.3.1.2

“TECT_MACHINE_SET_TYPE” on page 3344.
The main purpose of the flash operation is to save the parameters calculated from AutoTune, as
they need a long time to be calculated. This function block is used as the second safety copy of
AutoTune parameters besides saving as retain variables.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3338

To rewrite the content on the flash, current data needs to be deleted before write operation. One
instance of this function block has to be called for the complete system.

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in edge triggered mode.
The execution of the function block is started with a positive edge on the input EN.
In the first call it evaluates its inputs and creates a local copy of them. Afterwards it starts its
internal algorithm. It may take several PLC task cycles until it is executed.
Once the execution is completed DONE and its other outputs are set. To start the function block
again a new positive edge on the input EN has to be applied.

Data type: TECT_OPERATION_ENUM
1: Enable READ operation: READ data from flash to TECT_TEMPZONE_DATA_TYPE.
2: Enable WRITE operation: WRITE data from TECT_TEMPZONE_DATA_TYPE to flash.

Each function block can only be written once. For a second WRITE action, the
whole flash segment needs to be deleted first.

3: Enable DELETE operation: Delete the whole flash segment.
4: Enable CHECK_READ operation: Check, if there are already valid parameters (KS>0) in
TECT.
5: Enable DELETE_WRITE operation: Before write data from TECT_TEMPZONE_DATA_TYPE
to flash, delete the whole flash segment first. It is used to avoid error 4101 by WRITE: Block
was already written.
6: Enable CHECK_WRITE operation: Combination of CHECK_READ and DELETE_WRITE.

Data type: BYTE, Default value: 1, Range: 1 or 2
Number of the data segment. Each segment has 1927 blocks (0 ... 1926).

EN

OPERATION

FLASH_SEG-
MENT

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3339

Data type: WORD, Default value: 0, Range: 0 ... 1926.
Each segment has 1927 blocks (0…1926). Each block has 32 bytes. Each temperature zone
needs one block (ie. 32 bytes).
The first block is assigned for FIRST_ZONEDATA.

Data type: WORD, Default value: 1, Range: > 0.
Number of zones in the entire system.

Data type: TECT_TEMPZONE_DATA_TYPE.
Monitoring of the first zone data structure of the zone group.

All zones must be declared one after another without break. It is highly recom-
mended to define an array of TECT_TEMPZONE_DATA_TYPE for the whole
system.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

FIRST_FLASH_
BLOCK

NUM_OF_ZONE

FIRST_ZONE-
DATA

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3340

Data type: BOOL
TRUE: Will indicate that flash operation READ/WRITE/DELETE is ongoing and system is busy.

1.5.12.2.10 TECT_HMI_MUX

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

The function block TECT_HMI_MUX
● helps to reduce the communication effort by reducing the data exchanged between PLC

and HMI. It will also reduce the engineering efforts in configuring the panel projects. This
function block can be used to commission CP600 projects or CODESYS visualization tool.
When TECT_HMI_MUX function block is used in the program, BUFFER inout variable must
be used for interface between PLC and HMI or visulaization.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BYTE, Default value: 1, Range: > 0.
Index of active Group on HMI, set from HMI. Group Index will be changed while navigating
through HMI pages.

Data type: WORD, Default value: 1, Range: > 0.
Total number of zones.

BUSY

EN

GROUP_INDEX

NUM_OF_ZONE

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3341

Data type: Byte, Default value: 1, Range: > 0.
Size of the largest group in the system.

Data type: TECT_TEMPZONE_DATA_TYPE
Monitoring of the first zone data structure of the zone group. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

All zones must be declared one after another without break. It is highly recom-
mended to define an array of TECT_TEMPZONE_DATA_TYPE for the whole
system.

Data type: TECT_TEMPZONE_DATA_TYPE
The first ZONEDATA of the buffer in the declaration. Buffer exchanges the data between page/
screens of HMI with the respective zones.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Table 200: Function block TECT_HMI_MUX - Error code description
DEC HEX Error Description
16416 16#4020 GROUP_INDEX is less than or equal to zero

16432 16#4030 NUM_OF_ZONE is less than or equal to zero

16448 16#4040 MAX_GROUP_SIZE is less than or equal to zero

29330 16#7292 Zone_size and zone_index are not assigned

MAX_GROUP_S
IZE

FIRST_ZONE-
DATA

FIRST_BUFFER

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3342

1.5.12.3 Structures and enumerator
The PS564-TEMP_CTRL package (the package containing TECT_TEMP_CON-
TROL_AC500_V24 library) contains the following structures:
● TECT_TEMPZONE_DATA_TYPE ,
● TECT_LOGFILE_DATA_TYPE,
● TECT_LOGINFO_TYPE,
● TECT_GROUP_DATA_TYPE,
● TECT_SYSTEM_DATA_TYPE,
● TECT_ZONE_INFO_TYPE.
Most variables in the structure cannot be accessed directly from the function blocks. All of them
can be read and some can be written directly.

The PS564-TEMP_CTRL package (the package containing TECT_TEMP_CON-
TROL_AC500_V23 library) contains the following enumerator:
● TECT_CONTROLSTATEMACHINE_ENUM,
● TECT_ERRORCODE_ENUM,
● TECT_FILE_ENUM,
● TECT_OPERATION_ENUM,
● TECT_OUTPUTSTATUS_ENUM.

1.5.12.3.1 TECT_TEMPZONE_DATA_TYPE
TECT_TEMPZONE_DATA_TYPE (Temperature Zone Data) is a structure, which defines the
control words, status words, limits and parameters for temperature zone control process.
It is recommmeded to declare TECT_TEMPZONE_DATA_TYPE as retain variables for power
safe. All zones must be declared one after another without break. A zone group must
be declared together without break. It is recommended to define an array of TECT_TEMP-
ZONE_DATA_TYPE for one group.

If there are three groups with group 1, 2 and 3 having 8, 6 and 4 zones, then TECT_TEMP-
ZONE_DATA_TYPE has to be declared or attached into the function block TECT_GROUP
as follows: In global retain variable as tsZonedata := ARRAY[1..18] OF TECT_TEMP-
ZONE_DATA_TYPE. For group 1 as tsZonedata[1], for group 2 as tsZonedata[9] and for group
3 as tsZonedata[15] as the first zone for respective group.

Example:

The structure TECT_TEMPZONE_DATA_TYPE consist of 5 internal structures. These substruc-
tures are defined as per function of the parameters.
● TECT_INTERNAL_STATUS_TYPE,
● TECT_MACHINE_SET_TYPE,
● TECT_MACHINE_STATUS_TYPE,
● TECT_PROCESS_SET_TYPE,
● TECT_PROCESS_STATUS_TYPE.

TECT_INTERNAL_STATUS_TYPE
This structure contains internal status of the zone data. User can define group size and group
name. User can also read control status and auto tune parameters.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3343

No Name Data Type Unit Initial
Value

Description Access

1 ControlState TECT_CONTROLSTATEMA-
CHINE Ä Chapter 1.5.12.3.7
“TECT_CONTROLSTATE-
MACHINE_ENUM”
on page 3357

 Not-
Ready

Control state of
the machine

FB

2 iRaw_Factor INT Raw
Valu
e

10 Factor of
ACT_TEMP_RA
W to actual tem-
perature in °Cel-
sius

FB

3 pGroupData POINTER TO
TECT_GROUP_DATA_TYPE
Ä Chapter 1.5.12.3.4
“TECT_GROUP_DATA_TYP
E” on page 3352

 GROUPDATA
values

RO

4 byGroup_Siz
e

BYTE 0 Group Size RW

5 byGroup_Ind
ex

BYTE 0 Group Index RO

6 byZone_Inde
x

BYTE 0 Zone Index RO

7 rTune_Set-
Point

REAL 0 Auto tune set-
point to be calcu-
lated

RW

8 rKS REAL 0 Internal PID
parameter KS
calculated by
tuning

FB

9 rTU REAL 0 Internal PID
parameter TU
calculated by
tuning

FB

10 rTG REAL 0 Internal PID
parameter TG
calculated by
tuning

FB

11 wCool-
Fact_Tune

WORD 1000 Cool factor tune
in percentage

FB

TECT_MACHINE_SET_TYPE
This structure contains machine set parameters of the zone data. User can define all parame-
ters which are related to the machine, i.e. parameters which are set as per machine properties
and will be defined only once at the time of commissioning. These parameters need to be
changed only when some machine properties have changed, e.g. when a temperature sensor
changed.

No Name Data Type Unit Initial Value Description Access
1 wCoolFact WORD 1000 Cool factor in percentage RW

2 rKP REAL 0 PID parameter for con-
trol P in REAL value

RW

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3344

No Name Data Type Unit Initial Value Description Access
3 rTI REAL 0 PID parameter for con-

trol I in seconds
RW

4 rTD REAL 0 PID parameter for con-
trol D in seconds

RW

5 rT1 REAL 0 PID parameter for con-
trol filter for D in seconds

RW

6 rHigh-
High_Temp

REAL 32767 HighHigh temperature
alarm - disables all out-
puts

RW

7 rLowLow_Temp REAL - 32767 LowLow temperature
alarm - disables all out-
puts

RW

8 uiChange_Tim
e

UINT 0 For TC_Fault_2: time in
second used to register
min_temp_change when
duty_cycle ³ tune_output

RW

9 uiMin_Temp_C
hange

UINT 0 For TC_Fault_2: min-
imum temperature
change in change_time
when duty_cycle ³
tune_output

RW

10 rTc_Max REAL 32767 For TC_Fault_1: max-
imum plausible rAc-
tual_Temp

RW

11 rTc_Min REAL 0 For TC_Fault_1: min-
imum plausible rAc-
tual_Temp

RW

12 rTemp_Diff_Co
ol

REAL 0 > 0: if temperature is
temp_diff_cool higher
than setpoint, then
cooling is 100% ON until
the
temp_diff_cool*cool_off_
ratio/100 over setpoint is
reached.
= 0: cooling is controlled
as PID

RW

13 iCool_OFF_Rat
io

INT 50 In percentage, if
temp_diff_cool is active,
see temp_diff_cool > 0

RW

14 iMax_Output INT 100 Maximum allowable duty
cycle

RW

15 iTune_Step INT 500 Set point change in RAW
value to be reached
during auto tune process

RW

16 iTune_Output INT 100 PWM duty cycle used
during tuning

RW

17 rTune_MinP REAL 0 Minimum allowable KP
value for auto accept

RW

18 rTune_MaxP REAL 32000 Maximum allowable KP
value for auto accept

RW

19 rTune_PMult REAL 1 Scaling for KP value RW

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3345

No Name Data Type Unit Initial Value Description Access
20 rTc_Offset REAL 0 Thermocouple compen-

sation in degree (Cel-
sius or Fahrenheit) - if
required

RW

21 rPeriod_Fact REAL 10 Period factor between
cooling and heating

RW

22 timMin_Cool_O
N

TIME t# 3 s Minimum time for which
xDO_Cool output to be
ON

RW

23 iFF_Time_Rati
o

INT 125 >=100, Feedforward time
ratio in percentage: for
internal set point ramp
generator. The smaller
the value, the steeper
the ramp

R/W

24 rRated_Current REAL 0 Rated heater current of
the Zone. It is always
same for all 3 phases.

R/W

TECT_MACHINE_STATUS_TYPE
This structure contains machine status parameters of the zone data. It contains all the AutoTune
parameters.

No Name Data Type Unit Initial
Value

Description Access

1 rKP_TUNE REAL 0 PID parameter for control
P in REAL value calcu-
lated by tuning

RO

2 rTI_Tune REAL 0 PID parameter for control
I in seconds calculated by
tuning

RO

3 rTD_Tune REAL 0 PID parameter for control
D in seconds calculated by
tuning

RO

4 rT1_Tune REAL 0 PID parameter for control
filter for D in seconds cal-
culated by tuning

RO

5 arAc-
tual_Cur-
rent

ARRAY [1..3]
OF REAL

 Actual heater current of
phase 1,2 and 3 of the
Zone

R/W

TECT_PROCESS_SET_TYPE
This structure contains process set parameters of the zone data. User can define all parameters
which are related to the process, i.e. parameters which are set as per process properties. These
parameters will be changing continuously as per process requirement, e.g. Control word.
PID setpoint, control word, high and low temp settings come under this structure.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3346

No Name Data Type Unit Initial
Value

Description Access

1 wControlWord WORD 0 Control word RW

 enable: BOOL Bit 0: enable Process.

 heat_en: BOOL Bit 1: enable zone as heat zone.
If both heat_en and cool_en are
FALSE then zone is monitor only

 cool_en: BOOL Bit 2: enable zone as cooling
zone.
If both heat_en and cool_en are
FALSE then zone is monitored
only

 manual_en: BOOL Bit 3: manual mode - highest
priority mode, disable all other
modes.

 standby_en: BOOL Bit 4: standby setpoint is used.

 tune_en: BOOL Bit 5: enable auto tune with
large setpoint step.

 accept_auto_t
une:

BOOL Bit 6: accept or reject tuning
parameters.

 co_output: BOOL Bit 7: coordinated output of one
group.

 Reserved BOOL Bit 8: Reserved

 Control_Opti-
mization:

BOOL Bit 10, Bit 9:
- 00: APERIODIC,
- 01: OVERSHOOT,
- 10: DEADTIME COMPENSA-
TION,
- 11: NO OPTIMIZATION .

 warm_reset: BOOL Bit 13: reset the alarm and
process but not AutoTune
status.

 en_3phase_M
onitor

BOOL Bit 14 - True :3phase current
monitoring False: single phase
monitoring

 cold_reset: BOOL Bit 15: reset all in control
process.

2 iMa-
nual_Duty_Cy
cle

INT 0 PWM output in manual mode. RW

3 rSetPoint REAL 0 Process setpoint. RW

4 rStandBy_Set
Point

REAL 0 Secondary process setpoint for
standby.

RW

5 rHigh_Temp REAL 32767 High temperature alarm, disa-
bles heat output.

RW

6 rLow_Temp REAL - 32767 Low temperature alarm, disables
cool output.

RW

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3347

No Name Data Type Unit Initial
Value

Description Access

7 rHigh_Devia-
tion

REAL 0 High deviation alarm, relative to
setpoint.

RW

8 rLow_Devia-
tion

REAL 0 Low deviation alarm, relative to
setpoint.

RW

TECT_PROCESS_STATUS_TYPE
This structure contains process status parameters of the zone data. User can read all parame-
ters which are related to the process. These parameters will be changing continuously as per
process status, e.g. Status word.
Act temp, status word, error come under this structure.

No Name Data Type Unit Ini-
tial
Valu
e

Description Access

1 rActive_SetPoint REAL 0 Active setpoint currently
used by process.

RO

2 rActual_Temp REAL 0 Actual value from the
Thermocouple.

RO

3 wStatusWord WORD Status WORD RO

 Bit 0:
reserved

 Bit 1:
reserved

 Bit 2:
reserved

 Bit3:
reserved

 standby_on: BOOL Bit 4: StandBy mode
active.

 fahrenheit_on: BOOL Bit 5: TRUE: Fahrenheit

 tune_done: BOOL Bit 6: AutoTune com-
plete.

 tune_ accepted: BOOL Bit 7: AutoTune values
accepted.

 tune_ state BOOL Bit 8: FALSE: start Auto-
Tune with heat.
TRUE: start AutoTune
with cool.

 hmi_visible: BOOL Bit 12: TRUE: Zone is
visible in the HMI.
FALSE: zone is invisible.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3348

No Name Data Type Unit Ini-
tial
Valu
e

Description Access

 group_fault: BOOL Bit 13: Group fault
active.
All zones in that group:
Outputs disabled.
Process stopped.

 warning: BOOL Bit 14: Warning active,
only displayed. Process
going on.

 fault: BOOL Bit 15: Fault active, out-
puts disabled.
Process stopped.

4 OutputStatus TECT_OUTPUT-
STATUS_ENUM
Ä Chapter
1.5.12.3.11
“TECT_OUTPUT-
STATUS_ENUM”
on page 3359

 Status Code of PWM
output.

RO

5 iTune_Status INT 0 Present tuned value
output.

RO

6 Latest Error TECT_ERROR-
CODE_ENUM
Ä Chapter
1.5.12.3.8
“TECT_ERROR-
CODE_ENUM”
on page 3357

 Error code of latest error. RO

7 wErrors WORD 0 All active errors. RO

8 wErrors2 WORD 0 Second error word RO

 ShortCircuit BOOL FAL
SE

Bit 0- Short Circuit
Detected in the power
circuit

 OpenCircuit BOOL FAL
SE

Bit 1- Open Circuit
Detected in the heater
power circuit

 ControlCircuitFai-
lure

BOOL FAL
SE

Bit 2- Control circuit
failure detected

 ZeroRatedCurren-
tAssigned

BOOL FAL
SE

Zero rated current
assigned for zone

9 xDO_Heat BOOL FAL
SE

PWM output for heat
cycle.

RO

10 xDO_Cool BOOL FAL
SE

PWM output for cool
cycle.

RO

11 iDuty_Cycle INT 0 Output duty cycle in per
cent (%)

RO

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3349

1.5.12.3.2 TECT_LOGFILE_DATA_TYPE
TECT_ LOGFILE_DATA_TYPE is a structure which is used for the data of TECT_LOG_FILE
function block. It contains all information of zone log data including status of the log process.
E.g., user can check the status of folder: / csv file name, save status, file token information.

No Name Data Type Unit Initial
Value

Description Acce
ss

1 diFileEntries DINT - 1 1: File not yet cre-
ated.

RO

2 iNewEntries INT 0 No of new entries. RO

3 stFileName String[12] \' + 8.3 file name RO

4 stSubFolder String[9] Subfolder name RO

5 xErr BOOL FALSE TRUE: Error is gen-
erated.
FALSE: No error.

RO

6 wErno WORD 0 Error number RO

7 Err_Op TECT_FILE_ENU
M Ä Chapter
1.5.12.3.9
“TECT_FILE_ENU
M” on page 3358

 Error operation to
the internal structure
TECT_FILE_ENUM.

RO

8 bySaveState TECT_FILE_ENU
M Ä Chapter
1.5.12.3.9
“TECT_FILE_ENU
M” on page 3358

 TECT_NO
_OPERA-
TION

Save state to
TECT_FILE_ENUM
structure.

RO

9 wMyFi-
leToken

WORD 0 Current file token. RO

10 xSave BOOL FALSE Start save into file. RO

11 xDirCreated BOOL FALSE TRUE: Directory cre-
ated.

RO

12 xLogBusy BOOL FALSE TRUE: Log process
ongoing.

RO

13 xInit BOOL FALSE One execution after
restart/ reset pro-
gram: to backup
(rename) the existing
file.

RO

14 xNewFile Bool FALSE To create a new file. RO

15 xInThreshold Bool FALSE TRUE: Act_temp is in
threshold range.

RO

16 wRetryCycle WORD 0 Number of CPU
cycles have been
passed after saving
failed.

RO

17 xSaveFailed BOOL FALSE Save (write) to file
failed.

RO

18 x2ndBuffer BOOL FALSE Second buffer allo-
cated.

RO

19 i2ndNEntry INT 0 Size of 2nd buffer in
number of entries.

RO

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3350

No Name Data Type Unit Initial
Value

Description Acce
ss

20 i2ndEntryPo-
sLog

INT 0 Position of current
entry in 2nd buffer:
0.. i2ndNEntry-1.

RO

21 ptr2ndBuffer POINTER TO
BYTE

 Pointer to begin of
the 2nd buffer.

RO

22 wNumLo-
gLost

WORD 0 Number of log lost for
the zone

RO

23 ptrLogBuffer POINTER TO
BYTE

 Pointer to begin of
the zone log buffer.

RO

24 ptrEntryLog POINTER TO
BYTE

 Pointer to current
entry to be logged in
buffer.

RO

25 iEntryPosLog INT 0 Position of current
buffer entry: 0..
NUM_BUFFER_ENT
RY-1.

RO

26 iEntryPos-
Write

INT 0 Position of buffer
entry before which
the data has been
written into file: 0..
NUM_BUFFER_ENT
RY-1.

RO

27 wOldStatus Array[1..2] OF
Word

 2 (0) Old status of the log. RO

1.5.12.3.3 TECT_LOGINFO_TYPE
TECT_LOGINFO_TYPE is a structure which defines the log info for the log visualization. It
contains all information of Log visualization including control word, status word, and control
status. User can use visualization to observe this data.

N
o

Name Data Type Uni
t

Ini-
tial
Valu
e

Description Acces
s

1 timtimestamp DT Date and time
stamp.

RO

2 wControlWord WORD 0 Control word RO

3 wStatusWord WORD 0 Status word RO

4 rActive_Set-
Point

REAL 0 Active setpoint
currently used
by process.

RO

5 rActual_Temp REAL 0 Actual value
from the Ther-
mocouple.

RO

6 iDuty_Cycle INT 0 Output Duty
Cycle in per
cent (%).

RO

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3351

N
o

Name Data Type Uni
t

Ini-
tial
Valu
e

Description Acces
s

7 ControlState TECT_CONTROLSTATEMA-
CHINE_
ENUM Ä Chapter
1.5.12.3.7 “TECT_CONTROL-
STATEMACHINE_ENUM”
on page 3357

 Control State
of the
machine.

RO

8 OutputStatus TECT_OUTPUTSTATUS_ENUM
Ä Chapter 1.5.12.3.11
“TECT_OUTPUTSTATUS_ENUM”
on page 3359

 Status code of
PWM output.

RO

9 Latest_Error TECT_ERRORCODE_ENUM
Ä Chapter 1.5.12.3.8
“TECT_ERRORCODE_ENUM”
on page 3357

 Error code of
latest error.

RO

10 wErrors WORD 0 All active
errors.

RO

11 wErrors2 WORD 0 Second error
word.

RO

1.5.12.3.4 TECT_GROUP_DATA_TYPE
TECT_GROUP_DATA_TYPE structure has the data related to each group in the system. It has
all the status of TECT_GROUP function block.

N
o

Name Data Type Unit Ini-
tial
Valu
e

Description Acce
ss

1 stGroup_Name STRING[20] Name of the
group.

RW

2 byGroup_Index BYTE 0 Group index RO

3 byGroup_Size BYTE 0 Size of the
group.

RW

4 ControlState TECT_CONTROLSTATEMA-
CHINE_
ENUM Ä Chapter
1.5.12.3.7 “TECT_CONTROL-
STATEMACHINE_ENUM”
on page 3357

 TEC
T_N
otRe
ady

Control state
of the
machine.

RO

5 byZones_Not_Rea
dy

BYTE 0 Number of
zones at Not-
Ready status.

RO

6 byZones_Ready BYTE 0 Number of
zones at
Ready status.

RO

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3352

N
o

Name Data Type Unit Ini-
tial
Valu
e

Description Acce
ss

7 byZones_Manual BYTE 0 Number of
zones at
Manual
status.

RO

8 byZones_AutoTune BYTE 0 Number of
zones at
AutoTune
status.

RO

9 byZones_PID_Proc
ess

BYTE 0 Number of
zones at PID
process
status.

RO

10 byZones_Fault BYTE 0 Number of
zones at Fault
status.

RO

11 xEn_Process BOOL FAL
SE

Enable
process for all
zones.

RW

12 xEn_Heat BOOL FAL
SE

Enable Heat
process for all
zones.

RW

13 xEn_Cool BOOL FAL
SE

Enable Cool
process for all
zones.

RW

14 xEn_Standby BOOL FAL
SE

Enable
Standby for
all zones.

RW

15 xEn_AutoTune BOOL FAL
SE

Enable Auto-
Tune process
for all zones.

RW

16 xEn_Accept_Auto-
Tune

BOOL FAL
SE

Accept Auto-
Tune values
for all zones.

RW

17 xReset_Warm BOOL FAL
SE

Reset Warm
for all zones.

RW

18 xReset_Cold BOOL FAL
SE

Reset Cold
for all zones.

RW

19 xDisable_Process BOOL FAL
SE

Disable
process for all
zones.

RW

20 xDisable_Heat BOOL FAL
SE

Disable Heat
process for all
zones.

RW

21 xDisable _Cool BOOL FAL
SE

Disable Cool
process for all
zones.

RW

22 xDisable _Standby BOOL FAL
SE

Disable
Standby for
all zones.

RW

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3353

N
o

Name Data Type Unit Ini-
tial
Valu
e

Description Acce
ss

23 xDisable _Autotune BOOL FAL
SE

Disable Auto-
Tune process
for all zones.

RW

24 xDisable
_Accept_Autotune

BOOL FAL
SE

Disable Auto-
Tune values
for all zones.

RW

25 byControlByte BYTE 0 Group Control
Byte

RW

 Transfer BOOL Bit 0 - Ena-
bles com-
mand transfer
from group to
indvidual
zones

RW

26 arActual_Current ARRAY [1..3] OF REAL Actual current
of phase L1,2
and 3 of the
group

RW

27 timMonitor-
Cycle_Time

TIME T#60
0s

Current moni-
toring cycle
time

RW

28 timMonitor-
Step_Time

TIME T#10
s

Current moni-
toring step
time in the
cycle

RW

29 timSettling_Time TIME T#80
0ms

Settling time
allocated for
current
sensor

RW

30 timLastMeasure-
ment

TIME T#0s Time taken to
complete cur-
rent measure-
ment of all the
zones for last
measurement

RW

31 xEn_Co_Monitor BOOL FAL
SE

Enable
common
sensor cur-
rent moni-
toring for all
zones

RW

32 xEn_Indivi_Monitor BOOL FAL
SE

Enable indi-
vidual sensor
current moni-
toring for all
zones

RW

33 xControl_Cir-
cuit_Failure

BOOL FAL
SE

Control circuit
failure of one
of the zone
e.g. SSR
failure

RW

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3354

N
o

Name Data Type Unit Ini-
tial
Valu
e

Description Acce
ss

34 byMaxPercentage BYTE % 150 Maximum
percentage
current
allowed for
current moni-
toring

RW

35 byMinPercentage BYTE % 50 Minimum per-
centage cur-
rent allowed
for current
monitoring

RW

36 byZeroDetectPer-
centage

BYTE % 10 Percentage
current to
detect control
circuit failure

RW

1.5.12.3.5 TECT_SYSTEM_DATA_TYPE

N
o

Name Data Type Un
it

Ini-
tial
valu
e

Description Acce
ss

1 stSystem_Name STRING[20] Name of the
system.

RW

2 bySystem_Size BYTE 0 Size of the system. RW

3 ControlState TECT_CONTROLSTATEMA-
CHINE_ENUM Ä Chapter
1.5.12.3.7 “TECT_CONTROL-
STATEMACHINE_ENUM”
on page 3357(

 TEC
T_N
otR
ead
y

Control state of the
machine.

RO

4 byGroups_Not_Re
ady

Byte 0 Number of groups
NotReady status.

RO

5 byGroups_Ready Byte 0 Number of groups
Ready status.

RO

6 byGroups_Manual Byte 0 Number of groups
Manual status.

RO

7 byGroups_Auto-
tune

Byte 0 Number of groups
Autotune status.

RO

8 byGroups_PID_Pr
ocess

Byte 0 Number of Groups
PID Process
status.

RO

9 byGroups_Fault Byte 0 Number of groups
Fault status.

RO

10 byGroups_Mixed_
State

Byte 0 Number of groups
Mixed status.

RO

11 xEn_Process BOOL FAL
SE

Enable process for
all groups.

RW

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3355

N
o

Name Data Type Un
it

Ini-
tial
valu
e

Description Acce
ss

12 xEn_Heat BOOL FAL
SE

Enable Heat
process for all
groups.

RW

13 xEn_Cool BOOL FAL
SE

Enable Cool
process for all
groups.

RW

14 xEn_Standby BOOL FAL
SE

Enable Standby
process for all
groups.

RW

15 xEn_Autotune BOOL FAL
SE

Enable Autotune
process for all
groups.

RW

16 xEn_Accept_Auto-
tune

BOOL FAL
SE

Accept Autotune
values for all
zones.

RW

17 xReset_Warm BOOL FAL
SE

Reset Warm
process for all
groups.

RW

18 xReset_Cold BOOL FAL
SE

Reset Cold
process for all
groups.

RW

19 xDisable_Process BOOL FAL
SE

Disable process for
all groups.

RW

20 xDisable_Heat BOOL FAL
SE

Disable Heat
process for all
groups.

RW

21 xDisable_Cool BOOL FAL
SE

Disable Cool
process for all
groups.

RW

22 xDisable_Standby BOOL FAL
SE

Disable Standby
process for all
groups.

RW

23 xDisable_Autotune BOOL FAL
SE

Disable Autotune
process for all
groups.

RW

24 xDis-
able_Accept_Autot
une

BOOL FAL
SE

Disable Autotune
values for all
zones.

RW

1.5.12.3.6 TECT_ZONE_INFO_TYPE

No Name Data Type Uni
t

Initial
Value

Description Acce
ss

1 rAc-
tual_Temp

REAL 0 Actual value from the Thermo-
couple.

RO

2 wErrors WORD 0 First error word RO

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3356

No Name Data Type Uni
t

Initial
Value

Description Acce
ss

3 wErrors2 WORD 0 Second error word

4 byGroup_In
dex

BYTE 0 Group index RO

5 byZone_Ind
ex

BYTE 0 Zone index RO

1.5.12.3.7 TECT_CONTROLSTATEMACHINE_ENUM
The structure TECT_CONTROLSTATEMACHINE_ENUM enumeration gives the Control status
of function block TECT_TEMP_CONTROL State machine action status.

No Name Description
1 TECT_NotReady State machine is not ready.

2 TECT_Ready State machine is in Ready state.

3 TECT_Manual State machine is in Manual mode.

4 TECT_AutoTune Automatic mode in PID process with standby setpoint - Heating.

5 TECT_PID_Proce
ss

State machine PID process is running.

6 TECT_FaultState State machine is in Fault state.

7 TECT_MixedState State machine is in Mixed state.

8 DummyState DummyState = 256, to ensure the TECT_CONTROLSTATEMA-
CHINE_ENUM has two bytes.

1.5.12.3.8 TECT_ERRORCODE_ENUM
The structure TECT_ERRORCODE_ENUM enumeration is to save and display all the special
errors and warnings.

No Name Description
1 TECT_NoError No Error

2 TECT_TuneFault Bit 0: TuneFault: Tuning failed - Outputs disabled,
check TECT_TEMPZONE_DATA_TYPE Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

3 TECT_TC_Fault_
1

Bit 1: TC Fault_1: Bad thermocouple reading - outputs disabled.

4 TECT_TC_Fault_
2

Bit 2: TC Fault_2: Plausability check not passed - outputs disabled.

5 TECT_HighHighT-
empFault

Bit 3: HighHighTempFault: HighHigh Temperature alarm - outputs
disabled.

6 TECT_LowLow-
TempFault

Bit 4: LowLowTempFault: LowLow Temperature alarm - outputs dis-
abled.

7 TECT_HighTemp Bit 7: HighTemp: High Temperature alarm.

8 TECT_LowTemp Bit 8: LowTemp: Low Temperature alarm.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3357

No Name Description
9 TECT_HighDevia-

tion
Bit 9: HighDeviation: High Deviation alarm

10 TECT_LowDevia-
tion

Bit 10: LowDeviation: Low Deviation alarm.

11 TECT_NoHigh-
HighLowLow

Bit 11: NoHighHighLowLow: No HighHighTemp/ LowLowTemp limit
is defined.

12 TECT_WrongLi-
mits

Bit 12: WrongLimits is configured, HighTemp/Low temp and High-
HighTemp/LowLowTemp values are not plausible.

13 Reserved Bit 13: Reserved

14 TECT_NoAuto-
Tune

Bit 14: NoAutoTune: Auto tune cannot be started.

15 TECT_NoPIDPro-
cess

Bit 15: NoPIDProcess: PID process cannot be started or parame-
ters KP, TN, TV, TD are not valid.

16 TECT_ShortCir-
cuit

Bit 16: Short Circuit detected in the heater power circuit.

17 TECT_OpenCir-
cuit

Bit 17: Open Circuit detected in the heater power circuit.

18 TECT_ControlCir-
cuitFailure

Bit 18: Heater power Control Circuit failure detected.

19 TECT_NoRated-
Current

Bit 19: No valid rated current defined for current monitoring

1.5.12.3.9 TECT_FILE_ENUM
The structure TECT_FILE_ENUM enumeration will give the current status of TECT_LOG_FILE
function block operation.

Value Name Description
0 TECT_NO_OPERATION No operation is active in TECT_LOG_FILE function

block.

5 TECT_CREATE_SUB-
FOLDER

Subfolder creation is active in TECT_LOG_FILE
function block.

20 TECT_WAIT FOR TOKEN Waiting for token in TECT_LOG_FILE function block.

40 TECT_OPEN_FILE Opening file is active in TECT_LOG_FILE function
block.

45 TECT_GET_POSITION Get position is active in TECT_LOG_FILE function
block.

50 TECT_WRITE_HEADER Writing header is active in TECT_LOG_FILE function
block.

60 TECT_WRITE_ENTRY Writing entry is active in TECT_LOG_FILE function
block.

80 TECT_CLOSE_FILE Close file is active in TECT_LOG_FILE function
block.

90 TECT_CREATE_BACKUP Creating backup is active in TECT_LOG_FILE func-
tion block.

100 TECT_RENAME_FILE Renaming is active in TECT_LOG_FILE function
block.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3358

Value Name Description
105 TECT_RETRY_RENAME Retrying rename is active in TECT_LOG_FILE func-

tion block.

200 TECT_RELEASE_TOKEN Releasing token is active in TECT_LOG_FILE func-
tion block.

- 5 TECT_CREATE_FOLDER Folder creation is active in TECT_LOG_FILE function
block.
(*<0: creating FOLDER, not for saving log data state.)

1.5.12.3.10 TECT_OPERATION_ENUM
The structure TECT_OPERATION_ENUM enumeration is to configure operations in function
block TECT_DATA_FLASH and function block TECT_RECIPE.

Value Name Description
1 TECT_READ Read data from RECIPE/DATA_FLASH to TECT_TEMP-

ZONE_DATA_TYPE. Ä Chapter 1.5.12.3.1 “TECT_TEMP-
ZONE_DATA_TYPE” on page 3343

2 TECT_WRITE Write data to RECIPE/DATA_FLASH from TECT_TEMP-
ZONE_DATA_TYPE. Ä Chapter 1.5.12.3.1 “TECT_TEMP-
ZONE_DATA_TYPE” on page 3343

3 TECT_DELETE Delete data written into DATA_FLASH.

4 TECT_CHECK_R
EAD

Check, if there are already valid parameters (KS > 0)
in TECT_TEMPZONE_DATA_TYPE. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

Read data only from DATA_FLASH, if KS £ 0.

5 TECT_DELETE_
WRITE

First delete the whole flash segment. Then write data from
TECT_TEMPZONE_DATA_TYPE to flash. Ä Chapter 1.5.12.3.1
“TECT_TEMPZONE_DATA_TYPE” on page 3343

It is used to avoid error 4101 by WRITE: Block was already written.

6 TECT_CHECK_
WRITE

First read data from flash to TECT_TEMPZONE_DATA_TYPE, if
KS £ 0. Ä Chapter 1.5.12.3.1 “TECT_TEMPZONE_DATA_TYPE”
on page 3343

Then delete the flash.
It is a combination of CHECK_READ and DELETE_WRITE.

1.5.12.3.11 TECT_OUTPUTSTATUS_ENUM
The structure TECT_OUTPUTSTATUS_ENUM enumeration will give the status of the PWM
output.

Value Name Description
0 TECT_Disabled Process disabled.

1 TECT_AutoHeat Automatic mode in PID process with setpoint: Heating.

2 TECT_AutoCool Automatic mode in PID process with setpoint: Cooling.

3 TECT_AutoHeat
Standby

Automatic mode in PID process with standby setpoint:
Heating.

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3359

Value Name Description
4 TECT_AutoCool

Standby
Automatic mode in PID process with standby setpoint:
Cooling.

5 TECT_ManualHeat Manual mode: Heating

6 TECT_ManualCool Manual mode: Cooling

7 TECT_TuneActive AutoTune is active. Heating with tune_output.

8 TECT_TuneComplete AutoTune is complete. Waiting for accept of AutoTune
results.
No PWM output.

9 TECT_Inactive Duty cycle = 0. No PWM output.

10 TECT_NoOutput NoOutput: Monitor Only

11 TECT_CoMonitorActive Common sensor current monitoring is active

12 TECT_CoMonitorWait Common sensor current monitoring is in waiting mode

13 TECT_IndiviMonitor Individual sensor current monitoring is active

256 TECT_DummyStatus DummyStatus := 256 to ensure the TECT_OUTPUT-
STATUS_ENUM has two bytes

1.5.12.4 Visualization
1.5.12.4.1 Visualization

Visualization gives an opportunity to the user to monitor and control function blocks. Some
template are also created for ease of operation.

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3360

Fig. 603: TECT visualization list

TECT_ZONE_DATA_PH
TECT_ZONE_DATA_PH can be used as template for zone data. The most important values
of a zone data during the control process can be monitored out of here. Each instance of
this visualization has to be attached with respective zones to read and write the parameters
to the particular zone. In the placeholder attach corresponding array element of the variable
declared for structure TECT_TEMPZONE_DATA_TYPE. Ä Chapter 1.5.12.3.1 “TECT_TEMP-
ZONE_DATA_TYPE” on page 3343

Fig. 604: TECT_ZONE_DATA_PH template in offline mode

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3361

Fig. 605: TECT_ZONE_DATA_PH template in online mode

TECT_LOG_ENTRY_PH
The items of data TECT_LOG_ENTRY_PH array in logging buffer can be displayed in
CODESYS Visualization, using dedicated visualization template. The following example shows
how to realize it.

1. Define an array of TECT_LOG_ENTRY_PH with the size in number of entries
(NUM_VISU_ENTRY = 10) to be displayed.
ptsLog_Visu: ARRAY[1...10] of TECT_LOGINFO_TYPE Ä Chapter 1.5.12.3.3
“TECT_LOGINFO_TYPE” on page 3351

Visu_array: ARRAY[1...10] of Visu_LogEntry
2. Data type: POINTER TO TECT_LOGINFO_TYPE

Start address of the log visualization data. It is recommended to define the log visualiza-
tion data in array. This can be used only with CODESYS visualization. For example, if
there are 4 zones to be logged and each zone has 10 log visualization entries, then a
one dimensional or two dimensional array can be defined (see TECT_LOGINFO_TYPE:
Ä Chapter 1.5.12.3.3 “TECT_LOGINFO_TYPE” on page 3351

visu_buffer: ARRAY[1..40] OF TECT_LOGINFO_TYPE; (in one dimensional array).
visu_buffer: ARRAY[1..4, 1..10] OF TECT_LOGINFO_TYPE; (in two dimensional array).

Visualization
example of log-
ging buffer
Definition of
TECT_LOG_EN
TRY_PH array

VISU_BUFFER

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3362

Fig. 606: FB_TECT_LOG_FILE 2

3. Data type: BYTE, Default value: 10
Number of log entries displayed in log visualization for one zone.

4. Create a VISU element of type TECT_LOG_HEADER.

NUM_VISU_EN
TRY

Creation of
VISU element
of type
TECT_LOG_HE
ADER

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3363

Fig. 607: TECT_LOG_ENTRY_PH placeholder

5. Create a VISU element of type TECT_LOG_ENTRY_PH. Set the Visu_buffer [1] as
replacement for the VISU placeholder.
Resize the VISU element as the same size of TECT_LOG_HEADER.

6. Create more 9 VISU elements of type TECT_LOG_ENTRY_PH (or create 9 copies of the
first TECT_LOG_ENTRY_PH item).
Set the visu_buffer [2] to visu_buffer [10] as replacement for the placeholders to the 9
VISU items.

Creation of
VISU element
of type
TECT_LOG_EN
TRY_PH

Creation of
more VISU ele-
ments of type
TECT_LOG_EN
TRY_PH

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3364

Fig. 608: TECT_LOG_ENTRY_PH order place

7. Place the 10 VISU items in an ascending order (the oldest entry Visu_array[1] on the top)
or a descending order (the newest entry Visu_array[10] on the top).

Organization of
VISU items

TECT_SYSTEM_GROUP_PH
TECT_SYSTEM_GROUP_PH can be used as template to control and monitor complete
system.

Using this visualization user can enable or disable the process, start or stop autotune process,
aceept the autotune parameters for the complete system. It also has option to Cold reset and
Warm reset the process for complete system.

Fig. 609: TECT_SYSTEM_GROUP_PH in offline mode

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3365

Fig. 610: TECT_SYSTEM_GROUP_PH in online mode

TECT_TEMP_CONTROL_VISU_PH
Visualization element TECT_TEMP_CONTROL_VISU_PH is used to show the actual values of
all inputs and outputs of the instance of TECT_TEMP_CONTROL_VISU_PH. The visualization
is also used to control the function block by those inputs, which are not connected inside the
program. The figures show the visualization in offline and online mode.

Fig. 611: TECT_TEMP_CONTROL_VISU_PH template in offline mode

Fig. 612: TECT_TEMP_CONTROL_VISU_PH template in online mode

Description

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3366

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Variable
Element

Acces
s

Access
via

Description
(all elements refer to the function block instance,
replaced for the placeholder FB)

EN R/W Toggle Enable function block by TRUE level at input EN

PID_INTERV
AL

R/W Keypad Interval time for PID processing

PWM_PERI
OD

R/W Keypad PWM Period. It should not be greater than
PID_INTERVAL

FAHREN-
HEIT

R/W Toggle Converts process temperature into Fahrenheit when
TRUE

ACT_TEMP_
RAW

R/W Numpad TC sensor input as actual temperature in raw value: Cel-
sius with RAW_FACTOR

RAW_FACT
OR

R/W Numpad Factor of ACT_TEMP_RAW to actual temperature in Cel-
sius

ADR_ZONE-
DATA

R Pointer to Zone Data defined as TECT_TEMP-
ZONE_DATA_TYPE

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

DUTY_CYC
LE

R Output duty cycle

DO_HEAT R Pulse for heating

DO_COOL R Pulse for cooling

HIGHHIGH R HighHigh alarm active

HIGH R High alarm active

LOW R Low alarm active

LOWLOW R LowLow alarm active

All inputs of TECT_TEMP_CONTROL function block, which are not connected to a variable
(left open), can be written from this faceplate. The function block can be controlled from the
visualization as long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

TECT_GROUP_VISU_PH
Visualization element TECT_GROUP_VISU_PH is used to show the actual values of all inputs
and outputs of the instance of TECT_GROUP_VISU_PH. The visualization is also used to
control the function block by those inputs which are not connected inside the program.
The figures show the visualization in offline and online mode.

Colors

Visualization
parameters

Description

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3367

Fig. 613: TECT_GROUP_VISU_PH template in offline mode

Fig. 614: TECT_GROUP_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Colors

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3368

Variable Ele-
ment

Access Acces
s via

Description
(all elements refer to the function block instance,
replaced for the placeholder FB)

EN R/W Toggle Enable function block by TRUE level at input EN

EN_FAULT_MO
NITOR

R/W Toggle It enables the Fault monitoring function when TRUE

GROUP_FAULT
_MASK

R/W Numpa
d

It enables masking of the Group Fault for the bits which
are with value 1

PID_INTERVAL R/W Keypa
d

Interval time for PID processing

PWM_PERIOD R/W Keypa
d

PWM Period. It should not be greater than
PID_INTERVAL

RAW_FACTOR R/W Numpa
d

Factor of ACT_TEMP_RAW to actual temperature in
Celsius

FAHRENHEIT R/W Toggle Converts process temperature into Fahrenheit when
TRUE

ACT_TEMP_RA
W

R/W Numpa
d

TC sensor input as actual temperature in raw value: Cel-
sius with RAW_FACTOR

CO_OUTPUT R/W Toggle Enables coordinated output

MIN_CYCLES_H
EAT

R/W Numpa
d

ON or OFF Period should have a minimum length in
number of CPU cycles

MIN_CYCLES_C
OOL

R/W Numpa
d

ON or OFF Period should have a minimum length in
number of CPU cycles

PWM_PERIOD_
CYCLES

R/W Numpa
d

Period duration referred to number of CPU cycles

GROUP_SIZE R/W Numpa
d

Size of the group

GROUP_NAME R/W Keypa
d

Name of the Group upto 20 characters

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

GROUP_FAULT R Group fault active

GROUP_STATU
S

R Status of the group

GROUP_INDEX R Group Index

All inputs of TECT_GROUP function block, which are not connected to a variable (left open),
can be written from this faceplate. The function block can be controlled from the visualization as
long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

TECT_SYSTEM_VISU_PH
Visualization element TECT_SYSTEM_VISU_PH is used to show the actual values of all inputs
and outputs of the instance of TECT_SYSTEM_VISU_PH. The visualization is also used to
control the function block by those inputs, which are not connected inside the program.
The figures show the visualization in offline and online mode.

Visualization
parameters

Description

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3369

Fig. 615: TECT_SYSTEM_VISU_PH template in offline mode

Fig. 616: TECT_SYSTEM_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Variable Element Access Acce
ss
via

Description
(all elements refer to the function block instance,
replaced for the placeholder FB)

EN R/W Toggl
e

Enable function block by TRUE level at input EN

SYSTEM_NAME R/W Text Name of the System upto 20 characters

NUM_OF_ZONE R/W Num
pad

Number of zones in the system to be operated

NUM_OF_GROU
P

R/W Num
pad

Interval time for PID processing

ADR_SYSTEM_I
NFO

R Pointer to Zone info defined as
TECT_ZONE_INFO_TYPE

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

SYSTEM_STATU
S

R System state machine status

All inputs of TECT_SYSTEM function block, which are not connected to a variable (left open),
can be written from this faceplate. The function block can be controlled from the visualization as
long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor.

TECT_TEMP_SIMU_VISU_PH
Visualization element TECT_TEMP_SIMU_VISU_PH is used to show the actual values of all
inputs and outputs of the instance of TECT_TEMP_SIMU_VISU_PH. The visualization is also
used to control the function block by those inputs, which are not connected inside the program.

Colors

Visualization
parameters

Description

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3370

The figures show the visualization in offline and online mode.

Fig. 617: TECT_TEMP_SIMU_VISU_PH template in offline mode

Fig. 618: TECT_TEMP_SIMU_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Variable Ele-
ment

Access Access via Description
(all elements refer to the function block instance,
replaced for the placeholder FB)

EN R/W Toggle Enable function block by TRUE level at input EN

DUTY_CYCL
E

R/W Numpad PWM duty cycle for a temperature zone

MAXIMUM R/W Numpad Maximum temperature allowed for the simulation

MINIMUM R/W Numpad Minimum temperature allowed for the simulation

TI_CYCLES R/W Numpad Internal control parameter for simulation

T1_CYCLES R/W Numpad Internal control parameter for simulation

PID_INTERV
AL

R/W Keypad Interval time for PID processing

ACT_TEMP R Simulated actual temperature

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

All inputs of TECT_TEMP_SIMU function block, which are not connected to a variable (left
open), can be written from this faceplate. The function block can be controlled from the visuali-
zation as long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

Colors

Visualization
parameters

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3371

TECT_NOISE_FILTER_VISU_PH
Visualization element TECT_NOISE_FILTER_VISU_PH is used to show the actual values of all
inputs and outputs of the instance of TECT_NOISE_FILTER_VISU_PH. The visualization is also
used to control the function block by those inputs, which are not connected inside the program.
The figures show the visualization in offline and online mode.

Fig. 619: TECT_NOISE_FILTER_VISU_PH template in offline mode

Fig. 620: TECT_NOISE_FILTER_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Variable Ele-
ment

Access Access via Description
(all elements refer to the function block instance,
replaced for the placeholder FB)

VALUE_IN R/W Numpad Input value to be filtered

TOLERANCE R/W Numpad Tolerance for the input value

FILTER_TIME R/W Keypad Filter time

VALUE_OUT R Output value after filtering

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

All inputs of TECT_NOISE_FILTER function block, which are not connected to a variable (left
open), can be written from this faceplate. The function block can be controlled from the visuali-
zation as long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

TECT_PWM8_VISU_PH
Visualization element TECT_PWM8_VISU_PH is used to show the actual values of all inputs
and outputs of the instance of TECT_PWM8_VISU_PH. The visualization is also used to control
the function block by those inputs which are not connected inside the program.

Description

Colors

Visualization
parameters

Description

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3372

The figures show the visualization in offline and online mode.

Fig. 621: TECT_PWM8_VISU_PH template in offline mode

Fig. 622: TECT_PWM8_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Colors

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3373

Variable
Element

Access Access via Description (all elements refer to the function block
instance, replaced for the placeholder FB)

DUTY_CYC
LE[1]

R/W Numpad PWM duty cycle for a first zone

DUTY_CYC
LE[2]

R/W Numpad PWM duty cycle for a second zone

DUTY_CYC
LE[3]

R/W Numpad PWM duty cycle for a third zone

DUTY_CYC
LE[4]

R/W Numpad PWM duty cycle for a fourth zone

DUTY_CYC
LE[5]

R/W Numpad PWM duty cycle for a fifth zone

DUTY_CYC
LE[6]

R/W Numpad PWM duty cycle for a sixth zone

DUTY_CYC
LE[7]

R/W Numpad PWM duty cycle for a seventh zone

DUTY_CYC
LE[8]

R/W Numpad PWM duty cycle for a eighth zone

DUTY_MAX R/W Numpad Max value for DUTY_CYCLE

MIN_CYCL
ES

R/W Numpad ON or OFF Period should have a minimum length in
number of CPU cycles

PWM_PERI
OD_CYCLE
S

R/W Numpad Internal control parameter for simulation

PULSE[1] R Pulse duration modulated signal of first zone

PULSE[2] R Pulse duration modulated signal of second zone

PULSE[3] R Pulse duration modulated signal of third zone

PULSE[4] R Pulse duration modulated signal of fourth zone

PULSE[5] R Pulse duration modulated signal of fifth zone

PULSE[6] R Pulse duration modulated signal of sixth zone

PULSE[7] R Pulse duration modulated signal of seventh zone

PULSE[8] R Pulse duration modulated signal of eighth zone

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

All inputs of TECT_PWM8 function block, which are not connected to a variable (left open), can
be written from this faceplate. The function block can be controlled from the visualization as long
as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

TECT_LOG_FILE_VISU_PH
Visualization element TECT_LOG_FILE_VISU_PH is used to show the actual values of all
inputs and outputs of the instance of TECT_LOG_FILE_VISU_PH. The visualization is also
used to control the function block by those inputs, which are not connected inside the program.
The figures show the visualization in offline and online mode.

Visualization
parameters

Description

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3374

Fig. 623: TECT_LOG_FILE_VISU_PH template in offline mode

Fig. 624: TECT_LOG_FILE_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Variable Ele-
ment

Access Access via Description (all elements refer to the function
block instance, replaced for the placeholder
FB)

EN R/W Toggle Enable function block by TRUE level at input EN

EN_LOG R/W Toggle Enable logger and save log buffer to file automati-
cally

LOG_TRIG R/W Toggle Execute log with rising edge

ADR_LOG_BUFF
ER

R Start address of the logging buffer

NUM_BUFFER_
ENTRY

R/W Numpad Size of logging buffer: number of entries

SELECTION R/W Numpad Selection of predefined values to be logged

MODE R/W Numpad To select the different modes for logging

THRESHOLD R/W Numpad Value needs to be set in combination of MODE:
MODE.Bit2-0 = 101

NUM_FILE_ENT
RY

R/W Numpad Value needs to be set in combination of MODE:
MODE.Bit7-6 = 01

FILE_PATH R/W Text Folder for saving log file, should not be empty, one
level will be created

Colors

Visualization
parameters

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3375

Variable Ele-
ment

Access Access via Description (all elements refer to the function
block instance, replaced for the placeholder
FB)

MANUAL_SAVE R/W Toggle Save log buffer to file manually

CLEAR_BUFFER R/W Toggle Clear log buffer

ADR_VISU_BUF
FER

R First address of data type TECT_TYPLO-
GINFO_TYPE

NUM_VISU_ENT
RY

R/W Numpad Number of log entries displayed in VISU

NUM_OF_ZONE R/W Numpad Number of zones in the system to be operated

ERR R Error occured during execution when output ERR
= TRUE

ERNO R Error codes

ERR_OP R Error operation, combined with ERR and ERNO

ERR_ZONE R Error zone, zone which causes the error

FOLDER_CRE-
ATED

R Folder and subfolder created

LOG_BUSY R Logging entry in buffer is busy

NUM_LOG_LOS
T

R Number of logs lost

SAVING_BUSY R Save logging buffer to file is busy

ZONE_SAVING R The zone of which the file operation is executing

CLEAR_DONE R Clear logging buffer is done

ENTRY_SIZE R Size of one log entry in byte, depending on
SELECTION

BUFFER_SIZE R Size of whole buffer for all zones
in byte, depending on ENTRY_SIZE,
NUM_BUFFER_ENTRY and NUM_OF_ZONE

All inputs of TECT_LOG_FILE function block, which are not connected to a variable (left open),
can be written from this faceplate. The function block can be controlled from the visualization as
long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

TECT_RECIPE_VISU_PH
Visualization element TECT_RECIPE_VISU_PH is used to show the actual values of all inputs
and outputs of the instance of TECT_RECIPE_VISU_PH. The visualization is also used to
control the function block by those inputs, which are not connected inside the program.
The figures show the visualization in offline and online mode.

Fig. 625: TECT_RECIPE_VISU_PH template in offline mode

Description

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3376

Fig. 626: TECT_RECIPE_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Variable
Element

Access Access via Description (all elements refer to the function block
instance, replaced for the placeholder FB)

EN R/W Toggle Enable function block by TRUE level at input EN

OPERA-
TION

R/W Numpad Operation type := 1: READ, 2: WRITE.

SET_NO R/W Numpad Recipe set number: 0..65535

FILE_PATH R/W Text 1. Folder name: default file will be created.
2. folder+file name: user defined file will be created.

NUM_OF_Z
ONE

R/W Numpad Number of zones in the system to be operated

DONE R Execution finished, when output DONE = TRUE

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

BUSY R Recipe operation busy

STATUS R Status of the recipe block

All inputs of TECT_RECIPE function block, which are not connected to a variable (left open),
can be written from this faceplate. The function block can be controlled from the visualization as
long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

TECT_DATA_FLASH_VISU_PH
Visualization element TECT_DATA_FLASH_VISU_PH is used to show the actual values of all
inputs and outputs of the instance of TECT_DATA_FLASH_VISU_PH. The visualization is also
used to control the function block by those inputs, which are not connected inside the program.
The figures show the visualization in offline and online mode.

Colors

Visualization
parameters

Description

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3377

Fig. 627: TECT_DATA_FLASH_VISU_PH template in offline mode

Fig. 628: TECT_DATA_FLASH_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Variable Element Acces
s

Acce
ss via

Description (all elements refer to the function block
instance, replaced for the placeholder FB)

EN R/W Toggl
e

Enable function block by TRUE level at input EN

OPERATION R/W Nump
ad

Operation type := 1: READ, 2: WRITE.

FLASH_SEG-
MENT

R/W Nump
ad

Number of the data segment; 1 or 2

FIRST_FLASH_B
LOCK

R/W Nump
ad

Number of the flash block within the data segment:
0...1926

NUM_OF_ZONE R/W Nump
ad

Number of zones in the system to be operated

DONE R Execution finished, when output DONE = TRUE

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

BUSY R Recipe operation busy

All inputs of TECT_DATA_FLASH function block, which are not connected to a variable (left
open), can be written from this faceplate. The function block can be controlled from the visuali-
zation as long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

Colors

Visualization
parameters

PLC Automation with V2 CPUs
Libraries and solutions > Temperature control library

2022/01/203ADR010582, 3, en_US3378

TECT_HMI_MUX_VISU_PH
Visualization element TECT_HMI_MUX_VISU_PH is used to show the actual values of all
inputs and outputs of the instance of TECT_HMI_MUX_VISU_PH. The visualization is also used
to control the function block by those inputs, which are not connected inside the program.
The figures show the visualization in offline and online mode.

Fig. 629: TECT_HMI_MUX_VISU_PH template in offline mode

Fig. 630: TECT_HMI_MUX_VISU_PH template in online mode

The color of the variables has the following meaning:
● WHITE: Actual FALSE and should be FALSE in normal operation
● GREEN: Actual TRUE and should be TRUE in normal operation
● YELLOW: Actual FALSE, but should be TRUE in normal operation
● RED: Actual TRUE, but should be FALSE in normal operation

Variable Ele-
ment

Acces
s

Access via Description (all elements refer to the function
block instance, replaced for the placeholder FB)

EN R/W Toggle Enable function block by TRUE level at input EN

GROUP_INDE
X

R/W Numpad Index of active Group on HMI, it will be set from HMI
and should be >0

NUM_OF_ZON
E

R/W Numpad Number of zones in the system to be operated and
should be >0

MAX_GROUP_
SIZE

R/W Numpad Size of the largest group in the system and should be
>0

ERR R Error occured during execution when output ERR =
TRUE

ERNO R Error codes

All inputs of TECT_HMI_MUX function block, which are not connected to a variable (left open),
can be written from this faceplate. The function block can be controlled from the visualization as
long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable dwTect-
ControlVisuBackgroundColor. The color of the title can be changed by writing a value to the
global variable dwTectControlVisuTitleColor.

Description

Colors

Visualization
parameters

PLC Automation with V2 CPUs

Libraries and solutions > Temperature control library

2022/01/20 3ADR010582, 3, en_US 3379

1.5.12.5 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

1.5.13 Water library

1.5.13.1 Pumping library

1.5.13.1.1 Overview
The Pumping Library is intended for smaller pump stations (or pump skids) and medium sized
stations. It contains the block for the basic functionalities as well as advanced functions for very
different applications.
This version named PUMP_AC500_V23.lib for Control Builder Plus V2.3 is usable for 1-3
pumps and is intended for configurations as it can be seen in the below figure It is best suited
for the use of frequency converters/drives for each pump but also for the traditional setup with
one drive and 1-2 switched outputs for the pumps.

The minimal sensor equipment for boost control applications is a pressure or flow sensor, for
level control a level sensor. The pressure sensor can be at input and or/output, the flow sensor
should be at the output. Often additionally also at the input a sensor, typically pressure, is
placed for advanced protection and diagnosis.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3380

The two main pumping applications in water and waste water are:
● Boost, typically pressure boost control: Used in network feeding, but also flow boost control

for irrigation, water transport, cooling and washing applications.
● Level control: Used for tank or reservoir filling or emptying applications e.g. also lift applica-

tions e.g. in waste water networks.
For both applications a special application block is available, which has all the needed basic
functionality, so that with minimal programming and mainly configuration an application can be
setup.

Further auxiliary and optimization Function Blocks are part of the library, which help in putting
additional advanced functionality with again minimal programming effort.
This function block type concept helps in always having the necessary functionality without
using too much PLC resources (memory) and keeping the applications as simple as possible.
Therefore the Pumping Library can be used throughout the AC500 Platform, starting from the
small AC500-eCo.

PUMP_
BOOST_CTRL

(1)

Or

PUMP_
LEVEL_CTRL

(1)

ACS DRIVE

Master
Pump
speed

speed
+ start/stop

Pr
es

su
re

(o
r F

lo
w

)
ac

tu
al

PUMP_
INTERFACE

ACS DRIVEPUMP_
INTERFACE

ACS DRIVEPUMP_
INTERFACE

PUMP_PID
(1)

speed
+ start/stop

speed
+ start/stop

speed
+ start/stop

status

Ready,
operating,

tripped

PID
parameters

PUMP_
AUTO_

CHANGE
(1)

STATION_
CONFIGURATION

(1)

Operating mode
Master location

Start/stop speeds
Start/stop delay

Level
actual

Structure to exchange parameters
and data between the blocks,
(allows also experienced users to
get more detailed data if needed)

Set point
(e.g. pressure)

Nr. of
Pumps

Pumps may have different size, parameters

Pump spec. settings

Structure
PUMP_STATION

Process:
Motors,
Pumps,

Pipes
(Tank)

Fig. 631: A simple but typical application for small pump station or pump-skid (suitable e.g. also for
AC500-eCo with 3 pumps)

à Other specific parameters
(x) x shows how often a function block is used in a setup with 3 pumps
- - - Optional function blocks depending on the application

Example

The station itself is configured by the function block STATION_CONFIGURATION with an ID,
name and number of used pumps.
The main application Function Block is PUMP_BOOST_CTRL or PUMP_LEVEL_CTRL.
When using the function block PUMP_BOOST_CTRL: The actual pressure is read from the
sensor and sent to the function block PUMP_PID. The PID corrections are given to the function
block PUMP_BOOST_CTRL.
When using the PUMP_LEVEL_CTRL: The actual level is read from the sensor. It is not sent to
PUMP_PID, it is sent directly to the function block PUMP_LEVEL_CTRL which does a fill or an
empty operation.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3381

The function block PUMP_INTERFACE is used for detailed configuration of each pump and for
interfacing to the drives/actuators. The function blocks PUMP_INTERFACE allow a variety of
actuators: One drive with direct-on-line "DOL" pumps, hard- or soft-switched; all drive controlled
pumps; discrete or bus connection to the drives.
The number of function blocks PUMP_INTERFACE is depending on the number of pumps. 1
pump = 1 function block PUMP_INTERFACE, 2 pumps = 2 function blocks PUMP_INTERFACE
etc.

The parameter and status exchange between the different blocks is done by a
structured variable (symbolized by the light blue layer in the above figure which
is connected to all blocks with control functionality. It contains substructures
depending on the function and use.

This concept minimizes memory usage, the connection work and still allows
advanced diagnosis if necessary.

Function blocks
These are main application and control function blocks.
● The boost-control function block works with a closed loop control signal, typically coming

from a PID controller with a pressure (or flow) sensor, see Ä Chapter 1.5.13.1.6
“PUMP_BOOST_CTRL Boost Control” on page 3404. The PID gives a speed set-point
for the boost pumping station. The boost control block then distributes start/stop and speed
commands, depending on its chosen operating mode and parameters, to e.g. a multi-pump
setup.
The boost application is typically used with drives on all pumps and for:
– Network feeding to control a pressure in the network over a wide range of flow, which is

given by the varying demand in the network.
– Irrigation, where either pressure or the flow is controlled to achieve a uniform and

controlled irrigation.
– Transport, cooling and washing applications (more flow control).

● The level-control function block works with discrete definable levels to switch the pumps
and set appropriate fixed speeds, see Ä Chapter 1.5.13.1.8 “PUMP_LEVEL_CTRL Level
Control” on page 3414. Due to this fixed speed operation level control may also be used
with the secondary pumps being switched.

The auxiliary Function Blocks provide necessary additional functionality in a modular way to
further minimize programming needs and mainly do configuration instead.
● PID control with extended functions for pumping applications with this library.
Ä Chapter 1.5.13.1.7 “PUMP_PID” on page 3410.

● Autochange functionality (ensures distribution of operation hours on the pumps).
Ä Chapter 1.5.13.1.9 “PUMP_AUTOCHANGE” on page 3422.

● Station configuration and pump interface function blocks to simplify configuration and inter-
facing to the drives.
Ä Chapter 1.5.13.1.2 “PUMP_STATION_CFG” on page 3384.
Ä Chapter 1.5.13.1.3 “PUMP_INTERFACE” on page 3386.

● The retain Function block stores selected values which have to sustain through power
failures.
Ä Chapter 1.5.13.1.4 “PUMP_RETAIN_DATA” on page 3391.

The optimization Function Blocks help in further optimizing the pumping station operation by
providing additional information or functionality to save energy and protect the equipment
(pumps, pipes, tanks).

Application
function blocks

Auxiliary func-
tion blocks

Optimization
function blocks

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3382

● The Flow Calculation block estimates with the help of the drives measured power output
and few pump curve data points of the PQ curve the actual flow, which can save a separate
instrument and its integration work.
Ä Chapter 1.5.13.1.11 “PUMP_FLOW_CALC” on page 3430

● The Energy Calculation block totalizes the flows and energy consumptions and provides
Efficiency values. If no flow meter is there, the Flow calculation block can be used.
Ä Chapter 1.5.13.1.14 “PUMP_ENERGY_CALC” on page 3450

● The Sleep function helps to save energy in PID operation if demand is low (e.g. at night in a
network) and works closely together with PID and boost block.
Ä Chapter 1.5.13.1.12 “PUMP_SLEEP” on page 3435

● The Protection block provides advanced protections features for pump, pipe and tank based
on the available information in the station.
Ä Chapter 1.5.13.1.13 “PUMP_PROTECTION” on page 3442

● The Anti-Jam block provides a configurable cleaning function per used pump with a drive.
Ä Chapter 1.5.13.1.10 “PUMP_ANTIJAM” on page 3426

PUMP_
BOOST_CTRL

(1)

Or

PUMP_
LEVEL_CTRL

(1)

ACS DRIVE

Set point
(e.g. pressure)

Master
Pump
speed

speed
+ start/stop

Process:
Motors,
Pumps,

Pipes
(Tank)

Pr
es

su
re

(o
r F

lo
w

)
ac

tu
al

PUMP_
INTERFACE

ACS DRIVEPUMP_
INTERFACE

ACS DRIVEPUMP_
INTERFACE

PUMP_PID
(1)

PUMP_
PROTECTION

(3)

speed
+ start/stop

speed
+ start/stop

Ready,
operating,

tripped

PID
parameters

Limits for pressure, flow
Time delays, Control actions

PUMP_ SLEEP (3)

PUMP_
AUTO_

CHANGE
(1)

PUMP
_ ANTIJAM

(3)

PUMP_FLOW_CALC
(3)

STATION_
CONFIGURATION

(1)

Operating mode
Master location

Start/stop speeds
Start/stop delay

Level
actual

Nr. of
Pumps

PQ Curve

Q (Flow)

PUMP_ENERGY_
CALC (1)

Operation
values

P, Q Values
Retain

(1)

speed
+ start/stop

status

Pumps may have different size, parameters

Pump spec. settings

Structure
PUMP_STATION

Fig. 632: Overview of the concept and its options with the Pumping Library, including auxiliary and optimization
blocks.

There are further blocks provided enabling a simple simulation of the process (DOL, Drive,
TANK) to try out an application program without hardware.
For further details please check the application examples and their documentation which are
provided with the PS563-WATER library product package. Please check also if a more up to
date version or comments exist as download on www.abb.com/PLC.

Preconditions for the use of the pumping library
Examples for this library can be found in C:\Users\Public\Documents\AutomationBuilder\Exam-
ples\PS563-WATER. Alternative is to go to “Automation Builder è Help è Project Examples
è Examples”.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3383

http://www.abb.com/PLC

The function blocks of the Pumping Library are only working in the RUN mode
of the PLC. Usage of these libraries in the simulation mode may not provide any
valid or usable diagnosis information.

For compatibility of the library PUMP_AC500_V23.lib please check the latest release notes.

1.5.13.1.2 PUMP_STATION_CFG

This function block must be called before all other function blocks of the library
in the task configuration.

Fig. 633: Function block PUMP_STATION_CFG

Table 201: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

This function block is used to configure a pump station. Number of pumps, station name and
number is configured.

Input description

Fig. 634: Function block PUMP_STATION_CFG

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3384

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BYTE, default value: 1, range: > 0
Number assigned to the station.

Data type: STRING
This input stores the station number, which is used as a unique identification number when
there are more than one stations configured in a single PLC .

Data type: INT, default value: 1, range: 1-3
Total number of pumps used in the application.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

Output description

Fig. 635: Function block PUMP_STATION_CFG

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

EN

STA-
TION_NUMBER
(station number)

STATION_NAME
(station name)

NUMBER_OF_P
UMPS (number
of pumps)

STATION_DATA
(station data
structure)

DONE

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3385

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error

16416 4020 Value of STATION_NUMBER is erroneous

16448 4040 Value of NUMBER_OF_PUMPS is erroneous

1.5.13.1.3 PUMP_INTERFACE

All the instances of the function block PUMP_INTERFACE must be called after
the function block PUMP_STATION_CFG and before all other function blocks of
the pumping library.

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3386

Fig. 636: Function block PUMP_INTERFACE

Table 202: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

Pump_Interface function block receives Pump ID, priority, follower mode and status of the drive
and process this data. It gives out pump start,pump reference and pump actual runtime data.
Follower drive behavior is defined using follower mode and follower reference and should be set
to the same mode for all pumps of one pump station

1.The follower modes in each of the three function blocks PUMP_INTERFACE
should be set to the same mode.

2. Each pump must have a unique PUMP_ID.

ACS Drives behavior:

– When the ON command is withdrawn from the drive, AND it receives an ON
command again (rising edge) before it has halted, the drive will not start. To
restart the drive, the ON command needs to be made FALSE, let the drive
come to halt and then made again TRUE.

This case can occur by following ways:

– Momentary power withdrawal from the drive, communication cable disturb-
ance, or Pump_ON is made - FALSE then immediately TRUE again from
the PUMP_INTERFACE e.g. during commissioning by manual operation in
the engineering or by addition manual buttons around the application.

– This is not occurring in the normal operation. Nnevertheless it could be
changed by selecting the drive on-the fly restart functionality, if deemed
necessary and appropriate.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3387

Input description

Fig. 637: Function block PUMP_INTERFACE

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: INT
Pump identification number for which this function block to be called. Range of values: from 1 to
3 .

Data type: BYTE
Pump Priority is used to decide, which drives need to be turn on demand increases.

Data type: BOOL
This input turns the pump on or off running in boost control or level control. In case of a FALSE
value, the user can remove the pump from the auto mode operations such as boost control or
level control. Then the user can perform a manual task, such as manual anti-jam, or any other
stand alone manual maintenance related job which actually are not part of the library. This input
can also be configured using an external digital input signal.

EN

PUMP_ID (pump
ID)

PRIORITY (pri-
ority)

PUMP_ON
(pump on)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3388

Data type: INT
It stores the nominal value of the speed of the pump. This nominal value is put in the internal
structure.

STATION_DATA.atsPump[1].tsConfiguration.iPumpMaxSpeed
This is used to scale the field bus speed setpoint in the scale of -20000 to +20000. This data is
also used in the flow calculations.

Example

Data type: BYTE
Follower drives are started and stopped by the control logic. When flow demand increases , new
pumps are started. Behavior of the follower pumps are defined by follower mode.

Follower mode Speed Explanation
0 Fixed constant speed Follower starts at pre-defined fixed

speed of master and runs at follower
reference.

1 Copy master Follower drives follows the same
start/stop commands and speed ref-
erence like masterFig. 647.

2 Master speed Follower starts at pre-defined fixed
speed levels of master speed and
then runs at the same master refer-
ence speed.

Data type: INT
The speed reference in RPM for the pumps when the follower mode = 0 is selected.

Data type: BOOL
Input to attach the ready status of the drive of the pump.

Data type: BOOL
Input to attach the operating status of the drive of the pump.

Data type: BOOL
Input to attach the fault status of the drive of the pump.

Data type: BOOL
TRUE value is used to reset the run time of the pump.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

PUMP_NOM-
INAL_SPEED
(pump nominal
speed in rpm)

FOL-
LOWER_MODE
(follower mode)

FOL-
LOWER_REF
(follower refer-
ence)

PUMP_READY
(pump ready)

PUMP_OPER-
ATING (pump
operating)

PUMP_TRIPPED
(pump tripped)

PUMP_RUN-
TIME_RESET
(pump runtime
reset)

STATION_DATA
(station data
structure)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3389

Output description

Fig. 638: Function block PUMP_INTERFACE

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: BOOL
On command to the pump.

Data type: INT
Speed reference to the pump in terms of RPM.

Data type: INT
Field bus speed reference to the pump in the range of -20000 to 20000.

DONE

ERR

ERNO

PUMP_START
(pump start)

PUMP_REF
(pump refer-
ence)

PUMP_REF_FB
(pump reference
field bus)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3390

Data type: TIME
Runtime value for the pump.

Data type: BOOL
TRUE when the pump encountered a fault. This fault can be because of drive tripped, pump
protection fault, or due to PUMP_ON=FALSE when the boost control or the level control is
running.

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16416 4020 Value of PUMP_ID is erroneous.

16432 4030 Value of PRIORITY is erroneous.

16464 4050 Value of PUMP_NOMINAL_SPEED is erro-
neous.

16480 4060 Value of FOLLOWER_MODE is erroneous.

16483 4063 All pumps do not have same FOL-
LOWER_MODE.

16496 4070 Value of FOLLOWER_REF is erroneous.

1.5.13.1.4 PUMP_RETAIN_DATA

Fig. 639: Function block PUMP_RETAIN_DATA

PUMP_RUN-
TIME (pump
runtime)

PUMP_FAULT
(pump fault)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3391

Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block with historical values.

This function block is used to retain important data in the event of power failure or the PLC
reboot. It stores the actual run time of the pump, last operating sequence of the pumps, total
flow of the pump, total energy consumed.

Input description

Fig. 640: Function block PUMP_RETAIN_DATA

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

General Infor-
mation

EN

STATION_DATA
(station data
structure)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3392

Output description

Fig. 641: Function block PUMP_RETAIN_DATA

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type: BOOL
Indicates FIRST_CYCLE after download, reset, repower or stop running - set for only the
FIRST_CYCLE.

Data type: BOOL
TRUE when battery is not inserted or less than minimum load reached.

1.5.13.1.5 STRUCTURE (PUMP_STATION_TYPE)
This structure is used to transfer and receive data in all function blocks. This is used as
an in-out parameter to all function blocks. Every function block receives data, process it and
modifies data of this structure. This structure is divided in substructure as per functions of the
data. This structure basically stores values and parameters which are coming from the different
function blocks of the library. Therefore these might be explained in more detail at the blocks
where this parameters are entered or where the values are created.

DONE

FIRST_CYCLE
(error)

BAT-
TERY_WARN
(battery
warning)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3393

Fig. 642: Quick overview of the concept

PUMP_STATION_TYPE
Data type: BYTE, default value: 1, range: > 0
If more than one pump station are programmed, then byStationNum can be used to differentiate
the stations.

Data type: STRING(20)
If more than one pump station are programmed, then sStationName can be used to differentiate
the stations in a "speaking" way and e.g. use for HMI purposes.

Data type: zPUMP_STATION_DATA_TYPE
This structure stores station data.

Data type: ARRAY[1..3] OF zPUMP_DATA_TYPE
An array is created for each pump. All pump information is stored in this structure.

Data type: BYTE, default value: 2, range: 0-2
This variable stores the operating mode of the pumping station.

Data type: BYTE, default value: 1, range: 0-1
This variable stores the master location of the pumping station.

byStationNum
(station number)

sStationName
(station name)

tsStation (sta-
tion data)

atsPump
(pumps data)

byStationOp-
Mode (station
operating mode)

byMasterLoc
(master loca-
tion)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3394

zPUMP_STATION_DATA_TYPE Station Configuration Data
Data type: INT
This variable defines the number of pumps in the station.

Data type: BYTE

Style Short
descrip
tion

Description

0 None Autochange function disabled.

1 Fixed The starting sequence is shifted periodically at pre-defined intervals
Autochg interval. In traditional pump control.

2 Run-
time diff

The starting sequence is rearranged when the difference between the
run times of two pumps exceed a limit, run-time difference. In the new
sequence, the pump with the lowest run time will be started first, the pump
with the highest run time will be started last.

3 All stop The starting sequence is shifted every time the pump stops.

Data type: TIME
Time interval to elapse for the fixed autochange to activate.

Data type: TIME
Maximum permited runtime diff between the two pumps in the network.

Data type: REAL
Speed step from the sleep function block. This step is used as additional setpoint to the pump
before going to sleep mode.

Data type: BYTE
Stores the operating mode of the pump boost control.

zPUMP_STATION_DATA_TYPE Station Actual Status
Data type: INT
Value of speed correction coming from the PID function block.

Data type: BOOL, default value: FALSE
Gives the true value when the pump boost enabled.

Data type: BOOL
Gives the true value when the pump boost starts.

iNumOfPumps
(number of
pumps)

byAutoChgStyle
(autochange
style)

timAutoChgIn-
terval (auto
change interval
time)

timRuntimeDif-
ference (run-
time difference
time)

rSleepBoostRef
(sleep boost ref-
erence)

byOperation-
Mode (operation
mode)

iPIDReference
(pid reference)

xBoostEn
(boost enable)

xBoostStart
(boost start)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3395

Data type: BOOL, default value: FALSE
Gives the TRUE value when the pump level control is enabled

Data type: BOOL
Gives the true value when the level control starts.

Data type: BYTE
0 = none, 1 = pump bosst mode, 2 = level control mode.

Data type: ARRAY[1..3] OF INT
Stores the sequence of the pumps operating in the station.

Data type: ARRAY[1..3] OF INT
Stores the sequence of the pumps operating in the station without any sorting.

Data type: BOOL
True value indicates that the sleep mode has been activated.

Data type: BOOL
True value indicates that the soft fill has been activated.

Data type: BOOL, default value: FALSE
When the auto change occurs in the level control, xAutoChgLevelCtrl becomes true for one
scan cycle to ensure the changeover between the pumps.

Data type: BOOL, default value: FALSE
True value indicates the interface function block to assign the data in the structure

Data type: BOOL, default value: FALSE
True value indicates the interface function block to assign the data in the structure

Data type: BOOL, default value: FALSE
True value indicates the interface function block to assign the data in the structure

Data type: BOOL
True values indicates that auto change is running state.

zPUMP_DATA_TYPE
Data type: zPUMP_CONFIGURATION_TYPE
This structure stores configuration data of pump.

xLevelCtrlEn
(level control
enable)

xLevelCtrlStart
(level control
start)

iStationMode
(station mode)

aiSequenceID
(sequence ID)

aiOriginalD
(original ID)

xSleepModeAc-
tive (sleep mode
active)

xSoftFillActive
(soft fill active)

xAutoChgLe-
velCtrl (Autoch-
ange in the level
control)

xAssign3 (xAs-
sign3)

xAssign2 (xAs-
sign2)

xAssign1 (xAs-
sign1)

xAutoChgRun-
ning (auto
change running)

tsConfiguration
(configuration
structure)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3396

Data type: zPUMP_ACTUATOR_STATUS_TYPE
This structure stores actual values of pump.

Data type: zPUMP_CTRL_STATUS_TYPE
This structure stores control values of pump.

zPUMP_CONFIGURATION_TYPE
Data type: INT
This variable denotes Pump identification number.

Data type: BYTE
This variable denotes pump priority.

Data type: BOOL
By using FALSE value for this variable the user can remove this pump from the network in case
of any problem/fault.

Data type: INT
This variable denotes maximum speed of the pump.

Data type: BYTE
0 = fixed, 1 = copy master, 2 = master speed.

Data type: INT
Follower speed ref in RPM for a pump, when follower mode is fixed.

Data type: BOOL
To reset the runtime value of the pump.

Data type: INT
Trigger to clean the pump. 0 = not enabled, 1 = master enabled, 2 = follower enabled, 3 = at
start, 4 = manual.

zPUMP_ACTUATOR_STATUS_TYPE
Data type: BOOL
This variable gives start command to the drive.

Data type: INT
Speed reference of the pump.

tsActuator-
Status (actuator
status structure)

tsCtrlStatus
(actuator status
structure)

byPumpID
(pump ID)

byPumpPriority
(pump priority)

xPumpOn
(pump on)

iPumpMax-
Speed (pump
max speed)

byFollowerMode
(follower mode)

iFollowerRef
(follower refer-
ence)

xResetRuntime
(reset run time)

iAntiJamTrigger
(antijam trigger)

xDriveEnable
(drive enable)

iReference (ref-
erence)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3397

Data type: BOOL
TRUE value indicates that the pump is a MASTER and the FALSE value indicates that the
pump is FOLLOWER.

Data type: BOOL
This identifies that the drive has to stop in the protection mode.

Data type: BOOL
This identifies that the pump has to run at the inlet reduced speed in the protection mode.

Data type: BOOL
This identifies that the drive has to run at the outlet reduced speed in the protection mode.

Data type: BOOL
True value tells that the pump is in ready state.

Data type: BOOL
True value tells that the pump is in running state.

Data type: BOOL
True value indicates the fault in a pump.

Data type: BOOL, default value: FALSE
True value indicates the fault generated by the protection bit.

Data type: BOOL
True value indicates the drive fault.

Data type: BOOL
True value indicates that the pump is at standby state.

Data type: BOOL
To disable the RFG of the drive of the pump.

Data type: BOOL
On command to the pump in the manual mode of antijam function.

Data type: INT
Speed reference to the pump in the manual mode of antijam function.

Data type: TIME
This variable stores the current run time of the pump.

xMasterStatus
(master status)

xStopMode
(stop mode)

xInletRedSpeed-
Mode (inlet
reduced speed
mode)

xOutletRed-
SpeedMode
(outlet reduced
speed mode)

xReady (ready)

xOperating
(operating)

xFault (fault)

xPumpProtec-
tionFault (pump
protection fault)

xDriveFault
(drive fault)

xStandBy
(standby)

xRFGDisable
(RFG disable)

xAntiJamOn
(antijam on)

iAntiJamSpeed
(antijamspeed)

timRunTime(run
time)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3398

Data type: REAL
Forced speed ref when inlet mode=3, from pump_protection function block.

Data type: REAL
Forced speed ref when outlet mode=3, from pump_protection function block.

zPUMP_CTRL_STATUS_TYPE
Data type: DWORD
Pump status word.

bit Description
bit0 =1 When the traditional pump control mode is active.

bit1 =1 When PID controller is bypassed.

bit2 =1 Multi pump active.

bit3 =1 Level control active.

bit4 =1 Sleep mode active.

bit5 =1 Sleep boost active.

bit6 =1 Soft pipe filling active.

bit7 =1 Reserved

bit8 =1 Pump cleaning active.

bit9 =1 Reserved

bit10 =1 PID reference freeze.

bit11 =1 PID out freeze.

bit12 =1 PID balancing.

bit13 =1 No auxilary pump available to start.

bit14 =1 Autochange active.

bit15 =1 Outlet protection monitoring.

bit16 =1 Inlet protection monitoring.

bit17-31 Reserved

rInletForcedRef
(inlet forced ref-
erence)

rOutletForce-
dRef (outlet
forced refer-
ence)

dwStatusWord
(status word)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3399

Data type: DWORD
Pump alarm word.

bit Description
bit0 =1 Measured flow below min value.

bit1 =1 Measured flow above max value.

bit2 =1 Inlet pressure low.

bit3 =1 Outlet pressure high.

bit4 =1 Inlet pressure low.

bit5 =1 Outlet pressure high.

bit6 =1 Profile protection limit exceeded.

bit7 =1 Maximum number of cleaning sequences exceeded.

bit8 =1 Pump cleaning in progress.

bit9 =1 Pipefill time out.

bit10 =1 No pump available.

bit11 =1 Energy consumption limit exceeded.

bit12-14 =1 Reserved.

bit15 =1 Information alarm for sleep boost active.

bit16 =1 Information alarm for soft pipe fill active.

bit17 =1 No more pumps let to start.

bit18 =1 Autochange is active.

bit19 =1 Sleeping mode active.

bit20 =1 Pump will start after the start delay.

bit21,22 =1 Reserved

bit23 =1 Tank full.

bit24 =1 Tank empty.

bit25 =1 Reserved for the master-slave configuration.

bit26 =1 Protect for inlet control mode.

bit27 =1 Protect for outlet control mode.

bit28-31 Reserved

dwAlarmWord
(alarm word)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3400

Data type: WORD
Pump fault word.

bit Description
bit0 =1 Measured flow below min value.

bit1 =1 Measured flow above max value.

bit2 =1 Inlet pressure low.

bit3 =1 Outlet pressure high.

bit4 =1 Inlet pressure very low.

bit5 =1 Outlet pressure very high.

bit6 =1 Maximum number of cleaning sequences exceeded.

bit7 =1 Pipefill time out.

bit8,9 =1 Reserved for master-slave configuration.

bit10 =1 Stop command for very low pressure.

bit11 =1 Stop command for very high pressure.

bit12-31 Reserved

wFaultWord
(fault word)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3401

Structure Mapping

Fig. 643: Structure Mapping 1

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3402

Fig. 644: Structure Mapping 2

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3403

1.5.13.1.6 PUMP_BOOST_CTRL Boost Control

Fig. 645: Function block PUMP_BOOST_CTRL

Table 203: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

This application Function Block provides a typical logic for pump boost operations with several
pumps - where the user can select the operation mode i.e. single pump, multi pump or tradi-
tional pumping for up to three pumps. The switching on and off of further pumps is triggered via
start and stop speeds.
With this function block the
● traditional / conventional (only one pump with drives, other DOL* motors) and
● advanced (all pumps operated by drive-motors) pumping stations can be configured and

operated. (* DOL = direct online: Motor without a drive but a switch or soft-starter connected
to e.g. 50Hz AC line voltage).

PUMP_PID uses the speed reference based on the process demands to
PUMP_BOOST_CTRL. PUMP_BOOST_CTRL controls the start/stop sequence for the pumps
based on the start and stop speeds to fullfill process requirements.

The following figures show the different control modes, resulting in different criteria how to run
the followers. The follower mode itself is set in each PUMP_INTERFACE Block.

The follower modes in each of the three PUMP_INTERFACE Blocks have to be
set to the same mode.

Follower modes
in boost opera-
tion

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3404

Follower
Ref

Speeds

Flow demand

Pump Status
Pump3

Pump2

Pump1 Master Follower

Master

Master

FollowerStand-by

Stand-by

Fig. 646: Constant speed

Speeds

Flow demand

Pump Status
Pump3

Pump2

Pump1 Master

Follower

Follower

Fig. 647: Copy of “Master”/direct follower

Speeds

Flow demand

Pump Status
Pump3

Pump2

Pump1 Master Follower

Master

Master

FollowerStand-by

Stand-by

Fig. 648: "Master" Speed

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3405

Input description

Fig. 649: Function block PUMP_BOOST_CTRL

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BOOL
To start the boost control operation with the TRUE value of the START variable. When START =
FALSE, all the pumps stop.

Data type: BYTE, default value: 0, range: 0-2
This input sets the operating mode of the pumping station.

Operation mode Short description Description
0 single pump Operated by the drive.

1 traditional pump One pump is driven by the drive and others
are auxiliaries driven by contactors.

2 multi pump The pumps are controlled by the drives.

Range of values: from 0 to 2

EN

START (start
command)

OP_MODE
(operation
mode)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3406

Data type: BYTE, default value: 0, range: 0-1
This input defines the master location.

MASTER_LOC value MASTER_LOC type Description
0 INSTART The master in the network is not fixed and "in

the start" phase the last started pump in the
network will be master. Master means basi-
cally it is the only pump which always takes
the speed given by the PID. The followers
speed depends on the chosen follower mode.
Example in the input OP_MODE = 2 (Multi-
pump): When the pumping station is started,
Pump1 (ID=1) will start as a master. Demand
increase will prompt the Pump2 also to start
and it becomes the master and the Pump1
is a follower (whose operation is decided
by the follower mode set on function block
PUMP_INTERFACE). If the demand increases
further, also Pump3 is started and becomes
the master. If the demand then decreases
again, Pump3 is stopped first (as per the
sequence 1-2-3). Now Pump1 (follower) and
Pump2 is again the master. Demand further
decreases, Pump2 stops next and Pump1
now runs as the master. Remember if the
start sequence is 1-2-3 the stop sequence is
always 3-2-1.

1 FIXED Master is always fixed, follower changes. In
this mode the first pump in the sequence is
and stays always the master.
Example: When the pumping station is
started, Pump1 (ID=1) will start as a master.
Demand increase will prompt the Pump2 also
to start as a follower. If the demand further
increases, Pump3 also starts and take the
follower speeds based on the chosen FOL-
LOWER _Mode. Here the Pump1 always
remains the master. When the demand was
high (3 pumps running) and the demand
decreases, Pump3 will stop first (as per the
sequence 1-2-3), then Pump2 will also stop
if the demand decreases even further. But
Pump1 stays always master. Principle: If the
start sequence is 1-2-3, the stop sequence is
always 3-2-1.

Range of values: from 0 to 1.

Data type: INT, default value: 0, range: ³ 0, unit: rpm

The speed of the master at which the first follower pump must start in the follower mode 0 and
2.

Data type: INT, default value: 0, range: ³ 0, unit: rpm

The speed of the master which the second follower pump must start in the follower mode 0 and
2.

MASTER_LOC
(master location
of the pumping
station)

START_SPEED_
SLV_1 (start
speed for slave
1)

START_SPEED_
SLV_2 (start
speed for slave
2)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3407

Data type: INT, default value: 0, range: ³ 0, unit: rpm

The speed of master at which the first follower pump must stop in the follower mode 0 and 2.

Data type: INT, default value: 0, range: ³ 0, unit: rpm

The speed of master at which the second follower pump must stop in the follower mode 0 and 2.

Data type: TIME, default value: 10, range: > 0, unit: s
This input is a time delay in seconds. The next pump starts only when the condition to start this
pump has stayed for the duration mentioned in this time delay. This input is to be given when
the operating mode is 1 or 2.

Data type: TIME, default value: 10, range: > 0, unit: s
This input is atime delay in seconds. When the condition to stop the pump has stayed for the
duration mentioned in this input, the pump stops. This input is to be given when the operating
mode is 1 or 2.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

Output description

Fig. 650: Function block PUMP_BOOST_CTRL

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

STOP_SPEED_S
LV_1 (stop
speed for slave
1)

STOP_SPEED_S
LV2 (stop speed
for slave 2)

START_DELAY
(start delay)

STOP_DELAY
(stop delay)

STATION_DATA
(station data
structure)

DONE

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3408

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16403 4013 EN signal for boost control given, although the
pump level control is enabled.

16432 4030 Value of OP_MODE erroneous.

16448 4040 Value of MASTER_LOC erroneous.

16464 4050 Value of START_SPEED_SLV_1 erroneous.

16480 4060 Value of START_SPEED_SLV_2 erroneous.

16496 4070 Value of STOP_SPEED_SLV_1 is erroneous.

16512 4080 Value of STOP_SPEED_SLV_2 is erroneous.

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3409

1.5.13.1.7 PUMP_PID

Fig. 651: Function block PUMP_PID

Table 204: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

This function block is used for closed loop control of the process parameter such as pressure.
The setpoint and the actual value are compared and error value is given as input to the PID.
PID output is calculated based on the Proportional Gain KP, Integral Time TN, and Derivative
Time TD.
Y = KP *(e +1/TN òe dt + TD de/dt) with

Y =PID_OUTPUT
e =Error between SET_VALUE – ACTUAL_VALUE
The PID output is then scaled and converted into required speed reference to the drive
of the pump. The output PID_SPEED_REF is internally attached via structures to the
PUMP_BOOST_CTRL.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3410

Input description

Fig. 652: Function block PUMP_PID

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: REAL, default value: 0, range: ³ 0, unit: %

Set value of the process variable.
Range of values: from 0 to 100 .

Data type: REAL, default value: 0, range: ³ 0, unit: %

Actual value of the process variable. User need to scale actual value as percentage and
attached to this variable.
Range of values: from 0 to 100.

Data type: REAL, default value: 0, range: ³ 0

Proportional gain of the PID.This value has to be manually tuned as per system requirements.

Data type: REAL, default value: 0, range: ³ 0, unit: ms

Integral time of the PID in terms of milliseconds. If the value entered is 500.0, it is taken as 500
ms.This value has be manually tuned as per system requirements.

EN

SET_VALUE (set
point of the PID)

ACT_VALUE
(actual point of
the PID)

KP (proportional
gain)

TN (integration
time)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3411

Data type: REAL, default value: 0, range: ³ 0, unit: ms

Derivative time of the PID in terms of milliseconds. If the value entered is 500.0, it is taken as
500 ms.This value has be manually tuned as per system. Erroneous setting of derivative time
can results in overshooting of the PID-OUT value.

Data type: BOOL
For the TRUE value the setpoint to the PID block is frozen. Actual value is overwritten to the
setpoint.

Data type: REAL, default value: 100, range: 0-100, unit: %
Maximum permitted value of the PID output. Using the minimum and maximum limits, it is
possible to restrict the operation range of the PID.

Data type: REAL, default value: 0, range: -100.0 to +100.0, unit: %
Minimum permitted value of the PID output. Using the minimum and maximum limits, it is
possible to restrict the operation range of the PID.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

Output description

Fig. 653: Function block PUMP_PID

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

TD (derivative
time)

PID_FREEZE
(PID freeze)

PID_MAX-
IMUM_LIMIT
(pid maximum
limit value)

PID_MIN-
IMUM_LIMIT
(pid minimum
limit value)

STATION_DATA
(station data
structure)

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3412

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: REAL, default value: 0, range: -100 to +100, unit: %
Output PID_OUT after the manipulation.

Data type: REAL, default value: 0, range: -100 to +100, unit: %
Deviation of set value from actual value. It is also known as PID error.

Data type: INT, default value: 0, range: -20000 to +20000
Speed reference as a correction to the main speed reference, calculated by the PID. This
variable is meant for the user. The PID_SPEED_REF is also internally attached with the
PUMP_BOOST_CTRL function block to process the start/stop of the pumps.

Data type: BOOL
Indicates that the PID output reached the MAXIMUM limit.

Data type: BOOL
Indicates that the PID output reached the MINIMUM limit.

ERR

ERNO

PID_OUT (pid
output value)

PID_DEVIATION
(deviation of set
value from
actual value)

PID_SPEED_RE
F (pid speed ref-
erence)

MAX-
IMUM_LIMIT_RE
ACHED (max-
imum limit
reached)
MIN-
IMUM_LIMIT_RE
ACHED (min-
imum limit
reached)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3413

1.5.13.1.8 PUMP_LEVEL_CTRL Level Control

Fig. 654: Function block PUMP_LEVEL_CTRL

Table 205: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

The level control macro is designed for controlling a station of 1 to 3 pumps that is used
for either emptying or filling a container. The level control functionality is activated by setting
parameter level mode to emptying or filling. The start levels for the pumps (as well as the alarm
levels) are set by parameters.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3414

Level
actual value Sleep level

Start 1 level

Start 2 level

Start 3 level

Low level

High speed

Normal speed

High speed

Normal speed

High speed

Normal speed

Speed
Pump3

Speed
Pump2

Speed
Pump1

Time

Time

Time

Time

Fig. 655: Behavior and meaning of the parameters if the “Filling Mode” is set

The pump station above is used for filling a tank, decreasing its level due to a larger outlet flow.
The diagram shows the start, stop and supervision levels for filling. Parameter “Stopping mode”
is assumed to be set to “Common stop”; “Start stop delay” is assumed to be set to 0.

The pumps need to pump fresh water to keep the level possibly constant to feed a network
with constant pressure.

A larger outlet
flow e.g. to a
fresh water
network via a
supply tank /
reservoir:

Filling mode

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3415

Level
actual value High level

Start 3 level

Start 2 level

Start 1 level

Low level

High speed

Normal speed

High speed

Normal speed

High speed

Normal speed

Speed
Pump3

Speed
Pump2

Speed
Pump1

Time

Time

Time

Time

Stop level

Fig. 656: Pump station using for emptying a container, increasing its level due to inflow

The diagram above shows the start, stop and supervision levels for emptying mode. Parameter
“stopping mode” is assumed to be set to “common stop”; “start stop delay” is assumed to be set
to 0.

The pumps need to work in emptying mode, meaning to pump waste water further to avoid
spilling of the reservoir.

Example is a
reservoir or
tank with a
larger inlet flow
(e.g. in a waste
water lift sta-
tions):

Emptying mode

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3416

Input description

Fig. 657: Function block PUMP_LEVEL_CTRL

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BOOL
To start the level controller.

EN

START (start
block)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3417

Data type: INT, default value: 1, range: 0-2
To select the mode of operation.

Mode Short description Description
0 Off Level control disabled.

1 Emptying Pump station is used for emptying a container.

2 Filling Pump station is used for filling a container.

Data type: INT, default value: 0, range: 0-1

Mode Description
0 Stable stop. Stops the pump at individual defined stop levels.

For example in the fill mode if the START_LEVEL_1 is defined
60%. Now if the actual level reaches on or above 60%, the
pump 1 would stop.

1 Common stop. Stops all the pumps together at defined level
STOP_LEVEL. Which means, both in the emptying and filling
mode, the pumps start at their respective start levels, but they
stop when they reach the STOP_LEVEL.

Data type: BOOL, default value: FALSE
Digital input with TRUE indicates that the low level has reached.

Data type: REAL, default value: 10.0, range: >0, unit: %
Stop level defines the level at which all the pumps would stop, when the STOP_MODE = 1. This
can occur while filling when the actual level is more than the stop level. In emptying mode all
pumps stop when the actual level reaches below the stop level.

Data type: REAL, default value: 70, range: > 0, unit: %
Defines the start level for pump 1 in terms of full tank capacity. The same level is used to stop
the pump when actual level comes back at this level. Refer the figure in the above section.

Data type: REAL, default value: 50, range: > 0, unit: %
Defines the start level for pump 2 in terms of full tank capacity. The same level is used to stop
the pump when actual level comes back at this level. Refer the figure in the above section.

Data type: REAL, default value: 30, range: > 0, unit: %
Defines the start level for pump 3 in terms of full tank capacity. The same level is used to stop
the pump when actual level comes back at this level. Refer the figure in the above section.

Data type: TIME, default value: 10, range: ³ 0, unit: s

Defines the time delay for pump to start and stop when respective level is reached.

MODE (mode)

STOP_MODE
(stop mode)

LOW_SWITCH
(low switch)

STOP_LEVEL
(stop level)

START_LEVEL_
1 (start level 1)

START_LEVEL_
2 (start level 2)

START_LEVEL_
3 (start level 3)

START_STOP_D
ELAY (start stop
delay)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3418

Data type: REAL, default value: 95, range: > 0, unit: %
Defines the high level in terms of full tank capacity.

Data type: BOOL
Digital input which with TRUE indicates that the high level has reached.

Data type: REAL, default value: 0, range: ³ 0, unit: %

Actual level read from the analog input of level sensor.

Data type: INT, default value: 1100, range: ³ 0, unit: rpm

Normal operating speed of the pump 1 while Filling/Emptying.

Data type: INT, default value: 1100, range: ³ 0, unit: rpm

Normal operating speed of the pump 2 while Filling/Emptying.

Data type: INT, default value: 1100, range: ³ 0, unit: rpm

Normal operating speed of the pump 3 while Filling/Emptying.

Data type: REAL, default value: 1500, range: ³ 0, unit: rpm

Defines the speed of the pump 1 for:
● Filling pump level falls below LOW_LEVEL,
● Emptying pump level rises above the HIGH_LEVEL.

Data type: REAL, default value: 1500, range: ³ 0, unit: rpm

Defines the speed of the pump 2 for:
● Filling pump level falls below LOW_LEVEL,
● Emptying pump level rises above the HIGH_LEVEL.

Data type: REAL, default value: 1500, range: ³ 0, unit: rpm

Defines the speed of the pump 3 for:
● Filling pump level falls below LOW_LEVEL,
● Emptying pump level rises above the HIGH_LEVEL.

Data type: REAL, default value: 0, range: ³ -10 to +10, unit: %

Random coefficient randomizes the start levels to avoid cake formation.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

HIGH_LEVEL
(high level)

HIGH_SWITCH
(high switch)

ACT_LEVEL
(actual level)

NORMAL_SPEE
D_1 (normal
speed for pump
1)

NORMAL_SPEE
D_2 (normal
speed for pump
2)

NORMAL_SPEE
D_3 (normal
speed for pump
3)

HIGH_SPEED_1
(high speed for
pump 1)

HIGH_SPEED_2
(high speed for
pump 2)

HIGH_SPEED_3
(high speed for
pump 3)

RAND_COEF
(random coeffi-
cient)

STATION_DATA
(station data
structure)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3419

Output description

Fig. 658: Function block PUMP_LEVEL_CTRL

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: BOOL
TRUE value indicates that the actual level is more than the high level.

DONE

ERR

ERNO

HIGH_LEVEL_R
EACHED (high
level reached)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3420

Data type: BOOL
TRUE value indicates that the actual level is below the low level.

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16403 4013 EN signal for level control given, although the
pump boost control is enabled.

16432 4030 Value of MODE is erroneous.

16435 4033 Value of MODE level settings is erroneous.

16448 4040 Value of STOP_MODE is erroneous.

16464 4050 Value of LOW_LEVEL is erroneous.

16480 4060 Value of STOP_LEVEL is erroneous.

16512 4080 Value of START_LEVEL_1 is erroneous.

16528 4090 Value of START_LEVEL_2 is erroneous.

16544 40A0 Value of START_LEVEL_3 is erroneous.

16576 40C0 Value of HIGH_LEVEL is erroneous.

16608 40E0 Value of ACT_LEVEL is erroneous.

16624 40F0 Value of NORMAL_SPEED_1 is erroneous.

16640 4100 Value of NORMAL_SPEED_2 is erroneous.

16656 4110 Value of NORMAL_SPEED_3 is erroneous.

16672 4120 Value of HIGH_SPEED_1 is erroneous.

16688 4130 Value of HIGH_SPEED_2 is erroneous.

16704 4140 Value of HIGH_SPEED_3 is erroneous.

16720 4150 Value of RAND_COEF is erroneous.

LOW_LEVEL_R
EACHED (low
level reached)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3421

1.5.13.1.9 PUMP_AUTOCHANGE

Fig. 659: Function block PUMP_AUTOCHANGE

Table 206: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

The Autochange function can be used to equalize duty time between multiple pumps, by varying
the sequence in which pumps are started.
There are three autochange modes selectable by parameter autochange style:
● Fixed intervals: The starting sequence is shifted periodically at pre-defined intervals Autoch-

ange interval,
● Runtime equalization (hours count): The starting sequence is rearranged when the differ-

ence between the run times of two pumps exceed a limit, run-time difference. In the new
sequence, the pump with the lowest run time will be started first. The pump with the highest
run time will be started last,

● Autochange when stopped (all stop): The starting sequence for the next start is shifted
every time the pump stops.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3422

Follower
Ref

Speeds

Flow demand

Fig. 660: Before sequence change: 2 pumps run

Speeds

Flow demand

Follower
Ref

Fig. 661: After sequence change: Pump 1 was "oldest" àstandby, 2 pumps run

Example of a
change in the
sequence by
AUTOCHANGE

Input description

Fig. 662: Function block PUMP_AUTOCHANGE

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3423

Data type: BYTE, default value: 0, range: 0-3

Mode Short description Description
0 None Autochange function disabled.

1 Fixed The starting sequence is shifted periodically at
pre-defined intervals Autochange interval. For
the Autochange to occur in this mode, it is
necessary that atleast one pump is in standby
condition. With this, when the Autochange
occurs the pump with the maximum run time
would stop and the new pump would start.

2 Runtime diff The starting sequence is rearranged when the
difference between the runtimes of two pumps
exceed a limit, run-time difference. In the new
sequence, the pump with the lowest runtime
will be started first, the pump with the highest
run time will be started last. For the autoch-
ange to occur in this mode, it is necessary that
atleast one pump is in standby condition. With
this, when the autochange occurs the pump
with the maximum run time would stop and
the new pump would start.

3 All stop The starting sequence is shifted every time
the pump stops. This mode is also available to
operate in the traditional pumping station.

Data type: TIME, default value: 60, range: > 0, unit: s
Time delay to elapse for the fixed Autochange to activate when the Autochange style selected is
= 1.

Data type: TIME, default value: 60, range: > 0, unit: s
Maximum permitted run-time difference between the two pumps in the network when the
Autochange style selected is = 2.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

Output description

Fig. 663: Function block PUMP_AUTOCHANGE

AUTOCHG_STY
LE (auto change
style)

AUTOCHG_INTE
RVAL (auto
change interval)

RUNTIME_DIF-
FERENCE (run-
time difference)

STATION_DATA
(station data
structure)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3424

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16416 4020 Value of AUTOCHG_STYLE is erroneous.

16419 4023 Value of AUTOCHG_STYLE and related set-
ting is erroneous.

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3425

1.5.13.1.10 PUMP_ANTIJAM

Fig. 664: Function block PUMP_ANTIJAM

Table 207: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

Performs the pump antijam/cleaning functionality by running the pump at high
speeds without any ramp up/down time. For the cleaning function to be per-
formed properly it is important to disable the drive ramp function generator. This
can be done if the programmer latches the DRIVE_RFG_DISABLE output with
the corresponding bit in the drive control word.

Pump cleaning function can be used to prevent solids from building up on pump impellers or
piping. The function consists of a programmable sequence of forward and reverse runs of the
pump to shake off any residue on the impeller or piping. This is especially useful with booster
and wastewater pumps.
The cleaning sequence can be programmed to occur at suitable intervals, or whenever certain
triggering conditions are met.

Speed

Time

one anti-jam step

FWD BWD FWD

Not all pumps can be rotated in the reverse direction.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3426

For the cleaning function to be performed properly it is important to disable the
drive ramp function generator. This can be done if the programmer latches the
DRIVE_RFG_DISABLE output with the corresponding bit in the drive control
word.

Input description

Fig. 665: Function block PUMP_ANTIJAM

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: INT, default value: 1, range: 1-3
Enter ID of the pump which is to be cleaned.

EN

PUMP_ID (id of
pump to be
cleaned)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3427

Data type: INT, default value: 0, range: 0-4
Trigger to clean the pump.

Mode Short description Description
0 Not enbaled Cleaning sequence is disabled.

1 Master enabled Cleaning sequence is allowed when the drive
is master.

2 Follower enabled Cleaning sequence is allowed when the drive
is follower.

3 At start Cleaning sequence is performed at every
start.

4 Manual mode Cleaning sequence is performed manually. To
operate the ANTIJAM in the manual mode,
START_MANUAL has to be made FALSE
®TRUE.

Data type: INT, default value: 1, range: ³ 0, unit: rpm

Speed reference to clean the pump in the forward direction.

Data type: INT, default value: 1, range: ³ 0, unit: rpm

Speed reference to clean the pump in the backward direction.

Data type: TIME, default value: 10, range: > 0, unit: s
Time delay between the forward and the reverse movement in antijam.

Data type: TIME, default value: 10, range: > 0, unit: s
Time duration of one clean-step for which the pump moves in the forward direction.

Data type: TIME, default value: 10, range: > 0, unit: s
Time duration of one clean-step for which the pump moves in the backward direction.

Data type: INT, default value: 1, range: 1-5
Number of steps to be performed in an antijam process. One step of antijam is shown in the
figure above.

Data type: BOOL
True value means the pump can also move in the reverse direction to perform the antijam.

Data type: BOOL
For the TRUE value it runs the antijam in the manual mode.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

TRIGGER
(trigger)

FWD_REF_SPE
ED (forward ref-
erence speed)

BWD_REF_SPE
ED (backward
reference
speed)

OFF_TIME (off
time)

FWD_STEP_TIM
E (forward step
time)

BWD_STEP_TIM
E (backward
step time)

ANTIJAM_STEP
S (antijam
steps)

ALLOW_REVER
SE (allow
reverse direc-
tion)

START_MANUA
L (manual
mode)

STATION_DATA
(station data
structure)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3428

Output description

Fig. 666: Function block PUMP_ANTIJAM

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: BOOL
TRUE value indicates that the function is running.

Data type: BOOL
Option given to the user bypass the ramp function generator.

DONE

ERR

ERNO

BUSY (busy)

DRIVE_RFG_DI
SABLE (drive
ramp function
generator dis-
able)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3429

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16416 4020 Value of PUMP_ID is erroneous.

16419 4023 Value of PUMP_ID and related setting is erro-
neous.

16432 4030 Value of TRIGGER is erroneous.

16448 4040 Value of FWD_REF_SPEED is erroneous.

16464 4050 Value of BWD_REF_SPEED is erroneous.

16528 4090 Value of ANTIJAM_STEPS is erroneous.

1.5.13.1.11 PUMP_FLOW_CALC

Fig. 667: Function block PUMP_FLOW_CALC

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3430

Table 208: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

The flow Calculation Function provides a reasonably accurate (typically ±3…6%) calculation of
the flow without the installation of a separate flow meter. The flow is calculated on the basis of
pump characteristics.

This function block must be called cyclically with the cycle time of 50ms in the
task configuration.

The user can define a PQ (power/flow) performance curve of the pump for the Flow Calculation
function. The P (power input) and Q (flow rate) coordinates of five points on the curve are
entered. The values are provided by the pump manufacturer. All points defined should lie within
the practical operating range of the pump. The points are taken at max operation speed (as
entered in the PUMP_INTERFACE block for this pump ® the value comes via the connected
STATION structure), and scaled down by the block according to the actual speed. By this a
good accuracy is achieved with limited parameterization effort.

Q [m³/h]

P [kW]

PQ - curve

@ nominal/max speede.g. 45Hz

40Hz

35Hz

30Hz

25Hz

– The Flow Calculation function is not to be used for invoicing purposes,
– The Flow Calculation function cannot be used outside the normal operating

range of the pump given by the pump curves.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3431

Input description

Fig. 668: Function block PUMP_FLOW_CALC

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: INT, default value: 1, range: 1-3
Pump identification number for which this function block to be called.

Data type: REAL, default value: 1, range: > 0, unit: kW
Power input of pump at point 1 on the PQ performance curve.

Data type: REAL, default value: 1, range: > 0, unit: m3/h
Flow rate at point 1 on the PQ performance curve.

Data type: REAL, default value: 1, range: > 0, unit: kW
Power input of pump at point 2 on the PQ performance curve.

EN

PUMP_ID (pump
number)

PQ_CURVE_P1
(PQ curve P1)

PQ_CURVE_Q1
(PQ curve Q1)

PQ_CURVE_P2
(PQ curve P2)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3432

Data type: REAL, default value: 1, range: > 0, unit: m3/h
Flow rate at point 2 on the PQ performance curve.

Data type: REAL, default value: 1, range: > 0, unit: kW
Power input of pump at point 3 on the PQ performance curve.

Data type: REAL, default value: 1, range: > 0, unit: m3/h
Flow rate at point 3 on the PQ performance curve.

Data type: REAL, default value: 1, range: > 0, unit: kW
Power input of pump at point 4 on the PQ performance curve.

Data type: REAL, default value: 1, range: > 0, unit: m3/h
Flow rate at point 4 on the PQ performance curve.

Data type: REAL, default value: 1, range: > 0, unit: kW
Power input of pump at point 5 on the PQ performance curve.

Data type: REAL, default value: 1, range: > 0, unit: m3/h
Flow rate at point 4 on the PQ performance curve.

Data type: REAL, default value: 1, range: ³ 0, unit: rpm

Actual speed of the motor.

Data type: REAL, default value: 1, range: ³ 0, unit: kW

Actual power of the motor.

Data type: REAL, default value: 1, range: ³ 0

Pump and the motor combined efficiency.

Data type: INT, default value: 1, range: ³ 0, unit: rpm

Speed below which the calculation will not take place.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

PQ_CURVE_Q2
(PQ curve Q2)

PQ_CURVE_P3
(PQ curve P3)

PQ_CURVE_Q3
(PQ curve Q3)

PQ_CURVE_P4
(PQ curve P4)

PQ_CURVE_Q4
(PQ curve Q4)

PQ_CURVE_P5
(PQ curve P5)

PQ_CURVE_Q5
(PQ curve Q5)

ACT_SPEED
(actual speed)

ACT_POWER
(actual power)

PUMP_MOTOR_
EFF (pump
motor effi-
ciency)

LOW_SPEED_C
ALC (low speed
calculation)

STATION_DATA
(station data
structure)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3433

Output description

Fig. 669: Function block PUMP_FLOW_CALC

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: REAL, default value: 0, range: ³ 0, unit: m3/h

Calculated actual flow of the pump. It is calculated using PQ (power/flow) performance curve of
the pump.

DONE

ERR

ERNO

ACT_FLOW
(actual flow)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3434

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16416 4020 Value of PUMP_ID is erroneous.

16435 4033 Value of PQ_CURVE_P1 to PQ_CURVE_P5
is erroneous.

16541 4043 Value of PQ_CURVE_Q1 to PQ_CURVE_Q5
is erroneous.

16640 4100 Value of PUMP_MOTOR_EFF is erroneous.

16656 4110 Value of LOW_SPEED_CALC is erroneous.

1.5.13.1.12 PUMP_SLEEP

Fig. 670: Function Block PUMP_SLEEP

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3435

Table 209: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

The sleep function is suitable for PID control applications where the consumption varies, such
as clean water pumping systems. When used, it stops the pump completely during low demand,
instead of running the pump slowly below its efficient operating range.
The water consumption falls at night. As a consequence, the process PID controller decreases
the motor speed. However, due to natural losses in the pipes and the low efficiency of the
centrifugal pump at low speeds, the motor would never stop rotating. The sleep function detects
the slow rotation and stops the unnecessary pumping after the sleep delay has passed. The
drive shifts into sleep mode, still monitoring the pressure. The pumping resumes when the
pressure falls under the predefined minimum level and the wake-up delay has passed.

Time

Sleep boost time
“Boosting”

Sleep boost step

Setpoint

Actual value (e.g. pressure)

Wake up level

Wake up delay

STOP START

Time

Time

Sleeping
t < tds t > tds

tds = sleep delay

Motor speed

Sleep rpm

Waking

Fig. 671: Visualization of operation and parameters

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3436

Input description

Fig. 672: Function block PUMP_SLEEP

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: INT, default value: 1, range: 1-3
Pump identification number for which this function block to be called.

EN

PUMP_ID (pump
number)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3437

Data type: INT, default value: 1, range: 0-4

Table 210: Sleep mode
Mode Short description Description
0 Not Used

1 Internal Actual value compared with sleep level and
if sleep delay is elapsed then pump goes in
sleep mode.

2 External Sleep function is activated using sleep
external parameter value.

3 Internal and External If Sleep_External is true, the Sleep Mode will
follow the Internal Mode.

4 Soft External If Sleep_External is true, the input of the PID
controller will be set to 0. After the pump
enters sleep mode, it will not wake up until the
Sleep_External becomes false.

Data type: REAL, default value: 1, range: 0-100, unit: %
Actual value of the process variable. This value is scaled as percentage values and attached to
this variable. This is the same input which goes as the actual value into the PID.

Data type: REAL, default value: 1, range: 0-100, unit: %
This input defines the level to activate the sleep function. When actual value is equal to sleep
level and pump rpm is below sleep rpm, then system waits for sleep delay. Once sleep delay is
elapsed pump goes in sleep.

Data type: TIME, default value: 5, range: ³ 0, unit: s

Time delay for the sleep function to activate. If the actual RPM value is below the param-
eter input SLEEP_RPM, the system will check if this condition stays for the duration of
SLEEP_DELAY and then goes in to sleep-mode (shuts off).

Data type: BOOL
This input is used to enable the sleep function externally via a digital input signal

Data type: REAL, default value: 1, range: 0-100, unit: %
If the drive enters sleep mode, the setpoint will be increased by this percentage for the time
defined by sleep boost time. This allows the optimization of the resulting duty cycle by the sleep
function.

Data type: TIME, default value: 5, range: ³ 0, unit: s

Time for which the sleep boost step will be used as an additional setpoint to the pump.

SLEEP_MODE

ACT_VALUE
(actual value
input of PID
block)

SLEEP_LEVEL
(sleep level)

SLEEP_DELAY
(sleep delay)

SLEEP_EXTERN
AL (sleep
external)

SLEEP_BOOST
_STEP (sleep
boost step)

SLEEP_BOOST
_TIME (sleep
boost time)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3438

Data type: INT, default value: 1, range: 0-3

Table 211: Wakeup mode
Mode Short description Description
0 Wake >Ref If the actual value remains below setpoint mul-

tiplied by the wakeup level for longer than the
wakeup delay, the pump will wake up.

1 Wake <Ref If the actual value remains above setpoint
multiplied by the wakeup level for longer than
the wakeup delay, the pump will wake up.

2 Wake >Ext If the wakeup external level remains below
actual value for longer than the wakeup delay,
the pump will wake up.

3 Wake < If the wakeup external level remains above
actual value for longer than the wakeup delay,
the pump will wake up.

Data type: REAL, default value: 1, range: 0-100, unit: %
Defines the level to activate the wakeup function. It is a percentage of setpoint.

Data type: TIME, default value: 5, range: ³ 0, unit: s

Time delay for the wakeup function to activate.

Data type: REAL, default value: 1, range: 0-100, unit: %
Wakeup external level. For wake up mode 2 and 3. This value is compared by actual value.

Data type: REAL, default value: 1, range: 0-100, unit: %
Process setpoint - the same setpoint connected in the PUMP_PID function block.

Data type: REAL, default value: 100, range: ³ 0, unit: rpm

Pump RPM below which pump should go in to the sleep mode. At very low speed pump
efficiency is very low and piping losses are large. By setting this parameter, we can initiate sleep
function at lower pump RPM.

Data type: REAL, default value: 1, range: ³ 0, unit: rpm

Actual RPM of the pump. This is compared by sleep RPM to initiate sleep function.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

WAKEUP_MOD
E (wakeup
mode)

WAKEUP_LEVE
L (wakeup level)

WAKEUP_DELA
Y (wakeup delay
time)

WAKEUP_EXTE
RNAL_LEVEL
(wakeup
external level)

PUMP_SET-
POINT (pump
set point)

SLEEP_RPM
(sleep rpm)

ACT_RPM
(actual rpm)

STATION_DATA
(station data
structure)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3439

Output description

Fig. 673: Function block PUMP_SLEEP

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an
error occurred. In this case, the error number can be read at output ERNO.

Data type: INT, default value: 0, range: 0-3

Table 212: Status of Sleep Function
Mode Description
0 Function is inactive.

1 Sleep Function is active.

2 Boost Function is active.

3 Wakeup Function is active.

DONE

ERR

ERR (error)

STATUS (status)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3440

4000hex...4FFFhex - Block input error

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16416 4020 Value of PUMP_ID is erroneous

16432 4030 Value of SLEEP_MODE is erroneous.

16448 4040 Value of ACT_VALUE is erroneous.

16464 4050 Value of SLEEP_LEVEL is erroneous.

16480 4060 Value of SLEEP_DELAY is erroneous.

16512 4080 Value of SLEEP_BOOST_STEP is erroneous.

16528 4090 Value of SLEEP_BOOST_TIME is erroneous.

16544 40A0 Value of WAKEUP_MODE is erroneous.

16560 40B0 Value of WAKEUP_LEVEL is erroneous.

16576 40C0 Value of WAKEUP_DELAY is erroneous.

16592 40D0 Value of WAKEUP_EXTERNAL_LEVEL is
erroneous.

16608 40E0 Value of PUMP_SETPOINT is erroneous.

16624 40E0 Value of SLEEP_RPM is erroneous.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3441

1.5.13.1.13 PUMP_PROTECTION

Fig. 674: Function block PUMP_PROTECTION

Table 213: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

This function block contains two level protection for the inlet and outlet pressure monitoring. The
actual pressure for the comparison is an analog input. In the first level primary protection, the
drive indicates depending on the chosen mode: A warning, trips on a fault, or starts to follow a
predefined reference. In the second level secondary protection, the drive either will stop or trip
on a fault. For flow and the profile monitoring there is only one level of protection, in which the
drive responds as per the control selected.

If for the inlet the primary (first limit) protection for the low pressure is set, the INLET_CTRL
mode is set to 3. Lower pressures than given in the limit are measured: The station will run in
the reduced speed mode. In that case the PID output is frozen (in the PID). The current master
gets the reduced speed INLET_FORCED_REF. This new ref speed of the master will decide
whether to run followers or not.

Example

Flow Monitoring

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3442

The control program has a monitoring function for flow that can be configured to generate an
alarm or a fault whenever the flow falls below or rises above predefined limits. The flow can
either be calculated or measured using a flow meter connected to, for example, an analog input.
Application Profile Monitoring
The application profile monitoring function can be used for long-term supervision of an actual
signal. If the selected signal remains above the supervision limit for a specified time, an alarm
will be generated.

Input description

Fig. 675: Function block PUMP_PROTECTION

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

EN

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3443

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: INT, default value: 1, range: 1-3
Identifies which function block instance is used for which physical pump.

Data type: INT, default value: 0, range: 0-3

Table 214: To enable primary protection
Mode Short description Description
0 Disabled Primary inlet pressure supervision is not used.

1 Alarm Detection of low inlet pressure produces an
alarm after the inlet control delay.

2 Fault Detection of low inlet pressure trips drive after
the inlet control delay.

3 Reduced speed Detection of low inlet pressure produces an
alarm after the inlet control delay. The Pump
speed is reduced to the speed specified in
inlet forced reference.

Data type: REAL, default value: 1, range: 0-100, unit: %
Low pressure level limit for primary protection.

Data type: INT, default value: 1, range: 0-2

Table 215: To enable pressure very low
Mode Short description Description
0 Disabled Secondary inlet pressure supervision is not

used.

1 Fault Detection of very low inlet pressure trips drive.

2 Stop Detection of very low inlet pressure stops
drive. The drive will restart, if pressure
rises above PRESSURE_VERY_LOW_LIMIT
value.

Data type: REAL, default value: 1, range: 0-100, unit: %
Very low pressure level limit at secondary protection.

Data type: TIME, default value: 1, range: 0-600, unit: s
Delay for primary (actual pressure less than the low pressure limit) and secondary supervision
(actual pressure less than the very low pressure limit) of pump inlet pressure.
Range: 0 to 600 seconds .

PUMP_ID (pump
identification
number)

INLET_CTRL
(inlet control)

PRES-
SURE_LOW_LI
MIT (pressure
low limit)

PRES-
SURE_VERY_L
OW_CTRL
(pressure very
low control)

PRES-
SURE_VERY_L
OW_LIMIT
(pressure very
low limit)
INLET_CTRL_D
ELAY (inlet con-
trol delay)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3444

Data type: INT, default value: 1, range: ³ 0, unit: rpm

Inlet forced reference for very low pressure. Detection of low inlet pressure produces an alarm
after the inlet control delay. The pump speed is reduced to the speed specified in inlet forced
reference.

Data type: INT, default value: 1, range: 0-3

Table 216: To enable outlet protection
Mode Short description Description
0 Disabled Primary outlet pressure supervision is not

used.

1 Alarm Detection of high outlet pressure produces an
alarm after the outlet control delay.

2 Fault Detection of high outlet pressure trips drive
after the outlet control delay.

3 Reduced speed Detection of high outlet pressure produces an
alarm after the outlet control delay.
Pump speed: Reduced to the speed specified
in outlet forced reference.

Data type: REAL, default value: 1, range: 0-100, unit: %
High pressure level limit for primary protection.

Data type: INT, default value: 1, range: 0-2

Table 217: To enable pressure very high control
Mode Short description Description
0 Disabled Secondary outlet pressure supervision is not

used.

1 Fault Detection of very high outlet pressure trips
drive.

2 Stop Detection of very high outlet pressure stops
drive. The drive will restart, if pressure rises
above limit.

Data type: REAL, default value: 1, range: 0-100, unit: %
Very high pressure level limit at secondary protection.

Data type: TIME, default value: 1, range: 0-600, unit: s
Delay for primary and secondary supervision of pump outlet pressure.

Data type: INT, default value: 1, range: ³ 0, unit: rpm

Outlet Forced Reference for very high pressure. Detection of high outlet pressure produces an
alarm after the outlet control delay. The Pump speed is reduced to the speed specified in Outlet
Forced Reference.

INLET_FORCED
_REF (inlet
forced refer-
ence)

OUTLET_CTRL
(outlet control)

PRES-
SURE_HIGH_LI
MIT (pressure
high limit)

PRES-
SURE_VERY_HI
GH_CTRL (pres-
sure very high
control)

PRES-
SURE_VERY_HI
GH_LIMIT (pres-
sure very high
limit)
OUTLET_CTRL_
DELAY (outlet
control delay)

OUTLET_FORC
ED_REF (outlet
forced refer-
ence)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3445

Data type: INT, default value: 1, range: 0-2

Mode Description
0 Protection from high flow rates disabled.

1 Alarms generated – minimum flow.

2 Fault generated - minimum flow, drive trips.

Data type: REAL, default value: 0, range: 0-32767, unit: m3/h
Value of max flow rate limit in m3/h.

Data type: REAL, default value: 1, range: 0-2

Mode Description
0 Protection from low flow rates disabled.

1 Alarms generated – minimum flow.

2 Fault generated - minimum flow, drive trips.

Data type: INT, default value: 0, range: 0-32767, unit: m3/h
Value of minimum flow rate limit.

Data type: TIME, default value: 1, range: 0-12600, unit: s
Delay before executing the control due to low or high flow rates.

Data type: TIME, default value: 1, range: 0-12600, unit: s
Delay after the start of the pump before monitoring the flow rates.

Data type: INT, default value: 1, range: 0-2

Mode Description
0 Protection from high flow rates disabled.

1 Alarms generated – maximum flow.

2 Fault generated - maximum flow, drive trips.

Data type: INT, default value: 1, range: 0-32767
Value of profile protection limit.

Data type: TIME, default value: 1, range: ³ 0, unit: s

Time delay before the Profile Control activates.

FLOW_MAX_CT
RL (flow max-
imum control)

FLOW_MAX_LI
MIT (flow max-
imum limit)

FLOW_MIN_CT
RL (flow min-
imum control)

FLOW_MIN_LIMI
T (flow min-
imum limit)

FLOW_CTRL_D
ELAY (flow con-
trol delay)

FLOW_CHECK_
DELAY (flow
check delay)

PROFILE_CTRL
(profile control)

PROFILE_LIMIT
(profile limit)

PRO-
FILE_CTRL_DE
LAY (profile
control delay)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3446

Data type: INT, default value: 1, range: 0-100, unit: %
Actual pressure of the system.

Data type: INT, default value: 1, range: ³ 0, unit: m3/h

Actual flow of the pump.

Data type: REAL, default value: 0.0, range 0-100.0, unit %
Deviation of Set value from actual value. It is also known as PID error.

Data type: REAL, default value: 1, range: -100 to +100, unit: %
PID Out is generated by PUMP_PID function block. PID control process error value gives
output.

Data type: PUMP_STATION_TYPE
This structure contains pumping station data. All the function blocks receive some data, process
it and write it back to the structure.

PRES-
SURE_ACT
(actual pres-
sure)

FLOW_ACT
(actual flow)

PID_DEVIATION
(pid deviation)

PID_OUT (pid
out)

STATION_DATA
(station data
structure)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3447

Output description

Fig. 676: Function block PUMP_PROTECTION

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

DONE

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3448

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16416 4020 Value of PUMP_ID is erroneous.

16432 4030 Value of INLET_CTRL is erroneous.

16448 4040 Value of PRESSURE_LOW_LIMIT is erro-
neous.

16451 4043 Value of either PRESSURE_LOW_LIMIT
or PRESSURE_VERY_LOW_LIMIT is erro-
neous.

16464 4050 Value of PRESSURE_VERY_LOW_CTRL is
erroneous.

16480 4060 Value of PRESSURE_VERY_LOW_LIMIT is
erroneous.

16496 4070 Value of INLET_CTRL_DELAY is erroneous.

16512 4080 Value of INLET_FORCED_REF is erroneous.

16528 4090 Value of OUTLET_CTRL is erroneous.

16544 40A0 Value of PRESSURE_HIGH_LIMIT is erro-
neous.

16547 40A3 Value of either PRESSURE_HIGH_LIMIT
or PRESSURE_VERY_HIGH_LIMIT is erro-
neous.

16560 40B0 Value of PRESSURE_VERY_HIGH_CTRL is
erroneous.

16576 40C0 Value of PRESSURE_VERY_HIGH_LIMIT is
erroneous.

16592 40D0 Value of OUTLET_CTRL_DELAY is erro-
neous.

16608 40E0 Value of OUTLET_FORCED_REF is erro-
neous.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3449

Dec Hex Error Description
16624 40F0 Value of FLOW_MAX_CTRL is erroneous.

16640 4100 Value of FLOW_MAX_LIMIT is erroneous .

16643 4103 Value of either FLOW_MAX_LIMIT or
FLOW_MIN_LIMIT is erroneous.

16656 4110 Value of FLOW_MIN_CTRL is erroneous.

16672 4120 Value of FLOW_MIN_LIMIT is erroneous.

16688 4130 Value of FLOW_CTRL_DELAY is erroneous.

16704 4140 Value of FLOW_CHECK_DELAY is erro-
neous.

16720 4150 Value of PROFILE_CTRL is erroneous.

16736 4160 Value of PROFILE_LIMIT is erroneous.

16752 4170 Value of PROFILE_CTRL_DELAY is erro-
neous.

1.5.13.1.14 PUMP_ENERGY_CALC

Fig. 677: Function block PUMP_ENERGY_CALC

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3450

Table 218: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

This function block calculates energy consumed by direct on line pumps and drive connected
pumps. This is then used to calculate saved energy by using drives. Based on energy saved the
CO2 emission reductions and money saved is also computed.

It also calculates efficiency of total flow (= volume) per total power (energy) in m3/kWh. Instant,
hourly and 24 hourly (daily) efficiency are calculated continuously.
Total volume and total energy is calculated and connected as in or out parameter to the function
block.

This function block must be called cyclically with the cycle time of 50 ms in the
task configuration.

To retain this data, global retain variables need to be connected in the user
program.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3451

Input description

Fig. 678: Function block PUMP_ENERGY_CALC

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: REAL, default value: 0, range: ³ 0, unit: currency (e.g. Dollar, Euro) /kWh

This is used with energy saved to calculate money saved by using drives (instead of DOL).

Data type: REAL, default value: 0, range: ³ 0

Factor which helps in converting the energy consumed in terms of CO2 emission tn/MWh.

EN

TARIFF (tariff)

CO2_CONVER-
SION (CO2 con-
version)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3452

Data type: INT, default value: 0, range: > 0, unit: min
Time duration to calculate the energy consumed.

Data type: BOOL
The energy calculation will start if the input is TRUE. If the input becomes FALSE the energy
calculation will stop.

Data type: BOOL
If this input is TRUE it will reset all the stored values zero. If this input is FALSE the stored
values will get updated continuously.

Data type: REAL, default value: 0, range: ³ 0, unit: m3/h

Actual flow of PUMP 1 is connected to this parameter. Actual flow can be measured
using standard flow meters or theoretically calculated using PQ curves of function block
PUMP_FLOW_CALC.

Data type: REAL, default value: 0, range: ³ 0, unit: m3/h

Actual flow of PUMP 2 is connected to this parameter. Actual flow can be measured
using standard flow meters or theoretically calculated using PQ curves of function block
PUMP_FLOW_CALC.

Data type: REAL, default value: 0, range: ³ 0, unit: m3/h

Actual flow of PUMP 3 is connected to this parameter. Actual flow can be measured
using standard flow meters or theoretically calculated using PQ curves of function block
PUMP_FLOW_CALC.

Data type: BOOL
Total volume is calculated using the flow of the available pumps. If this input is TRUE it will
reset stored total volume value to zero. If this input is FALSE the stored values will get updated
continuously.

Data type: REAL, default value: 0, range: ³ 0, unit: kW

Pump1 Direct On Line power, if directly connected to the motor.

Data type: REAL, default value: 0, range: ³ 0, unit: kW

Pump2 Direct On Line power, if directly connected to the motor.

Data type: REAL, default value: 0, range: ³ 0, unit: kW

Pump3 Direct On Line power, if directly connected to the motor.

Data type: REAL, default value: 0, range: ³ 0, unit: kW

Pump1 actual power read from the drive.

MON-
ITOR_DURA-
TION (monitor
duration)

START_ENERG
Y_CALC (start
energy calcula-
tion)

RESET_TOTAL_
ENERGY (reset
total energy)

PUMP1_ACT_FL
OW (pump 1
actual flow)

PUMP2_ACT_FL
OW (pump 2
actual flow)

PUMP3_ACT_FL
OW (pump 3
actual flow)

RESET_TOTAL_
VOLUME (reset
total volume)

PUMP1_DOL_P
OWER (pump 1
dol power)

PUMP2_DOL_P
OWER (pump 2
dol power)

PUMP3_DOL_P
OWER (pump 3
dol power)

PUMP1_ACT_P
OWER (pump 1
actual power)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3453

Data type: REAL, default value: 0, range: ³ 0, unit: kW

Pump2 actual power read from the drive.

Data type: REAL, default value: 0, range: ³ 0, unit: kW

Pump3 actual power read from the drive.

Data type: REAL, default value: 0, range: 0-100.0, unit: %
Motor efficiency in % of Pump1.

Data type: REAL, default value: 0, range: 0-100.0, unit: %
Motor efficiency in % of Pump2.

Data type: REAL, default value: 0, range: 0-100.0, unit %
Motor efficiency in % of Pump3.

Data type: LREAL, default value: -, range: ³ 0, unit: m3

Total volume is consumed, which is calculated using flow of all the pumps. It is cumulative and
the user can connect global retain variable in program can retain this value.

Data type: LREAL, default value: -, range: ³ 0, unit: kWh

Total energy which was consumed, calculated using actual power of all pumps. It is cumulative
and the user should connect global retain variable in program to retain this value.

PUMP2_ACT_P
OWER (pump 2
actual power)

PUMP3_ACT_P
OWER (pump 3
actual power)

PUMP1_MOTOR
_EFF (pump 1
motor effi-
ciency)

PUMP2_MOTOR
_EFF (pump 2
motor effi-
ciency)

PUMP3_MOTOR
_EFF (pump 3
motor effi-
ciency)

TOTAL_VOLUM
E (total volume)

TOTAL_ENERG
Y (total energy)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3454

Output description

Fig. 679: Function block PUMP_ENERGY_CALC

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3455

Data type: REAL, default value: 0, range: ³ 0, unit: kWh

Stores the energy saved.
Difference of the energy consumed, considering the pumps motor connected directly to the grid
(DOL), compared to the using a drive to control the motor.

Data type: REAL, default value: 0, range: ³ 0, unit: currency (e.g. Dollar, Euro)

Money saved is calculated by multiplying ENERGY_SAVED and TARIFF. Its unit is the same
unit as TARIFF.

Data type: REAL, default value: 0, range: ³ 0, unit: t/kWh

Indicates the reduction in carbon dioxide emissions.

Data type: REAL, default value: 0, range: ³ 0, unit: kWh

Indicates the value of energy consumed in the monitoring duration. While input
TOTAL_ENERGY indicates cumulative value of energy consumed.

Data type: REAL, default value: 0, range: ³ 0

Instant flow power efficiency of the system in m3/kWh.

Data type: REAL, default value: 0, range: ³ 0

Hourly flow power efficiency of the system in m3/kWh.

Data type: REAL, default value: 0, range: ³ 0

Daily flow power efficiency of the system in m3/kWh.

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error.

16416 4020 Value of TARIFF is erroneous.

16432 4030 Value of CO2_CONVERSION is erroneous.

ENERGY_SAVE
D (energy
saved)

MONEY_SAVED
(money saved)

CO2_REDUC-
TION (CO2
reduction)

ENERGY_CON-
SUMED (energy
consumed)

EFF_INSTANT
(instant effi-
ciency)

EFF_HOUR
(hourly effi-
ciency)

EFF_DAY (daily
efficiency)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3456

Dec Hex Error Description
16448 4040 Value of MONITOR_DURATION is erroneous.

16560 40B0 Value of PUMP1_DOL_POWER is erroneous.

16576 40C0 Value of PUMP2_DOL_POWER is erroneous.

16592 40D0 Value of PUMP3_DOL_POWER is erroneous.

16656 4110 Value of PUMP1_MOTOR_EFF is erroneous.

16672 4120 Value of PUMP2_MOTOR_EFF is erroneous.

16688 4130 Value of PUMP3_MOTOR_EFF is erroneous.

1.5.13.1.15 Pump_DOL_SIMU

Fig. 680: Function block PUMP_DOL_SIMU

Table 219: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

This function block simulates a Direct Online Pump (DOL) without a drive . The function block
generates the feedback signals READY, OPERATING and TRIPPED which have to be con-
nected to the PUMP_INTERFACE function block . The trip signal is simulated by forcing the
input EXT_FAULT. The input value “NOMINAL_FLOW" is the nominal (rated) flow of the pump
which is forwarded to the output “PUMP_ACT_FLOW” if the pump is in operating condition. The
output “PUMP_ACT_FLOW” is zero if the pump is off or tripped.

The function block simulates a Direct Online (DOL) pump in boost control appli-
cations traditional pumping

The function block simulates the pump only in general behavior. The behavior in
the real process may be slightly different Outputs of this function block may or
may not be as accurate as real process.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3457

Input description

Fig. 681: Function block PUMP_DOL_SIMU

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BOOL, default value: FALSE
The input is connected to the pump start command. The start command is activated by the
PUMP_START output of the PUMP_INTERFACE function block.
TRUE starts the DOL pump and the output “OPERATING” is TRUE. FALSE stops the pump and
the output “OPERATING” is FALSE The output “READY” keeps TRUE independent of the input
state.

Data type: BOOL, default value: FALSE
This input simulates the trip condition. The user can trigger the input signal “EXT_FAULT".
TRUE activate a pump trip; the output ”TRIPPED” is TRUE and stops the pump; the output
“OPERATING” is FALSE; the output “READY” is FALSE
FALSE deactivate a trip the output “TRIPPED” is FALSE.

Data type: REAL, default value: 0, range >0, unit: m3/ h
This input parameter has to be designed according the nominal flow of the pump.

EN

START (start)

EXT_FAULT
(external fault)

NOM-
INAL_FLOW
(nominal flow)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3458

Output description

Fig. 682: Function block PUMP_DOL_SIMU

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: BOOL
TRUE indicates that the pump is ready to start and there is no fault (input “EX_FAULT” is
FALSE).

Data type: BOOL
TRUE indicates that the pump is operating.

Data type: BOOL
TRUE indicates the pump is tripped (input “EX_FAULT” is TRUE)

DONE

ERR

ERNO

READY (ready)

OPERATING
(operating)

TRIPPED
(tripped)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3459

Data type: REAL, unit: m3/h
Actual flow of the Direct Online (DOL) pump.
The output value corresponds to the input parameter “NOMINAL FLOW” if the pump is running.
The output value is zero if the pump is stopped.

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error

16448 4040 NOMINAL_FLOW is less than zero

1.5.13.1.16 PUMP_DRIVE_SIMU

Fig. 683: Function block PUMP_DRIVE_SIMU

Table 220: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

PUMP_ACT_FL
OW (pump
actual flow)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3460

This function block simulates a drive. In combination with the function block
PUMP_FLOW_CALC a drive controlled pump can be simulated.
The function block generates the feedback signals READY, OPERATING and TRIPPED which
have to be connected to the PUMP_INTERFACE function block. The output ACT_SPEED and
DRIVE_ACT_PWR can be connected to the PUMP_FLOW_CALC function block. The trip signal
is simulated by forcing the input EXT_FAULT

The function block simulates a Drive controlled pump in level control or boost
control applications multimode or traditional pumping

The function block simulates the Drive controlled pump only in general behavior.
The behavior in the real process may be slightly different.

Input description

Fig. 684: Function block PUMP_DRIVE_SIMU

Data type: BOOL, default value: FALSE
In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The block is not processed if input EN = FALSE. While input is set to TRUE, the inputs are
continuously checked for validity and plausibility. If this is not the case, processing is aborted
and corresponding error is displayed at output ERR/ERNO.

Data type: BOOL, default value: FALSE
The input is connected to the pump start command. The start command is activated by the
PUMP_INTERFACE function block.
TRUE starts the pump and the output “OPERATING” is TRUE.
FALSE stops the pump the output “OPERATING” is FALSE.
The output “READY” keeps TRUE independent of the input state.

Data type: INT, default value: 0, range: > 0, unit: RPM

The input is connected to the pump reference speed.
The pump reference speed is generated by the application and connected from the
PUMP_INTERFACE function block.

EN (enable)

START (start)

SPEED_REF
(speed refer-
ence)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3461

Data type: REAL, default value: 1500, range: > 0, unit: RPM

This input parameter has to be designed according the nominal speed of the pump.

Data type: REAL, default value: 5, range: > 0, unit: kW

This input parameter has to be designed according the nominal power of the pump.
Maximum rated power of the drive.

Data type: , BOOL, default value: FALSE
This input simulates the trip condition. The user can trigger the input signal “EXT_FAULT”
TRUE activate a pump trip; the output ”TRIPPED” is TRUE and stops the pump; the output
“OPERATING” is FALSE;
When the input signal “EXT_FAULT” changes back to FALSE it does not deactivate the
TRIPPED status. This can only be done using the RESET input explained below.

Data type: , BOOL, default value: FALSE
This input can be used to reset the TRIPPED status on the drive.
When the RESET changes from FALSE to TRUE, the output TRIPPED becomes FALSE in the
absence of EXT_FAULT. However RESET does not deactivate the TRIPPED status when the
EXT_FAULT is already present

Output description

Fig. 685: Function block PUMP_DRIVE_SIMU

Data type: BOOL
Output DONE indicates the processing state of the block. After completion or abortion of pro-
cessing (due to an error), DONE is set to TRUE for one cycle. This output always has to be
considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error
number can be read at output ERNO.

Data type: BOOL
Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an
error occurred. In this case, the error number can be read at output ERNO.

DRIVE_MAX_SP
EED (drive max-
imum speed)

DRIVE_MAX_P
WR (drive max-
imum power)

EXT_FAULT
(external fault)

RESET (reset)

DONE (done)

ERR (error)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3462

Data type: WORD, default value: 0, range: ³ 0

Output ERNO provides an error identifier if an invalid value was applied to an input. ERNO
always has to be considered together with the output ERR. The value output at ERNO is only
valid if ERR is TRUE. The error messages encoding at output ERNO are explained at the table
below.

Data type: BOOL
TRUE indicates that the drive is ready to start and there is no fault.
(input “EX_FAULT” is FALSE)

Data type: BOOL
TRUE indicates that the drive is operating.

Data type: BOOL
TRUE indicates the pump is tripped (input “EX_FAULT” is TRUE).

Data type: REAL , unit: RPM
Actual speed of the drive.

Data type: REAL, unit: kW
Drive calculated power. It is based on the DRIVE_MAX_SPEED and DRIVE_MAX_PWR inputs.

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error

16432 4030 SPEED_REF is less than zero.

16448 4040 DRIVE_MAX_SPEED is less or equal than
zero.

16464 4050 DRIVE_MAX_PWR is less or equal than zero.

ERNO (error
number)

READY (ready)

OPERATING
(operating)

TRIPPED
(tripped)

ACT_SPEED
(actual speed)

DRIVE_ACT_PW
R (drive actual
power)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3463

1.5.13.1.17 PUMP_TANK_SIMU

Fig. 686: Function block PUMP_TANK_SIMU

Table 221: General information
Available as of runtime system V1.3 and above

Included in library PUMP_AC500_V23.lib

Type Function block without historical values.

This function block simulates a simple tank in a water pumping process. User can configure the
tank size and attach the flow calculated from the PUMP_FLOW_CALC function block. Based on
the user configuration, either emptying or filling mode of tank can be implemented. This function
block outputs Water level or Pressure can be used as inputs to the level control or boost control
application respectively.

The function block will be used to simulate tank behavior in level control and
boost control applications.

The function block simulates the tank behavior only in general. The behavior in
the rael process may be slightly different.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3464

Input description

Fig. 687: Function block TANK_SIMU

Data type: BOOL, default value: FALSE
In order to enable the Function Block processing, input EN has to be continuously set to TRUE.
The block is not processed if input EN = FALSE. While input is set to TRUE, the inputs are
continuously checked for validity and plausibility. If this is not the case, processing is aborted
and corresponding error is displayed at output ERR/ERNO.

Data type: INT, default value: 1, range: 1 or 2.
The input parameter selects the tank operation mode
1 – Emptying of the tank
2 – Filling of the tank

Data type: REAL, default value: 0, range: ³ 0, unit: m

The input parameter specifies the tank height.

Data type: REAL, default value: 0, range: ³ 0, unit: m

The input parameter specifies the tank depth.

Data type: REAL, default value: 0, range: ³ 0, unit: m

The input parameter specifies the tank width.

Data type: , BOOL, default value: FALSE
The user can trigger the input and set the tank initial value for simulation TRUE set the initial
tank level as declared in the input INITIAL_LEVEL.
FALSE starts the simulation considering zero level in the tank.

EN (enable)

MODE (mode)

TANK_HEIGHT
(tank height)

TANK_DEPTH
(tank depth)

TANK_WIDTH
(tank width)

SET_LEVEL (set
level)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3465

Data type: REAL, default value: 1, range: > 0, unit: m

The input parameter specifies the initial tank level to start the simulation. This input value will be
considered for the tank simulation only if input SET_LEVEL is made TRUE.

Data type: REAL, default value: 1, range: > 0, unit: m

The input parameter specifies the diameter of the outlet pipe.

Data type: REAL, default value: 0, range: >0, unit: m3/h

Actual flow from the pump 1.
For simulation process, the calculated ACT_FLOW output from the PUMP_FLOW_CALC func-
tion block is used.

Data type: REAL, default value: 0, range: >0, unit: m3/h

Actual flow from the pump 2.
For simulation process,
● the calculated ACT_FLOW output from the PUMP_FLOW_CALC function block is used if

the pump is simulated by the PUMP_DRIVE_SIMU .
● the ACT_FLOW output from the PUMP_DOL_SIMU function block is used if the pump is

simulated by the PUMP_DOL_SIMU.

Data type: REAL, default value: 0, range: >0, unit: m3/h

Actual flow from the pump 3.
For simulation process,
● the calculated ACT_FLOW output from the PUMP_FLOW_CALC function block is used. if

the pump is simulated by the PUMP_DRIVE_SIMU.
● the ACT_FLOW output from the PUMP_DOL_SIMU function block is used if the pump is

controlled by the PUMP_DOL_SIMU.

Data type: BOOL, default value: FALSE
TRUE value starts the simulation of filling or emptying of a tank.
FALSE stopps the simulation of filling or emptying of a tank.

Data type: REAL, default value: 0, range: >0, unit: m3/h

Simulates the filling flow of the tank in emptying mode.

Data type: REAL, default value: 0, range: >0, unit: m3/h

Simulates the discharge flow of the tank in filling mode.

INITIAL_LEVEL
(initial level)

TANK_OUTLET_
DIAMETER (tank
outlet diameter)

PUMP1_ACT_FL
OW (pump 1
actual flow)

PUMP2_ACT_FL
OW (pump 2
actual flow)

PUMP3_ACT_FL
OW (pump 3
actual flow)

START_INOUT_
FLOW_SIMULA-
TION (start input
flow simulation)

TANK_INLET_FL
OW

TANK_OUTLET_
FLOW

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3466

Output description

Fig. 688: Function block TANK_SIMU

Data type: BOOL
Output DONE indicates the processing state of the block. After completion or abortion of pro-
cessing (due to an error), DONE is set to TRUE for one cycle. This output always has to be
considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error
number can be read at output ERNO.

Data type: BOOL Output ERR indicates whether an error occurred during data reception. If ERR
is TRUE, an error occurred. In this case, the error number can be read at output ERNO.

Data type: WORD, default value: 0, range: ³ 0

Output ERNO provides an error identifier if an invalid value was applied to an input. ERNO
always has to be considered together with the output ERR. The value output at ERNO is only
valid if ERR is TRUE. The error messages encoding at output ERNO are explained at the table
below.

Data type: REAL, unit: m
Level of the water tank.

Data type: REAL, unit: %, range: 0-100

Level of the water tank in percentage.

Data type: REAL, unit: m3

Actual volume of water in the tank .

Data type: REAL, unit: m3

Total volume of the tank.

DONE (done)

ERR (error)

ERNO (error
number)

WATER_LEVEL
(water level)

WATER_LEVEL_
PERCENT
(water level per-
cent)

WATER_VOLUM
E (water
volume)

TANK_VOLUME
(tank volume)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3467

Data type: REAL, unit: %, range: 0-100

Total pressure in the tank in percentage.

Data type: REAL, unit: Pa
Pressure at the bottom of tank.

Data type: REAL, unit: PSI
Pressure at the bottom of the tank.

Data type: REAL, unit: PSI
Pressure at the outlet pipe.

Data type: REAL, unit: PSI
Pressure at the outlet pipe.

4000hex...4FFFhex - Block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

Dec Hex Error Description
0 0000 No error

16416 4020 MODE input value is less than 1 or greater
than 2

16432 4030 TANK_HEIGHT is less than or equal to zero.

16448 4040 TANK_LEN is less than or equal to zero.

16464 4050 TANK_WIDTH is less than or equal to zero.

16496 4070 INITIAL_LEVEL is less than zero.

16512 4080 TANK_OUTLET_DIAMETER is less than or
equal to zero.

16528 4090 PUMP1_ACT_FLOW is less than zero.

16544 40A0 PUMP2_ACT_FLOW is less than zero.

16560 40B0 PUMP3_ACT_FLOW is less than zero.

TANK_PRES-
SURE_PER-
CENTAGE (tank
pressure per-
centage)
TANK_PRES-
SURE_PASCAL
(tank pressure
Pascal)

TANK_PRES-
SURE_PSI (tank
pressure psi)

OUTLET_PRES-
SURE_PASCAL
(outlet pressure
pascal)

OUTLET_PRES-
SURE_PSI
(outlet pressure
psi)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3468

1.5.13.1.18 Visualizations
Every visualization element can be used to show the actual values of all inputs and outputs of
the instance of the corresponding function block. In the application program, the programmer
can add the visualization object in his project. In this object the programmer needs to add the
faceplate of the required function block.

Fig. 689: Adding the faceplate of the required function block in the visualization object.

The visualization could also be used to control the function block by those inputs which are not
connected inside the program.

All inputs of the corresponding function block which are not connected to a variable (left open)
can be written from this faceplate. So the function block can be controlled from the visualization
as long as the inputs are left open.
The color of the background can be changed by writing a value to the global variable
dwAcsVisuBackgroundColor.

The color of the title can be changed by writing a value to the global variable
dwAcsVisuTitleColor.

PUMP_STATION_CFG_VISU_PH
Faceplate for the function block PUMP_STATION_CFG.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3469

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 222: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Table 223: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

STA-
TION_NUMBER

R/W Numpad – value
1 onwards

Station number as a unique identifi-
cation for the station.

STATION_NAME R/W Text Name of the pumping station.

NUMBER_OF_P
UMPS

R/W Numpad – value
1 to 3

Number of pumps in the pumping
station.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

PUMP_INTERFACE_VISU_PH
Faceplate for the function block PUMP_INTERFACE.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3470

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 224: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Table 225: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

PUMP_ID R/W Numpad – value
1 to 3

To enter the ID of the pump.

PRIORITY R/W Numpad – value
1 to 3

To enter the priority of the pump.

PUMP_ON R/W Toggle To switch off/On the pump individu-
ally. For the FALSE value the user
can remove this pump from the net-
work in case of any problem/fault.

PUMP_NOM-
INAL_SPEED

R/W Numpad – value
0 onwards

To enter the nominal speed of the
pump motor.

FOL-
LOWER_MODE

R/W Numpad – value
0 to 2

Follower mode to decide at what
speed the follower pumps must
move. 0= Fixed, 1=copy master,
2=master speed.

FOL-
LOWER_REF

R/W Numpad – value
0 onwards

follower speed reference in RPM,
when FOLLOWER_MODE =0, i.e.
fixed.

PUMP_READY R/W Toggle Input to attach the ready status of
the drive of the pump.

PUMP_OPER-
ATING

R/W Toggle Input to attach the operating status
of the drive of the pump.

PUMP_TRIPPRE
D

R/W Toggle Input to attach the fault status of the
drive of the pump.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3471

Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

PUMP_RUN-
TIME_RESET

R/W Toggle TRUE value of this variable resets
the actual run time to Zero value.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

PUMP_START R On command to the pump.

PUMP_REF R Speed reference to the pump in
RPM.

PUMP_REF_FB R Field bus speed reference to the
pump in the range of -20000 to
20000.

PUMP_RUN-
TIME

R Actual run time of the pump.

PUMP_BOOST_CTRL_VISU_PH
Faceplate for the function block PUMP_BOOST_CTRL.

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 226: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3472

Table 227: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

START R/W Toggle To start the Boost control function-
ality.

OP_MODE R/W Numpad – value
0 to 2

Operation mode of the station, 0=
single pump, 1=traditional pump,
2=multi pump.

MASTER_LOC R/W Numpad – value
0 to 1

Defines the master location.
INSTART: youngest pump in the net-
work is the master.
1- STABLE: master is always fixed.

START_SPEED_
SLV_1

R/W Numpad- value 0
onwards

Speed of master in RPM at which
the follower pump 1 starts.

START_SPEED_
SLV_2

R/W Numpad- value 0
onwards

Speed of master in RPM at which
the follower pump 2 starts.

STOP_SPEED_
SLV_1

R/W Numpad- value 0
onwards

Speed of master in RPM at which
the follower pump 1 stops.

STOP_SPEED_
SLV_2

R/W Numpad- value 0
onwards

Speed of master in RPM at which
the follower pump 2 stops.

START_DELAY R/W Numpad- value 0
onwards

Time delay in seconds for starting
the pump.

STOP_DELAY R/W Numpad- value 0
onwards

Time delay in seconds for stopping
the pump.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

PUMP_PID_VISU_PH
Faceplate for the function block PUMP_PID.

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3473

Table 228: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Table 229: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

SET_VALUE R/W Numpad – value
0.0 to 100.0

Set value of the process variable in
terms of percentage.

ACTUAL_VALUE R/W Numpad – value
0.0 to 100.0

Actual value of the process variable
in terms of percentage.

KP R/W Numpad – value
0.0 to 100.0

Proportional gain of the PID.

TN R/W Numpad – value
0.0 to 100.0

Integral time of the PID in terms of
seconds.

TD R/W Numpad – value
0.0 to 100.0

Derivative time of the PID in terms of
seconds.

PID_FREEZE R/W Toggle For the TRUE value the setpoint to
the PID block is frozen. Actual value
is then attached to the setpoint.

PID_MAX_LIMIT R/W Numpad – value
0.0 to 100.0

Limit for the maximum PID Output.

PID_MIN_LIMIT R/W Numpad – value
0.0 to 100.0

Limit for the minimum PID Output.

PUMP_RUN-
TIME_RESET

R/W Toggle TRUE value of this variable resets
the actual run time to Zero value.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

PID_OUT R PID output after the manipulation in
terms of percentage.

PID_DEVIATION R Deviation of Set value from actual
value. It is also known as PID error.

PID_SPEED_RE
F

R Speed reference as a correction
to the main speed reference, calcu-
lated by the PID - in the range of 0 to
20000.

MAX_LIMIT_RE
ACHED

R Indicates if the PID output touches
the MAXIMUM limit.

MIN_LIMIT_REA
CHED

R Indicates if the PID output touches
the MINIMUM limit.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3474

PUMP_LEVEL_CTRL_VISU_PH
Faceplate for the function block PUMP_LEVEL_CTRL.

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 230: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Table 231: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

START R/W Toggle To start the level control functionality.

MODE R/W Numpad – value
1 to 2

To select the mode of operation. 1 =
emptying, 2= filling.

STOP_MODE R/W Numpad – value
0 to 1

Defines the stop mode stage stop.
stops the pump at individual defined
start stop levels. 1, common stop.
stops all the pump as common stop
at defined STOP_LEVEL.

LOW_LEVEL R/W Numpad- value
0.0 to 100.0

Defines the low level in terms of %
of full tank capacity.

LOW_SWITCH R/W Toggle Digital input with TRUE indicates
that the low level has reached.

STOP_LEVEL R/W Numpad- value
0.0 to 100.0

Defines the stop level in terms of %
of full tank capacity.

START_LEVEL_
1

R/W Numpad- value
0.0 to 100.0

Defines the start level for pump 1 in
terms of % of full tank capacity.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3475

Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

START_LEVEL_
2

R/W Numpad- value
0.0 to 100.0

Defines the start level for pump 2 in
terms of % of full tank capacity.

START_LEVEL_
3

R/W Numpad- value
0.0 to 100.0

Defines the start level for pump 3 in
terms of % of full tank capacity.

START_STOP_D
ELAY

R/W Numpad- value 0
onwards

Defines the time delay for pump to
start and stop when respective level
is reached.

HIGH_LEVEL R/W Numpad- value
0.0 to 100.0

Defines the high level in terms of %
of full tank capacity.

HIGH_SWITCH R/W Toggle Digital input with TRUE indicates
that the high level has reached.

ACT_LEVEL R/W Numpad- value
0.0 to 100.0

Actual level in % - read from the
analog input of level sensor.

NORMAL_SPEE
D_1

R/W Numpad- value 0
onwards

Normal operating speed of the
pump1 while Filling/Emptying.

NORMAL_SPEE
D_2

R/W Numpad- value 0
onwards

Normal operating speed of the
pump2 while Filling/Emptying.

NORMAL_SPEE
D_3

R/W Numpad- value 0
onwards

Normal operating speed of the
pump3 while Filling/Emptying.

HIGH_SPEED_1 R/W Numpad- value 0
onwards

Defines the speed of the pump1
for : - Filling- pump level falls below
LOW_LEVEL/ Emptying - pump
level rises above the HIGH_LEVEL.

HIGH_SPEED_2 R/W Numpad- value 0
onwards

Defines the speed of the pump2
for : - Filling- pump level falls below
LOW_LEVEL/ Emptying – pump3
level rises above the HIGH_LEVEL.

HIGH_SPEED_3 R/W Numpad- value 0
onwards

Defines the speed of the pump for :
- Filling- pump level falls below
LOW_LEVEL/ Emptying - pump
level rises above the HIGH_LEVEL.

RAND_COEF R/W Numpad – value
-10.0 to + 10.0

Random coefficient randomizes the
start levels to avoid cake formation.
Value between -10.0 to 10.0. Value
1.0 means 1.0%.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

HIGH_LEVEL_R
EACHED

R TRUE value indicates that the actual
level is more than the high level.

LOW_LEVEL_R
EACHED

R TRUE value indicates that the actual
level is below the low level.

PUMP_ AUTOCHANGE _VISU_PH
Faceplate for the function block PUMP_ AUTOCHANGE.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3476

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 232: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Table 233: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

AUTOCHG_STY
LE

R/W Numpad- value 0
to 3

Mode of auto change. 0=None,
1=fixed, 2=runtime difference, 3=all
stop.

AUTOCHG_INTE
RVAL

R/W Numpad- value 0
onwards

Time delay after which
the autochange starts when
AUTOCHG_STYLE =1.

RUNTIME_DIF-
FERENCE

R/W Numpad- value 0
onwards

Maximum permited run-time differ-
ence between the two pumps after
which the autochange starts when
AUTOCHG_STYLE =2.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

PUMP_ ANTIJAM _VISU_PH
Faceplate for the function block PUMP_ ANTIJAM.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3477

Fig. 690: Visualization in offline mode.

Fig. 691: Visualization in online mode.

Table 234: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3478

Table 235: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

PUMP_ID R/W Numpad- value 1
to 3

To enter the ID of the pump which is
to be cleaned

TRIGGER R/W Numpad- value 0
to 4

Trigger to clean the pump. 0=not
enabled, 1=master enabled, 2=fol-
lower enabled, 3=at start, 4=manual
mode

FWD_REF_SPE
ED

R/W Numpad- value 0
onwards

Speed reference to clean the pump
in the forward direction

BWD_REF_SPE
ED

R/W Numpad- value 0
onwards

Speed reference to clean the pump
in the backward direction

OFF_TIME R/W Numpad- value 0
onwards

Time delay in seconds between the
forward and the backward move-
ment in anti-jam

FWD_STEP_TIM
E

R/W Numpad- value 0
onwards

Time duration in seconds for which
the pump moves in the forward
direction in anti-jam

BWD_STEP_TIM
E

R/W Numpad- value 0
onwards

Time duration in seconds for which
the pump moves in the reverse
direction in anti-jam

ANTIJAM_STEP
S

R/W Numpad- value 1
onwards

Number of steps to be performed in
an anti-jam process

ALLOW_REVER
SE

R/W Toggle True value means the pump can
also move in the reverse direction to
perform the anti jam

START_MANUA
L

R/W Toggle For the TRUE anti-jam is performed
in the manual mode i.e. TRIGGER
=4

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

PUMP_ FLOW_CALC_VISU_PH
Faceplate for the function block PUMP_ FLOW_CALC.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3479

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 236: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Table 237: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

PUMP_ID R/W Numpad- value 1
to 3

To enter the ID of the pump which is
to be cleaned.

PQ_CURVE_P1 R/W Numpad- value 0
onwards

Pump PQ curve P1.

PQ_CURVE_Q1 R/W Numpad- value 0
onwards

Pump PQ curve Q1.

PQ_CURVE_P2 R/W Numpad- value 0
onwards

Pump PQ curve P2.

PQ_CURVE_Q2 R/W Numpad- value 0
onwards

Pump PQ curve Q2.

PQ_CURVE_P3 R/W Numpad- value 0
onwards

Pump PQ curve P3.

PQ_CURVE_Q3 R/W Numpad- value 0
onwards

Pump PQ curve Q3.

PQ_CURVE_P4 R/W Numpad- value 0
onwards

Pump PQ curve P4.

PQ_CURVE_Q4 R/W Numpad- value 0
onwards

Pump PQ curve Q4.

PQ_CURVE_P5 R/W Numpad- value 0
onwards

Pump PQ curve P5.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3480

Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

PQ_CURVE_Q5 R/W Numpad- value 0
onwards

Pump PQ curve Q5.

NOM-
INAL_POWER

 Numpad- value 0
onwards

Nominal power of the motor in kW.

ACT_SPEED R Actual speed of the motor in RPM is
connected to the input.

ACT_POWER R Actual power of the motor in kW.

PUMP_MOTOR_
EFF

 Combined efficiency of the motor
and the pump set.

LOW_SPEED_C
ALC

 Speed below which the calculation
will not take place.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

ACT_FLOW R Calculated flow of the pump.

PUMP_ SLEEP _VISU_PH
Faceplate for the function block PUMP_ SLEEP.

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 238: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3481

Table 239: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

PUMP_ID R/W Numpad- value 1
to 3

To enter the ID of the pump which is
to be cleaned.

SLEEP_MODE R/W Numpad- value 0
to 4

SLEEP MODE: 0= Not Used, 1=
Internal, 2 = External, 3 = Int+Ext, 4
= Soft Ext.

ACT_VALUE R/W Numpad- value 0
to 100.0

Actual process value which is com-
pared with the sleep level.

SLEEP_LEVEL R/W Numpad- value 0
to 100.0

Defines the level to active the sleep
function.

SLEEP_DELAY R/W Numpad- value 0
onwards

Time delay for the sleep function to
get activated.

SLEEP_EXT R/W Toggle To enable the sleep function exter-
nally.

SLEEP_BOOST_
STEP

R/W Numpad- value 0
to 100.0

The setpoint is increased by boost
step percentage for the time defined
by sleep boost time.

SLEEP_BOOST_
TIME

R/W Numpad- value 0
onwards

Time in seconds for which sleep
boost is to be operational.

WAKEUP_MODE R/W Numpad- value 0
to 3

Wake up mode: 0= wake > ref, 1=
wake < ref , 2 = wake > Ext, 3 =
wake < Ext.

WAKEUP_LEVE
L

R/W Numpad- value 0
to 100.0

Defines the level to active the wake
up function. It is a percentage of set-
point.

WAKEUP_DELA
Y

R/W Numpad- value 0
onwards

Time delay for the wake up function
to activate.

WAKEUP_EXT_
LEVEL

R/W Numpad- value 0
to 100.0

Wake up external level. For wake
up mode 2 and 3, this value is com-
paired with actual value.

PUMP_SET-
POINT

R/W Numpad- value 0
to 100.0

Process setpoint - the same setpoint
connected in the PUMP_PID func-
tion block.

SLEEP_RPM R/W Numpad- value 0
onwards

Pump RPM below which pump
should go in to the sleep mode.

ACT_RPM R/W Numpad- value 0
onwards

Actual RPM of the pump.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3482

Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

ENO R Error code.

STATUS R Status of sleep function.
0 = Function is inactive
1 = Sleep Function is active
2 = Boost Function is active
3 = Wake up Function is active

PUMP_PROTECTION_VISU_PH
Faceplate for the function block PUMP_PROTECTION.

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 240: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3483

Table 241: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

PUMP_ID R/W Numpad- value 1
to 3

ID of the pump for which the function
block is to be called.

INLET_CTRL R/W Numpad – value
0 to 3

To enable control for primary protec-
tion against low inlet pressure: 0 =
disabled, 1 = alarm, 2 = Fault, 3 =
reduced speed.

PRES-
SURE_LOW_LIM
IT

R/W Numpad – value
0.0 to 100.0

Low pressure level limit for primary
protection.

PRES-
SURE_VERY_L
OW_CTRL

R/W Numpad – value
0 to 2

To enable control for secondary pro-
tection against very low inlet pres-
sure: 0 = disabled, 1 = fault, 2 =
stop.

PRES-
SURE_VERY_L
OW_LIMIT

R/W Numpad – value
0.0 to 100.0

Very low pressure level limit for sec-
ondary protection.

INLET_CTRL_D
ELAY

R/W Numpad – value
0 onwards

Delay in seconds for primary and
secondary supervision to start.
0-600 s.

INLET_FORCED
_REF

R/W Numpad – value
0 onwards

Safe speed reference for the drive
when the INLET_CTRL = 3 i.e.
reduced speed mode.

OUTLET_CTRL R/W Numpad – value
0 to 3

To enable control for primary protec-
tion against high outlet pressure: 0
= disabled, 1 = alarm, 2 = fault, 3 =
reduced speed.

PRES-
SURE_HIGH_LI
MIT

R/W Numpad – value
0.0 to 100.0

High pressure level limit for primary
protection.

PRES-
SURE_VERY_HI
GH_CTRL

R/W Numpad – value
0 to 2

To enable control for secondary pro-
tection against very high outlet pres-
sure: 0 = disabled, 1 = fault, 2 =
stop.

PRES-
SURE_VERY_HI
GH_LIMIT

R/W Numpad – value
0.0 to 100.0

Very high pressure level limit at for
secondary protection.

OUTLET_CTRL_
DELAY

R/W Numpad – value
0 onwards

Delay in seconds for primary and
secondary supervision to start.

OUTLET_FORC
ED_REF

R/W Numpad – value
0 onwards

Safe speed reference for the drive
when the OUTLET_CTRL = 3 i.e.
reduced speed mode.

FLOW_MAX_CT
RL

R/W Numpad – value
0 to 2

To enable control for protection
against maximum flow condition: 0 –
Disabled, 1 – Alarms, 2 – fault.

FLOW_MAX_LIM
IT

R/W Numpad – value
0 to 32767

Value of max flow rate limit in m3/h.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3484

Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

FLOW_MIN_CT
RL

R/W Numpad – value
0 to 2

To enable control for protection
against minimum flow condition: 0 –
Disabled, 1 – Alarms, 2 – fault.

FLOW_MIN_LIMI
T

R/W Numpad – value
0 to 32767

Value of min flow rate limit in m3/h.

FLOW_CTRL_D
ELAY

R/W Numpad – value
0 onwards

Delay in seconds before executing
the control due to low or high flow
rates.

FLOW_CHECK_
DELAY

R/W Numpad – value
0 onwards

Delay in seconds after the start of
the pump before monitoring the flow
rates.

PROFILE_CTRL R/W Numpad – value
0 to 2

0 – profile protection disabled.
1 – PID deviation, generates alarm ,
PROFILE HIGH, if PID deviation
exceeds PROFILE_LIMIT.
2 – PID output, generates alarm ,
PROFILE HIGH, if PID output
exceeds PROFILE_LIMIT.

PROFILE_LIMIT R/W Numpad – value
0 to 32767

Value of profile protection limit.

PRO-
FILE_CTRL_DEL
AY

R/W Numpad – value
0 onwards

Time delay in seconds before the
Profile Ctrl activates.

PRES-
SURE_ACT

R/W Numpad – value
0.0 to 100.0

Actual pressure of the system.

FLOW_ACT R/W Numpad – value
0.0 to 100.0

Actual flow of the pump.

PID_DEVIATION R/W Numpad – value
0.0 to 100.0

PID deviation generated by
PUMP_PID function block.

PID_OUT R/W Numpad – value
0.0 to 100.0

PID ouput generated by PUMP_PID
function block.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

PUMP_ ENERGY_CALC_VISU_PH
Faceplate for the function block PUMP_ ENERGY_CALC.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3485

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 242: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Table 243: Visualization parameters
Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

EN R/W Toggle To enable the function block with the
true value.

TARIFF R/W Numpad- value 0
onwards

Per kwhr tariff rate.

CO2_CONVER-
SION

R/W Numpad- value 0
onwards

Factor which helps in converting the
energy consumed in terms of CO2
emission tn/Mwh.

MON-
ITOR_DURA-
TION

R/W Numpad- value 0
onwards

Time duration in minutes to monitor
the energy consumption.

START_ENERG
Y_CALC

R/W Toggle To enable energy calculation.

RESET_TOTAL_
ENERGY

R/W Toggle Resets total energy value.

PUMP1_ACT_FL
OW

R Numpad- value 0
onwards

Calculated Actual flow of PUMP1 in
m3/hr.

PUMP2_ACT_FL
OW

R Numpad- value 0
onwards

Calculated Actual flow of PUMP2 in
m3/hr.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3486

Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

PUMP3_ACT_FL
OW

R Numpad- value 0
onwards

Calculated Actual flow of PUMP3 in
m3/hr.

RESET_TOTAL_
VOLUME

R/W Toggle Reset Total volume.

PUMP1_DOL_P
OWER

R/W Numpad- value 0
onwards

Pump1 Direct On Line power, if
directly connected to the motor in
kW.

PUMP2_DOL_P
OWER

R/W Numpad- value 0
onwards

Pump2 Direct On Line power, if
directly connected to the motor in
kW.

PUMP3_DOL_P
OWER

R/W Numpad- value 0
onwards

Pump3 Direct On Line power, if
directly connected to the motor in
kW.

PUMP1_ACT_P
OWER

R/W Numpad- value 0
onwards

Pump1 Actual power in kW.

PUMP2_ACT_P
OWER

R/W Numpad- value 0
onwards

Pump2 Actual power in kW.

PUMP3_ACT_P
OWER

R Numpad- value 0
onwards

Pump3 Actual power in kW.

PUMP1_MOTOR
_EFF

R/W Numpad- value 0
to 1.0

Pump1 motor combined efficiency.

PUMP1_MOTOR
_EFF

R/W Numpad- value 0
to 1.0

Pump2 motor combined efficiency.

PUMP1_MOTOR
_EFF

R/W Numpad- value 0
to 1.0

Pump3 motor combined efficiency.

DONE R Execution finished when output
DONE = TRUE.

ERR R Error occurred during execution
when output ERR = TRUE.

ENO R Error code.

ENERGY_SAVE
D

R Stores the energy saved. Difference
of the energy consumed by pump
with drive and the energy consumed
if the pump was connected to the
DOL motor.

MONEY_SAVED R Saving in terms of money.

CO2_REDUC-
TION

R Reduction in terms of carbon dioxide
emissions.

ENERGY_CON-
SUMED

R Stores the energy consumed in the
monitoring duration.

EFF_INSTANT R Instant flow vs power efficiency of
the station.

EFF_HOUR R Hourly flow vs power efficiency of
the station.

EFF_DAY R Daily flow vs power efficiency of the
station.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3487

Variable ele-
ment

Access Access via Description (all elements refer
to the function block instance,
replaced for the placeholder
FB)

TOTAL_VOLUM
E

R Total volume which is calculated
using flow of all the pumps.

TOTAL_ENERG
Y

 Total actual energy which is calcu-
lated using actual power of all the
pumps.

PUMP_DOL_SIMU _VISU_PH
Faceplate for the function block PUMP_DOL_SIMU.

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 244: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Visualization parameters

Variable element Access Access via Description (all ele-
ments refer to
the function block
instance, replaced
for the placeholder
FB)

EN R/W Toggle To enable the function
block with the true
value.

START R/W Toggle Start the simulation
DOL pump is oper-
ating.

EXT_FAULT R/W Toggle To force the fault
externally to check the
fault condition.

NOMINAL_FLOW R/W Numpad- value 0
onwards

Nominal flow of the
pump in m3/h.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3488

Variable element Access Access via Description (all ele-
ments refer to
the function block
instance, replaced
for the placeholder
FB)

DONE R Execution finished
when output DONE =
TRUE.

ERR R Error occurred during
execution when
output ERR = TRUE.

ENO R Error code

READY
OPERATING
TRIPPED
PUMP_ACT_FLOW

R
R
R
R

Pump is in ready state
for operation
Pump is Operating
Pump is tripped
Actual flow of the DOL
pump in m3/h

PUMP_DRIVE_SIMU _VISU_PH
Faceplate for the function block PUMP_DRIVE_SIMU.

Left figure Visualization in offline mode.
Right figure Visualization in online mode.

Table 245: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3489

Variable element Access Access via Description (all ele-
ments refer to
the function block
instance, replaced
for the placeholder
FB)

EN R/W Toggle To enable the function
block with the true
value.

START R/W Toggle Start the simulation
drive is operating.

SPEED_REF R/W Numpad – value 0
onwards

Speed reference from
the PUMP_INTER-
FACE FB in RPM

DRIVE_MAX_SPEED R/W Numpad – value 0
onwards

Maximum speed of
the drive in RPM

DRIVE_MAX_PWR R/W Numpad – value 0
onwards

Maximum power of
the drive in kW

EXT_FAULT R/W Toggle To force the fault
externally to check the
fault condition.

RESET R/W Toggle Reset drive fault and
reset ERNO output

DONE R - Execution finished
when output DONE =
TRUE.

ERR R - Error occurred during
execution when
output ERR = TRUE.

ENO R - Error code.

READY
OPERATING
TRIPPED
ACT_SPEED
DRIVE_ACT_PWR

R
R
R
R
R

-
-
-
-
-

Pump is in ready state
for operation
Pump is Operating
Pump is tripped
Actual speed in RPM
Actual power of drive
in kW

PUMP_TANK_SIMU _VISU_PH

Right figure Visualization in online mode.

Visualization
parameters

Faceplate for
the function
block
PUMP_TANK_SI
MU.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3490

Table 246: Colors of the variables
Color Description
white Actual FALSE and should be FALSE in normal operation

green Actual TRUE and should be TRUE in normal operation

yellow Actual FALSE but should be TRUE in normal operation

red Actual TRUE but should be FALSE in normal operation

Variable element Access Access via Description (all ele-
ments refer to
the function block
instance, replaced
for the placeholder
FB)

EN R/W Toggle To enable the function
block with the true
value

MODE R/W Numpad – 1 or 2 To select the mode
of operation. 1 = emp-
tying, 2= filling

TANK_HEIGHT R/W Numpad – value 0
onwards

Height of Tank in m

TANK_DEPTH R/W Numpad – value 0
onwards

Depth of tank in m

TANK_WIDTH R/W Numpad – value 0
onwards

Width of tank in m

SET_LEVEL R/W Toggle TRUE: Sets INI-
TIAL_LEVEL as initial
value of tank volume
in m3

INITIAL_LEVEL R/W Numpad – value 0
onwards

Initial value of tank
level in m3

TANK_OUTLET_DIA
METER

R/W Numpad – 0 value
onwards

Outlet diameter of
pipe in m

PUMP1_ACT_FLOW R/W Numpad – 0 value
onwards

Calculated Actual flow
of PUMP1 in m3/h

PUMP2_ACT_FLOW R/W Numpad – 0 value
onwards

Calculated Actual flow
of PUMP2 in m3/h

PUMP3_ACT_FLOW R/W Numpad – 0 value
onwards

Calculated Actual flow
of PUMP3 in m3/h

START_INOUT_FLO
W_SIMUALTION

R/W Toggle Start filling or emp-
tying flow flow simula-
tion

DONE R - Execution finished
when output DONE =
TRUE.

ERR R - Error occurred during
execution when
output ERR = TRUE.

ENO R - Error code.

WATER_LEVEL R - Level of the tank in m

Visualization
parameters

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3491

Variable element Access Access via Description (all ele-
ments refer to
the function block
instance, replaced
for the placeholder
FB)

WATER_LEVEL_PER
CENT

R - Level of the tank in
percentage

WATER_VOLUME R - Actual water volume
in m3

TANK_VOLUME R - Total tank volume in
m3

TANK_PRES-
SURE_PER-
CENTAGE

R - Pressure in per-
centage at the bottom
of tank

TANK_PRES-
SURE_PASCAL

R - Pressure at the tank
bottom in PASCAL

TANK_PRES-
SURE_PSI

R - Pressure at the tank
bottom in PSI

OUTLET_PRES-
SURE_PASCAL

R - Pressure at the outlet
pipe in PASCAL

OUTLET_PRES-
SURE_PS

R - Pressure at the outlet
pipe in PSI

1.5.13.1.19 Global variables
The background color and the color of the title in the visualization elements of the library can be
changed with the two global variables dwAcsVisuBackgroundColor and dwAcsVisuTitleColor.

1.5.13.1.20 Glossary
Variables of the type BOOL can have the values TRUE and FALSE. For this, 8 bit of memory
space are reserved.

BOOL

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3492

BYTE, DINT, DWORD, INT, WORD
The different numerical types are responsible for a different numerical range. Due to this, it is
possible that information are lost when converting greater data types to smaller data types.

Table 247: For integer data types the following range limits are valid:
Type BYTE INT DINT WORD DWORD
Lower limit 0 -32768 -2147483648 0 0

Upper limit 255 32767 2147483647 65535 4294967295

Memory
space

8 bits 16 bits 32 bits 16 bits 32 bits

Functions are subroutines which have multiple input parameters and return exactly one result
element. The returned result can be of an elementary or a derived data type. Due to this,
a function may also return an array, a structure, an array of structures and so on. For the
same input parameters, functions always return the same result (they do not have an internal
memory).
Therefore, the following rules can be derived:
● Within functions, global variables can neither be read nor written.
● Within functions, absolute operands can neither be read nor written.
● Within functions, function 'Function Blocks' must not be called.

Function blocks are subroutines which can have as many inputs, outputs and internal variables
as required. They are called from a program or from another function block. As they can be
used several times (with different data records), function blocks (code and interface) can be
considered as type. When assigning an individual data record (declaration) to the function
block, a function block instance is generated. In contrast to functions, function blocks can con-
tain statically local data which are saved from one call to the next. Therefore e.g. counters can
be realized which may not forget their counter value. I.e. function blockscan have an internal
memory.
Functions and function blocks differ in two essential points:
● A function block has multiple output parameters, a function only one. The output parameters

of functions and function blocks differ syntactically.
● In contrast to a function, a function block can have an internal memory.

For function blocks with historical values it has to be observed that instance names may not be
defined several times if different data sets should be called.

For function blocks without historical values only one instance has to be defined for the function
block type. This instance can be used for several calls of the function block (also with different
I/O values).

Data type Default value Range Unit
BOOL - TRUE/FALSE -

1.5.13.1.21 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

Integer data
types

Functions

Function blocks

Function blocks
with historical
values
(memory)
Function blocks
without histor-
ical values
(memory)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3493

1.5.13.2 Datalogging library

1.5.13.2.1 Overview
The Datalogging function block Library contains five function blocks for the purpose of
advanced time-stamped data logging for different use cases. In typical use cases the AC500
application program generates data which are normally transmitted to a telecontrol system for
storage and further processing or displaying to the end user. Typically, these may be remote
applications like water pumping stations or solar power plants where the connection between
the remote station (AC500) and a central SCADA/telecontrol station is not always stable or only
sporadically connected. Sporadically connected can be by intention e.g. to save communication
costs or open ports/connections to be handled by a control station. Then the Datalogging func-
tion blocks can store data in case of a broken or intentionally interrupted connection between
AC500 and the telecontrol system.

Fig. 692: Overview

1 AC500 application
2 telecontrol

● The Datalogging Library can be used as an event recorder. In this special mode data is
continuously recorded in a ring buffer which can be read out after a certain event x (e.g.
outage) in order to analyze the values especially before but also after the event x.
OR

● Data can be logged only and on command transferred to the ftp area to be analyzed offline
or taken out via the memory card.

The following figure gives an overview of the described interaction of the Datalogging function
blocks. There is always an input function block needed which transfers the input data into
data sets with timestamp for use by the Datalogger. An output function block receives the
current or retrieved data from the Datalogger in case of communication or further processing.
The input function blocks "LOG_xxx_INPUT", the function block "LOG_HANDLING" and the
output function blocks "LOG_xxx_OUTPUT" communicate via SRAM FIFOin and FIFOout areas
(defined in %M/%R area) in the memory. This SRAM FIFOs are intermediate buffers and help
in decoupling time wise and speeding up the necessary write/read operations on the logging file
structures significantly. These read/write operations on the files are done in blocks of data sets,
enabling a comparably fast interaction with the otherwise slow file system.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3494

LOG_IEC60870_INPUT
LOG_GENERIC_INPUT LOG_HANDLING

LOG_IEC60870_OUTPUT
LOG_GENERIC_OUTPUT

Input
Values

SRAM
FIFOin

RAM
FIFOout

File FIFO (Disk 1)
Pure buffer

Telecontrol
Connection

File FIFO (Disk 2)
FTP Server

Fig. 693: Overview function blocks

Each Datalogging application requires the main function block LOG_HANDLING, one of the
input function blocks to provide data to be logged and one output function block to retrieve the
data.
As input and output function blocks two different types exist:
● For logging data of an interrupted IEC60870 communication, the function blocks

LOG_IEC60870_INPUT and LOG_IEC60870_OUTPUT are provided. The IEC60870 Data-
logging function blocks support the IEC data types and work internally with the standard
AC500 IEC60870 Library. The IEC Datalogger output function block does not need special
handling or control/inputs.

● For other types of general data LOG_GENERIC_INPUT and LOG_GENERIC_OUTPUT are
provided. The generic Datalogging function blocks support an even larger variety of data
types. The generic output function block needs to be hand-shaked with for each data set, in
order to retrieve the data from the Datalogging files. Therefore the generic function blocks
can also be used to integrate the data logging into any other protocol, e.g. Modbus.

The function block LOG_HANDLING ensures that also several consecutive and fast interrup-
tions can be handled without losing data. While the log file is replayed, arriving new data is
stored in the SRAM FIFOin and added to the Datalogging files (File FIFO) if the SRAM FIFOin
becomes full (during that short time the log file replay is paused). Nevertheless any data send to
a control station via a communication is always with the oldest data first (FIFIO = "First In First
Out").
As it takes up to 30 seconds before a communication break is detected (e.g. with TCP/IP
protocols by the AC500 hardware/firmware), the data rate at which data should be logged in
case of a communication break has to be calculated and limited.
As an improvement a ping mechanism can be implemented in the substation. This was done in
the example program for the IEC logger. With this ping the interruption is already detected after
1-2 seconds (can be configured in the example program).
As the SRAM FIFO has to store data during this time its size limits the data rate. The SRAM
FIFO size is 160 data sets. This means the data rate should be lower than approximately max.
datarate = 160 datasets/2 seconds => <5 data sets/second
The data rates for storing only without this detection can be much higher and depends on
the CPU and memory type chosen. The data is always logged in directly readable csv format
Ä Chapter 1.5.13.2.1.5 “CSV file formats” on page 3500. Depending on the input function block
and data type, the log file contains only one or up to 32 data variables per timestamped data
set. The Datalogging files can be configured (up to 65k data sets, up to 999 concsecutive log
files, name format).

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3495

Operating modes
This chapter describes the different operating modes of the Datalogging and their behavior.
● Mode 0/1: Buffer and disposal in chronologic order

– Mode 0: Limited storage (keeps oldest, but stops if full)
– Mode 1: Endless (ring buffer) operation modes (deletes oldest)

● Mode 2: Buffer and disposal via FTP, Log file(s) copied to ftp server area for further use
● Mode 3: Events Recorder, logs data before and after an event.

à

SRAM
FIFOin

RAM
FIFOout

à

State 2
Disconnected
 Send values from
FIFOin to File FIFO

State 3
Reconnected and File FIFO not yet empty
a) Send buffered values from File FIFO to FIFOout
b) Send new values from FIFOin to FIFObuffer

State 1
Connected and File FIFO empty
 Send values directly from FIFOin
to FIFOout

Telecontrol
Connection

Input
Values

File FIFO
Mode=0: Pure Buffer, overflow stops logging (newest lost)
Mode=1: Ringbuffer, oldest lost: Values will be overwritten if all files full

Fig. 694: Overview Mode 0/1

Mode 0/1 is for buffering the values from the AC500 application in case of a broken or intention-
ally interrupted connection between AC500 and telecontrol. In the normal state 1 the values are
directly sent from the FIFOin (input values from application) to FIFOout (telecontrol connection).
As soon as the connection is interrupted, the Datalogger changes to working state 2. The
values are sent to the File FIFO instead. When the File FIFO is full, the Datalogging is stopped
(Mode 0) or the oldest data will be overwritten (Mode 1 = ringbuffer). When the connection
is established again and the RELEASE_HISTORY pin is triggered, the Datalogger changes to
working state 3. It cares for disposal of the values in chronological order. The buffered values
are written to FIFOout (working state 3a). This may take some time during which new values are
coming from the application and stored into FIFOin. Before the FIFOin overflows the Datalogger
switches to working state 3b and buffers the new values. After that it can continue with working
state 3a. Only if the File FIFO is empty (all files deleted) the Datalogger changes back to normal
state 1.
The advantage of Mode 0/1 is that all values (directly and buffered) are sent to telecontrol in
strictly chronological order which is expected by most control stations (SCADA systems/histor-
ians).
As it takes up to 30 seconds before a communication break is detected (e.g. with TCP/IP
protocols by the AC500 hardware/firmware), the data rate at which data should be logged in
case of a communication break has to be calculated and limited.

Mode 0/1: Buffer
and disposal in
chronologic
order

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3496

àSRAM
FIFOin

RAM
FIFOout

à

State 2
Disconnected
 Send values from
FIFOin to File FIFO

Input
Values

Telecontrol
Connection

MOVE from Disk 1 to Disk 2, if:
1) Reconnected or
2) Command MOVE_FILES or
3) File1 is full

File FIFO
Pure buffer

File FIFO
FTP Server

FTP Client

State 1
Connected
 Send values directly from FIFOin
to FIFOout

Fig. 695: Overview Mode 2

Mode 2 is also used for buffering the values from AC500 application in case of a broken
connection between AC500 and telecontrol. State 1 and state 2 are similar to Mode 0/1. The
difference is the disposal. When the connection is established again the Datalogger changes
directly back to state 1 and the input values in FIFOin are directly sent to FIFOout (telecontrol
connection). The buffered values in File FIFO are internally moved from disk 1 to disk 2 which
can then be accessed or used by FTP (client or server). This move action can also be triggered
by the command MOVE_FILES, or when file 1 is full. The advantage of Mode 2 is the immediate
availability of the latest and all current values after an outage.

àSRAM
FIFOin

à
MOVE from Disk 1 to Disk 2, if:
Command MOVE_FILES

Input
Values Telecontrol

Connection

FTP Client

File FIFO Ringbuffer File FIFO
FTP Server

RAM
FIFOout

State 1
Connected
 Send values directly from FIFOin
to FIFOout

Continuously
Connected or disconnected
 Send values from FIFOin
to File FIFO

Fig. 696: Overview Mode 3

Mode 3 is used to record data values around an event, before and after the event x, e.g. outage
of a part of the plant. The values are continuously recorded into the File FIFO file system
independent of the connection status to telecontrol. If the File FIFO is full the oldest values are
overwritten (ring buffer). Thus the File FIFO always contains the values from the past period n,
which is depending on the amount of values per second and on the size of the File FIFO. When
a certain event x occurs, the command MOVE_FILES can be given directly or after the period
m. With the command MOVE_FILES the values in File FIFO are internally moved from disk1 to
disk 2 and can be read out by an FTP action (client or server) when required.

Mode 2: Buffer
and disposal via
FTP

Mode 3: Events
recorder

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3497

time
buffer size n

Event x
command

MOVE_FILES

period after event: mperiod before event: n-m

Fig. 697: The buffered values represent the time before the event (n-m) and after the event (m).

The advantage of mode 3 is that the values from the time period before the event (n-m) and
after the event (m) are recorded and can help to reconstruct the cause and effect of the event.

Technical details

Parameter Value
IEC 60870-5-104 protocol inte-
grated in Datalogging, IEC data
types

SinglePoint SP1/16, DoublePoint DP, IntegratedTotal
IT1/16, MeasurementValue ME1/16

Generic logging to file(s); AC500
data types

BIN, BYTE, INT, DINT, WORD, DWORD, REAL

Trigger Cyclic, event, tolerance

File format CSV, including local timestamp. Generic Logging with
separate ID (max. 8 characters), IEC Logging with IEC
addresses.
Timestamped data sets contain 1-16 values (IEC)
depending on type logged. Generic contain different
number of values, depending on type logged.
BINARY: max. 58
BYTE: max. 88
INT: max. 50
WORD: max. 58
DINT: max. 29
DWORD: max. 31
REAL: max. 27

Datalogging target Internal flashdisk or memory card, power fail input for
memory card (from USV)

Datalogging file sizes and storage
depth

FIFO storage in file system, Datalogging depth only
limited by memory size

Configurable File FIFO Number of files (max. 999); number of data sets per file
(max. 65565)

Internal SRAM FIFO size 160 data sets

Block write mode into files Up to 50 data sets/second per max. 88 values

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3498

Parameter Value
Operation modes Mode 0: Buffer and disposal in chronologic order Limited

storage (keeps oldest, but stops if full)
Mode 1: Buffer and disposal in chronologic order End-
less (ring buffer) operation modes (deletes oldest)
Mode 2: Buffer and disposal via FTP, Log file(s) copied
to ftp server area for further use
Mode 3: Events Recorder, logs data before and after an
event.

Suppported software/firmware V2.3 or higher

Current restrictions One logger per PLC
One IEC 60870 connection only: While log file is
replayed, no other current information via IEC available
Usable solutions:
● Delay replay of log file after connection returned to

allow a “general inquiry”
● Use of Mode 2

File names
File names are renamed according to storing time with an accuracy of 100ms. The files
are renamed from "filename.csv" to a file name with timestamp and with or without file
extension, according to input DISK2_EXTENSION Ä “DISK2_EXTENTION (DISK2 extention)”
on page 3507.

02281448.593 = February 28th, 2:48pm (14:48), 59s, 300msFile name with
timestamp

02281448.csv = February 28th, 2:48pm (14:48)File name with
timestamp and
file extension

Preconditions

The Datalogging Library supports CPU PM573 or higher.

The Datalogging Library does not support CPUs of the AC500-eCo-series.

CAUTION!
Failure in Processing of the function blocks.
– The function blocks LOGxxxxxx_INPUT, LOG_HANDLING and

LOGxxxxxx_OUTPUT must be put in the same task.

CPU firmware must be V 2.3.3 or higher.
Use memory card from ABB with sufficient free space, at least 1,5 x file size as configured (file
size is depending on input MAX_DS_IN_FILE (Log_Handling)).

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3499

Maximum number of files (input of FBLOG_HANDLING) is limited to 500 (ABB memory card is
formatted with FAT).

Do the following settings in the AC500 configuration:

Automatically the following areas in the global %R/%M area are occupied:
● In the segment 0 of the %R/%M-area only the upper part is occupied in each case, %R

starting at %RD13000, %M starting at %MD16370.
● The segment 1 is occupied completely in each case.
VAR_GLOBAL
(*
**Segment
0 %R ** *)
 RD0.0 ... RD0.12999 free for user - e.g. MODBUS
(*
**Segment
0 %M *** *)
 MD0.0 ... MD0.16369 free for user - e.g. MODBUS

CSV file formats

Fig. 698: Explanation of the file formats

1 data set consists of:
ID (8 any char) + TimeStamp + msec + Datatype(num) + Datatype(txt) + Length(following data)
+ max 32 data

The %R area
must be set to
PERSISTANT.

Generic data
logger

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3500

Parameter Value
ID = ID of LOG_GENERIC_INPUT (max 8 any characters)

Datatype = DATATYPE of LOG_GENERIC_INPUT (1…7)

Length = LENGTH of LOG_GENERIC_INPUT (max 88)
BINARY (58); BYTE (88); INT (50); WORD (58); DINT (29); DWORD
(31); REAL (27)

Fig. 699: File opened directly with Excel

Example

Fig. 700: Explanation of the file formats

Table 248: 1 data set consists of the following parameters
Parameter Explanation
IEC_TYPE = IEC_TYPE of LOG_IEC60870_INPUT (1…7)

Slot/Con/Idx/NoDP = PINGROUP of LOG_IEC60870_INPUT (1…7)

Quality_Bits(Byte) = IV/NT/SB/BL/CA/CY/QOV (packed in 1 byte) of
LOG_IEC60870_INPUT (1…7)

Quality (SQ) = SQ of LOG_IEC60870_INPUT (1…7)

GADU = calculated internally, from CBP-Configurator (Gadu1+Gadu2)

IAD3/2/1(n) = calculated internally, for every datapoint separately, from CBP-Con-
figurator (IAD1+IAD2+IAD3)

n = 1 or 16, in case of DP is n=2

VAR(n) = variable

IEC type Values Meaning
SP1 - SinglePoint 1

SP16 - SinglePoint 16

DP - DoublePoint

IT1 - IntegratedTotal 1

IT1616 - IntegratedTotal 16

ME1 - MeasurementValue 1

IEC60870 data-
logger

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3501

IEC type Values Meaning
ME16 - MeasurementValue 16

Quality_Bits(Byte): Quality.0 := IV; Quality with quality invalid

 Quality.1 := NT; Quality not topical

 Quality.2 := SB; Quality substituted

 Quality.3 := BL; Quality blocked

 Quality.4 := CA; Quality with quality carry

 Quality.5 := CY; Quality with quality counter
adjusted

 Quality.6 := QOV; Quality Overflow Quality

 Quality.7 := Reserve; (*Reserve - Quality*)

Quality SQ(Byte) SQ Quality sequence number

Fig. 701: File opened directly with Excel

Example

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3502

1.5.13.2.2 LOG_HANDLING

Table 249: General information
Available as of runtime system V2.3 and above

Included in library LogData_AC500_V23.lib

Type Function block with historical values

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3503

Depending on the selected mode this function block is used to
● directly transfer data messages in IEC60870 format or in generic format from SRAM_FIFOin

to the RAM_FIFOout in case of an existing communication.
● store data sets in IEC60870 format or in generic format in files on flash disk or memory card

for other use or because a communication line is broken.
● provide these logged data sets at the RAM_FIFOout output in case of recurring communica-

tion with higher priority than the current data traffic or via FTP server of the PLC.

LOG_HANDLING

Input
Values

SRAM
FIFOin

RAM
FIFOout

Telecontrol
Connection

File FIFO (Disk 1)
Pure buffer

File FIFO (Disk 2)
FTP Server

Depending on the mode the function block can have three main working states:
● State 1: Existing communication (CONNECT) und empty FILE-FIFO: Data sets are written

into SRAM_FIFOin (First In First Out), which are either from LOG_IEC60870_INPUT or
LOG_GENERIC_INPUT (cannot be mixed), and are transported to RAM_FIFOout (First In
First Out). There they are either
– decoded by LOG_IEC60870_OUTPUT and transmitted or
– decoded by LOG_GENERIC_OUTPUT and provided on its outputs as real data for

further transmission (dependant on the chosen input variant: IEC or generic).
● State 2: Communication failure (DISCONNECT): Data sets, which were written either

by LOG_IEC60870_INPUT or LOG_GENERIC_INPUT (cannot be mixed) into the
SRAM_FIFOin, will be transmitted into the FILE-FIFO (First In First Out) and stored.

● State 3: Write/Read Modes and FTP Modes Ä Chapter 1.5.13.2.1.1 “Operating modes”
on page 3496

This function block realises writing and reading of max. 999 files with max. 65535 data sets in
a FIFO principle. Data storage can be either the FLASHDISK of a PM59x (with SafeFAT), or
an SDCARD (without SafeFAT). In case of SDCARD it must be ensured that after main power
failure, for approximately 3...5 sec the 24 V supply is maintained (input extPower = FALSE), in
order to close open files properly.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3504

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

EN

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3505

Data type: BOOL
Input signal, if the connection with the receiving/control station is established.
It is irrelevant in FTP Mode (Mode 3) because in FTP Mode no data is send by the function
block to the control station.

Data type: BOOL
For testing purposes. TRUE indicates to the function block that the connection to the other
station is interrupted.
It is irrelevant in FTP Mode (Mode 3) because in FTP Mode no data is send by the function
block to the control station.

Data type: BOOL
External power/opener. FALSE: the function block completes the last write and read actions,
closes all open files and goes to an idle-state. This is signaled at the DONE output. On the
output STATE the text „zLOG_NO_EXTERNAL_POWER“ is given out.

Data type: BOOL
Complete reset of all data fields, historical data and actual status of the function block. During
this action the output STATE shows the text „zLOG_RESET_ACTIVE“. The end of this action is
signaled on the output DONE.

Data type: BOOL
The input will acknowledge at an 0/1 edge the error message of the function block, if the
message is not active anymore.

Data type: BOOL
At an 0/1 edge the input formats the drive given on DISK1. During this action the output
STATE shows the text „zLOG_DISK1_FORMAT_ACTIVE“. The end of this action is signaled on
the output DONE. On the output STATE the text „zLOG_DISK_HAS_BEEN_FORMATTED“ is
shown.

Data type: BOOL
At an 0/1 edge the input formats the drive given on DISK2. During this action the output
STATE shows the text „zLOG_DISK2_FORMAT_ACTIVE“. The end of this action is signaled on
the output DONE. On the output STATE the text „zLOG_DISK_HAS_BEEN_FORMATTED“ is
shown.

Data type: BOOL
Only active in Mode 2 and Mode 3. At an 0/1 edge the input closes and moves the file (Mode
2) or multiple files (Mode 3) currently written on primary DISK1 into the folder FTP of the
secondary DISK2 (both DISKs can be identical). The folder FTP is created automatically. The
files are renamed.
After read-out via FTP client the moved and renamed files can be deleted on the FTP server by
the user. During the action the output STATE shows the text „zLOG_MOVE_ACTIVE“. The end
of this action is signaled on the output DONE.

CONNECTED
(connected)

BREAK_CON-
NECT (break
connect)

EXT_POWER
(external power)

RESET (reset)

QUIT (quit)

FORMAT_DISK1
(format DISK1)

FORMAT_DISK2
(format DISK2)

MOVE_FILE
(move file)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3506

Data type: STRING
Name of the primary drive ("flashdisk" or "sdcard") which is used for File FIFO buffer. DISK1
and DISK2 can be identical. Internally the primary drive is used with "file1...file999..." (Mode
0/1/3) or with "file1" (Mode 2) which the function block automatically creates and deletes.

Data type: STRING
Name of the secondary drive ("flashdisk" or "sdcard") which is used for File FIFO FTP Server.
DISK1 and DISK2 can be identical.

Data type: BOOL
Extention-Switch for the naming of the files to be moved to the FTP folder. The files stored in
the FTP folder are renamed with a name representing a timestamp, in order to clearly be able to
see the timely order when reading or processing the files.
Possible are:
● DISK2_EXTENTION = FALSE
● DISK2_EXTENTION = TRUE

CAUTION!
Accidentially overwritten files
When DISK2_EXTENSION = TRUE and the creation time between two files is
too short to be visible in the name (< 1 minute), the first file is overwritten.

Data type: BYTE
● Mode 0 Ä Chapter 1.5.13.2.1.1 “Operating modes” on page 3496
● Mode 1 Ä Chapter 1.5.13.2.1.1 “Operating modes” on page 3496
● Mode 2 Ä Chapter 1.5.13.2.1.1 “Operating modes” on page 3496
● Mode 3 Ä Chapter 1.5.13.2.1.1 “Operating modes” on page 3496

Data type: BOOL
External release for reading out the saved data from storage. This input is necessary when
using IEC60870 logging. After communication is established again, the input keeps historical
data back until control station sends a general interogation to get the current status. If this
function is not needed, input=TRUE.

Data type: DINT
Estimation of time (in ms) which passes after the failure of a connection until this failure is
detected and the output CONNECT changes to FALSE. Under circumstances a communication
failure can only be detected after a longer time without data transfer. Therefore in normal
operation a measurement should be done for getting the average number of data sets arriving
to the SRAM-FIFOin by SECURE_READ_TIME. In case of Connection fault this amount of data
sets in the SRAM-FIFOin is taken from past and additionally stored into the FILE-FIFO, in order
to avoid data losses by the delayed Connection fault recognition. At "0" no SecureRead is done.

Data type: DINT
After reaching this limit the file is closed and a new file is opened. The configurable upper limit
is 65535. An error is created if the input value is higher. A change of this value after start of
the Datalogger is not allowed and will lead to faults in Mode 0 and Mode 1 when reading back
values.

DISK1 (DISK1)

DISK2 (DISK2)

DISK2_EXTEN-
TION (DISK2
extention)

MODE (mode)

RELEASE_HIS-
TORY (release
historical data
transfer)

SECURE_READ
_TIME (secure
read time in ms)

MAX_DS_IN_FIL
E (max number
of data sets in
one file)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3507

Data type: DINT
After reaching this limit no further data sets can be stored. If further data sets are arriving OV
is signaled. The adjustable limit is 999. An error will be created if the input value is higher. A
change of this value after start of the Datalogger is not allowed and will lead to faults in Mode 0
and Mode 1 when reading back values. An exception is Mode 3, no values are read back and
therefore a change in operation is allowed, e.g. to obtain flexible timing.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

MAX_NUMBER_
FILES (max
number of files)

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3508

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

In addition, if errors occur while executing the IEC standard function blocks which are used
internally, on the output ERNO a related error code Ä Chapter 1.7.3.5 “Error messages of the
AC500 V2 function block libraries” on page 6529 will be given (ERR = TRUE).

Data type: BOOL
Output will be TRUE, if all external triggered activities of the function block are processed
(FORMAT, MOVE, RESET, QUIT). Blinks if input EXT_POWER is missing.

Data type: BOOL
Output will be TRUE, if an overflow occurs. On this output a rising edge (FALSE -> TRUE)
shows that communication/logging request occurred too fast and therefore the SRAM-FIFOin is
full.

Data type: BOOL
Active, while available connection and while reading of historical values the SRAM-FIFOin is
nearly full with new data sets. If BREAK is active, the SRAM-FIFOin-data will be written to
FILE-FIFO despite CONNECT, in order to widely avoid OV of the SRAM-FIFOin. However, if
incoming data sets arrive faster as they can be written to files, the system will reach a limit.
Then an OV stop cannot be avoided.

Data type: BOOL
Safety function: Output will be active, if all available files are full during CONNECT and BREAK.
In this case primarily the oldest file of the FILE-FIFO is read out, regardless of OV.

Data type: FILE_ERROR
Detailed error messages of the used CAA_File function block Library. Output will be flagged, if
an error occurs while execution of the function block. For error messages refer to chapter 'Error
Messages' of the CAA_File function block Library.

ERR

ERNO

RDY (ready)

OV (overrun)

BREAK (break
connect)

READ_FILE_WH
ILE_BREAK
(read file while
break)

ENUM_ERROR
(eError from
CAA Library)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3509

Data type: zLOG_STATE_ENUM
Clear text messages of errors and states. The output uses the enumeration of the data type
zLOG_STATE_ENUM declared in "data types".

Data type: BOOL
SRAM-FIFOin is empty.

Data type: BOOL
SRAM-FIFOin is full (maximum 161 data sets).

Data type: DINT
Output represents the current level of SRAM-FIFOin %R area (zLOG_FIFOIN_LEVEL).

Data type: DINT
Maximum SRAM-FIFOin filling level since EN=TRUE.

Data type: DINT
Standard value = 161.

Data type: BOOL
RAM-FIFOout is empty.

Data type: BOOL
RAM-FIFOout is full (max 161 data sets).

Data type: DINT
RAM-FIFOout filling level. Output represents current level of SRAM-FIFOin %R area (stored
value).

Data type: DINT
Maximum RAM-FIFOout filling level since EN=TRUE.

Data type: DINT
Standard value = 161.

Data type: DINT
Number of the current file written to (1…999).

Data type: STRING
Name of the current file written to (e.g. file1…file999).

STATE (enumer-
ation of type
zLOG_STATE_E
NUM)

FIFOIN_EMPTY
(FIFOin empty)

FIFOIN_FULL
(FIFOin full)

FIFOIN_LEVEL
(FIFOin level)

FIFOIN_MAX-
LEVEL (FIFOin
max level)

FIFOIN_MAX-
LIMIT

FIFOOUT_EMPT
Y (FIFOout
empty)

FIFOOUT _FULL
(FIFOout full)

FIFOOUT
_LEVEL
(FIFOout level)

FIFOOUT _MAX-
LEVEL (FIFOout
max level)

FIFOOUT_MAX-
LIMIT

WRITE_FILE_N
UMBER
(number of cur-
rent file written
to)
WRITE_FILE_N
AME (name of
current file
written to)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3510

Data type: DINT
Filling level of the file currently written to.

Data type: DINT
Next write position in current file written to.

Data type: DINT
Number of current file read from (1…999).

Data type: STRING
Name of current file read from (for example file1…file999).

Data type: DINT
Filling level of current file read from.

Data type: DINT
Next read position in current file read from.

Data type: STRING
Complete current path and name of the file which will be transferred to the folder FTP (e.g.
"flashdisk\FTP\02141149.545") in Mode 2 in the following cases:
● file 1 is full
● communication returns
● per external trigger by setting the input MOVE_FILE
In Mode 3 the move is triggered only by setting input MOVE_FILE.

Data type: DINT
Number of files written to.

Data type: BOOL
Data storage is full.

Data type: BOOL
All files are empty.

Data type: BOOL
All files are full. No further data sets can be stored.

Data type: UDINT
Number of the current data sets sent to the control station side since EN=TRUE and coming
from SRAM-FIFO (without storing in FILE-FIFO).

WRITE_FILE_LE
VEL (level of
current file
written to)

FILE_NEXT-
WRITE (next
write position in
current file
written to)
READ_FILE_NU
MBER (number
of current file)

READ_FILE_NA
ME (name of
current file)

READ_FILE_LE
VEL (level of
current file)

FILE_NEXT-
READ (next read
position in cur-
rent file)

FTP_FILE_NAM
E (name of cur-
rent file written
to)

USED_FILES
(currently used
files)

DISK_NO_SPAC
E (disk no
space)

FILES_EMPTY
(files empty)

FILES_FULL
(files full)

NUMBER_DIRE
CT_SENDS
(number of
direct sent data
sets

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3511

Data type: UDINT
Current time for writing one data set into the file. When this time is growing over time, this is
a sign of a growing fragmentation of the disk. In Mode 0 and Mode 1 and "flashdisk", the flash
disk is defragmented automatically (FORMAT) as soon as all the historical data has been sent
to the control station. In Mode 2 this may not happen as under circumstances files are stored in
the FTP folder and have not been picked up by FTP yet.
In case of a memory card as storage medium, a FORMAT is basically locked because otherwise
it may cause incompatibility between PLC and PC. That means a memory card defragmented
via FORMAT in the PLC is possibly no longer readable on a PC.

Data type: UDINT
Current time for reading a data set from the file. When this time is growing over time, this is a
sign of a growing fragmentation of the disk. In Mode 0 and Mode 1 and "flashdisk," the flash
disk is defragmented automatically (FORMAT) as soon as all the historical data has been sent
to the control station. In Mode 2 this may not happen as under circumstances files are stored in
the FTP folder and have not been picked up by FTP yet.
In case of a memory card as storage medium, a FORMAT is basically locked because otherwise
it may cause incompatibility between PLC and PC. That means a memory card defragmented
via FORMAT in the PLC is possibly no longer readable on a PC.

Data type: UDINT
Maximum time needed until now to write one data block in the file. When this time is growing
over time, this is a sign of a growing fragmentation of the disk. In Mode 0 and Mode 1 and
"flashdisk," the flash disk is defragmented automatically (FORMAT) as soon as all the historical
data has been sent to the control station. In Mode 2 this may not happen as under circum-
stances files are stored in the FTP folder and have not been picked up by FTP yet.
In case of a memory card as storage medium, a FORMAT is basically locked because otherwise
it may cause incompatibility between PLC and PC. That means a memory card defragmented
via FORMAT in the PLC is possibly no longer readable on a PC.

Data type: UDINT
Maximum time needed until now to read one data block from the file. When this time is growing
over time, this is a sign of a growing fragmentation of the disk. In Mode 0 and Mode 1 and
"flashdisk," the flash disk is defragmented automatically (FORMAT) as soon as all the historical
data has been sent to the control station. In Mode 2 this may not happen as under circum-
stances files are stored in the FTP folder and have not been picked up by FTP yet.
In case of a memory card as storage medium, a FORMAT is basically locked because otherwise
it may cause incompatibility between PLC and PC. That means a memory card defragmented
via FORMAT in the PLC is possibly no longer readable on a PC.

Data type: UDINT
Number of data sets delivered to SRAM-FIFOin (during the time indicated on input
"SECURE_READ_TIME" in ms). In case of connection fault this number of past data sets in
SRAM-FIFOin are taken additionally into account for writing to FILE-FIFO in order to avoid data
losses caused by the delayed connection fault – recognition.

WRITE-
TIME_DB_IN_FI
LE (current time
to write one
data set in file)

READ-
TIME_DB_FROM
_FILE (current
time to read one
data set from
file)

MAXWRITE-
TIME_DB_IN_FI
LE (max time to
write one data
block in file
since EN)

MAXREAD-
TIME_DB_FROM
_FILE (max time
to read one data
block from file
since EN)

POS-
SIBLE_SECURE
READ_DS (pos-
sible secure
read data sets)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3512

Fig. 702: Visualization

Integrated visu-
alization

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3513

1.5.13.2.3 LOG_IEC60870_INPUT

Table 250: General information
Available as of runtime system V2.3 and above

Included in library LogData_AC500_V23.lib

Type Function block with historical values

The function block is used for writing data sets into the SRAM-FIFOin of the Datalogger
according to IEC 60870-5-104 protocol. According to the corresponding data type up to 16
data points of this data type can be written at the same time.
The data sets are written in format *.csv as two-dimensional ARRAY. Every part of each data set
is separated by SEMICOLON. Each data set is ended with a CR/LF. Every segment of the %R
area of the SRAM-FIFOin contains maximum one ARRAY[0..160] OF ARRAY[0..399] OF BYTE.
The ARRAY reserves the complete segment 1 of the %R area of the controler.

A complete segment (segment 1 of the %R-area) is used for the SRAM-FIFOin
(zLOG_CONST_FIFOLIMIT =160).

Here, the function block is used to write the data sets into the SRAM-FIFOin of the PLC
CPU and not to be sent directly to the control station. This is done with function block
LOG_IEC60870_OUTPUT which uses the above mentioned function blocks.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3514

LOG_IEC60870_INPUT

Input
Values

SRAM
FIFOin

RAM
FIFOout

Telecontrol
Connection

File FIFO (Disk 1)
Pure buffer

File FIFO (Disk 2)
FTP Server

Fig. 703: Functionality

CAUTION!
Each used instance of the function block needs only one cycle for writing the
data into FIFOin. For "n" succeeding instances called in the same cycle, "n"
entrances/data sets are entered into FIFOin. Consider that FIFOin is limited by
the limit of the segments of the %R area. That means, the upper limit of entries
to FIFOin at the same time (in the same cycle) is 160.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3515

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: POINTER TO zLOG_IEC60870_FIFO_ENTRY
On this input the data point is set which should be received by the function block. The
Pin-Group of e.g. the data type IEC60870_MeasuredValue relates to the one defined by the
Control-/substation in the global address list of Automation Builder defined data type (see
Ä Chapter 1.6.5.3.2.4.2 “Control station and substation configuration” on page 6139). After the
declarations in Automation Builder are done, the data type is available in the global variable
list in CODESYS (command list, Command(CONSTANT)). The IEC 60870 data are send or
received to the data point defined by the address in Automation Builder. The sent address
data point must be the same as the received data point (see Ä Chapter 1.6.5.3.2.3.4 “Data
points” on page 6131). As the input is a POINTER TO it has to be connected to an preceding
ADR-Operator, to which any PINGROUP can be put.

Data type: POINTER TO DWORD
When exceeding or falling below a threshold, a writing operation of a data set into the FIFOin
is started. After this operation, either only the single threshold difference (between input and
threshold) is deleted (TH_REFRESH=FALSE) or all differences (TH_REFRESH=TRUE). As the
input is a POINTER TO, it has to be connected to an preceding ADR-Operator, to which any
available input-type can be provided: BOOL, BYTE, INT, WORD, DINT, DWORD, REAL or an
ARRAY of these data types. Make sure that THRESHOLD is always of the same type as in IN.
E.g. if IN is an ARRAY[0..n] OF BYTE, THRESHOLD has to be an ARRAY[0..n] OF BYTE, too.

PINGROUP (pin
group via ADR-
Operator)

THRESHOLD
(threshold via
ADR-Operator)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3516

This input is only relevant for IEC_TYPE’s 4(IT1), 5(IT16), 6(ME1) und 7(ME16), not for bool/
digital. For the BOOL type inputs, THRESHOLD is not needed.

Data type: POINTER TO DWORD
Input value as single value or as ARRAY for the possible 0 to 16 values. As the input is a
POINTER TO, it has to be connected to a preceding ADR-Operator, to which any available
input-type can be provided: BOOL, BYTE, INT, WORD, DINT, DWORD, REAL or an ARRAY of
these data types.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BOOL
At a rising edge, this input writes a data set into the FIFOin

Data type: BOOL
This input writes all SCANDOWN cycles of a data set into FIFOin. At SCANDOWN=0 a data set
is written in each cycle.

Data type: BOOL
With each change of an input value or exceeding/falling down of THRESHOLD, this input writes
a data set into FIFOin.

Data type: UINT
This input will be valid if input CYCLE = TRUE. Then cyclical writing is only executed within
each scandown cycle.

SCANDOWN=100: In one out of 100 cycles a data set is written to FIFOin.
SCANDOWN=0: In every cycle a data set is written.

Example

Data type: BOOL
FALSE: Deletion of the threshold value difference of each input value after its overwriting of the
threshold level. All other differences will be ignored if they have not yet been rising above their
threshold. A higher trigger rate can be expected.
TRUE: Deletion of all threshold value differences after exceeding one of the thresholds. All other
differences will also be cleared even if they have not yet been exceeded the threshold. A lower
trigger rate can be expected. As always all data of the Funciton Block are sent, the data values
are anyway always up to date.

This input is only relevant for IEC_TYPE’s 2(SP16), 3(DP), 5(IT16) and 7(ME16), more than 1
input.
For the IEC_TYPE’s 2(SP16) und 3(DP) BOOL the input TRESHOLD has no effect, as the
inputs are of the type BOOL and therefore cannot have a threshold.

DATA (input via
ADR-Operator)

EN

SEND (send)

CYCLE (cycle)

AUTO (auto)

SCANDOWN
(scandown)

THRESHOLD_R
EFRESH
(threshold
refresh)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3517

Data type: BYTE
1=SP1, 2=SP16, 3=DP, 4=IT1, 5=IT16, 6=ME1, 7=ME16

Data type: BOOL
Quality: invalid (SP1, SP16, DP, IT1, IT16, ME1, ME16)

Data type: BOOL
Quality: not topical (SP1, SP16, DP, ME1, ME16)

Data type: BOOL
Quality: substituted (SP1, SP16, DP, ME1, ME16)

Data type: BOOL
Quality: blocked (SP1, SP16, DP, ME1, ME16)

Data type: BOOL
Quality: carry (IT1, IT16)

Data type: BOOL
Quality: counter adjusted (IT1, IT16)

Data type: BOOL
Quality: overflow (ME1,ME16)

Data type: BYTE
Quality: sequence number (IT1,IT16)

IEC_TYPE
(IEC60870 Type)

IV (invalid)

NT (not topical)

SB (substituted)

BL (blocked)

CA (carry)

CY (counter
adjusted)

QOV (overflow
quality)

SQ (sequence
number)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3518

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3519

Data type: BOOL
Output will be TRUE, if a command is been received. As this is only true for one cycle, also
RDY = TRUE for one cycle only.

Data type: BOOL
Output will be TRUE, if an overflow occurs. On this output a rising edge (FALSE -> TRUE)
shows that the transmit requests are coming too fast and thereby the SRAM-FIFOin is fully
filled.

Data type: zLOG_STATE_ENUM
Clear text messages of errors and states. The output uses the enumeration of the data type
zLOG_STATE_ENUM declared in "data types".

Data type: DINT
Output represents the current level of SRAM-FIFOin %R area (zLOG_FIFOIN_LEVEL).

Data type: DINT
Shown is the next write position in SRAM-FIFOin %R area (zLOG_FIFOIN_NEXTWRITE).

Data type: DINT
Shows the value of the constant FIFOLIMIT of the data sets in SRAM-FIFOin %R area
(zLOG_CONST_FIFOLIMIT).

Data type: DINT
Shows the executed write operation into the SRAM-FIFO since EN=TRUE.

Data type: DINT
Shows the not executed write operations into the SRAM-FIFO since EN=TRUE.

RDY (ready)

OV (overrun)

STATE (enumer-
ation of type
zLOG_STATE_E
NUM)

FIFOIN_LEVEL
(FIFOin level)

FIFOIN_NEXT-
WRITE (next
write position in
FIFOin)

FIFOIN_MAX-
LIMIT (max
number of data
sets in FIFOin)

NUMBER_ITEM
S (max number
of items)

NUMBER_OV
(max number of
overflow-items)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3520

Fig. 704: Wiring example for SP1

Fig. 705: Wiring example for ME16

Wiring exam-
ples

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3521

Fig. 706: Visualization

1.5.13.2.4 LOG_IEC60870_OUTPUT

Table 251: General information
Available as of runtime system V2.3 and above

Included in library LogData_AC500_V23.lib

Type Function block with historical values

This function block decodes a data set formated in *.csv and sends the current data type from
the RAM-FIFOout of the Datalogger to the control station.
If enabled the function block automatically reads the oldest data set at a filling level of FIFOout
> 0 and existing communication connection. Then the function block decodes the data set from
*.csv format, sends the data via internal call of IEC function blocks and shows status at output
STATE = zLOG_OUTPUT_DATA_HAS_BEEN_SENT. This happens until FIFOOUT_LEVEL=0
and the function block signals "EMPTY". At the same time at output STATE the message
"zLOG_FIFOOUT_EMPTY" is given. While existing communication and exhausted FILE-FIFO,

Integrated visu-
alization

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3522

the data sets, newly written by LOG_IEC60870_INPUT to the (in the %R area residing) FIFOin,
are continuosly copied by LOG_HANDLING directly to the (in the %M-area residing) FIFOout,
as soon as there is space in the FIFOout for new data sets. For this the FIFOout should not
be empty (EMPTY). It is different when FILE-FIFO is not empty. In this case at first FIFOout is
fully decremented until FIFOOUT_LEVEL=0 and the function block signals "EMPTY". After that
a new data set block is copied from FILE-FIFO into FIFOout. The capacity of the RAM-FIFOout
per segment of the %M-area is at max ARRAY[0..160] OF ARRAY[0..399] OF BYTE. The
ARRAY ocupies the complete segment 1 in the %M-area of the CPU.

A complete segment (segment 1 of the %R-area) is used for the SRAM-FIFOin
(zLOG_CONST_FIFOLIMIT =160).

LOG_IEC60870_OUTPUT

Input
Values

SRAM
FIFOin

RAM
FIFOout

File FIFO (Disk 1)
Pure buffer

File FIFO (Disk 2)
FTP Server

Telecontrol
Connection

Fig. 707: Functionality

Input description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3523

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Output description

Data type: BOOL
On this output the status of the function block execution is shown. DONE = TRUE if a new
data set is given to the remote control list of the CPU. By this the sending of the data set is
considered.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: zLOG_STATE_ENUM
Clear text messages of errors and states. The output uses the enumeration of the data type
zLOG_STATE_ENUM declared in "data types".

EN

DONE (done)

ERR

ERNO

STATE (enumer-
ation of type
zLOG_STATE_E
NUM)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3524

Fig. 708: Visualization

1.5.13.2.5 LOG_GENERIC_INPUT

Table 252: General information
Available as of runtime system V2.3 and above

Included in library LogData_AC500_V23.lib

Type Function block with historical values

At the same time, this function block writes data sets of the data types 1=BOOL, 2=BYTE,
3=INT, 4=WORD, 5=DINT, 6=DWORD, 7=REAL with a max length of 32 values into the SRAM-
FIFOin of the Datalogger.

Integrated visu-
alization

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3525

The data sets are written in format *.csv as two-dimensional ARRAY. Every part of each data set
is separated by SEMICOLON. Each data set is ended with a CR/LF. Every segment of the %R
area of the SRAM-FIFOin contains maximum one ARRAY[0..160] OF ARRAY[0..399] OF BYTE.
The ARRAY reserves the complete segment 1 of the %R area of the controler.

A complete segment (segment 1 of the %R-area) is used for the SRAM-FIFOin
(zLOG_CONST_FIFOLIMIT =160).

The function block writes data sets in the SRAM-FIFOin of the controller and doesn't send
them directly to a central control station. This is done by the user. With the function block
LOG_GENERIC_OUTPUT the data to be sent are provided as an interface.

LOG_GENERIC_INPUT

Input
Values

SRAM
FIFOin

RAM
FIFOout

File FIFO (Disk 1)
Pure buffer

File FIFO (Disk 2)
FTP Server

Telecontrol
Connection

Fig. 709: Functionality

CAUTION!
Each used instance of the function block needs only one cycle for writing the
data into FIFOin. For "n" succeeding instances called in the same cycle, "n"
entrances/data sets are entered into FIFOin. Consider that FIFOin is limited by
the limit of the segments of the %R area. That means, the upper limit of entries
to FIFOin at the same time (in the same cycle) is 160.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3526

Input Description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type: POINTER TO DWORD
When exceeding or falling below a threshold, a writing operation of a data set into the FIFOin
is started. After this operation, either only the single threshold difference (between input and
threshold) is deleted (TH_REFRESH=FALSE) or all differences (TH_REFRESH=TRUE). As the
input is a POINTER TO, it has to be connected to an preceding ADR-Operator, to which any
available input-type can be provided: BOOL, BYTE, INT, WORD, DINT, DWORD, REAL or an
ARRAY of these data types. Make sure that THRESHOLD is always of the same type as in IN.
E.g. if IN is an ARRAY[0..n] OF BYTE, THRESHOLD has to be an ARRAY[0..n] OF BYTE, too.

The input is only relevant for IN_TYPE’s 2=BYTE, 3=INT, 4=WORD, 5=DINT, 6=DWORD,
7=REAL, not for bool/digital. For the IN_TYPE 1=BOOL, TRESHOLD has no effect, as the
inputs are of the type BOOL and therefore cannot have a threshold.

Data type: POINTER TO DWORD
Input value as single value or as ARRAY for the possible 0 to 31 values. As the input is a
POINTER TO, it has to be connected to a preceding ADR-Operator, to which any available
input-type can be provided: BOOL, BYTE, INT, WORD, DINT, DWORD, REAL or an ARRAY of
these data types.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.

THRESHOLD
(threshold via
ADR-Operator)

DATA (input via
ADR-Operator)

EN

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3527

In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BOOL
At a rising edge, this input writes a data set into the FIFOin

Data type: BOOL
This input writes all SCANDOWN cycles of a data set into FIFOin. At SCANDOWN=0 a data set
is written in each cycle.

Data type: BOOL
With each change of an input value or exceeding/falling down of THRESHOLD, this input writes
a data set into FIFOin.

Data type: UINT
This input will be valid if input CYCLE = TRUE. Then cyclical writing is only executed within
each scandown cycle.

SCANDOWN=100: In one out of 100 cycles a data set is written to FIFOin.
SCANDOWN=0: In every cycle a data set is written.

Example

Data type: BOOL
FALSE: Deletion of the threshold value difference of each input value after its overwriting of the
threshold level. All other differences will be ignored if they have not yet been rising above their
threshold. A higher trigger rate can be expected.
TRUE: Deletion of all threshold value differences after exceeding one of the thresholds. All other
differences will also be cleared even if they have not yet been exceeded the threshold. A lower
trigger rate can be expected. As always all data of the Funciton Block are sent, the data values
are anyway always up to date.

The input is only relevant for IN_TYPE’s 2=BYTE, 3=INT, 4=WORD, 5=DINT, 6=DWORD,
7=REAL, not for bool/digital.
For the IN_TYPE 1=BOOL the input TRESHOLD has no effect, as the inputs are of the type
BOOL and therefore cannot have a threshold.

Data type: STRING
Free selectable name/text for identification of this data set. Maximum 8 characters.

Data type: BYTE
1=BOOL, 2=BYTE, 3=INT, 4=WORD, 5=DINT, 6=DWORD, 7=REAL

Data type: INT
Number of valid values (maximum 88 values, depending of type).

SEND (send)

CYCLE (cycle)

AUTO (auto)

SCANDOWN
(scandown)

THRESHOLD_R
EFRESH
(threshold
refresh)

ID (identity)

DATATYPE
(Datatype)

LENGTH (length
of valid values)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3528

Output Description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Monitoring of the global constant diconFIFOmaxLimit defined in the the segment 0 of the %R
area. Error in case of diconFIFOmaxLimit < 1 or diconFIFOmaxLimit > 1120.

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3529

Data type: BOOL
Output will be TRUE, if a command is been received. As this is only true for one cycle, also
RDY = TRUE for one cycle only.

Data type: BOOL
Output will be TRUE, if an overflow occurs. On this output a rising edge (FALSE -> TRUE)
shows that the transmit requests are coming too fast and thereby the SRAM-FIFOin is fully
filled.

Data type: zLOG_STATE_ENUM
Clear text messages of errors and states. The output uses the enumeration of the data type
zLOG_STATE_ENUM declared in "data types".

Data type: DINT
Output represents the current level of SRAM-FIFOin %R area (zLOG_FIFOIN_LEVEL).

Data type: DINT
Shown is the next write position in SRAM-FIFOin %R area (zLOG_FIFOIN_NEXTWRITE).

Data type: DINT
Shows the value of the constant FIFOLIMIT of the data sets in SRAM-FIFOin %R area
(zLOG_CONST_FIFOLIMIT).

Data type: DINT
Shows the executed write operation into the SRAM-FIFO since EN=TRUE.

Data type: DINT
Shows the not executed write operations into the SRAM-FIFO since EN=TRUE.

RDY (ready)

OV (overrun)

STATE (enumer-
ation of type
zLOG_STATE_E
NUM)

FIFOIN_LEVEL
(FIFOin level)

FIFOIN_NEXT-
WRITE (next
write position in
FIFOin)

FIFOIN_MAX-
LIMIT (max
number of data
sets in FIFOin)

NUMBER_ITEM
S (max number
of items)

NUMBER_OV
(max number of
overflow-items)

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3530

Fig. 710: Wiring example for BOOL

Fig. 711: Wiring example for REAL

Wiring exam-
ples

Fig. 712: Visualization

Integrated Visu-
alization

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3531

1.5.13.2.6 LOG_GENERIC_OUTPUT

Table 253: General information
Available as of runtime system V2.3 and above

Included in library LogData_AC500_V23.lib

Type Function block with historical values

This function block provides a decoded data set of the corresponding data types from the
SRAM-FIFOout of the Datalogger. The function block does not cover the transmission of the
data set. But it provides an interface for the user on which the data can be read and send
according to application specific requirements and protocols.
The function block automatically reads the oldest data set at a filling level of FIFOout >
0. Then the function block decodes the data set from *.csv format and provids it to the
outputs. The function block signals its availability through DONE = TRUE and STATE =
zLOG_OUTPUT_DATA_AVAILABLE. If this data set is processed by the user, the user will
have to signal this by SENT = TRUE to the function block. By the edge 0/1 the RAM-FIFOout
is decremented by the value 1, DONE changes to "FALSE" and on the output STATE the text
"zLOG_OUTPUT_DATA_HAS_BEEN_SENT" appears. By a 1/0 edge on SENT the function
block reads the next data set (which is the same as the self triggered read without command, as
long as SENT = false). This happens until FIFOOUT_LEVEL=0" and the function block signals
"EMPTY". At the same time at output STATE the message "zLOG_FIFOOUT_EMPTY" is given
and all output values are deleted. While existing communication and exhausted FILE-FIFO the
data sets, newly written by LOG_GENERIC_INPUT to the (in the %R area residing) FIFOin are
continuously copied by the LOG_HANDLING directly to the (in the %M-area residing) FIFOout,
as soon as there is space in the FIFOout for new data sets. For this the FIFOout should not
be empty (EMPTY). It is different when FILE-FIFO is not empty. In this case at first FIFOout is
fully decremented until FIFOOUT_LEVEL=0 and the function block signals "EMPTY". After that
a new data set block is copied from FILE-FIFO into FIFOout. The capacity of the RAM-FIFOout
per segment of the %M-area is at max ARRAY[0..160] OF ARRAY[0..399] OF BYTE. The
ARRAY ocupies the complete segment 1 in the %M area of the CPU.

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3532

A complete segment (segment 1 of the %R-area) is used for the SRAM-FIFOin
(zLOG_CONST_FIFOLIMIT =160).

LOG_GENERIC_OUTPUT

Input
Values

SRAM
FIFOin

RAM
FIFOout

File FIFO (Disk 1)
Pure buffer

File FIFO (Disk 2)
FTP Server

Telecontrol
Connection

Fig. 713: Functionality

Input description

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3533

The inputs marked with a triangle are of the class VAR_IN_OUT (input and
output variable). These inputs must be connected to a variable.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type: BOOL
Feedback from the user program that the currently provided data set was sent. By the 0/1
edge the RAM-FIFOout is decremented by a value of 1 (FIFOOUT_LEVEL -1). DONE changes
to "FALSE" and on the output STATE the text "zLOG_OUTPUT_DATA_HAS_BEEN_SENT"
appears. By the 1/0 edge on SENT the function block reads the next data set (it is the same as
the automatic reading without a command, as long as SENT = FALSE).

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.

EN

SENT (output
data were sent)

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3534

It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type: zLOG_STATE_ENUM
Clear text messages of errors and states. The output uses the enumeration of the data type
zLOG_STATE_ENUM declared in "data types".

Data type: BOOL
FIFOout "EMPTY" is shown.

Data type: DINT
The current level of RAM-FIFOout %M area (zLOG_FIFOOUT_LEVEL) is displayed.

Data type: STRING(8)
Output of the ID or name of the data set as string chain (no special characters), maximum 8
characters.

Data type: DT
Output of the time stamp of the data set in the format year-month-day-hour-minute-second.

Data type: WORD
Output of the milliseconds of the time stamp of the data set.

Data type: BYTE
Output of the data set data type: 1=BOOL, 2=BYTE, 3=INT, 4=WORD, 5=DINT, 6=DWORD,
7=REAL.

Data type: ARRAY[0..57] OF BOOL
Output of the data set as ARRAY OF BOOL (max 58 values).

ERR

ERNO

STATE (enumer-
ation of type
zLOG_STATE_E
NUM)

EMPTY (empty)

FIFOOUT_LEVE
L (level FIFOout)

ID (identity)

TIMESTAMP
(timestamp)

MSEC (millisec-
onds of time-
stamp)

DATATYPE (data
type of data set)

BOOL_ARRAY
(array 0..57 of
bool)

PLC Automation with V2 CPUs

Libraries and solutions > Water library

2022/01/20 3ADR010582, 3, en_US 3535

Data type: ARRAY[0..87] OF BYTE
Output of the data set as ARRAY OF BYTE (max 88 values).

Data type: ARRAY[0..49] OF INT
Output of the data set as ARRAY OF INT (max 48 values).

Data type: ARRAY[0..57] OF WORD
Output of the data set as ARRAY OF WORD (max 58 values).

Data type: ARRAY[0..28] OF DINT
Output of the data set as ARRAY OF DINT (max 29 values).

Data type: ARRAY[0..30] OF DWORD
Output of the data set as ARRAY OF DWORD (max 31 values).

Data type: ARRAY[0..26] OF REAL
Output of the data set as ARRAY OF REAL (maximum 27 values).

Data type: INT
Number of valid values (maximum 88 values, depending of type).

Fig. 714: Visualization

1.5.13.2.7 Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples

BYTE_ARRAY
(array 0..87 of
byte)

INT_ARRAY
(array 0..49 of
int)

WORD_ARRAY
(array 0..57 of
word)

DINT_ARRAY
(array 0..28 of
dint)

DWORD_ARRAY
(array 0..30 of
dword)

REAL_ARRAY
(array 0..26 of
real)

LENGTH (length
of valid values)

Integrated visu-
alization

PLC Automation with V2 CPUs
Libraries and solutions > Water library

2022/01/203ADR010582, 3, en_US3536

1.5.14 Pumping library 2

1.5.14.1 System technology
1.5.14.1.1 Components of pumping library
Overview

The pumping library, AC500_PMP_V25.lib is the extension and improvement in
the library AC500_PUMP_V23.lib.

The pumping library functions are categorized as follows. Refer to the figure below from the
library itself.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3537

The library contains function blocks needed for functions of pumping application
(pressure control, flow control or level control).
It also contains function blocks for some advanced functions needed for different applications.

Compatibility
The library is compatible with following versions.

Type Version
Pumping Library PMP_AC500_V25.lib
Automation Builder V2.0 and later

Required sensors
A minimal sensor equipment is required for the following measurements:
● Actual pressure measurement for pressure control.
● Actual flow measurement for flow control.
● Actual level measurement for level control.
The pressure sensor can be at the input and/or at the output. The flow sensor should be only at
the output.
Often, at the input a sensor, typically pressure, is placed for advanced protection and diagnosis.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3538

1.5.14.1.2 Control philosophy of pumping library
The Pumping library is used for controlling the following three water pumping processes:
● Pressure control
● Flow control
● Level control – Emptying or filling

The figure below gives an overview of the pumping library and explains how the library pro-
cesses the data from the user and then controls the processes.

To run any process, the pumping library follows the four stages described below:

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3539

Stage 1: Comparator
The set process value (e.g., pressure in psi, flow rate in m3/h) is compared with the measured
actual value. The distributor uses the output of the comparator to decide the number of pumps
and their operating speeds to meet the demand.
● Pressure control and Flow control:

In pressure and flow controls, the function block PMP_PID acts as a comparator which
gives the PID_OUT in [%] to the function block PMP_PRESSURE_DISTRIBUTOR or
PMP_FLOW_DISTRIBUTOR. In the distributor the PID output is then converted as
reference speed set point to the pumps.

● Emptying or Filling mode:
In emptying or filling modes, the function block PMP_LEVEL_COMPARATOR is used to
compare the actual level of the tank with the set levels to start or stop the pumps. This
information is sent to the distributor by the output N_DEMAND. For example, in filling mode,
at lower actual level more pumps are needed to run to fill the tank.

Stage 2: Sequence generator
The PMP_SEQUENCE_GEN function block is used. The following functions are included:
● Decides which pump is ready to run in the auto mode.
● Decides which pump to start in the sequence, based on the least actual runtime hours.

Exception – when the pump station is traditional type (with master pump on VFD, rest on
DOL), then the pump ID = 1 which is attached to the VFD will always run as master and is
first to start and last to stop.

● Decides which pump to stop in the sequence, based on the highest actual runtime hours.
Exception – when the pump station is traditional type (with master pump on VFD, rest on
DOL), then the pump ID = 1 which is attached to the VFD will always run as master and is
first to start and last to stop.

● Assigns a master status to the pump in the sequence.
● Indicates how many pumps are ready for automation and how many are running.

The figure below explains a use case where the demand increases and then decreases. The
sequence is generated based on this criteria by the function block PMP_SEQUENCE_GEN.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3540

Stage 3: Distributor
The distributor function block distributes the start/ stop command and speed reference to all
VFD operated pumps.
● • Pressure control: For pressure control, the function block

PMP_PRESSURE_DISTRIBUTOR is used. The PID output coming from the function block
PMP_PID (comparator) is converted as reference speed setpoint to the master pump. The
function works based on the reference speed of the master pump. If the reference speed is
higher, more number of pumps are needed to meet the demand. If the reference speed is
lower, the already running pumps in the network need to be stopped. The function block:
– Calculates the speed reference of the master pump and then starts/ stops the

follower pumps based on the settings in the inputs START_SPEED_FWR or
STOP_SPEED_FWR.

– Distributes the speed references to VFD follower pumps based on the settings in the
input FOLLOWER_MODE.

● Flow control: For flow control, the function block PMP_FLOW_DISTRIBUTOR is used.
– In the flow distributor the number of pumps to run is decided by the following ratio:

FLOW_SETPOINT/ (NUMBER OF PUMPS IN STATION * NOMINAL FLOW OF PUMP).
– The function block distributes the speed references to VFD follower pumps based on the

settings in the input FOLLOWER_MODE.
● Emptying/Filling mode: For emptying or filling operation, the function block

PMP_LEVEL_DISTRIBUTOR is used. The function block starts/ stops the pumps
based on the input N_DEMAND (demand) which it receives from function block
PMP_LEVEL_COMPARATOR.
– If the actual level is in the normal range, then the speed reference of the pumps are

based on the input NORMAL_SPEED.
– If for example while filling the actual level reaches below the LOW_LEVEL, then all

pumps run at HIGH_SPEED, to quickly fill the pump. Similar analogy is followed when
the pump is in emptying mode.

Stage 4: DRIVE or DOL system
The output of the distributors (AUTO_START_CMD and AUTO_SPEED_REF) are connected
to function block PMP_INTERFACE_VFD and PMP_INTERFACE_DOL. The function blocks
establish the link between library and field devices i.e. pumps.
● For pumps driven by VFD motors, the function block PMP_INTERFACE_VFD can be

connected with the drives communication function blocks to establish communication and
control with the VFD.

● For pumps driven by DOL motor, the function block PMP_INTERFACE_DOL can be used
for start/stop controls.

For more information, see the detailed controlled philosophy in the following sections.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3541

1.5.14.1.3 Application functions
There are three main application and control function blocks:
● Pressure control function blocks
● Flow control function blocks
● Level-control function block

Pressure control function block
Pressure control process flow diagram

Pressure control is used in applications with individual or multiple water consumers.
A typical pressure control application diagram is shown below.

1 Suction tank
2 Parallel operating pumps P1 ... P8
3 Pressure setpoint, discharge pressure
4 Consumer
5 Water distribution network
6 Water tower buffer tank
H Water head between the levels in the suction tank and water tower buffer tank

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3542

Using pressure control
Pressure control in the pumping library can help in the following operations:
● Water consumption fluctuates always and may be discontinuous over a time period,

because of which it is difficult to have a continuous flow rate like in the flow control process.
● The number of pumps and the pump speed is decided by the water consumption in the

water distribution system.
● Water is supplied to the pump station through suction pipeline from a suction tank.
● The pumps may be operating in parallel.
● The discharge pressure is measured in the discharge pipeline. The measured discharge

pressure is controlled according to the pressure set point.
● Each pump must be started with a minimum speed to build up the pressure which is

required to produce a minimum flow.
● The pressure to deliver a minimum flow depends of the water head (H) between the water

levels in the suction tank and target tank.
● If there is pump station shutdown due to protection shutdown input, the pumps must be

stopped sequentially to prevent water hammering.
● Variable speed drives should be stopped through a speed ramp. Otherwise the water ham-

mering will quickly wear out the pipeline connections and the pump station equipment.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3543

Pump combinations for pressure control
Pressure control mode works for two types of pump combinations: Multi pump and traditional
pump.
The combination of function blocks to execute a pressure control is shown in the figures below.
● Multi pump – In this mode all pumps are run using VFDs.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3544

● Traditional pump – In this mode only one pump is run using the VFD and the rest of the
pumps are run using the Direct On Line (DOL) motors.

Pressure control mode is not supported by DOL pump.

The combination with any VFD pump is necessary.

Control philosophy of pressure control mode
The pressure control mode follows this sequence of operation:
1. When the process is started, the first pump runs at MINIMUM_SPEED for the time defined

in the TIME_TO_RUN_MIN_SPEED duration. With this process the pipe starts filling
gradually and then the normal operation of PID control takes over.

2. The PID compares the required pressured and the actual pressure to generate the
output in terms of percentage. This output must be connected to the function block
PMP_PRESSURE_DISTRIBUTOR.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3545

3. The function block PMP_PRESSURE_DISTRIBUTOR receives the PID_OUT. The distrib-
utor converts the PID output in terms of speed for the master pump.

4. The function block PMP_SEQUENCE_GEN has the MASTER_PUMP information.
5. The PID_OUT is scaled in terms of speed in this method:

Speed reference of MASTER_PUMP = (NOMINAL_SPEED of MASTER_PUMP) * (PID_OUT/100)
6. As the PID output increases, the speed of the master pump increases. A higher PID

output indicates a high demand. In case one pump is not able to cater the requirement,
then more pump (followers) are needed to start and supply water to maintain the pressure.

7. If speed reference of the MASTER_PUMP increases such that it is more than the
START_SPEED_FWR[1], then the first follower in the network will start. The information
about which pump to start comes from function block PMP_SEQUENCE_GEN at the
output PNSTART.

8. If the speed reference of the MASTER_PUMP increases further such that it is more than
START_SPEED_FWR[2], then second follower pump starts. This sequence is followed till
there is an increase in demand. See the timing diagram below.

Start Delay: Delay time [s] to start the next pump

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3546

9. Similar when the demand decreases, the speed reference of master decreases. See
the timing diagram below. As the speed reference of the master pump goes below
STOP_SPEED_FWR[1], the first follower stops. The ID of next pump to stop comes from
PMP_SEQUENCE_GEN as PNSTOP.
If the speed reference of the MASTER_PUMP decreases further such that it is less than
STOP_SPEED_FWR[2], then second follower pump stops. This sequence is followed till
there is a decrease in demand.

The follower pumps in the above figure is considered to be in the
FOLLOWER_MODE = 1, copy master speed. They can also run at their
individual speed if FOLLOWER_MODE = 2, fixed speed.

Stop Delay: Delay time [s] to stop the next pump

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3547

Flow control function block
Flow control process flow diagram

Flow control is used in applications where continuous flow distribution to one or more target
tanks or reservoirs is needed.
A typical flow control application diagram is shown below.

1 From supply station
2 Suction tank
3 Parallel operating pumps P1 ... P8
4 Flow setpoint, discharge pressure
5 Water distribution network
6 Target tank/Reservoir
7 To next station or distribution network
H Water head between the levels in the suction tank and target tank

Using flow control
Flow control in the pumping library can help in followings pumping operations:
● Supplying water to the pump station through the suction pipeline from a suction tank.
● Operating pumps in parallel.
● Controlling continuous water flow over a time period.
● Measuring the discharge flow in the discharge pipeline.
● Defining the number of pumps and pump speed based on water flow demand (flow set

point).
● Starting each pump with minimum speed to build up the pressure required to produce a

minimum flow.
The pressure depends on the water head (H) between the water levels in the suction tank
and the target tank.

● In case of station shutdown stops the pumps sequentially to prevent water hammering.
● Stops variable speed drives through a speed ramp.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3548

Pump combinations for flow control
Flow control works for all the three types of pump combinations: Multi pump, traditional pump,
and DOL pump.
● Multi pump – In this mode all pumps are run using VFDs. See the example diagram below.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3549

● Traditional pump – In this mode only one pump is run using the VFD and rest are run using
the Direct On Line (DOL) motors. See the example diagram below.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3550

● DOL Pump – In this mode all the pumps are operated by DOL motors. The function block
PMP_PID is not configured as there is no possibility to change the speed of the pump. See
the example diagram below.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3551

Control philosophy of flow control mode
The above figures show the combination of function blocks to execute the flow control. As it can
be seen,
● When the process is started, the first pump runs at the MINIMUM_SPEED for the time

defined in the TIME_TO_RUN_MIN_SPEED duration. This is to gradually start filling the
pipe. After this the normal operation of PID control takes over.

● The PID acts as a comparator: the PID compares the required flow and the actual
flow to generate output in terms of percentage. This needs to be connected to the
PMP_FLOW_DISTRIBUTOR.

● PMP_ FLOW _DISTRIBUTOR takes the PID_OUT. Then converts this output in terms
of speed for the master pump. The information of master pump comes from the
MASTER_PUMP of the PMP_SEQUENCE_GEN. The scaling of the PID_OUT in terms
of speed is done in following ways.
Speed reference MASTER_PUMP = (NOMINAL_SPEED of MASTER_PUMP) * (PID_OUT/100)

● This speed reference is given to the master and the follower (if FOLLOWER_MODE = 1). If
FOLLOWER_MODE = 2, then follower pumps will run at their fixed speed given in the input
FOLLOWER_SPEED[1..8].

● The distributor then decides about the number of pumps to operate based on the following
formula,
Number of pumps = FLOW_SETPOINT / NOMINAL_FLOW, here it is assumed that all
pumps are of same rating.

It is assumed that all the pumps are of same capacity.

● As the flow set point increases, the demand of pumps increases.
● Example: if each pump is of capacity = 100 cubic meters per hour and the flow set point is

400 cubic meters per hour, then four pumps will start together. This is unlike the pressure
control where the pumps do not start together but based on speed reference of the master
pump.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3552

Flow control with distributor

● Similarly when the demand decreases, the speed reference of the master decreases. As
the speed reference of the master pump goes below than STOP_SPEED_FWR[1], the
first follower stops. The ID of next pump to stop comes from PMP_SEQUENCE_GEN as
PNSTOP.

● If the speed reference of the MASTER_PUMP decreases further such that it is less than
STOP_SPEED_FWR[2], then second follower pump stops. This sequence is follows till
there is a decrease in demand.

The follower pumps in the above figures are considered to be in the
FOLLOWER_MODE = 1, copy master speed.

They can also run at their individual speed if FOLLOWER_MODE = 2, fixed
speed.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3553

Level control – Emptying or filling
Level control process flow diagram

Level control is used in applications where continuous flow distribution into one target tank or
reservoir is needed.
A typical flow control application diagram is shown below.

1 From supply station
2 Suction tank
3 Parallel operating pumps P1 ... P8
4 Water distribution network
5 Target tank/Reservoir
6 To next station or distribution network
H Water head between the levels in the suction tank and target tank

Using level control
Level control in the pumping library can help in followings pumping operations:
● Emptying the target tank/reservoir by the next pump station or water distribution network.
● Filling the suction tank from a supply station.
● Defining the number of running pumps based on water level in the water tank.
● Start/stop the pumps with predefined start/stop levels.
● In case of a station shutdown, stop pumps sequentially to prevent water hammering.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3554

Pump combinations for level control
Level control works for all the three types of pump combinations: Multi pump, traditional pump,
and DOL pump.
● Multi pump – In this mode all pumps are run using VFDs. See the example diagram below.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3555

● Traditional pump – In this mode only one pump is run using the VFD and rest using the
Direct On Line (DOL) motors. See the example diagram below.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3556

● DOL Pump – In this mode all the pumps are operated by DOL motors. In this case the
PMP_PID is not configured as there is no possibility to change the speed of the pump. See
the example diagram below.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3557

Control philosophy of level control mode
The level control is based on two modes.
● Emptying mode
● Filling mode
The level control mode follows this sequence of operation:
● The PMP_LEVEL_COMPARATOR compares the actual level (ACT_LEVEL) with the

set start levels (START_LEVEL [1...8]). Based on which the comparator decides
the demand (N_DEMAND). This demand goes as an input information to the
PMP_ LEVEL _DISTRIBUTOR.

● The PMP_LEVEL_DISTRIBUTOR then starts the required pumps. In case the pumps
are driven by VFD, the distributor also gives the speed reference to each pump. The
information of which pump to start in the sequence is given to the distributor by
PMP_SEQUENCE_GEN.

Time diagram:
Emptying mode

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3558

Time diagram:
Filling mode

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3559

1.5.14.2 Function block description
1.5.14.2.1 PMP_CONFIGURATION

The function block PMP_CONFIGURATION configures the pump station. The function block
receives the pumping station details (e.g., station name, station number) and stores in the
structure PMP_STATION_TYPE.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BYTE 1 > 0 -

The input STATION_NUMBER defines the assigned station number, which is used as a unique
identification number when more than one station is configured in a single PLC.

General
information

EN

STATION_
NUMBER

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3560

Data type Default value Range Unit
STRING(20) 'Station1' 20 characters -

The input STATION_NAME input defines the configured station name.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input NUMBER_OF_PUMPS defines the number of pumps used in the pumping station.

Data type Default value Range Unit
INT 1 1 ... 3 -

The input PROCESS_MODE selects the process control mode for pump operation. The function
block contains following control modes:
1 = Pressure control: for pressure stabilization
2 = Flow control: for maintaining the required flow in the process
3 = Level control: for emptying or filling the tank

Data type Default value Range Unit
INT 1 1 ... 3 -

The input PUMP_COMB selects the process combination mode for pump operation. The func-
tion block contains following modes:
1 = Multimode: this mode drives all pumps fed by VFDs.
2 = Traditional mode: in this mode only one pump is fed by VFD and rest of the pumps are fed
by DOL motors.
3 = DOL mode: in this mode all pumps are fed by DOL motors.

Data type Default value Range Unit
ARRAY[1..8] of INT 8(1500) - rpm

The input NOMINAL_SPEED defines the rated pump speed in rpm. This input is an
array where the first index is meant for PUMP_ID = 1 in the interface function blocks
PMP_INTERFACE_DOL and PMP_INTERFACE_VFD.

Output description

STATION_NAME

NUMBER_OF_
PUMPS

PROCESS_
MODE

PUMP_COMB

NOMINAL_
SPEED

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3561

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

DONE

ERR

ERNO

STATION_
PARAMETERS

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3562

Parameter Data type Default
value

Description

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

Error codes
The error codes of function block PMP_CONFIGURATION are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16417 4021 Value of STATION_NUMBER is less than 1

16449 4041 Value of NUMBER_OF_PUMPS is less than 1

16450 4042 Value of NUMBER_OF_PUMPS is beyond 8

16465 4051 Value of PROCESS_MODE is less than 1

16466 4052 Value of PROCESS_MODE is beyond 3

16481 4061 Value of PUMP_COMB is less than 1

16482 4062 Value of PUMP_COMB is beyond 3

16483 4063 PUMP_COMB cannot be = 3 for the
PROCESS_MODE = 1

16497 4071 Value of NOMINAL_SPEED is less than or equal
to 0

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3563

1.5.14.2.2 PMP_INTERFACE_DOL

The function block PMP_INTERFACE_DOL is used to communicate with all pumps in the field
that are run by direct online (DOL) motor. The function block configures pump settings and gives
the status of pump operation. This function block is effective only for pumps fed by DOL motors.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3564

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PUMP_ID defines the pump identification number.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input DOL_LOCAL_REMOTE connects the local or remote mode status of the DOL
system. The function block uses this information to decide whether the pump is ready for
automation.
● When input is TRUE, pump operates in LOCAL mode.
● When input is FALSE, pump operates in REMOTE mode.

EN

PUMP_ID

DOL_LOCAL_
REMOTE

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3565

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input DOL_OPERATING connects the operating status of the DOL system. The function
block uses this information to decide whether the pump is ready for automation.
● When input is TRUE, pump is operating.
● When input is FALSE, pump is not ready for operation.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input DOL_TRIPPED connects the faulty/healthy status of the DOL system. The function
block uses this information to decide whether the pump is ready for automation.
● When input is TRUE, pump has tripped due to fault.
● When input is FALSE, pump operation is healthy.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input RUNTIME_RESET resets the actual run time in the output ACTUAL_RUNTIME with
value in the input OFFSET_RUNTIME for the pump.
● When input is TRUE, output ACTUAL_RUNTIME is reset to value in input

OFFSET_RUNTIME.
● When input is FALSE, pump continues operation in current run time.

Data type Default value Range Unit
REAL 1.0 - -

The input OFFSET_RUNTIME defines offset run time of the pump that overwrites actual run
time in the output ACTUAL_RUNTIME when input RUNTIME_RESET = TRUE.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input PROTECTION_SHUTDOWN receives a digital signal to shut down the pump station
for protection. The input comes from the output PROTECTION_SHUTDOWN of the protection
function blocks PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.
● When input is TRUE, pump station is shutdown.
● When input is FALSE, pump station operation continues.

DOL_
OPERATING

DOL_TRIPPED

RUNTIME_
RESET

OFFSET_
RUNTIME

MASTER_PUMP

PROTECTION_
SHUTDOWN

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3566

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START_BLOCKER receives a digital signal to prevent the starting of pump station for
protection. The input comes from the output START_BLOCKER of the protection function blocks
PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.

The input START_BLOCKER will not stop the already running pump.

● When input is TRUE, pump start is not allowed.
● When input is FALSE, pump start is allowed.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input AUTO_MANUAL selects the operating mode of the pump.
● When input is TRUE, pump operates in automatic mode.
● When input is FALSE, pump operates in manual mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input PULSE_COMMANDS selects the Start/Stop command type of the pump run by DOL
motor.
● When input is TRUE, pump starts with the pulse input of start command.
● When input is FALSE, pump starts with the continuous start command.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input AUTO_START_CMD receives the start command of the pump to start in
automatic mode. The input comes from the output AUTO_START_CMD of function block
PMP_FLOW_DISTRIBUTOR or PMP_PRESSURE_DISTRIBUTOR. Automatic start works only
when input AUTO_MANUAL = TRUE.
● When input is TRUE, pump starts in automatic mode.
● When input is FALSE, pump stops if running in automatic mode.

START_
BLOCKER

AUTO_MANUAL

PULSE_
COMMANDS

AUTO_START_
CMD

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3567

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input MANUAL_START receives the start command to start the pump in manual mode.
This manual start function applies only for a pump fed by DOL motor. The function works only
when input AUTO_MANUAL = FALSE.
The function also depends on the input PULSE_COMMANDS:
If input PULSE_COMMANDS = FALSE i.e. continuous mode is selected.
● When input MANUAL_START = TRUE, pump starts in manual mode.
● When input MANUAL_START = FALSE, pump stops if running in manual mode.
If input PULSE_COMMANDS = TRUE i.e. pulse mode is selected.
● Pump starts in manual mode at the rising edge i.e. FALSE ➨ TRUE.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

This input MANUAL_STOP stops the pump under following conditions:
● Input PULSE_COMMANDS = TRUE i.e. pulse mode is selected.
● Inputs AUTO_MANUAL = FALSE and MANUAL_STOP = TRUE.

This manual stop function applies only for a pump fed by DOL motor.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input ALLOW_MANUAL_ANTIJAM allows antijam operation of the pump in manual
mode. The input is effective only when the input AUTO_MANUAL = FALSE and
ANTIJAM_MODE = Manual mode.
● When input is TRUE, antijam operation is allowed.
● When input is FALSE, antijam operation is not allowed.

Data type Default value Range Unit
INT 0 0 ... 3 -

The input ANTIJAM_MODE indicates the selected antijam mode.
0 = Disable antijam
1 = Master enabled
2 = At start
3 = Manual mode
The input ANTIJAM_MODE receives the antijam mode. The input comes from the output
ANTIJAM_MODE of the function block PMP_ANTIJAM.

MANUAL_
START

MANUAL_STOP

ALLOW_
MANUAL_
ANTIJAM

ANTIJAM_
MODE

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3568

Data type Default value Range Unit
INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the antijam operation status of the pump. The input
comes from the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output ANTIJAM_START of the function block PMP_ANTIJAM starts the antijam oper-
ation. This output is connected with the input ANTIJAM_START of the function blocks
PMP_INTERFACE_VFD and PMP_INTERFACE_DOL.
● When output is TRUE, antijam operation starts.
● When output is FALSE, antijam operation stops if running.

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

ANTIJAM_
STATUS

ANTIJAM_
START

STATION_
PARAMETERS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3569

Data type Default value Range Unit
REAL - - h

The input ACT_RUNTIME defines the actual run time of pump in hours.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

ACT_RUNTIME

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3570

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output START_CMD is the command to start the pump fed by DOL motor. The command
works only when input PULSE_COMMANDS = FALSE, i.e. continuous mode is selected.
● When output is TRUE, pump starts running.
● When output is FALSE, pump stops if already running.

When input PULSE_COMMANDS = TRUE, the command generates a single
pulse to start the motor.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output STOP_CMD is the command to stop the pump fed by DOL motor. The output works
based on the value in input PULSE_COMMANDS.
● If PULSE_COMMANDS = FALSE, the output will stay FALSE and unused.
● If PULSE_COMMAND = TRUE, the output generates a single pulse to stop the motor.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output FAULT indicates a fault in the pump. The fault may be in the pump protection blocks.
● When output is TRUE, pump fault occurred.
● When output is FALSE, pump operation is healthy.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output LOCAL_REMOTE_STATUS indicates the operating mode of the pump system
(DOL/VFD).
● When output is TRUE, pump system is in local mode.
● When output is FALSE, pump system is in remote mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output AUTO_MANUAL_MODE indicates the operation mode of the pump.
● When output is TRUE, pump is in automatic mode.
● When output is FALSE, pump is in manual mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output OPERATING indicates that the device is operating.
● When output is TRUE, device is operating.
● When output is FALSE, device is not operating.

START_CMD

STOP_CMD

FAULT

LOCAL_
REMOTE_
STATUS

AUTO_MANUAL
_MODE

OPERATING

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3571

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output READY_FOR_AUTOMATION of the pump interface function block indicates that
the pump is ready for operation in automatic mode. This function is effective only when the
function block is connected to the input READY_FOR_AUTOMATION of the following function
blocks: PMP_SEQUENCE_GEN, PMP_FLOW_DISTRIBUTOR, PMP_LEVEL_DISTRIBUTOR
and PMP_PRESSURE_DISTRIBUTOR.
● When output is TRUE, pump is ready for operation in automatic mode.
● When output is FALSE, pump is not ready for operation in automatic mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output START_ANTIJAM starts antijam operation in manual mode. This function is effec-
tive only when the function block is connected to input START_MANUAL of function block
PMP_ANTIJAM.
● When output is TRUE, antijam operation starts in manual mode.
● When output is FALSE, antijam operation stops if running.

Error codes
The error codes of function block PMP_INTERFACE_DOL are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16417 4021 Value of PUMP_ID is less than 1

16418 4022 Value of PUMP_ID is greater
than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16641 4101 Value of ANTIJAM_MODE is less than 0

16642 4102 Value of ANTIJAM_MODE is greater than 3

16657 4111 Value of ANTIJAM_STATUS is less than 0

16658 4112 Value of ANTIJAM_STATUS is greater than 2

16611 40E3 Value of MANUAL_START and
ALLOW_MANUAL_ANTIJAM is TRUE simultane-
ously. Either one operation is allowed at a time in
manual mode, i.e. manual pump start or manual
antijam.

READY_FOR_
AUTOMATION

START_
ANTIJAM

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3572

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.3 PMP_INTERFACE_VFD

The function block PMP_INTERFACE_VFD enables communication within all connected pumps
in the field run by VFD motors. The function block configures pump settings and gives the status
of pump operation. This function block is effective only for pumps fed by VFD motors.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3573

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

The function block PMP_INTERFACE_VFD checks the status of variable frequency drives
(VFDs) and sends the ON/OFF command and speed signals back to the drives.

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PUMP_ID defines the pump identification number.

General
information

EN

PUMP_ID

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3574

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input VFD_LOCAL_REMOTE receives the operating mode of the variable frequency drive.
● When input is TRUE, drive is operating in LOCAL mode.
● When input is FALSE, drive is operating in REMOTE mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input VFD_READY receives the ready for operation status of the variable frequency drive.
● When input is TRUE, drive is ready for operation.
● When input is FALSE, drive is not ready for operation.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input VFD_OPERATING receives the operating status of the variable frequency drive.
● When input is TRUE, drive is operating.
● When input is FALSE, drive is not operating.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input VFD_TRIPPED receives the tripped status of the variable frequency drive.
● When input is TRUE, drive has tripped due to a fault.
● When input is FALSE, drive is healthy.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input RUNTIME_RESET resets the actual run time in the output ACTUAL_RUNTIME with
value in the input OFFSET_RUNTIME for the pump.
● When input is TRUE, output ACTUAL_RUNTIME is reset to value in input

OFFSET_RUNTIME.
● When input is FALSE, pump continues operation in current run time.

Data type Default value Range Unit
REAL 1.0 - -

The input OFFSET_RUNTIME defines offset run time of the pump that overwrites actual run
time in the output ACTUAL_RUNTIME when input RUNTIME_RESET = TRUE.

VFD_LOCAL_
REMOTE

VFD_READY

VFD_
OPERATING

VFD_TRIPPED

RUNTIME_
RESET

OFFSET_
RUNTIME

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3575

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input PROTECTION_SHUTDOWN receives a digital signal to shut down the pump station
for protection. The input comes from the output PROTECTION_SHUTDOWN of the protection
function blocks PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.
● When input is TRUE, pump station is shutdown.
● When input is FALSE, pump station operation continues.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START_BLOCKER receives a digital signal to prevent the starting of pump station for
protection. The input comes from the output START_BLOCKER of the protection function blocks
PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.

The input START_BLOCKER will not stop the already running pump.

● When input is TRUE, pump start is not allowed.
● When input is FALSE, pump start is allowed.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input AUTO_MANUAL selects the operating mode of the pump.
● When input is TRUE, pump operates in automatic mode.
● When input is FALSE, pump operates in manual mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input AUTO_START_CMD receives the start command of the pump to start in
automatic mode. The input comes from the output AUTO_START_CMD of function block
PMP_FLOW_DISTRIBUTOR or PMP_PRESSURE_DISTRIBUTOR. Automatic start works only
when input AUTO_MANUAL = TRUE.
● When input is TRUE, pump starts in automatic mode.
● When input is FALSE, pump stops if running in automatic mode.

PROTECTION_
SHUTDOWN

START_
BLOCKER

MASTER_PUMP

AUTO_MANUAL

AUTO_START_
CMD

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3576

Data type Default value Range Unit
INT 0 - rpm

The input AUTO_SPEED_REF defines the speed reference of the pump
run by variable frequency drive in automatic mode. The input comes
from the output AUTO_SPEED_REF of function blocks PMP_FLOW_DISTRIBUTOR/
PMP_PRESSURE_DISTRIBUTOR/ PMP_LEVEL_DISTRIBUTOR, depending on the process
selected in the function bock PMP_CONFIGURATION.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input MANUAL_START gives the start command to start the pump run by variable fre-
quency drive in manual mode. This input is effective only when input AUTO_MANUAL = FALSE.
● When input is TRUE, pump starts in manual mode.
● When input is FALSE, pump stops if running in manual mode.

Data type Default value Range Unit
INT 0 > 0 rpm

The input MANUAL_SPEED defines the speed reference of the pump run by variable frequency
drive in manual mode. Manual speed works only when input AUTO_MANUAL = FALSE.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input ALLOW_MANUAL_ANTIJAM allows antijam operation of the pump in manual
mode. The input is effective only when the input AUTO_MANUAL = FALSE and
ANTIJAM_MODE = Manual mode.
● When input is TRUE, antijam operation is allowed.
● When input is FALSE, antijam operation is not allowed.

Data type Default value Range Unit
INT 0 0 ... 3 -

The input ANTIJAM_MODE indicates the selected antijam mode.
0 = Disable antijam
1 = Master enabled
2 = At start
3 = Manual mode
The input ANTIJAM_MODE receives the antijam mode. The input comes from the output
ANTIJAM_MODE of the function block PMP_ANTIJAM.

AUTO_SPEED_
REF

MANUAL_
START

MANUAL_
SPEED

ALLOW_
MANUAL_
ANTIJAM

ANTIJAM_
MODE

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3577

Data type Default value Range Unit
INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the antijam operation status of the pump. The input
comes from the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output ANTIJAM_START of the function block PMP_ANTIJAM starts the antijam oper-
ation. This output is connected with the input ANTIJAM_START of the function blocks
PMP_INTERFACE_VFD and PMP_INTERFACE_DOL.
● When output is TRUE, antijam operation starts.
● When output is FALSE, antijam operation stops if running.

Data type Default value Range Unit
INT 0 - rpm

The output ANTIJAM_SPEED of the function block PMP_ANTIJAM indicates the speed for
antijam operation. This output is connected to the input ANTIJAM_SPEED of the function block
PMP_INTERFACE_VFD.

Data type Default value Range Unit
INT 0 0 ... 4 -

The input SOFTFILL_STATUS indicates the status of softfilling function.
0 = Disable the softfill (Softfill operation is disabled)
1 = Ready to start (Softfill operation is ready to start)
2 = Softfill in progress (Softfill operation has started)
3 = Softfill completed (Softfill operation is completed)
4 = Softfill with fault (Softfill operation stopped due to a fault)

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output SOFTFILL_START of the used pump distributor starts the soft filling operation. This
function is effective only when this output is connected to the input START of the function block
PMP_SOFT_FILLING.
● When input is TRUE, softfill function starts.
● When input is FALSE, softfill function stops if running.

ANTIJAM_
STATUS

ANTIJAM_
START

ANTIJAM_
SPEED

SOFTFILL_
STATUS

SOFTFILL_
START

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3578

Data type Default value Range Unit
INT 0 > 0 rpm

The output SOFTFILL_SPEED of the function block PMP_SOFT_FILLING indicates the speed
reference for soft filling function. The output must be connected to the input SOFTFILL_SPEED
of the interface function block PMP_INTERFACE_VFD.

Data type Default value Range Unit
INT 0 0 ... 3 -

The output SLEEP_STATUS of the function block PMP_SLEEP indicates the sleep status of the
pump.
0 = Inactive/Wakeup inactive
1 = Boost activated
2 = Sleep mode active
3 = Wakeup function active

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

SOFTFILL_
SPEED

SLEEP_STATUS

STATION_
PARAMETERS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3579

Data type Default value Range Unit
REAL - - h

The input ACT_RUNTIME defines the actual run time of pump in hours.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

ACT_RUNTIME

ERR

ERNO

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3580

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output START_CMD is the start command to start the pump fed by variable frequency drive
(VFD).

The VFD can run only if is connected to the on command of the VFD.

This can be done using the PLC - VFD communication library, which is not in
the scope of the pump library.

● When output is TRUE, pump starts running.
● When output is FALSE, pump stops if already running.

Data type Default value Range Unit
INT 0 > 0 rpm

The output SPEED_REF of the interface function block PMP_INTERFACE_VFD shows the
speed reference of the variable frequency drive (VFD) in rpm.

The speed reference can be given to the drive only if it is connected to the
correct parameter.

This can be done using the PLC - VFD communication library, which is not in
the scope of the pump library.

The input SPEED_REF of the function block PMP_DRIVE_SIMU comes from the output
SPEED_REF of the interface function block PMP_INTERFACE_VFD.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output FAULT indicates a fault in the pump. The fault may be in the pump protection blocks.
● When output is TRUE, pump fault occurred.
● When output is FALSE, pump operation is healthy.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output LOCAL_REMOTE_STATUS indicates the operating mode of the pump system
(DOL/VFD).
● When output is TRUE, pump system is in local mode.
● When output is FALSE, pump system is in remote mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output AUTO_MANUAL_MODE indicates the operation mode of the pump.
● When output is TRUE, pump is in automatic mode.
● When output is FALSE, pump is in manual mode.

START_CMD

SPEED_REF

FAULT

LOCAL_
REMOTE_
STATUS

AUTO_MANUAL
_MODE

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3581

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output OPERATING indicates that the device is operating.
● When output is TRUE, device is operating.
● When output is FALSE, device is not operating.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output READY_FOR_AUTOMATION of the pump interface function block indicates that
the pump is ready for operation in automatic mode. This function is effective only when the
function block is connected to the input READY_FOR_AUTOMATION of the following function
blocks: PMP_SEQUENCE_GEN, PMP_FLOW_DISTRIBUTOR, PMP_LEVEL_DISTRIBUTOR
and PMP_PRESSURE_DISTRIBUTOR.
● When output is TRUE, pump is ready for operation in automatic mode.
● When output is FALSE, pump is not ready for operation in automatic mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output START_ANTIJAM starts antijam operation in manual mode. This function is effec-
tive only when the function block is connected to input START_MANUAL of function block
PMP_ANTIJAM.
● When output is TRUE, antijam operation starts in manual mode.
● When output is FALSE, antijam operation stops if running.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output DRIVE_RFG_DISABLED bypasses the ramp function generator (RFG) during
Antijam operation. The output is effective only when connected to the control word (CW) of
the drive.
● When output is TRUE, drive bypasses RFG during antijam operation.
● When output is FALSE, antijam operation runs without bypassing RFG.

OPERATING

READY_FOR_
AUTOMATION

START_
ANTIJAM

DRIVE_RFG_
DISABLED

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3582

Error codes
The error codes of function block PMP_INTERFACE_VFD are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16417 4021 Value of PUMP_ID is less than 1

16418 4022 Value of PUMP_ID is greater
than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16561 40B1 Value of MASTER_PUMP is less than 1

16562 40B2 Value of MASTER_PUMP is
greater than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16609 40E1 Value of AUTO_SPEED_REF is less than 0

16641 4101 Value of MANUAL_SPEED is less than 0

16673 4121 Value of ANTIJAM_MODE is less than 0

16674 4122 Value of ANTIJAM_MODE is greater than 3

16689 4131 Value of ANTIJAM_STATUS is less than 0

16690 4132 Value of ANTIJAM_STATUS is greater than 2

16737 4161 Value of SOFTFILL_STATUS is less than 0

16738 4162 Value of SOFTFILL_STATUS is greater than 4

16769 4181 Value of SOFTFILL_SPEED is less than 0

16785 4191 Value of SLEEP_STATUS is less than 0

16786 4192 Value of SLEEP_STATUS is greater than 3

16627 40F3 Value of MANUAL_START and
ALLOW_MANUAL_ANTIJAM is TRUE simultane-
ously. Either one operation is allowed at a time in
manual mode, i.e., manual pump start or manual
antijam.

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3583

1.5.14.2.4 PMP_LEVEL_COMPARATOR

The function block PMP_LEVEL_COMPARATOR compares the actual level with the set level
and generates a demand for the function block PMP_LEVEL_DISTRIBUTOR. The function
block is used for tank filling or emptying operations.

The function block is used with function block PMP_LEVEL_DISTRIBUTOR,
when the function block PMP_CONFIGURATION has the input
PROCESS_MODE = 3 (Level control).

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3584

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START starts the execution of the function block.
● When input is TRUE, the execution starts.
● When input is FALSE, the execution stops if running.

Data type Default value Range Unit
INT 1 1 ... 2 -

The input MODE selects the pumping operation mode.
1 = Emptying.
2 = Filling.

Data type Default value Range Unit
REAL 10.0 0.0 ... 100.0 %

The input LOW_LEVEL defines the low level limit in percentage of full tank capacity.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input LOW_SWITCH receives a digital signal from the pumping process when a low level
has reached. The input is effective only when the sensor is present in the system, otherwise the
default value is FALSE.
● When input is TRUE, pumping process has reached low level.
● When input is FALSE, pumping process is above low level.

Data type Default value Range Unit
REAL 90.0 0.0 ... 100.0 %

The input STOP_LEVEL defines the stop level limit in percentage of full tank capacity.

Data type Default value Range Unit
ARRAY[1..8] of REAL - 0.0 ... 100.0 %

The input START_LEVEL defines the array of start level limits in percentage of full tank
capacity.

EN

START

MODE

LOW_LEVEL

LOW_SWITCH

STOP_LEVEL

START_LEVEL

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3585

Data type Default value Range Unit
TIME 10 - s

The input START_STOP_DELAY defines the delay time to start or stop the pump when the
respective start/stop levels have reached.

Data type Default value Range Unit
REAL 95.0 0.0 ... 100.0 %

The input HIGH_LEVEL defines the high level limit in percentage of full tank capacity.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input HIGH_SWITCH receives a digital signal from the pumping process when a high level
has reached. The input is effective only when the sensor is present in the system, otherwise the
default value is FALSE.
● When input is TRUE, pumping process has reached high level.
● When input is FALSE, pumping process is below high level.

Data type Default value Range Unit
REAL 0.0 0.0 ... 100.0 %

The input ACT_LEVEL shows the actual level in percentage of full tank capacity. The value is
read from the analog input level sensor.

Scaling of analog input is not in the scope of this library, but is done in the
application program.

Data type Default value Range Unit
REAL 0.0 -10.0 ... 10.0 %

The input RAND_COEF defines the random coefficient in percentage for randomizing the start
level to avoid cake formation.

Data type Default value Range Unit
INT 1 1 ... 2 -

The input STOP_MODE selects the appropriate stop mode.
Stop mode 1 = used in filling and emptying operation to stop each running pump.
● In filling operation, pump is stopped when input ACT_LEVEL > START_LEVEL.
● In emptying operation, pump is stopped when input ACT_LEVEL < START_LEVEL.
Stop mode 2 = common stop mode that stops all pumps with the level defined in input
STOP_LEVEL.

START_STOP_
DELAY

HIGH_LEVEL

HIGH_SWITCH

ACT_LEVEL

RAND_COEF

STOP_MODE

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3586

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

Output description

STATION_
PARAMETERS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3587

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output HIGH_LEVEL_REACHED of the function block PMP_LEVEL_COMPARATOR
indicates that actual level is more than high level. This function is effective only when
this output is connected to the input HIGH_LEVEL_REACHED of the function block
PMP_LEVEL_DISTRIBUTOR.
● When output is TRUE, actual level is more than high level.
● When output is FALSE, actual level is less than high level.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output LOW_LEVEL_REACHED of the function block PMP_LEVEL_ COMPARATOR
indicates that actual level is less than low level. This function is effective only when
this output is connected to the input LOW_LEVEL_REACHED of the function block
PMP_LEVEL_ DISTRIBUTOR.
● When output is TRUE, actual level is less than low level.
● When output is FALSE, actual level is more than low level.

Data type Default value Range Unit
INT 0 1 ... 8 -

The input N_DEMAND of the function block PMP_LEVEL_DISTRIBUTOR receives the number
of pumps demanded to run. This input comes from the output N_DEMAND of the function block
PMP_LEVEL_COMPARATOR.

ERR

ERNO

HIGH_LEVEL_
REACHED

LOW_LEVEL_
REACHED

N_DEMAND

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3588

Error codes
The error codes of function block PMP_LEVEL_COMPARATOR are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16433 4031 Value of MODE is less than 1

16434 4032 Value of MODE is greater than 2

16449 4041 Value of LOW_LEVEL is less than 0.0

16450 4042 Value of LOW_LEVEL is greater than 100.0

16481 4061 Value of STOP_LEVEL is less than 0.0

16482 4062 Value of STOP_LEVEL is greater than 100.0

16496 4070 If MODE = 1 (Emptying), the array of
START_LEVEL values must be in ascending
order
If MODE = 2 (Filling), the array of START_LEVEL
values must be in descending order

16499 4073 If MODE = 1 (Emptying), the order of values
must be LOW_LEVEL < STOP_LEVEL <
START_LEVEL [1] ... [8] < HIGH_LEVEL
If MODE = 2 (Filling), the order of values must
be LOW_LEVEL < START_LEVEL [8] ... [1] <
STOP_LEVEL < HIGH_LEVEL

16529 4091 Value of HIGH_LEVEL is less than 0.0

16530 4092 Value of HIGH_LEVEL is greater than 100.0

16577 40C1 Value of RAND_COEF is less than -10.0

16578 40C2 Value of RAND_COEF is greater than 10.0

16593 40D1 Value of STOP_MODE is less than 1

16594 40D2 Value of STOP_MODE is greater than 2

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3589

1.5.14.2.5 PMP_LEVEL_DISTRIBUTOR

The function block PMP_LEVEL_DISTRIBUTOR generates start commands and pump speed
references based on the demand raised by PMP_LEVEL_COMPARATOR.
The function block receives the number of pumps in demand from the input N_DEMAND
of function block PMP_LEVEL_COMPARATOR based on the process demand. The function
block then sends pump ON/OFF command to function blocks PMP_INTERFACE_VFD or
PMP_INTERFACE_DOL in the automatic mode of the pumping station. For the pumps run
by variable frequency drive, the function block also sends speed references to function block
PMP_INTERFACE_VFD.

This function block is used with function block PMP_LEVEL_COMPARATOR,
when the function block PMP_CONFIGURATION has the input
PROCESS_MODE = 3 (Level control).

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3590

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START starts the execution of the function block.
● When input is TRUE, the execution starts.
● When input is FALSE, the execution stops if running.

Data type Default value Range Unit
ARRAY[1..8] of INT 8 (1000) > 0 rpm

The input NORMAL_SPEED defines the array of normal operating speed of all pumps for filling
or emptying operations.
For e.g., the speed value in array index 1 points to PUMP_ID 1, and so on.

EN

START

NORMAL_SPEE
D

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3591

Data type Default value Range Unit
ARRAY[1..8] of INT 8 (1400) > 0 ...

NORMAL SPEED
rpm

The input HIGH_SPEED defines the array of speed values of all pumps for filling or emptying
operations in the conditions below:
Filling – if pump level falls below the LOW_LEVEL
Emptying – if pump level rises above the HIGH_LEVEL.
For e.g., the speed value in array index 1 points to PUMP_ID 1, and so on.

Data type Default value Range Unit
ARRAY[1..8] of INT - 0 ... 3 -

The input ANTIJAM_MODE indicates the selected antijam mode.
0 = Disable antijam
1 = Master enabled
2 = At start
3 = Manual mode
The input ANTIJAM_MODE of the used pump distributor function block receives the
antijam mode. This input comes from the output ANTIJAM_MODE of the function blocks
PMP_ANTIJAM.

Data type Default value Range Unit
ARRAY[1..8] of INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the status of antijam operation. The input comes from
the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

Data type Default value Range Unit
INT 0 0 ... 4 -

The input SOFTFILL_STATUS indicates the status of softfilling function.
0 = Disable the softfill (Softfill operation is disabled)
1 = Ready to start (Softfill operation is ready to start)
2 = Softfill in progress (Softfill operation has started)
3 = Softfill completed (Softfill operation is completed)
4 = Softfill with fault (Softfill operation stopped due to a fault)

Data type Default value Range Unit
INT 0 1 ... 8 -

The input N_DEMAND of the function block PMP_LEVEL_DISTRIBUTOR receives the number
of pumps demanded to run. This input comes from the output N_DEMAND of the function block
PMP_LEVEL_COMPARATOR.

HIGH_SPEED

ANTIJAM_
MODE

ANTIJAM_
STATUS

SOFTFILL_
STATUS

N_DEMAND

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3592

Data type Default value Range Unit
INT 0 1 ... 8 -

The input NO_OF_PUMPS_RUNNING receives the number of pumps running. The input comes
from the output NO_OF_PUMPS_RUNNING of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PNSTART receives the identification number of the next pump to start
in the sequence. The input comes from the output PNSTART of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PNSTOP receives the identification number of the next pump to stop in the sequence.
The input comes from the output PNSTOP of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 0 1 ... 8 -

The input NACTIVE receives the number of pumps active for operation in automatic mode. The
input comes from the output NACTIVE of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
ARRAY[1..8] of BOOL FALSE TRUE/FALSE -

The input READY_FOR_AUTOMATION receives an array of pumps ready for automatic oper-
ation. The input comes from the output READY_FOR_AUTOMATION of the function block
PMP_INTERFACE_VFD or PMP_INTERFACE_DOL.

The READY_FOR_AUTOMATION[1] connects to the PUMP ID = 1. This pattern
must be followed for all pump IDs.

● When input is TRUE, pump is ready for operation in automatic mode.
● When input is FALSE, pump is not ready for operation in automatic mode.

NO_OF_PUMPS
_RUNNING

PNSTART

PNSTOP

MASTER_PUMP

NACTIVE

READY_FOR_
AUTOMATION

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3593

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input PROTECTION_SHUTDOWN receives a digital signal to shut down the pump station
for protection. The input comes from the output PROTECTION_SHUTDOWN of the protection
function blocks PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.
● When input is TRUE, pump station is shutdown.
● When input is FALSE, pump station operation continues.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START_BLOCKER receives a digital signal to prevent the starting of pump station for
protection. The input comes from the output START_BLOCKER of the protection function blocks
PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.

The input START_BLOCKER will not stop the already running pump.

● When input is TRUE, pump start is not allowed.
● When input is FALSE, pump start is allowed.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output HIGH_LEVEL_REACHED of the function block PMP_LEVEL_COMPARATOR
indicates that actual level is more than high level. This function is effective only when
this output is connected to the input HIGH_LEVEL_REACHED of the function block
PMP_LEVEL_DISTRIBUTOR.
● When output is TRUE, actual level is more than high level.
● When output is FALSE, actual level is less than high level.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output LOW_LEVEL_REACHED of the function block PMP_LEVEL_ COMPARATOR
indicates that actual level is less than low level. This function is effective only when
this output is connected to the input LOW_LEVEL_REACHED of the function block
PMP_LEVEL_ DISTRIBUTOR.
● When output is TRUE, actual level is less than low level.
● When output is FALSE, actual level is more than low level.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Indicates that the master pump in the traditional pump combination has tripped. This input
comes from the output TRAD_MASTER_TRIP of the function block PMP_SEQUENCE_GEN.

PROTECTION_
SHUTDOWN

START_
BLOCKER

HIGH_LEVEL_
REACHED

LOW_LEVEL_
REACHED

TRAD_MASTER
_TRIP

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3594

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

STATION_
PARAMETERS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3595

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The output AUTO_START_CMD sends the automatic start command to the
input AUTO_START_CMD of interface function block PMP_INTERFACE_VFD or
PMP_INTERFACE_DOL for the required pump ID.

The output AUTO_START_CMD[1] must be connected to the
input AUTO_START_CMD of function block PMP_INTERFACE_VFD or
PMP_INTERFACE_DOL with PUMP ID = 1. This pattern must be followed for
all pump IDs.

ERR

ERNO

AUTO_START_
CMD

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3596

Data type Default value Range Unit
ARRAY[1..8] of INT - - -

The output AUTO_SPEED_REF sends the automatic speed reference value in rpm to the input
PUMP_AUTO_SPEED_REF of interface function block PMP_INTERFACE_VFD of the required
pump ID.

The output AUTO_SPEED_REF[1] must be connected to the input
AUTO_SPEED_REF of function block PMP_INTERFACE_VFD with
PUMP ID = 1. This pattern must be followed for all pump IDs.

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The output START_ANTIJAM starts the antijam operation in automatic mode. The operation is
effective only when the output is connected to the input START_AUTO of the function block
PMP_ANTIJAM of the required pump ID.

The output START_ANTIJAM[1] must be connected to the input START_AUTO
of function block PMP_ANTIJAM with PUMP ID = 1. This pattern must be
followed for all pump IDs.

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The output DRIVE_RFG_DISABLED bypasses the ramp function generator (RFG) during
antijam operation. The output is effective only if the function block is connected to the control
word (CW) of the drive.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output SOFTFILL_START of the used pump distributor starts the soft filling operation. This
function is effective only when this output is connected to the input START of the function block
PMP_SOFT_FILLING.
● When input is TRUE, softfill function starts.
● When input is FALSE, softfill function stops if running.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input DISTRIBUTOR_RUNNING indicates the running status of the distributor.
This input is connected to the output DISTRIBUTOR_RUNNING of any of the the
distributor function blocks PMP_LEVEL_DISTRIBUTOR, PMP_FLOW_DISTRIBUTOR or
PMP_PRESSURE_DISTRIBUTOR.
● When output is TRUE, distributor is running.
● When output is FALSE, distributor is not running.

AUTO_SPEED_
REF

START_
ANTIJAM

DRIVE_RFG_
DISABLED

SOFTFILL_
START

DISTRIBUTOR_
RUNNING

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3597

Error codes
The error codes of function block PMP_LEVEL_DISTRIBUTOR are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16400 4010 Flow control can run only
when the PROCESS_MODE in
PMP_CONFIGURATION = 2

16433 4031 Value of FLOW_SET_POINT is less than 0

16449 4041 Value in NOMINAL_FLOW is less than or equal
to 0

16450 4042 Value of HIGH_SPEED is more than
NORMAL_SPEED

16465 4051 Value of ANTIJAM_MODE is less than 0

16466 4052 Value of ANTIJAM_MODE is greater than 3

16481 4061 Value of ANTIJAM_STATUS is less than 0

16482 4062 Value of ANTIJAM_STATUS is greater than 2

16497 4071 Value of SOFTFILL_STATUS is less than 0

16498 4072 Value of SOFTFILL_STATUS is greater than 3

16513 4081 Value of N_DEMAND is less than 1

16514 4082 Value of N_DEMAND is greater
than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16529 4091 Value of NO_OF_PUMPS_RUNNING is less than
0

16530 4092 Value of NO_OF_PUMPS_RUNNING is
greater than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16545 40A1 Value of PNSTART is less than 1

16546 40A2 Value of PNSTART is greater
than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16561 40B1 Value of PNSTOP is less than 1

16562 40B2 Value of PNSTOP is greater
than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16577 40C1 Value of MASTER_PUMP is less than 1

16578 40C2 Value of MASTER_PUMP is
greater than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16593 40D1 Value of NACTIVE is less than 1

16594 40D2 Value of NACTIVE is greater
than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3598

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.6 PMP_FLOW_DISTRIBUTOR

The function block PMP_FLOW_DISTRIBUTOR is used to maintain the flow in the net-
work. The function block sends the pump ON/OFF command to the function blocks
PMP_INTERFACE_VFD or PMP_INTERFACE_DOL in the automatic mode of the pumping
station. For the pumps run by variable frequency drive, the function block also sends speed
references to function block PMP_INTERFACE_VFD.

This function block is effective only when the input
PROCESS_MODE = 2 (Flow control) in the function block
PMP_CONFIGURATION.

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3599

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START starts the execution of the function block.
● When input is TRUE, the execution starts.
● When input is FALSE, the execution stops if running.

General
information

EN

START

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3600

Data type Default value Range Unit
REAL 0.0 - m3/h

The input FLOW_SETPOINT defines the flow setpoint in cubic meters per hour.

Data type Default value Range Unit
INT 100 - m3/h

The input NOMINAL_FLOW defines the nominal flow in cubic meters per hour for each pump.
The input is effective in pumps of the same capacity.

Data type Default value Range Unit
TIME 0 - s

The input START_DELAY defines the delay time to start the follower pumps.

Data type Default value Range Unit
TIME 0 - s

The input STOP_DELAY defines the delay time to stop the follower pumps.

Data type Default value Range Unit
INT 1 1 ... 2 -

The input FOLLOWER_MODE selects the follower mode of the follower pumps.
1 = Copy master mode to run at the master pump speed
2 = Fixed speed mode to run at its own speed

Data type Default value Range Unit
ARRAY[1..8] of INT - > 0 rpm

The input FOLLOWER_SPEED defines the follower speed in rpm for each pump when the input
FOLLOWER_MODE = 2 (Fixed speed mode to run at its own speed).

Data type Default value Range Unit
INT 100 > 0 rpm

The input MINIMUM_SPEED defines the minimum speed in rpm at which the pump should run
to maintain the minimum flow.

Data type Default value Range Unit
TIME 5 - s

The input TIME_TO_RUN_MIN_SPEED defines the time limit at which the pump should run at
the value in the input MINIMUM_SPEED. After this time duration has elapsed the PID control
take over the control of flow or pressure and the pumps start running based on the PID output
and the follower mode speed.

FLOW_
SETPOINT

NOMINAL_
FLOW

START_DELAY

STOP_DELAY

FOLLOWER_
MODE

FOLLOWER_
SPEED

MINIMUM_
SPEED

TIME_TO_RUN_
MIN_SPEED

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3601

Data type Default value Range Unit
REAL 0.0 - %

The input PID_OUT of the function block PMP_SLEEP indicates the PID output in percentage.
The value is the same as the output PID_OUT of the function blocks PMP_PID.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input PROTECTION_SHUTDOWN receives a digital signal to shut down the pump station
for protection. The input comes from the output PROTECTION_SHUTDOWN of the protection
function blocks PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.
● When input is TRUE, pump station is shutdown.
● When input is FALSE, pump station operation continues.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START_BLOCKER receives a digital signal to prevent the starting of pump station for
protection. The input comes from the output START_BLOCKER of the protection function blocks
PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.

The input START_BLOCKER will not stop the already running pump.

● When input is TRUE, pump start is not allowed.
● When input is FALSE, pump start is allowed.

Data type Default value Range Unit
INT 0 1 ... 8 -

The input NO_OF_PUMPS_RUNNING receives the number of pumps running. The input comes
from the output NO_OF_PUMPS_RUNNING of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PNSTART receives the identification number of the next pump to start
in the sequence. The input comes from the output PNSTART of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PNSTOP receives the identification number of the next pump to stop in the sequence.
The input comes from the output PNSTOP of the function block PMP_SEQUENCE_GEN.

PID_OUT

PROTECTION_
SHUTDOWN

START_
BLOCKER

NO_OF_PUMPS
_RUNNING

PNSTART

PNSTOP

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3602

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 0 1 ... 8 -

The input NACTIVE receives the number of pumps active for operation in automatic mode. The
input comes from the output NACTIVE of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
ARRAY[1..8] of BOOL FALSE TRUE/FALSE -

The input READY_FOR_AUTOMATION receives an array of pumps ready for automatic oper-
ation. The input comes from the output READY_FOR_AUTOMATION of the function block
PMP_INTERFACE_VFD or PMP_INTERFACE_DOL.

The READY_FOR_AUTOMATION[1] connects to the PUMP ID = 1. This pattern
must be followed for all pump IDs.

● When input is TRUE, pump is ready for operation in automatic mode.
● When input is FALSE, pump is not ready for operation in automatic mode.

Data type Default value Range Unit
ARRAY[1..8] of INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the status of antijam operation. The input comes from
the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

Data type Default value Range Unit
ARRAY[1..8] of INT - 0 ... 3 -

The input ANTIJAM_MODE indicates the selected antijam mode.
0 = Disable antijam
1 = Master enabled
2 = At start
3 = Manual mode
The input ANTIJAM_MODE of the used pump distributor function block receives the
antijam mode. This input comes from the output ANTIJAM_MODE of the function blocks
PMP_ANTIJAM.

MASTER_PUMP

NACTIVE

READY_FOR_
AUTOMATION

ANTIJAM_
STATUS

ANTIJAM_
MODE

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3603

Data type Default value Range Unit
INT 0 0 ... 4 -

The input SOFTFILL_STATUS indicates the status of softfilling function.
0 = Disable the softfill (Softfill operation is disabled)
1 = Ready to start (Softfill operation is ready to start)
2 = Softfill in progress (Softfill operation has started)
3 = Softfill completed (Softfill operation is completed)
4 = Softfill with fault (Softfill operation stopped due to a fault)

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Indicates that the master pump in the traditional pump combination has tripped. This input
comes from the output TRAD_MASTER_TRIP of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

SOFTFILL_
STATUS

TRAD_MASTER
_TRIP

STATION_
PARAMETERS

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3604

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The output AUTO_START_CMD sends the automatic start command to the
input AUTO_START_CMD of interface function block PMP_INTERFACE_VFD or
PMP_INTERFACE_DOL for the required pump ID.

The output AUTO_START_CMD[1] must be connected to the
input AUTO_START_CMD of function block PMP_INTERFACE_VFD or
PMP_INTERFACE_DOL with PUMP ID = 1. This pattern must be followed for
all pump IDs.

ERR

ERNO

AUTO_START_
CMD

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3605

Data type Default value Range Unit
ARRAY[1..8] of INT - - -

The output AUTO_SPEED_REF sends the automatic speed reference value in rpm to the input
PUMP_AUTO_SPEED_REF of interface function block PMP_INTERFACE_VFD of the required
pump ID.

The output AUTO_SPEED_REF[1] must be connected to the input
AUTO_SPEED_REF of function block PMP_INTERFACE_VFD with
PUMP ID = 1. This pattern must be followed for all pump IDs.

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The output START_ANTIJAM starts the antijam operation in automatic mode. The operation is
effective only when the output is connected to the input START_AUTO of the function block
PMP_ANTIJAM of the required pump ID.

The output START_ANTIJAM[1] must be connected to the input START_AUTO
of function block PMP_ANTIJAM with PUMP ID = 1. This pattern must be
followed for all pump IDs.

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The output DRIVE_RFG_DISABLED bypasses the ramp function generator (RFG) during
antijam operation. The output is effective only if the function block is connected to the control
word (CW) of the drive.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output SOFTFILL_START of the used pump distributor starts the soft filling operation. This
function is effective only when this output is connected to the input START of the function block
PMP_SOFT_FILLING.
● When input is TRUE, softfill function starts.
● When input is FALSE, softfill function stops if running.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input DISTRIBUTOR_RUNNING indicates the running status of the distributor.
This input is connected to the output DISTRIBUTOR_RUNNING of any of the the
distributor function blocks PMP_LEVEL_DISTRIBUTOR, PMP_FLOW_DISTRIBUTOR or
PMP_PRESSURE_DISTRIBUTOR.
● When output is TRUE, distributor is running.
● When output is FALSE, distributor is not running.

AUTO_SPEED_
REF

START_
ANTIJAM

DRIVE_RFG_
DISABLED

SOFTFILL_
START

DISTRIBUTOR_
RUNNING

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3606

Error codes
The error codes of function block PMP_FLOW_DISTRIBUTOR are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16400 4010 Flow control can run only
when the PROCESS_MODE in
PMP_CONFIGURATION = 2

16433 4031 Value of FLOW_SET_POINT is less than 0

16449 4041 Value in NOMINAL_FLOW is less than or equal
to 0

16497 4071 Value in FOLLOWER_MODE is less than 1

16498 4072 Value in FOLLOWER_MODE is greater than 2

16512 4080 Array in FOLLOWER_SPEED is less than or
equal to 0

16529 4091 Value in MINIMUM_SPEED is less than 0

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3607

1.5.14.2.7 PMP_PRESSURE_DISTRIBUTOR

The function block PMP_PRESSURE_DISTRIBUTOR is used to stabilize pressure in the net-
work. The function block is used together with function block PMP_PID to stabilize pressure
in the network. The function block then sends pump ON/OFF command to the function blocks
PMP_INTERFACE_VFD or PMP_INTERFACE_DOL in the automatic mode of the pumping sta-
tion. For pumps run by variable frequency drive, the function block also sends speed references
to function block PMP_INTERFACE_VFD.

This function block is effective only when the input
PROCESS_MODE = 1 (Pressure control) in function block
PMP_CONFIGURATION.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3608

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START starts the execution of the function block.
● When input is TRUE, the execution starts.
● When input is FALSE, the execution stops if running.

Data type Default value Range Unit
ARRAY[1..7] of INT - - rpm

The input START_SPEED_FWR defines the start speed in rpm for the seven follower pumps.

EN

START

START_SPEED_
FWR

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3609

Data type Default value Range Unit
ARRAY[1..7] of INT - - rpm

The input STOP_SPEED_FWR defines the stop speed in rpm for the seven follower pumps.

Data type Default value Range Unit
TIME 0 - s

The input START_DELAY defines the delay time to start the follower pumps.

Data type Default value Range Unit
TIME 0 - s

The input STOP_DELAY defines the delay time to stop the follower pumps.

Data type Default value Range Unit
INT 1 1 ... 2 -

The input FOLLOWER_MODE selects the follower mode of the follower pumps.
1 = Copy master mode to run at the master pump speed
2 = Fixed speed mode to run at its own speed

Data type Default value Range Unit
ARRAY[1..8] of INT - > 0 rpm

The input FOLLOWER_SPEED defines the follower speed in rpm for each pump when the input
FOLLOWER_MODE = 2 (Fixed speed mode to run at its own speed).

Data type Default value Range Unit
INT 100 > 0 rpm

The input MINIMUM_SPEED defines the minimum speed in rpm at which the pump should run
to maintain the minimum flow.

Data type Default value Range Unit
TIME 5 - s

The input TIME_TO_RUN_MIN_SPEED defines the time limit at which the pump should run at
the value in the input MINIMUM_SPEED. After this time duration has elapsed the PID control
take over the control of flow or pressure and the pumps start running based on the PID output
and the follower mode speed.

Data type Default value Range Unit
REAL 0.0 - %

The input PID_OUT of the function block PMP_SLEEP indicates the PID output in percentage.
The value is the same as the output PID_OUT of the function blocks PMP_PID.

STOP_SPEED_
FWR

START_DELAY

STOP_DELAY

FOLLOWER_
MODE

FOLLOWER_
SPEED

MINIMUM_
SPEED

TIME_TO_RUN_
MIN_SPEED

PID_OUT

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3610

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input PROTECTION_SHUTDOWN receives a digital signal to shut down the pump station
for protection. The input comes from the output PROTECTION_SHUTDOWN of the protection
function blocks PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.
● When input is TRUE, pump station is shutdown.
● When input is FALSE, pump station operation continues.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START_BLOCKER receives a digital signal to prevent the starting of pump station for
protection. The input comes from the output START_BLOCKER of the protection function blocks
PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.

The input START_BLOCKER will not stop the already running pump.

● When input is TRUE, pump start is not allowed.
● When input is FALSE, pump start is allowed.

Data type Default value Range Unit
INT 0 1 ... 8 -

The input NO_OF_PUMPS_RUNNING receives the number of pumps running. The input comes
from the output NO_OF_PUMPS_RUNNING of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PNSTART receives the identification number of the next pump to start
in the sequence. The input comes from the output PNSTART of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PNSTOP receives the identification number of the next pump to stop in the sequence.
The input comes from the output PNSTOP of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

PROTECTION_
SHUTDOWN

START_
BLOCKER

NO_OF_PUMPS
_RUNNING

PNSTART

PNSTOP

MASTER_PUMP

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3611

Data type Default value Range Unit
INT 0 1 ... 8 -

The input NACTIVE receives the number of pumps active for operation in automatic mode. The
input comes from the output NACTIVE of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
ARRAY[1..8] of BOOL FALSE TRUE/FALSE -

The input READY_FOR_AUTOMATION receives an array of pumps ready for automatic oper-
ation. The input comes from the output READY_FOR_AUTOMATION of the function block
PMP_INTERFACE_VFD or PMP_INTERFACE_DOL.

The READY_FOR_AUTOMATION[1] connects to the PUMP ID = 1. This pattern
must be followed for all pump IDs.

● When input is TRUE, pump is ready for operation in automatic mode.
● When input is FALSE, pump is not ready for operation in automatic mode.

Data type Default value Range Unit
ARRAY[1..8] of INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the status of antijam operation. The input comes from
the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

Data type Default value Range Unit
ARRAY[1..8] of INT - 0 ... 3 -

The input ANTIJAM_MODE indicates the selected antijam mode.
0 = Disable antijam
1 = Master enabled
2 = At start
3 = Manual mode
The input ANTIJAM_MODE of the used pump distributor function block receives the
antijam mode. This input comes from the output ANTIJAM_MODE of the function blocks
PMP_ANTIJAM.

NACTIVE

READY_FOR_
AUTOMATION

ANTIJAM_
STATUS

ANTIJAM_
MODE

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3612

Data type Default value Range Unit
INT 0 0 ... 4 -

The input SOFTFILL_STATUS indicates the status of softfilling function.
0 = Disable the softfill (Softfill operation is disabled)
1 = Ready to start (Softfill operation is ready to start)
2 = Softfill in progress (Softfill operation has started)
3 = Softfill completed (Softfill operation is completed)
4 = Softfill with fault (Softfill operation stopped due to a fault)

Data type Default value Range Unit
INT 0 0 ... 3 -

The output SLEEP_STATUS of the function block PMP_SLEEP indicates the sleep status of the
pump.
0 = Inactive/Wakeup inactive
1 = Boost activated
2 = Sleep mode active
3 = Wakeup function active

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Indicates that the master pump in the traditional pump combination has tripped. This input
comes from the output TRAD_MASTER_TRIP of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

SOFTFILL_
STATUS

SLEEP_STATUS

TRAD_MASTER
_TRIP

STATION_
PARAMETERS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3613

Parameter Data type Default
value

Description

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3614

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The output AUTO_START_CMD sends the automatic start command to the
input AUTO_START_CMD of interface function block PMP_INTERFACE_VFD or
PMP_INTERFACE_DOL for the required pump ID.

The output AUTO_START_CMD[1] must be connected to the
input AUTO_START_CMD of function block PMP_INTERFACE_VFD or
PMP_INTERFACE_DOL with PUMP ID = 1. This pattern must be followed for
all pump IDs.

Data type Default value Range Unit
ARRAY[1..8] of INT - - -

The output AUTO_SPEED_REF sends the automatic speed reference value in rpm to the input
PUMP_AUTO_SPEED_REF of interface function block PMP_INTERFACE_VFD of the required
pump ID.

The output AUTO_SPEED_REF[1] must be connected to the input
AUTO_SPEED_REF of function block PMP_INTERFACE_VFD with
PUMP ID = 1. This pattern must be followed for all pump IDs.

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The output START_ANTIJAM starts the antijam operation in automatic mode. The operation is
effective only when the output is connected to the input START_AUTO of the function block
PMP_ANTIJAM of the required pump ID.

The output START_ANTIJAM[1] must be connected to the input START_AUTO
of function block PMP_ANTIJAM with PUMP ID = 1. This pattern must be
followed for all pump IDs.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output SOFTFILL_START of the used pump distributor starts the soft filling operation. This
function is effective only when this output is connected to the input START of the function block
PMP_SOFT_FILLING.
● When input is TRUE, softfill function starts.
● When input is FALSE, softfill function stops if running.

ERNO

AUTO_START_
CMD

AUTO_SPEED_
REF

START_
ANTIJAM

SOFTFILL_
START

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3615

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input DISTRIBUTOR_RUNNING indicates the running status of the distributor.
This input is connected to the output DISTRIBUTOR_RUNNING of any of the the
distributor function blocks PMP_LEVEL_DISTRIBUTOR, PMP_FLOW_DISTRIBUTOR or
PMP_PRESSURE_DISTRIBUTOR.
● When output is TRUE, distributor is running.
● When output is FALSE, distributor is not running.

Error codes
The error codes of function block PMP_FLOW_DISTRIBUTOR are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16400 4010 Flow control can run only
when the PROCESS_MODE in
PMP_CONFIGURATION = 2

16432 4030 Value in START_SPEED_SLV is not in ascending
order

16448 4040 Value in STOP_SPEED_SLV is not in ascending
order

16451 4043 Value in START_SPEED_SLV[1] is not greater
than STOP_SPEED_SLV[1] and so on for the
rest of the pumps

16497 4071 Value in FOLLOWER_MODE is less than 1

16498 4072 Value in FOLLOWER_MODE is greater than 2

16512 4080 Array in FOLLOWER_SPEED is not in ascending
order

16529 4091 Value in MINIMUM_SPEED is less than the min-
imum limit

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

DISTRIBUTOR_
RUNNING

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3616

1.5.14.2.8 PMP_PID

The function block PMP_PID is used for closed loop control of pressure or flow in the network.
The function block receives the set value and actual value from the process and does
the closed loop control. The function block is used to control pressure or flow when the
input PROCESS_MODE of function block PMP_CONFIGURATION is selected as either
pressure control (1) or flow control (2) in the multi pumping and traditional pumping station.

This function is not used on DOL pumping stations.

The functionality of the PMP_PID is explained in the figure below.Functionality

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3617

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
REAL 1.0 > 0.0 Pressure: bar

Flow: m3/h

The input SET_VALUE defines the set value of process variable in real values, e.g.,
bar for pressure,
cubic meters per hour for flow.

General
information

EN

SET_VALUE

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3618

Data type Default value Range Unit
REAL 0.0 > 0.0 Pressure: bar

Flow: m3/h

The input ACTUAL_VALUE defines the actual value of process variable in real values. The unit
is same as the unit in the input SET_VALUE.

Data type Default value Range Unit
REAL 0.1 > 0.0

The input KP defines the proportional gain of the PID.

Data type Default value Range Unit
REAL 1.0 > 0.0 s

The input TN defines the integral time of the PID in seconds.

Data type Default value Range Unit
REAL 0.0 > 0.0 s

The input TD defines the derivative time of the PID in seconds.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input RESET resets the output of the PID and works as AntiWind Up.
● When input is TRUE, PID output is reset.
● When input is FALSE, PID output is not reset.

Data type Default value Range Unit
REAL 0.0 0.0 ... 200.0 -

The input Y_OFFSET adds the offset to the PID output.

Data type Default value Range Unit
REAL 100.0 0.0 ... 200.0 -

The input PID_MAX_LIMIT defines the maximum limit of the PID output.

Data type Default value Range Unit
REAL 0.0 0.0 ... 200.0 -

The input PID_MIN_LIMIT defines the minimum limit of the PID output.

ACTUAL_
VALUE

KP

TN

TD

RESET

Y_OFFSET

PID_MAX_LIMIT

PID_MIN_LIMIT

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3619

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
REAL 0.0 > 0.0 -

The output SLEEP_BOOST_REF of the function block PMP_SLEEP indicates the sleep boost
reference. This output is connected as input into PMP_PID function block.

Data type Default value Range Unit
INT 0 0 ... 3 -

The output SLEEP_STATUS of the function block PMP_SLEEP indicates the sleep status of the
pump.
0 = Inactive/Wakeup inactive
1 = Boost activated
2 = Sleep mode active
3 = Wakeup function active

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input PROTECTION_SHUTDOWN receives a digital signal to shut down the pump station
for protection. The input comes from the output PROTECTION_SHUTDOWN of the protection
function blocks PMP_PROTECTION_ANALOG and PMP_PROTECTION_BINARY.
● When input is TRUE, pump station is shutdown.
● When input is FALSE, pump station operation continues.

Data type Default value Range Unit
ARRAY[1..8] of INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the status of antijam operation. The input comes from
the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

MASTER_PUMP

SLEEP_
BOOST_REF

SLEEP_STATUS

PROTECTION_
SHUTDOWN

ANTIJAM_
STATUS

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3620

Data type Default value Range Unit
INT 0 0 ... 4 -

The input SOFTFILL_STATUS indicates the status of softfilling function.
0 = Disable the softfill (Softfill operation is disabled)
1 = Ready to start (Softfill operation is ready to start)
2 = Softfill in progress (Softfill operation has started)
3 = Softfill completed (Softfill operation is completed)
4 = Softfill with fault (Softfill operation stopped due to a fault)

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Indicates that the master pump in the traditional pump combination has tripped. This input
comes from the output TRAD_MASTER_TRIP of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

SOFTFILL_
STATUS

TRAD_MASTER
_TRIP

STATION_
PARAMETERS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3621

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
REAL 0.0 - %

The input PID_OUT of the function block PMP_SLEEP indicates the PID output in percentage.
The value is the same as the output PID_OUT of the function blocks PMP_PID.

Data type Default value Range Unit
REAL 0.0 - %

The output PID_DEVIATION indicates PID error which is deviation of set value from actual
value.

ERR

ERNO

PID_OUT

PID_DEVIATION

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3622

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output MAX_LIMIT_REACHED indicates that the PID output has reached the maximum
limit.
● When output is TRUE, PID output has reached maximum limit.
● When output is FALSE, PID output is below the maximum limit.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output MIN_LIMIT_REACHED indicates that the PID output has reached the minimum limit.
● When output is TRUE, PID output has reached minimum limit.
● When output is FALSE, PID output is above the minimum limit.

Error codes
The error codes of function block PMP_PID are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16417 4021 Value in input SET_VALUE is less than 0.0

16433 4031 Value in input ACTUAL_VALUE is less than 0.0

16449 4041 Value in input KP is less than 0.0

16465 4051 Value in input TN is less than 0.0

16481 4061 Value in input TD is less than 0.0

16513 4081 Value in input Y_OFFSET is less than 0.0

16514 4082 Value in input Y_OFFSET is more than
PID_MAX_LIMIT.

16529 4091 Value in input PID_MAX_LIMIT is less than
PID_MIN_LIMIT

16530 4092 Value in input PID_MAX_LIMIT is greater than
200.0

16545 40A1 Value in input PID_MIN_LIMIT is less than 0.0

16577 40C1 Value in input SLEEP_BOOST_REF is less than
0.0

16593 40D1 Value in input SLEEP_STATUS is less than 0

16594 40D2 Value in input SLEEP_STATUS is greater than 3

16625 40F1 Value in input ANTIJAM_STATUS is less than 0

16626 40F2 Value in input ANTIJAM_STATUS is greater than
2

16641 4101 Value in input SOFTFILL_STATUS is less than 0

16642 4102 Value in input SOFTFILL_STATUS is greater than
4

MAX_LIMIT_
REACHED

MIN_LIMIT_
REACHED

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3623

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.9 PMP_SEQUENCE_GEN

The function block PMP_SEQUENCE_GEN is used to generate the pump start and stop
sequence. The function block executes the following start and stop sequence functions:
● Decides the sequence of the pumps based on the process demand.
● Decides the sequence in which a pump should start and stop next.
● Indicates the pump that is least run in the network to start next.
● Indicates the pump that has run maximum in the network to stop next.
● Sends the start and stop sequence information to the distributor function blocks.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3624

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
ARRAY[1..8] of BOOL FALSE TRUE/FALSE -

The input READY_FOR_AUTOMATION receives an array of pumps ready for automatic oper-
ation. The input comes from the output READY_FOR_AUTOMATION of the function block
PMP_INTERFACE_VFD or PMP_INTERFACE_DOL.

The READY_FOR_AUTOMATION[1] connects to the PUMP ID = 1. This pattern
must be followed for all pump IDs.

● When input is TRUE, pump is ready for operation in automatic mode.
● When input is FALSE, pump is not ready for operation in automatic mode.

Data type Default value Range Unit
ARRAY[1..8] of BOOL - TRUE/FALSE -

The input OPERATING receives the operating status of all pumps (both variable frequency
drives and direct online motors). The array is created from the output PUMP_OPERATING of
the interface function blocks PMP_INTERFACE_VFD and PMP_INTERFACE_DOL.

Data type Default value Range Unit
ARRAY[1..8] of REAL - - -

The input RUNTIME receives the actual runtime of all pumps (both variable frequency drives
and direct online motors) in hours. The array is created from the output ACT_RUNTIME of the
interface function blocks PMP_INTERFACE_VFD and PMP_INTERFACE_DOL.

EN

READY_FOR_
AUTOMATION

OPERATING

RUNTIME

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3625

Data type Default value Range Unit
ARRAY[1..8] of INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the status of antijam operation. The input comes from
the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

Data type Default value Range Unit
ARRAY[1..8] of INT - 0 ... 3 -

The input ANTIJAM_MODE indicates the selected antijam mode.
0 = Disable antijam
1 = Master enabled
2 = At start
3 = Manual mode
The input ANTIJAM_MODE of the used pump distributor function block receives the
antijam mode. This input comes from the output ANTIJAM_MODE of the function blocks
PMP_ANTIJAM.

Data type Default value Range Unit
INT 0 0 ... 4 -

The input SOFTFILL_STATUS indicates the status of softfilling function.
0 = Disable the softfill (Softfill operation is disabled)
1 = Ready to start (Softfill operation is ready to start)
2 = Softfill in progress (Softfill operation has started)
3 = Softfill completed (Softfill operation is completed)
4 = Softfill with fault (Softfill operation stopped due to a fault)

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

ANTIJAM_
STATUS

ANTIJAM_
MODE

SOFTFILL_
STATUS

STATION_
PARAMETERS

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3626

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3627

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PNSTART receives the identification number of the next pump to start
in the sequence. The input comes from the output PNSTART of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PNSTOP receives the identification number of the next pump to stop in the sequence.
The input comes from the output PNSTOP of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 0 1 ... 8 -

The input NO_OF_PUMPS_RUNNING receives the number of pumps running. The input comes
from the output NO_OF_PUMPS_RUNNING of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
INT 0 1 ... 8 -

The input NACTIVE receives the number of pumps active for operation in automatic mode. The
input comes from the output NACTIVE of the function block PMP_SEQUENCE_GEN.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

Indicates that the master pump in the traditional pump combination has tripped. This input
comes from the output TRAD_MASTER_TRIP of the function block PMP_SEQUENCE_GEN.

MASTER_PUMP

PNSTART

PNSTOP

NO_OF_PUMPS
_RUNNING

NACTIVE

TRAD_MASTER
_TRIP

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3628

Error codes
The error codes of function block PMP_SEQUENCE_GEN are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16449 4041 Value of RUNTIME is less than 0

16465 4051 Value in input ANTIJAM_STATUS is less than 0

16466 4052 Value in input ANTIJAM_STATUS is greater than
2

16481 4061 Value in input ANTIJAM_MODE is less than 0

16482 4062 Value in input ANTIJAM_MODE is greater than 3

16497 4071 Value in input SOFTFILL_STATUS is less than 0

16498 4072 Value in input SOFTFILL_STATUS is greater than
4

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3629

1.5.14.2.10 PMP_ANTIJAM

Antijam overview
The pump antijam function is used to prevent building up of solids on the pump impellers
or piping. The function consists of a programmable sequence of forward and reverse runs of
the pump to shake off any residue on the impeller or piping. See timing diagram below. This
function is mostly used with booster and wastewater pumps.

The function block PMP_ANTIJAM performs the antijam function by running the pump at high
speeds without any ramp up/down time.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Function block
description

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3630

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
INT 1 1 ... 8 -

The input PUMP_ID defines the pump identification number.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START_AUTO receives a digital signal to start antijam opera-
tion in automatic mode. The input comes from the output START_ANTIJAM
of function blocks PMP_LEVEL_DISTRIBUTOR, PMP_FLOW_DISTRIBUTOR and
PMP_PRESSURE_DISTRIBUTOR. The input is not effective if the value in input
MODE = 3 (Manual mode).

The input START_AUTO of PUMP_ID = 1 must be connected to the output
START_ANTIJAM[1] of distributors. This pattern must be followed for all pump
IDs.

● When input is TRUE, antijam operation starts in automatic mode.
● When input is FALSE, antijam operation stops if running.

EN

PUMP_ID

START_AUTO

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3631

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START_MANUAL receives a digital signal to start antijam operation in
manual mode. The input comes from the output START_ANTIJAM of function blocks
PMP_INTERFACE_VFD and PMP_INTERFACE_DOL. The input is effective only when value
in input MODE = 3 (Manual mode).
● When input is TRUE, antijam operation starts in manual mode.
● When input is FALSE, antijam operation stops if running.

Data type Default value Range Unit
INT 0 0 ... 3 -

The input MODE selects the antijam operation mode.
0 = Disable antijam
1 = Master enabled
2 = At start
3 = Manual mode

Data type Default value Range Unit
INT 100 > 0 rpm

The input FWD_REF_SPEED defines the forward direction speed reference in rpm to clean the
pump.

Data type Default value Range Unit
INT 100 > 0 rpm

The input BWD_REF_SPEED defines the backward direction speed reference in rpm to clean
the pump.
This input is effective only if the input ALLOW_REVERSE = TRUE.

Data type Default value Range Unit
TIME 10 - s

The input OFF_TIME defines the time period for which antijam operation will pause after either
a forward or backward movement is completed.

Data type Default value Range Unit
TIME 10 - s

The input FWD_STEP_TIME defines the time duration for which the pump moves in forward
direction for antijam operation.

Data type Default value Range Unit
TIME 10 - s

The input BWD_STEP_TIME defines the time duration for which the pump moves in backward
direction for antijam operation.

START_
MANUAL

MODE

FWD_REF_
SPEED

BWD_REF_
SPEED

OFF_TIME

FWD_STEP_
TIME

BWD_STEP_
TIME

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3632

Data type Default value Range Unit
INT 1 > 0 -

The input ANTIJAM_STEPS defines the number of steps in forward or backward movement to
be performed in antijam operation.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input ALLOW_REVERSE allows the pump run by variable frequency drive to move in
reverse direction to perform antijam operation.

The input ALLOW_REVERSE is not effective for DOL pumps.

● When input is TRUE, pump with VFD performs antijam operation in the reverse direction.
● When input is FALSE, pump with VFD stops antijam operation in the reverse direction.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input comes from the output READY_FOR_AUTOMATION of the function block
PMP_INTERFACE_VFD or PMP_INTERFACE_DOL.
● When input is TRUE, pump is ready for operation in automatic mode.
● When input is FALSE, pump is not ready for operation in automatic mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input DISTRIBUTOR_RUNNING indicates the running status of the distributor.
This input is connected to the output DISTRIBUTOR_RUNNING of any of the the
distributor function blocks PMP_LEVEL_DISTRIBUTOR, PMP_FLOW_DISTRIBUTOR or
PMP_PRESSURE_DISTRIBUTOR.
● When output is TRUE, distributor is running.
● When output is FALSE, distributor is not running.

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

ANTIJAM_
STEPS

ALLOW_
REVERSE

READY_FOR_
AUTOMATION

DISTRIBUTOR_
RUNNING

STATION_
PARAMETERS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3633

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3634

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the antijam operation status of the pump. The input
comes from the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

Data type Default value Range Unit
INT 0 0 ... 3 -

The input ANTIJAM_MODE indicates the selected antijam mode.
0 = Disable antijam
1 = Master enabled
2 = At start
3 = Manual mode
The input ANTIJAM_MODE receives the antijam mode. The input comes from the output
ANTIJAM_MODE of the function block PMP_ANTIJAM.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output ANTIJAM_START of the function block PMP_ANTIJAM starts the antijam oper-
ation. This output is connected with the input ANTIJAM_START of the function blocks
PMP_INTERFACE_VFD and PMP_INTERFACE_DOL.
● When output is TRUE, antijam operation starts.
● When output is FALSE, antijam operation stops if running.

ERR

ERNO

ANTIJAM_
STATUS

ANTIJAM_
MODE

ANTIJAM_
START

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3635

Data type Default value Range Unit
INT 0 - rpm

The output ANTIJAM_SPEED of the function block PMP_ANTIJAM indicates the speed for
antijam operation. This output is connected to the input ANTIJAM_SPEED of the function block
PMP_INTERFACE_VFD.

Error codes
The error codes of function block PMP_ANTIJAM are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16417 4021 Value of PUMP_ID is less than 0

16418 4022 Value of PUMP_ID is greater
than NUMBER_OF_PUMPS in
PMP_CONFIGURATION

16435 4033 Value of START_AUTO = TRUE when MODE = 3

16451 4043 Value of START_MANUAL = TRUE when
MODE is not 3

16465 4051 Value of MODE is less than 0

16466 4052 Value of MODE is more than 3

16481 4061 Value of FWD_REF_SPEED is less than 0

16497 4071 Value of BWD_REF_SPEED is less than 0

16561 40B1 Value of ANTIJAM_STEPS is less than 0

16579 40C3 Value of ALLOW_REVERSE = TRUE for the
pump fed by DOL motor

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

ANTIJAM_
SPEED

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3636

1.5.14.2.11 PMP_ENERGY_CALC

The function block PMP_ENERGY_CALC calculates the energy consumption of the pumping
station run by variable frequency drive and gives the information on cumulative flow in cubic
meters. The function includes following calculations:
● Total energy consumed
● Total energy saved
● Total cost saved
● Reduced CO2 emission

For correct calculations this function block must be called in the task manager
with 50 ms cyclic time.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3637

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START starts the execution of the function block.
● When input is TRUE, the execution starts.
● When input is FALSE, the execution stops if running.

Data type Default value Range Unit
REAL 1.0 > 0.0 -

The input TARIFF defines the tariff rate per kWh in different currencies, e.g., Dollar, Euro, etc.

Data type Default value Range Unit
REAL 1.0 > 0.0 t/MWh

The input CO2_CONVERSION defines the factor to convert the energy consumed in
CO2 emission in t/MWh.

Data type Default value Range Unit
INT 10 > 0 h

The input MONITOR_DURATION defines the time duration in hours to monitor the energy
consumption.

Data type Default value Range Unit
ARRAY[1..8] of REAL - - m3/h

The input PUMP_FLOW receives the actual flow of each pump in cubic meters per hour (m3/h).

The index 1 array is connected to the PUMP_ID = 1. This pattern follows for all
pump IDs.

Data type Default value Range Unit
ARRAY[1..8] of REAL - - kW

The input PUMP_DOL_POWER defines the direct online power of each pump in kW, if the
pumps are directly connected to the motor. The nominal power of the motor is connected to the
pump.

EN

START

TARIFF

CO2_
CONVERSION

MONITOR_
DURATION

PUMP_FLOW

PUMP_DOL_
POWER

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3638

Data type Default value Range Unit
ARRAY[1..8] of REAL - - kW

The input PUMP_ACT_POWER defines the actual power of each pump in kW. The power is
read from the variable frequency drive.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input RESET_TOTAL_VOLUME resets the total volume.
● When input is TRUE, total volume is reset.
● When input is FALSE, pump continues with total volume.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input RESET_TOTAL_ENERGY resets the total energy value.
● When input is TRUE, total energy value is reset.
● When input is FALSE, pump continues with total energy value.

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

PUMP_ACT_
POWER

RESET_TOTAL_
VOLUME

RESET_TOTAL_
ENERGY

STATION_
PARAMETERS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3639

Parameter Data type Default
value

Description

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

Data type Default value Range Unit
LREAL - - m3

The variable input/output TOTAL_VOLUME indicates the cumulative flow volume in
cubic meters.
The total volume is calculated by combining the flow of all pumps in cubic meters.

Data type Default value Range Unit
LREAL - - kWh

The variable input/output TOTAL_ENERGY indicates the total actual energy in kWh.
The total energy is calculated by combining the actual power of all pumps in kW in a hour.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

TOTAL_
VOLUME

TOTAL_
ENERGY

DONE

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3640

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
REAL 0.0 - kWh

The output ENERGY_CONSUMED indicates the energy consumed (kWh) in the monitoring
duration.

Data type Default value Range Unit
REAL 0.0 - kWh

The output ENERGY_SAVED indicates the saved energy in kWh. Saved energy is the differ-
ence of energy consumed with VFD pump and energy consumed if it was a DOL pump.

Data type Default value Range Unit
REAL 0.0 - -

The output MONEY_SAVED indicates the money saved in tariff units.

Data type Default value Range Unit
REAL 0.0 - t/MWh

The output CO2_REDUCTION indicates the reduction of CO2 emission in t/MWh.

ERR

ERNO

ENERGY_
CONSUMED

ENERGY_
SAVED

MONEY_SAVED

CO2_
REDUCTION

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3641

Error codes
The error codes of function block PMP_ENERGY_CALC are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16433 4031 Value of TARIFF is less than the minimum limit

16449 4041 Value of CO2_CONVERSION is less than the
minimum limit

16465 4051 Value of MONITOR_DURATION is less than or
equal to 0

16497 4071 Value of PUMP_DOL_POWER is less than or
equal to 0.0

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.12 PMP_FLOW_CALC_HQ

The function block PMP_FLOW_CALC_HQ calculates the flow rate of pumps using the pump
head flow (HQ) curve characteristics. This function is applicable only for pumps run by variable
frequency drives.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3642

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
ARRAY[1..5] of REAL - - m

The input HQ_CURVE_H defines an array of head values for the HQ curve of pumps run by
variable frequency drives. The values are in meters. HQ parameters are available in the pump
characteristics of manufacturer’s specification.

Data type Default value Range Unit
ARRAY[1..5] of REAL - - m3/h

The input HQ_CURVE_Q defines an array of flow rate values for HQ curve of pumps run
by variable frequency drives. The values are in cubic meters per hour. HQ parameters are
available in the pump characteristics of manufacturer’s specification.

Data type Default value Range Unit
INT 1400 > 0 rpm

The input NOMINAL_SPEED defines the rated speed in rpm of the pump run by variable
frequency drive.

General
information

EN

HQ_CURVE_H

HQ_CURVE_Q

NOMINAL_
SPEED

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3643

Data type Default value Range Unit
INT 10 > 1 rpm

The input ACT_SPEED indicates the actual speed of the variable frequency drive (VFD) in rpm.

Data type Default value Range Unit
REAL 1000.0 > 0.0 kg/m3

The input FLUID_DENSITY defines the fluid density in kg/m3.

Data type Default value Range Unit
REAL 0.0 - -

The input INLET_PRESSURE receives the inlet pressure from the sensor that measures suc-
tion pressure.

Data type Default value Range Unit
REAL 0.0 - -

The input OUTLET_PRESSURE receives the outlet pressure from the sensor that measures
discharge pressure.

Data type Default value Range Unit
REAL 0.0 - m

The input HEAD_DIFF_INLET_OUTLET defines the differential pressure of inlet and outlet head
values in meters. The input is used only when direct measurement of differential pressure is
available. If direct measurement of differential pressure is not available, then this input must be
left as unassigned.

Data type Default value Range Unit
INT 50 - rpm

The input LOW_SPEED_CALC defines the low speed limit in rpm. This function block calculates
the actual flow only when input ACTUAL_SPEED is more than this value.

ACT_SPEED

FLUID_DENSITY

INLET_
PRESSURE

OUTLET_
PRESSURE

HEAD_DIFF_
INLET_OUTLET

LOW_SPEED_
CALC

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3644

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
INT 0 - m3/h

The output ACT_FLOW indicates the calculated actual flow in cubic meters per hour.

ERR

ERNO

ACT_FLOW

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3645

Error codes
The error codes of function block PMP_FLOW_CALC_HQ are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16416 4020 Array of values in HQ_CURVE_H are not in
ascending order

16432 4030 Array of values in HQ_CURVE_Q are not in
ascending order

16449 4041 Value of NOMINAL_SPEED is less than 0

16481 4061 Value of INLET_PRESSURE is less than 0

16497 4071 Value of OUTLET_PRESSURE is less than 0

16499 4073 Value of INLET_PRESSURE is greater than
OUTLET_PRESSURE

16513 4081 Value of FLUID_DENSITY is less than or equal to
0

16529 4091 Value of HEAD_DIFF_INLET_OUTLET is less
than 0

16545 40A1 Value of LOW_SPEED_CALC is less than 0

16547 40A3 Value of LOW_SPEED_CALC is greater than or
equal to NOMINAL_SPEED

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3646

1.5.14.2.13 PMP_FLOW_CALC_PQ

The function block PMP_FLOW_CALC_PQ calculates the flow rate of pumps using the pump
pressure flow rate (PQ) curve characteristics. This function is applicable only for pumps run by
variable frequency drives.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
ARRAY[1..5] of REAL - - m

The input PQ_CURVE_P defines an array of input power for PQ curve of pumps run by variable
frequency drives. The values are in meters. PQ parameters are available in the pump character-
istics of manufacturer’s specification.

General
information

EN

PQ_CURVE_P

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3647

Data type Default value Range Unit
ARRAY[1..5] of REAL - - m3/h

The input HQ_CURVE_Q defines an array of flow rate values for HQ curve of pumps run
by variable frequency drives. The values are in cubic meters per hour. HQ parameters are
available in the pump characteristics of manufacturer’s specification.

Data type Default value Range Unit
ARRAY[1..5] of REAL - - m3/h

The input PQ_CURVE_Q defines an array of flow rate values for PQ curve of pumps run by
variable frequency drives. The values are in cubic meters per hour. PQ parameters are available
in the pump characteristics of manufacturer’s specification.

Data type Default value Range Unit
INT 1400 > 0 rpm

The input NOMINAL_SPEED defines the rated speed in rpm of the pump run by variable
frequency drive.

Data type Default value Range Unit
INT 10 > 1 rpm

The input ACT_SPEED indicates the actual speed of the variable frequency drive (VFD) in rpm.

Data type Default value Range Unit
REAL 1.0 - kW

The input ACT_POWER defines the actual power of the motor in kW. The value is read from the
drive parameters.

Data type Default value Range Unit
REAL 0.85 0.00 ... 1.00 -

The input PUMP_MOTOR_EFF defines the combined efficiency of motor and pump set.

Data type Default value Range Unit
INT 50 - rpm

The input LOW_SPEED_CALC defines the low speed limit in rpm. This function block calculates
the actual flow only when input ACTUAL_SPEED is more than this value.

HQ_CURVE_Q

PQ_CURVE_Q

NOMINAL_
SPEED

ACT_SPEED

ACT_POWER

PUMP_MOTOR_
EFF

LOW_SPEED_
CALC

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3648

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
INT 0 - m3/h

The output ACT_FLOW indicates the calculated actual flow in cubic meters per hour.

ERR

ERNO

ACT_FLOW

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3649

Error codes
The error codes of function block PMP_FLOW_CALC_PQ are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16416 4020 Array of values in PQ_CURVE_P are not in
ascending order

16432 4030 Array of values in PQ_CURVE_Q are not in
ascending order

16449 4041 Value of NOMINAL_SPEED is less than or equal
to 0

16497 4071 Value of MOTOR_EFF is less than or equal to
0.00

16498 4072 Value of MOTOR_EFF is greater than 1.00

16513 4081 Value of LOW_SPEED_CALC is less than 0

16515 4083 Value of LOW_SPEED_CALC is greater than the
NOMINAL_SPEED

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.14 PMP_MAINTENANCE

The function block PMP_MAINTENANCE is used to record the maintenance schedule of the
pump. The function block maintains an hourly counter to track the pump maintenance interval
and generates timely reminders and alarms.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3650

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input PUMP_RUNNING receives the pump running status. The input comes from the output
PUMP_OPERATING of the function blocks PMP_INTERFACE_VFD/ PMP_INTERFACE_DOL.
● When input is TRUE, pump is operating.
● When input is FALSE, pump is not operating.

Data type Default value Range Unit
INT 1 0 ... 32767 -

The input MAINTENANCE_INTERVAL defines the pump maintenance interval in hours. When
specific maintenance intervals are reached, function block generates reminders and alarms.

Data type Default value Range Unit
STRING (30) - - -

The input MAINTENANCE_REMINDER defines the user-defined reminder message for service
maintenance.

General
information

EN

PUMP_
RUNNING

MAINTENANCE_
INTERVAL

MAINTENANCE_
REMINDER

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3651

Data type Default value Range Unit
STRING (10) - - -

The input MAINTENANCE_ALARM defines the user-defined alarm message for any mainte-
nance activity.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input RESET_COUNTER resets the output MAINTENANCE_COUNTER to the value in the
input RESET_COUNTER_VALUE.
● When input is TRUE, value in input RESET_COUNTER_VALUE overwrites value in output

MAINTENANCE_COUNTER.
● When input is FALSE, no reset is initiated.

Data type Default value Range Unit
INT 0 0 ... 32767 -

The input RESET_COUNTER_VALUE defines the counter value that is used to over-
write the output MAINTENANCE_COUNTER. The input is effective only when input
RESET_COUNTER = TRUE.

Data type Default value Range Unit
REAL - - -

The variable input/output MAINTENANCE_COUNTER provides the count of hourly activity.
The count is overwritten by value in the input RESET_COUNTER_VALUE, when input
RESET_COUNTER = TRUE

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

MAINTENANCE_
ALARM

RESET_
COUNTER

RESET_
COUNTER_
VALUE

MAINTENANCE_
COUNTER

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3652

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
BOOL FALSE TRUE / FALSE -

The output MAINTENANCE_REQUIRED indicates that maintenance is required.
● When output is TRUE, maintenance is required.
● When output is FALSE, no maintenance required.

Data type Default value Range Unit
STRING (30) - - -

The output REMINDER_STATUS indicates the status of service reminder message defined in
the input MAINTENANCE_REMINDER.

Data type Default value Range Unit
STRING (10) - - -

The output ALARM_STATUS indicates the status of maintenance alarm message defined in the
input MAINTENANCE_ALARM.

Error codes
The error codes of function block PMP_MAINTENANCE are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16432 4030 Value in MAINTENANCE_INTERVAL is less than
or equal to 0

16496 4070 Value in RESET_COUNTER_VALUE is less than
0

ERNO

MAINTENANCE_
REQUIRED

REMINDER_
STATUS

ALARM_
STATUS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3653

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.15 PMP_PROTECTION_ANALOG

The function block PMP_PROTECTION_ANALOG monitors analog inputs and gener-
ates signals to shut down or to block the starting of pump or the process. The
function block sends the signals to shut down or to block the starting of pump
through inputs PROTECTION_SHUTDOWN or START_BLOCKER of these distributor and
pump interface function blocks: PMP_LEVEL_DISTRIBUTOR, PMP_FLOW_DISTRIBUTOR,
PMP_PRESSURE_DISTRIBUTOR, PMP_INTERFACE_VFD, and PMP_INTERFACE_DOL.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Pump protection configuration example
The function block PMP_PROTECTION_ANALOG can be used for:
● Process specific protection or
● Pump specific protection

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3654

The function block can be used to configure the alarm (start blocker) or fault
(protection shutdown) for the process value coming from an analog input (sensor). The actual
process value from the analog input is compared with the limits. See the example diagram
below.
● If high/low limits are breached, the alarm start blocker is generated.
● If highhigh/lowlow limits are breached the protection shutdown is generated.

Fig. 715: Analog/Digital FB - process specific protection

Process specific
protection
with many such
sensors

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3655

The function block is flexible and can be used based on the pump specific requirements. If more
than one sensor is used, then configure the function block for each sensor. The outputs of each
function block can be logically OR’ed in the application program, as shown below.

Fig. 716: Analog/Digital FB - pump specific protection

Pump specific
protection
with many such
sensors

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3656

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
INT 10 - -

The input ANALOG_IN receives analog input from the process. The process input is compared
with the limits to perform the protection function.

Data type Default value Range Unit
INT 0 - -

The input MIN_RANGE defines the minimum range of the analog input signal.

Data type Default value Range Unit
INT 27648 - -

The input MAX_RANGE defines the maximum range of the analog input signal.

Data type Default value Range Unit
REAL 0.0 - -

The input MIN_SCALE defines the minimum scale of the analog input signal in the physical unit,
e.g., 1 bar.

EN

ANALOG_IN

MIN_RANGE

MAX_RANGE

MIN_SCALE

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3657

Data type Default value Range Unit
REAL 100.0 - -

The input MAX_SCALE defines the maximum scale of the analog input signal in physical unit,
e.g., 5 bar.

Data type Default value Range Unit
STRING (60) - - -

The input ANALOG_SIGNAL_DESCRIPTION allows the user to add the description of analog
input signal. e.g., actual pressure.

Data type Default value Range Unit
STRING (10) - - -

The input ANALOG_SIGNAL_UNIT allows the user to declare the unit of analog input signal.
e.g., PSI

Data type Default value Range Unit
WORD 2#1111 - -

The input LIM_ACTIVE selects the active limit of the analog input signal.
bit 0: Low limit active
bit 1: High limit active
bit 2: Low low limit active
bit 3: High high limit active

The selected limit only will be compared with the actual process values to
generate the PROTECTION_SHUTDOWN or START_BLOCKER signal.

Data type Default value Range Unit
REAL 0.0 - -

The input LIM_HYS allows the user to declare the hysteresis limit of
analog input signal. This value is the percent of the limits mentioned in
LOW_LIM/ LOWLOW_LIM/ HIGH_LIM/ HIGHHIGH_LIM.
The limit ± hysteresis is compared with the actual process value.

Data type Default value Range Unit
REAL 10.0 - -

The input LOW_LIM declares the low limit of the analog input.

MAX_SCALE

ANALOG_
SIGNAL_
DESCRIPTION

ANALOG_
SIGNAL_UNIT

LIM_ACTIVE

LIM_HYS

LOW_LIM

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3658

Data type Default value Range Unit
REAL 80.0 - -

The input HIGH_LIM declares the high limit of the analog input.

Data type Default value Range Unit
REAL 5.0 - -

The input LOWLOW_LIM declares the very low limit of the analog input.

Data type Default value Range Unit
REAL 90.0 - -

The input HIGHHIGH_LIM declares the very high limit of the analog input.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input RESET resets any active alarm/fault and alarm messages generated by analog or
binary input signal.
● When output is TRUE, alarm/fault and alarm message are reset.
● When output is FALSE, no reset.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

HIGH_LIM

LOWLOW_LIM

HIGHHIGH_LIM

RESET

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3659

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
REAL 0.0 - -

The output ANALOG_SIGNAL_VALUE indicates the actual value of the analog input signal in
physical units, e.g., bar.

Data type Default value Range Unit
BOOL FALSE TRUE / FALSE -

The output OUT_OF_RANGE indicates that the analog input is out of range.
● When output is TRUE, analog input is out of range.
● When output is FALSE, analog input is within the range.

Data type Default value Range Unit
BOOL FALSE TRUE / FALSE -

The output SHUTDOWN indicates pump shutdown depending on the analog or binary input
signal.
● If the requirement is to stop the complete process, then the output must be connected to the

input PROTECTION_SHUTDOWN of the distributor function blocks.
● If the requirement is stop only a particular pump, then the output must be connected to the

input PROTECTION_SHUTDOWN of the interface function blocks.

The output is generated when actual process value is compared with the limits
in the input HIGHHIGH_LIM and/or LOWLOW_LIM.

● When output is TRUE, pump station or pump is shutdown.
● When output is FALSE, pump station or pump’s operation continues.

ERNO

ANALOG_
SIGNAL_VALUE

OUT_OF_
RANGE

SHUTDOWN

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3660

Data type Default value Range Unit
BOOL FALSE TRUE / FALSE -

The output START_BLOCKER of the protection function blocks PMP_PROTECTION_ANALOG
and/or PMP_PROTECTION_BINARY stops the pump from starting depending on the analog or
binary input signal.
● If the requirement is to block starting of the complete process, then the output must be

connected to the input START_BLOCKER of the distributor function blocks.
● If the requirement is block the starting of only a particular pump, then the output must be

connected to the input START_BLOCKER of the interface function blocks.

The output is generated when actual process value is compared with the limits
in the input HIGH_LIM and/or LOW_LIM.

● When input is TRUE, pump start is not allowed.
● When input is FALSE, pump start is allowed.

The input START_BLOCKER will not stop the already running pump.

Data type Default value Range Unit
STRING (90) - - -

The output STATUS indicates the status of fault/alarm messages generated by this function
block.

START_
BLOCKER

STATUS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3661

Error codes
The error codes of function block PMP_PROTECTION_ANALOG are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16433 4031 Value in MIN_RANGE is less than 0

16449 4041 Value in MAX_RANGE is less than or equal to 0

16451 4043 Value in MAX_RANGE is less than or equal to
MIN_RANGE

16481 4051 Value in MIN_SCALE is less than 0

16481 4061 Value in MAX_ SCALE is less than or equal to 0

16483 4063 Value in MAX_ SCALE is less than or equal to
MIN_ SCALE

16528 4090 LIM_ACTIVE is changed when EN is TRUE

16545 40A1 Value in LIM_HYS is less than 0

16546 40A2 Value in LIM_HYS is greater than 100

16563 40B3 HIGH_LIM ≤ LOW_LIM or
HIGHHIGH_LIM ≤ LOW_LIM

16595 40D3 HIGHHIGH_LIM ≤ LOWLOW_LIM or
HIGH_LIM ≤ LOWLOW_LIM

16611 40E3 HIGHHIGH_LIM ≤ HIGH_LIM or
HIGHHIGH_LIM ≤ 0 or HIGH_LIM < 0

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3662

1.5.14.2.16 PMP_PROTECTION_BINARY

The function block PMP_PROTECTION_BINARY monitors binary inputs and generates signals
to shut down or to stop the starting of pump. The function block sends the signals to shut down
or to stop the pump start through inputs PROTECTION_SHUTDOWN or START_BLOCKER
of these distributor and pump interface function blocks: PMP_LEVEL_DISTRIBUTOR,
PMP_FLOW_DISTRIBUTOR, PMP_PRESSURE_DISTRIBUTOR, PMP_INTERFACE_VFD,
and PMP_INTERFACE_DOL.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Pump protection configuration example
The function block PMP_PROTECTION_BINARY can be used for:
● Process specific protection or
● Pump specific protection

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3663

The function block can be used to configure the alarm (start blocker) or fault
(protection shutdown) for the digital input signal. The input coming from the digital sensor can
be used to generate the alarm (start blocker) or fault (protection shutdown) using the settings in
the function block. See example diagram below:

Fig. 717: Analog/Digital FB - process specific protection

Process specific
protection
with many such
sensors

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3664

The function block is flexible and can be used based on the requirements. If more than one
sensor is used, then configure the function block for each digital sensor. The outputs of each
function block can be logically OR’ed in the application program, as shown below.

Fig. 718: Analog/Digital FB - pump specific protection

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.

Pump specific
protection
with many such
sensors

EN

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3665

While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input BINARY_IN receives the binary input from the process.
● When input is TRUE, binary input received.
● When input is FALSE, no input received.

Data type Default value Range Unit
STRING (60) - - -

The input BINARY_SIGNAL_DESCRIPTION allows the user to add the description of the binary
input signal.

Data type Default value Range Unit
BYTE 0 0 ... 2 -

The input BINARY_SIGNAL_TYPE selects the type of the binary input signal.
0 = Not used (no input signal)
1 = To generate alarm (binary input signal to generate an alarm)
2 = To generate fault (binary input signal to indicate a fault)

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input RESET resets any active alarm/fault and alarm messages generated by analog or
binary input signal.
● When output is TRUE, alarm/fault and alarm message are reset.
● When output is FALSE, no reset.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

BINARY_IN

BINARY_
SIGNAL_
DESCRIPTION

BINARY_
SIGNAL_TYPE

RESET

ERR

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3666

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
BOOL FALSE TRUE / FALSE -

The output SHUTDOWN indicates pump shutdown depending on the analog or binary input
signal.
● If the requirement is to stop the complete process, then the output must be connected to the

input PROTECTION_SHUTDOWN of the distributor function blocks.
● If the requirement is stop only a particular pump, then the output must be connected to the

input PROTECTION_SHUTDOWN of the interface function blocks.

The output is generated when actual process value is compared with the limits
in the input HIGHHIGH_LIM and/or LOWLOW_LIM.

● When output is TRUE, pump station or pump is shutdown.
● When output is FALSE, pump station or pump’s operation continues.

Data type Default value Range Unit
BOOL FALSE TRUE / FALSE -

The output START_BLOCKER of the protection function blocks PMP_PROTECTION_ANALOG
and/or PMP_PROTECTION_BINARY stops the pump from starting depending on the analog or
binary input signal.
● If the requirement is to block starting of the complete process, then the output must be

connected to the input START_BLOCKER of the distributor function blocks.
● If the requirement is block the starting of only a particular pump, then the output must be

connected to the input START_BLOCKER of the interface function blocks.

The output is generated when actual process value is compared with the limits
in the input HIGH_LIM and/or LOW_LIM.

● When input is TRUE, pump start is not allowed.
● When input is FALSE, pump start is allowed.

The input START_BLOCKER will not stop the already running pump.

Data type Default value Range Unit
STRING (90) - - -

The output STATUS indicates the status of fault/alarm messages generated by this function
block.

ERNO

SHUTDOWN

START_
BLOCKER

STATUS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3667

Error codes
The error codes of function block PMP_PROTECTION_BINARY are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16449 4041 Value in BINARY_SIGNAL_TYPE is less than 0

16450 4042 Value in BINARY_SIGNAL_TYPE is greater than
2

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.17 PMP_SLEEP

The function block PMP_SLEEP stops all pumps in the pressure control process
during low demand. The function works only for pressure control (when function block
PMP_CONFIGURATION has the input PROCESS_MODE = 1 (Pressure control) with multi
pump station or traditional pump station.

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3668

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

● The function block is used to conserve energy when the demand is very low and the pump
is running at very less RPM

● For Sleep_Mode = 1
– Absolute difference between set and actual pressure must be less than sleep

level. Sleep level is defined as percentage of set point e.g. sleep level 10 means
10 % of set value.

– Master pump RPM must be less than SLEEP_RPM.
– If above both conditions are true for more than SLEEP_DELAY time then only pump

gets ready to go to sleep.
– Process increases set point by SLEEP_BOOST_STEP in terms of percentage for the

time duration SLEEP_BOOST_TIME. This allows actual pressure to increase and in turn
increases sleep duration.

– Once SLEEP_BOOST_TIME is over, master pump goes in sleep and its ON command
is removed.

– When the actual pressure goes below WAKEUP_LEVEL then the wake up function
starts. It waits for WAKEUP_DELAY and then the ON command is issued to the master
drive and the pressure distributor process takes over.

This figure shows the sleep and wake up sequence based on the change in the actual pressure
with time.

Sleep_Mode = 2 has not been implemented yet in this version.

General
information

Key features

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3669

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
INT 0 1 ... 2 -

The input SLEEP_MODE selects the sleep mode.
0 = Disabled
1 = Internal
2 = External

Data type Default value Range Unit
REAL 1.0 > 0 -

The input PUMP_SETPOINT defines the pressure setpoint. The value is same as the input
SET_VALUE of the function block PMP_PID.

Data type Default value Range Unit
REAL 1.0 -

The input ACT_VALUE defines the actual pressure value.

EN

SLEEP_MODE

PUMP_
SETPOINT

ACT_VALUE

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3670

Data type Default value Range Unit
REAL 5.0 1.0 ... 100.0 %

The input SLEEP_LEVEL defines the sleep activation level, which is a percentage of the input
PUMP_SETPOINT.

Data type Default value Range Unit
REAL 0.0 - %

The input PID_OUT of the function block PMP_SLEEP indicates the PID output in percentage.
The value is the same as the output PID_OUT of the function blocks PMP_PID.

Data type Default value Range Unit
REAL 100.0 > 0.0 rpm

The input SLEEP_RPM defines the speed in rpm below which the pump should go to sleep
mode.

Data type Default value Range Unit
TIME 5 - s

The input SLEEP_DELAY defines the delay time in seconds at which the sleep function must be
activated.

Data type Default value Range Unit
TIME 5 - s

The input SLEEP_BOOST_TIME defines the time period in seconds for which the sleep boost
must be operated.

Data type Default value Range Unit
REAL 5.0 %

The input SLEEP_BOOST_STEP defines the step limit in percentage at which the
input PUMP_SETPOINT must increase for the time duration defined in the input
SLEEP_BOOST_TIME.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input SLEEP_EXT enables sleep function externally, when input
SLEEP_MODE = 2 (External).
● When input is TRUE, sleep function is enabled externally.
● When input is FALSE, sleep function is disabled or continues in the current mode.

SLEEP_LEVEL

PID_OUT

SLEEP_RPM

SLEEP_DELAY

SLEEP_
BOOST_TIME

SLEEP_
BOOST_STEP

SLEEP_EXT

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3671

Data type Default value Range Unit
INT 1 1 ... 2 -

The input WAKEUP_MODE selects the wake up mode.
1 = Internal
2 = External

Data type Default value Range Unit
REAL 7.0 1.0 ... 100.0 %

The input WAKEUP_LEVEL defines the wake up activation level in percentage of the setpoint
defined in the input PUMP_SETPOINT.

Data type Default value Range Unit
TIME 5 - s

The input WAKEUP_DELAY defines the delay time in seconds to activate the wake up function.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input WAKEUP_EXT receives a digital signal to wake up the system when the input
WAKEUP_MODE = 2 (External).

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

WAKEUP_
MODE

WAKEUP_
LEVEL

WAKEUP_
DELAY

WAKEUP_EXT

MASTER_PUMP

STATION_
PARAMETERS

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3672

Parameter Data type Default
value

Description

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.

DONE

ERR

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3673

It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
INT 0 0 ... 3 -

The output SLEEP_STATUS of the function block PMP_SLEEP indicates the sleep status of the
pump.
0 = Inactive/Wakeup inactive
1 = Boost activated
2 = Sleep mode active
3 = Wakeup function active

Data type Default value Range Unit
REAL 0.0 > 0.0 -

The output SLEEP_BOOST_REF of the function block PMP_SLEEP indicates the sleep boost
reference. This output is connected as input into PMP_PID function block.

Error codes
The error codes of function block PMP_SLEEP are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16403 4013 Sleep function is active only when input
PROCESS_MODE = 1 in function block
PMP_CONFIGURATION

16417 4021 Value of SLEEP_MODE is less than 0

16418 4022 Value of SLEEP_MODE is more than 2

16433 4031 Value of PUMP_SETPOINT is less than 0

16465 4051 Value of SLEEP_LEVEL is less than or equal to 0

16497 4071 Value of SLEEP_RPM is less than 0

16577 40C1 Value of WAKEUP_MODE is less than 0

16578 40C2 Value of WAKEUP_MODE is greater than 2

16593 40D1 Value of WAKEUP_LEVEL is less than 0.0

ERNO

SLEEP_STATUS

SLEEP_
BOOST_REF

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3674

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.18 PMP_SOFT_FILLING

The function block PMP_SOFT_FILLING enables slow filling operation in pipes in the beginning
of the process to avoid damages. If this operation is selected, it is executed before the actual
process control takes over.

This function block cannot run when the PUMP_COMB = 3, DOL mode in
PMP_CONFIGURATION. Soft filling needs the VFD drive to run and execute
gradual filling of water.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3675

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START receives the soft filling start command from the output SOFTFILL_START
of the function blocks PMP_LEVEL_DISTRIBUTOR, PMP_FLOW_DISTRIBUTOR or
PMP_PRESSURE_DISTRIBUTOR.
● When input is TRUE, the soft filling starts.
● When input is FALSE, the soft filling stops if running.

Data type Default value Range Unit
INT 100 0 ... 20 % of master

pump nominal speed
rpm

The input SOFTFILL_REF defines the softfill speed reference in rpm.

Data type Default value Range Unit
REAL 0.0 0.0 ... 100.0 %

The input REQUIRED_PRESSURE_CHG defines the percentage change in the actual pressure
during soft filling operation.

EN

START

SOFTFILL_REF

REQUIRED_
PRESSURE_
CHG

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3676

Data type Default value Range Unit
INT 1 1 ... 8 -

The input MASTER_PUMP receives the identification number of the master pump in
the sequence. The input comes from the output MASTER_PUMP of the function block
PMP_SEQUENCE_GEN.

Data type Default value Range Unit
REAL 0.0 ≥ 0 -

The input MINIMUM_PRESSURE defines the minimum pressure above which the
soft filling operation is disabled.

Data type Default value Range Unit
TIME 10 - s

The input SOFTFILL_TIME_OUT defines the time limit in seconds after which the
soft filling operation is stopped, regardless of the minimum pressure limit in input
MINIMUM_PRESSURE.

Data type Default value Range Unit
INT 1 1 ... 2 s

The input SOFTFILL_TIME_OUT_CTRL selects the pump behavior when softfill operation
stopped because of input SOFTFILL_TIME_OUT. The function will stop the process if already
running. This indicates a leakage in the pipe and due to which the minimum pressure is not
established.
1 = Keep running normal PID operation
2 = Fault trips the station

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The input RESET resets the output SOFTFILL_FAULT.
● When output is TRUE, softfill fault is reset.
● When output is FALSE, no reset.

Data type Default value Range Unit
REAL 0.0 - -

The input ACT_PRESSURE receives the actual pressure in physical units, e.g. bar, as meas-
ured by the pressure sensor.

MASTER_PUMP

MINIMUM_
PRESSURE

SOFTFILL_
TIME_OUT

SOFTFILL_
TIME_OUT_
CTRL

RESET

ACT_
PRESSURE

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3677

Data type Default value Range Unit
ARRAY[1..8] of BOOL FALSE TRUE/FALSE -

The input READY_FOR_AUTOMATION receives an array of pumps ready for automatic oper-
ation. The input comes from the output READY_FOR_AUTOMATION of the function block
PMP_INTERFACE_VFD or PMP_INTERFACE_DOL.

The READY_FOR_AUTOMATION[1] connects to the PUMP ID = 1. This pattern
must be followed for all pump IDs.

● When input is TRUE, pump is ready for operation in automatic mode.
● When input is FALSE, pump is not ready for operation in automatic mode.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input DISTRIBUTOR_RUNNING indicates the running status of the distributor.
This input is connected to the output DISTRIBUTOR_RUNNING of any of the the
distributor function blocks PMP_LEVEL_DISTRIBUTOR, PMP_FLOW_DISTRIBUTOR or
PMP_PRESSURE_DISTRIBUTOR.
● When output is TRUE, distributor is running.
● When output is FALSE, distributor is not running.

Data type Default value Range Unit
PMP_STA-
TION_TYPE

- - -

The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

READY_FOR_
AUTOMATION

DISTRIBUTOR_
RUNNING

STATION_
PARAMETERS

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3678

Parameter Data type Default
value

Description

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3679

Data type Default value Range Unit
INT 0 0 ... 4 -

The input SOFTFILL_STATUS indicates the status of softfilling function.
0 = Disable the softfill (Softfill operation is disabled)
1 = Ready to start (Softfill operation is ready to start)
2 = Softfill in progress (Softfill operation has started)
3 = Softfill completed (Softfill operation is completed)
4 = Softfill with fault (Softfill operation stopped due to a fault)

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output SOFTFILL_START of the used pump distributor starts the soft filling operation. This
function is effective only when this output is connected to the input START of the function block
PMP_SOFT_FILLING.
● When input is TRUE, softfill function starts.
● When input is FALSE, softfill function stops if running.

Data type Default value Range Unit
INT 0 > 0 rpm

The output SOFTFILL_SPEED of the function block PMP_SOFT_FILLING indicates the speed
reference for soft filling function. The output must be connected to the input SOFTFILL_SPEED
of the interface function block PMP_INTERFACE_VFD.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output SOFTFILL_FAULT indicates a fault in the soft filling function. The fault occurs when
actual pressure in input ACT_PRESSURE has not reached PID_ENABLE_PRESSURE in the
time limit defined in the input SOFTFILL_TIME_OUT.
● When output is TRUE, softfill fault occurred.
● When input is FALSE, no fault occurred.

SOFTFILL_
STATUS

SOFTFILL_
START

SOFTFILL_
SPEED

SOFTFILL_
FAULT

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3680

Error codes
The error codes of function block PMP_SOFT_FILLING are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16403 4013 Softfill function is incorrectly activated when
the PUMP_COMB = 3, DOL type station in
PMP_CONFIGURATION

16433 4031 Value of SOFTFILL_REF is less than 0

16435 4033 SOFTFILL_REF is greater than 20 % of master
pumps nominal speed

16449 4041 Value of REQUIRED_PRESSURE_CHG is less
than 0.0

16465 4051 Value of MASTER_PUMP is less than 1

16466 4052 Value of MASTER_PUMP is more
than NUMBER_OF_PUMPS in the
PMP_CONFIGFURATION function block

16481 4061 Value of MINIMUM_PRESSURE is less than 0.0

16513 4081 Value of SOFTFILL_TIME_OUT_CTRL is less
than 1

16514 4082 Value of SOFTFILL_TIME_OUT_CTRL is greater
than 2

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3681

1.5.14.2.19 PMP_DOL_SIMU

The function block PMP_DOL_SIMU is a simple simulation of the direct online pumps.

The outputs of the function block may or may not be as accurate as real
process. Use this function block only for simulation testing and not on the actual
system.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START starts the execution of the function block.
● When input is TRUE, the execution starts.
● When input is FALSE, the execution stops if running.

General
information

EN

START

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3682

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The input EXT_FAULT simulates the external fault condition.
● When input is TRUE, external fault condition is simulated.
● When input is FALSE, no simulation.

Data type Default value Range Unit
REAL 100.0 > 0.0 m3/h

The input NOMINAL_FLOW defines the nominal flow of the direct online (DOL) pump in cubic
meters per hour.

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

EXT_FAULT

NOMINAL_
FLOW

DONE

ERR

ERNO

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3683

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output READY indicates that the used system (DOL/VFD) is ready for operation.
● When output is TRUE, system is ready for operation.
● When output is FALSE, system is not ready for operation.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output OPERATING indicates that the device is operating.
● When output is TRUE, device is operating.
● When output is FALSE, device is not operating.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output TRIPPED indicates that the used system (DOL/VFD) has tripped.
● When output is TRUE, system tripped.
● When output is FALSE, system is healthy.

Data type Default value Range Unit
REAL 0.0 - m3/h

The output PUMP_ACT_FLOW indicates the actual flow of direct online pumps in cubic meters
per hour.

Error codes
The error codes of function block PMP_DOL_SIMU are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16449 4041 Value in input NOMINAL_FLOW is less than or
equal to 0.0

READY

OPERATING

TRIPPED

PUMP_ACT_
FLOW

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3684

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.20 PMP_DRIVE_SIMU

The function block PMP_DRIVE_SIMU is used to simulate the variable frequency drive (VFD)
pumps and for PLC communication.

– The function block is not similar to the PS553 drives library function block.
– The outputs of the function block may or may not be as accurate as real

drive communication blocks.
– Use this function block only for simulation testing and not on the actual

system.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

General
information

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3685

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input START starts the execution of the function block.
● When input is TRUE, the execution starts.
● When input is FALSE, the execution stops if running.

Data type Default value Range Unit
INT 0 > 0 rpm

The output SPEED_REF of the interface function block PMP_INTERFACE_VFD shows the
speed reference of the variable frequency drive (VFD) in rpm.

The speed reference can be given to the drive only if it is connected to the
correct parameter.

This can be done using the PLC - VFD communication library, which is not in
the scope of the pump library.

The input SPEED_REF of the function block PMP_DRIVE_SIMU comes from the output
SPEED_REF of the interface function block PMP_INTERFACE_VFD.

Data type Default value Range Unit
REAL 1500.0 1.0 ... 1500.0 rpm

The input DRIVE_MAX_SPEED defines the maximum speed of the variable frequency drive
(VFD) in rpm.

EN

START

SPEED_REF

DRIVE_MAX_
SPEED

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3686

Data type Default value Range Unit
REAL 5 0.1 ... 5.0 kW

The input DRIVE_MAX_POWER defines the maximum power of the variable frequency drive
(VFD) in kW.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input LOCAL_REMOTE selects the variable frequency drive (VFD) operating mode.
● When input is TRUE, VFD is in local mode.
● When input is FALSE, VFD is in remote mode.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The input EXT_FAULT simulates the external fault condition.
● When input is TRUE, external fault condition is simulated.
● When input is FALSE, no simulation.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

The input RESET resets the variable frequency drive (VFD) fault and the value in output ERNO.
● When input is TRUE, softfill fault is reset.
● When input is FALSE, no reset.

Data type Default value Range Unit
ARRAY[1..8] of INT 0 0 ... 2 -

The input ANTIJAM_STATUS receives the status of antijam operation. The input comes from
the output ANTIJAM_STATUS of the function block PMP_ANTIJAM.
0 = Not started (Antijam operation has not started)
1 = Busy (Antijam operation has started)
2 = Done (Antijam operation is completed)

DRIVE_MAX_
POWER

LOCAL_
REMOTE

EXT_FAULT

RESET

ANTIJAM_
STATUS

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3687

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output READY indicates that the used system (DOL/VFD) is ready for operation.
● When output is TRUE, system is ready for operation.
● When output is FALSE, system is not ready for operation.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output OPERATING indicates that the device is operating.
● When output is TRUE, device is operating.
● When output is FALSE, device is not operating.

DONE

ERR

ERNO

READY

OPERATING

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3688

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output TRIPPED indicates that the used system (DOL/VFD) has tripped.
● When output is TRUE, system tripped.
● When output is FALSE, system is healthy.

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The output LOCAL_REMOTE_STATUS indicates the operating mode of the pump system
(DOL/VFD).
● When output is TRUE, pump system is in local mode.
● When output is FALSE, pump system is in remote mode.

Data type Default value Range Unit
INT 10 > 1 rpm

The input ACT_SPEED indicates the actual speed of the variable frequency drive (VFD) in rpm.

Data type Default value Range Unit
REAL 0.0 > 0.0 kW

The output DRIVE_ACT_PWR indicates the actual power of the variable frequency drive (VFD)
in kW.

Error codes
The error codes of function block PMP_DRIVE_SIMU are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16449 4041 Value in input DRIVE_MAX_SPEED is less than
or equal to 0

16465 4051 Value in input DRIVE_MAX_PWR is less than or
equal to 0

TRIPPED

LOCAL_
REMOTE_
STATUS

ACT_SPEED

DRIVE_ACT_
PWR

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3689

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

1.5.14.2.21 PMP_TANK_SIMU

The function block PMP_TANK_SIMU is used to simulate the water tank.
This simulation can be used in all the three process control modes:
● Pressure
● Flow
● Level

Use this function block only for simulation testing and not with critical hardware
in loop.

Runtime system version V2.5 and later

Library version PMP_AC500_V25.lib
Function block type Function block without historical values

General
information

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3690

Input description

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input EN has to be driven in level triggered mode.
In order to enable the execution of the function block the input EN has to be set to value TRUE.
It keeps on executing until the input EN is set back to value FALSE.
While it is executed its inputs are continuously evaluated.

Data type Default value Range Unit
INT 1 1 ... 2 -

The input MODE selects the pumping operation mode.
1 = Emptying.
2 = Filling.

Data type Default value Range Unit
REAL 20.0 > 1.0 m

The input TANK_HEIGHT defines the height of the tank in meters.

Data type Default value Range Unit
REAL 10.0 > 1.0 m

The input TANK_DEPTH defines the depth of the tank in meters.

Data type Default value Range Unit
REAL 5.0 > 1.0 m

The input TANK_WIDTH defines the width of the tank in meters.

EN

MODE

TANK_HIGHT

TANK_DEPTH

TANK_WIDTH

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3691

Data type Default value Range Unit
BOOL FALSE TRUE/FALSE -

The input SET_INITIAL_LEVEL allows to set the initial level for tank simulation.
● When input is TRUE, initial level setting for tank simulation is allowed.
● When input is FALSE, initial level setting for tank simulation is not allowed.

Data type Default value Range Unit
REAL 10.0 0.0 ... TANK_HEIGHT m

The input INITIAL_LEVEL defines the initial level of tank in meters.

Data type Default value Range Unit
REAL 0.25 > 1.00 m

The input TANK_OUTLET_DIAMETER defines the outlet diameter of the tank pipe in meters.

Data type Default value Range Unit
ARRAY[1..8] of REAL - > 0.0 m3/h

The input PUMP_ACT_FLOW is an array of actual flow in cubic meters per hour.

At the first index of array PUMP_ACT_FLOW[1] connect the actual flow of the
pump with PUMP ID = 1.

This pattern must be followed for all pump IDs.

Data type Default value Range Unit
REAL - - m3/h

The variable input/output TANK_INLET_FLOW defines the inlet flow of the tank in cubic meters
per hour.

The inflow is assumed to be constant.

Data type Default value Range Unit
REAL - - m3/h

The variable input/output TANK_OUTLET_FLOW defines the outlet flow of the tank in
cubic meters per hour.

The outflow is assumed to be constant.

SET_INITIAL_
LEVEL

INITIAL_LEVEL

TANK_OUTLET_
DIAMETER

PUMP_ACT_
FLOW

TANK_INLET_
FLOW

TANK_OUTLET_
FLOW

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3692

Output description

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output DONE indicates the state of execution.
It has the value TRUE when the execution is finished and the outputs are valid. When DONE
becomes FALSE other outputs are not valid any more.

Data type Default value Range Unit
BOOL - TRUE/FALSE -

Output ERR indicates whether an error occurred during function block execution.
It is only valid when DONE is TRUE. The kind of occurred error is specified by the error
identifier at output ERNO.

Data type Default value Range Unit
WORD - 0 ... 65535 -

At output ERNO the identifier of an occurred error is provided. It is only valid when DONE and
ERR is TRUE (see Ä Chapter 1.7.3.5 “Error messages of the AC500 V2 function block libraries”
on page 6529).

Data type Default value Range Unit
REAL 0.0 - m

The output WATER_LEVEL indicates the water level of the tank in meters.

Data type Default value Range Unit
REAL 0.0 - %

The output WATER_LEVEL_PERCENT indicates the percentage of water level in the tank.

DONE

ERR

ERNO

WATER_LEVEL

WATER_LEVEL
_PERCENT

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3693

Data type Default value Range Unit
REAL 0.0 - m3

The output WATER_VOLUME indicates the actual water volume in cubic meters.

Data type Default value Range Unit
REAL 0.0 - m3

The output TANK_VOLUME indicates the total tank volume in cubic meters.

Data type Default value Range Unit
REAL 0.0 0.0 ... 100 %

The output TANK_PRESSURE_PERCENTAGE indicates the pressure at the bottom of the tank
in percentage.

Data type Default value Range Unit
REAL 0.0 - Pa

The output TANK_PRESSURE_PASCAL indicates the pressure at the bottom of the tank in
Pascal.

Data type Default value Range Unit
REAL 0.0 - psi

The output TANK_PRESSURE_PSI indicates the pressure at the bottom of the tank
in psi (pounds per square inch).

Data type Default value Range Unit
REAL 0.0 - Pa

The output OUTLET_PRESSURE_PASCAL indicates the pressure at the outlet pipe in Pascal.

Data type Default value Range Unit
REAL 0.0 - psi

The output OUTLET_PRESSURE_PSI indicates pressure at the outlet pipe in PSI.

WATER_
VOLUME

TANK_VOLUME

TANK_
PRESSURE_
PERCENTAGE

TANK_
PRESSURE_
PASCAL

TANK_
PRESSURE_PSI

OUTLET_
PRESSURE_
PASCAL

OUTLET_
PRESSURE_PSI

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3694

Error codes
The error codes of function block PMP_TANK_SIMU are listed below:

Error code Error Description
Decimal Hexadecimal
0 0000 No error occurred

16417 4021 Value in input MODE is less than 1

16418 4022 Value in input MODE is greater than 2

16433 4031 Value in input TANK_HEIGHT is less than or
equal to 0

16449 4041 Value in input TANK_DEPTH is less than or equal
to 0

16465 4051 Value in input TANK_WIDTH is less than or equal
to 0

16497 4071 Value in input INITIAL_LEVEL is less than 0

16499 4073 Value in input INITIAL_LEVEL is greater than
TANK_HEIGHT

16513 4081 Value in input TANK_OUTLET_DIAMETER is
less than or equal to 0

16529 4091 Value in input PUMP1_ACT_FLOW is less than 0

The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs

Libraries and solutions > Pumping library 2

2022/01/20 3ADR010582, 3, en_US 3695

1.5.14.3 Structures
The structure PMP_STATION_TYPE contains information of pump station configuration param-
eters.

All function blocks will receive some data, process it and write it back to the
structure.

See the parameters listed below:

Parameter Data type Default
value

Description

usiStation_Number USINT 1 Corresponding station number

sStation_Name STRING(20) Station 1 Station name for visualizations

iNumber_of_Pumps INT 1 Number of pumps in the pumping
station

iProcess_Mode INT 1 Selected process mode:
1 - Pressure control
2 - Flow control
3 - Level control

iPump_Combina-
tion

INT 1 Pump combination mode:
1 - Multimode
2 - Traditional mode
3 - DOL mode

aiNominalSpeed ARRAY[1..8] of INT 8 (1500) Array to store pump nominal speed
values

PMP_STATION_
TYPE

PLC Automation with V2 CPUs
Libraries and solutions > Pumping library 2

2022/01/203ADR010582, 3, en_US3696

1.5.14.4 Visualization
Visualization element PMP_PRESSURE_DISTRIBUTOR_VISU_PH can be used to show the
actual values of all inputs and outputs of the PMP_PRESSURE_DISTRIBUTOR function block.
The visualization could also be used to control the function block by those inputs which are not
connected inside the program.
The following figure demonstrates visualization in the offline mode:

For all the other function blocks in the library, similar visualizations are avail-
able.

All these visualization works same like the function block visualization defined
above.

1.6 PLC integration (hardware)
1.6.1 PLC introduction
1.6.1.1 Safety instructions

The examples and diagrams in this manual are included solely for illustrative purposes.
Because of the many variants and requirements associated with any particular installation, ABB
cannot assume responsibility or liability for actual use based on the examples and diagrams.

PMP_PRESSURE
_DISTRIBUTOR
_VISU_PH

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3697

No patent liability is assumed by ABB with respect to use of information, circuits, equipment or
software described in this manual. No liability is assumed for the direct or indirect consequences
of the improper use, improper application or inadequate maintenance of these devices. In no
event will ABB be responsible or liable for indirect or consequential damages resulting from the
use or application of this equipment.

The product family AC500 control system is designed according to EN 61131-2
IEC 61131-2 standards. Data, different from IEC 61131, are caused by the
higher requirements of Maritime Services. Other differences are described in
the technical data description of the devices.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

NOTICE!
PLC damage due to operation conditions
Protect the devices from dampness, dirt and damage during transport, storage
and operation!

NOTICE!
PLC damage due to wrong enclosures
Due to their construction (degree of protection IP 20 according to EN 60529)
and their connection technology, the devices are suitable only for operation in
enclosed switchgear cabinets.

Cleaning instruction
Do not use cleaning agent for cleaning the device.

Use a damp cloth instead.

Connection plans and user software must be created so that all technical safety aspects, legal
regulations and standards are observed. In practice, possible shortcircuits and breakages must
not be able to lead to dangerous situations. The extent of resulting errors must be kept to a
minimum.

Do not operate devices outside of the specified, technical data!

Trouble-free functioning cannot be guaranteed outside of the specified data.

PLC specific
safety notices

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3698

NOTICE!
PLC damage due to missing grounding
– Ensure to earth the devices.
– The grounding (switch cabinet grounding, PE) is supplied both by the mains

connection (or 24 V supply voltage) and via DIN rail. The DIN rail must be
connected to the ground before the device is subjected to any power. The
grounding may be removed only if it is certain that no more power is being
supplied to the control system.

In the description for the devices (operating manual or AC500 system description), reference is
made at several points to grounding, galvanic isolation and EMC measures. One of the EMC
measures consists of discharging interference voltages into the grounding via Y-type capacitors.
Capacitor discharge currents must basically be able to flow off to the grounding (in this respect,
see also VBG 4 and the relevant VDE regulations).

CAUTION!
Do not obstruct the ventilation for cooling!
The ventilation slots on the upper and lower side of the devices must not be
covered.

CAUTION!
Run signal and power wiring separately!
Signal and supply lines (power cables) must be laid out so that no malfunctions
due to capacitive and inductive interference can occur (EMC).

WARNING!
Labels on or inside the device alert people that dangerous voltage may be
present or that surfaces may have dangerous temperatures.

WARNING!
Splaying of strands can cause hazards!
During wiring of terminals with stranded conductors, splaying of strands shall be
avoided.
– Ferrules can be used to prevent splaying.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3699

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

CAUTION!
Use only ABB approved lithium battery modules!
At the end of the battery’s lifetime, always replace it only with a genuine battery
module.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

Environment considerations
Recycle exhausted batteries. Dispose batteries in an environmentally conscious
manner, in accordance to local-authority regulations.

Information on
batteries

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3700

This equipment is intended for use in a Pollution Degree 2 industrial environ-
ment, in overvoltage Category II applications (as defined in IEC publication
60664-1), at altitudes up to 2.000 meters without derating.

This equipment is considered Group 1, Class A industrial equipment according
to IEC/CISPR Publication 11. Without appropriate precautions, there may
be potential difficulties ensuring electromagnetic compatibility in other environ-
ments due to conducted as well as radiated disturbance.

This equipment is supplied as "open type" equipment. It must be mounted
within an enclosure that is suitably designed for those specific environmental
conditions that will be present and appropriately designed to prevent personal
injury resulting from accessibility to live parts. The interior of the enclosure must
be accessible only by the use of a tool. Subsequent sections of this publication
may contain additional information regarding specific enclosure type ratings that
are required to comply with certain product safety certifications.

Refer to NEMA Standards publication 250 and IEC publication 60529, as appli-
cable, for explanations of the degrees of protection provided by different types
of enclosure. Also see the appropriate sections in this manual.

1.6.1.1.1 Safety notice
Throughout the documentation we use the following types of safety and information notices
according to ANSI Z535 make you aware of safety considerations or advice on AC500 products
usage.

1 Safety alert symbol indicates the danger.
2 Signal word classifies the danger.
3 Type and source of the risk are mentioned.
4 Possible consequences of the risk are described.
5 Measures to avoid these consequences (enumerations).

DANGER!
DANGER indicates a hazardous situation which, if not avoided, will result in
death or serious injury.
Ensure to take measures to prevent the described impending danger.

WARNING!
WARNING indicates a hazardous situation which, if not avoided, could result in
death or serious injury.
Ensure to take measures to prevent the described dangerous situation.

Environment
and enclosure
information

Signal words

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3701

CAUTION!
CAUTION indicates a hazardous situation which, if not avoided, could result in
minor or moderate injury.
Ensure to take measures to prevent the described dangerous situation.

NOTICE!
NOTICE is used to address practices not related to physical injury but might
lead to property damage for example damage of the product.
Ensure to take measures to prevent the described dangerous situation.

NOTE provides additional information on the product, e.g. advices for configura-
tion or best practice scenarios.

1.6.1.2 Cyber security
This product is designed to be connected to and to communicate information and data via a
network interface. It is your sole responsibility to provide and continuously ensure a secure con-
nection between the product and your network or any other network (as the case may be). You
shall establish and maintain any appropriate measures (such as but not limited to the installation
of firewalls, application of authentication measures, encryption of data, installation of anti-virus
programs, etc.) to protect the product, the network, its system and the interface against any kind
of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data
or information. ABB Ltd and its affiliates are not liable for damages and/or losses related to such
security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data
or information.

Although ABB provides functionality testing on the products and updates that we release,
you should institute your own testing program for any product updates or other major system
updates (to include but not limited to code changes, configuration file changes, third party
software updates or patches, hardware exchanges, etc.) to ensure that the security measures
that you have implemented have not been compromised and system functionality in your envi-
ronment is as expected. This also applies to the operating system. Security measures (such
as but not limited to the installation of latest patches, installation of firewalls, application of
authentication measures, installation of anti-virus programs, etc.) are in your responsibility. You
have to be aware that operating systems provide a considerable number of open ports that
should be monitored carefully for any threats.
It has to be considered that online connections to any devices are not secured. It is your
responsibility to assure that connections are established to the correct device (and e.g. not to an
unknown device pretending to be a known device type). Furthermore you have to take care that
confidential data exchanged with the PLC is either compiled or encrypted.

Security details for industrial automation is provided in a whitepaper on ABB website.

Whenever possible, use an encrypted communication between AC500 V3 devices and third
party devices, such as HMI devices. This is necessary to protect passwords and other data.

Cyber security
disclaimer

Security related
deployment
guidelines for
industrial
automation
Secure commu-
nication

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3702

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch

For more information around cyber security please see our FAQ.

1.6.1.2.1 Defense in depth
The defense in depth approach implements multi-layer IT security measures. Each layer pro-
vides its special security measures. All deployed security mechanisms in the system must be
updated regularly. It is also important to follow the system vendor’s recommendations on how
to configure and use these mechanisms. As a basis, the components must include security
functions such as:
● Virus protection
● Firewall protection
● Strong and regularly changed passwords
● User management
● Using VPN tunnels for connections between networks
Additional security components such as routers and switches with integrated firewalls should
be available. A defined user and rights concept managing access to the controllers and their
networks is mandatory. Finally, the manufacturer of the components should be able to quickly
discover weaknesses and provide patches.

Only used services/ports should be enabled (e.g. to enable the functionality of
an FTPS server).

References: CODESYS Security Whitepaper

IT resources vary in the extent to which they can be trusted. A common security architecture is
therefore based on a layered approach that uses zones of trust to provide increasing levels of
security according to increasing security needs. Less-trusted zones contain more-trusted zones
and connections between the zones are only possible through secure interconnections such
as firewallsFig. 719. All resources in the same zone must have the same minimum level of
trust. The inner layers, where communication interaction needs to flow freely between nodes,
must have the highest level of trust. This is the approach described in the IEC 62443 series of
standards.
Firewalls, gateways, and proxies are used to control network traffic between zones of different
security levels, and to filter out any undesirable or dangerous material. Traffic that is allowed to
pass between zones should be limited to what is absolutely necessary because each type of
service call or information exchange translates into a possible route that an intruder may be able
to exploit. Different types of services represent different risks. Internet access, incoming e-mail
and instant messaging, for example, represent very high risks.

Frequently
asked questions

Security zones

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3703

https://share.library.abb.com/api/v4?cid=Root&q=3ADR010764
https://customers.codesys.com/fileadmin/data/customers/security/CODESYS-Security-Whitepaper.pdf

Fig. 719: Security zones

Fig. 719 shows three security zones, but the number of zones does not have to be as many or
as few as three. The use of multiple zones allows access between zones of different trust levels
to be controlled to protect a trusted resource from attack by a less trusted one.
High-security zones should be kept small and independent. They need to be physically pro-
tected, i.e. physical access to computers, network equipment and network cables must be
limited by physical means to authorized persons only. A high-security zone should obviously not
depend on resources in a less secure zone for its security. Therefore, it should form its own
domain that is administered from the inside, and not depend on, e.g., a domain controller in a
less secure network.
Even if a network zone is regarded as trusted, an attack is still possible: by a user or compro-
mised resource that is inside the trusted zone, or by an outside user or resource that succeeds
to penetrate the secure interconnection. Trust therefore depends also upon the types of meas-
ures taken to detect and prevent compromise of resources and violation of the security policy.
References: Security for Industrial Automation and Control Systems

1.6.1.2.2 Secure operation
The controller must be located in a protected environment in order to avoid accidental or
intended access to the controller or the application.
A protected environment can be:
● Locked control cabinets without connection from outside
● No direct internet connection
● Use firewalls and VPN to separate different networks
● Separate different production areas with different access controls
To increase security, physical access protection measures such as fences, turnstiles, cameras
or card readers can be added.
Follow these rules for the protected environment:
● Keep the trusted network as small as possible and independent from other networks.
● Protect the cross-communication of controllers and the communication between controllers

and field devices via standard communication protocols (fieldbus systems) using appro-
priate measures.

● Protect such networks from unauthorized physical access.
● Use fieldbus systems only in protected environments. They are not protected by additional

measures, such as encryption. Open physical or data access to fieldbus systems and their
components is a serious security risk.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3704

https://search.abb.com/library/Download.aspx?DocumentID=3BSE032547&LanguageCode=en&DocumentPartId=&Action=Launch

● Physically protect all equipment, i.e., ensure that physical access to computers, network
equipment and cables, controllers, I/O systems, power supplies, etc., is limited to authorized
persons

● When connecting a trusted network zone to outer networks, make sure that all connections
are through properly configured secure interconnections only, such as a firewall or a system
of firewalls, which is configured for “deny by default”, i.e., blocks everything except traffic
that is explicitly needed to fulfill operational requirements.

● Allow only authorized users to log on to the system, and enforce strong passwords that are
changed regularly.

● Continuously maintain the definitions of authorized users, user groups, and access rights,
to properly reflect the current authorities and responsibilities of all individuals at all times.
Users should not have more privileges than they need to do their job.

● Do not use the system for e-mail, instant messaging, or internet browsing. Use separate
computers and networks for these functions if they are needed.

● Do not allow installation of any unauthorized software in the system.
● Restrict temporary connection of portable computers, USB memory sticks and other remov-

able data carriers. Computers that can be physically accessed by regular users should have
ports for removable data carriers disabled.

● If portable computers need to be connected, e.g., for service or maintenance purposes, they
should be carefully scanned for viruses immediately before connection.

● All CDs, DVDs, USB memory sticks and other removable data carriers, and files with
software or software updates, should also be checked for viruses before being introduced
into the trusted zone.

● Continuously monitor the system for intrusion attempts.
● Define and maintain plans for incident response, including how to recover from potential

disasters.
● Regularly review the organization as well as technical systems and installations with respect

to compliance with security policies, procedures and practices.
A protected local control cabinet could look like in figure 720, page 3705. This network is
not connected to any external network. Security is primarily a matter of physically protecting
the automation system and preventing unauthorized users from accessing the system and from
connecting or installing unauthorized hardware and software.

Fig. 720: Isolated automation system

Servers and workplaces that are not directly involved in the control and monitoring of the
process should preferably be connected to a subnet that is separated from the automation
system network by means of a router/firewall. This makes it possible to better control the
network load and to limit access to certain servers on the automation system network. Note that
servers and workplaces on this subnet are part of the trusted zone and thus need to be subject
to the same security precautions as the nodes on the automation system network.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3705

Fig. 721: Plant information network connected to an automation system

For the purposes of process control security, a general-purpose information system (IS) network
should not be considered a trusted network, not the least since such networks are normally
further connected to the Internet or other external networks. The IS network is therefore a
different lower-security zone, and it should be separated from the automation system by means
of a firewall. The IS and automation system networks should form separate domains.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3706

Fig. 722: Automation system and IS network

1.6.1.2.3 Hardening
System hardening means to eliminate as many security risks as possible. Hardening your
system is an important step to protect your personal data and information. This process intends
to eliminate attacks by patching vulnerabilities and turning off inessential services. Hardening a
system involves several steps to form layers of protection.
Commissioning phase
● Protect the hardware from unauthorized access
● Be sure the hardware is based on a secure environment
● Disable unused software and services (network ports)
● Install firewalls
● Disallow file sharing among programs
● Install virus and spyware protection

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3707

● Use containers or virtual machines
● Create strong passwords by applying a strong password policy
● Create and keep backups
● Use encryption when possible
● Disable weak encryption algorithms
● Separate data and programs
● Enable and use disk quotas
● Strong logical access control
● Adjust default settings, especially passwords
Verification phase
● Verification of antivirus - Check antivirus is active and updated
● Verification of the identification - Check that test and unauthorized accounts are removed
● Verification of intrusion detection systems - Check malicious traffic is blocked
● Verification of audit logging - Check audit log is enabled
● You can use the checklist out of the cyber security white paper

Operation phase
● Keep software up-to-date, especially by applying security patches
● Keep antivirus up and running
● Keep antivirus definitions up-to-date
● Delete unused user accounts
● Lock an active session whenever it is unattended, e.g., lock the screen of the PC or of the

control panel (HMI)
Decommissioning phase
● Delete all credentials stored in the device like certificates and user data Ä Chapter 1.6.3.4.6

“Decommissioning” on page 5233.
References: Hardening in Wikipedia (2021)

1.6.1.2.4 Open Ports and Services
Overview of minimum cyber security requirements for open ports and services settings.

Port Protocol Description
1217 TCP CODESYS Gateway V3

1210 TCP CODESYS Gateway V2

1211 TCP CODESYS Gateway V2

22350 TCP/UDP CodeMeter License Server
(runtime) – license

22352 HTTP CodeMeter License Server
(runtime) – WebAdmin

22353 HTTPS CodeMeter License Server
(runtime) – WebAdmin

11030 HTTP Python editor server

1.6.1.3 License and third party information
Information on Automation Builder licensing and Third Party software can be found in the
"About" window of the Automation Builder Installation Manager.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3708

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch
https://en.wikipedia.org/wiki/Hardening_(computing)

1.6.1.4 Regulations
The following regulations have to be taken into due consideration:
● DIN VDE 0100: "Regulations for the Setting up of Power Installations"
● DIN VDE 0110 Part 1 and Part 2: "The Rating of Creepage Distances and Clearances"
● DIN VDE 0160 and DIN VDE 0660 Part 500: "The Equipment of Power Installations with

Electrical Components"
To ensure project success and proper installation of all systems, customers must be familiar and
proficient with the following standards and must comply with their directives:
● DIN VDE 0113 Part 1 & Part 200: "Working & Process Machinery"
● DIN VDE 0106 Part 100: "Close proximity to dangerous voltages"
● DIN VDE 0160, DIN VDE 0110 Part 1: "Protection against direct contact"
The user has to guarantee that the devices and the components are mounted following these
regulations. For operating the machines and installations, other national and international rele-
vant regulations, concerning prevention of accidents and using technical working means, also
have to be met.
AC500 devices are designed according to IEC 1131 Part 2 under overvoltage category II per
DIN VDE 0110 Part 2.
For direct connection of AC Category III overvoltages provide protection measures for over-
voltage category II according to IEC-Report 664/1980 and DIN VDE 0110 Part 1.
Equivalent standards:
● DIN VDE 0110 Part 1 ↔ IEC 664
● DIN VDE 0113 Part 1 ↔ EN 60204 Part 1
● DIN VDE 0660 Part 500 ↔ EN 60439-1 ↔ IEC 439-1
All rights reserved to change design, size, weight, etc.

Both the control system AC500 and other components in the vicinity are operated with dan-
gerous contact voltages. Touching parts, which are under such voltages, can cause grave
damage to health.
In order to avoid such risks and the occurrence of material damage, persons involved with the
assembly, starting up and servicing must possess pertinent knowledge of the following:
● Automation technology sector
● Dealing with dangerous voltages
● Using standards and regulations, in particular VDE, accident prevention regulations and

regulations concerning special ambient conditions (e.g. areas potentially endangered by
explosive materials, heavy pollution or corrosive influences).

1.6.1.5 Definitions: PLC system start-up

The AC500-eCo V3 does not use a battery for buffering the operand areas
specified below, hence the “cold start” mode does not exist in this product.

● A cold start is performed by switching power OFF/ON if no battery is connected.
● All RAM memory modules are checked and erased.
● If no user program is stored in the Flash EPROM, the default values (as set on delivery) are

applied to the interfaces.
● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

Appropriate
system setup

Qualified per-
sonnel

Cold start

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3709

● A warm start is performed by switching power OFF/ON with a battery connected.
● All RAM memory modules are checked and erased except of the buffered operand areas

and the RETAIN variables .
● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

● RUN -> STOP means pressing the RUN function key on the PLC while the PLC is in run
mode (AC500 PLC display "run", AC500-eCo PLC "RUN LED" is ON).

● If a user program is loaded into RAM, execution is stopped.
● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP", AC500-eCo "RUN LED" changes

from ON to OFF.

● START -> STOP means stopping the execution of the user program in the PLC's RAM using
the menu item "Online/Stop" in the programming system.

● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP".

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (exception: RETAIN variables) are

set to their initialization values.
● Reset is performed using the menu item "Online/Reset" in the programming system or

pressing the function key RUN for ≥ 5 s in STOP mode.

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (also RETAIN variables) are set to

their initialization values.
● Reset (cold) is performed using the menu item "Online/Reset (cold)" in the programming

system.

● Resets the controller to its original state (deletion of Flash, SRAM (%M, area, %R area,
RETAIN, RETAIN PERSISTENT), Communication Module configurations and user pro-
gram!).

● Reset (original) is performed using the menu item "Online/Reset (original)" in the program-
ming system.

● STOP -> RUN means short pressing the RUN function key on the PLC while the PLC is
in STOP mode (AC500 PLC display "StoP", AC500-eCo "RUN LED" is ON). "RUN LED" is
OFF of the toggle switch of an AC500-eCo CPU.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo "RUN LED" changes
from OFF to ON.

● STOP -> START means continuing the execution of the user program in the PLC's RAM
using the menu item "Online/Start" in the programming system.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo PLC "RUN LED"
changes from OFF to ON.

Warm start

RUN -> STOP

START -> STOP

Reset

Reset (cold)

Reset (original)

STOP -> RUN

STOP -> START

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3710

● Download means loading the complete user program into the PLC's RAM. This process is
started by selecting the menu item "Online/Download" in the programming system or after
confirming a corresponding system message when switching to online mode (menu item
"Online/Login").

● Execution of the user program is stopped.
● In order to store the user program to the Flash memory, the menu item "Online/Create boot

project" must be called after downloading the program.
● Variables are set to their initialization values according to the initialization table.
● RETAIN variables can have wrong values as they can be allocated to other memory

addresses in the new project!
● A download is forced by the following:

– changed PLC configuration
– changed task configuration
– changed library management
– changed compile-specific settings (segment sizes)
– execution of the commands "Project/Clean all" and "Project/Rebuild All".

● After a project has changed, only these changes are compiled when pressing the key <F11>
or calling the menu item "Project/Build". The changed program parts are marked with a blue
arrow in the block list.

● The term Online Change means loading the changes made in the user program into the
PLC's RAM using the programming system (after confirming a corresponding system mes-
sage when switching to online mode, menu item "Online/Login").

● Execution of the user program is not stopped. After downloading the program changes,
the program is re-organized. During re-organization, no further online change command is
allowed. The storage of the user program to the Flash memory using the command "Online/
Create boot project" cannot be initiated until re-organization is completed.

● Online Change is not possible after:
– changes in the PLC configuration
– changes in the task configuration
– changes in the library management
– changed compile-specific settings (segment sizes)
– performing the commands "Project/Clean all" and "Project/Rebuild All".

● Data buffering, i.e., maintaining data after power ON/OFF, is only possible, if a battery is
connected for AC500 CPU and the buffering will take place in FLASH with AC500-eCo V3
CPU. The following data can be buffered completely or in parts:
– Data in the addressable flag area (%M area)
– RETAIN variable
– PERSISTENT variable (number is limited, no structured variables)
– PERSISTENT area (%R area)

● In order to buffer particular data, the data must be excluded from the initialization process
(see Ä Chapter 1.6.4.1.1.8 “Data backup and initialization” on page 5410).

1.6.1.6 Definitions: RCOM

Terms
Do not confuse the RCOM services cold start / warm start and the corre-
sponding PLC commands referring to the hardware state. In this section, the
terms "cold start" and "warm start" always refer to the RCOM system services
and therefore only affect the protocol state.

Download

Online change

Data buffering

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3711

A cold start service has to be performed after the initialization of the RCOM master. The
cold start can be transmitted either by broadcast to all slaves simultaneously or to each slave
individually.
A cold start requires reinitialization of the entire protocol mechanism and clearing of the event
queue contents. For this, a special cold start event is triggered in the addressed RCOM slaves.
This event is required when operating ABB MasterPiece systems. In case of pure Advant
Controller networks, the event is only indicated when polling.
After a cold start, always normalization has to be performed. Otherwise it is not possible to
transmit data sets.

By executing a warm start service, it is possible to clear the event queue of a slave (or all
slaves). A warm start can be used to resume communication after transmission errors. This
permits master and slave to resynchronize.
After a warm start, always normalization has to be performed. Otherwise it is not possible to
transmit data sets.

A slave has to be normalized after a cold start or a warm start. Normalization enables the
transmission of data sets and events. If a slave is not normalized, it cannot trigger events. The
RCOM_TRANSMIT connection element then displays a corresponding error message.
If a master polls a non-normalized slave, the RCOM_POLL connection element signals a corre-
sponding error.

1.6.1.7 Device lists
1.6.1.7.1 Device list: Terminal bases

Terminal bases for AC500 (Standard):

Type Description
TB511-ARCNET
Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB511-ARCNET, terminal base AC500, slots: 1 processor module,
1 communication module, ARCNET COAX connector

TB511-ETH Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB511-ETH, terminal base AC500, slots: 1 processor module,
1 communication module, Ethernet RJ45 connector

TB511-ETH-XC
Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB511-ETH-XC, terminal base AC500, slots: 1 processor module,
1 communication module, Ethernet RJ45 connector, XC version

TB521-ARCNET
Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB521-ARCNET, terminal base AC500, slots: 1 processor module,
2 communication modules, ARCNET COAX connector

TB521-ETH Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB521-ETH, terminal base AC500, slots: 1 processor module,
2 communication modules, Ethernet RJ45 connector

TB521-ETH-XC
Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB521-ETH-XC, terminal base AC500, slots: 1 processor module,
2 communication modules, Ethernet RJ45 connector, XC version

Cold start

Warm start

Normalization

V2 products

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3712

Type Description
TB523-2ETH
Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB523-2ETH, terminal base AC500, slots: 1 processor module,
2 communication modules, 2 Ethernet RJ45 connector

TB541-ETH Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB541-ETH, terminal base AC500, slots: 1 processor module,
4 communication modules, Ethernet RJ45 connector

TB541-ETH-XC
Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TB541-ETH-XC, terminal base AC500, slots: 1 processor module,
4 communication modules, Ethernet RJ45 connector, XC version

TF501-CMS Ä Chapter
1.6.2.2.2 “TF501-CMS
and TF521-CMS -
Function module ter-
minal bases ”
on page 3796

TF501-CMS, function module terminal base, slots:
1 function module FM502-CMS, 1 processor module PM592-ETH,
1 communication module, Ethernet RJ45 connector

TF501-CMS-XC
Ä Chapter 1.6.2.2.2
“TF501-CMS and
TF521-CMS - Func-
tion module terminal
bases ” on page 3796

TF501-CMS-XC, function module terminal base, slots:
1 function module FM502-CMS, 1 processor module PM592-ETH,
1 communication module, Ethernet RJ45 connector, XC version

TF521-CMS Ä Chapter
1.6.2.2.2 “TF501-CMS
and TF521-CMS -
Function module ter-
minal bases ”
on page 3796

TF521-CMS, function module terminal base, slots:
1 function module FM502-CMS, 1 processor module PM592-ETH,
2 communication modules, Ethernet RJ45 connector

TF521-CMS-XC
Ä Chapter 1.6.2.2.2
“TF501-CMS and
TF521-CMS - Func-
tion module terminal
bases ” on page 3796

TF521-CMS-XC, function module terminal base, slots:
1 function module FM502-CMS, 1 processor module PM592-ETH,
2 communication modules, Ethernet RJ45 connector, XC version

1.6.1.7.2 Device list: Processor modules (CPUs)
Processor modules for AC500-eCo

Type Description
PM554-TP Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM554-TP, processor module, 128 kB memory, 8 DI, 6 DO-T,
24 V DC, with pluggable I/O terminal blocks

PM554-TP-ETH
Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM554-TP-ETH, processor module, 128 kB memory, 8 DI, 6 DO-T,
24 V DC, onboard Ethernet, with pluggable I/O terminal blocks

PM554-RP Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM554-RP, processor module, 128 kB memory, 8 DI, 6 DO-R,
24 V DC, with pluggable I/O terminal blocks

V2 products

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3713

Type Description
PM554-RP-AC
Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM554-RP-AC, processor module, 128 kB memory, 8 DI, 6 DO-R,
100 V AC...240 V AC, with pluggable I/O terminal blocks

PM556-TP-ETH
Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM556-TP-ETH, processor module, 512 kB memory, 8 DI, 6 DO-T,
24 V DC, onboard Ethernet, with pluggable I/O terminal blocks

PM564-TP Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM564-TP, processor module, 128 kB memory, 6 DI, 6 DO-T, 2 AI,
1 AO, 24 V DC

PM564-TP-ETH
Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM564-TP-ETH, processor module, 128 kB memory, 6 DI, 6 DO-T,
2 AI, 1 AO, 24 V DC, Ethernet interface

PM564-RP Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM564-RP, processor module, 128 kB memory, 6 DI, 6 DO-R, 2 AI,
1 AO, 24 V DC

PM564-RP-AC
Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM564-RP-AC, processor module, 128 kB memory, 6 DI, 6 DO-R,
2 AI, 1 AO, 100 V AC...240 V AC

PM564-RP-ETH
Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM564-RP-ETH, processor module, 128 kB memory, 6 DI, 6 DO-R,
2 AI, 1 AO, 24 V DC, Ethernet interface

PM564-RP-ETH-AC
Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM564-RP-ETH-AC, processor module, 128 kB memory,
6 DI, 6 DO-R, 2 AI, 1 AO, 100 V AC...240 V AC, Ethernet interface

PM566-TP-ETH
Ä Chapter
1.6.2.3.1.1 “PM55x-
xP and PM56x-xP”
on page 3804

PM566-TP-ETH, processor module, 512 kB memory, 6 DI, 6 DO-T,
2 AI, 1 AO, 24 V DC, Ethernet interface

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3714

Processor modules for AC500 (Standard)

Type Description
PM572 Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM572, processor module, memory 128 kB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display

PM573-ETH Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM573-ETH, processor module, memory 512 kB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, onboard Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols

PM573-ETH-XC
Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x
(-y) and PM59x (-y)”
on page 3848

PM573-ETH-XC, processor module, memory 512 kB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, onboard Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols, XC version

PM582 Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM582, processor module, memory 512 kB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display

PM582-XC Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM582-XC, processor module, memory 512 kB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, XC version

PM583-ETH Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM583-ETH, processor module, memory 1024 kB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, onboard Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols

PM583-ETH-XC
Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x
(-y) and PM59x (-y)”
on page 3848

PM583-ETH-XC, processor module, memory 1024 kB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBPP, display, onboard Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols, XC version

PM585-ETH Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM585-ETH, processor module, memory 1024 kB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, onboard Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols

PM590-ARCNET
Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x
(-y) and PM59x (-y)”
on page 3848

PM590-ARCNET, processor module, memory 2 MB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, integrated communication module ARCNET

PM590-ETH Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM590-ETH, processor module, memory 2 MB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, onboard Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols

PM591-ETH Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM591-ETH, processor module, memory 4 MB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBPP, display, onboard Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols

PM591-2ETH
Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x
(-y) and PM59x (-y)”
on page 3848

PM591-2ETH, processor module, memory 4 MB, 24 V DC,
memory card slot, interfaces 1 RS-232/485 (programming, Modbus/
CS31), display, 2 onboard Ethernet TCP/IP with web server, SNTP,
IEC60870-5-104 protocols

V2 products

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3715

Type Description
PM591-ETH-XC
Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x
(-y) and PM59x (-y)”
on page 3848

PM591-ETH-XC, processor module, memory 4 MB, 24 V DC,
memory card slot, interfaces 2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, onboard Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols, XC Version

PM592-ETH Ä Chapter
1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x
(-y)” on page 3848

PM592-ETH, processor module, memory 4 MB / 4 GB flash disk,
24 V DC, memory card slot, interfaces 2 RS-232/485 (programming,
Modbus/CS31), 1 FBP, display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104 protocols

PM592-ETH-XC
Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x
(-y) and PM59x (-y)”
on page 3848

PM592-ETH-XC, processor module, memory 4 MB / 4 GB flash disk,
24 V DC, memory card slot, interfaces 2 RS-232/485 (programming,
Modbus/CS31), 1 FBP, display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104 protocols, XC version

PM595-4ETH-F
Ä Chapter 1.6.2.3.2.2
“PM595-4ETH”
on page 3863

PM595-4ETH-F, processor module,
user progr./data memory 16 MB / 16 MB, 1.3 GHz, 24 V DC,
memory card slot, interfaces 2 RS232-485, 2 independent Ethernet
interfaces (Progr., web server, IEC60870-5-104 protocol),
2 independent Ethernet based interfaces with 2-port switch (between
fieldbus protocols PROFINET IO, EtherCAT and Ethernet)

PM595-4ETH-M-XC
Ä Chapter 1.6.2.3.2.2
“PM595-4ETH”
on page 3863

PM595-4ETH-M-XC, processor module,
user progr./data memory 16 MB / 16 MB, 1.0 GHz, 24 V DC,
memory card slot, interfaces 2 RS232-485, 2 independent Ethernet
interfaces (Progr., web server, IEC60870-5-104 protocol),
2 independent Ethernet based interfaces with 2-port switch
(between fieldbus protocols PROFINET IO, EtherCAT and Ethernet),
XC version

1.6.1.7.3 Device list: Communication modules

Type Description
CM574-RCOM
Ä Chapter 1.6.2.4.3.1
“CM574-RCOM for
RCOM/RCOM+ ”
on page 4044

CM574-RCOM, communication module, 2 serial RS-232/485,
RCOM/RCOM+ protocol

CM574-RS Ä Chapter
1.6.2.4.4.1 “CM574-RS
with 2 serial interfaces”
on page 4049

CM574-RS, communication module, 2 serial RS232/485, free
configurable serial interface module

CM579-ETHCAT
Ä Chapter 1.6.2.4.6.1
“CM579-ETHCAT -
EtherCAT master”
on page 4066

CM579-ETHCAT, EtherCAT communication module

CM579-PNIO
Ä Chapter 1.6.2.4.9.1
“CM579-PNIO -
PROFINET IO RT con-
troller” on page 4084

CM579-PNIO, PROFINET communication module

CM579-PNIO-XC
Ä Chapter 1.6.2.4.9.1
“CM579-PNIO -
PROFINET IO RT con-
troller” on page 4084

CM579-PNIO-XC, PROFINET communication module, XC version

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3716

Type Description
CM582-DP Ä Chapter
1.6.2.4.8.1 “CM582-DP
- PROFIBUS DP slave”
on page 4075

CM582-DP, communication module PROFIBUS DP slave 12 Mbit/s

CM582-DP-XC
Ä Chapter 1.6.2.4.8.1
“CM582-DP -
PROFIBUS DP slave”
on page 4075

CM582-DP-XC, communication module PROFIBUS DP slave
12 Mbit/s, XC version

CM588-CN Ä Chapter
1.6.2.4.5.1 “CM588-CN
- CANopen slave”
on page 4053

CM588-CN, communication module, CANopen slave

CM588-CN-XC
Ä Chapter 1.6.2.4.5.1
“CM588-CN - CANopen
slave” on page 4053

CM588-CN-XC, communication module, CANopen slave, XC version

CM589-PNIO
Ä Chapter 1.6.2.4.9.2
“CM589-PNIO(-4) -
PROFINET IO RT
with 4 devices”
on page 4089

CM589-PNIO, PROFINET communication module

CM589-PNIO-XC
Ä Chapter 1.6.2.4.9.2
“CM589-PNIO(-4) -
PROFINET IO RT
with 4 devices”
on page 4089

CM589-PNIO-XC, PROFINET communication module, XC version

CM589-PNIO-4
Ä Chapter 1.6.2.4.9.2
“CM589-PNIO(-4) -
PROFINET IO RT
with 4 devices”
on page 4089

CM589-PNIO-4, PROFINET communication module

CM589-PNIO-4-XC
Ä Chapter 1.6.2.4.9.2
“CM589-PNIO(-4) -
PROFINET IO RT
with 4 devices”
on page 4089

CM589-PNIO-4-XC, PROFINET communication module, XC version

CM592-DP Ä Chapter
1.6.2.4.8.2 “CM592-DP
- PROFIBUS DP
master” on page 4079

CM592-DP, communication module PROFIBUS DP master 12 Mbit/s

CM592-DP-XC
Ä Chapter 1.6.2.4.8.2
“CM592-DP -
PROFIBUS DP master”
on page 4079

CM592-DP-XC, communication module PROFIBUS DP master
12 Mbit/s, XC version

CM597-ETH Ä Chapter
1.6.2.4.7.1 “CM597-
ETH - Communica-
tion module Ethernet”
on page 4070

CM597-ETH, communication module Ethernet TCP/IP with
integrated 2-port switch

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3717

Type Description
CM597-ETH-XC
Ä Chapter 1.6.2.4.7.1
“CM597-ETH - Com-
munication module
Ethernet” on page 4070

CM597-ETH-XC, communication module Ethernet TCP/IP with
integrated 2-port switch, XC version

CM598-CN Ä Chapter
1.6.2.4.5.2 “CM598-CN
- CANopen master”
on page 4060

CM598-CN, communication module, CANopen master

CM598-CN-XC
Ä Chapter 1.6.2.4.5.2
“CM598-CN - CANopen
master” on page 4060

CM598-CN-XC, communication module, CANopen master,
XC version

1.6.1.7.4 Device list: Terminal units

Type Description
TU507-ETH Ä Chapter
1.6.2.5.1 “TU507-ETH
and TU508-ETH for
Ethernet communica-
tion interface modules”
on page 4095

TU507-ETH, Ethernet terminal unit, 24 V DC, screw terminals

TU508-ETH Ä Chapter
1.6.2.5.1 “TU507-ETH
and TU508-ETH for
Ethernet communica-
tion interface modules”
on page 4095

TU508-ETH, Ethernet terminal unit, 24 V DC, spring terminals

TU508-ETH-XC
Ä Chapter 1.6.2.5.1
“TU507-ETH and
TU508-ETH for
Ethernet communica-
tion interface modules”
on page 4095

TU508-ETH-XC, Ethernet terminal unit, 24 V DC, spring terminals,
XC version

TU509 Ä Chapter
1.6.2.5.2 “TU509 and
TU510 for communica-
tion interface modules”
on page 4099

TU509, communication interface module terminal unit, 24 V DC,
screw terminals

TU510 Ä Chapter
1.6.2.5.2 “TU509 and
TU510 for communica-
tion interface modules”
on page 4099

TU510, communication interface module terminal unit, 24 V DC,
spring terminals

TU510-XC Ä Chapter
1.6.2.5.2 “TU509 and
TU510 for communica-
tion interface modules”
on page 4099

TU510-XC, communication interface module terminal unit, 24 V DC,
spring terminals, XC version

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3718

Type Description
TU515 Ä Chapter
1.6.2.5.3 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 4103

TU515, I/O terminal unit, 24 V DC, screw terminals

TU516 Ä Chapter
1.6.2.5.3 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 4103

TU516, I/O terminal unit, 24 V DC, spring terminals

TU516-XC Ä Chapter
1.6.2.5.3 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 4103

TU516-XC, I/O terminal unit, 24 V DC, spring terminals, XC version

TU516-H Ä Chapter
1.6.2.5.3 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 4103

TU516-H, I/O terminal unit, hot swap, 24 V DC, spring terminals

TU516-H-XC
Ä Chapter 1.6.2.5.3
“TU515, TU516,
TU541 and TU542
for I/O modules”
on page 4103

TU516-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals,
XC version

TU517 Ä Chapter
1.6.2.5.4 “TU517 and
TU518 for communica-
tion interface modules”
on page 4109

TU517, terminal unit for communication interface modules, 24 V DC,
screw terminals

TU518 Ä Chapter
1.6.2.5.4 “TU517 and
TU518 for communica-
tion interface modules”
on page 4109

TU518, terminal unit for communication interface modules, 24 V DC,
spring terminals

TU518-XC Ä Chapter
1.6.2.5.4 “TU517 and
TU518 for communica-
tion interface modules”
on page 4109

TU518-XC, terminal unit for communication interface modules,
24 V DC, spring terminals, XC version

TU520-ETH Ä Chapter
1.6.2.5.5 “TU520-ETH
for PROFINET com-
munication interface
modules” on page 4112

TU520-ETH, PROFINET I/O terminal unit, 24 V DC, spring terminals

TU520-ETH-XC
Ä Chapter 1.6.2.5.5
“TU520-ETH for
PROFINET commu-
nication interface
modules” on page 4112

TU520-ETH-XC, PROFINET I/O terminal unit, 24 V DC, spring
terminals, XC version

TU531 Ä Chapter
1.6.2.5.6 “TU531 and
TU532 for I/O modules”
on page 4114

TU531, I/O terminal unit, 230 V AC, relays, screw terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3719

Type Description
TU532 Ä Chapter
1.6.2.5.6 “TU531 and
TU532 for I/O modules”
on page 4114

TU532, I/O terminal unit, 230 V AC, relays, spring terminals

TU532-XC Ä Chapter
1.6.2.5.6 “TU531 and
TU532 for I/O modules”
on page 4114

TU532-XC, I/O terminal unit, 230 V AC, relays, spring terminals,
XC version

TU532-H Ä Chapter
1.6.2.5.6 “TU531 and
TU532 for I/O modules”
on page 4114

TU532-H, I/O terminal unit, hot swap, 230 V AC, relays, spring
terminals

TU532-H-XC
Ä Chapter 1.6.2.5.6
“TU531 and TU532
for I/O modules”
on page 4114

TU532-H-XC, I/O terminal unit, hot swap, 230 V AC, relays, spring
terminals, XC version

TU541 Ä Chapter
1.6.2.5.3 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 4103

TU541, I/O terminal unit, 24 V DC, screw terminals

TU542 Ä Chapter
1.6.2.5.3 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 4103

TU542, I/O terminal unit, 24 V DC, spring terminals

TU542-XC Ä Chapter
1.6.2.5.3 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 4103

TU542-XC, I/O terminal unit, 24 V DC, spring terminals, XC version

TU542-H Ä Chapter
1.6.2.5.3 “TU515,
TU516, TU541 and
TU542 for I/O modules”
on page 4103

TU542-H, I/O terminal unit, hot swap, 24 V DC, spring terminals

TU542-H-XC
Ä Chapter 1.6.2.5.3
“TU515, TU516,
TU541 and TU542
for I/O modules”
on page 4103

TU542-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals,
XC version

TU551-CS31
Ä Chapter 1.6.2.5.7
“TU551-CS31 and
TU552-CS31 for
CS31 communication
interface modules”
on page 4121

TU551-CS31, CS31 bus terminal unit, 24 V DC, screw terminals

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3720

Type Description
TU552-CS31
Ä Chapter 1.6.2.5.7
“TU551-CS31 and
TU552-CS31 for
CS31 communication
interface modules”
on page 4121

TU552-CS31, CS31 bus terminal unit, 24 V DC, spring terminals

TU552-CS31-XC
Ä Chapter 1.6.2.5.7
“TU551-CS31 and
TU552-CS31 for
CS31 communication
interface modules”
on page 4121

TU552-CS31-XC, CS31 bus terminal unit, 24 V DC, spring terminals,
XC version

1.6.1.7.5 Device list: S500-eCo I/O modules

Type Description
AI561 Ä Chapter
1.6.2.6.2.1.1 “AI561 -
Analog input module”
on page 4351

AI561, analog input module, 4 AI, U/I

AI562 Ä Chapter
1.6.2.6.2.1.2 “AI562 -
Analog input module”
on page 4362

AI562, analog input module, 2 AI, RTD

AI563 Ä Chapter
1.6.2.6.2.1.3 “AI563 -
Analog input module”
on page 4373

AI563, analog input module, 4 AI, thermocouple

AO561 Ä Chapter
1.6.2.6.2.1.4 “AO561 -
Analog output module”
on page 4385

AO561, analog output module, 2 AO, U/I

AX561 Ä Chapter
1.6.2.6.2.1.5 “AX561
- Analog input/output
module” on page 4394

AX561, analog input/output module, 4 AI, 2AO, U/I

DC561 Ä Chapter
1.6.2.6.1.1.1 “DC561
- Digital input/output
module” on page 4125

DC561, digital input/output module, 16 configurable inputs/outputs,
transistor output, interfast connection

DC562 Ä Chapter
1.6.2.6.1.1.2 “DC562
- Digital input/output
module” on page 4133

DC562, digital input/output module, 16 configurable inputs/outputs

DI561 Ä Chapter
1.6.2.6.1.1.3 “DI561 -
Digital input module”
on page 4144

DI561, digital input module, 8 DI, 24 V DC

DI562 Ä Chapter
1.6.2.6.1.1.4 “DI562 -
Digital input module”
on page 4151

DI562, digital input module, 16 DI, 24 V DC

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3721

Type Description
DI571 Ä Chapter
1.6.2.6.1.1.5 “DI571 -
Digital input module”
on page 4159

DI571, digital input module, 8 DI, 120 V AC...240 V AC

DI572 Ä Chapter
1.6.2.6.1.1.6 “DI572 -
Digital input module”
on page 4168

DI572, digital input module, 16 DI, 100 V AC...240 V AC

DO561 Ä Chapter
1.6.2.6.1.1.7 “DO561 -
Digital output module”
on page 4177

DO561, digital output module, 8 DO, transistor output

DO562 Ä Chapter
1.6.2.6.1.1.8 “DO562 -
Digital output module”
on page 4186

DO562, digital output module, 16 DO, transistor output

DO571 Ä Chapter
1.6.2.6.1.1.9 “DO571 -
Digital output module”
on page 4195

DO571, digital output module, 8 DO, relay output

DO572 Ä Chapter
1.6.2.6.1.1.10 “DO572 -
Digital output module”
on page 4205

DO572, digital output module, 8 DO, triac output

DO573 Ä Chapter
1.6.2.6.1.1.11 “DO573 -
Digital output module”
on page 4215

DO573, digital output module, 16 DO, relay output

DX561 Ä Chapter
1.6.2.6.1.1.12 “DX561
- Digital input/output
module” on page 4227

DX561, digital input/output module, 8 DI 24 V DC, 8 DO 24 V DC,
transistor output

DX571 Ä Chapter
1.6.2.6.1.1.13 “DX571
- Digital input/output
module” on page 4239

DX571, digital input/output module, 8 DI 24 V DC, 8 DO, relay output

1.6.1.7.6 Device list: S500 I/O modules

Type Description
AI523 Ä Chapter
1.6.2.6.2.2.2 “AI523 -
Analog input module”
on page 4433

AI523, analog input module, 16 AI, U/I/Pt100, 12 bits + sign, 2-wires

AI523-XC Ä Chapter
1.6.2.6.2.2.2 “AI523 -
Analog input module”
on page 4433

AI523-XC, analog input module, 16 AI, U/I/Pt100, 12 bits + sign,
2-wires, XC version

AI531 Ä Chapter
1.6.2.6.2.2.3 “AI531 -
Analog input module”
on page 4455

AI531, analog input module, 8 AI, U/I/Pt100, TC, 15 bits + sign,
4-wires

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3722

Type Description
AI531-XC Ä Chapter
1.6.2.6.2.2.3 “AI531 -
Analog input module”
on page 4455

AI531-XC, analog input module, 8 AI, U/I/Pt100, TC, 15 bits + sign,
4-wires, XC version

AO523 Ä Chapter
1.6.2.6.2.2.4 “AO523 -
Analog output module”
on page 4487

AO523, analog output module, 16 AO, U/I, 12 bits + sign, 2-wires

AO523-XC Ä Chapter
1.6.2.6.2.2.4 “AO523 -
Analog output module”
on page 4487

AO523-XC, analog output module, 16 AO, U/I, 12 bits + sign,
2-wires, XC version

AX521 Ä Chapter
1.6.2.6.2.2.5 “AX521
- Analog input/output
module” on page 4502

AX521, analog input/output module, 4 AI, 4 AO, U/I/Pt100,
12 bits + sign, 2-wires

AX521-XC Ä Chapter
1.6.2.6.2.2.5 “AX521
- Analog input/output
module” on page 4502

AX521-XC, analog input/output module, 4 AI, 4 AO, U/I/Pt100,
12 bits + sign, 2-wires, XC version

AX522 Ä Chapter
1.6.2.6.2.2.6 “AX522
- Analog input/output
module” on page 4525

AX522, analog input/output module, 8 AI, 8 AO, U/I/Pt100,
12 bits + sign, 2-wires

AX522-XC Ä Chapter
1.6.2.6.2.2.6 “AX522
- Analog input/output
module” on page 4525

AX522-XC, analog input/output module, 8 AI, 8 AO, U/I/Pt100,
12 bits + sign, 2-wires, XC version

DA501 Ä Chapter
1.6.2.6.3.1.1 “DA501
- Digital/Analog
input/output module”
on page 4550

DA501, digital/analog input/output module, 16 DI, 8 DC, 4 AI, 2 AO

DA501-XC Ä Chapter
1.6.2.6.3.1.1 “DA501
- Digital/Analog
input/output module”
on page 4550

DA501-XC, digital/analog input/output module, 16 DI, 8 DC, 4 AI,
2 AO, XC version

DA502 Ä Chapter
1.6.2.6.3.1.2 “DA502
- Digital/Analog
input/output module”
on page 4585

DA502, digital/analog input/output module, 16 DO, 8 DC, 4 AI, 2 AO

DA502-XC Ä Chapter
1.6.2.6.3.1.2 “DA502
- Digital/Analog
input/output module”
on page 4585

DA502-XC, digital/analog input/output module, 16 DO, 8 DC, 4 AI,
2 AO, XC version

DC522 Ä Chapter
1.6.2.6.1.2.1 “DC522
- Digital input/output
module” on page 4253

DC522, digital input/output module, 16 DC, 24 V DC / 0.5 A, 2-wires

DC522-XC Ä Chapter
1.6.2.6.1.2.1 “DC522
- Digital input/output
module” on page 4253

DC522-XC, digital input/output module, 16 DC, 24 V DC / 0.5 A,
2-wires, XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3723

Type Description
DC523 Ä Chapter
1.6.2.6.1.2.2 “DC523
- Digital input/output
module” on page 4264

DC523, digital input/output module, 24 DC, 24 V DC / 0.5 A, 1-wire

DC523-XC Ä Chapter
1.6.2.6.1.2.2 “DC523
- Digital input/output
module” on page 4264

DC523-XC, digital input/output module, 24 DC, 24 V DC / 0.5 A,
1-wire, XC version

DC532 Ä Chapter
1.6.2.6.1.2.3 “DC532
- Digital input/output
module” on page 4276

DC532, digital input/output module, 16 DI, 16 DC, 24 V DC / 0.5 A,
1-wire

DC532-XC Ä Chapter
1.6.2.6.1.2.3 “DC532
- Digital input/output
module” on page 4276

DC532-XC, digital input/output module, 16 DI, 16 DC,
24 V DC / 0.5 A, 1-wire, XC version

DI524 Ä Chapter
1.6.2.6.1.2.5 “DI524 -
Digital input module”
on page 4298

DI524, digital input module, 32 DI, 24 V DC, 1-wire

DI524-XC Ä Chapter
1.6.2.6.1.2.5 “DI524 -
Digital input module”
on page 4298

DI524-XC, digital input module, 32 DI, 24 V DC, 1-wire, XC version

DO524 Ä Chapter
1.6.2.6.1.2.6 “DO524 -
Digital output module”
on page 4307

DO524, digital output module, 32 DO, 24 V DC / 0.5 A, 1-wire

DO524-XC Ä Chapter
1.6.2.6.1.2.6 “DO524 -
Digital output module”
on page 4307

DO524-XC, digital output module, 32 DO, 24 V DC / 0.5 A, 1-wire,
XC version

DO526 Ä Chapter
1.6.2.6.1.2.7 “DO526 -
Digital output module”
on page 4317

DO526, digital output module, 8 DO, 24 V DC / 2 A, 1-wire

DO526-XC Ä Chapter
1.6.2.6.1.2.7 “DO526 -
Digital output module”
on page 4317

DO526-XC, digital output module, 8 DO, 24 V DC / 2 A, 1-wire,
XC version

DX522 Ä Chapter
1.6.2.6.1.2.8 “DX522
- Digital input/output
module” on page 4327

DX522, digital input/output module, 8 DI, 24 V DC, 8 DO relays

DX522-XC Ä Chapter
1.6.2.6.1.2.8 “DX522
- Digital input/output
module” on page 4327

DX522-XC, digital input/output module, 8 DI, 24 V DC, 8 DO relays,
XC version

DX531 Ä Chapter
1.6.2.6.1.2.9 “DX531
- Digital input/output
module” on page 4339

DX531, digital input/output module, 8 DI, 230 V AC, 4 DO relay,
2-wires

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3724

1.6.1.7.7 Device list: Function modules

Type Description
CD522 Ä Chapter
1.6.2.7.2.1 “CD522
- Encoder, counter
and PWM module”
on page 4635

CD522, encoder & PWM module, 2 encoder inputs, 2 PWM outputs,
2 digital inputs 24 V DC, 8 digital outputs 24 V DC

CD522-XC Ä Chapter
1.6.2.7.2.1 “CD522
- Encoder, counter
and PWM module”
on page 4635

CD522-XC, encoder & PWM module, 2 encoder inputs,
2 PWM outputs, 2 digital inputs 24 V DC, 8 digital outputs 24 V DC,
XC version

DC541-CM Ä Chapter
1.6.2.6.1.2.4 “DC541-
CM - Digital
input/output module”
on page 4290

DC541-CM, digital input/output module, 8 DC, 24 V DC / 0.5 A,
1-wire

DC541-CM-XC
Ä Chapter
1.6.2.6.1.2.4 “DC541-
CM - Digital
input/output module”
on page 4290

DC541-CM-XC, digital input/output module, 8 DC, 24 V DC / 0.5 A,
1-wire, XC version

FM502-CMS
Ä Chapter 1.6.2.7.2.2
“FM502-CMS -
Analog measurements”
on page 4658

FM502-CMS for condition monitoring systems, 16 AI, 2 DI, 2 DC,
1 encoder (A, B, Z)

FM502-CMS-XC
Ä Chapter 1.6.2.7.2.2
“FM502-CMS -
Analog measurements”
on page 4658

FM502-CMS-XC for condition monitoring systems, 16 AI, 2 DI, 2 DC,
1 encoder (A, B, Z), XC version

AC500-eCo only:
FM562 Ä Chapter
1.6.2.7.1.1 “FM562 for
pulse train output”
on page 4617

FM562, pulse-train output module, 2 axes, RS-422, 4 DI 24 V DC

1.6.1.7.8 Device list: Communication interface modules
Table 254: CANopen
Type Description
CI581-CN Ä Chapter
1.6.2.8.2.2 “CI581-CN”
on page 4685

CI581-CN, CANopen communication interface module, 8 DI, 8 DO,
4 AI and 2 AO

CI581-CN-XC
Ä Chapter
1.6.2.8.2.2 “CI581-CN”
on page 4685

CI581-CN-XC, CANopen communication interface module, 8 DI,
8 DO, 4 AI and 2 AO, XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3725

Type Description
CI582-CN Ä Chapter
1.6.2.8.2.3 “CI582-CN”
on page 4723

CI582-CN, CANopen communication interface module, 8 DI, 8 DO
and 8 DC

CI582-CN-XC
Ä Chapter
1.6.2.8.2.3 “CI582-CN”
on page 4723

CI582-CN-XC, CANopen communication interface module, 8 DI,
8 DO and 8 DC, XC version

Table 255: CS31
Type Description
CI590-CS31-HA
Ä Chapter 1.6.2.8.3.1
“CI590-CS31-HA”
on page 4745

CI590-CS31-HA, CS31 redundant communucation interface module,
16 DC

CI590-CS31-HA-XC
Ä Chapter 1.6.2.8.3.1
“CI590-CS31-HA”
on page 4745

CI590-CS31-HA-XC,
CS31 redundant communucation interface module, 16 DC,
XC version

CI592-CS3 Ä Chapter
1.6.2.8.3.2 “CI592-
CS31 - Digital and
analog inputs and out-
puts” on page 4764

CI592-CS31, CS31 communucation interface module, 8 DI, 8 DC,
4 AI, 2 AO

CI592-CS31-XC
Ä Chapter 1.6.2.8.3.2
“CI592-CS31 - Digital
and analog inputs and
outputs” on page 4764

CI592-CS31-XC, CS31 communucation interface module, 8 DI,
8 DC, 4 AI, 2 AO, XC version

DC551-CS31
Ä Chapter 1.6.2.8.3.3
“DC551-CS31 - Digital
inputs and outputs”
on page 4797

DC551-CS31, CS31 communucation interface module, 8 DI, 16 DC

DC551-CS31-XC
Ä Chapter 1.6.2.8.3.3
“DC551-CS31 - Digital
inputs and outputs”
on page 4797

DC551-CS31-XC, CS31 communucation interface module, 8 DI,
16 DC, XC version

Table 256: EtherCAT
Type Description
CI511-ETHCAT
Ä Chapter 1.6.2.8.4.1
“CI511-ETHCAT”
on page 4814

CI511-ETHCAT, EtherCAT communucation interface module, 8 DI,
8 DO, 4 AI and 2 AO

CI512-ETHCAT
Ä Chapter 1.6.2.8.4.2
“CI512-ETHCAT”
on page 4846

CI512-ETHCAT, EtherCAT communucation interface module, 8 DI,
8 DO and 8 DC

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3726

Table 257: Modbus
Type Description
CI521-MODTCP
Ä Chapter 1.6.2.8.5.1
“CI521-MODTCP”
on page 4864

CI521-MODTCP, Modbus TCP communucation interface module,
4 AI, 2 AO, 8 DI and 8 DO

CI521-MODTCP-XC
Ä Chapter 1.6.2.8.5.1
“CI521-MODTCP”
on page 4864

CI521-MODTCP-XC,
Modbus TCP communucation interface module, 4 AI, 2 AO, 8 DI and
8 DO, XC version

CI522-MODTCP
Ä Chapter 1.6.2.8.5.2
“CI522-MODTCP”
on page 4904

CI522-MODTCP, Modbus TCP communucation interface module,
8 DC, 8 DI and 8 DO

CI522-MODTCP-XC
Ä Chapter 1.6.2.8.5.2
“CI522-MODTCP”
on page 4904

CI522-MODTCP-XC,
Modbus TCP communucation interface module, 8 DC, 8 DI and
8 DO, XC version

Table 258: PROFIBUS
Type Description
CI541-DP Ä Chapter
1.6.2.8.6.1 “CI541-DP”
on page 4930

CI541-DP, PROFIBUS DP communucation interface module, 8 DI,
8 DO, 4 AI and 2 AO

CI541-DP-XC
Ä Chapter
1.6.2.8.6.1 “CI541-DP”
on page 4930

CI541-DP-XC, PROFIBUS DP communucation interface module,
8 DI, 8 DO, 4 AI and 2 AO, XC versioncommunucation interface

CI542-DP Ä Chapter
1.6.2.8.6.2 “CI542-DP”
on page 4969

CI542-DP, PROFIBUS DP communucation interface module, 8 DI,
8 DO and 8 DC

CI542-DP-XC
Ä Chapter
1.6.2.8.6.2 “CI542-DP”
on page 4969

CI542-DP-XC, PROFIBUS DP communucation interface module,
8 DI, 8 DO and 8 DC, XC version

Table 259: PROFINET
Type Description
CI501-PNIO (V3)
Ä Chapter
1.6.2.8.7.2 “CI501-
PNIO” on page 4995

CI501-PNIO (V3), PROFINET communucation interface module,
8 DI, 8 DO, 4 AI and 2 AO

CI501-PNIO-XC (V3)
Ä Chapter
1.6.2.8.7.2 “CI501-
PNIO” on page 4995

CI501-PNIO-XC (V3), PROFINET communucation interface module,
8 DI, 8 DO, 4 AI and 2 AO, XC version

CI502-PNIO Ä Chapter
1.6.2.8.7.3 “CI502-
PNIO” on page 5035

CI502-PNIO, PROFINET communucation interface module, 8 DI,
8 DO and 8 DC

CI502-PNIO-XC
Ä Chapter
1.6.2.8.7.3 “CI502-
PNIO” on page 5035

CI502-PNIO-XC, PROFINET communucation interface module, 8 DI,
8 DO and 8 DC, XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3727

Type Description
CI504-PNIO Ä Chapter
1.6.2.8.7.4 “CI504-
PNIO” on page 5060

CI504-PNIO, PROFINET communucation interface module with
3 serial interfaces

CI504-PNIO-XC
Ä Chapter
1.6.2.8.7.4 “CI504-
PNIO” on page 5060

CI504-PNIO-XC, PROFINET communucation interface module with
3 serial interfaces, XC version

CI506-PNIO Ä Chapter
1.6.2.8.7.5 “CI506-
PNIO” on page 5076

CI506-PNIO, PROFINET communucation interface module with
2 serial interfaces and 1 CANopen master interface

CI506-PNIO-XC
Ä Chapter
1.6.2.8.7.5 “CI506-
PNIO” on page 5076

CI506-PNIO-XC, PROFINET communucation interface module with
2 serial interfaces and 1 CANopen master interface, XC version

1.6.1.7.9 Device list: Accessories

Type Description
Automation Builder DM-TOOL, Automation Builder software suite, programming software

(multilanguage)
www.abb.com/automationbuilder

MC502 Ä Chapter
1.6.2.9.1.2 “MC502
- Memory card”
on page 5096

MC502, memory card

MC5102 Ä Chapter
1.6.2.9.1.4 “MC5102
- Micro memory
card with micro
memory card adapter”
on page 5103

MC5102, micro memory card with micro memory card adapter

MC5141 Ä Chapter
1.6.2.9.1.5 “MC5141
- Memory card”
on page 5108

MC5141, memory card

MC503 Ä Chapter
1.6.2.9.1.3 “MC503 -
Memory card adapter”
on page 5101

MC503, memory card expansion module for PM554-x and PM564-x

TA521 Ä Chapter
1.6.2.9.2.4 “TA521 -
Battery” on page 5175

TA521, lithium battery

TA523 Ä Chapter
1.6.2.9.4.3 “TA523
- Pluggable
label mounting”
on page 5209

TA523, pluggable label mounting (10 pcs)

TA524 Ä Chapter
1.6.2.9.2.5 “TA524 -
Dummy communication
module” on page 5179

TA524, dummy communication module

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3728

http://www.abb.com/automationbuilder

Type Description
TA525 Ä Chapter
1.6.2.9.4.4 “TA525
- Plastic labels”
on page 5210

TA525, set of 10 white plastic markers

TA526 Ä Chapter
1.6.2.9.2.6 “TA526 -
Wall mounting acces-
sory” on page 5180

TA526, wall mounting accessory, 10 pcs

TA527 Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TA527, power plug, spare part

TA528 Ä Chapter
1.6.2.2.1 “TB51x-
TB54x” on page 3786

TA528, COM1 plug, spare part

TA536 Ä Chapter
1.6.2.4.5.1 “CM588-CN
- CANopen slave”
on page 4053

TA536, spring plug, spare part

TA535 Ä Chapter
1.6.2.9.4.6 “TA535 -
Protective caps for XC
devices” on page 5212

TA535, protective caps for XC devices

Ä Chapter 1.6.2.6.1.2.4
“DC541-CM - Digital
input/output module”
on page 4290

TA536, spring plug, spare part

TA540 Ä Chapter
1.6.2.3.2.2
“PM595-4ETH”
on page 3863

TA540, protective plastic cap for PM595, spare part

TA541 Ä Chapter
1.6.2.9.2.7 “TA541 -
Battery” on page 5180

TA541, lithium battery for PM595

TA543 Ä Chapter
1.6.2.9.2.8 “TA543 -
Screw mounting acces-
sory” on page 5184

TA543, screw mounting accessory for processor module PM595
without DIN rail

TA561-RTC Ä Chapter
1.6.2.9.1.6 “TA561-RTC
- Real-time clock
adapter” on page 5113

TA561-RTC, real-time clock adapter for PM55x-xP and PM56x-xP,
lithium battery TA522 included

TA562-RS Ä Chapter
1.6.2.9.1.7 “TA562-RS -
Serial RS-485 adapter ”
on page 5120

TA562-RS, serial RS-485 adapter for PM55x-xP and PM56x-xP

TA562-RS-RTC
Ä Chapter 1.6.2.9.1.8
“TA562-RS-RTC -
Serial RS-485 adapter
with real-time clock”
on page 5125

TA562-RS-RTC, serial RS-485 adapter with real-time clock for
PM55x-xP and PM56x-xP

TA566 Ä Chapter
1.6.2.9.3.2 “ TA566 -
Wall mounting acces-
sory” on page 5205

TA566, wall mounting accessory for S500-eCo I/O modules and
AC500-eCo processor modules without DIN rail

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3729

Type Description
TA569-RS-ISO
Ä Chapter 1.6.2.9.1.9
“TA569-RS-ISO -
Serial RS-485 isolated
adapter” on page 5131

TA569-RS-ISO, serial RS-485 adapter for PM55x-xP and PM56x-xP

TA570 Ä Chapter
1.6.2.9.1.10 “TA570
- Spare part set”
on page 5136

TA570, spare part set for AC500-eCo processor modules

TA571-SIM Ä Chapter
1.6.2.9.1.11 “TA571-
SIM - Input simulator”
on page 5137

TA571-SIM, input simulator for PM55x and PM56x

TK501 Ä Chapter
1.6.2.9.2.9 “TK501 -
Programming cable”
on page 5186

TK501, programming cable, D-sub / D-sub

TK502 Ä Chapter
1.6.2.9.2.10 “TK502 -
Programming cable”
on page 5188

TK502, programming cable, terminal block / D-sub

TK503 Ä Chapter
1.6.2.9.2.11 “TK503
- COM1 USB pro-
gramming cable”
on page 5190

TK503, COM1 USB programming cable-> D-sub (RS-485), length
3 m

TK504 Ä Chapter
1.6.2.9.1.12 “TK504
- COM2 USB pro-
gramming cable”
on page 5143

TK504, COM2 USB programming cable -> D-sub (RS-485), length
3 m

Table 260: Accessories for FieldBusPlugs
Type Description
PDP22-FBP.025 PDP22-FBP.025 PROFIBUS DP-V0/V1-FBP 0.25 m, modular

(FieldBusPlug)

PDP22-FBP.050 PDP22-FBP.050 PROFIBUSc DP-V0/V1-FBP 0.5 m, modular
(FieldBusPlug)

PDP22-FBP.100 PDP22-FBP.100 PROFIBUS DP-V0/V1-FBP 1 m, modular
(FieldBusPlug)

PDP22-FBP.200 PDP22-FBP.200 PROFIBUS DP-V0/V1-FBP 2 m, modular
(FieldBusPlug)

PDP22-FBP.500 PDP22-FBP.500 PROFIBUS DP-V0/V1-FBP 5 m, modular
(FieldBusPlug)

PDV11-FBP.0 Feeding connector 24 V DC, Code B-A

PDV12-FBP.0 Feeding connector 24 V DC, Code A-A

PDA11-FBP.050 Adapter M12-D-sub 9-M12, cable length 0.50 m

PDA12-FBP.050 Adapter M12-D-sub 9-M12, cable length 2 x 0.50 m

PDR11-FBP.150 Terminating resistor 150 Ω

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3730

1.6.1.8 PLC system description
1.6.1.8.1 AC500 product family

The AC500 (Standard), AC500-eCo, AC500-S and AC500-XC scalable PLC ranges provide
solutions for small, middle and high-end applications. Our AC500 platform offers different per-
formance levels and is the ideal choice for high availability, extreme environments or safety
solutions. Our AC500 PLC platform offers interoperability and compatibility in hardware and
software from compact PLCs up to high-end and safety PLCs.
Due to the flexible combinations of AC500 devices and components, AC500 PLCs can be used
for controlling a wide variety of applications to fulfill your automation needs.
Features of AC500 PLCs
● Scalable and consistently expandable system
● Different performance classes of processor modules (CPUs) available
● Several field busses available
● Parallel connection to several field busses which can be combined arbitrarily

The AC500 product family consists of the product groups:
● AC500 (standard):

AC500 standard PLCs offer a wide range of performance levels and scalability. The PLCs
are highly capable of communication and extension for flexible application.

● AC500-eCo:
AC500-eCo PLCs are cost-effective, high-performance compact PLCs that offer total inter-
operability with the core AC500 range and provide battery-free uninterrupted output. All I/O
modules can be freely connected in a simple, stable and reliable manner.

● AC500-S:
AC500-S PLCs are designed for safety applications involved in factory, process or machi-
nery automation area.

● AC500-XC:
AC500 (standard) and AC500-S provide devices with -XC extension as a product variant.
These variants operate according to their product group and can, in addition, be operated
under extreme conditions. AC500-XC PLCs can be used at high altitudes, extended oper-
ating temperature and in humid condition. Further, the devices provide immunity to vibration
and hazardous gases. The AC500-XC series is consistent with standard devices in the
overall dimensions, control function and software compatibility. Ä Chapter 1.6.3.7.1 “System
data AC500-XC” on page 5389.

The AC500 product family is characterized by functional modularity. As the complete AC500
product family shares the same hardware platform and programming software tool, the devices
of the AC500 product groups can be flexibly combined.
S500 devices represent the I/O modules of the product group AC500 (standard), whereas
S500-eCo devices represent the I/O modules of the product group AC500-eCo. Both S500 and
S500-eCo devices can be combined with devices of the AC500 product family in a flexible way.

AC500 devices support different protocols and technologies (e.g. Ethernet, PROFIBUS etc.)
in variable number. AC500 devices with onboard interfaces for support of a certain protocol
or technology can be identified easily by the extension in the product name of the AC500
device. For example the AC500 Communication Module PM592-DP provides onboard support
for PROFIBUS DP, the AC500 processor module PM595-4ETH provides onboard support for
four provided Ethernet interfaces.
Further extensions in AC500 device names:
● -ETH: Ethernet
● -ARC: ARCNET
● -DP: PROFIBUS DP
● -CAN: CAN/CANopen
● -ETHCAT: EtherCAT
● -PNIO: PROFINET

AC500 program-
mable logic con-
trollers (PLCs)

Extensions in
the product
name

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3731

● -RCOM: RCOM/RCOM+
● -RS: Serial interface

1.6.1.8.2 AC500/S500 system structure
The AC500 product family provides a variety of modules and pluggable components for
expanding the capabilities of the CPU with additional I/Os or other communication protocols.
Depending on the features and functions of the processor module (CPU) compatible compo-
nents can be added to a complete AC500 PLC system.
Example of an AC500 PLC system:

1 Processor module. In the example, without a LCD display or keypad.
2 Plug-in communication module (AC500-S)
3 Plug-in communication module (AC500 Standard)
4 Plug-in I/O module (AC500-S)
5 Plug-in I/O module (AC500 Standard)
6 Plug-in function module (AC500-eCo)

Fig. 723: S500 I/O modules directly connected to a processor module

Centralized I/O
extension

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3732

Fig. 724: S500 I/O modules connected via communication interface module

1.6.1.8.3 AC500-eCo/S500-eCo system structure
AC500-eCo/S500-eCo serie is fully compatible with AC500/S500. Customers can flexibly select
S500-eCo I/O modules and S500 I/O modules to realize economical and upgradeable solutions.
The AC500-eCo processor module can run independently but also carry out centralized I/O
extension, decentralized I/O extension and network extension.

Centralized I/O extension means that the processor module is connected with the I/O module
via I/O bus on the side to increase control points and functions.

Fig. 725: I/O modules (S500-eCo) directly connected to a AC500-eCo processor module

Usually, an AC500-eCo decentralized I/O station is realized with an CS31 module. As a master
station, the processor module communicates with the CS31 slave station module (such as
DC551) via the serial port COM1 connected to the bus.

Decentralized
I/O extension

Centralized I/O
extension

Decentralized
I/O extension

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3733

Fig. 726: I/O modules (S500-eCo) connected to a AC500-eCo processor module via CS31 bus

1.6.1.8.4 AC500/S500: Short description hardware

AC500 processor modules contains the CPU with the core component of the PLC. The CPU is
connected with the user memory, input and output module, communication port and other units
via system bus and performs tasks by means of system programs preset in the system memory.
The CPU adopts the function preset by the system program to command the PLC for operation.
Its functions include:
● To receive user program and data entered
● To diagnose work faults of the power supply and PLC circuit as well as syntax error in

programming
● To receive the state or data of the site via the input interface and save it into the shadow

register or data register
● To read the user program in the memory one by one and execute it after interpretation
● To update the state of related flag bits and output shadow register contents according to

execution results and realize output control by means of output unit.
Processor modules are available in different performance classes. Only one processor module
is required for a valid system architecture.
There are different types of processor module available that differ in the features and functions
they provide, e.g. performance, LED display etc.
If required, processor modules are also available with an integrated Ethernet communication
module (TCP/IP).

Processor
modules

Communication
modules

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3734

AC500 communication modules are required for
● a connection to standard field bus systems and
● for integration into existing networks.
AC500 communication modules
● enable communication on different field buses.
● are mounted on the left side of the processor module on the same terminal base.
● are directly powered via the internal communication module bus of the terminal base.

A separate voltage source is not required.

The I/O modules are the input / output unit which connects the PLC with the industrial produc-
tion site. The PLC can detect controlled object data via the input interface and the data is taken
as the basis for PLC control on the controlled object. In addition, the PLC sends processing
results via the output interface to the controlled object to realize the control purpose.

I/O modules

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3735

External input equipment and output equipment need various signal levels while the information
processed by the CPU in the PLC only can be the standard level. In order to realize such
conversion, the I/O interface generally shall perform optical isolation and filtering to improve
interference immunity of the PLC. In addition, the I/O interface generally can indicate the
working state to facilitate maintenance.
The PLC provides multiple I/O interface for operation level and drive capability to users for
selection such as digital input, digital output, analog input, analog output, etc. I/O interfaces of
the PLC have the number of input / output signals taken as the number of PLC I/O points. The
number of I/O points is an important basis for PLC selection. If the system is insufficient in the
I/O points, it can be expanded via the I/O extension interface of the PLC.
The I/O modules for digital and/or analog inputs and outputs are available in different versions
and allow flexible use thanks to configurable channels.
The modules can be simply plugged onto a terminal unit for a centralized I/O extension or for a
decentralized I/O extension via communication interface modules.

Function modules extend the PLC system to perform special task control. Those modules often
provide independent components such as a CPU, system programs, memory and interfaces
connected with the PLC system bus.
It is connected with the PLC via the I/O bus to exchange data and independently work under
cooperative management of the PLC.

Communication interface modules enable a decentralized I/O station. It contains embedded
digital I/Os and a fieldbus interface.
Communication interface modules act as I/O slave devices within a master-slave-arrangement.

Function
modules

Communication
interface
modules

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3736

On a terminal base the processor module and the communication modules are plugged.

For AC500-eCo processor modules and special AC500 (Standard) processor
modules the terminal base cannot be removed.

On a terminal unit the I/O modules are plugged.
Terminal units enable simple prewiring without electronics and are available for 24 V DC and
230 V AC, optionally for spring or screw-type terminals.

In the PLC, the memory is mainly used for saving system programs, user programs and work
data. The following memory types can be distinguished:
● Volatile memory:

All saved data will be lost after power failure of the memory but the memory can provide
high access rate and unlimited programming cycles. Common volatile memories mainly
include SRAM and DRAM (including common memories such as SDRAM).

● Nonvolatile memory:
All saved data will not be lost after power failure of the memory, but the memory is subject to
low read-write rate and limited rewrite cycles. Common nonvolatile memories mainly include
NORflash, NANDflash, EEPROM, memory card, etc.

AC500 PLCs store all user programs in the nonvolatile memory to get protected from power
failure. The programs are exported to the volatile memory under operation of the PLC to ensure
high-speed and efficient operation. If user program debugging is finished, the programs can
be fixed in the nonvolatile memory when they need no change. The work data is subject to
frequent change and access in the PLC operation. It is saved in the volatile memory to meet the
requirements for random access.
The work data memory of PLC has the memory area for input and output relay, auxiliary
relay, timer, counter and other logic devices. The state of these devices depends on initial
setting and operation of the user programs. Some data maintains existing state by using built-in
supercapacitors or backup batteries in case of power failure. The memory area for data saving
in case of power failure is called the data retention area.

Terminal bases

Terminal units

Memory

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3737

The PLC is equipped with a switch power supply for internal circuit. Compared with ordinary
power supply, the PLC power supply has the higher stability and interference immunity. A
number of PLC products provide 24 V DC stabilized voltage supply to meet external sensors.

1.6.1.8.5 AC500-eCo/S500-eCo: Short description hardware

AC500-eCo processor modules contains the CPU with the core microprocessor of the PLC. It is
integrated with power supply, input channel and communication interface.
Functions:
● To download user programs
● To run the CPU
● To execute user programs in loops
● To monitor program input and output devices.
Processor modules are available in different performance classes and provide different amounts
onboard I/Os.
Only one processor module is required for a valid system architecture.
If required, processor modules are also available with Ethernet interface.

If the amount of onboard I/Os provided on the processor module is insufficient for a certain use
case, the PLC can be expanded with I/O modules to meet the control requirements.

In the PLC, the memory is mainly used for saving system programs, user programs and work
data. The following memory types can be distinguished:

Power supply

Processor
modules

I/O modules

Memory

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3738

● Volatile memory:
All saved data will be lost after power failure of the memory but the memory can provide
high access rate and unlimited programming cycles. Common volatile memories mainly
include SRAM and DRAM (including common memories such as SDRAM).

● Nonvolatile memory:
All saved data will not be lost after power failure of the memory, but the memory is subject to
low read-write rate and limited rewrite cycles. Common nonvolatile memories mainly include
NORflash, NANDflash, EEPROM, memory card, etc.

AC500 PLCs store all user programs in the nonvolatile memory to get protected from power
failure. The programs are exported to the volatile memory under operation of the PLC to ensure
high-speed and efficient operation. If user program debugging is finished, the programs can
be fixed in the nonvolatile memory when they need no change. The work data is subject to
frequent change and access in the PLC operation. It is saved in the volatile memory to meet the
requirements for random access.
The work data memory of PLC has the memory area for input and output relay, auxiliary
relay, timer, counter and other logic devices. The state of these devices depends on initial
setting and operation of the user programs. Some data maintains existing state by using built-in
supercapacitors or backup batteries in case of power failure. The memory area for data saving
in case of power failure is called the data retention area.

The CPU is equipped with a switch power supply for internal circuit. Compared with ordinary
power supply, the PLC power supply has the higher stability and interference immunity. A
number of PLC products provide 24VDC stabilized voltage supply to meet external sensors.

1.6.1.8.6 Short description software
Configuration and programming of all AC500 control systems (CPUs) is done by using
Automation Builder software.
Features:
● Standardized programming according to IEC 61131-3 - five programming languages (Struc-

tured Text (ST), Function Block Diagram (FBD), Instruction List (IL), Ladder Diagram (LD),
Sequential Function Chart (SFC)), free graphical function chart (CFC), debugging functions
for program test

● Application programming in C/C++
● Online diagnosis
● Debugging functions for the program test: Single step, Single cycle, Breakpoint
● Offline simulation - simulate commands without PLC being connected
● Sampling trace - timing diagrams for process variables
● Recipe management and watch lists
● Visualization
● Configuration of the communication interface modules (for PROFINET, EtherCAT,

CANopen, Ethernet, Modbus)
● Programming - serial or via Ethernet networks
● Comprehensive libraries
● Export and import interfaces for devices, signals, applications, visualization, etc.
● Multi-user support and project compare
● Project scripting

Power supply

Configuration
and program-
ming

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3739

IEC 61131-3 commands can be simulated without a PLC being connected, including the rele-
vant malfunctions. After the program test, the application can be downloaded to the control
system.

Timing diagrams for process variables and storage of data in a ring buffer with event trigger.

Values of selected variables are displayed. Pre-defined values can be assigned to variables
which can then be downloaded to the control system all at once ("Write recipe"). Actual values
from the control system can also be pre-assigned for reading into the Watch and Recipe Man-
ager, and stored in memory there ("Read recipe). These functions are also helpful, for example,
for setting and entering control parameters.

Includes color change, moving elements, bitmaps, text display, allows input of setpoint values
and display of process variables read from the PLC, dynamic bar diagrams, alarm and event
management, function keys and ActiveX elements.

Serial or via Ethernet networks.

Provides access from the programming system to an external project database in which the
program source code of one or several automation projects is managed. Optionally, a version
control system, such as Visual Source Safe, can be used in order to ensure data consistency of
the program code for several different users and projects.

1.6.1.8.7 Control panels (HMI)
ABB control panels offer a wide range of features and functionalities for maximum operability.
The panels are distinguished by their robustness and easy usability, providing all the relevant
information from production plants and machines at a single touch.

Offline simula-
tion

Sampling trace

Recipe manage-
ment and watch
lists

Visualization

Programming

Engineering
interface

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3740

HMI - human control and operation of machines and processes.
Individual solutions for each application - this enables an operator at any time to have an
overview on a profitable production and intervene manually if necessary.
Control panels with TFT graphical display and touch screen.
Available in various resolutions.

1.6.1.9 AC500-S

The AC500-S safety user manual must be read and understood before using safety configura-
tion and programming tools of Automation Builder / PS501 Control Builder Plus. Only qualified
personnel shall be allowed to work with AC500-S safety PLCs.
In order to have always the latest version and due to a different lifecycle compared to
Automation Builder help, the AC500-S safety user manual is only available on our website.

The AC500-S safety PLC includes the following safety-relevant hardware components.
● SM560-S / SM560-S-FD-1 / SM560-S-FD-4
● DI581-S
● DX581-S
● AI581-S
● TU582-S

1.6.1.10 AC500-eCo starter kit
This AC500-eCo Starter kit helps you to get familiar with ABB AC500 PLC offerings and the
engineering tool. For that purpose, this manual explains how to connect and setup the compo-
nents provided in the starter kit and how to program the AC500-eCo CPU by means of several
simple example applications.

Contents of the AC500-eCo starter kit:
● 1 x AC500-eCo CPU PM554-TP-ETH with 2 terminal blocks plugged on the CPU: 1 x 11

pin, 1 x 9 pin
● 1 x digital input simulator
● 1 x programming cable

1.6.1.10.1 Preparing the AC500 CPU
Enclosed to the CPU, you find the installation instructions. Refer to these installation instructions
for assembling the CPU.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3741

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch

Connecting the input simulator
Enclosed to the input simulator, you find the installation instructions. Refer to these installation
instructions to connect the input simulator to the CPU.

Connection of the AC500 CPU

DANGER!
Risk of death by electric shock.
Before using the CPU refer to the “Regulations Concerning the Setting
up of Installations” for safety instructions. http://search-ext.abb.com/library/
Download.aspx?DocumentID=3ADR025003*&Action=Launch

CAUTION!
Risk of damaging the PLC modules.
The CPU can be damaged by overvoltages and short circuits. Make sure that all
voltage sources (supply and process voltage) are switched off before you begin
with operations on the system.

The CPU needs to be powered by 24 V DC. Use the 5-pin screw-type terminal block for
connecting the power.

CAUTION!
Risk of damaging the CPU and the connected modules.
Voltages > 35 V DC can destroy the CPU and the connected modules. Make
sure that the supply voltage never exceeds 35 V DC.

Connecting the programming cable
Plug in the provided programming cable to the CPU and your PC.

Set-up communication parameters in Windows
To set-up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set-up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.
The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows Control Panel. Click “Network and Internet è Network and Sharing

Center”.
2. Click Change adapter settings.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

Set-up commu-
nication param-
eters

Change the IP
address

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3742

http://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR025003*&Action=Launch
http://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR025003*&Action=Launch

3. Right-click Local Area Connection (Ethernet) and select Properties.

4. Double-click Internet Protocol Version 4 (TCP/IPv4).

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3743

5. Enter your desired IP address and subnet mask.

1.6.1.10.2 Step-by-Step introduction to Automation Builder
The following example gives you a brief step-by-step introduction to Automation Builder soft-
ware and to the programming basics for AC500 PLCs. You will develop and start up a very
simple application project with a logical AND function in the programming language Function
Block Diagram (FBD).

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3744

Configurating the hardware
1. In Automation Builder, from the File menu, select New Project.
2. Under Name enter the project name.

Under Location enter where you want to store the project.

3. Click OK.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3745

4. Under Categories -> PLC - AC500 select AC500-eCo.

To expand the list, click on the plus sign.

Select AC500 PM554-ETH.
Click Add PLC.

To specify the hardware configuration, you have to define the I/Os and their symbolic names.

If you made a mistake during the process, you can always undo. In the
CODESYS menu select “Edit è Undo”.

1. Double-click OBIO (onboard inputs and outputs).

ð The OBIO tab opens on the right side with several child tabs.

Creating I/O var-
iables

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3746

2. Select the 8DI+6DO I/O Mapping tab.

ð
To expand the list, click on the plus sign.

3. In the Variable column, insert the text DI04 and DI05 at the corresponding inputs and
insert the text DO00 and DO01 at the corresponding outputs.

To see the number of the inputs and outputs, expand the width of the
Channel column.

ð You added two digital inputs and two digital outputs to your AC500-eCo CPU.

If the Automation Builder software version and the AC500-eCo CPU firmware version are
different, the red Error LED will go on. This has no influence on running your example program
on your AC500-eCo CPU. The example program can be executed with any firmware version
of the AC500-eCo CPU. In Automation Builder you can define if the Error LED is enabled or
disabled.

Behavior of the
error LED

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3747

1. Double-click PLC_AC500.

ð The PLC_AC500 tab opens on the right side with several child tabs.

2. Select the PM554-ETH Configuration tab.
In the Error LED / Failsafe function row, double-click on the entry of the Value column.

3. Select Off by E4 to disable the Error LED.
Select On to enable the Error LED.

4. Close the PLC_AC500 tab.

Programming your project
You write the program code in a separate IEC 61131-3 editor (CODESYS). You can open
CODESYS out of Automation Builder.
Supported programming languages:
● ST (Structured Text)
● IL (Instruction List)
● FBD (Function Block Diagram)
● LD (Ladder Diagram)
● SFC (Sequential Function Chart)
● CFC (Continuous Function Chart)

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3748

To open CODESYS, double-click Application.

ð CODESYS opens in a new window.

1 Work space
2 Message window
3 Status bar
4 Register cards: POUs (Program Organization Units), Data types, Visualizations, Resources
5 Object organizer
6 Automatically generated POU
7 Toolbar

Default programming language is ST.Change the pro-
gramming Lan-
guage into FBD

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3749

1. Select “PLC_PRG (PRG)” and press [DELETE].

If you made a mistake during the process, you can always undo. In the
CODESYS menu select “Edit è Undo”.

2. Right-click POUs and select Add Object.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3750

3. Under Language of the POU, select FBD. Click OK.

ð A newly generated POU opens. The programming language of the POU is FBD.

1 Network (here network number 0001)
4. Click on the Save button.

1. Click on the dotted rectangle behind “???”. From the toolbar, click on the Box icon.
The dotted rectangle represents the cursor position in this network.

Creating an
AND operator

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3751

2. Alternatively, right-click on the dotted rectangle and select Box.

ð
When inserting a new box, it always appears as an AND operator. You
can change the type of the box at any time. Click on the AND text
and type another name. Or click on the AND text and press F2. You
will get an overview of all accepted operators, functions and function
blocks.

3. Click on “???” and press F2.

ð The input assistant opens.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3752

4. Select Global Variables. Select the variable you want to assign.

5. Alternatively, click on “???” and type DI04 for input 1 and DI05 for input 2.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3753

6. To assign an output: Click on the right side of the AND operator. Right-click on the dotted
rectangle and select Assign.

ð You assigned an output.

7. Type DO00 for the output. Or press F2 for opening the input assistant.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3754

Right-click on network 0001 and select “Network (after)”.

ð You added a new network after network 0001. The new network number is 0002.

1. Right-click on the dotted rectangle and select “Assign”.
2. Type DO00 for input and DO01 for output.

Add a new net-
work

Insert a Nega-
tion

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3755

3. Click behind the input DO00.

ð The dotted rectangle represents the cursor position. The cursor position is behind
DO00.

4. Right-click on the dotted rectangle and select Negate.

ð You inserted a negation between DO00 and DO01.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3756

1. Right-click on network 0001 and select “Comment”.

ð The text Comment appears gray colored on first position in network 0001.

2. Double-click on Comment and insert DI04 AND DI05 = DO00.

Insert a Com-
ment

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3757

1. In the Resources register card, double-click Task configuration.

ð In work space the Task configuration window opens.

2. Right-click on Task configuration and select Append Task.

Create a Task
Configuration

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3758

3. Under “Properties è Interval”, enter 10.

4. Right-click on the watch icon and select Append Program Call.

5. Click on ... to open the input assistant.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3759

6. Double-click on PLC_PRG (PRG).

7. You finished the task configuration.
You can close the Task configuration window.

1. Compile your Project.
Click on the Save button.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3760

2. From the Project menu, click Build.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3761

ð During compilation a message window opens. The message window shows the pro-
gress of the compilation process and any errors and warnings. Double-click on the
error message to open the window that contains the error.

Size of used data: Total variable that you have declared and used in your program.

Size of used retain data: Total retain variable that you have declared and used in your
program.

Testing your project without connecting the hardware
You can test your program in simulation mode. No hardware is required for simulation mode.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3762

1. From the Online menu, select Simulation Mode.

2. From the Online menu, select Login.
You can see that Simulation Mode is checked.

ð In the status bar ONLINE and SIM are highlighted in black color.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3763

3. From the Resources register card, double-click “Global Variables
è OBIO_Module_Mapping <R>”.

ð In work space a window opens. The window shows all declared inputs and outputs.

You see the status of every input and output. FALSE is highlighted on black back-
ground. TRUE is highlighted on blue background.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3764

4. Simulate the Starting of the CPU.
From the Online menu, select Run.

ð The status of DO01 changes from FALSE to TRUE.

5. Change the Status of an Input.
Double-click FALSE of input DI04 and input DI05.

ð The change value is shown in green color behind FALSE.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3765

6. From the Online menu, select Write Values or Force Values.
Write Values: One time effect.
Force Values: Writes the value in every program cycle.

ð The status of the inputs and outputs is changed.

1. From the Online menu, select Logout.
2. From the Online menu, select Simulation Mode.

ð Simulation Mode is unchecked.

Running your program on the AC500-eCo CPU
Preconditions:

The input simulator is connected to the AC500-eCo CPU Ä Chapter 1.6.1.10.1.1 “Con-
necting the input simulator” on page 3742.

The AC500-eCo CPU is connected to power supply Ä Chapter 1.6.1.10.1.2 “Connection
of the AC500 CPU” on page 3742.

The programming cable is connected between AC500-eCo CPU and your PC Ä Chapter
1.6.1.10.1.3 “Connecting the programming cable” on page 3742.

The RUN/STOP switch of the AC500-eCo CPU is in RUN position. See the installation
instruction which is enclosed to the AC500-eCo CPU.

Stop simulation
mode

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3766

The communication parameters in Windows are set Ä Chapter 1.6.1.10.1.4 “Set-up com-
munication parameters in Windows” on page 3742.

The project is compiled successfully Ä Instruction on page 3749.

The Simulation Mode is unchecked Ä “Stop simulation mode” on page 3766.
1. Set the Communication Parameters in CODESYS

From the Online menu, select Communication Parameters.

2. From Channels, select AC500 Default TCP-IP. Click OK.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3767

3. Download your Program to the AC500-eCo CPU.
From the Online menu, select Login.

4. The upcoming dialog informs you that no program is on the AC500-eCo CPU. You are
asked if you want to download your program to the AC500-eCo CPU. Click Yes.

ð If the Automation Builder software version and the AC500-eCo CPU firmware version
are different, a message is displayed in the status bar. This has no influence on
running your example program on your AC500-eCo CPU. The example program can
be executed with any firmware version of the AC500-eCo CPU.

5. Create a Boot Project: Save RAM to ROM.
The application project is stored in the volatile memory of a CPU. You can enable the
CPU to automatically load and execute the application project after a restart. Then the
downloaded program will be stored in a non-volatile memory (flash memory). Otherwise,
the program has to be reloaded manually (here: downloaded) each time the CPU is
powered up.
From the Online menu, select Create boot project.

Once the program is stored in the non-volatile memory, it can only be
overwritten by another program or deleted with the delappl command
Ä “Delete a program” on page 3768.

6. From the Online menu, select Run.

ð In the status bar, ONLINE and RUNNING are highlighted in black color.

7. Use the toggles of the input simulator to change the status of input DI04 and DI05.

ð The LEDs of the inputs and outputs go on and off.

8. Stop the Connection to the AC500-eCo CPU.
From the Online menu, select Logout.

Once the program is stored in the non-volatile memory, it can only be overwritten by another
program or deleted with the delappl command.

Delete a pro-
gram

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3768

1. In the Resources register card, double-click PLC-Browser.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3769

2. In the command line type delappl. Press ENTER.

3. The deletion is effective after power cycling.

Program visualization
The visualization allows designing a graphical representation of project variables. In online
mode, the graphical elements can change, for example, their color, size or position according to
the actual variable status.

Preconditions:

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3770

The AC500-eCo CPU is disconnected. In the status bar, ONLINE is gray colored
Ä Chapter 1.6.1.10.2.3 “Testing your project without connecting the hardware” on page 3762.
1. Select the Visualizations register card.

2. Insert a new Visualization Object.
From the Project menu, select “Object è Add”.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3771

3. Under Name of the new Visualization, enter Visu_First_Program.

ð The new visualization object is inserted.

In the toolbar, graphical elements are available for designing the inputs and outputs of your
program.

Create an ele-
ment

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3772

1. Click on the Rectangle icon. Click

and hold to draw a rectangle.

2. Double-click on the rectangle.

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3773

Under Category, select Text. Under Content, enter Digital Input 04.
Optional, you can change the position and font of the text.

1. Under Category, select Input. Select the Toggle variable check box.

2. Click in the Toggle variable's text box. Press F2.

ð The input assistant opens.

Insert Text

Define the Rela-
tion between the
Rectangle and
the Digital Input
04

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3774

3. Under OBIO_Module_Mapping, select DI04.

1. Under Category, select Variables. Click in the Change color's text box. Press F2.

ð The input assistant opens.

2. Under OBIO_Module_Mapping, select DI04.

ð The rectangle will change its color in online mode, depending on the status of the
input.

Define Color
Changing dep-
ening on the
Input's Status

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3775

1. Under Category, select Colors.
Color represents the FALSE status. Alarm color represents the TRUE status.

2. Under Color, select Inside. Select a color for the status FALSE, for example white. Click
OK.

Define Colors
for each Status
(TRUE and
FALSE)

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3776

3. Under Alarm color, select Inside. Select a color for the status TRUE, for example
orange. Click OK.

4. Click OK.

1. Copy and paste the rectangle of Digital Input 04.
Place the duplicated rectangle next to the rectangle of Digital Input 04.

2. Double-click on the duplicated rectangle.
3. Under Category, select Text. Under Content, change the text into Digital Input 05.
4. Under Category, select Input. In the Toggle variable's text box, change the text

into .DI05.

Create an ele-
ment DI05

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3777

5. Under Category, select Variables. In the Change color's text box, change the text
into .DI05.

The creation of the visualization element for a digital output is very similar to a digital input.

1. Click on the Ellipse icon. Click and hold to draw an ellipse.

2. Double-click on the ellipse.

Create an ele-
ment DO00

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3778

3. Insert Text.
Under Category, select Text. Under Content, enter Digital Output 00.

1. Under Category, select Variables. Click in the Change color's text box. Press F2.

ð The input assistant opens.

2. Under OBIO_Module_Mapping, select DO00.

ð The ellipse will change its color in online mode, depending on the status of the output.

Define Color
Changing
depending on
the Output's
Status

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3779

1. Under Category, select Colors.
Color represents the FALSE status. Alarm color represents the TRUE status.

2. Under Color, select Inside. Select a color for the status FALSE, for example green.

Define Colors
for each Status
(TRUE and
FALSE).

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3780

3. Under Alarm color, select Inside. Select a color for the status TRUE, for example
orange.

1. Copy and paste the ellipse of Digital Output 00.
Place the duplicated ellipse next to the ellipse of Digital Output 00.

2. Double-click on the duplicated rectangle.
3. Under Category, select Text. Under Content, change the text into Digital Output 01.
4. Under Category, select Variables. In the Change color's text box, change the text

into .DO01.

1. Under Online, select Simulation Mode.
2. Under Online, select Login.

Create an ele-
ment DO01

Test in simula-
tion mode

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3781

3. Under Online, select Run.

ð Digital output 01 changes its color because the status has been changed.

4. Click Digital Input 04 or Digital Input 05 to change the status of the inputs.

Fig. 727: Example: Digital Input 04 = TRUE, Digital Input 05 = FALSE.

Fig. 728: Example: Digital Input 04 = TRUE, Digital Input 05 = TRUE.

5. Stop Simulation Mode.
From the Online menu, select Logout.

6. From the Online menu, select Simulation Mode.

ð Simulation Mode is unchecked.

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3782

You can use visualization to show the status of the inputs and outputs of your AC500-eCo CPU
during execution of the program on the AC500-eCo CPU.

Run your program on the AC500-eCo CPU Ä Chapter 1.6.1.10.2.4 “Running your pro-
gram on the AC500-eCo CPU” on page 3766.

ð The visualization shows the status of the inputs and outputs of the AC500-eCo CPU.

Changing the user interface language

Changing the user interface language will not be effective until you restart
Automation Builder.

1. In the Automation Builder select “Tools è Options”

ð This will open the Options tab

Visualization
during connec-
tion

Changing the
language in
Automation
Builder

PLC Automation with V2 CPUs

PLC integration (hardware) > PLC introduction

2022/01/20 3ADR010582, 3, en_US 3783

2. Select “International Settings”.
3. Under “User interface language”, select “Specific language”.
4. Select a language.
5. Select “OK”.
6. Close and restart Automation Builder.

ð The user interface language has been changed.

1. In CODESYS select “Project è Options”

Changing the
language in
CODESYS

PLC Automation with V2 CPUs
PLC integration (hardware) > PLC introduction

2022/01/203ADR010582, 3, en_US3784

2. Under “Category”, select “Desktop”.
Under “Language”, select a language.

3. Select “OK”

ð The user interface language has been changed.

1.6.1.11 Converting an AC500 V2 project to an AC500 V3 project
A project that has been configured for an AC500 V2 PLC can be converted to a project for an
AC500 V3 PLC.
Essentially, the conversion is done in Automation Builder, however, some additional actions
have to be executed manually. The complete procedure is described in the application example
Instructions on how to convert a V2 project to a V3 project and differences between V2 and V3.

1.6.2 Device specifications
1.6.2.1 Status LEDs, display and control elements

Depending on the device type, various operating elements provided on the front panel can be
used to control the devices of the PLC system and/or to change the operating mode.
Operating elements:
● Status LEDs:

Indicates the availability of devices/components such as communication modules, commu-
nication interface modules or function modules. Functionality and diagnosis of the status
LEDs depends on the specific module and is described in the device description of the
appropriate module. Possible status: on/off/blinking

● I/O LEDs:
Displays the status of the the inputs and outputs.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3785

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch

● LED display:
Available for some processor modules. It can be used for simple configurations and for
reading out diagnosis information.
Ä Chapter 1.6.4.1.5 “LEDs, display and function keys on the front panel” on page 5422
Ä Chapter 1.7.1.2 “Diagnosis in CPU display” on page 6365

● Function keys and switches:
Allows to change the current operating modes/status manually Ä Chapter 1.6.4.1.5.4
“Description of the function keys” on page 5426.

1.6.2.2 Terminal bases (AC500 standard)

For AC500-eCo processor modules and special AC500 (Standard) processor
modules the terminal base cannot be removed.

1.6.2.2.1 TB51x-TB54x

● TB511-ARCNET: 1 processor module, 1 communication module, with network interface
ARCNET BNC

● TB511-ETH: 1 processor module, 1 communication module, with network interface Ethernet
RJ45

● TB521-ARCNET: 1 processor module, 2 communication modules, with network interface
ARCNET BNC

● TB521-ETH: 1 processor module, 2 communication modules, with network interface
Ethernet RJ45

● TB523-2ETH: 1 processor module, 2 communication modules, with 2 network interface
Ethernet RJ45

● TB541-ETH: 1 processor module, 4 communication modules, with network interface
Ethernet RJ45

● XC version for use in extreme ambient conditions available (-ETH versions only)
The following figure shows the TB521-ETH as example.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3786

1 I/O bus (10-pin, female) to connect the I/O terminal units
2 One available slot for the processor module
3 Slots for communication modules (TB511-xxx: 1 slot, TB521-xxx: 2 slots, TB541-xx: 4 slots)
4 Interface for FieldBusPlug, not for terminal base TB523-2ETH
5 Power supply (5-pin terminal block, removable)
6 Serial interface COM1 (9-pin terminal block, removable)
7 Network interfaces: TB5xx-ETH: Ethernet, TB5xx-ARCNET: ARCNET
8 TB5x1: Serial interface COM2 (D-sub 9, female), TB523-2ETH: second Ethernet network

interface
9 Holes for screw mounting

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3787

XC = eXtreme Conditions

Extreme conditions
Terminal bases for use in extreme ambient conditions have no sign for
XC version.

The figure 3 in the Part no. 1SAP3... (label) identifies the XC version.

Short description
Terminal bases TB5xx are used as sockets for AC500 CPUs and communication modules.
Up to 10 I/O terminal units for I/O expansion modules can be added to these terminal bases.
The terminal bases have slots for one processor module and for communication modules as
well as terminals and interfaces for power supply, expansion and networking.

Terminal Base TB51x TB52x TB54x
Slots for processor modules 1 1 1

Slots for communication modules 1 2 4

NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against accidental
physical contact.
– Unused slots for communication modules must be covered with dummy

communication modules to achieve IP20 rating Ä Chapter 1.6.2.9.2.5
“TA524 - Dummy communication module” on page 5179.

– I/O bus connectors must not be touched during operation.

Terminal Base TB511- TB521- TB523- TB541-
 ETH ARCNET ETH ARCNET 2ETH ETH
I/O bus I/O interface

for direct con-
nection of up to
10 I/O terminal
units

x x x x x x

Power
supply

removable 5-
pin terminal
block

x x x x x x

XC version

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3788

Terminal Base TB511- TB521- TB523- TB541-
 ETH ARCNET ETH ARCNET 2ETH ETH
COM1 Serial inter-

face, remov-
able 9-pin ter-
minal block

x x x x x x

COM2 Serial inter-
face, 9-pin D-
sub connector
(female)

x x x x - x

Network
interface
1)

Ethernet
RJ45

x - x - - x

 ARCNET
BNC

- x - x - -

 2 Ethernet
RJ45

- - - - x -

Neutral
FBP
interface

Neutral FBP
interface (M12,
5-pin, male,
fastening with
screw)

x x x x - x

CAN
interface

CAN 2 A/B - - - - - -

1) Type must be equal to the type of the used processor module.

PM57x-ETH, PM58x-ETH and PM59x-ETH with part No. 1SAPxxxxxxR0271
can only be used with terminal bases with part No. 1SAPxxxxxxR0270.

PM5xx-2ETH can only be used with TB5x3-2ETH terminal bases.

For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Connections

I/O Bus
The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules can
be added (see description for I/O bus in the system assembly chapter Ä Chapter 1.6.3.4.1
“Serial I/O bus” on page 5218).

Power supply

The supply voltage of 24 V DC is connected to a removable 5-pin terminal block. L+/M exist
twice. It is therefore possible to feed e.g. external sensors (up to 8 A max. with 1.5 mm2

conductor) via these terminals.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3789

Pin Assignment Label Function Description

Terminal block
removed

Terminal block
inserted

L+ +24 V DC Positive pin of the
power supply voltage

L+ +24 V DC Positive pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

FE Functional earth

NOTICE!
Risk of damaging the processor module and terminal base!
Exceeding the maximum voltage could lead to unrecoverable damage to the
system.
The system might be destroyed.

NOTICE!
Risk of damaging the terminal base and power supply!
Short circuits might damage the terminal base and power supply.
Make sure that the four clamps L+ and M (two of each) are not wrongly
connected (e. g. +/- of power supply is connected to both L+/L+ or both M/M).

NOTICE!
Risk of damaging the terminal base!
Terminal base can be damaged by connecting the power supply terminal block
(L+/M) to COM1.
Make sure that the COM1 terminal block is always connected to the terminal
base even if you do not use COM1 to prevent this.

NOTICE!
Risk of damaging the terminal base!
Excessive current might damage the clamp and terminal base.
Make sure that the current flowing through the removable clamps never
exceeds 8 A (with 1.5 mm2 conductor).

Serial interfaces COM1/COM2

The serial interface COM1 is connected to a removable 9-pin terminal block. It is configurable
for RS-232 and RS-485 and can be used (depending on the processor module) for:
● Online access (RS-232 programming interface for Automation Builder)
● A free protocol

Pin assignment

Faulty wiring on
power supply
terminals

Serial interface
COM1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3790

● Modbus RTU, client and server
● CS31 bus (RS-485), as master only Ä Chapter 1.6.3.6.4.8.2 “Wiring” on page 5347

 Pin Signal Interface Description

Terminal
block
removed

Terminal
block
inserted

1 Terminator P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit,
positive

3 RxD/TxD-N RS-485 Receive/Transmit,
negative

4 Terminator N RS-485 Terminator N

5 RTS RS-232 Request to send
(output)

6 TxD RS-232 Transmit data
(output)

7 SGND Signal Ground Signal Ground

8 RxD RS-232 Receive data
(input)

9 CTS RS-232 Clear to send
(input)

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

For further information on connection and wiring please refer to Ä Chapter
1.6.3.6.4.6 “Serial interface COM1 of the terminal bases” on page 5343.

The serial interface COM2 is connected to a 9-pin D-sub connector. It is configurable for RS-232
and RS-485 and can be used (depending on the processor module) for:
● Online access (RS-232 programming interface for Automation Builder)
● A free protocol
● Modbus RTU, client and server
COM2 is not intended to establish a CS31 bus.

TB5x3-2ETH terminal bases have no COM2 D-sub.

Pin assignment
(RS-485 /
RS-232)

Serial interface
COM2

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3791

Serial
Interface

Pin Signal Interface Description

1 FE - Functional earth

2 TxD RS-232 Transmit data Output

3 RxD/TxD-P RS-485 Receive/Transmit Positive

4 RTS RS-232 Request to send Output

5 SGND Signal ground 0 V supply out

6 +5 V - 5 V supply out

7 RxD RS-232 Receive data Input

8 RxD/TxD-N RS-485 Receive/Transmit Negative

9 CTS RS-232 Clear to send Input

Shield FE - Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

For further information on connection and wiring please refer to Ä Chapter
1.6.3.6.4.7 “Serial interface COM2 of the terminal bases ” on page 5345.

ARCNET interface

Ethernet interface
This interface is used for the connection of processor modules with onboard Ethernet e.g.
AC500 CPU with an Ethernet interface.

Terminal bases TB5x3-2ETH for processor modules PM5xx-2ETH provide
2 independent Ethernet interfaces.

Pin assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3792

For structured Ethernet cabling only use cables in accordance with
TIA/EIA-568-A, ISO/IEC 11801 or EN 50173.

Interface Pin Signal Description

or

1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

6 RxD- Receive data -

7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

See supported protocols and used Ethernet ports for AC500 V2products: Ä Chapter
1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2 products” on page 5442.
See communication via Modbus for AC500 V2 products: Ä Chapter 1.6.4.1.9 “Communication
with Modbus TCP/IP” on page 5488.
See communication via Modbus for AC500 V2 products: Ä Chapter 1.6.4.1.8 “Communication
with Modbus RTU” on page 5467.

Neutral FieldBusPlug interface
Via a 5-pin neutral FBP interface, a processor module can be connected as a slave to a fieldbus
master. The FieldBusPlug is fastened using a screw.

FieldBusPlug Pin Signal Description
1 +24 V Standard power

supply

2 Diagnosis pin

3 0 V Standard power
supply

4 Serial data

5 Serial data

Pin assignment

Pin assignment
in serial mode

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3793

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

Terminal bases TB5x3-2ETH for processor modules PM5xx-2ETH do not
provide an neutral FBP interface.

Technical data

The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Connection of the supply voltage 24 V
DC at the terminal base of the processor
module

Removable 5-pin terminal block spring type

Max. current consumption from 24 V DC TB511: 0.35 A 1)

TB521: 0.4 A 1)

TB523: 0.4 A 1)

TB541: 0.6 A 1)

Melting integral of a fuse at 24 V DC Min. 1 A²s 2)

Peak inrush current from 24 V DC 55 A 2)

Slots TB511: 1 processor module, 1 communication
module

TB521: 1 processor module, 2 communication
modules

TB523: 1 processor module, 2 communication
modules

TB541: 1 processor module, 4 communication
modules

Processor module interfaces at TB5x1 I/O bus, COM1, COM2, FBP

Processor module interfaces at TB5x3 I/O bus, COM1

Processor module network interfaces TB5x1-ETH / AC500 CPU with Ethernet interface

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3794

Parameter Value
TB523-2ETH / PM591-2ETH: 2x Ethernet

TB5x1-ARCNET / AC500 CPU with ARCNET
interface

Net weight (terminal base without pro-
cessor module)

TB511: 175 g

TB521: 200 g

TB541: 250 g

Mounting position Horizontal or vertical

1) Including processor modules, communication modules and communication interface modules
2) The inrush current and the melting integral depends on the internal power supply of the
processor module and the number and type of communication modules and I/O modules
connected to the I/O bus.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 111 100 R0260 TB511-ARCNET,

terminal base AC500, slots:
1 processor module, 1 communication
module, ARCNET COAX connector

Active

1SAP 111 100 R0270 TB511-ETH, terminal base AC500,
slots: 1 processor module,
1 communication module, Ethernet
RJ45 connector

Active

1SAP 311 100 R0270 TB511-ETH-XC,
terminal base AC500, slots:
1 processor module, 1 communication
module, Ethernet RJ45 connector,
XC version

Active

1SAP 112 100 R0260 TB521-ARCNET,
terminal base AC500, slots:
1 processor module, 2 communication
modules, ARCNET COAX connector

Active

1SAP 112 100 R0270 TB521-ETH, terminal base AC500,
slots: 1 processor
module, 2 communication modules,
with network interface Ethernet RJ45

Active

1SAP 312 100 R0270 TB521-ETH-XC,
terminal base AC500, slots:
1 processor module, 2 communication
modules, with network interface
Ethernet RJ45, XC version

Active

1SAP 112 300 R0277 TB523-2ETH, teminal base AC500,
slots: 1 processor module,
2 communication modules, with
2 network interfaces Ethernet RJ45

Active

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3795

Part no. Description Product life cycle phase *)
1SAP 114 100 R0270 TB541-ETH, slots: 1 processor

module, 4 communication modules,
with network interface Ethernet RJ45

Active

1SAP 314 100 R0270 TB541-ETH-XC, slots: 1 processor
module, 4 communication modules,
with network interface Ethernet RJ45,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Processor modules PM57x-ETH(-XC), PM58x-ETH(-XC) and PM59x-ETH(-XC)
with ordering No. 1SAPxxxxxxR0271 can only be used with terminal bases
TB5x1-ETH(-XC) with ordering No. 1SAPxxxxxxR0270.

Processor module PM591-2ETH can only be used with TB523-2ETH.

Table 261: Accessories
Part no. Description
1SAP 180 200 R0001 TK501, programming cable D-sub / D-sub, length: 5 m

1SAP 180 200 R0101 TK502, programming cable terminal block / D-sub, length: 5 m

1TNE 968 901 R1100 TK503, COM1 USB programming cable / D-sub (RS-485), length 3 m

1SAP 180 800 R0001 TA526, wall mounting accessory

1.6.2.2.2 TF501-CMS and TF521-CMS - Function module terminal bases
● For function module FM502-CMS
● TF501-CMS: 1 processor module, 1 FM502-CMS, with network interface Ethernet RJ45
● TF521-CMS: 1 processor module, 1 FM502-CMS, 2 communication modules, with network

interfaces Ethernet RJ45
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3796

1 Slots for PM592-ETH
2 Slots for FM502-CMS
3 I/O bus to galvanically connect the terminal units
4 Terminal blocks for analog/digital inputs/outputs
5 Serial interface COM1
6 Ethernet network interface

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply and continuous overvoltage up to 30 V DC.

The TF5x1-CMS are used as terminal bases for FM502-CMS, PM592-ETH and communica-
tion modules Ä Chapter 1.6.2.7.2.2 “FM502-CMS - Analog measurements” on page 4658
Ä Chapter 1.6.2.3.2.1 “PM57x (-y), PM58x (-y) and PM59x (-y)” on page 3848.

Short description
The function module terminal bases have slots for one FM502-CMS, one processor module and
for communication modules as well as terminals and interfaces for power supply, expansion,
networking and IO. The number of slots differs depending on the type of terminal base.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3797

Table 262: Number of slots
Slot TF501-CMS TF521-CMS
Slots for processor modules 1 1

Slots for function modules 1 1

Slots for communication
modules

0 2

NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against accidental
physical contact.
– Unused slots for communication modules must be covered with dummy

communication modules to achieve IP20 rating Ä Chapter 1.6.2.9.2.5
“TA524 - Dummy communication module” on page 5179.

– I/O bus connectors must not be touched during operation.

Connections
The connection is set up using the terminals of the TF5x1-CMS.

Mounting, disassembling and connection for the terminal function block and
the I/O modules are described in the system assembly chapter, as well as the
serial I/O bus Ä Chapter 1.6.3.4 “Overall information (valid for complete AC500
product family)” on page 5218.

Terminal Signal Description
1.0 FE Functional earth for encoder shield connection

1.1 A+ Input signal A of encoder 0

1.2 A- Inverted input signal A of encoder 0

1.3 B+ Input signal B of encoder 0

Terminal assign-
ment of the
TF5x1-CMS

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3798

Terminal Signal Description
1.4 B- Inverted input signal B of encoder 0

1.5 Z+ Input signal Z of encoder 0

1.6 Z- Inverted input signal Z of encoder 0

1.7 5 V +5 V DC power supply output for encoder

1.8 L+ Process voltage L+ (24 V DC)

1.9 M Process voltage M (0 V DC)

2.0...2.7 AI0-...AI7- Negative input signal AI0...AI7 for analog channel 0...7

2.8/2.9 DI0/DI1 Input signal I0/I1 (standard digital input)

3.0...3.7 AI0+...AI7+ Positive input signal AI0...AI7 for analog channel 0...7

3.8/3.9 DC2/DC3 Signal of configurable digital input/output C2/C3

4.0...4.7 SH Shield connection

4.8 L+ Process voltage L+ (24 V DC)

4.9 M Process voltage M (0 V DC)

5.0...5.7 AI8-...AI15- Negative input signal AI0AI7 for analog channel 8...15

5.8 L+ Process voltage L+ (24 V DC)

5.9 M Process voltage M (0 V DC)

6.0...6.7 AI8+...AI15+ Positive input signal AI0...AI7 for analog channel 8...15

6.8 L+ Process voltage L+ (24 V DC)

6.9 M Process voltage M (0 V DC)

7.0...7.7 SH Shield connection

7.8 L+ Process voltage L+ (24 V DC)

7.9 M Process voltage M (0 V DC)

CAUTION!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you remove or replace a module.

Analog signals must be transmitted through shielded cables. The analog cable
shield must only be connected to the side of the module (SH terminals) to avoid
isothermal relaxation currents influencing the measuring results and for optimal
robustness against external noise. The shield connection must be as short as
possible (< 3 cm). The analog shield is capacitive and internally coupled with
the functional earth (FE). To avoid unacceptable potential differences between
different parts of the installation, low-resistance equipotential bonding conduc-
tors must be laid.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3799

CAUTION!
Risk of damaging the processor module and terminal base!
Voltages surpassing the permitted range might damage the processor module
and terminal base.
Never connect supply and process voltages > 30 V DC to the terminal base.

NOTICE!
Risk of damaging the terminal base and power supply!
Short circuits might damage the terminal base and power supply.
Make sure that the four clamps L+ and M (two of each) are not wrongly
connected (e. g. +/- of power supply is connected to both L+/L+ or both M/M).

NOTICE!
Risk of damaging terminal base!
Excessive current might damage the clamp and terminal base.
Make sure that the current flowing through the spring terminals never exceeds
10 A.

Fig. 729: Terminal assignment and connection

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3800

Serial interface COM1
The serial interface COM1 can be used for:
● Online access (RS-232 programming interface for Automation Builder software)
● Free protocol
● Modbus RTU, client and server
● CS31 bus (RS-485), as master only
Ä Chapter 1.6.3.6.4.6 “Serial interface COM1 of the terminal bases” on page 5343.

Serial
Interface

Pin Signal Interface Description

1 FE - Functional earth

2 TxD RS-232 Transmit data Output

3 RxD/TxD-P RS-485 Receive/Transmit Positive

4 RTS RS-232 Request to send Output

5 SGND Signal ground 0 V supply out

6 +5 V - 5 V supply out

7 RxD RS-232 Receive data Input

8 RxD/TxD-N RS-485 Receive/Transmit Negative

9 CTS RS-232 Clear to send Input

Shield FE - Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

Ethernet interface
This interface is the connection to the internal Ethernet communication module of the processor
modules.
Applications:
● TCP/IP for PC/Automation Builder (programming)
● UDP: communication via function blocks
● Modbus on TCP/IP, master and slave

Interface Pin Signal Description

or

1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

Pin assignment

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3801

Interface Pin Signal Description
6 RxD- Receive data -

7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

See supported protocols and used Ethernet ports for AC500 V2products: Ä Chapter
1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2 products” on page 5442.
See communication via Modbus for AC500 V2 products: Ä Chapter 1.6.4.1.9 “Communication
with Modbus TCP/IP” on page 5488.
See communication via Modbus for AC500 V2 products: Ä Chapter 1.6.4.1.8 “Communication
with Modbus RTU” on page 5467.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Connection of the supply voltage 24
V DC at the TF5x1-CMS

The terminals 1.8, 4.8...7.8, 1.9, 4.9...7.9, 4.0...4.7,
7.0...7.7 are electrically interconnected within the
TF5x1-CMS.
Terminals 1.8, 4.8...7.8: process voltage L+ = +24 V
DC
Terminals 1.9, 4.9...7.9: process voltage M = 0 V
Terminals 4.0...4.7, 7.0...7.7: analog shield clamps SH
Terminal 1.0: FE shield clamp of encoder

Rated voltage 24 V DC

Max. permitted total current 10 A (between terminals 1.8, 4.8...7.8 and 1.9,
4.9...7.9)

Slots

 TF501-CMS 1 function module FM502-CMS, 1 processor module
PM592-ETH, 0 communication modules

 TF521-CMS 1 function module FM502-CMS, 1 processor module
PM592-ETH, 2 communication modules

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3802

Parameter Value
Processor module interfaces I/O bus, COM1

Weight TF501-CMS: 350 g

TF521-CMS: 400 g

Mounting position Horizontal or vertical

Table 263: Connection of the TF5x1-CMS
Parameter Value
I/O bus I/O interface for directly adding up to 10 terminal units

Terminal block 70 clamps for I/O, shield and power supply connection

COM1 Serial interface, 9-pin D-sub connector, female

Network interface
(type must be equal to the type of
the used processor module)

Ethernet RJ45

Ordering data

Part No. Scope of delivery Product life cycle
status

1SAP 117 000 R0271 TF501-CMS, function module terminal base,
slots: 1 function module FM502-CMS,
1 processor module PM592-ETH,
1 communication module, Ethernet RJ45
connector

Active

1SAP 317 000 R0271 TF501-CMS-XC,
function module terminal base, slots: 1 function
module FM502-CMS, 1 processor module
PM592-ETH, 1 communication module,
Ethernet RJ45 connector, XC version

Active

1SAP 117 200 R0271 TF521-CMS, function module terminal base,
slots: 1 function module FM502-CMS,
1 processor module PM592-ETH,
2 communication modules, Ethernet RJ45
connector

Active

1SAP 317 200 R0271 TF521-CMS-XC,
function module terminal base, slots: 1 function
module FM502-CMS, 1 processor module
PM592-ETH, 2 communication modules,
Ethernet RJ45 connector, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.3 Processor modules
The AC500 product family consists of the product groups:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3803

● AC500 (standard):
AC500 standard PLCs offer a wide range of performance levels and scalability. The PLCs
are highly capable of communication and extension for flexible application.

● AC500-eCo:
AC500-eCo PLCs are cost-effective, high-performance compact PLCs that offer total inter-
operability with the core AC500 range and provide battery-free uninterrupted output. All I/O
modules can be freely connected in a simple, stable and reliable manner.

● AC500-S:
AC500-S PLCs are designed for safety applications involved in factory, process or machi-
nery automation area.

● AC500-XC:
AC500 (standard) and AC500-S provide devices with -XC extension as a product variant.
These variants operate according to their product group and can, in addition, be operated
under extreme conditions. AC500-XC PLCs can be used at high altitudes, extended oper-
ating temperature and in humid condition. Further, the devices provide immunity to vibration
and hazardous gases. The AC500-XC series is consistent with standard devices in the
overall dimensions, control function and software compatibility. Ä Chapter 1.6.3.7.1 “System
data AC500-XC” on page 5389.

The AC500 product family is characterized by functional modularity. As the complete AC500
product family shares the same hardware platform and programming software tool, the devices
of the AC500 product groups can be flexibly combined.
S500 devices represent the I/O modules of the product group AC500 (standard), whereas
S500-eCo devices represent the I/O modules of the product group AC500-eCo. Both S500 and
S500-eCo devices can be combined with devices of the AC500 product family in a flexible way.

1.6.2.3.1 AC500-eCo
PM55x-xP and PM56x-xP

● PM55x-xP: Processor module with integrated digital inputs and outputs
● PM56x-xP: Processor module with integrated digital and analog inputs and outputs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3804

PM564
DI0

DI1

DI2

DI3

DI4

DI5

AI0

AI1

NO0

NO1

NO2

NO3

PWR

RUN

ERR

CPU PM564-RP-ETH 6DI 24VDC 6DO-R 240VAC 2A 2AI 1AO

1

6

7

8

9

10

11

12

13

14

15

16

3

4

5

2

C0..5

DI4

DI5

AI0

AI1

AOI

AOU

M

NO0

NO1

NO2

R0..2

DI1

DI2

DI3

DI0

18

19

20

NO4

NO5

R3..5

COM1
17 NO3

WARNING!
Use of

incorrect
battery may
cause fire or

explosion

NO4

NO5

AO

COM2

RUN

STOP SD CARD COM2

INSERT
PUSH

MC
502

ET
H

ER
N

ET

L+ M FE L+ M
24VDC OUT24VDC IN

1
2 3

4

5 6
7

8

9

10 11

12

13

14

15
16

17

15

1 3 LEDs to display the states of the processor module
2 PM55x-xP: 8 yellow LEDs to display the states of the digital input signals.

PM56x-xP: 6 yellow LEDs to display the states of the digital input signals, 2 yellow LEDs to
display the states of the analog input signals.

3 PM55x-xP: 6 yellow LEDs to display the states of the digital output signals.
PM56x-xP: 6 yellow LEDs to display the states of the digital output signals, 1 yellow LED to
display the state of the analog output signal

4 I/O bus for connecting additional I/O modules
5 Terminal number
6 Signal name according to terminal number
7 Terminal block for input/output signals (9-pin)
8 Terminal block for input/output signals (11-pin)
9 Removable 5-pin connector for COM2 (optional)
10 Recess for opening the option board slot cover
11 Memory card slot (optional)
12 RUN/STOP switch
13 Ethernet interface (depending on model)
14 9-pin D-sub jack (COM1) for RS-485 connection
15 2 holes for wall-mounting with screws
16 Removable 5-pin connector for power supply (24 V DC or 100-240 V AC - depending on

model)
17 DIN rail

The processor module is shown with pluggable terminal blocks mounted. These
terminal blocks must be ordered separately.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3805

Short description
The processor modules PM55x-xP and PM56x-xP are the central units of AC500-eCo. Their
main characteristics are:
● 128 kB (PM554-xP and PM564-xP types) program memory, 512 kB (PM556-xP and PM566-

xP types) program memory
● I/O bus (for expansion with max. 10 I/O modules)
● COM1 (serial RS-485 interface)
● 8 digital inputs (PM55x-xP), 6 digital inputs (PM56x-xP)
● 6 digital outputs
● 2 analog inputs (PM56x-xP only; the 2 analog inputs can be configured as digital inputs)
● 1 analog output (PM56x-xP only)
The various processor module variants differ in the following characteristics:
● Power supply (24 V DC or 100-240 V AC)
● Type of the digital outputs (transistor or relays)
● Ethernet interface (only models with suffix -ETH) - Analog inputs/outputs (only type PM56x-

xP)
All processor module variants can be expanded to include an memory card slot, a second serial
RS-485 interface (COM2) and an RTC (real-time clock).
Details and technical data are provided in the technical data section Ä Chapter 1.6.2.3.1.1.8
“Technical data” on page 3814.

Assortment

Processor Module Ethernet
interface

Other interfaces Type of digital outputs Power supply

PM554-TP - Serial RS-485 interface
(COM1)

Serial RS-485 interface
(COM2, optional)

I/O bus

Memory card slot (optional)

Transistor 24 V DC

PM554-TP-ETH x Transistor 24 V DC

PM554-RP - Relays 24 V DC

PM554-RP-AC - Relays 100-240 V AC

PM556-TP-ETH x Transistor 24 V DC

PM564-TP - Transistor 24 V DC

PM564-TP-ETH x Transistor 24 V DC

PM564-RP - Relays 24 V DC

PM564-RP-AC - Relays 100-240 V AC

PM564-RP-ETH x Relays 24 V DC

PM564-RP-ETH-AC x Relays 100-240 V AC

PM566-TP-ETH x Transistor 24 V DC

Connections

The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules can
be added (see description for I/O bus in the system assembly chapter Ä Chapter 1.6.3.4.1
“Serial I/O bus” on page 5218).

I/O bus

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3806

The serial non-isolated COM1 interface provides communication via RS-485 and is carried out
as a 9-pin D-sub jack. The COM1 interface can be used
● for online connection with Automation Builder software (via a RS-485 programming cable. e.

g. TK503 Ä Chapter 1.6.2.9.2.11 “TK503 - COM1 USB programming cable” on page 5190)
● as Modbus RTU (master and slave)
● for ASCII serial protocols
● as CS31 bus (master only).

COM1 does not support communication via RS-232. The programming cable
TK501 cannot be used.

Table 264: Pin assignment
Serial Interface Pin Signal Description
Serial Interface 1 FE Functional earth

2 SGND 0 V power supply, internally
connected to M terminal

3 RxD/TxD-P Receive/Transmit positive

4 Reserved Reserved, not connected

5 SGND 0 V power supply, internally
connected to M terminal

6 +3.3 V 3.3 V power supply

7 Reserved Reserved, not connected

8 RxD/TxD-N Receive/Transmit negative

9 Reserved Reserved, not connected

Shield Cable shield Functional earth

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
The internal power supply voltage, which is connected to pin 6 of the D-sub,
must not be short-circuited or connected to any other voltages.

The optional serial COM2 interface provides communication via RS-485 and is carried out as a
removable 5-pin terminal with screw connection. The COM2 interface can be used

Serial interface
COM1

Serial interface
COM1

Serial interface
COM2 (optional)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3807

● for online connection with Automation Builder software (via a RS-485 programming cable. e.
g. TK504 Ä Chapter 1.6.2.9.1.12 “TK504 - COM2 USB programming cable” on page 5143

● as Modbus RTU (master and slave)
● for ASCII serial protocols

The serial RS-485 interface is not galvanically isolated using TA562-RS or
TA562-RS-RTC.

Using TA569-RS-ISO the RS-485 serial interface has galvanic isolation.

Communication via CS31 bus is not possible.

Additional information for installing the accessory modules can be found in Ä Chapter
1.6.2.9.1.7 “TA562-RS - Serial RS-485 adapter ” on page 5120, Ä Chapter 1.6.2.9.1.9 “TA569-
RS-ISO - Serial RS-485 isolated adapter” on page 5131 and Ä Chapter 1.6.2.9.1.8 “TA562-RS-
RTC - Serial RS-485 adapter with real-time clock” on page 5125.
Additional information for wiring the COM2 interface can be found in serial interface COM2
(PM55x, PM56x) Ä Chapter 1.6.3.5.4.3 “Serial interface COM2” on page 5254.

Table 265: Pin assignment
Serial Interface Pin Description

1
2
3
4
5

1 Terminator P

2 TxD/RxD-P

3 TxD/RxD-N

4 Terminator N

5 Functional earth

The Ethernet interface is carried out via a RJ45 jack. The pin assignment of the Ethernet
interface:

Interface Pin Description
1 Tx+ Transmit Data +

2 Tx- Transmit Data -

3 Rx+ Receive data +

4 NC Not connected

5 NC Not connected

6 Rx- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

The supported protocols and used Ethernet ports can be found in a separate chapter Ä Chapter
1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2 products” on page 5442.

Ethernet inter-
face

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3808

Communication via Modbus TCP/IP is described in detail in a separate chapter Ä Chapter
1.6.4.1.8 “Communication with Modbus RTU” on page 5467.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Power supply
Depending on the variant, the processor modules can be connected to the following supply
voltages:

L+ M F + M
24VDC OUT24VDC IN
LE L N FE L+ M

24VDC OUT100−240VAC IN

24 V DC 100 - 240 V AC

The connection is established via a removable 5-pin terminal block. As the terminal block is also
available as a spare part (inside TA570 Spare Part Set for AC500-eCo processor modules).
The 24 V DC variant contains 2 L+ and M terminals. The L+ terminal on the left side is the input
and the right side is the output. The M terminals are internally interconnected. The supply can
be easily looped through to the onboard digital inputs.

CAUTION!
Risk of damaging the processor module and the connected modules!
Voltages > 35 V DC (DC variants only) or > 288 V AC (AC variants only) might
damage the processor module and the connected modules.
Make sure that the supply voltage never exceeds 35 V DC / 288 V AC.

Connections

Power supply

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3809

CAUTION!
Risk of damaging the processor module!
Excess currents at 24 V DC output (24 V DC processor module variant) will
damage the processor module.
Use an appropriate fuse Ä Chapter 1.6.2.3.1.1.8 “Technical data” on page 3814
within 24 V DC input connection.

The 100-240 V AC variant contains an internal power supply with a wide-range input. It provides
a 24 V DC output at the terminals L+ and M which can be used to supply the onboard digital
inputs.

The voltage output at 100 V AC ... 240 V AC variants can provide 180 mA max.
The output is protected against overload by a self-resetting fuse (PTC).

Onboard I/Os

For connection of the onboard inputs and outputs, both a 9-pin and an 11-pin
terminal block are needed and must be ordered separately. Compatible terminal
blocks can be found in TA563-TA565 terminal blocks Ä Chapter 1.6.2.9.3.1
“TA563-TA565 - Terminal blocks” on page 5204.

The processor module PM55x provides 8 onboard digital inputs (24 V DC) and 6 onboard digital
outputs (depending on variant 24 V DC transistor outputs or relay outputs).

Table 266: Numbers and types of the onboard I/Os
Processor
module

Power
supply

No. and type
of digital
inputs

No. and type
of digital out-
puts

No. and type
of analog
inputs

No. and type
of analog
outputs

PM55x-T(P),
PM55x-T(P)-
ETH

24 V DC 8 x 24 V DC 6 x 24 V DC,
0.5 A max.
(transistor)

none none

PM55x-R(P) 24 V DC 8 x 24 V DC 6 x relay
output, 2 A
max.

none none

PM55x-R(P)-
AC

120 to 240 V
AC

8 x 24 V DC 6 x relay
output, 2 A
max.

none none

All inputs (DI0...DI7) belong to 1 group. All outputs (DO0...DO5 / NO0...NO5) belong to 1 group.
The inputs and outputs are group-wise galvanically isolated.

The processor module PM56x provides 6 onboard digital inputs (24 V DC), 6 onboard digital
outputs (depending on variant 24 V DC transistor outputs or relay outputs), 2 onboard analog
inputs (voltage 0 V...10 V) and 1 onboard analog output (voltage 0 V...10 V or current 0 mA...20
mA / 4 mA...20 mA). The onboard analog inputs can be configured as digital inputs, so 8
onboard digital inputs may be available if no analog inputs are needed.

Processor
module PM55x

Processor
module PM56x

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3810

Table 267: Numbers and types of the onboard I/Os
Processor
module

Power
supply

No. and type
of digital
inputs

No. and type
of digital out-
puts

No. and type
of analog
inputs

No. and type
of analog
outputs

PM56x-T(P),
PM56x-T(P)-
ETH

24 V DC 6 x 24 V DC *) 6 x 24 V DC,
0.5 A max.
(transistor)

2 x voltage *) 1 x voltage or
current

PM56x-R(P),
PM56x-R(P)-
ETH

24 V DC 6 x 24 V DC *) 6 x relay
output, 2 A
max.

2 x voltage *) 1 x voltage or
current

PM56x-R(P)-
AC, PM56x-
R(P)-ETH-AC

100-240 V AC 6 x 24 V DC *) 6 x relay
output, 2 A
max.

2 x voltage *) 1 x voltage or
current

*) PM56x has 2 analog inputs which can be configured as digital inputs. If the analog inputs are
configured as digital inputs, 8 digital inputs are available overall.
All digital inputs (DI0...DI5) belong to 1 group. All digital outputs (DO0...DO5 / NO0...NO5)
belong to 1 group. These inputs and outputs are group-wise galvanically isolated.

The 2 analog inputs are not galvanically isolated from the 24 V power supply of
the processor module.

For more information on the onboard I/Os, refer to onboard I/Os in processor module PM55x
Ä Chapter 1.6.2.3.1.2 “Onboard I/Os in processor module PM55x” on page 3819 and onboard
I/Os in processor module PM56x Ä Chapter 1.6.2.3.1.3 “Onboard I/Os in processor module
PM56x” on page 3831.

Diagnosis
The AC500 processor module can display various errors according to the error classes. The
following error classes are possible. The reaction of the processor module is different for each
type of error.

Error class Type Description Example
E1
ERR-LED is ON

Fatal error A safe function of the oper-
ating system is no longer
guaranteed.

Checksum error in the
system Flash or RAM
error

E2
ERR-LED is ON

Severe error The operating system is
functioning without prob-
lems, but the error-free
processing of the user
program is no longer guar-
anteed.

Checksum error in the
user Flash, independent
of the task duration

E3
ERR-LED is
ON/OFF *)

Minor error It depends on the applica-
tion if the user program
should be stopped by the
operating system or not.
The user should determine
which reaction is neces-
sary.

Flash could not be pro-
grammed, I/O module
has failed

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3811

Error class Type Description Example
E4
ERR-LED is
ON/OFF *)

Warning Error in the periphery
(e.g. I/O) which may show
an impact in the future.
The user should determine
which reaction is neces-
sary.

Short-circuit at an I/O
module, the battery is run
down or not inserted

*) The behaviour if the ERR-LED lights up at error classes E3 or E4 is configurable.

Occurred errors can be displayed with the commands diagshow all in the PLC-Browser of
Automation Builder software.

State LEDs and operating elements
The processor modules PM55x-xP and PM56x-xP contain a RUN/STOP switch which can be
set with a small screwdriver. In the RUN position, the program loaded in the processor module
will be executed and in the STOP position it will be stopped.
When COM1 and COM2 are not in online access mode, the user program can only be changed,
uploaded and downloaded if the RUN/STOP switch is in STOP position.

The processor modules PM55x-xP and PM56x-xP indicate their states of operation via 3 LEDs
located on the upper left edge of the processor module.

RUN/STOP
switch

State LEDs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3812

LED State Color LED = ON LED = OFF LED flashing
PWR Power supply Green Power supply

present
Power supply
missing

--

RUN RUN/STOP
state

Green Processor
module is in
state RUN

Processor
module is in
state STOP

Fast flashing
(4 Hz): The
processor
module is
reading/
writing data
from/to the
memory card.
If the ERR-
LED is also
flashing, data
is being
written to the
flash
EEPROM.
Slow flashing
(1 Hz): The
firmware
update from
the memory
card has been
completed
successfully.

ERR Error indica-
tion

Red An error
occurred

No errors or
only warnings
encountered
(E4-errors).
The LED
behavior for
the error
classes 2 to 4
is configu-
rable.

With 4 Hz
(fast): dis-
plays together
with the RUN
LED a cur-
rently running
a firmware-
upgrade or
writing data to
the Flash-
EPROM.

Each processor module contains up to 15 LEDs (depending on type) to display the states of the
inputs and outputs.

Processor
module

LED State Color LED = ON LED = OFF

PM55x-xP
PM56x-xP

I0...I7
(PM55x-xP)
I0...I5
(PM56x-xP)

Digital input Yellow Input is ON Input is OFF

O0...O5 Digital output Yellow Output is ON Output is OFF

PM56x-xP AI0, AI1 *) Analog input Yellow Input is ON Input is OFF

AO Analog output Yellow Output is ON Output is OFF

*) The analog inputs AI0 and AI1 can be configured as digital input or analog input.

I/O LEDs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3813

Table 268: State LEDs at Ethernet connector (-ETH models only)
LED Color OFF ON Flashing
Activity Yellow No activity --- Activity

Link Green No link Link ---

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Power supply 24 V DC 100 - 240 V AC
Connection of power supply Via removable 5-pin screw terminal

Current consumption from
power supply (max.)

PM554-TP: 180 mA
PM554-TP-ETH: 190 mA
PM554-RP: 220 mA
PM556-TP-ETH: 190 mA
PM564-TP: 210 mA
PM564-TP-ETH: 220 mA
PM564-RP: 240 mA
PM564-RP-ETH: 250 mA
PM566-TP-ETH: 220 mA

PM554-RP-AC: 200 mA at
100 V AC, 110 mA at
240 V AC *)
PM564-RP-AC: 210 mA at
100 V AC, 125 mA at
240 V AC *)
PM564-RP-ETH-AC: 220 mA
at 100 V AC, 130 mA at
240 V AC *)

Current consumption from
power supply (typ.)

PM554-TP: 60 mA
PM554-TP-ETH: 70 mA
PM554-RP: 80 mA
PM556-TP-ETH: 70 mA
PM564-TP: 95 mA
PM564-TP-ETH: 100 mA
PM564-RP: 110 mA
PM564-RP-ETH: 120 mA
PM566-TP-ETH: 100 mA

PM554-RP-AC: 20 mA at
100 V AC, 12 mA at 240 V AC
*)
PM564-RP-AC: 20 mA at
100 V AC, 11 mA at 240 V AC
*)
PM564-RP-ETH-AC: 23 mA at
100 V AC, 14 mA at 240 V AC
*)

Inrush current at nominal
voltage

Typ. 3.9 A²s Typ. 0.3 A²s

Required fuse 3 A fast Max. 10 A

State LEDs

General data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3814

Power supply 24 V DC 100 - 240 V AC
Max. power dissipation within
the processor module

PM554-TP: 3.0 W
PM554-TP-ETH: 3.3 W
PM554-RP: 3.5 W
PM556-TP-ETH: 3.3 W
PM564-TP: 3.9 W
PM564-TP-ETH: 4.4 W
PM564-RP: 4.5 W
PM564-RP-ETH: 4.9 W
PM566-TP-ETH: 4.4 W

PM554-RP-AC: 4.8 W

PM564-RP-AC: 4.8 W
PM564-RP-ETH-AC: 5.3 W

Processor module interfaces I/O bus, COM1, COM2 (optional), Ethernet (depending on
model)

Connection system see System Assembly, Construction and Connection
Ä Chapter 1.6.3.5 “AC500-eCo” on page 5233

Weight PM554-TP: 300 g
PM554-TP-ETH: 300 g
PM554-RP: 350 g
PM556-TP-ETH: 300 g
PM564-TP: 300 g
PM564-TP-ETH: 300 g
PM564-RP: 350 g
PM564-RP-ETH: 350 g
PM566-TP-ETH: 300 g

PM554-RP-AC: 400 g
PM564-RP-AC: 400 g
PM564-RP-ETH-AC: 400 g

Mounting position horizontal or vertical

*) These values show the value of the apparent current (sum of active and reactive current)

Program memory 128 kB Flash EPROM (PM554-xP and
PM564-xP types)
512 kB Flash EPROM (PM556-xP and
PM566-xP types)

Data memory

- VAR data 10 kB

- VAR_RETAIN data 1 kB, always buffered in flash

- %RB data (persistent) 1 kB, can be buffered in flash (depending on
configuration)

- %MB data 2 kB (PM554 and PM564 types)
64 kB (PM556 and PM566 types)

Data buffering In flash memory

Real-time clock (RTC) Optional

Battery low indication Warning

Detailed data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3815

Programming languages - Instruction List (IL)
- Function Block Diagram (FBD)
- Ladder Diagram (LD)
- Sequential Function Chart (SFC)
- Structured Text (ST)
- Continuous Function Chart (CFC)

Cycle time for 1000 instructions

Binary 0.08 ms

Word 0.1 ms

Floating point 1.2 ms

Program execution

Cyclic Yes

Time-controlled Yes

Multitasking Yes

Interruption 1 interrupted with up or down edge detection

LEDs Power, Run, Error, Status of I/Os

RUN/STOP switch Yes

Protection of the user program by password Possible

Usable accessories MC503: Memory card
TA561-RTC: Real-time clock
TA562-RS: Serial RS-485
TA569-RS-ISO: Serial RS-485 isolated
TA562-RS-RTC: Real-time clock and serial
RS-485

Serial interface COM1
Physical link RS-485

Galvanic isolation none

Transmission rate Configurable from 1.2 to 187.5 kBit/s

Connection 9-pin D-sub female connector

Common mode range Typ. -8 V / +12 V
(CAUTION: The interface can be damaged if
the signal exceeds the common mode range.)

Usage - Programming port
- Modbus (master and slave)
- Serial ASCII communication
- CS31 (master only)

Detailed data of
the interfaces

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3816

Serial interface COM2 (optional)
Physical link RS-485

Galvanic isolation none (TA562-RS or TA562-RS-RTC)
500 V DC (TA569-RS-ISO)

Baudrate Configurable from 1.2 to 115.2 kBit/s

Connection Removable 5-pin terminal block

Common mode range Typ. -8 V / +12 V
(CAUTION: The interface can be damaged if
the signal exceeds the common mode range.)

Usage - Programming port
- Modbus (master and slave)
- Serial ASCII communication

 PM55x-xP PM56x-xP
Max. number of I/O modules 10 10

Digital inputs 320 + 8 320 + 8

Digital outputs 240 + 6 240 + 6

Type of digital outputs PM554-TP
PM554-TP-ETH
PM554-RP
PM554-RP-AC
PM556-TP-ETH
PM564-TP
PM564-TP-ETH
PM564-RP
PM564-RP-AC
PM564-RP-ETH
PM564-RP-ETH-AC
PM566-TP-ETH

Transistor
Transistor
Relays
Relays
Transistor
Transistor
Transistor
Relays
Relays
Relays
Relays
Transistor

Analog inputs 160 160 + 2

Analog outputs 160 160 + 1

Number of decentralized
inputs and outputs

On CS31 Bus: up to 31 stations with up to 120 digital inputs /
120 digital outputs each

Detailed data of the onboard
I/O

Onboard I/Os in PM55x and Onboard I/Os in PM56x
Ä Chapter 1.6.2.3.1.2 “Onboard I/Os in processor module
PM55x” on page 3819Ä Chapter 1.6.2.3.1.3 “Onboard I/Os
in processor module PM56x” on page 3831

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Data of I/Os

No effects of
multiple over-
loads

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3817

Ordering data
Table 269: Processor modules for AC500-eCo
Part no. Description Product life cycle phase *)
1SAP 120 600 R0001 PM554-TP, processor module, 128 kB

memory, 8 DI, 6 DO-T, 24 V DC, with
pluggable I/O terminal blocks

Active

1SAP 120 600 R0071 PM554-TP-ETH, processor module,
128 kB memory, 8 DI, 6 DO-T,
24 V DC, onboard Ethernet, with
pluggable I/O terminal blocks

Active

1SAP 120 700 R0001 PM554-RP, processor module, 128 kB
memory, 8 DI, 6 DO-R, 24 V DC, with
pluggable I/O terminal blocks

Active

1SAP 120 800 R0001 PM554-RP-AC, processor module,
128 kB memory, 8 DI, 6 DO-R,
100 V AC...240 V AC, with pluggable
I/O terminal blocks

Active

1SAP 121 200 R0071 PM556-TP-ETH, processor module,
512 kB memory, 8 DI, 6 DO-T,
24 V DC, onboard Ethernet, with
pluggable I/O terminal blocks

Active

1SAP 120 900 R0001 PM564-TP, processor module, 128 kB
memory, 6 DI, 6 DO-T, 2 AI and 1 AO,
24 V DC

Active

1SAP 120 900 R0071 PM564-TP-ETH, processor module,
128 kB memory, 6 DI, 6 DO-T 2 AI
and 1 AO, 24 V DC, Ethernet interface

Active

1SAP 121 000 R0001 PM564-RP, processor module, 128 kB
memory, 6 DI, 6 DO-R, 2 AI and 1 AO,
24 V DC

Active

1SAP 121 100 R0001 PM564-RP-AC, processor module,
128 kB memory, 6 DI, 6 DO-R, 2 AI
and 1 AO, 100 V AC...240 V AC

Active

1SAP 121 000 R0071 PM564-RP-ETH, processor module,
128 kB memory, 6 DI, 6 DO-R, 2 AI
and 1 AO, 24 V DC, Ethernet interface

Active

1SAP 121 100 R0071 PM564-RP-ETH-AC,
processor module, 128 kB memory,
6 DI, 6 DO-R, 2 AI and 1 AO,
100 V AC...240 V AC, Ethernet
interface

Active

1SAP 121 500 R0071 PM566-TP-ETH, processor module,
512 kB memory, 6 DI, 6 DO-T, 2 AI
and 1 AO, 24 V DC, Ethernet interface

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3818

Table 270: Accessories
Part no. Description
1TNE 968 901
R3101

Terminal Block TA563-9, 9-pin, screw front, cable side, 6 pieces per
unit

1TNE 968 901
R3102

Terminal Block TA563-11, 11-pin, screw front, cable side, 6 pieces per
unit

1TNE 968 901
R3103

Terminal Block TA564-9, 9-pin, screw front, cable front, 6 pieces per
unit

1TNE 968 901
R3104

Terminal Block TA564-11, 11-pin, screw front, cable front, 6 pieces per
unit

1TNE 968 901
R3105

Terminal Block TA565-9, 9-pin, spring front, cable front, 6 pieces per
unit

1TNE 968 901
R3106

Terminal Block TA565-11, 11-pin, spring front, cable front, 6 pieces per
unit

1SAP 180 100
R0001

MC502: Memory card

1TNE 968 901
R0100

MC503: Memory card adapter for PM55x-xP and PM56x-xP

1TNE 968 901
R1100

TK503: COM1 USB programming cable

1TNE 968 901
R2100

TK504: COM2 USB programming cable

1TNE 968 901
R3200

TA561-RTC: real-time clock adapter for PM55x-xP and PM56x-xP

1TNE 968 901
R4300

TA562-RS: serial RS-485 adapter for PM55x-xP and PM56x-xP

1SAP 186 400
R0001

TA569-RS-ISO: serial RS-485 adapter with galvanic isolation for
PM55x-XP and PM56x-xP

1TNE 968 901
R5210

TA562-RS-RTC: serial RS-485 adapter with real-time clock for PM55x-
xP and PM56x-xP

1TNE 968 901
R3107

TA566: wall mounting accessory, 100 pieces

1TNE 968 901
R3203

TA570: spare part set for AC500-eCo processor modules

Onboard I/Os in processor module PM55x
● 8 DI 24 V DC
● PM55x-T(P): 6 DO (24 V DC, 0.5 A max. transistor outputs)
● PM55x-R(P) and PM55x-R(P)-AC: 6 DO (24 V DC or 120/240 V AC, 2 A max. relay outputs)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3819

Terminals of onboard I/Os for PM55x-T Terminals of onboard I/Os for PM55x-R and
PM55x-R-AC

AC500-eCo processor modules are equipped with non-removable terminals.

AC500-eCo processor modules are equipped with removable terminal blocks
which must be ordered separately.

The electrical functionality of both processor module types is identical.

Intended purpose
The processor module PM55x provides 8 onboard digital inputs (24 V DC) and 6 onboard digital
outputs (depending on variant 24 V DC transistor outputs or relay outputs).

Table 271: Numbers and types of the onboard I/Os
Processor
module

Power
supply

No. and type
of digital
inputs

No. and type
of digital out-
puts

No. and type
of analog
inputs

No. and type
of analog
outputs

PM55x-T(P),
PM55x-T(P)-
ETH

24 V DC 8 x 24 V DC 6 x 24 V DC,
0.5 A max.
(transistor)

none none

PM55x-R(P) 24 V DC 8 x 24 V DC 6 x relay
output, 2 A
max.

none none

PM55x-R(P)-
AC

120 to 240 V
AC

8 x 24 V DC 6 x relay
output, 2 A
max.

none none

All inputs (DI0...DI7) belong to 1 group. All outputs (DO0...DO5 / NO0...NO5) belong to 1 group.
The inputs and outputs are group-wise galvanically isolated.

Processor
module PM55x

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3820

Functionality

Parameter Value
Digital inputs 8 (24 V DC), can be used as source inputs or as sink inputs

Interrupt inputs 4 (DI0...DI3), configurable

Interrupt response time Max. 0.8 ms when input delay is set to 0.1 ms

Fast counter 2 (DI0 and DI1), configurable

Digital outputs 6 transistor outputs (24 V DC, 0.5 A max.) or relay outputs (2
A max.), (depending on processor module)

PWM outputs 2 (DO2 and DO3), configurable

LED displays For signal states

Internal power supply Via processor module

External power supply Via UP and ZP terminal

Connections

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

When replacing a processor module, it is recommended to mark each wire
connected to the onboard I/O terminal block before disconnecting it. This should
make sure that the wires can be reconnected in the same order.

The connection is carried out by using a non-removable 20-pin terminal block.
The following block diagram shows the internal structure of the onboard I/Os:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3821

PM55x-T(P) PM55x-R(P)

The assignment of the terminals for PM55x-T(P):

Terminal Signal Description
1 C0...7 Input common for digital input signals DI0 to

DI7

2 DI0 Digital input signal DI0

3 DI1 Digital input signal DI1

4 DI2 Digital input signal DI2

5 DI3 Digital input signal DI3

6 DI4 Digital input signal DI4

7 DI5 Digital input signal DI5

8 DI6 Digital input signal DI6

9 DI7 Digital input signal DI7

10 --- Reserved

11 --- Reserved

12 --- Reserved

13 DO0 Digital output signal O0

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3822

Terminal Signal Description
14 DO1 Digital output signal O1

15 DO2 Digital output signal O2

16 DO3 Digital output signal O3

17 DO4 Digital output signal O4

18 DO5 Digital output signal O5

19 UP Process supply voltage UP +24 V DC

20 ZP Process supply voltage ZP 0 V DC

The assignment of the terminals for PM55x-R(P):

Terminal Signal Description
1 C0...7 Input common for digital input signals DI0 to

DI7

2 DI0 Digital input signal DI0

3 DI1 Digital input signal DI1

4 DI2 Digital input signal DI2

5 DI3 Digital input signal DI3

6 DI4 Digital input signal DI4

7 DI5 Digital input signal DI5

8 DI6 Digital input signal DI6

9 DI7 Digital input signal DI7

10 --- Reserved

11 --- Reserved

12 --- Reserved

13 NO0 Normally-open relay contact of the output NO0

14 NO1 Normally-open relay contact of the output NO1

15 NO2 Normally-open relay contact of the output NO2

16 R0..2 Output common for signals NO0 to NO2

17 NO3 Normally-open relay contact of the output NO3

18 NO4 Normally-open relay contact of the output NO4

19 NO5 Normally-open relay contact of the output NO5

20 R3...5 Output common for signals NO3 to NO5

Connection of the digital inputs
The digital inputs can be used as source inputs or as sink inputs.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3823

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figure shows the connection of the digital inputs to the PM55x processor modules:

Connection of digital inputs (sink inputs) Connection digital inputs (source inputs)

Connection of the digital transistor outputs (PM55x-T(P) only)

Fig. 730: Connection of digital transistor outputs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3824

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

CAUTION!
Risk of damaging the processor module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast protection fuse for the outputs.

Connection of the digital relay outputs (PM55x-R(P) only)
The following figures show the connection of the digital relay outputs to the processor modules:

Connection of digital relay outputs (24 V DC) Connection of digital relay outputs (100-240 V
AC)

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3825

CAUTION!
Risk of damaging the processor module!
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be fed from the same

phase.
– Use an external 5 A fast acting fuse to protect the outputs.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..2 and
R3..5) does not exceed 6 A.
Never connect total currents > 6 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 1

I/O configuration
The configuration data of the onboard I/Os is stored in the processor module PM55x.

Parameterization
For information about parameterization, refer to the description for onboard I/Os for processor
module PM55x. Ä Chapter 1.6.5.2.3.8 “AC500-eCo onboard I/Os” on page 5852

Diagnosis

E1...E
4

d1 d2 d3 d4 Identifier
000...063

AC500-Display <− Display in

Class Comp Dev Mod Ch Err PS501 PLC Browser
Class Inter-

face
Device Module Channel Error-

Identifier
Error message Remedy

Errors for Onboard I/O

Minor errors

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3826

E1...E
4

d1 d2 d3 d4 Identifier
000...063

AC500-Display <− Display in

Class Comp Dev Mod Ch Err PS501 PLC Browser
Class Inter-

face
Device Module Channel Error-

Identifier
Error message Remedy

3 8 255 2 0 3 MaxWaitRun for onboard I/O
module has expired, when PLC
is put into RUN state

Reboot and try it
again. If the error
still exists, replace
processor module
for testing

3 8 255 3 0 26 Invalid configuration of onboard
I/O module, e. g. 2 input chan-
nels are configured as fast
counter and interrupt input at
the same time.

Correct PLC con-
figuration

Warnings

4 8 1 2 1 2 Invalid configuration value for
PWM channel. Frequency /
cycle time for the PWM
channel of the 8DI+6DO and
8DI+6DO+2AI+1AO module
are common and if both chan-
nels are configured for PWM,
the frequency of the second
channel must be set to 0.

Correct frequency

4 8 1 2 0..1 4 PWM channel frequency or
cycle time too high

Correct frequency
or cycle time

4 8 1 2 0..1 7 PWM channel frequency or
cycle time too low

Correct frequency
or cycle time

4 8 1 2 0 52 Frequency on interrupt input pin
too high and interrupt events
are missed

Correct frequency

4 8 255 2 0 26 PLC was put into RUN state,
although a configuration error
is present, because parameter
Run on config fault is set to
YES

Correct PLC con-
figuration

4 8 255 0 0 43 Unspecified or internal error
occured

Replace pro-
cessor module

Displays

LED Status Color LED = ON LED = OFF
DI0...DI7 Digital input yellow Input is ON Input is OFF

DO0...DO5 Digital output yellow Output is ON Output is OFF

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3827

Technical data
Technical data of the digital inputs

Parameter Value
Number of channels per module 8 transistor inputs (24 V DC)

Distribution of the channels into groups 1 group for 8 channels

Galvanic isolation Yes, per group

Connections of the channels I0 to I7 Terminals 2 to 9

Reference potential for the channels I0 to I7 Terminal 1

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1)
and the module's logic is in operation

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

Signal 0 -5 V...+3 V -3 V...+5 V

Undefined signal -15 V...- 5 V +5 V...+15 V

Signal 1 -30 V...-15 V +15 V...+30 V

Ripple with signal 0 Within -5 V...+3 V Within -3 V...+5 V

Ripple with signal 1 Within -30 V...-15 V Within +15 V...+30
V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire prox-
imity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 0.1 to 32 ms (configurable via soft-
ware), default: 8 ms

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the fast counter

Parameter Value
Used inputs for the traces A and B DI0 / DI1

Used output DO0 / NO0

Counting frequency On request

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3828

Technical data of the digital transistor outputs

Parameter Value
Number of channels per module 6 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 group of 6 channels

Galvanic isolation Yes, per group

Connection of the channels DO0 to DO5 Terminals 13 to 18

Common power supply voltage Terminals 19 (+24 V DC, signal name UP)
and 20 (0 V DC, signal name ZP)

Reference potential for the channels DO0 to
DO5

Terminal 20 (negative pole of the process
voltage, name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)

Way of operation Non-latching type

Min. output voltage at signal 1 20 V DC at max. current consumption

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Rated protection fuse (per group) 3 A fast

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 3 A

 Rated current (all channels together, max.) 3 A

Lamp load (max.) 5 W

Max. leakage current with signal 0 0.5 mA

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 1 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3829

Technical data of the digital relay outputs

Parameter Value
Number of channels per module 6 normally-open relay outputs

Distribution of the channels into groups 2 groups for 3 channels

Galvanic isolation Yes, per group

Connection of the channels NO0 to NO2 Terminals 13 to 15

Connection of the channels NO3 to NO5 Terminals 17 to 19

Reference potential for the channels NO0 to
NO2

Terminal 16

Reference potential for the channels NO3 to
NO5

Terminal 20

Relay output voltage

 Rated value 24 V DC or 120/240 V AC

 Range 5 to 30 V DC or 5 to 250 V AC

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered through the I/O bus

Way of operation Non-latching type

Output delay

 0 to 1 Typ. 10 ms

 1 to 0 Typ. 10 ms

Rated protection fuse 5 A

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC /
120 V AC / 240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only
pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 6 A

 Rated current (all channels together, max.) 12 A

Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Demagnetization when inductive loads are
switched off

A free-wheeling diode must be circuited in
parallel to the inductive load

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching frequencies

 With resistive loads Max. 1 Hz

 With inductive loads Not possible

 With lamp loads Max. 1 Hz

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

Protection type External fuse 1)

Rated protection fuse 5 A fast

Overload message No

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3830

Parameter Value
Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Technical data of the PWM outputs

Parameter Value
Used outputs for PWM O2 and O3

Output frequency 125 Hz 30 kHz

Onboard I/Os in processor module PM56x
● 6 DI 24 V DC
● PM56x-T(P): 6 DO (24 V DC, 0.5 A max. transistor outputs)
● PM56x-R(P) and PM56x-R(P)-AC: 6 DO (24 V DC or 120/240 V AC, 2 A max. relay outputs)
● 2 AI (voltage 0 V...10 V)
● 1 AO (voltage 0 V...10 V or current 0 mA...20 mA / 4 mA...20 mA)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3831

Terminals of onboard I/Os for PM56x-T(P) Terminals of onboard I/Os for PM56x-R(P) and
PM56x-R(P)-AC

AC500-eCo processor modules are equipped with non-removable terminals.

AC500-eCo processor modules are equipped with removable terminal blocks
which must be ordered separately.

The electrical functionality of both processor modules is identical.

Intended purpose
The processor module PM56x provides 6 onboard digital inputs (24 V DC), 6 onboard digital
outputs (depending on variant 24 V DC transistor outputs or relay outputs), 2 onboard analog
inputs (voltage 0 V...10 V) and 1 onboard analog output (voltage 0 V...10 V or current 0 mA...20
mA / 4 mA...20 mA). The onboard analog inputs can be configured as digital inputs, so 8
onboard digital inputs may be available if no analog inputs are needed.

Table 272: Numbers and types of the onboard I/Os
Processor
module

Power
supply

No. and type
of digital
inputs

No. and type
of digital out-
puts

No. and type
of analog
inputs

No. and type
of analog
outputs

PM56x-T(P),
PM56x-T(P)-
ETH

24 V DC 6 x 24 V DC *) 6 x 24 V DC,
0.5 A max.
(transistor)

2 x voltage *) 1 x voltage or
current

PM56x-R(P),
PM56x-R(P)-
ETH

24 V DC 6 x 24 V DC *) 6 x relay
output, 2 A
max.

2 x voltage *) 1 x voltage or
current

PM56x-R(P)-
AC, PM56x-
R(P)-ETH-AC

100-240 V AC 6 x 24 V DC *) 6 x relay
output, 2 A
max.

2 x voltage *) 1 x voltage or
current

Processor
module PM56x

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3832

*) PM56x has 2 analog inputs which can be configured as digital inputs. If the analog inputs are
configured as digital inputs, 8 digital inputs are available overall.
All digital inputs (DI0...DI5) belong to 1 group. All digital outputs (DO0...DO5 / NO0...NO5)
belong to 1 group. These inputs and outputs are group-wise galvanically isolated.

The 2 analog inputs are not galvanically isolated from the 24 V power supply of
the processor module.

Functionality

Parameter Value
Digital inputs 6 (24 V DC), can be used as source inputs or as sink inputs

Interrupt inputs 4 (DI0...DI3), configurable

Interrupt response time Max. 0.8 ms when input delay is set to 0.1 ms

Fast counter 2 (DI0 and DI1), configurable

Digital outputs 6 transistor outputs (24 V DC, 0.5 A max) or relay outputs (2 A
max), (depending on processor module)

PWM outputs 2 (DO2 and DO3), configurable

Analog inputs 2, voltage input 0 V DC...10 V DC, can be configured as digital
inputs

Analog outputs 1, voltage output 0 V DC...10 V DC or current output
0 mA...20 mA / 4 mA...20 mA

LED displays For signal states

Internal power supply Via processor module

External power supply Via processor module

Connections

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3833

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

When replacing a processor module, it is recommended to mark each wire
connected to the onboard I/O terminal block before disconnecting it. This should
make sure that the wires can be reconnected in the same order.

The connection is carried out by using a non-removable 20-pin terminal block.
The following block diagram shows the internal structure of the onboard I/Os:

PM56x-T(P) PM56x-R(P)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3834

Terminal Signal Description
1 C0...5 Input common for digital input signals DI0 to DI5

2 DI0 Digital input signal DI0

3 DI1 Digital input signal DI1

4 DI2 Digital input signal DI2

5 DI3 Digital input signal DI3

6 DI4 Digital input signal DI4

7 DI5 Digital input signal DI5

8 AI0 Analog voltage input signal AI0

9 AI1 Analog voltage input signal AI1

10 AOU Analog voltage output

11 AOI Analog current output

12 M Input/output common for analog signals

13 DO0 Digital output signal O0

14 DO1 Digital output signal O1

15 DO2 Digital output signal O2

16 DO3 Digital output signal O3

17 DO4 Digital output signal O4

18 DO5 Digital output signal O5

19 UP Process supply voltage UP +24 V DC

20 ZP Process supply voltage ZP 0 V DC

Terminal Signal Description
1 C0...5 Input common for digital input signals DI0 to DI5

2 DI0 Digital input signal DI0

3 DI1 Digital input signal DI1

4 DI2 Digital input signal DI2

5 DI3 Digital input signal DI3

6 DI4 Digital input signal DI4

7 DI5 Digital input signal DI5

8 AI0 Analog voltage input signal AI0

9 AI1 Analog voltage input signal AI1

10 AOU Analog voltage output

11 AOI Analog current output

12 M Input/output common for analog signals

13 NO0 Normally-open relay contact of the output NO0

14 NO1 Normally-open relay contact of the output NO1

15 NO2 Normally-open relay contact of the output NO2

16 R0..2 Output common for signals NO0 to NO2

17 NO3 Normally-open relay contact of the output NO3

18 NO4 Normally-open relay contact of the output NO4

Assignment of
the Terminals
for PM56x-T(P)

Assignment of
the Terminals
for PM56x-R(P)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3835

Terminal Signal Description
19 NO5 Normally-open relay contact of the output NO5

20 R3...5 Output common for signals NO3 to NO5

Connection of the digital inputs
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

*) The M-terminal of the onboard I/Os is inter-
nally connected to the M-terminal of the pro-
cessor module supply voltage

*) The M-terminal of the Onboard I/Os is inter-
nally connected to the M-terminal of the pro-
cessor module supply voltage

Connection of digital inputs (sink inputs) Connection of digital inputs (source inputs)

If the inputs AI0 and AI1 are to be used as digital inputs, they must be config-
ured as digital inputs.

The inputs AI0 and AI1 can only be used as sink inputs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3836

Connection of the digital transistor outputs (PM56x-T(P) only)

Fig. 731: Connection of digital transistor outputs

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

CAUTION!
Risk of damaging the processor module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast protection fuse for the outputs.

Connection of the digital relay outputs (PM56x-R(P) only)
The following figures show the connection of the digital relay outputs to the processor modules:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3837

Connection of digital relay outputs (24 V DC) Connection of digital relay outputs (100-240 V
AC)

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

CAUTION!
Risk of damaging the processor module!
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be fed from the same

phase.
– Use an external 5 A fast acting fuse to protect the outputs.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..2 and
R3..5) does not exceed 6 A.
Never connect total currents > 6 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3838

Connection of the analog inputs
The following figures show an example of the connection of analog sensors (voltage) to the
input AI0 of PM56x processor modules. Proceed with the input AI1 in the same way:

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sensors
(voltage)

The inputs AI0 and AI1 must be configured as analog inputs.

Connection of the analog output
The following figures show the connection of analog actuators (voltage and current) to the
output AO of PM56x processor modules:

Connection of analog actuator (voltage) Connection of analog actuator (current)

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 1

Analog inputs (bytes) 4

Analog outputs (bytes) 2

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3839

I/O configuration
The configuration data of the onboard I/Os is stored in the processor module PM56x.

Parameterization
For information about parameterization, refer to the description for onboard I/Os for processor
module PM56x. Ä Chapter 1.6.5.2.3.8 “AC500-eCo onboard I/Os” on page 5852

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Class Inter-
face

Device Module Channel Error-
Identifier

Error message Remedy

Errors for Onboard I/O

Minor errors

3 8 255 2 0 3 MaxWaitRun for
onboard I/O module
has expired, when PLC
is put into RUN state

Reboot
and try it
again. If
the error
still exists,
replace
processor
module for
testing

3 8 255 3 0 26 Invalid configuration of
onboard I/O module, e.
g. 2 input channels
are configured as fast
counter and interrupt
input at the same time.

Correct
PLC con-
figuration

Warnings

4 8 1 2 1 2 Invalid configuration
value for PWM channel.
Frequency / cycle time
for the PWM channel
of the 8DI+6DO and
8DI+6DO+2AI+1AO
module are common
and if both channel are
configured for PWM,
the frequency of the
second channel must
be set to 0.

Correct
frequency

4 8 1 2 0..1 4 PWM channel fre-
quency or cycle time
too high

Correct
frequency
or cycle
time

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3840

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Class Inter-
face

Device Module Channel Error-
Identifier

Error message Remedy

4 8 1 2 0..1 7 PWM channel fre-
quency or cycle time
too low

Correct
frequency
or cycle
time

4 8 1 2 0 52 Frequency on interrupt
input pin too high and
interrupt events are
missed

Correct
frequency

4 8 4 2 0..1 48 Analog input value too
high

Correct
value

4 8 5 2 0 48 Analog output value too
high

Correct
value

4 8 255 2 0 26 PLC was put into
RUN state, although
a configuration error
is present, because
parameter Run on
config fault is set to
YES

Correct
PLC con-
figuration

4 8 255 0 0 43 Unspecified or internal
error occured

Replace
processor
module

Displays

LED Status Color LED = ON LED = OFF
DI0...DI5 Digital input yellow Input is ON Input is OFF

DO0...DO5 Digital output yellow Output is ON Output is OFF

AI0, AI1*) Analog input yellow Input is ON Input is OFF

AO Analog output yellow Output is ON Output is OFF

*) The analog inputs can be configured as digital inputs

Measuring ranges

Risk of invalid analog input values!
The analog input values may be invalid if they exceed the measuring range of
the inputs.

Make sure that the analog signal at the connection terminals is always within
the signal range.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3841

Range 0 V...10 V Digital value
 Decimal Hex.
Overflow > 11.7589 32767 7FFF

Measured value too
high

11.7589
:
10.0004

32511
:
27649

7EFF
:
6C01

Normal range 10.0000
:
0.0004

27648
:
1

6C00
:
0001

0.0000 0 0000

The represented resolution corresponds to 10 bits.

Output ranges

Range 0 V...+10 V 0 mA...20 mA Digital value
Decimal Hex.

Overflow 11.75

11.75

23.50
23.50

32767
:
32512

7FFF
:
7F03

Output value too
high

11.75
:
10.01

23.50
:
20.02

32480
:
27680

7EE0
:
6C20

Normal range 10.00
:
0.01

20.00
:
0.02

27648
:
32

6C00
:
20

0.00 0.00 0 0000

Output value too
low or underflow

0.00

-32
:
-6912
:
-32768

FFE0
:
E500
:
8000

Range 4 mA...20 mA Digital value
Decimal Hex.

Overflow 22.80
:
22.80

32767
:
32520

7FFF
:
7F08

Output value too high 22.80
:
20.02

32480
:
27668

7EE0
:
6C28

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3842

Range 4 mA...20 mA Digital value
Decimal Hex.

Normal range 20.00
:
4.02

27648
:
40

6C00
:
28

4 0 0

Output value too low
or underflow

3.98
:
0.00
:
0.00

-40
:
-6920
:
-32768

FFD8
:
E4F8
:
8000

The represented resolution corresponds to 10 bits.

Technical data
Technical data of the digital inputs

Parameter Value
Number of channels per module 8 transistor inputs (24 V DC)

Distribution of the channels into groups 1 group for 8 channels

Galvanic isolation Yes, per group

Connections of the channels I0 to I7 Terminals 2 to 9

Reference potential for the channels I0 to I7 Terminal 1

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1)

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

Signal 0 -5 V...+3 V -3 V...+5 V

Undefined signal -15 V...- 5 V +5 V...+15 V

Signal 1 -30 V...-15 V +15 V...+30 V

Ripple with signal 0 Within -5 V...+3 V Within -3 V...+5 V

Ripple with signal 1 Within -30 V...-15 V Within +15 V...+30
V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire prox-
imity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 0.1 to 32 ms (configurable via soft-
ware), default: 8 ms

Max. cable length

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3843

Parameter Value
 Shielded 500 m

 Unshielded 300 m

Technical data of the fast counter

Parameter Value
Used inputs for the traces A and B DI0 / DI1

Used output DO0 / NO0

Counting frequency On request

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Technical data of the digital transistor outputs

Parameter Value
Number of channels per module 6 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 group of 6 channels

Galvanic isolation Yes, per group

Connection of the channels DO0 to DO5 Terminals 13 to 18

Common power supply voltage Terminals 19 (+24 V DC, signal name UP)
and 20 (0 V DC, signal name ZP)

Reference potential for the channels DO0 to
DO5

Terminal 20 (negative pole of the process
voltage, name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)

Way of operation Non-latching type

Min. output voltage at signal 1 20 V DC at max. current consumption

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Rated protection fuse (per group) 3 A fast

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 3 A

 Rated current (all channels together, max.) 3 A

Lamp load (max.) 5 W

Max. leakage current with signal 0 0.5 mA

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3844

Parameter Value
 With lamp loads Max. 1 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Technical data of the digital relay outputs

Parameter Value
Number of channels per module 6 normally-open relay outputs

Distribution of the channels into groups 2 groups for 3 channels

Galvanic isolation Yes, per group

Connection of the channels NO0 to NO2 Terminals 13 to 15

Connection of the channels NO3 to NO5 Terminals 17 to 19

Reference potential for the channels NO0 to
NO2

Terminal 16

Reference potential for the channels NO3 to
NO5

Terminal 20

Relay output voltage

 Rated value 24 V DC or 120/240 V AC

 Range 5 to 30 V DC or 5 to 250 V AC

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered through the I/O bus

Way of operation Non-latching type

Output delay

 0 to 1 Typ. 10 ms

 1 to 0 Typ. 10 ms

Rated protection fuse 5 A

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC /
120 V AC / 240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only
pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 6 A

 Rated current (all channels together, max.) 12 A

Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3845

Parameter Value
Demagnetization when inductive loads are
switched off

A free-wheeling diode must be circuited in
parallel to the inductive load

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching frequencies

 With resistive loads Max. 1 Hz

 With inductive loads Not possible

 With lamp loads Max. 1 Hz

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

Protection type External fuse 1)

Rated protection fuse 5 A fast

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Technical data of the PWM outputs

Parameter Value
Used outputs for PWM O2 and O3

Output frequency 125 Hz 30 kHz

Technical data of the analog inputs

Parameter Value
Number of channels per module 2 voltage inputs

Distribution of channels into groups 1 group for 2 channels

Galvanic isolation None

Power Supply Voltage Via the L+ and the M terminal of the pro-
cessor module power supply

Resolution Voltage 0 V DC...10 V DC: 10 bits

Connection of the signals AI0 and AI1 Terminals 8 and 9

Input type Unipolar

Data word format

 Unipolar, full-scale range 0 to 27648

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3846

Parameter Value
 Indication of the input signals No

Channel input resistance Voltage: > 100 kW

Accuracy

 Typical (25 °C) ±1 %

 Worst case (at 0 °C...60 °C or EMC distur-
bances)

±2.5 % of full-scale

Time constant of the input filter Typ. 1 ms

Relationship between input signal and hex
code

Ä Chapter 1.6.2.3.1.3.9 “Measuring ranges”
on page 3841

Analog to digital conversion time Typ. 6.2 ms

Unused inputs Can be left open and should be configured
as "unused"

Overvoltage protection Yes, up to 30 V DC

Max. cable length Conductor cross section > 0.14 mm²

 Unshielded wire On request

 Shielded wire 100 m

Technical data of the analog output

Parameter Value
Number of channels per module 1 configurable voltage or current outputs

Distribution of channels into groups 1 group for 1 channel

Galvanic isolation None

Connection of the signal AOU Terminal 11

Connection of the signal AOI Terminal 10

Power supply voltage Via the L+ and the M terminal of the pro-
cessor module power supply

Output type Unipolar (voltage and current)

Resolution 10 bits

Indication of the output signals Yes, one LED per channel

Output Resistance (load) as current output 0 W...500 W

Output load ability as voltage output +2 mA max.

Accuracy for current and voltage output

 Typical (25 °C) ±1 % of full-scale

 Worst case (at 0 °C...60 °C or EMC distur-
bances)

±2.5 % of full-scale

Relationship between input signal and hex
code

Ä Chapter 1.6.2.3.1.3.10 “Output ranges”
on page 3842

Unused inputs Can be left open and should be configured
as "unused"

Overvoltage protection Yes, up to 30 V DC

Max. cable length Conductor cross section > 0.14 mm²

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3847

Parameter Value
 Unshielded wire On request

 Shielded wire 100 m

1.6.2.3.2 AC500 (standard)
PM57x (-y), PM58x (-y) and PM59x (-y)

Processor modules without onboard interfaces:
● PM57x, PM58x, PM59x: processor module without Ethernet support
● The processor module PM595 is described in a seperate device description Ä Chapter

1.6.2.3.2.2 “PM595-4ETH” on page 3863
● XC version for usage in extreme ambient conditions available (some models versions only)

Processor modules with onboard interfaces:
● PM5xy-ETH: processor module with Ethernet support (onboard Ethernet) - 1 network inter-

face RJ45 on the terminal base
● PM5xy-2ETH: processor module with Ethernet support (onboard Ethernet) - 2 network

interfaces RJ45 on the terminal base
● PM5xy-ARC: processor module with ARCNET support (onboard ARCNET) - 1 network

interface ARCNET BNC on the terminal base

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3848

1 6 7-segment state displays with backlight
2 "Triangle" displays for "item"
3 "Square" displays for "state"
4 3 state LEDs
5 8 function keys
6 Slot for memory card
7 Label
8 Compartment for lithium battery TA521
9 Lithium battery TA521
10 Memory card
11 I/O bus for connection of I/O modules
12 Slot for processor module (processor module

mounted on terminal base)
13 Slots for communication modules (multiple,

depending on terminal base; unused slots must be
covered with TA524)

14 Interface for FieldBusPlug
15 Power supply (5-pin terminal block, removable)
16 Serial interface COM1 (9-pin terminal block, remov-

able)
17 PM5xy-ETH and PM5xy-ARCNET: D-sub 9 for serial

interface COM2. PM5xy-2ETH: RJ45 female con-
nector for 2nd Ethernet connection

18 RJ45 female connector for Ethernet connection /
BNC female connector for ARCNET connection
(depending on terminal base)

19 DIN rail
Sign for XC version

Short description
The processor modules are the central units of the control system AC500. The types differ in
their performance (memory size, speed etc.). Each processor module must be mounted on a
suitable terminal base.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3849

The terminal base type (TB5xx) depends on the number of communication modules which are
used together with the processor module and on the processor module's network interface type
(1 Ethernet, 2 Ethernet or ARCNET).
Each processor module can operate multiple communication modules through its
communication module interface (defined by the terminal base).
The communication modules are mounted on the left side of the processor module on the same
terminal base.
On the right side of the processor module, up to 10 digital or analog I/O expansion modules can
be connected to the I/O bus. Each I/O module requires a suitable terminal unit depending on the
module type.
Terminal bases, terminal units, I/O modules, communication modules and accessories have
their own technical descriptions.
Each processor module can be used as:
● Stand-alone processor module
● Stand-alone processor module with local I/Os
● Remote IO server
● Remote IO client

All processor modules V2 (except PM591-2ETH) have a FieldBusPlug interface
(FBP).

This interface is no more supported and in limited state.

The processor modules are powered with 24 V DC.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

The processor module PM595 is described in a separate device description
Ä Chapter 1.6.2.3.2.2 “PM595-4ETH” on page 3863.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3850

Assortment

Processor
Module

Suitable Terminal Base Network Interface Other
InterfacesEthernet ARCNET

PM572 TB5x1-ETH - - 3)

PM573-ETH TB5x1-ETH
(1SAP11x100R0270 only)

Onboard Ethernet - 3)

PM582 TB5x1-ETH - - 3)

PM583-ETH TB5x1-ETH
(1SAP11x100R0270 only)

Onboard Ethernet - 3)

PM585-ETH TB5x1-ETH
(1SAP11x100R0270 only)

Onboard Ethernet - 3)

PM590-ETH 1) TB5x1-ETH Integrated
communication module

- 3)

PM590-ARCNET
(R0261)

TB5x1-ARCNET - Integrated
communication module

3)

PM591-ETH TB5x1-ETH Integrated
communication module

- 3)

PM591-ETH TB5x1-ETH
(1SAP11x100R0270 only)

Onboard Ethernet - 3)

PM591-2ETH TB5x3-2ETH 2x Onboard Ethernet - 2)

PM592-ETH TB5x1-ETH
(1SAP11x100R0270 only)

Onboard Ethernet - 3)

Remarks:
1) The processor modules PM59x-ETH can only be used with terminal bases with product
index C6 or higher. Otherwise, they should be updated to that index. Ä Chapter 1.6.2.2.1
“TB51x-TB54x” on page 3786
2) Serial interface COM1, Communication Interface Module, I/O bus
3) Serial interface COM1, Serial interface COM2, Communication Interface Module, FieldBus-
Plug (FBP), I/O bus

Connections
All terminals for connection are available on the terminal base. For information on connection
and available interfaces see the descriptions for
● Ä Chapter 1.6.2.2.1 “TB51x-TB54x” on page 3786.

Processor modules PM57x-ETH, PM58x-ETH and PM59x-ETH with ordering
No. 1SAPxxxxxxR0271 can only be used with terminal bases with ordering
No. 1SAPxxxxxxR0270.

Processor modules PM5xx-2ETH can only be used with TB5x3-2ETH terminal
bases.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3851

Storage elements

The processor modules are supplied without lithium battery. It must be ordered separately. The
TA521 lithium battery is used for data (SRAM) and RTC buffering while the processor module is
not powered.
See system technology - AC500 battery. Ä Chapter 1.6.4.1.4.2 “AC500 battery” on page 5419

The CPU monitors the discharge degree of the battery. A warning is issued before the battery
condition becomes critical (about 2 weeks before). Once the warning message appears, the
battery should be replaced as soon as possible.

The technical data, handling instructions and the insertion/replacement of the battery is
described in detail in the chapter TA521 lithium battery Ä Chapter 1.6.2.9.2.4 “TA521 - Battery”
on page 5175.

AC500 processor modules are supplied without memory card. It must be ordered separately.
The memory card can be used
● to read and write user files
● for firmware updates
Detailed information can be found in the system technnology chapter. Ä Chapter 1.6.4.1.2
“System processing” on page 5412

AC500 processor modules can be operated with and without memory cards. The processor
module uses a standard file system (FAT; filenames stored in 8.3 format, on memory card). This
allows standard card readers to read and write the memory cards.

Only genuine MC502 memory cards are supported.

For more information on the technical data, handling instructions and the insertion/replacement
of the memory card, please refer to the chapter memory card MC502 Ä Chapter 1.6.2.9.1.2
“MC502 - Memory card” on page 5096.

Lithium battery

Memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3852

LEDs, display and function keys on the front panel

Detailed information on using the LEDs, display and the function keys such as
startup procedure and error coding is described in the system technology sec-
tion Ä Chapter 1.6.4.1.5 “LEDs, display and function keys on the front panel”
on page 5422.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Connection of the supply voltage 24 V
DC at the terminal base of the processor
module

Removable 5-pin terminal block with spring con-
nection

Current consumption from 24 V DC PM57x: 50 mA
PM57x-ETH: 110 mA

PM58x: 50 mA
PM58x-ETH: 110 mA
PM58x-ARCNET: 110 mA

Processor
module and
terminal base

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3853

Parameter Value
PM59x: 90 mA
PM59x-ETH: 150 mA
PM59x-2ETH: 150 mA
PM59x-ARCNET: 150 mA

Slots on the terminal bases TB511: 1 processor module, 1 communication
module

TB521: 1 processor module, 2 communication
modules

TB523: 1 processor module, 2 communication
modules

TB541: 1 processor module, 4 communication
modules

Processor module interfaces at the ter-
minal bases TB5x1

I/O bus, COM1, COM2, FBP

Processor module interfaces at the ter-
minal bases TB5x3

I/O bus, COM1

Processor module network interfaces at
the terminal bases

TB5x1-ETH Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786 / AC500 CPU with Ethernet interface

TB5x3-ETH Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786/ AC500CPU with two Ethernet inter-
faces

TB5x1-ARCNET Ä Chapter 1.6.2.2.1 “TB51x-
TB54x” on page 3786/ AC500 CPU with ARCNET

Connection system See Ä Chapter 1.6.3.6.4 “Connection and wiring”
on page 5337

Weight (processor module without ter-
minal base)

PM582: 135 g
PM58x-ETH: 150 g

PM59x: 135 g
PM59x-ETH: 150 g
PM59x-2ETH: 150 g
PM59x-ARCNET: 160 g

Mounting position Horizontal or vertical

Table 273: PM57x
Processor Module PM572 PM573-ETH
Program memory flash EPROM
and RAM

128 kB 512 kB

Data memory, integrated 128 kB, incl. 12 kB
buffered

512 kB, incl. 288 kB buffered

Expandable memory None None

Integrated mass storage memory None None

Pluggable memory card for:

 User data storage x x

 Program storage x x

 Firmware update x x

Detailed data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3854

Processor Module PM572 PM573-ETH
Cycle time for 1 instruction:

 Binary Min. 0.06 µs Min. 0.06 µs

 Word Min. 0.09 µs Min. 0.09 µs

 Floating point Min. 0.70 µs Min. 0.70 µs

Max. number of central inputs and outputs (up to 7 exp. modules): (1)

 Digital inputs 224 224

 Digital outputs 224 224

 Analog inputs 112 112

 Analog outputs 112 112

Max. number of central inputs and outputs (10 exp. modules):

 Digital inputs 320 320

 Digital outputs 320 320

 Analog inputs 160 160

 Analog outputs 160 160

Number of decentralized inputs
and outputs

Depends on the fieldbus used
(as an info on the CS31 bus: up to 31 stations with up to
120 DI / 120 DO each)

Data backup Battery

Data buffering time at 25 °C Typ. 3 years without power supply

Battery low indication Warning issued about 2 weeks before the state of charge
becomes critical

Real-time clock:

 With battery backup x x

 Accuracy Typ. ± 2 s / day at 25 °C

Program execution:

 Cyclic x x

 Time-controlled x x

 Multitasking x x

Protection of the user program by
a password

x x

Serial interface COM1:

 Physical link Configurable for RS-232 or RS-485 (from 0.3 to 187.5
kB/s) pluggable terminal block, spring connection for pro-
gramming, as Modbus (master/slave), as serial ASCI
communication, as CS31 Master

 Connection

 Usage

Serial interface COM2 (not for PM5xy-2ETH models):

 Physical link Configurable for RS-232 or RS-485 (from 0.3 to 187.5
kB/s) D-sub for programming, as Modbus (master/slave),
as serial ASCII communication Connection

 Usage

Integrated communication module:

 ETH = Ethernet - ETH onboard with web server,
SNTP and IEC60870-5-104 pro-
tocol RJ45 -

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3855

Processor Module PM572 PM573-ETH
 ARCNET = ARCNET BNC -

Number of external communication
modules

Up to 4 communication modules like PROFIBUS DP,
Ethernet, CANopen. There are no restrictions concerning
the communication module types and communication
module combinations (e.g. up to 4 PROFIBUS DP com-
munication modules are possible)

Ethernet - 10/100 base-TX, 1x RJ45 socket,
provided on TB5x1-ETH

LEDs, LCD display, 8 function
keys

For RUN/STOP switchover, status displays and diagnosis

Number of timers Unlimited

Number of counters Unlimited

Programming languages:

 Structured Text ST x x

 Instruction List IL x x

 Function Block Diagram
FBD

x x

 Ladder Diagram LD x x

 Sequential Function Chart
SFC

x x

 Continuous Function Chart
CFC

x x

1): up to 7 I/O terminal units before PS501 V1.2 and processor module firmware before V1.2.0.

Table 274: PM58x
Processor Module PM582 PM583-ETH PM585-ETH
Program memory flash EPROM and RAM 512 kB 1024 kB 1024 kB

Data memory, integrated 416 kB, incl.
288 kB buffered

1024 kB, incl.
288 kB buf-
fered

1536 kB, incl.
512 kB buf-
fered

Expandable memory None None None

Integrated mass storage memory None None None

Pluggable memory card for:

 User data storage x x x

 Program storage x x x

 Firmware update x x x

Cycle time for 1 instruction:

 Binary Min. 0.05 µs Min. 0.004 µs

 Word Min. 0.06 µs Min. 0.008 µs

 Floating point Min. 0.50 µs Min. 0.008 µs

Max. number of central inputs and outputs (up to 7 exp. modules): 1)

 Digital inputs 224

 Digital outputs 224

 Analog inputs 112

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3856

Processor Module PM582 PM583-ETH PM585-ETH
 Analog outputs 112

Max. number of central inputs and outputs (10 exp. modules):

 Digital inputs 320

 Digital outputs 320

 Analog inputs 160

 Analog outputs 160

Number of decentralized inputs and outputs Depends on the fieldbus used
(as an info on the CS31 bus: up to 31 stations
with up to 120 DI / 120 DO each)

Data backup Battery

Data buffering time at 25 °C Typ. 3 years without power supply

Battery low indication Warning issued about 2 weeks before the state
of charge becomes critical

Real-time clock:

 With battery backup x

 Accuracy Typ. ±2 s / day at 25 °C

Program execution:

 Cyclic x

 Time-controlled x

 Multitasking x

Protection of the user program by a pass-
word

x

Serial interface COM1:

 Physical link Configurable for RS-232 or RS-485 (from
0.3 to 187.5 kB/s) pluggable terminal block,
spring connection for programming, as Modbus
(master/slave), as serial ASCI communication,
as CS31 master

 Connection

 Usage

Serial interface COM2 (not for PM5xy-2ETH models):

 Physical link Configurable for RS-232 or RS-485 (from 0.3 to
187.5 kB/s) D-sub for programming, as Modbus
(master/slave), as serial ASCII communication Connection

 Usage

Integrated communication module:

 ETH = Ethernet - ETH onboard with web server,
SNTP and IEC60870-5-104
protocol RJ45 -

 ARCNET = ARCNET BNC -

Number of external communication modules Up to 4 communication modules like
PROFIBUS DP, Ethernet, CANopen. There are
no restrictions concerning the communication
module types and communication module com-
binations (e.g. up to 4 PROFIBUS DP commu-
nication modules are possible)

Ethernet - 10/100 base-TX, 1x RJ45
socket,
provided on TB5x1-ETH

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3857

Processor Module PM582 PM583-ETH PM585-ETH
LEDs, LCD display, 8 Function Keys For RUN/STOP switchover, status displays and

diagnosis

Number of timers Unlimited

Number of counters Unlimited

Programming languages:

 Structured Text ST x

 Instruction List IL x

 Function Block Diagram FBD x

 Ladder Diagram LD x

 Sequential Function Chart SFC x

 Continuous Function Chart (CFC) x
1): up to 7 I/O terminal units before PS501 V1.2 and processor module firmware before V1.2.0.

Table 275: PM59x 2)
Processor Module PM59x-ETH PM59x-

ARCNET
PM59x-ETH
PM59x-2ETH

Program memory flash EPROM and RAM PM590: 2048 kB
PM591/PM592: 4096 kB

Data memory, integrated PM590: 2560 kB,
PM591: 3584 kB, incl. 1536 kB
buffered

PM590: 3072
kB,
PM591/592:
5632 kB, incl.
1536 kB buf-
fered

Expandable memory None None None

Integrated mass storage memory None None PM592-ETH: 4
GB flash disk

Pluggable memory card for:

 User data storage x x x

 Program storage x x x

 Firmware update x x x

Cycle time for 1 instruction:

 Binary Min. 0.002 µs Min. 0.002 µs Min. 0.002 µs

 Word Min. 0.004 µs Min. 0.004 µs Min. 0.004 µs

 Floating point Min. 0.004 µs Min. 0.004 µs Min. 0.004 µs

Max. number of central inputs and outputs (up to 7 exp. modules): 1)

 Digital inputs 224 224 224

 Digital outputs 224 224 224

 Analog inputs 112 112 112

 Analog outputs 112 112 112

Max. number of central inputs and outputs (10 exp. modules):

 Digital inputs 320 320 320

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3858

Processor Module PM59x-ETH PM59x-
ARCNET

PM59x-ETH
PM59x-2ETH

 Digital outputs 320 320 320

 Analog inputs 160 160 160

 Analog outputs 160 160 160

Number of decentralized inputs and out-
puts

Depends on the fieldbus used
(as an info on the CS31 bus: up to 31 stations with
up to 120 DI / 120 DO each)

Data backup Battery

Data buffering time at 25 °C Typ. 3 years without power supply

Battery low indication Warning issued about 2 weeks before the state of
charge becomes critical

Real-time clock:

 With battery backup x x x

 Accuracy Typ. ±2 s / day
at 25 °C

Typ. ±2 s / day
at 25 °C

Typ. ±2 s / day
at 25 °C

Program execution:

 Cyclic x x x

 Time-controlled x x x

 Multitasking x x x

Password protection of user program x x x

Serial interface COM1:

 Physical link Configurable for RS-232 or RS-485 (from 0.3
to 187.5 kB/s) pluggable terminal block, spring
connection for programming, as Modbus (master/
slave), as serial ASCII communication, as CS31
master

 Connection

 Usage

Serial interface COM2 (not for PM5xy-2ETH models):

 Physical link Configurable for RS-232 or RS-485 (from 0.3 to
187.5 kB/s) D-sub for programming, as Modbus
(master/slave), as serial ASCII communication Connection

 Usage

Integrated communication module:

 ETH = Ethernet ETH ARCNET ETH onboard
with web
server, SNTP
and
IEC60870-5-10
4 protocol

 RJ45 ETH ARCNET

 ARCNET = ARCNET BNC ETH ARCNET

Number of external communication
modules

Up to 4 communication modules like PROFIBUS
DP, Ethernet, CANopen. There are no restrictions
concerning the communication module types and
communication module combinations (e.g. up to 4
PROFIBUS DP communication modules are pos-
sible)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3859

Processor Module PM59x-ETH PM59x-
ARCNET

PM59x-ETH
PM59x-2ETH

Ethernet 10/100 base-
TX, 1x RJ45
socket

- PM59x-ETH:
10/100 base-
TX, 1x RJ45
socket, pro-
vided on
TB5x1-ETH
PM591-2ETH:
10/100 base-
TX, inde-
pendent inter-
faces, 2x RJ45
socket, pro-
vided on
TB521-2ETH

LEDs, LCD display, 8 Function Keys For RUN/STOP switchover, status displays and
diagnosis

Number of timers Unlimited Unlimited Unlimited

Number of counters Unlimited Unlimited Unlimited

Programming languages:

 Structured Text ST x x x

 Instruction List IL x x x

 Function Block Diagram FBD x x x

 Ladder Diagram LD x x x

 Sequential Function Chart SFC x x x

 Continuous Function Chart (CFC) x x x
1): up to 7 I/O terminal units before PS501 V1.2 and processor module firmware before V1.2.0.
2): For PM595 see device description for PM595 Ä Chapter 1.6.2.3.2.2 “PM595-4ETH”
on page 3863.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 130 200 R0200 PM572, processor module, memory

128 kB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display

Active

1SAP 130 300 R0271 PM573-ETH, processor module,
memory 512 kB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104
protocols

Active

Processor
modules for
AC500
(Standard) V2
products

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3860

Part no. Description Product life cycle phase *)
1SAP 330 300 R0271 PM573-ETH-XC, processor module,

memory 512 kB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104
protocols, XC version

Active

1SAP 140 200 R0201 PM582, processor module, memory
512 kB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display

Active

1SAP 340 200 R0201 PM582-XC, processor module,
memory 512 kB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, XC version

Active

1SAP 140 300 R0271 PM583-ETH, processor module,
memory 1024 kB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104
protocols

Active

1SAP 340 300 R0271 PM583-ETH-XC, processor module,
memory 1024 kB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104
protocols, XC version

Active

1SAP 140 500 R0271 PM585-ETH, processor module,
memory 1024 kB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104
protocols

Active

1SAP 150 000 R0261 PM590-ARCNET, processor module,
memory 2 MB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, integrated communication
module ARCNET

Active

1SAP 150 000 R0271 PM590-ETH, processor module,
memory 2 MB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104
protocols

Active

1SAP 150 100 R0271 PM591-ETH, processor module,
memory 4 MB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104
protocols

Active

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3861

Part no. Description Product life cycle phase *)
1SAP 150 100 R0277 PM591-2ETH, processor module,

memory 4 MB, 24 V DC,
memory card slot, interfaces
1 RS-232/485 (programming, Modbus/
CS31), display, 2 onboard Ethernet
TCP/IP with web server, SNTP,
IEC60870-5-104 protocols

Active

1SAP 350 100 R0271 PM591-ETH-XC, processor module,
memory 4 MB, 24 V DC, memory
card slot, interfaces 2 RS-232/485
(programming, Modbus/CS31), 1 FBP,
display, onboard Ethernet TCP/IP with
web server, SNTP, IEC60870-5-104
protocols, XC version

Active

1SAP 150 200 R0271 PM592-ETH, processor module,
memory 4 MB / 4 GB flash disk,
24 V DC, memory card slot, interfaces
2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, onboard
Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols

Active

1SAP 350 200 R0271 PM592-ETH-XC, processor module,
memory 4 MB / 4 GB flash disk,
24 V DC, memory card slot, interfaces
2 RS-232/485 (programming, Modbus/
CS31), 1 FBP, display, onboard
Ethernet TCP/IP with web server,
SNTP, IEC60870-5-104 protocols,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Table 276: Accessories
Part no. Description
1SAP 180 300 R0001 TA521, lithium battery

1SAP 180 100 R0001 MC502, memory card

Processor modules PM57x-ETH(-XC), PM58x-ETH(-XC) and PM59x-ETH(-XC)
with ordering No. 1SAPxxxxxxR0271 can only be used with terminal bases
TB5x1-ETH(-XC) with ordering No. 1SAPxxxxxxR0270.

Processor module PM591-2ETH can only be used with TB523-2ETH.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3862

PM595-4ETH
● High-performance processor module with 1.3 GHz
● XC version with 1 GHz for use in extreme ambient conditions available (maintenance free)

1 I/O bus for connection of I/O modules
2 2x 5 LEDs to display the states of the fieldbuses
3 Cover for battery and display
4 5 LEDs to display the states of the processor

module
5 5 LEDs (reserved)
6 2x2 RJ45 interfaces for fieldbuses
7 Slot for memory card
8 Reset button
9 Button (reserved)
10 RUN/STOP switch

11 Label
12 Slots for communication modules (max 2; unused

slots must be covered with TA524)
13 2 RJ45 interfaces for Ethernet connection
14 5-pin terminal block (reserved)
15 Serial interface COM2 (D-sub 9)
16 Serial interface COM1 (9-pin terminal block, remov-

able)
17 Power supply (5-pin terminal block, removable)
18 5 holes for screw mounting

Sign for XC version

Short description
The processor module is a central unit for AC500 with high performance.
Each processor module can operate up to 2 communication modules via its communication
module interface. The communication modules are mounted on the left side of the processor
module. On the right side of the processor module, up to 10 digital or analog I/O expansion
modules can be connected to the I/O bus. Each I/O module requires a suitable terminal unit
depending on the module type.
Terminal bases, terminal units, I/O modules, communication modules and accessories have
their own technical descriptions.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3863

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Fig. 732: Processor module, communication modules and I/O modules

For EtherCAT and PROFINET support make sure the following firmware is
installed:

– PROFINET: V 2.8.1.2 or newer
– EtherCAT: V 4.2.23 (2) or newer

To update the Firmware of PM595-4ETH, please follow the instructions in the
chapter Ä Chapter 1.6.5.1.7.4 “Update PM595 firmware” on page 5792.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3864

Assortment

Processor Module Ethernet Interfaces Other Interfaces
PM595-4ETH-F
PM595-4ETH-M-XC

ETH1 and ETH2 for Ethernet-based
system communication
ETH3.1 and ETH3.2 for
Ethernet-based fieldbuses with
switch functionality
ETH4.1 and ETH4.2 for
Ethernet-based fieldbuses with
switch functionality

Serial interface COM1
Serial interface COM2
Communication module
interface
I/O bus

Connections
I/O bus

The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules can
be added (see description for I/O bus in the system assembly chapter Ä Chapter 1.6.3.4.1
“Serial I/O bus” on page 5218).

Power supply
The supply voltage of 24 V DC is connected to a removable 5-pin terminal block. L+/M exist
twice. It is therefore possible to feed e.g. external sensors (up to 8 A max. with 1.5 mm2

conductor) via these terminals.

Pin Assignment Label Function Description

Terminal block
removed

Terminal block
inserted

L+ +24 V DC Positive pin of the
power supply voltage

L+ +24 V DC Positive pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

FE Functional earth

NOTICE!
Risk of damaging the processor module and terminal base!
Exceeding the maximum voltage could lead to unrecoverable damage to the
system.
The system might be destroyed.

Pin assignment

Faulty wiring on
power supply
terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3865

NOTICE!
Risk of damaging the terminal base and power supply!
Short circuits might damage the terminal base and power supply.
Make sure that the four clamps L+ and M (two of each) are not wrongly
connected (e. g. +/- of power supply is connected to both L+/L+ or both M/M).

NOTICE!
Risk of damaging the terminal base!
Terminal base can be damaged by connecting the power supply terminal block
(L+/M) to COM1.
Make sure that the COM1 terminal block is always connected to the terminal
base even if you do not use COM1 to prevent this.

NOTICE!
Risk of damaging the terminal base!
Excessive current might damage the clamp and terminal base.
Make sure that the current flowing through the removable clamps never
exceeds 8 A (with 1.5 mm2 conductor).

Serial interface COM1

 Pin Signal Interface Description

Terminal
block
removed

Terminal
block
inserted

1 Terminator P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit,
positive

3 RxD/TxD-N RS-485 Receive/Transmit,
negative

4 Terminator N RS-485 Terminator N

5 RTS RS-232 Request to send
(output)

6 TxD RS-232 Transmit data
(output)

7 SGND Signal Ground Signal Ground

8 RxD RS-232 Receive data
(input)

9 CTS RS-232 Clear to send
(input)

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

Pin assignment
(RS-485 /
RS-232)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3866

The serial interface COM1 is connected to a removable 9-pin terminal block. It is configurable
for RS-232 and RS-485.
For a detailed description of COM1, please refer to Serial interface COM1 Ä Chapter
1.6.3.6.4.6 “Serial interface COM1 of the terminal bases” on page 5343.

Serial interface COM2
The serial interface COM2 is connected to a D-sub 9. It is configurable for RS-232 and RS-485.

COM2 cannot be used for communication via CS31 bus. For a detailed descrip-
tion of COM2, please refer to Serial interface COM2. Ä Chapter 1.6.3.6.4.7
“Serial interface COM2 of the terminal bases ” on page 5345

Serial
Interface

Pin Signal Interface Description

1 FE - Functional earth

2 TxD RS-232 Transmit data Output

3 RxD/TxD-P RS-485 Receive/Transmit Positive

4 RTS RS-232 Request to send Output

5 SGND Signal ground 0 V supply out

6 +5 V - 5 V supply out

7 RxD RS-232 Receive data Input

8 RxD/TxD-N RS-485 Receive/Transmit Negative

9 CTS RS-232 Clear to send Input

Shield FE - Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

Network interfaces Ethernet (ETHx)

Interface Pin Signal Description

or

1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

6 RxD- Receive data -

Pin assignment

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3867

Interface Pin Signal Description
7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

See supported protocols and used Ethernet ports for AC500 V2products: Ä Chapter
1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2 products” on page 5442.
See communication via Modbus for AC500 V2 products: Ä Chapter 1.6.4.1.9 “Communication
with Modbus TCP/IP” on page 5488.
See communication via Modbus for AC500 V2 products: Ä Chapter 1.6.4.1.8 “Communication
with Modbus RTU” on page 5467.

The MAC addresses of the network interfaces of the PM595-4ETH are printed on the label in
the following way:
MAC ETH1
MAC ETH2
MAC ETH3
MAC ETH4
The figure below shows the assignment of the MAC addresses to the corresponding interface.

Fig. 733: Assignment of the MAC addresses to the corresponding interface

The figure above also shows the assigned SLOT-Numbers 1, 2, 5 and 6.

MAC addresses

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3868

Storage elements
AC500 processor modules are supplied without a lithium battery. It must therefore be ordered
separately. The TA541 lithium battery is used to save SRAM contents of processor modules
(PM595-4ETH-F only) and back up the real-time clock in case of power failures. Even if the
processor modules can work without a battery, its use is still recommended in order to prevent
process data being lost in case of power failures (PM595-4ETH-F only).
The processor module monitors the battery's state of charge. If the processor module signals
a low state of charge (via the diagnosis system and LED), the battery has to be replaced
immediately.
For technical data, handling instructions and a description of the insertion/replacement of the
battery, please refer to the chapter TA541 Lithium Battery Ä Chapter 1.6.2.9.2.7 “TA541 -
Battery” on page 5180.

The processor module PM595-4ETH-M-XC is maintenance-free. The lithium
battery TA541 in this processor module type is used only for back-up of the
real-time clock (RTC) in case of no power supply. If the RTC is not used, there
is no need to install a TA541 lithium battery.

AC500 processor modules are supplied without memory card. It must be ordered separately.
The memory card can be used
● to read and write user files
● for firmware updates
Detailed information can be found in the system technnology chapter. Ä Chapter 1.6.4.1.2
“System processing” on page 5412

AC500 processor modules can be operated with and without memory cards. The processor
module uses a standard file system (FAT; filenames stored in 8.3 format, on memory card). This
allows standard card readers to read and write the memory cards.

Only genuine MC502 memory cards are supported.

For more information on the technical data, handling instructions and the insertion/replacement
of the memory card, please refer to the chapter memory card MC502 Ä Chapter 1.6.2.9.1.2
“MC502 - Memory card” on page 5096.

Operating elements on the front panel
Table 277: Meaning of the status LEDs (left part)
LED Color Status Description
PWR *) Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY *) Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN *) Green On Communication module is operational

Blinking ---

Lithium battery

Memory card

Status LEDs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3869

LED Color Status Description
Off Communication module is not operational

STA1 *) Red On Depending on used fieldbus

Blinking Depending on used fieldbus

Off Depending on used fieldbus

Green On Depending on used fieldbus

Blinking Depending on used fieldbus

Off Depending on used fieldbus

STA2 *) Red On Depending on used fieldbus

Blinking Depending on used fieldbus

Off Depending on used fieldbus

Green On Depending on used fieldbus

Blinking Depending on used fieldbus

Off Depending on used fieldbus

*) These LEDs exist twice.

LED Color Status Description
PWR Green On Power supply available

Blinking ---

Off Power supply not available or defec-
tive hardware

RUN Green On Processor module is in RUN mode

Blinking ---

Off Processor module is in STOP mode

ERR Red/green On An error has occurred

Blinking Flashing fast (4 Hz): Indicates
together with RUN a firmware update
process and a flash EEPROM write.

Off No errors are encountered or only
warnings (E4 errors). This is config-
urable (for errors 2 - 4, the LED
behavior is configurable.

- Red/green On Reserved

Blinking Reserved

Off Reserved

Batt Red/green On TA541 lithium battery is not installed
or is weak

Blinking ---

Off TA541 lithium battery is installed and
has sufficient capacity

1 Red/green On Reserved

Blinking Reserved

Off Reserved

2 Red/green On Reserved

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3870

LED Color Status Description
Blinking Reserved

Off Reserved

3 Red/green On Reserved

Blinking Reserved

Off Reserved

4 Red/green On Reserved

Blinking Reserved

Off Reserved

5 Red/green On Reserved

Blinking Reserved

Off Reserved

The processor module can be operated manually using the buttons and switches at the front
panel. Meaning of the buttons and switches:

Button Description
RESET If pressed during power-on: Enter serial download of firmware. This is

signalized by blinking of the RUN LED with a frequency of 1 Hz. If
pressed during normal operation: reserved for future implementation.

Fn If pressed during power-on: Boot project will not be loaded. This is
signalized by blinking of the RUN LED with a frequency of 1 Hz. If
pressed during normal operation: reserved for future implementation.

RUN/STOP Switches the processor module from RUN to STOP mode.

The AC500 processor module can display various errors according to the error classes. The
reaction of the Processor Module is different for each type of error. See System Technology
Ä Chapter 1.6.4.1.5 “LEDs, display and function keys on the front panel” on page 5422.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Connection of the supply voltage 24 V DC at
the removable terminal block of the processor
module

at a removable 5-pin terminal block with
spring connection

 Current consumption from 24 V DC 0.4 A

 Inrush current at 24 V DC 1 A2s *)

 Max. power dissipation within the module 15 W

Buttons and
switches

General data of
the processor
modules

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3871

Parameter Value
 Slots for communication modules 2

 Processing module's interfaces I/O bus, COM1, COM2

 Processing module's network interfaces ETH1 and ETH2 for Ethernet-based system
communication
ETH3.1 and ETH3.2 for Ethernet-based
fieldbuses with switch functionality
ETH4.1 and ETH4.2 for Ethernet-based
fieldbuses with switch functionality

Connection system see Ä Chapter 1.6.3.6.4 “Connection and
wiring” on page 5337

Weight 1070 g

Mounting position horizontal or vertical with derating (50 %
output load, reduction of temperature to 40
°C)

*) The melting integral of the processor module depends on the processor module's integrated
power supply, and the number and type of communication modules and I/O modules connected
to the I/O bus.

Parameter Value
Flash memory for boot projects, symbols and web
pages

32768 kB

SDRAM for user program 16384 kB

SDRAM for user data 16384 kB

Expandable memory None

Integrated mass storage memory 4 GB non rotating flashdisk

Pluggable memory card for: x

 User data storage

 Program source code storage

 Firmware update

Cycle time for 1 instruction

 Binary Min. 0.0006 µs

 Word Min. 0.001 µs

 Floating point Min. 0.001 µs

Max. number of central inputs and outputs (10
exp. modules):

 Digital inputs 320

 Digital outputs 240

 Analog inputs 160

 Analog outputs 160

Number of decentralized inputs and outputs Depends on the field bus used (as an info
on the CS31 bus: up to 31 stations with up
to 120 DI / 120 DO each)

Detailed data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3872

Parameter Value
Data backup Battery for PM595-4ETH-F,

MRAM for PM595-4ETH-M-XC without
battery

Data buffering time at 25 °C About 3 years

Battery low indication Warning issued about 2 weeks before the
state of charge becomes critical

Real-time clock

 With battery backup x

 Accuracy Typ. ± 2 s / day at 25° C

Integrated Communication Module,
ETH = Ethernet RJ45

2x Ethernet,
2x Ethernet interfaces with downloadable
protocol e.g. PROFINET IO,
EtherCAT (in preparation)

Number of external communication modules Up to 2 communication modules like
PROFIBUS DP, Ethernet, CANopen or
functional safety module, e.g., SM560-S.
There are no restrictions concerning the
communication module types and commu-
nication module combinations (e.g. up to
2 PROFIBUS DP communication modules
are possible)

LEDs 5 to display states, rest of LEDs reserved

LCD display Optional

Buttons and switches 1 button for Reset (Reserved)
1 Button (Reserved)
1 Switch for RUN/STOP

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3873

Ordering data

Part no. Description Product life cycle
phase *)

1SAP 155 500 R0279 PM595-4ETH-F, processor module,
user progr./data memory 16 MB / 16 MB,
1.3 GHz, 24 V DC, memory
card slot, interfaces 2 RS232-485,
2 independent Ethernet interfaces (progr.,
web server, IEC60870-5-104 protocols),
2 independent Ethernet based interfaces
with 2-port switch (between fieldbus
protocols PROFINET IO, EtherCAT and
Ethernet)

Active

1SAP 351 500 R0279 PM595-4ETH-M-XC, processor module,
user progr./data memory 16 MB / 16 MB,
1.0 GHz, 24 V DC, memory
card slot, interfaces 2 RS232-485,
2 independent Ethernet interfaces (progr.,
web server, IEC60870-5-104 protocols),
2 independent Ethernet based interfaces
with 2-port switch (between fieldbus
protocols PROFINET IO, EtherCAT and
Ethernet), XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Table 278: Accessories
Part no. Description
1SAP 182 700 R0001 TA541, lithium battery

1SAP 180 100 R0001 MC502, memory card

1SAP 180 200 R0001 TK501, programming cable D-sub / D-sub, length: 5 m

1SAP 180 200 R0101 TK502, programming cable terminal block / D-sub, length: 5 m

1TNE 968 901 R1100 TK503, COM1 USB programming cable / D-sub (RS-485), length
3 m

1SAP 182 300 R0001 TA535, protective caps for XC devices

1SAP 182 600 R0001 TA540, front cover as spare part (3 pieces)

1SAP 182 800 R0001 TA543, screw mounting accessory (20 pieces)

1.6.2.3.3 AC31 adapters
Introduction

The modular product line of the AC31 adapter series includes modular exchange components
for control systems of the Advant Controller 31 (90 series). The simple exchange of individual
components allows existing customers to maintain their PLCs in a quick and cost-effective
manner. Extensive software modifications are not required.
Each replacement device is based on trend setting technologies of the AC500 series. There-
fore, by exchanging components it is not only possible to replace the existing device, but also to
profit from new functions and improved product quality.

Replacement
devices for
AC31

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3874

During the development of the AC31 adapter series, care was taken to keep the device configu-
ration identical to the configuration of the AC31 devices. Consequently, the technical documents
for the AC31 devices are still valid and serve as reference:
● Software description (only available in English)
● System description Advant Controller 31

Only unavoidable deviations, for example due to technical limitations, are described in this
document.

CAUTION!
Installation and maintenance work on the device must be performed by qualified
personnel in line with the recognized technical rules, regulations and relevant
standards such as EN 60204-1.

For safety instructions, please refer to Regulations for the erection of
installations.

Overview of AC31 adapters (replacement devices)
An AC31 adapter (replacement device) is available for the following AC31 devices of the 90
series (existing devices):

Existing devices: AC31
(90 series)

Replacement devices: AC31
adapters

Replacement device is based
on the following AC500
device

CPU devices:

07KT94-ARC
07KT98-ARC
07KT98-ARC-DP
07KT98-ARC-ETH
07KT98-ETH-DP
--

07KT94-ARC-AD *)
07KT98-ARC-AD
07KT98-ARC-DP-AD
07KT98-ARC-ETH-AD
07KT98-ETH-DP-AD
07KT98-ARC-ETH-DP-AD

PM590, DA501 and DA502

*) Customer specific product not available for current sales

Existing devices: AC31
(90 series)

Replacement devices: AC31
adapters

Replacement device is based
on the following AC500
device

I/O modules:

07DC91 07DC91-AD DC532

07DC92 07DC92-AD DO524

07AC91 07AC91-AD (8-Bit) AO523

07AC91 07AC91-AD2 (12-Bit) AX522

07AI91 07AI91-AD AI523

DC501-CS31 DC501-CS31-AD DC532

Note regarding
product docu-
mentation

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3875

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120064M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR025003M9903&LanguageCode=en&DocumentPartId=&Action=Launch
http://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR025003M9903&LanguageCode=en&DocumentPartId=&Action=Launch

System data and CS31 bus system data
The system data described in this chapter are valid for the following replacement devices:
● 07KT94-ARC-AD
● 07KT98-ARC-AD
● 07KT98-ARC-DP-AD
● 07KT98-ARC-ETH-AD
● 07KT98-ETH-DP-AD
● 07KT98-ARC-ETH-DP-AD
● 07AC91-AD
● 07AC91-AD2
● 07AI91-AD
● 07DC91-AD
● 07DC92-AD
● DC501-CS31-AD
Please also observe the CS31 bus system data Ä Chapter 1.6.2.3.3.3.2 “CS31 bus system
data” on page 3882.

The devices of the AC31 adapter series do not have marine approval.

NOTICE!
AC31 adapter I/O modules must only be used with an ABB CPU with master
CS31 bus (e.g. AC31 07KT9x, AC31-Adpater 07KT9x-x-x-AD or AC500 CPU).

System data of the AC31 adapters
Operating and environmental conditions

Table 279: Supply voltages
Voltages according to IEC 61131-2:

24 V DC Process and supply voltage 24 V DC (-15 %, +20 %
without residual ripple)

 Absolute limits 19.2 V ... 30 V incl. residual
ripple

 Residual ripple £ 5 %

 Polarity reversal protection 10 s (test duration), per-
manently present on AC31
adapters

Bridging time for power interruptions according to IEC 61131-2:

 DC supply Interruption < 10 ms
Time between 2 interruptions
> 1 s

CAUTION!
System damage caused by voltage!
Exceeding the maximum supply or process voltage (>30 V DC) results in per-
manent system damage (destruction).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3876

Table 280: Operating and environmental conditions
Temperature:

-> Operation 0 °C ... +55 °C (vertical mounting position, ter-
minals upward and downward)

-> Storage -40 °C ... +75 °C

-> Transport -40 °C ... +75 °C

Humidity max. 95 %, without condensation

Air pressure:

-> Operation > 800 hPa / < 2000 m

-> Storage > 660 hPa / < 3500 m

Creepage distances and clearances
The creepage distances and clearances correspond to overvoltage category II, pollution degree
2.

Test voltages for type test
Test voltages for type test according to IEC 61131-2:

Table 281: Impulse testing
Data Voltage Duration
24 V circuits (supply, 24 V inputs/outputs), when galvan-
ically isolated from other circuitry

500 V 1.2 / 50 µs

CS31 interface from other circuitry 500 V 1.2 / 50 µs

Ethernet 500 V 1.2 / 50 µs

ARCNET 500 V 1.2 / 50 µs

COM interfaces, galvanically isolated 500 V 1.2 / 50 µs

Enabling input, galvanically isolated 500 V 1.2 / 50 µs

Table 282: AC voltage tests
Data Voltage Duration
24 V circuits (supply, 24 V inputs/outputs), when galvan-
ically isolated from other circuitry

350 V AC 60 s

CS31 interface from other circuitry 350 V AC 60 s

Ethernet 350 V AC 60 s

ARCNET 350 V AC 60 s

COM interfaces, galvanically isolated 350 V AC 60 s

Enabling input, galvanically isolated 350 V AC 60 s

Power supply units

For the supply of devices, use power supply units according to PELV specification.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3877

Electromagnetic compatibility
Table 283: Immunity
Data Value
Immunity against electrostatic discharge
(ESD)

According to EN 61000-4-2, zone B, criterion
B

-> Interference voltage with air discharge 8 kV

-> Interference voltage with contact discharge 4 kV

ESD with communication connectors Ensure that any electrostatic charge is dis-
charged prior to contact with the communica-
tion connectors (e.g. by touching an grounded
metal object). Otherwise malfunctions may
occur.

ESD module carrier connectors Do not touch the plug connecting the module
carrier on the bottom side of the device.

ESD external communication module interface Do not touch the plug to the flat ribbon cable.

Immunity against the influence of radiated
interference (CW radiated)

According to EN 61000-4-3, zone B, criterion
A

-> Test field strength 10 V/m (except ITU transmission bands 87…
108 MHz, 174…230 MHz and 470…790 MHz
-> 3 V/m)

-> Maximum temporary deviation during irradi-
ation

Analog current output signals max. 1.5 %.
Devices affected:
07AC91-AD, 07AC91-AD2,
07KT94-ARC-AD, 07KT98-ARC-AD,
07KT98-ARC-DP-AD, 07KT98-ARC-ETH-AD,
07KT98-ETH-DP-AD, 07KT98-ARC-ETH-DP-
AD

Immunity against transient interference vol-
tages (burst)

According to EN 61000-4-4, zone B, criterion
B

-> Voltage supply 2 kV

-> Enabling input 2 kV

-> Digital inputs/outputs 1 kV

-> Analog inputs/outputs 1 kV

-> CS31 bus 1 kV

-> Serial RS-232 interfaces (COM) 1 kV

-> ARCNET 1 kV

-> Ethernet 1 kV

-> I/O supply, DC out 1 kV

Immunity against the influence of power
related interference (CW radiated):

According to EN 61000-4-6, zone B, criterion
A

-> Test voltage Zone B, also according to 10 V

Immunity against transient interference vol-
tages with high energy (surge)

According to EN 61000-4-5, zone B, criterion
B

-> Voltage supply DC, enabling input 0.5 kV CM / 0.5 kV DM *)

-> I/O supply, DC out 0.5 kV CM / 0.5 kV DM *)

-> Shielded buses 1 kV CM *)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3878

Data Value
-> I/O analog, I/O DC unshielded 1 kV CM / 0.5 kV DM *)

Emitted interference (radiation): -

-> From radiated interferences According to EN 55011, group 1, class A

*) CM = Common Mode, DM = Differential Mode

The devices of the AC31 adapter series do not have marine approval.

Mechanical data

Data Value
Degree of protection IP20

Housing According to UL 94

Vibration resistance according to EN 61131-2 All three axes
2 Hz ... 15 Hz, continuous 3.5 mm
15 Hz ... 150 Hz, continuous 1 g

Vibration resistance with memory card
plugged

15 Hz ... 150 Hz, continuous 1 g

Shock resistance All three axes
15 g, 11 ms, semi-sinusoidal

Grounding
The AC31 adapter devices can be grounded as follows:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3879

Fig. 734: Grounding of devices 07AC91-AD, 07AC91-AD2, 07AI91-AD, 07DC91-AD and 07DC92-AD

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3880

Fig. 735: Grounding of device DC501-CS31-AD

Fig. 736: CPU grounding

When grounding the replacement devices, observe the following:
● Install the AC31 adapter devices onto an grounded mounting plate to ensure a uniform

reference potential of all equipment.
● Implement the connections between switchgear cabinet, mounting plate, PE rail and shield

rail with low impedance.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3881

● Install the lines in groups (power lines, power supply lines, signal lines, data lines).
● Use lines with braided cable shield for analog signals. Ground the shield on both sides and

make sure that no compensation currents flow through the cable shield. For this purpose,
use a potential equalization line with current carrying capacity, for instance on systems
consisting of several switchgear cabinets.

Further information concerning CS31 bus grounding: Ä Chapter 1.6.2.3.3.3.2.3 “Grounding”
on page 3884

CS31 bus system data
Wiring

Table 284: Bus line
Data Value
Configuration 2 cores, twisted, with common shield

Cross section > 0.22 mm² (24 AWG)
Recommendation: 0.5 mm² corresponds to Ø
0.8 mm

Twist rate > 10/m (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance approx. 120 Ω (100 ... 150 Ω)

Capacitance between the cores < 55 nF/km (in case of higher capacitance
values, the maximum possible bus length is
reduced)

Terminating resistors 120 Ω ¼ W at both ends

Notes Cables with PVC core insulation and core
diameter of 0.8 mm can be used up to a
length of approx. 250 m. In this case, the ter-
minating resistor is 100 Ω. Cables with PE
core insulation can be used up to a length of
approx. 500 m.

The transmission rate used on the CS31 bus is 187.5 kBaud.

Bus topology
A CS31 bus always contains only one CS31 bus master to control the bus. Up to 31 CS31
slaves can be controlled by one bus. The CS31 bus master has no address, whereas the CS31
slaves can accept addresses in the range from 0 - 61, depending on CS31 slave type.
Possible CS31 bus masters:
● 07KT94-ARC-AD, 07KT94
● 07KT98-ARC-AD, 07KT98
● 07KT98-ARC-DP-AD
● 07KT98-ARC-ETH-AD
● 07KT98-ETH-DP-AD
● 07KT98-ARC-ETH-DP-AD

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3882

Possible CS31 slaves:
● 07AC91-AD, 07AC91
● 07AC91-AD2
● 07AI91-AD, 07AI91
● 07DC91-AD, 07DC91
● 07DC92-AD, 07DC92
● DC501-CS31-AD, DC501-CS31
The following diagram shows the bus topology without shielding and grounding treatment:

Fig. 737: Bus topology with CS31 bus master on the side

The CS31 slave DC501-CS31-AD has an internal 120 Ω terminating resistor
which can be connected by using a DIP switch. On the other CS31 slaves and
the CS31 bus master, the terminating resistor must be installed externally by the
user.

The following diagram shows the bus topology without shielding and grounding treatment:

Fig. 738: Bus topology with CS31 bus master in the middle

CAUTION!
Risk of malfunctions!
Spur lines are not allowed within the CS31 bus. Loop the bus line from module
to module.

Correct cable laying:CS31 cable
laying

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3883

Incorrect cable laying:

Grounding
In order to avoid disturbances, ground the cable shields directly.

Choose direct grounding if it can be ensured by means of current carrying metal connections
(steel constructions, ground bars, etc.) that no potential differences can occur.

Current carrying
capacity

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3884

Fig. 739: Direct grounding of CS31 bus master and CS31 slave

The shield connection of the CS31 bus master is internally connected to the
ground terminal.

Apply capacitative grounding if system parts are not connected to each other in terms of their
current carrying capacity. This prevents the flow of compensation currents through the cable
shields.

Fig. 740: Direct grounding of CS31 bus master and capacitative CS31 slave

On the CS31 slave, the shield connection is not connected internally and thus
not grounded. The shield connection can be used to connect the shields of two
cables.

VDE 0160 requires that the system's shield is grounded directly at least once.

No current car-
rying capacity

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3885

Bus cycle time and data security
The communication via the CS31 bus is cyclic and controlled by the CS31 bus master.

Fig. 741: Format of request telegram of a CS31 bus master

In each cycle, the CS31 bus master successively polls all existing CS31 slaves at regular
intervals, performs a diagnosis on one of the existing CS31 slaves and sends a request to
search for added CS31 slaves. Thus, on one hand it is possible to maintain a continuous
diagnosis of the proper network function and on the other hand to take all the newly added
CS31 slaves into account.

Fig. 742: Format of response telegram of a CS31 slave

The CS31 slaves respond to the telegrams of the CS31 bus master with a response telegram
(see diagram above). The data are indicated in the documentation of the individual devices
(e.g. 07AC91-AD2). The telegram is ignored when a CS31 slave or a CS31 bus master detects
a deviation between the received CRC and the self-calculated CRC. A CS31 bus error exists
when 10 faulty telegrams are issued successively.
The bus cycle time is composed of a base time, the bus transmission times of the data of the
individual CS31 slaves and the bus idle times between the individual telegrams.
During the base time, the CS31 bus master performs a diagnosis and searches for newly added
CS31 slaves. This time depends on the control system (PLC / central unit) and is partially
configurable:
● Devices 07KT94 and 07KT98: base time 2 ms
● Device 07KT94-ARC-AD: base time 10 ms *)
● Devices 07KT98-ARC-AD, 07KT98-ARC-DP-AD, 07KT98-ARC-ETH-AD, 07KT98-ETH-DP-

AD,
07KT98-ARC-ETH-DP-AD:
Base time 5 ms to 100 ms (configurable in Automation Builder, parameter "Min update
time")

*) The base time of device 07KT94-ARC-AD cannot be configured since the old programming
environment (907 PC 331) must be used.
The bus transmission times of the data of the individual CS31 slaves can be determined as
follows:
● Duration for the transmission of 1 byte = (1/187.5 kBaud) x 8 = 43 µs
● Determine number of data bytes (sending + receiving) from existing documentation
● Add 3 bytes for the transmission of the address and CRCs
Per CS31 slave, approx. 0.5 ms can be assumed as bus idle time. The CS31 bus master
needs this time to process the data. This time depends on the computing power and on the
implementation of the CS31 bus master. This time can vary between various firmware versions.

Fig. 743: Example bus cycle time

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3886

Table 285: Example: Bus cycle time
Base time Min. update time = 5 ms 5000 µs

Bus transmission time
07AC91-AD2

Receiving 16 byte
data

16 x 43 µs 688 µs

Sending 16 byte data 16 x 43 µs 688 µs

3 byte address +
CRCs

3 x 43 µs 129 µs

Bus idle time - - 500 µs

Bus transmission time
07AI91-AD

Sending 16 byte data 16 x 43 µs 688 µs

3 byte address +
CRCs

3 x 43 µs 129 µs

Bus idle time - - 500 µs

Bus cycle time (sum) - - 8322 µs ≈ 8500 µs

Configuration
Below is a description of the configuration of the devices 07KT98-ARC-AD, 07KT98-ARC-
DP-AD, 07KT98-ARC-ETH-AD and 07KT98-ETH-DP-AD, 07KT98-ARC-ETH-DP-AD in the
Automation Builder software. For further information on Automation Builder, please refer to
Ä Chapter 1.6.5.2 “PLC devices and components” on page 5811.
The configuration of the CS31 slaves takes place only by means of DIP switches (see existing
documentation), whereby the configuration of the CS31 bus topology is carried out in the CS31
bus master.

The configuration of the devices 07KT94 and 07KT94-ARC-AD is carried out
with the DOS program "907 PC 331". Further information on configuration is
available in the existing documentation.

Configure the COM1 interface as CS31 bus master:

Fig. 744: CS31 bus master

The "Min update time" parameter can also be set on the CS31 bus master:

Fig. 745: Parameter configuration

The individual CS31 slaves must be configured in the tree structure under the CS31 bus master:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3887

Fig. 746: CS31 slave

The module address must be set on each CS31 slave. Specify the same module address that
has been selected with the DIP switches.
Set the CS31 slave type (analog/digital):

Fig. 747: CS31 bus slave configuration

The data must be configured in the tree structure under the CS31 bus slave. Information about
the number of input and output data can be obtained from the respective documentation of the
CS31 bus slaves.

If the data represent bipolar values (e.g. voltage from -10 V…+10 V), the use of
the data type INT is appropriate. In case of unipolar values (e.g. current from 0
mA…20 mA), the data type WORD can be used.

Diagnosis
For the diagnosis of the CS31 bus, various mechanisms are available in the CS31 bus master
of the devices 07KT98-ARC-AD, 07KT98-ARC-DP-AD, 07KT98-ARC-ETH-AD, 07KT98-ETH-
DP-AD and 07KT98-ARC-ETH-DP-AD:
● Diagnosis via the function block CS31_DIAG
● Diagnosis system of the AC500 series
For further information on both mechanisms, please refer to Ä Chapter 1.7 “Diagnosis and
debugging for AC500 V2 products” on page 6365. Below, only a few special diagnosis functions
of the AC31 adapter are addressed.

In the 'State' column, the variable byStateDiag of the structure strCS31_DiagOneModule is
indicated for every CS31 bus slave.

Function block
CS31_DIAG:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3888

Fig. 748: Visualization: CS31 bus diagnosis

Table 286: Interpretation of variable byStateDiag
Bit Value Description
0 1 CS31 bus slave disconnected

1 2 Not used

2 4 slave on CS31 bus bus not
configured

3 8 Difference in the number of
data bytes between configura-
tion and CS31 bus

4 16 Internal device error

5 32 Channel error

6 64 Not used

7 128 Not used

All bits of byStateDiag equal 0 -> no error in CS31 bus slave.

The variables byDiagChannel and byDiagErr in the structure strCS31_DiagOneModule
include the error channel and code. The possible values of these variables are indicated in the
documentation of the respective CS31 bus slave.

The Diagnosis system of the AC500 series provides the errors in the following format:Diagnosis
system

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3889

Table 287: Error messages AC500 series
Format e.g. name of PLC browser

command diagshow all
Description

Error class Class 1 to 4 (see Ä Chapter
1.7 “Diagnosis and debug-
ging for AC500 V2 products”
on page 6365)

Faulty component Comp 11 (COM1 interface, here for
the CS31 bus)

Faulty device Dev Address of CS31 bus slave
with error

Faulty module Mod CS31 bus type of CS31 bus
slave with error (e.g. 5 for
analog input/output)

Faulty channel Ch See existing documentation of
CS31 bus slave

Error code Err See existing documentation of
CS31 bus slave

A CS31 bus slave error is indicated by an error LED on the CS31 bus slave. The error LED
remains on even after elimination of the error and is switched off only after the error has been
acknowledged by the CS31 bus master.
The acknowledgment of a CS31 bus slave error can take place via the CS31 bus master by
means of the function block CS31QU_EXT (see AC500 documentation).

Replacement devices: CPU
For AC31 devices of the 90 series, AC31 adapters (replacement devices) are available for the
exchange of the CPU.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3890

Replacement device 07KT9x-AD
Introduction

Fig. 749: 3ADR331183S0015

The replacement device versions 07KT9x-AD of the AC31 adapter series replace the existing
devices 07KT94 and 07KT98 of the AC31 devices of the 90 series.
Versions:

● 07KT94-ARC-AD: I/O module DA501, I/O module DA502, CPU EC581 *)
● 07KT98-ARC-AD: I/O module DA501, I/O module DA502, CPU PM590-ARC
● 07KT98-ARC-DP-AD: I/O module DA501, I/O module DA502, CPU PM590-ARC
● 07KT98-ARC-ETH-AD: I/O module DA501, I/O module DA502, CPU PM590-ARC-ETH
● 07KT98-ETH-DP-AD: I/O module DA501, I/O module DA502, CPU PM590-ETH
● 07KT98-ARC-ETH-DP-AD: I/O module DA501, I/O module DA502, PM590-ARC-ETH
During the development of the replacement devices, care was taken to keep the device configu-
ration identical to the configuration of the existing device. Thus, the existing documentation of
device 07KT98 remains valid and serves as reference (system description Advant Controller
31). The document structure of this document is based on the document structure of the existing
documentation.
*) Customer specific product not for standard use
This document adds the following points to the still valid existing documentation:
● Unavoidable device deviations, e.g. due to technical limitations.
● Expansion of documentation as a result of normative requirements.
● Additional contents not described in the existing documentation.
Further information on replacement devices 07KT9x-AD can be found in the operating and
assembly instructions of device 07KT9x-AD: 3ADR020082M0401.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3891

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Please observe the system data for CS31 bus Ä Chapter 1.6.2.3.3.3 “System data and CS31
bus system data” on page 3876.
For general information on the CPU, please refer to the AC500 documentation Ä Chapter 1.7
“Diagnosis and debugging for AC500 V2 products” on page 6365.

In addition to the CPU, the replacement devices 07KT9x-AD are based on
the modules DA501 and DA502 of the AC500 series. All I/O channels are
protected against reverse polarity, reverse supply, short circuit and continuous
overvoltages up to 30 V DC. For further information on these modules, please
refer to the AC500 documentation.

The description of the protective functions, error indications and diagnosis
options contained in the existing documentation are no longer valid. Please
refer to the AC500 documentation (DA501-/ DA502 modules and CPU) con-
cerning this information.

Central unit 07KT98
Short description

The central unit 07KT9x-AD acts as
● bus master in the decentralized automation system.

Slave operation is not possible.
● Advant Controller 31 or as stand-alone central unit.

● 16 digital inputs with LED display.
Caution! Galvanic isolation/potential reference has changed.

● 16 digital outputs with LED display.
Caution! Galvanic isolation/potential reference has changed.

● 16 digital inputs/outputs with LED display.
Caution! Galvanic isolation/potential reference has changed.

● 8 individually configurable analog inputs. Available modes Ä Chapter 1.6.2.3.3.4.1.3.1.7
“Connection of the 8 configurable analog inputs” on page 3905.
Caution! Galvanic isolation/potential reference has changed.

● 4 individually configurable analog outputs.
Caution! Galvanic isolation/potential reference has changed.

● 2 counters for counting frequencies up to 50 kHz, configurable in 10 different modes.
Caution! Each counting input requires an external resistor of 470 Ω / 1 W that is
connected upstream. The potential reference has changed.

● 1 serial interface COM2
– Modbus RTU, master and slave
– An online access (RS-232 programming interface for PC/Automation Builder)
– A free protocol (communication via the blocks COM_SEND and COM_REC)

● 1 serial diagnosis interface DIAG
Caution! No galvanic isolation to supply voltage L+/M.

● LED LCD display to indicate operating conditions and error messages
● Fastening by screws or snapping onto top-hat rail
● Lithium battery TA521
● Various operating buttons for user input
● Comprehensive diagnosis functions
● Integrated Flash EPROM, RAM and memory for storing programs and data
● Exchangeable memory card

Main features

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3892

Software Automation Builder (see AC500 documentation):
● 07KT98-ARC-AD
● 07KT98-ARC-DP-AD
● 07KT98-ARC-ETH-AD
● 07KT98-ETH-DP-AD
● 07KT98-ARC-ETH-DP-AD

Software 907PC331
● 07KT94-ARC-AD

Functionality
Table 288: Existing device vs. replacement device
Designation Existing device:

07KT98
Replacement device:
07KT9x-AD

Note

User program 1 MB CPU PM590: 2 MB
storage, memory card
slot

-

User data 1 MB + 256 kB
RETAIN + 128 kB
(Flash EPROM)

CPU PM590: 2 MB
storage, memory card
slot

-

Digital inputs 24 in 3 groups (8
each), galvanically
isolated

16 in 2 groups (8
each). Caution: Poten-
tial reference/galvanic
isolation

Potential refer-
ence/galvanic isola-
tion has changed *).

Digital outputs 16 transistor outputs
in 2 groups (8 each),
galvanically isolated

16 in 2 groups (8
each). Caution: Poten-
tial reference/galvanic
isolation

Potential refer-
ence/galvanic isola-
tion has changed *).

Digital inputs/outputs 8 in 1 group, galvani-
cally isolated

16 in 2 groups (8
each). Caution: Poten-
tial reference/galvanic
isolation

Potential refer-
ence/galvanic isola-
tion has changed *).

Analog inputs 8 in 1 group, indi-
vidually configurable
to 0 ... 10 V, 0 ...
5 V, ±10 V, ±5 V,
0 ... 20 mA, 4 ... 20
mA, Pt100 (2-wire
or 3-wire), differential
inputs, digital inputs

8 in 1 group, individu-
ally configurable 0..10
V, ±10 V, 0..20 mA,
4 ... 20 mA, Pt100/
PT1000/ Ni1000 (2-
wire or 3-wire), differ-
ential inputs, digital
inputs

Potential reference
has changed *). Some
wiring adjustments
are required in part.
5 V measuring ranges
can be shown with 10
V measuring range.

Analog inputs (can
also be configured as
digital inputs)

Yes Yes Caution: AGND refer-
ence to ZP no longer
M

Analog outputs 4 in 1 group, individu-
ally configurable to ±
10 V, 0 ... 20 mA, 4 ...
20 mA

4 in 1 group, individu-
ally configurable to ±
10 V, 0 ... 20 mA, 4 ...
20 mA

Caution: AGND ref-
erence to ZP no
longer M *). Some
wiring adjustments
are required in part.

Planning/ com-
missioning

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3893

Designation Existing device:
07KT98

Replacement device:
07KT9x-AD

Note

Serial Interfaces COM1, COM2 as
Modbus interfaces, for
programming and test
functions as well as
freely programmable
interfaces

COM2 (programming
function, test function,
free protocol)
DIAG (diagnosis inter-
face)

The serial COM1
interface of 07KT9x
is no longer avail-
able. The serial diag-
nosis interface DIAG
has a reduced range
of functions and is
not galvanically iso-
lated from the supply
voltage L+/M.

Parallel interface For connection
to communication
module

For connection
to communication
module

Additional information
upon request.

System bus interface CS31 CS31 Caution: Terminal
"Shield" is internally
connected to FE
(functional earth).

High-speed counter Integrated, many func-
tions configurable

Integrated, many con-
figurable operating
modes

At the counting input,
an external resistor
of 470 Ω / 1 W
must always be con-
nected upstream. For
further information
on high-speed coun-
ters, please refer to
the AC500 documen-
tation.

Real-time clock Integrated Integrated -

Memory card SmartMedia Card:
Storage medium for
operating system,
user program and
user data

Memory card: for the
backup of user data,
storage of the user
program and update
of the internal CPU
firmware

-

Display LEDs For signal states,
operating conditions
and error messages

Indication on LEDs
and LCD display

-

Supply voltage 24V 24V -

Data buffering With lithium battery 07
LE 90

With lithium battery
TA521

-

Programming soft-
ware

907 AC 1131 as of
V 4.1 (07KT98 with
ARCNET interface)
907 AC 1131 as of
V 4.3 (07KT98 with
PROFIBUS DP inter-
face)

Automation Builder as
of V1.2

-

Processing time Processing time: 65%
bit, 35% word, for 1
kB program, typ. 0.07
ms

Cycle time for
1 instruction (CPU
PM590).
Binary: min. 0.002 µs,
word: min. 0.004 µs,
floating point: min.
0.004 µs

-

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3894

*) Ä Chapter 1.6.2.3.3.4.1.3.1 “Connections” on page 3897

Table 289: Comparison: Replacement device versions
07KT94-
ARC-AD

07KT98-
ARC-AD

07KT98-
ARC-DP-
AD

07KT98-
ARC-ETH-
AD

07KT98-
ETH-DP-
AD

07KT98-
ARC-ETH-
DP-AD

ARCNET x x x x - x

PROFIBUS - - x - x x

Ethernet - - - x x x

CS31 x x x x x x

Parallel
interface for
connection
to commu-
nication
module

- x x x x x

Cycle time
for 1
instruction

CPU
EC581: n.a.

*) *) *) *) *)

*) CPU PM590: -> Binary: min. 0.002 µs, -> word: min. 0.004 µs, -> floating point: min. 0.004 µs

To get an overview of the the available versions for 07 KT 98 central units, please refer to
previous chapter Ä Table 289 “Comparison: Replacement device versions” on page 3895.

The 07KT9x-AD systems use memory cards of the type "SD Memory Card MC502".

Available ver-
sions

Suitable Smart-
Media cards

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3895

Device configuration

1 Hole for screw mounting (screw diameter 4 mm, extension torque 1.2 Nm)
2 Digital inputs/outputs for DA502
3 Digital inputs for DA501
4 Digital inputs for DA501
5 Analog inputs for DA501/DA502
6 CS31 bus Interface
7 Status LEDs for DA501/DA502
8 DIAG: Serial interface (diagnosis)
9 COM2: Serial interface (thread UNC 4-40)
10 Analog outputs for DA501/DA502. ±10 V, 0 ... 20 mA, 4 ... 20 mA in one group
11 Digital inputs/outputs for DA501
12 Digital outputs for DA502
13 Digital outputs for DA502
14 Supply voltage connection 24 V DC (CPU and communication module)
15 Ground connection (FE). Connection for 6.3 mm Faston.
16 Ethernet: Network interface (function depends on device version)
17 Interface for ARCNET (BNC)
18 External network interface
19 TA525: Label
20 8 operating buttons
21 Memory card
22 Battery compartment for lithium battery TA521
23 3 system LEDs
24 5 status LEDs (only for PROFIBUS)
25 Connection for PROFIBUS (optional) (function depends on device version)

For information on the available I/O modules DA501 and DA502, please refer to the AC500
documentation. The CPU module used (here: PM590) depends on the model version.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3896

Connections

Fig. 750: Terminal assignment 07KT9x-AD

DIAG No galvanic isolation (M)
COM2 Galvanically isolated
CS31 bus Galvanically isolated
Ethernet Galvanically isolated
ARCNET Galvanically isolated
DA501/DA502 Galvanically isolated
Further information on grounding: Ä Chapter 1.6.2.3.3.3.1.7 “Grounding” on page 3879.

Application example for connecting the inputs and outputs
Please observe the following information: Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus
system data” on page 3876

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3897

Connection of the supply voltage

Fig. 751: Connection of the supply voltage

Table 290: Connector (X6)
Connector / Terminal Pin Assignment / Signal
X6 / L+ 40 Supply voltage +24 V DC

X6 / L+ 41 Supply voltage +24 V DC

X6 / M 42 Ground connection (0 V)

X6 / M 43 Ground connection (0 V)

X6 / functional earth 44 The functional earth (FE) is
connected to the Faston ter-
minal inside the device.
Ensure that no ground loops
are created and that FE and
Faston are connected to the
same ground potential.

NOTICE!
– In addition to connecting the supply voltage (L+/M) to X6, the supply voltage

(UP/ZP) must be connected to all connectors.
– ZP must be connected to all connectors (X1, X2, X3, X7, X8, X9).
– UP must be connected to all connectors (X7, X8, X9).
– L+/M and UP/ZP must always be supplied with voltage.

Connection for CS31 bus

Table 291: Connector (X5)
Connector / Terminal Pin Assignment / Signal
X5 / shield 37 Shield (functional earth)

X5 / B2 38 BUS2

X5 / B1 39 BUS1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3898

Terminal "Shield" is internally connected to FE. The previous grounding meas-
ures, e.g. with clip at the switchgear cabinet, are still required. Ä Chapter
1.6.2.3.3.3 “System data and CS31 bus system data” on page 3876

If 07KT9x-AD is connected to one of the bus ends, a 120 Ω resistor must be connected for bus
termination. The device 07KT9x-AD always functions as master. Slave operation is not possible.
Further information on CS31 bus: Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus system
data” on page 3876

Connection of digital inputs
See Ä Chapter 1.6.2.3.3.4.1.3.1 “Connections” on page 3897 .

Table 292: Connector X2
Connector / Terminal Pin Assignment / Signal
X2 / ZP 10 ZP

X2 / 5.0 11 DA501 / DI0

X2 / 5.1 12 DA501 / DI1

X2 / 5.2 13 DA501 / DI2

X2 / 5.3 14 DA501 / DI3

X2 / 5.4 15 DA501 / DI4

X2 / 5.5 16 DA501 / DI5

X2 / 5.6 17 DA501 / DI6

X2 / 5.7 18 DA501 / DI7

Table 293: Connector (X3)
Connector / Terminal Pin Assignment / Signal
X3 / ZP 19 ZP

X3 / 6.0 20 DA501 / DI8

X3 / 6.1 21 DA501 / DI9

X3 / 6.2 22 DA501 / DI10

X3 / 6.3 23 DA501 / DI11

X3 / 6.4 24 DA501 / DI12

X3 / 6.5 25 DA501 / DI13

X3 / 6.6 26 DA501 / DI14

X3 / 6.7 27 DA501 / DI15

In contrast to the existing device 07KT98, the function of the digital inputs is only possible if
voltage UP is connected.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3899

Fig. 752: Arrangement of the 16 digital inputs

The digital input states are always indicated by the LEDs DI0-DI15:

Fig. 753: DA501 LED status indication

Characteristics of the digital inputs:
● All 16 inputs have the same potential ZP as all other inputs/outputs. The galvanic isolation

included in the existing devices is no longer available.
● Input delay (0->1 or 1->0): Typically 0.1 ms, configurable from 0.1 to 32 ms.

The signal coupling of the input signals is no longer realized via optocoupler.
All channels of the DA501 and DA502 modules have reference to ZP. The
AGND1/AGND2 of the analog channels are internally connected to ZP via PTC
resistors. For information on terminal assignment, refer to figure Fig. 750).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3900

Fig. 754: Circuit arrangement of DA501 module

Connection of the digital outputs
See Ä Chapter 1.6.2.3.3.4.1.3.1 “Connections” on page 3897.

Table 294: Connector (X7)
Connector / Terminal Pin Assignment / Signal
X7 / ZP 45 ZP

X7 / 1.0 46 DA502 / DO0

X7 / 1.1 47 DA502 / DO1

X7 / 1.2 48 DA502 / DO2

X7 / 1.3 49 DA502 / DO3

X7 / 1.4 50 DA502 / DO4

X7 / 1.5 51 DA502 / DO5

X7 / 1.6 52 DA502 / DO6

X7 / 1.7 53 DA502 / DO7

X7 / UP 54 UP

Table 295: Connector (X8)
Connector / Terminal Pin Assignment / Signal
X8 / ZP 55 ZP

X8 / 2.0 56 DA502 / DO8

X8 / 2.1 57 DA502 / DO9

X8 / 2.2 58 DA502 / DO10

X8 / 2.3 59 DA502 / DO11

X8 / 2.4 60 DA502 / DO12

X8 / 2.5 61 DA502 / DO13

X8 / 2.6 62 DA502 / DO14

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3901

Connector / Terminal Pin Assignment / Signal
X8 / 2.7 63 DA502 / DO15

X8 / UP 64 UP

Fig. 755: Arrangement of digital outputs

Characteristics of the digital outputs
● The digital output states are always indicated by the LEDs DO0-DO15 on DA501 module.
● All 16 outputs have the same potential ZP as all other inputs/outputs. The galvanic isolation

included in the existing devices is no longer available.
● Diagnosis: Stored errors are indicated via an LED and can be accessed by the CPU (see

AC500 documentation).

Circuit arrangement of digital outputs
● Fig. 755
● Ä Further information on page 3904

Connection of the digital inputs/outputs

Table 296: Connector (X1)
Connector / Terminal Pin Assignment / Signal
X1 / ZP 1 ZP

X1 / 4.0 2 DA502 / DC16

X1 / 4.1 3 DA502 / DC17

X1 / 4.2 4 DA502 / DC18

X1 / 4.3 5 DA502 / DC19

X1 / 4.4 6 DA502 / DC20

X1 / 4.5 7 DA502 / DC21

X1 / 4.6 8 DA502 / DC22

X1 / 4.7 9 DA502 / DC23

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3902

Table 297: Connector (X9)
Connector / Terminal Pin Assignment / Signal
X9 / ZP 65 ZP

X9 / 8.0 66 DA501 / DC16

X9 / 8.1 67 DA501 / DC17

X9 / 8.2 68 DA501 / DC18

X9 / 8.3 69 DA501 / DC19

X9 / 8.4 70 DA501 / DC20

X9 / 8.5 71 DA501 / DC21

X9 / 8.6 72 DA501 / DC22

X9 / 8.7 73 DA501 / DC23

X9 / UP 74 UP

The arrangement of the 16 digital inputs/outputs is shown below:

Fig. 756: Digital inputs/outputs

1) Module assignment
2) Terminal number
3) Terminal

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3903

Characteristics of the digital inputs/outputs
● The digital input/output states are always indicated via the LEDs DC16 - DC23 on DA501 or

DA502.
● All 16 inputs/outputs have the same potential ZP as all other inputs/outputs. The galvanic

isolation included in the existing devices is no longer available.
● Diagnosis: Stored errors are indicated via an LED and can be accessed by the CPU (see

AC500 documentation).
● The inputs/outputs can be configured as input and as output. The outputs can also be read

back.
● Input delay (0->1 or 1->0): Typically 0.1 ms, configurable from 0.1 ms to 32 ms.
● The total current consumption of all 16 DC channels must not exceed 4 A.
● The total current consumption of all 16 DO and 16 DC channels must not exceed 12 A.

The following shows a diagram of the circuitry of a digital input/output with varistors for demag-
netization when switching off inductive loads:

Fig. 757: Circuit arrangement

1 Digital input/output
2 For demagnetization when switching off inductive loads

Data Value
Input signal voltage 24 V DC

0 signal -3 V ... +5 V

Undefined signal state > +5 V ... < +15 V

1 signal +15 V ... +30 V

The technical input data contained in the existing documentation are no longer
valid.

The varistor protection circuit has changed. The varistors for demagnetization are no longer
located between UP and the respective channel, but rather between ZP and the respective
channel. It is no longer possible to connect the voltage supply UP to connector X5 and thus use
the input voltage range from -30 V to 30 V. At the inputs, only voltages from -3 V to +30 V may
be applied. UP must always be connected to all connectors (X7, X8, X9).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3904

Connection of the 8 configurable analog inputs

Table 298: Connector (X4)
Connector / Terminal Pin Assignment / Signal
X4 / AG.1 28 AGND1

X4 / 3.0 29 DA502 / AI0+

X4 / 3.1 30 DA502 / AI1+

X4 / 3.2 31 DA502 / AI2+

X4 / 3.3 32 DA502 / AI3+

X4 / 7.0 33 DA501 / AI0+

X4 / 7.1 34 DA501 / AI1+

X4 / 7.2 35 DA501 / AI2+

X4 / 7.3 36 DA501 / AI3+

To be able to use the analog inputs, UP must be connected. L+/M and UP/ZP must always be
supplied with voltage.

To be able to use the analog inputs, UP must be connected. L+/M and UP/ZP must always be
supplied with voltage.
The analog channels offer self-protective functions and diagnosis options in the following situa-
tions:
● Above range of analog value (input)
● Above range of analog value (output)
● Below range of analog value (input)
● Below range of analog value (output)
● Wire breakage
● Short circuit
For further information on behavior and indication of these errors, please refer to the AC500
documentation. The arrangement of the 8 analog inputs is shown below on X4.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3905

Fig. 758: Arrangement of the analog inputs

Reference to earth ZP: connect ZP to several connectors. In the example, ZP is
connected to connector X3.

Characteristics of the analog inputs:
● The 8 analog inputs are not galvanically isolated. The internal PTC connection is connected

to earth ZP (existing device: earth M). Depending on sensor type or measuring principle,
this may result in wiring adjustments.

● Resolution:
– Range 0 ... 10 V: 12 bit
– Range -10 ... +10 V: 12 bit + sign
– Range 0 ... 20 mA: 12 bit
– Range 4 ... 20 mA: 12 bit
– Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Connection examples for analog transmitters are shown below.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3906

Fig. 759: 07KT98_Measuring_Ranges ± 10 V / 0 ... 10 V

Due to the internal galvanic isolation of the sensor voltage supply, no change to the wiring is
necessary.

UP must be connected to connectors X7, X8 and X9. The internal voltage
supply to the ADC channels is no longer provided by L+ but by UP in the
modules DA501 and DA502.

Measuring
ranges

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3907

Fig. 760: Voltage input with externally supplied 3-wire voltage sensors

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3908

Fig. 761: Connection of current sensors 4 ... 20 mA to the analog inputs

If the analog current sensors 4 ... 20 mA are supplied from a separate power
supply unit, the 0 V/GND connection of the power supply unit must be con-
nected to the ZP connection of the 07KT9x-AD.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies a current in excess of 25 mA for more
than 1 second during initialization, this input is switched off by the module (input
protection).
Use only sensors with fast initialization or sensors without current peaks higher
than 25 mA. If this is not possible, protect the input by connecting a 10-volt
zener diode in parallel to I+ and I-.

Measuring
ranges (passive
two pole sen-
sors)

Protective func-
tions

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3909

For further information on protective function, error indication and diagnosis, please refer to the
AC500 documentation.

Fig. 762: Connection of current sensors 0 ... 20 mA to the analog inputs

Please note that in the example the 0 V supply (ZP) must be used as reference potential.
For further information on protective functions, error indication and diagnosis, please refer to the
AC500 documentation.

Differential inputs are very useful when applying analog sensors with non-isolated installation at
the site (e.g. if the minus terminal is grounded on site). The measurement via differential inputs
considerably improves the measuring accuracy and prevents ground loops.
When configuring differential inputs, always two adjacent analog channels belong together (e.g.
the channels 3.0 and 3.1). In this case, both channels are configured according to the desired
operating mode. The channel with the lower channel number must be the one with the even
number (e.g. channel 3.0).
The converted analog value is available at the odd channel (e.g. channel 3.1) and can be
determined by means of the Automation Builder. The analog value is calculated by subtracting
the input values: input value at the channel with the higher channel number minus input value
on channel with lower channel number.

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too much potential difference
with respect to ZP (max. ± 1 V within the full signal range).

– Ensure that the potential difference never exceeds ± 1 V.
– No change to the wiring is necessary. The connection of the sensor corre-

sponds to the one of the existing device 07KT98.

For further information on protective function, error indication and diagnosis, please refer to the
AC500 documentation.

Measuring
range (active
sensors with
external supply)

Measuring
ranges ± 10 V /
0 ... 10 V as dif-
ferential inputs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3910

Table 299: Figure range
Range Assigned figure range
-50 C ... 400°C -500 ... +4000

-50 C ... 70°C -500 ... +700

The following measuring ranges can be configured:

Table 300: Measuring ranges
Pt100 -50 °C ... +400 °C 2-wire configuration, 1

channel used

Pt100 -50 °C ... +70 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, 1
channel used

Measuring values above range, below range and wire breaks are monitored and indicated.
For further information on protective function, error indication and diagnosis, please refer to the
AC500 documentation.

Table 301: Figure range
Range Assigned figure range
-50 C ... 400°C -500 ... +4000

-50 C ... 70°C -500 ... +700

The following measuring ranges can be configured:

Table 302: Measuring ranges
Pt100 -50 °C ... +400 °C 3-wire configuration, 2 chan-

nels used

Pt100 -50 °C ... +70 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, 2 chan-
nels used

Measuring
range with
Pt100 2-wire

Measuring
range with
Pt100 3-wire

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3911

Fig. 763: Connection of Pt100 temperature sensors in 3-wire configuration

In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
Measuring values above range, below range and wire breaks are monitored and indicated.
For further information on protective function, error indication and diagnosis, please refer to the
AC500 documentation.

Data Value
Input signal voltage
● Signal 0
● Undefined signal state
● Signal 1

24 V DC
● -30 V ... +5 V
● +5 V ... +13 V
● +13 V ... +30 V

Input resistance approx. 3.5 kΩ

Conversion cycle 1 ms (for 4 inputs + 2 outputs)
1 s when measuring with resistance thermom-
eter Pt/Ni

ZP serves as reference signal for the inputs.

Use of analog
inputs as digital
inputs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3912

Fig. 764: Use of analog inputs as digital inputs

Connection of the 4 configurable analog outputs

Connector / Terminal Pin Assignment / Signal
X10 / AG.2 75 AGND2

X10 / 3.5 76 DA502 / AO0+

X10 / 3.6 77 DA502 / AO1+

X10 / 7.5 78 DA501 / AO0+

X10 / 7.6 79 DA501 / AO1+

UP must be connected to connectors X7, X8 and X9. The internal voltage
supply to the ADC channels is no longer provided by L+ but by UP in the
modules DA501 and DA502.

The arrangement of the 4 analog outputs is shown below:

Fig. 765: Arrangement of the analog outputs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3913

Resolution: 12 bit (+ sign)
The 4 analog outputs are not galvanically isolated and have a reference to ZP internally via PTC
resistors.

No change to the wiring is necessary. The sensor is connected the same way as with the
existing device 07KT98. Output load capability of voltage output: max. ±10 mA.

Fig. 766: Connection of output loads (voltage and current) to analog outputs

Battery and battery replacement
The AC31 adapters use another battery (lithium battery TA521).
For further information, please refer to the AC500 documentation.

Serial interface COM1
The serial interface COM1 is no longer available.
Programming can be performed via the serial interface COM2.

The serial interface DIAG is used for diagnosis and configuration. The DIAG interface is not
galvanically isolated and thus only intended for connection with the Automation Builder.
In the CPU or Automation Builder, the DIAG interface is accessed via the neutral FBP interface.
Consequently, the information of the DIAG interface appears on the CPU display under the
neutral FBP interface.

Connector / Pin Assignment / Signal
DIAG / 1 Not connected

DIAG / 2 TX

DIAG / 3 M

DIAG / 4 RX

DIAG / 5 FE

Output areas
±10 V / 0 ... 20
mA / 4 ... 20 mA

Serial interface
DIAG

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3914

Serial interface COM2

Connector / Pin Assignment / Signal
COM2 / 1 FE

COM2 / 2 TX

COM2 / 3 RX

COM2 / 4 RTS

COM2 / 5 CTS

COM2 / 6 Not connected

COM2 / 7 Signal Ground

COM2 / 8 Signal Ground

COM2 / 9 +5 V

The assignment of the serial interface COM2 has not changed.

 PIN Signal Description
G Housing FE

1 FE FE (shield)

2 TxD Transmit data (output)

3 RxD Receive data (input)

4 RTS Request to send
(output)

5 CTS Clear to send (input)

6 NC -

7 SGND Signal ground
(SGND)

8 0 V out -

9 +5 V out Reserved

Network interface
The existing device 07KT9x-AD has a parallel interface for connection to the communication
module. Additional information upon request.

SmartMedia Card 07 MC 90
The content of this chapter is invalid. Another memory card is used in the CPU (Memory card
MC502).
For further information on the memory card, please refer to the AC500 documentation.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3915

High-speed counter
DA502
The standard fast counter input in 07KT9x-AD devices is located on connector X1 terminal
X1/4.0/4.1 (DA502 /DC16/DC17). When using the counter inputs (X1/ 4.0/4.1), an external
resistor 470 Ω / 1 W must be connected upstream. There are 10 operating modes available.
The fast counter output is located on connector X1 terminal X1/4.2 (DA502 /DC18).
See also connection of the digital inputs/outputs Ä Table 296 “Connector (X1)” on page 3902,
Technical Data, Ä Table 303 “Data of the high-speed hardware counter installed (DA502)”
on page 3926 and connection, Ä Table 303 “Data of the high-speed hardware counter installed
(DA502)” on page 3926 .
DA501
From configuration point of view that is not forbidden to use also the fast counter coming
from DA501 connector X9 terminal X9/8.0/8.1/8.2 (DA501 /DC16/DC17/DC18). When using the
counter inputs (X9/ 8.0/8.1), an external resistor 470 Ω / 1 W must be connected upstream.
There are 10 operating modes available. The fast counter output is located on connector X9
terminal X9/8.2 (DA501 /DC18).
See also connection of the digital inputs/outputs Ä Table 296 “Connector (X1)” on page 3902,
Technical Data, Ä Table 304 “Data of the high-speed hardware counter installed (DA501)”
on page 3926 and connection, Ä Table 304 “Data of the high-speed hardware counter installed
(DA501)” on page 3926.
For further information on high-speed counters, please refer to the AC500 documentation.
See Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498 and Ä Chapter 1.6.4.4.2.2 “Operating
modes” on page 5716.

Technical data 07KT9x-AD
The technical data described in the existing documentation (chapter 2.2.7) are invalid for the
AC31 adapter and are replaced by the following data.
Further information: Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus system data”
on page 3876

General data

Data Value
Number of digital inputs 16

Number of digital outputs 16

Number of digital inputs/outputs 16

Number of analog inputs 8

Number of analog outputs 4

Supply voltages:

-> UP -> X7 / UP (pin 54), X7 / ZP (pin 45)
-> X8 / UP (pin 64), X8 / ZP (pin 55)
-> X9 / UP (pin 74), X9 / ZP (pin 65)
See Fig. 750

-> Fuse for UP 16 A

-> Power consumption for UP 300 W (per 100W on X7, X8 and X9)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3916

Data Value
-> L+ X6 / L+ (pin 40), X6 / L+ (pin 41)

X6 / M (pin 42), X6 / M (pin 43)
See Fig. 750

-> Fuse for L+ 10 A

-> Power consumption for L+ 10 A

-> Galvanic isolation between UP and L+ Yes

Number of serial interfaces 1 COM2 (for diagnosis and programming with
the Automation Builder software)

Number of serial interfaces (diagnosis) 1 DIAG (for diagnosis with the Automation
Builder software)

Number of parallel interfaces 1 special interface for connection of an
external communication module

Ethernet 10/100 base-TX, 1x RJ45 socket

Program memory PM590 2MB

Resolution of the integrated real-time clock 1 s

Data of the high-speed hardware counter installed:

-> Number of operating modes -> 10

-> Counting range -> 0 ... 4,294,967,295 (double word format, 32
bit)

-> Counting frequency -> Depending on operating mode
Note: At the counting input, an external
resistor of 470 Ω / 1 W must always be con-
nected upstream.

Cycle time for 1 instruction Binary: min. 0.002 µs, word: min. 0.004 µs,
floating point: min. 0.004 µs

Operating and error indications Display via LEDs and CPU display. For
detailed information, please refer to the
AC500 documentation.

Connection technology Detachable screw-type terminal blocks

Supply terminals, CS31 bus max. 1 x 2.5 mm² or max. 2 x 1.5 mm²

All other terminals max. 1 x 1.5 mm²

For further information, please refer to the existing documentation System
description Advant Controller 31.

Supply of devices

Data Value
Rated supply voltage 24 V DC

Supply voltages:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3917

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
-> UP X7 / UP (pin 54), X7 / ZP (pin 45)

X8 / UP (pin 64), X8 / ZP (pin 55)
X9 / UP (pin 74), X9 / ZP (pin 65)
See Fig. 750

-> Fuse for UP 10 A

-> Power consumption for UP 300 W (per 100W on X7, X8 and X9)

-> L+ X6 / L+ (pin 40), X6 / L+ (pin 41)
X6 / M (pin 42), X6 / M (pin 43)
See Fig. 750

-> Fuse for L+ 10 A

-> Power consumption for L+ 10 A

-> Protection against reversed voltage Yes

-> Galvanic isolation between UP and L+ Yes

For further information, please refer to the existing documentation System
description Advant Controller 31.

Lithium battery

Data Value
Battery for buffering RAM contents and real-
time clock

Lithium battery TA521

Buffer time at 25 °C Typ. 3 years

Digital inputs

Data Value
Number of channels per device 16

Connections Connector X2 (terminals X5.0…X5.7)
Connector X3 (terminals X6.0…X6.7)

Division of channels in groups 2 groups with 8 channels (not galvanically iso-
lated!)

Voltage supply UP (supplies module DA501 and 502)

Common reference potential:

-> for group 1 (8 channels) ZP (terminals 5.0 ... 5.07)

-> for group 2 (8 channels) ZP (terminals 6.0 ... 6.07)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3918

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
Galvanic isolation: ● Galvanic isolation from group to group is

no longer available.
● Galvanic isolation from DA501 and DA502

(reference ZP) to the rest of the device
(reference M) is available.

● On DA501 and DA502, all channels have
the same potential ZP. Voltage supply
UP/ZP.

● AGND1 and AGND2 of the analog chan-
nels are internally connected to ZP via
PTC resistors Fig. 750.

Configurability of the inputs Input delay configurable (0.1 ms, 1 ms, 8 ms
and 32 ms). Default: 0.1 ms.

Channels for high-speed counters Ä Chapter 1.6.2.3.3.4.1.3.4.6 “Digital inputs/
outputs” on page 3920

Channels for high-speed counters are imple-
mented with the inputs/outputs (channels: 4.0
and 4.1).

Indication of the input signals One yellow LED each per channel. The LED
corresponds functionally to the input signal.

Input signal voltage: 24 V DC

-> 0 signal -3 V…+5 V

-> Undefined signal state +5 V ... + 15 V

-> 1 signal +15 V ... + 30 V

Input current per channel:

-> Input voltage = +24 V Typ. 5.0 mA

-> Input voltage = + 5 V > 1 mA

-> Input voltage = +13 V > 2 mA

-> Input voltage = +30 V < 8.0 mA

Max. cable length unshielded 600 m

Max. cable length shielded 1000 m

For further information, please refer to the existing documentation System
description Advant Controller 31.

Digital outputs

Data Value
Number of channels per device 16 high-side switches

Connections Connector X7 (terminals 1.0 ... 1.7)
Connector X8 (terminals 2.0 ... 2.7)

Division of channels in groups 2 groups with 8 channels (not galvanically iso-
lated!)

Common voltage supply UP (supplies module DA501 and 502)

Common reference potential ZP:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3919

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
-> for group 1 ZP (terminals 1.0 ... 1.7)

-> for group 2 ZP (terminals 2.0 ... 2.7)

Galvanic isolation ● Galvanic isolation from group to group is
no longer available.

● Galvanic isolation from DA501 and DA502
(reference ZP) to the rest of the device
(reference M).

● On DA501 and DA502, all channels have
the same potential ZP. Voltage supply
UP/ZP.

● AGND1 and AGND2 of the analog chan-
nels are internally connected to ZP via
PTC resistors Fig. 750.

Indication of the output signals One yellow LED each per channel. The LED
corresponds functionally to the output signal.

Output current:

-> Rated value 500 mA at UP = 24 V

-> Residual current at 0 signal < 0.5 mA

Demagnetization with inductive load Internally via varistor

Switching frequency with inductive load max. 0.5 Hz

Switching frequency with lamp load max. 11 Hz at max. 5 W

Max. cable length 1000 m (shielded)
600 m (unshielded)

Short-circuit proof / overload proof Yes

Protection against reversed voltage of process
supply voltage

Yes

Resistance to feedback against 24 V signals Yes

Total load current (all DO channels, 1.0...1.7
max. 4A and 2.0…2.7)

max. 4 A

Total load current (all DC channels, 4.0..4.7
max. 8A and 8.0…8.7)

max. 8 A

Total load current (via UP) 16 DO channels
and 16 DC channels

max. 12 A (all UP terminals must be con-
nected)

For further information, please refer to the existing documentation System
description Advant Controller 31.

Digital inputs/outputs

Data Value
Number of channels per device 16 inputs/outputs

Connections Connector X1 (terminals 4.0 ... 4.7)
Connector X9 (terminals 8.0 ... 8.7)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3920

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
Division of channels in groups 2 groups of 8 channels each

Group 1: terminals 4.0 ... 4.7
Group 2: terminals 8.0 ... 8.7

Common reference potential ZP All digital I/O channels of the DA501 and
DA502 module

Common voltage supply UP (supplies DA501 and DA502 module)

Galvanic isolation Galvanic isolation from group to group is no
longer available.
Galvanic isolation from DA501 and DA502
(reference ZP) to the rest of the device (refer-
ence M).
On DA501 and DA502, all digital channels
have the same potential ZP.
AGND1 and AGND2 of the analog channels
are internally connected to ZP via PTC resis-
tors.
Fig. 750

Configurability of the inputs:

-> Input delay Typically 0.1 ms, configurable from 0.1 ms to
32 ms

Indication of the input/output signals 1 yellow LED per channel. The LED is ON in
"High" signal state (1 signal)

Input signal voltage (when used as input) Ä Further information on page 3904.

-> 0 signal -3 V ... + 5 V

-> 1 signal +15 V ... + 30 V

Input current per channel Ä Chapter 1.6.2.3.3.4.1.3.4.4 “Digital inputs”
on page 3918.

Output current / switching frequency / induc-
tive loads

Ä Chapter 1.6.2.3.3.4.1.3.4.5 “Digital outputs”
on page 3919.

Total load current (all DC channels, 4.0..4.7
max. 8A and 8.0…8.7)

max. 8 A

Total load current (all DO channels, 1.0...1.7
max. 4A and 2.0…2.7)

max. 4 A

Total load current (via UP) 16 DO channels
and 16 DC channels

max. 12 A (all UP terminals must be con-
nected)

Max. cable length Ä Chapter 1.6.2.3.3.4.1.3.4.4 “Digital inputs”
on page 3918

Ä Chapter 1.6.2.3.3.4.1.3.4.5 “Digital outputs”
on page 3919

For further information, please refer to the existing documentation System
description Advant Controller 31.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3921

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Analog inputs

Data Value
Number of channels per device 8

Connections Connector X4 (terminals 3.0 … 3.3 and 7.0…
7.3)

Division of channels in groups 1 group with 8 channels (evenly distributed
among the modules DA501 and DA502 inter-
nally)

Common reference potential for analog inputs
(8 channels)

AGND1 (terminals 3.0 … 3.3 and 7.0…7.3)
Caution: internal reference to ZP via PTC
resistors
Fig. 750

Galvanic isolation No Fig. 750

Max. permissible potential difference between
terminal ZP (minus the supply voltage) and
terminals AGND (minus the analog inputs and
outputs)

± 1 V

Caution: The internal reference is no longer M
but ZP.
Ä Chapter 1.6.2.3.3.4.1.3.1 “Connections”
on page 3897

Indication of the input signals 8 yellow LEDs to indicate the signal statuses
of the analog inputs (4 LEDs per DA501
module and DA502 module)

Configurability (optional per channel)
Ä Chapter 1.6.2.3.3.4.1.3.1.2 “Connection of
the supply voltage” on page 3898

0 ... 10 V, ± 10 V (also with differential signal),
0 ... 20 mA, 4 ... 20 mA
Pt100 -50 ... +400 °C and -50 ... +70°C
Pt1000 -50…+400 °C (2-wire and 3-wire con-
figuration)
Digital input

Input resistance per channel:

-> Voltage input > 100 kΩ

-> Current input approx. 330 kΩ

-> Digital input approx. 3.5 kΩ

Time constant of the input filter Voltage: 100 µs, current: 100 µs

Conversion cycle 1 ms (for 4 inputs and 2 outputs)
1 s when measuring with resistance thermom-
eter Pt/Ni

The "Examples for the conversion cycle" from the existing documentation
07KT98 are no longer valid.

Data Value
Resolution in bits:

-> Ranges ±10 V, 0 ... 10 V 12 bit plus sign

-> Ranges 0 ... 20 mA, 4 ... 20 mA 12 bit without sign

-> Range Pt100, Pt1000, Ni1000: 0.1 °C

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3922

Data Value
Resolution in mV, μA:

-> Range ±10 V approx. 2.5 mV

-> Range 0 ... 10 V approx. 2.5 mV

-> Range 0 ... 20 mA approx. 5 μA

-> Range 4 ... 20 mA approx. 4 μA

Relationship between input signal and hex
code

-100 % ... 0 ... +100 % = 9400H ... 0000H ...
6C00H (-27648 ... 0 ... 27648 decimal)

Conversion error of the analog values due to
non-linearity.
Adjustment error on delivery and resolution in
the nominal range

Typ. 0.5 %, max. 1 %

Use as digital input:

-> Signal 0 -30 V ... +5 V

-> Undefined signal state +5 V ... +13 V

-> Signal 1 +13 V ... +30 V

Max. cable length
2-core shielded and conductor cross section >
0.14 mm²

100 m

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies a current in excess of 25 mA for more
than 1 second during initialization, this input is switched off by the module (input
protection).
Use only sensors with fast initialization or sensors without current peaks higher
than 25 mA. If this is not possible, protect the input by connecting a 10-volt
zener diode in parallel to I+ and I-.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Analog outputs

Data Value
Number of channels per device 4

Connections Connector X10 (terminals 3.5, 3.6, 7.5 and
7.6)

Reference potential AGND2 (terminals 3.5, 3.6, 7.5 and 7.6)

Galvanic isolation No
Fig. 750

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3923

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
Max. permissible potential difference between
terminal ZP (minus the supply voltage) and
terminals AGND (minus the analog inputs and
outputs)

± 1 V

Caution: The internal reference is no longer M
but ZP.
Fig. 750

Indication of output signal 4 yellow LEDs to indicate the signal statuses
of the analog outputs (2 LEDs each at DA501
and DA502)

Output signal ranges (configurable) -10 V ... 0, 0 ... +10 V
0 ... 20 mA
4 ... 20 mA

Output load capability of voltage output max. ±10 mA

Resolution 12 bit (+ sign)

Resolution (1 LSB), range 10 V ... 0, 0 ... +10
V

approx. 5 mV

Relationship between output signal and hex
code

-100 % ... 0 ... +100 % = 9400H ... 0000H ...
6C00H
(-27648 ... 0 ... 27648 decimal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs)
1 s when measuring with resistance thermom-
eter Pt/Ni

Conversion error of the analog values due to
non-linearity
Adjustment error on delivery and resolution in
the nominal range

Typ. 0.5 %, max. 1 %

Max. cable length, 2-core shielded and con-
ductor cross section > 0.14 mm²

100 m

For further information, please refer to the existing documentation System
description Advant Controller 31.

Connection of the serial interfaces COM2
The COM1 interface is no longer available. The assignment of the COM2 interface remains the
same as in the existing device. Programming in Automation Builder can be performed via the
COM2 interface.

Data Value
Interface standard EIA RS-232

Programming 07KT94-ARC-AD: 907 PC 331
07KT98-ARC-AD: Automation Builder

Program change 07KT94-ARC-AD: 907 PC 331
07KT98-ARC-AD: Automation Builder

Man-Machine Communication Yes, e.g. via Automation Builder

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3924

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
Galvanic isolation Fig. 750

Potential differences In order to avoid potential differences between
the replacement device 07KT98-AD and the
peripheral devices connected to COM2, these
devices are supplied by the socket in the
switchgear cabinet.

Terminal assignment and description of the
COM2 interface

Ä Chapter 1.6.2.3.3.4.1.3.1.11 “Serial inter-
face COM2” on page 3915

For further information, please refer to the existing documentation System
description Advant Controller 31.

Data Value
Programming 07KT94-ARC-AD: 907 PC 331

07KT98x-AD: Automation Builder

Program change 07KT94-ARC-AD: 907 PC 331
07KT98x-AD: Automation Builder

Galvanic isolation No
Fig. 750

Connection to the CS31 bus
When configuring the CS31 bus interface (connector X5), select the COM1 interface of CPU
PM590 in Automation Builder.
The shield connection must be internally connected to FE.

Data Value
Interface standard EIA RS-485

Connection:

-> as master PLC Yes

-> as slave PLC No

Setting of the CS31 bus module address No, the master has no module address

Galvanic isolation Yes
Fig. 750

Terminal assignment and description of the
CS31 bus interface

Ä Chapter 1.6.2.3.3.4.1.3.1.3 “Connection for
CS31 bus” on page 3898

Note that the shield connection is internally
connected to FE.

Serial interface
DIAG

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3925

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

LED display

Data Value
LEDs for signaling:

-> State of digital inputs 1 yellow LED per channel

-> State of digital outputs 1 yellow LED per channel

-> State of digital inputs/outputs 1 yellow LED per channel

-> Supply voltage available (Supply) 1 green LED

-> Battery 1 red LED (name: ERR) at the CPU

-> Program is running (RUN) 1 green LED

-> Controller-specific errors 1 red LED (name: ERR) at the CPU

-> CS31 bus Indication on CPU display under COM1 (CS31
bus is assigned to COM1 within the CPU)

-> Overload / short circuit of digital outputs Red LEDs on modules DA501/ DA502 and at
the CPU via ERR-LED. An indication on the
display is possible.

High-speed hardware counter

At the counting input, an external resistor of 470 Ω / 1 W must always be
connected upstream. For further information on high-speed counters, please
refer to the AC500 documentation.

Table 303: Data of the high-speed hardware counter installed (DA502)
Data Value
Number of operating modes 10

Counting range 0 ... 4,294,967,295 (double word format, 32 bit)

Counting frequency Depending on operating mode

Used inputs Connector X1, terminals 4.0 and 4.1

Used outputs Connector X1, terminal 4.2

Table 304: Data of the high-speed hardware counter installed (DA501)
Data Value
Number of operating modes 10

Counting range 0 ... 4,294,967,295 (double word format, 32 bit)

Counting frequency Depending on operating mode

Used inputs Connector X9, terminals 8.0 and 8.1

Used outputs Connector X9, terminal 8.2

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3926

Mechanical data

Data Value
Width x height x depth Replacement device: 239.5 x 138 x approx.

80.9 mm
Existing device: 240 x 140 x 85 mm

Weight Replacement device 07KT94-ARCNET: 910 g
Replacement device 07KT98-ARCNET: 945 g
Existing device: 1.6 kg

Dimensions for mounting See operating and assembly instructions of
the replacement device (3ADR020082M0401)

Ordering data

Order No. Scope of delivery
1SAP 801 000 R0061 CPU: 07KT94-ARC-AD

1SAP 801 400 R0060 CPU: 07KT98-ARC-AD

1SAP 801 100 R0062 CPU: 07KT98-ARC-DP-AD

1SAP 801 200 R0067 CPU: 07KT98-ARC-ETH-AD

1SAP 801 300 R0072 CPU: 07KT98-ETH-DP-AD

1SAP 801 500 R0062 CPU: 07KT98-ARC-ETH-DP-AD

ARCNET communication module
Central units with integrated ARCNET communication module (Attached Resource Computer
Network):
● 07KT94-ARC-AD
● 07KT98-ARC-AD
● 07KT98-ARC-DP-AD
● 07KT98-ARC-ETH-AD
● 07KT98-ARC-ETH-DP-AD

Technical data
In the replacement device, addresses cannot be set via DIP switch. Instead, the ARCNET
interface is configured in the Automation Builder. The ARCNET address can also optionally be
set via the display.

Data Value
Connector ARC (BNC connector)

ARCNET interface For coaxial cable connection

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3927

Data Value
Recommended system cable Cable RG 62 A/U (characteristic impedance

93 Ω)
Cable length 300 m in case of ARCNET bus
with 8 stations. For further information, please
refer to the AC500 documentation (chapter
ARCNET).

Signaling Indication on CPU display

Galvanic isolation Yes
Fig. 750

ARCNET short description
The ARCNET interface is configured in the Automation Builder. For further information on the
ARCNET interface for the respective CPU, please refer to the AC500 documentation.

ARCNET system
The general information about the ARCNET system is still valid. For further information on
ARCNET, please refer to the AC500 documentation.

PROFIBUS DP communication module
Central units with an integrated PROFIBUS communication module:
● 07KT98-ARC-DP-AD
● 07KT98-ETH-DP-AD
● 07KT98-ARC-ETH-DP-AD

Technical data

Data Value
Connector 9 pin D-sub socket

PROFIBUS interface EIA RS-485 according to EN 50170

Recommended system cable Dual twisted, shielded pair cable (character-
istic impedance 135 to 165 Ω)
Max. line length 1000 m with a transmission
rate of 187.5 Kbps For further information,
please refer to the AC500 documentation
(chapter PROFIBUS).

Signaling With 5 LEDs

Galvanic isolation Yes
Fig. 750

PROFIBUS short description
The PROFIBUS interface is configured in the Automation Builder. For further information on the
PROFIBUS interface for the respective CPU used, please refer to theAC500 documentation.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3928

The PROFIBUS system
The general information about the PROFIBUS system is still valid. For further information on
PROFIBUS, please refer to the AC500 documentation.

 Pin Signal Description
1 NC Not connected

2 NC Not connected

3 RxD/TxD-P Receive/Transmit positive

4 CNTR-P Control signal for repeater, positive

5 DGND Reference potential for data exchange
and +5 V

6 VP +5 V (power supply for the bus termi-
nating resistors)

7 NC Not connected

8 RxD/TxD-N Receive/Transmit negative

9 NC Not connected

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ethernet communication module
Central units with an integrated Ethernet communication module:
● 07KT98-ARC-ETH-AD
● 07KT98-ETH-DP-AD
● 07KT98-ARC-ETH-DP-AD

Technical data

Data Value
Connector RJ45 socket

Ethernet interface 10/100 Base-TX

Recommended system cable For detailed information, please refer to the
AC500 documentation (Ethernet chapter).

Signaling Indication on the CPU display

Galvanic isolation Yes
Fig. 750

Ethernet short description
The Ethernet interface is configured in the Automation Builder. For further information on the
Ethernet interface for the respective CPU used, please refer to the AC500 documentation.

Pin Assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3929

Ethernet system
The general information about the Ethernet system is still valid. For further information on
Ethernet, please refer to the AC500 documentation.

 PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

6 RxD- Receive data -

7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

Replacement devices: I/O modules
For AC31 devices of the 90 series, AC31 adapters (replacement devices) are available for the
exchange of individual I/O modules.

Pin assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3930

Replacement device 07AC91-AD
Introduction

Fig. 767: 3ADR331193S0015_07AC91-AD

The replacement device 07AC91-AD of the AC31 adapter series replaces the existing device
07AC91 of the AC31/90 series in operating mode 8 bit. The replacement device 07AC91-AD2 is
available for operating mode 12 bit.
During the development of the replacement device, care was taken to keep the device configu-
ration identical to the configuration of the existing device. Thus, the existing documentation of
device 07AC91 remains valid and serves as reference (system description Advant Controller
31).
The document structure of this document is based on the document structure of the existing
documentation.
This document adds the following points to the still valid existing documentation:
● Unavoidable device deviations, e.g. due to technical limitations.
● Expansion of documentation as a result of normative requirements.
● Additional contents not described in the existing documentation.
Further information on replacement device 07DC91-AD can be found in the operating and
assembly instructions of device 07DC91-AD: 3ADR020084M0401. Please note that for the
existing device 07AI91 no separate operating and assembly instructions are available.
Please also observe the system data as well as the information on CS31 bus Ä Chapter
1.6.2.3.3.3 “System data and CS31 bus system data” on page 3876.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3931

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Device configuration

1 Connection for CS31 bus (X1)
2 Analog outputs (X2): 0 ... 10 V, 0 ... 20 mA
3 Analog outputs (X3): 0 ... 10 V
4 Hole for screw mounting (screw diameter 4 mm, extension torque 1.2 Nm)
5 DIP switch for CONFIG1
6 DIP switch for CONFIG2
7 Status LEDs for AO523
8 DIP switch for ADDR
9 Analog outputs (X7): 0 ... 10 V
10 Analog outputs (X6): 0 ... 10 V, 0 ... 20 mA
11 Enabling input for analog outputs (X5)
12 Supply 24 V DC (incl. AO523)
13 Ventilation
14 TA525: Label
15 4 Status LEDs

LED display
The LED display on the replacement device is changed:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3932

Fig. 768: AO523

No. Display of module
1 8 yellow LEDs to indicate the signal status of the analog inputs (X2 and X3)

2 8 yellow LEDs to indicate the signal status of the analog inputs (X6 and X7)

3 2 red LEDs to indicate errors (of AO523 module)

4 1 green LED to indicate the status of the supply voltage of the AO523 module (is
supplied via X4)

The replacement device does not provide a test button to measure functionality.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3933

Connections

Fig. 769: Connection

Please observe the information contained in the existing documentation. In
section "Fig. 5.4-2: Connection of the analog input/output module 07AC91", only
the information concerning operating mode 8 bit is relevant for the replacement
device 07AC91-AD.

Table 305: Pin assignment CS31 bus (X1)
Connector / Terminal Pin Assignment / Signal
X1 / Shield 1 No internal connection

X1 / B2 2 BUS 2

X1 / B1 3 BUS 1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3934

Table 306: Pin assignment AO (X2)
Connector / Terminal Pin Assignment / Signal
X2 / 2.0 4 AO523 / O0+

X2 / 1.0 5 AO523 / O0- (AGND)

X2 / 2.1 6 AO523 / O1+

X2 / 1.1 7 AO523 / O1- (AGND)

X2 / 2.2 8 AO523 / O2+

X2 / 1.2 9 AO523 / O2- (AGND)

X2 / 2.3 10 AO523 / O3+

X2 / 1.3 11 AO523 / O3- (AGND)

Table 307: Pin assignment AO (X3)
Connector / Terminal Pin Assignment / Signal
X3 / 2.4 12 AO523 / -

X3 / 1.4 13 AO523 / O4- (AGND)

X3 / 2.5 14 AO523 / -

X3 / 1.5 15 AO523 / O5- (AGND)

X3 / 2.6 16 AO523 / -

X3 / 1.6 17 AO523 / O6- (AGND)

X3 / 2.7 18 AO523 / -

X3 / 1.7 19 AO523 / O7- (AGND)

Table 308: Pin assignment 24 V DC 9W (X4)
Connector / Terminal Pin Assignment / Signal
X4 / L+ 20 L+

X4 / L+ 21 L+

X4 / M 22 M

X4 / M 23 M

X4 / FE 24 FE

Table 309: Pin assignment DI (X5)
Connector / Terminal Pin Assignment / Signal
X5 / + 25 IN+

X5 / - 26 IN- (galvanic isolated ground)

Table 310: Pin assignment AO (X6)
Connector / Terminal Pin Assignment / Signal
X6 / 4.0 27 AO523 / O8+

X6 / 3.0 28 AO523 / O8- (AGND)

X6 / 4.1 29 AO523 / O9+

X6 / 3.1 30 AO523 / O9- (AGND)

X6 / 4.2 31 AO523 / O10+

X6 / 3.2 32 AO523 / O10- (AGND)

X6 / 4.3 33 AO523 / O11+

X6 / 3.3 34 AO523 / O11- (AGND)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3935

Table 311: Pin assignment AO (X7)
Connector / Terminal Pin Assignment / Signal
X7 / 4.4 35 AO523 / O12+

X7 / 3.4 36 AO523 / O12- (AGND)

X7 / 4.5 37 AO523 / O13+

X7 / 3.5 38 AO523 / O13- (AGND)

X7 / 4.6 39 AO523 / O14+

X7 / 3.6 40 AO523 / O14- (AGND)

X7 / 4.7 41 AO523 / O15+

X7 / 3.7 42 AO523 / O15- (AGND)

The signals Ox- are internally linked to an AGND area. The potential AGND is connected to the
potential M via PTC resistors. Potential difference AGND to M ±1 V (max.).

Fig. 770: Voltage output

Fig. 771: Current output

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3936

Analog signal lines must be routed in shielded cables. The shield must be
grounded on both sides and should be grounded to replacement device and
signal source / signal sink as close as possible.

Configuration
The existing device had a DIP switch on the upper printed circuit board. Since the replacement
device is not equipped with an upper printed circuit board, the white DIP switch is arranged on
the lower printed circuit board instead.

Table 312: Example configuration for 07AC91-AD:
Config 1 All output channels on voltage.

Config 2 All output channels on voltage.

ADDR 8-bit mode, without range monitoring, CS31 address 0 and channel number £ 7.

Please observe the following:
● All channels must be configured as outputs.
● The position of the DIP switches are read by the device only once after the supply voltage

has been connected.

Configuration
areas with
(white) DIP
switches

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3937

Config 1 The DIP switches for the channels 1, 3, 5 and 7 must be set to ON (configu-
ration as outputs). A configuration as inputs is not permitted.
The DIP switches for the channels 2 and 4 can be set as desired. The
outputs 0..3 may be set to OFF (voltage) or ON (current).

The DIP switches for channels 6 and 8 must be set to OFF. The outputs
4..7 must be set to OFF (voltage). The setting to ON (current) is not
permitted.

Config 2 The DIP switches for the channels 1, 3, 5 and 7 must be set to ON (configu-
ration as outputs). A configuration as inputs is not permitted.
The DIP switch position for the channels 2 and 4 can be set as desired. The
outputs 8..11 may be set to OFF (voltage) or ON (current).

The DIP switches for the channels 6 and 8 must be set to OFF. The outputs
12..15 must be set to OFF (voltage). The setting to ON (current) is not
permitted.

ADDR The DIP switch for channel 1 must be set to ON (8-bit mode).

The DIP switch for channel 2 can be set as desired (no functionality).

The DIP switch for channel 3 can be set as desired for range monitoring.

The DIP switches for the channels 4-7 can be set as desired for the CS31
address.

The DIP switch for channel 8 must be set to OFF for CS31 channels £ 7.
Channels > 7 are not supported. The outputs on connector X3 and X7
cannot be configured as current outputs.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Measuring ranges of the analog channels
For the replacement device 07AC91-AD, only the operating mode "8 bit" is relevant.
The outputs of the S500 module AO523 have a 12 bit resolution. The values that are to be
transmitted via the CS31 bus bus and output by the replacement device have only a 8 bit
resolution. For this reason, the overall resolution achieved is only 8 bits.

Addressing

The function of the address DIP switch 8 (channel No. £ 7 or channel No. > 7) is
no longer supported.

In the following, the information in the "Type" column refers to the data type designation of the
Automation Builder (see AC31 system data Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus
system data” on page 3876). The information in the "Type" column must be interpreted from
the viewpoint of the CS31 bus master. The information in brackets must be interpreted from the
viewpoint of the replacement device (CS31 bus slave).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3938

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Table 313: CS31 bus
Type Byte Position in

WORD
Connector / Terminal

WORD output (received) 0 1 High X2 / 2.1

2 Low X2 / 2.0

WORD output (received) 1 3 High X2 / 2.3

4 Low X2 / 2.2

WORD output (received) 2 5 High X3 / 2.5

6 Low X3 / 2.4

WORD output (received) 3 7 High X3 / 2.7

8 Low X3 / 2.6

WORD output (received) 4 9 High X6 / 4.1

10 Low X6 / 4.0

WORD output (received) 5 11 High X6 / 4.3

12 Low X6 / 4.2

WORD output (received) 6 13 High X7 / 4.5

14 Low X7 / 4.4

WORD output (received) 7 15 High X7 / 4.7

16 Low X7 / 4.6

Behavior during normal operation
Interpretation of the LEDs:
● The device initializes automatically after the supply voltage is switched on. During this time,

the S-ERR LED flashes.
● The PWR LED lights up as soon as the internal supply voltage of the device is present.
● After successful initialization of the I/O bus communication to the S500 module, the I/O bus

LED lights up.
● After successful initialization of the CS31 bus communication, the CS31 bus LED lights up.

The S-ERR LED goes out.
● During operation, the yellow LEDs indicate the signal statuses of the channels.

The RAM is checked during the initialization of the device. In addition, the firmware in the Flash
memory is checked by means of a checksum during initialization. When the control system
(PLC/central unit) is stopped during normal operation, the outputs of the device are switched off.
The outputs are also switched off in case of a malfunction of the CS31 bus bus.

Diagnosis and display
LEDs are used for diagnosis and display purposes. In addition, some diagnosis information can
be transmitted via the CS31 bus.

The replacement device does not provide a test button to measure functionality.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3939

Table 314: Diagnosis information of the CS31 bus bus
Channel Error code

(CODESYS)
Error code (CS31
bus)

Description

Device error:

0 43 1 Internal error

The error codes that are transferred by the replacement device via the CS31
bus bus are newly displayed in CODESYS. Each error code of the CS31 bus
(table column 3) produces the error code in CODESYS (table column 2). As
a result, it is possible to operate the replacement device with a new control
system (PLC/control unit), e.g. 07KT98-ARC-AD, as well as with an old control
system (PLC/central unit), e.g. 07KT98.

Table 315: Device LEDs
LED Status Color LED off LED on LED flashes
PWR Voltage supply Gree

n
No internal supply
voltage

Internal supply
voltage

-

CS31
bus

CS31 bus com-
munication

Gree
n

No CS31 bus com-
munication

CS31 bus bus
communication

Only diagnosis, no
data transfer. Trans-
mission is disturbed.

S-ERR Error Red No error Static error
(must be con-
firmed by the
control system)

No CS31 bus con-
nection or activity

I/O bus I/O bus commu-
nication

Gree
n

No I/O bus commu-
nication

I/O bus com-
munication

Error I/O bus com-
munication

The S-ERR LED remains on even if the error no longer occurs. The error must be confirmed by
the control system (PLC/central unit), e.g. by means of a function block Ä Chapter 1.6.2.3.3.3
“System data and CS31 bus system data” on page 3876.
Special cases with rapidly flashing LEDs (approx. 5 Hz):
● All 4 LEDs flash rapidly: An incorrect S500 module is connected to the device. The device

fails to initialize.
● The LEDs of the CS31 bus, S-ERR bus and I/O bus flash rapidly: Invalid position of DIP

switches. The device fails to initialize.
● The LEDs of the S-ERR bus and I/O bus flash rapidly: A checksum error occurred in an

internal Flash memory.
● The LED of the I/O bus flashes rapidly: An error occurred in an internal RAM.

Table 316: S500 module AO523 LEDs
LED Status Color LED off LED on LED flashes
O0+…O7+
O8+…O15+
(see No. 1 + 2
in the fol-
lowing figure)

Analog out-
puts

Yellow Output is not
activated

Output is acti-
vated (bright-
ness depends
on value of
analog
signal).

-

Error indica-
tion left (see
No. 3 in the
following
figure)

Error indica-
tion

Red No error Internal error -

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3940

LED Status Color LED off LED on LED flashes
Error indica-
tion right (see
No. 3 in the
following
figure)

Error indica-
tion

Red No error Internal error -

Indication
supply voltage
(see No. 4 in
the following
figure)

Process
voltage

Green Process
voltage not
available

Process
voltage OK

-

Fig. 772: AO523

Technical data

This section provides additional information on section Ä Chapter 1.6.2.3.3.3 “System data and
CS31 bus system data” on page 3876. In case of doubt, the following information applies.

For the device 07AC91-AD, only the operating mode "8 bit" is relevant.

Technical data of the complete device

Data Value
Process voltage:

-> Connections X4/L+ (pin 20), X4/L+ (pin 21), X4/M (pin 22),
X4/M (pin 23)

-> Fuse for L+ 10 A, fast acting

- Galvanic isolation No

Current consumption:

-> via L+ 0.19 A + output load

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3941

Data Value
- Inrush current via L+ (when voltage is
switched on)

0.18 A²s

Power consumption Replacement device: 9 W
Existing device: 5 W

For further information, please refer to the existing documentation System
description Advant Controller 31.

CAUTION!
System damage caused by voltage!
Exceeding the maximum supply or process voltage (>30 V DC) results in per-
manent system damage (destruction).

Technical data of the binary input

Data Value
Input current at input voltage +24 V Typ. 6 mA

Protection against reversed voltage Yes

Overvoltage protection No

The enabling input is a proprietary input.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Technical data of the analog outputs

Data Value
Connections X2 / 2.0, X2 / 2.1, X2 / 2.2, X2 / 2.3, X3 / 2.4,

X3 / 2.5, X3 / 2.6, X3 / 2.7, X6 / 4.0, X6 / 4.1,
X6 / 4.2, X6 / 4.3, X7 / 4.4, X7 / 4.5, X7 / 4.6,
X7 / 4.7

Reference connections (AGND) X2 / 1.0, X2 / 1.1, X2 / 1.2, X2 / 1.3, X3 / 1.4,
X3 / 1.5, X3 / 1.6, X3 / 1.7, X6 / 3.0, X6 / 3.1,
X6 / 3.2, X6 / 3.3, X7 / 3.4, X7 / 3.5, X7 / 3.6,
X7 / 3.7

Type of outputs Voltage unipolar, current unipolar

Configurability No inputs are available
Replacement device: 8 current outputs
Existing device: 16 current outputs

Output load capability, as voltage output Replacement device: ± 10 mA

Existing device: +20 mA, -10 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3942

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
Short-circuit-proof Yes

External supply protection Up to 30 V DC

For further information, please refer to the existing documentation System
description Advant Controller 31.

Connection to the CS31 bus

Data Value
Connections X1/B2, X1/B1

CS31 bus type 03 (analog output)

Terminating resistor Not available (must be provided externally if
needed)

Mechanical data

Data Value
Width x height x depth Replacement device: 120 x 140 x approx. 80

mm
Existing device: 120 x 140 x 85 mm

Weight Replacement device: 363 g
Existing device: 450 g

Dimensions for mounting See assembly instructions 07AC91-AD
(3ADR020084M0401)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3943

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Mounting information

The dimensions are in mm and in brackets in inch.

The dimensions for the assembly holes are the same for the replacement
device and the existing device.

To assemble or disassemble the replacement device, grab the device at the housing and not
directly at the S500 module.

Ordering data

Order No. Scope of delivery
1SAP 800 000 R0010 Analog output module 07AC91-AD

1 2-pole terminal block (3.81 mm grid space)
1 3-pole terminal block (5.08 mm grid space)
1 5-pole terminal block (5.08 mm grid space)
4 8-pole terminal blocks (3.81 mm grid space)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3944

Replacement device 07AC91-AD2
Introduction

Fig. 773: 3ADR331194S0015_07AC91-AD2

The replacement device 07AC91-AD2 of the AC31 adapter series replaces the existing device
07AC91 of the AC31/90 series in operating mode 12 bit. The replacement device 07AC91-AD is
available for operating mode 8 bit.
During the development of the replacement device, care was taken to keep the device configu-
ration identical to the configuration of the existing device. Thus, the existing documentation of
device 07AC91 remains valid and serves as reference (system description Advant Controller
31). The document structure of this document is based on the document structure of the existing
documentation.
This document adds the following points to the still valid existing documentation:
● Unavoidable device deviations, e.g. due to technical limitations.
● Expansion of documentation as a result of normative requirements.
● Additional contents not described in the existing documentation.
Further information on replacement device 07AC91-AD2 can be found in the operating and
assembly instructions of device 07AC91-AD2: 3ADR020085M0401. Please note that for the
existing device 07AI91 no separate operating and assembly instructions are available.
Please also observe the system data as well as the information on CS31 bus Ä Chapter
1.6.2.3.3.3 “System data and CS31 bus system data” on page 3876.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3945

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Please observe the information contained in the existing documentation. In
section "Fig. 5.4-2: Connection of the analog input/output module 07AC91", only
the information concerning operating mode 12 bit is relevant for the replace-
ment device 07AC91-AD2.

Device configuration

1 Connection for CS31 bus (X1)
2 Analog inputs (X2): -10 V…+10 V, 0…20 mA
3 Analog inputs (X3): -10 V…+10 V, 0…20 mA
4 Hole for screw mounting (screw diameter 4 mm, extension torque 1.2 Nm)
5 DIP switch for CONFIG1
6 DIP switch for CONFIG2
7 Status LEDs for AX522
8 DIP switch for ADDR
9 Analog outputs (X7): -10 V…+10 V
10 Analog outputs (X6): -10 V…+10 V, 0…20 mA
11 Enabling input for analog outputs (X5)
12 Supply 24 V DC (incl. AX522)
13 Ventilation
14 TA525: Label
15 4 Status LEDs

LED display
The LED display on the replacement device is changed:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3946

Fig. 774: AX522

No. Display of module
1 8 yellow LEDs to indicate the signal status of the analog inputs (X2 and X3)

2 8 yellow LEDs to indicate the signal status of the analog inputs (X6 and X7)

3 2 red LEDs to indicate errors (of AX522 module)

4 1 green LED to indicate the status of the supply voltage of the AX522 module (is
supplied via X4)

The replacement device does not provide a test button to measure functionality.

Connections

Please observe the information contained in the existing documentation. In
section "Fig. 5.4-2: Connection of the analog input/output module 07AC91", only
the information concerning operating mode 12 bit is relevant for the replace-
ment device 07AC91-AD2.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3947

Fig. 775: Connection

Table 317: Pin assignment CS31 bus (X1)
Connector / Terminal Pin Assignment / Signal
X1 / Shield 1 No internal connection

X1 / B2 2 BUS 2

X1 / B1 3 BUS 1

Table 318: Pin assignment AI (X2)
Connector / Terminal Pin Assignment / Signal
X2 / 2.0 4 AX522 / I0+

X2 / 1.0 5 AX522 / I0- (AGND)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3948

Connector / Terminal Pin Assignment / Signal
X2 / 2.1 6 AX522 / I1+

X2 / 1.1 7 AX522 / I1- (AGND)

X2 / 2.2 8 AX522 / I2+

X2 / 1.2 9 AX522 / I2- (AGND)

X2 / 2.3 10 AX522 / I3+

X2 / 1.3 11 AX522 / I3- (AGND)

Table 319: Pin assignment AI (X3)
Connector / Terminal Pin Assignment / Signal
X3 / 2.4 12 AX522 / I4+

X3 / 1.4 13 AX522 / I4- (AGND)

X3 / 2.5 14 AX522 / I5+

X3 / 1.5 15 AX522 / I5- (AGND)

X3 / 2.6 16 AX522 / I6+

X3 / 1.6 17 AX522 / I6- (AGND)

X3 / 2.7 18 AX522 / I7+

X3 / 1.7 19 AX522 / I7- (AGND)

Table 320: Pin assignment 24 V DC 6W (X4)
Connector / Terminal Pin Assignment / Signal
X4 / L+ 20 L+

X4 / L+ 21 L+

X4 / M 22 M

X4 / M 23 M

X4 / FE 24 FE

Table 321: Pin assignment DI (X5)
Connector / Terminal Pin Assignment / Signal
X5 / + 25 IN+

X5 / - 26 IN- (galvanic isolated earth)

Table 322: Pin assignment AO (X6)
Connector / Terminal Pin Assignment / Signal
X6 / 4.0 27 AX522 / O0+

X6 / 3.0 28 AX522 / O0- (AGND)

X6 / 4.1 29 AX522 / O1+

X6 / 3.1 30 AX522 / O1- (AGND)

X6 / 4.2 31 AX522 / O2+

X6 / 3.2 32 AX522 / O2- (AGND)

X6 / 4.3 33 AX522 / O3+

X6 / 3.3 34 AX522 / O3- (AGND)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3949

Table 323: Pin assignment AO (X7)
Connector / Terminal Pin Assignment / Signal
X7 / 4.4 35 AX522 / O4+

X7 / 3.4 36 AX522 / O4- (AGND)

X7 / 4.5 37 AX522 / O5+

X7 / 3.5 38 AX522 / O5- (AGND)

X7 / 4.6 39 AX522 / O6+

X7 / 3.6 40 AX522 / O6- (AGND)

X7 / 4.7 41 AX522 / O7+

X7 / 3.7 42 AX522 / O7- (AGND)

The outputs on connector X7 cannot be configured as current outputs.

The signals Ix- and Ox- are internally linked to an AGND area. The potential AGND is con-
nected to the potential M via PTC resistors. Potential difference AGND to M ± 1 V maximal.

To enable wire-break detection, each input is internally pulled to "plus" by means of a high-impe-
dance resistor. As a result, the maximum voltage is read when nothing is connected. Do not
replace the AX522 module while voltage is connected.

Fig. 776: Voltage input

1) Galvanically isolated power supply of analog sensor

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3950

Fig. 777: Current input

1) Galvanically isolated power supply of analog sensor

Fig. 778: Voltage output

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3951

Fig. 779: Current output

Analog signal lines must be routed in shielded cables. The shield must be
grounded on both sides and should be grounded to replacement device and
signal source / signal sink as close as possible.

Configuration
The existing device had a DIP switch on the upper printed circuit board. Since the replacement
device is not equipped with an upper printed circuit board, the white DIP switch is arranged on
the lower printed circuit board instead.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3952

Table 324: Example configuration for 07AC91-AD2:
Config 1 All input channels set to ON (voltage).

Config 2 All output channels set to ON (voltage).

ADDR 12-bit mode, without range monitoring, CS31 address 0 and channel number £ 7.

Please observe the following:
● Unused voltage inputs must be configured as current inputs (due to wire-break detection

AX522 S500 module).
● The DIP switches are read by the device only once after the supply voltage has been

connected.

Config 1 The DIP switches for all 8 channels (inputs) may be set to ON (current) or
OFF (voltage).

Config 2 The DIP switches for the channels 1-4 (outputs 0..3) may be set to ON
(current) or OFF (voltage).

The DIP switches for the channels 5-8 (outputs 4..7) must be set to OFF
(voltage). The setting ON (current) is not permitted.

ADDR The DIP switch for channel 1 (operating mode) must be set to OFF (12-bit
mode).
The DIP switch for channel 2 can be set as desired (no functionality).

The DIP switch for channel 3 can be set as desired for range monitoring.

Configuration
areas with
(white) DIP
switches

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3953

The DIP switches for the channels 4-7 can be set as desired for the CS31
address.

The DIP switch for channel 8 must be set to OFF for CS31 channels £ 7.
Channels > 7 are not supported. The outputs on connector X7 cannot be
configured as current outputs.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Measuring ranges of the analog channels
For the replacement device 07AC91-AD2, only the operating mode "12 bit" is relevant.
Measuring range:
● Inputs: ± 10 V and 0..20 mA
● Outputs for X6 (AW1.0..AW1.3): ± 10 V and 0..20 mA
● Outputs for X7 (AW1.4..AW1.7): ± 10V

Addressing

The function of the address DIP switch 8 (channel No. £ 7 or channel No. > 7) is
no longer supported.

In the following, the information in the "Type" column refers to the data type designation of the
Automation Builder (see AC31 system data Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus
system data” on page 3876). The information in the "Type" column must be interpreted from
the viewpoint of the CS31 bus master. The information in brackets must be interpreted from the
viewpoint of the replacement device (CS31 bus slave).

When the measuring values are bipolar, it is advisable to use the data type "INT input/output"
instead of "WORD input/output".

Table 325: CS31 bus
Type Byte Connector / Terminal
WORD (send) 0 1 X2 / 2.0

2

WORD input (send) 1 3 X2 / 2.1

4

WORD input (send) 2 5 X2 / 2.2

6

WORD input (send) 3 7 X2 / 2.3

8

WORD input (send) 4 9 X3 / 2.4

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3954

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Type Byte Connector / Terminal
10

WORD input (send) 5 11 X3 / 2.5

12

WORD input (send) 6 13 X3 / 2.6

14

WORD input (send) 7 15 X3 / 2.7

16

WORD output (received) 8 17 X6 / 4.0

18

WORD output (received) 9 19 X6 / 4.1

20

WORD output (received) 10 21 X6 / 4.2

22

WORD output (received) 11 23 X6 / 4.3

24

WORD output (received) 12 25 X7 / 4.4

26

WORD output (received) 13 27 X7 / 4.5

28

WORD output (received) 14 29 X7 / 4.6

30

WORD output (received) 15 31 X7 / 4.7

32

Behavior during normal operation
Interpretation of the LEDs:
● The device initializes automatically after the supply voltage is switched on. During this time,

the S-ERR LED flashes.
● The PWR LED lights up as soon as the internal supply voltage of the device is present.
● After successful initialization of the I/O bus communication to the S500 module, the I/O bus

LED lights up.
● After successful initialization of the CS31 bus communication, the CS31 bus LED lights up.

The S-ERR LED goes out.
● During operation, the yellow LEDs indicate the signal statuses of the channels.

The RAM is checked during the initialization of the device. In addition, the firmware in the Flash
memory is checked by means of a checksum during initialization. When the control system
(PLC/central unit) is stopped during normal operation, the outputs of the device are switched off.
The inputs remain active. The outputs are also switched off in case of a malfunction of the CS31
bus.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3955

Diagnosis and display
LEDs are used for diagnosis and display purposes. In addition, some diagnosis information can
be transmitted via the CS31 bus.

The replacement device does not provide a test button to measure functionality.

Table 326: Diagnosis information of the CS31 bus
Channel Error code

(CODESYS)
Error code (CS31
bus)

Description

Device error:

0 43 1 Internal error

Channel error:

0 ... 7 49 10 Analog value is out of
measuring range (on
analog inputs)

The error codes that are transferred by the replacement device via the CS31
bus bus are newly displayed in CODESYS. Each error code of the CS31 bus
(table column 3) produces the error code in CODESYS (table column 2). As
a result, it is possible to operate the replacement device with a new control
system (PLC/control unit), e.g. 07KT98-ARC-AD, as well as with an old control
system (PLC/central unit), e.g. 07KT98.

An exceedance of the measuring range is signaled even if nothing is connected to an analog
voltage input.

Table 327: Device LEDs
LED Status Color LED off LED on LED flashes
PWR Voltage supply Gree

n
No internal supply
voltage

Internal supply
voltage

-

CS31
bus

CS31 bus com-
munication

Gree
n

No CS31 bus com-
munication

CS31 bus bus
communication

Only diagnosis, no
data transfer. Trans-
mission is disturbed.

S-ERR Error Red No error Static error
(must be con-
firmed by the
control system)

No CS31 bus con-
nection or activity

I/O bus I/O bus commu-
nication

Gree
n

No I/O bus commu-
nication

I/O bus com-
munication

Error I/O bus com-
munication

The S-ERR LED remains on even if the error no longer occurs. The error must be confirmed by
the control system (PLC/central unit), e.g. by means of a function block Ä Chapter 1.6.2.3.3.3
“System data and CS31 bus system data” on page 3876.
Special cases with rapidly flashing LEDs (approx. 5 Hz):
● All 4 LEDs flash rapidly: An incorrect S500 module is connected to the device. The device

fails to initialize.
● The LEDs of the CS31 bus, S-ERR bus and I/O bus flash rapidly: Invalid position of DIP

switches. The device fails to initialize.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3956

● The LEDs of the S-ERR bus and I/O bus flash rapidly: A checksum error occurred in an
internal Flash memory.

● The LED of the I/O bus flashes rapidly: An error occurred in an internal RAM.

Table 328: S500 module AX522 LEDs
LED Status Color LED off LED on LED flashes
I0+…I7+ (see
No. 1 in the
following
figure)

Analog inputs Yellow Input is not
activated

Input is acti-
vated (bright-
ness depends
on value of
analog
signal).

-

O0+…O7+
(see No. 2 in
the following
figure)

Analog out-
puts

Yellow Output is not
activated

Output is acti-
vated (bright-
ness depends
on value of
analog
signal).

-

Error indica-
tion left (see
No. 3 in the
following
figure)

Error indica-
tion

Red No error Internal error -

Error indica-
tion right (see
No. 3 in the
following
figure)

Error indica-
tion

Red No error Internal error -

Indication
supply voltage
(see No. 4 in
the following
figure)

Process
voltage

Green Process
voltage not
available

Process
voltage OK

-

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3957

Fig. 780: AX522

Technical data
This section provides additional information on section Ä Chapter 1.6.2.3.3.3 “System data and
CS31 bus system data” on page 3876. In case of doubt, the following information applies.

For the device 07AC91-AD2, only the operating mode 12 bit is relevant.

Technical data of the complete device

Data Value
Process voltage:

-> Connections X4/L+ (pin 20), X4/L+ (pin 21), X4/M (pin 22),
X4/M (pin 23)

-> Fuse for L+ 10 A, fast acting

- Galvanic isolation No

Current consumption:

-> via L+ 0.19 A + output load

- Inrush current via L+ (when voltage is
switched on)

0.16 A²s

Power consumption Replacement device: 6 W
Existing device: 5 W

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3958

For further information, please refer to the existing documentation System
description Advant Controller 31.

CAUTION!
System damage caused by voltage!
Exceeding the maximum supply or process voltage (>30 V DC) results in per-
manent system damage (destruction).

Technical data of the binary input

Data Value
Input current at input voltage +24 V Typ. 6 mA

Protection against reversed voltage Yes

Overvoltage protection No

The enabling input is a proprietary input.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Technical data of the analog inputs

Data Value
Connections X2 / 2.0, X2 / 2.1, X2 / 2.2, X2 / 2.3, X3 / 2.4,

X3 / 2.5, X3 / 2.6, X3 / 2.7

Reference connections (AGND) X2 / 1.0, X2 / 1.1, X2 / 1.2, X2 / 1.3, X3 / 1.4,
X3 / 1.5, X3 / 1.6, X3 / 1.7

Type of inputs Voltage bipolar, current unipolar

Time constant of the input filter Voltage
Replacement device: 100 µs
Existing device: 470 µs

Conversion cycle *) Replacement device: 2 ms (over 8 inputs + 8
outputs)
Existing device: 8 ms

Resolution: range ± 10 V Replacement device: 2.4 mV, 12 bit + sign
Existing device: 5 mV, 11 bit + sign

Protection against reversed voltage Yes

Overvoltage protection Up to 30 V DC

*) Conversion cycle of S500 module AX522. The transmission via serial buses is slower.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3959

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Unused voltage inputs must be configured as current inputs (due to wire-break
detection AX522 S500 module).

For further information, please refer to the existing documentation System
description Advant Controller 31.

Technical data of the analog outputs

Data Value
Connections X6 / 4.0, X6 / 4.1, X6 / 4.2, X6 / 4.3, X7 / 4.4,

X7 / 4.5, X7 / 4.6, X7 / 4.7

Reference connections (AGND) X6 / 3.0, X6 / 3.1, X6 / 3.2, X6 / 3.3, X7 / 3.4,
X7 / 3.5, X7 / 3.6, X7 / 3.7

Type of outputs Voltage bipolar, current unipolar

Configurability Replacement device: 4 current outputs avail-
able
Existing device: 8 current outputs available

Output load capability, as voltage output Replacement device: ± 10 mA

Existing device: +20 mA, -10 mA

Short-circuit-proof Yes

External supply protection Up to 30 V DC

For further information, please refer to the existing documentation System
description Advant Controller 31.

Connection to the CS31 bus

Data Value
Connections X1/B2, X1/B1

CS31 bus type 05 (analog input/output)

Termination resistor Not available (must be provided externally if
needed)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3960

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Mechanical data

Data Value
Width x height x depth Replacement device: 120 x 140 x approx. 80

mm
Existing device: 120 x 140 x 85 mm

Weight Replacement device: 362 g
Existing device: 450 g

Dimensions for mounting See assembly instructions 07AC91-AD2
(3ADR020085M0401)

Mounting information

The dimensions are in mm and in brackets in inch.

The dimensions for the assembly holes are the same for the replacement
device and the existing device.

To assemble or disassemble the replacement device, grab the device at the housing and not
directly at the S500 module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3961

Ordering data

Order No. Scope of delivery
1SAP 800 100 R0010 Analog input/output module 07AC91-AD2

1 2-pole terminal block (3.81 mm grid space)
1 3-pole terminal block (5.08 mm grid space)
1 5-pole terminal block (5.08 mm grid space)
4 8-pole terminal blocks (3.81 mm grid space)

Replacement device 07AI91-AD
Introduction

Fig. 781: 3ADR331191S0015_07AI91-AD

The replacement device 07AI91-AD from the AC31 adapter series replaces the existing device
07DC91 from the 90 series.
During the development of the replacement device, care was taken to keep the device configu-
ration identical to the configuration of the existing device. Thus, the existing documentation of
device 07AI91 remains valid and serves as a reference (system description Advant Controller
31). The document structure of this document is based on the document structure of the existing
documentation.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3962

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

This document adds the following points to the still valid existing documentation:
● Unavoidable device deviations, e.g. due to technical limitations.
● Expansion of documentation as a result of normative requirements.
● Additional contents not described in the existing documentation.
Further information on replacement device 07AI91-AD can be found in the operating and
assembly instructions of device 07AI91-AD: 3ADR020086M0401. Please note that for the
existing device 07AI91 no separate operating and assembly instructions are available.
Please also observe the system data as well as the information on CS31 bus Ä Chapter
1.6.2.3.3.3 “System data and CS31 bus system data” on page 3876.

Device configuration

1 Connection for CS31 bus (X1)
2 Analog inputs (X2). 2.5 AI (± 10 V differential, ± 5 V differential, temperature measurement

PT100 / PT1000, 4…20 mA and 0…20 mA with external resistor)
3 Analog inputs (X3). 1.5 AI (± 10 V differential, ± 5 V differential, temperature measurement

PT100 / PT1000, 4…20 mA and 0…20 mA with external resistor)
4 Hole for screw mounting (screw diameter 4 mm, extension torque 1.2 Nm)
5 DIP switch for CONFIG1
6 DIP switch for CONFIG2
7 Status LEDs for AI523
8 DIP switch for ADDR
9 Analog inputs (X6). 2.5 AI (± 10 V differential, ± 5 V differential, temperature measurement

PT100 / PT1000, 4…20 mA and 0…20 mA with external resistor)
10 Analog inputs (X5). 1.5 AI (± 10 V differential, ± 5 V differential, temperature measurement

PT100 / PT1000, 4…20 mA and 0…20 mA with external resistor)
11 Supply 24 V DC (incl. AI523)
12 Ventilation
13 TA525: Label
14 4 Status LEDs of complete device

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3963

In contrast to the existing device, the following measuring ranges are not avail-
able in the replacement device: ± 500 mV, ± 50 mV. Temperature measurement
with thermocouples is also not possible.

The replacement device does not perform a self-calibration.

LED display
The LED display on the replacement device is changed:

Fig. 782: Front view: 07AI91-AD

No. Display of module
1 8 yellow LEDs to indicate the signal status of the analog inputs (X2 and X3)

2 8 yellow LEDs to indicate the signal status of the analog inputs (X5 and X6)

3 2 red LEDs to indicate errors (of AI523 module)

4 1 green LED to indicated the status of the supply voltage of the AI523 module (is
supplied via X4)

The replacement device does not provide a test button to measure functionality.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3964

Connections

Fig. 783: Connection

1) Galvanic isolation
2) Switchgear cabinet grounding
Please observe the following information:
● The Shield connections of the CS31 bus and FE of the supply voltage have no connection

within the device.
● The process voltage must be included in the grounding concept of the control system (e.g.

grounding of the negative pole).
● The connections of all sensors must be galvanically isolated from the mounting environment

of the sensors. The cable shields of the temperature sensors are grounded to the switch-
gear cabinet at the entry into the cabinet. The setting of the module address as well as the
configuration of the analog channels are performed by means of DIP switches (see next
pages).

● Unused inputs must be configured as "not evaluated" (DIP switch).
● The current sources in AI523 are configurable and therefore not always active. The current

sources are connected alternately with the multiplex method. Consequently, the device does
not have 8 current sources.

● The module address and the analog channels are set with DIP switches.

Table 329: Pin assignment CS31 bus (X1)
Connector / Terminal Pin Assignment / Signal
X1 / Shield 1 No internal connection

X1 / B2 2 BUS 2

X1 / B1 3 BUS 1

Table 330: Pin assignment AI (X2)
Connector / Terminal Pin Assignment / Signal
X2 / 1.0 4 AI523 / I0- (AGND1)

X2 / 2.1 5 AI523 / I1+

X2 / 2.0 6 AI523 / I0+

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3965

Connector / Terminal Pin Assignment / Signal
X2 / 1.2 7 AI523 / I2- (AGND1)

X2 / 2.3 8 AI523 / I3+

X2 / 2.2 9 AI523 / I2+

X2 / 1.4 10 AI523 / I4- (AGND1)

X2 / 2.5 11 AI523 / I5+

X2 / 2.4 12 AI523 / I4+

Table 331: Pin assignment AI (X3)
Connector / Terminal Pin Assignment / Signal
X3 / 1.6 13 AI523 / I6- (AGND1)

X3 / 2.7 14 AI523 / I7+

X3 / 2.6 15 AI523 / I6+

X3 / NC 16 Not connected

X3 / NC 17 Not connected

In module AI523, the signals I0-, I2-, I4- and I6- are internally connected to an analog ground.
The potential difference of the analog ground to M is ±1 V (max.). The replacement device has
no current sources on pins 16 and 17. If necessary, these current sources can be connected to
individual measurement channels via the configuration (DIP switch).
Table 332: Pin assignment 24 V DC 6W (X4)
Connector / Terminal Pin Assignment / Signal
X4 / L+ 18 L+

X4 / L+ 19 L+

X4 / M 20 M

X4 / M 21 M

X4 / FE 22 FE

Table 333: Pin assignment AI (X5)
Connector / Terminal Pin Assignment / Signal
X5 / 3.0 23 AI523 / I8- (AGND2)

X5 / 4.1 24 AI523 / I9+

X5 / 4.0 25 AI523 / I8+

X5 / 3.2 26 AI523 / I10- (AGND2)

X5 / 4.3 27 AI523 / I11+

Table 334: Pin assignment AI (X6)
Connector / Terminal Pin Assignment / Signal
X6 / 4.2 28 AI523 / I10+

X6 / 3.4 29 AI523 / I12- (AGND2)

X6 / 4.5 30 AI523 / I13+

X6 / 4.4 31 AI523 / I12+

X6 / 3.6 32 AI523 / I14- (AGND2)

X6 / 4.7 33 AI523 / I15+

X6 / 4.6 34 AI523 / I14+

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3966

Connector / Terminal Pin Assignment / Signal
X6 / NC 35 Not connected

X6 / NC 36 Not connected

In module AI523, the signals I8-, I10-, I12- and I14- are internally connected to an analog
ground. The potential difference of the analog ground to M is ±1 V (max.). The replacement
device does not have current sources on pins 35 and 36. If necessary, these current sources
can be connected to individual measurement channels via the configuration (DIP switch).

CAUTION!
System damage caused by voltage!
The exchange of a replacement device under voltage can cause permanent
system damage (destruction).

Fig. 784: Differential voltage input

1) Galvanically isolated power supply of analog sensor
2) Grounding at sensor

±10 V or ±5 V at differential inputs

On the replacement devices, the wire-break detection is also active in case of a differential
voltage measurement. For this purpose, each measuring channel is internally pulled to "plus"
by means of a high-impedance resistor. As a result, the individual potentials of the differential
voltage measurement must also be referenced to M. Completely isolated voltages are not
symmetrized to M by the inputs.

The potential difference of the grounding at the sensor to M must not be too
big (max. ± 1 V for the whole signal range). Otherwise problems can occur
concerning the common-mode input voltages of the involved analog inputs.

Analog signal lines must be routed in shielded cables. The shield must be
grounded on both sides and should be grounded to replacement device and
signal source / signal sink as close as possible.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3967

Fig. 785: Current input with external resistor

Fig. 786: Resistance thermometer

1) Return conductor
2) Twisted wire pair in the cable
(*) 3-wire

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3968

For temperature measurements with PT100/PT1000 resistors, the wiring to the existing device
must be changed. A 4-wire temperature measurement is not possible with the replacement
device. Based on the above figure, a 3-wire temperature measurement can be implemented.

Configuration
The existing device had a DIP switch on the upper printed circuit board. Since the replacement
device is not equipped with an upper printed circuit board, the white DIP switch is arranged on
the lower printed circuit board instead.

Fig. 787: DIP switch for 07AI91-AD

The function of the address DIP switch 8 (channel No. £ 7 or channel No. > 7) is not supported
for the replacement device. This DIP switch must be switched off.
On address DIP switch 3 (assignment of analog value), only the CS31 bus format is supported
in the replacement device. This DIP switch must be switched on. The setting of the line fre-
quency suppression (address DIP switch 1 and 2) has no effect on the existing device 07AI91.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3969

The following settings of DIP switches CONFIG 1 and CONFIG 2 are not imple-
mented in the replacement device and must not be selected:

– ± 500 mV
– ± 50 mV
– J-type thermocouple with linearization
– K-type thermocouple with linearization
– S-type thermocouple with linearization

For further information, please refer to the existing documentation System
description Advant Controller 31.

Fig. 788: "Configuration pair" not used

1) Channel 0 and channel 1 are not used -> DIP switch "No evaluation of channels"

If both channels of a "configuration pair" are not used, set the DIP switches to
"No evaluation of channels".

The DIP switches are read by the device only once after the supply voltage has
been connected.

Measuring ranges of the input channels
All input signals are not evaluated as differential signals. Two input channels are used to
implement a differential measurement.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3970

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Fig. 789: Only one channel of a "configuration pair" is used

1) Galvanically isolated power supply of analog sensor
2) Grounding at sensor
3) Channel not used

± 10 V, ± 5 V at differential inputs

If only one channel of a "configuration pair" is used (e.g. channel 0 and 1),
then the other channel must be short-circuited during a voltage measurement.
Short-circuited in this context means that for instance the connections 1.2, 2.3
and 2.2 are connected. Otherwise the channel not used reports that the range
has been exceeded.

● Measuring ranges ± 10 V / ± 5 V / ± 500 mV and ± 50 mV no longer exist.
● Measuring ranges 4 ... 20 mA / 0 ... 20 mA not changed to existing documentation.

To measure the temperature by means of resistors, a constant current is supplied by the
replacement device. This imprint no longer occurs at terminals 16, 17, 35 and 36. Therefore the
wiring must be changed for the temperature measurement.
Further information:
● Fig. 783
● Fig. 786
● Figures 5.2-4 and 5.2-5 from the existing documentation of the 07AI91 are not valid for the

replacement device System description Advant Controller 31.
● Terminals 7, 10, 13, 26, 29 and 32 can no longer be used as connection bases. The

terminals are only used for the 3-wire temperature measurement System description Advant
Controller 31.

Wire-breakage
In case of a wire-breakage, the numerical value +32767 is output. This is fol-
lowed by an error message via the CS31 bus.

Measuring
ranges

Pt 100 / Pt 1000

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3971

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Channel use
If only one channel of a "configuration pair" is used (e.g. channel 0 and 1), then
the other channel must be connected with a resistor (e.g. 120 Ω Pt100 meas-
uring range, 1200 Ω Pt1000 measuring range). Otherwise an error message is
indicated.

NOTICE!
Temperature-dependent resistors
Other temperature-dependent resistors cannot be used for the replacement
device.

NOTICE!
Thermocouples type J, type K, type S
Thermocouples cannot be evaluated with the replacement device. The respec-
tive section in the existing documentation (incl. figure 5.2-6) is not valid for
device 07AI91.

Configuration for unused channels
See existing documentation 07AI91 System description Advant Controller 31.

Relationship between the measuring values and the location of the bits in
a 16 bit WORD
– The measuring ranges ± 500 mV and ± 50 mV no longer exist.
– Measuring range ±5 V:

– Replacement device: 11 bit resolution plus sign
– Existing device: 12 bit resolution plus sign

– All measuring ranges for thermocouples are no longer available.

Addressing
In the following, the information in the "Type" column refers to the data type designation of the
Automation Builder (see AC31 system data Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus
system data” on page 3876). The information in the "Type" column must be interpreted from
the viewpoint of the CS31 bus master. The information in brackets must be interpreted from the
viewpoint of the replacement device (CS31 bus slave).

The function of the address DIP switch 8 (channel No. £ 7 or channel No. > 7) is
no longer supported.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3972

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Table 335: CS31 bus
Type Byte Connector / Terminal
WORD input (send) 0 1 X2 / 2.1, X2 / 2.0

2

WORD input (send) 1 3 X2 / 2.3, X2 / 2.2

4

WORD input (send) 2 5 X2 / 2.5, X2 / 2.4

6

WORD input (send) 3 7 X3 / 2.7, X3 / 2.6

8

WORD input (send) 4 9 X5 / 4.1, X5 / 4.0

10

WORD input (send) 5 11 X5 / 4.3, X6 / 4.2

12

WORD input (send) 6 13 X6 / 4.5, X6 / 4.4

14

WORD input (send) 7 15 X6 / 4.7, X6 / 4.6

16

When the measuring values are bipolar, use data type "INT input" instead of
"WORD input".

Behavior during normal operation
Interpretation of the LEDs:
● The device initializes automatically after the supply voltage is switched on. During this time,

the S-ERR LED flashes.
● The PWR LED lights up as soon as the internal supply voltage of the device is present.
● After successful initialization of the I/O bus communication to the S500 module, the I/O bus

LED lights up.
● After successful initialization of the CS31 bus communication, the CS31 bus LED lights up.

The S-ERR LED goes out.
● During operation, the yellow LEDs indicate the signal statuses of the channels.

The RAM is checked during the initialization of the device. In addition, the firmware in the Flash
memory is checked by means of a checksum during initialization. When the control system
(PLC/central unit) is stopped during normal operation, the inputs remain active.

Diagnosis and display
LEDs are used for diagnosis and display purposes. In addition, some diagnosis information can
be transmitted via the CS31 bus.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3973

The replacement device does not provide a test button to measure functionality.

Table 336: Diagnosis information of the CS31 bus
Channel Error code

(CODESYS)
Error code (CS31
bus bus)

Description

Device error:

0 43 1 Internal error

Channel error:

0 ... 7 45 9 Cut wire (is also indi-
cated if the current in
measuring range 4 ...
20 mA is less than 2
mA)

0 ... 7 49 10 Analog value is out of
measuring range

The error codes that are transferred by the replacement device via the CS31
bus bus are newly displayed in CODESYS. Each error code of the CS31 bus
(table column 3) produces the error code in CODESYS (table column 2). As
a result, it is possible to operate the replacement device with a new control
system (PLC/control unit), e.g. 07KT98-ARC-AD, as well as with an old control
system (PLC/central unit), e.g. 07KT98.

An exceedance of the measuring range is signaled even if nothing is connected
to an analog voltage input.

Table 337: Device LEDs
LED Status Color LED off LED on LED flashes
PWR Voltage supply Gree

n
No internal supply
voltage

Internal supply
voltage

-

CS31
bus

CS31 bus com-
munication

Gree
n

No CS31 bus com-
munication

CS31 bus bus
communication

Only diagnosis, no
data transfer. Trans-
mission is disturbed.

S-ERR Error Red No error Static error
(must be con-
firmed by the
control system)

No CS31 bus con-
nection or activity

I/O bus I/O bus commu-
nication

Gree
n

No I/O bus commu-
nication

I/O bus com-
munication

Error I/O bus com-
munication

The S-ERR LED remains on even if the error no longer occurs. The error must be confirmed by
the control system (PLC/central unit), e.g. by means of a function block Ä Chapter 1.6.2.3.3.3
“System data and CS31 bus system data” on page 3876.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3974

Special cases with rapidly flashing LEDs (approx. 5 Hz):
● All 4 LEDs flash rapidly: An incorrect S500 module is connected to the device. The device

fails to initialize.
● The LEDs of the CS31 bus, S-ERR bus and I/O bus flash rapidly: Invalid position of DIP

switches. The device fails to initialize.
● The LEDs of the S-ERR bus and I/O bus flash rapidly: A checksum error occurred in an

internal Flash memory.
● The LED of the I/O bus flashes rapidly: An error occurred in an internal RAM.

Table 338: LEDs of the S500 module AI523
LED Status Color LED off LED on LED flashes
I1+, I3+, I5+,
I7+ (see No. 1
in the fol-
lowing figure)

Analog inputs Yellow Input is not
activated

Input is acti-
vated (bright-
ness depends
on value of
analog
signal).

-

I9+, I11+,
I13+, I15+
(see no. 2 in
the following
figure)

Analog inputs Yellow Input is not
activated

Input is acti-
vated (bright-
ness depends
on value of
analog
signal).

-

Error indica-
tion left (see
No. 3 in the
following
figure)

Error indica-
tion

Red No error Internal error Cut wire on a
channel of the
corresponding
group

Error indica-
tion right (see
No. 3 in the
following
figure)

Error indica-
tion

Red No error Internal error Cut wire on a
channel of the
corresponding
group

Indication
supply voltage
(see No. 4 in
the following
figure)

Process
voltage

Green Process
voltage not
available

Process
voltage OK

-

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3975

Fig. 790: 07AI91-AD_Front

Technical data
This section provides additional information on section Ä Chapter 1.6.2.3.3.3 “System data and
CS31 bus system data” on page 3876. In case of doubt, the following information applies.

Technical data of the complete device

Data Value
Process voltage:

-> Connections X4/L+ (pin 18), X4/L+ (pin 19), X4/M (pin 20),
X4/M (pin 21)

-> Fuse for L+ 10 A, fast acting

- Galvanic isolation No

Current consumption:

-> via L+ 0.19 A

- Inrush current via L+ (when voltage is
switched on)

0.22 A2s

Power consumption Replacement device: 6 W
Existing device: 3 W

Address setting and configuration DIP switch right side of housing

Max. line length of analog lines, line cross
section > 0.14 mm²

100 m

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3976

For further information, please refer to the existing documentation System
description Advant Controller 31.

CAUTION!
System damage caused by voltage!
Exceeding the maximum supply or process voltage (>30 V DC) results in per-
manent system damage (destruction).

Technical data of the analog inputs

Data Value
Connections [X2 / 2.1, X2 / 2.0], [X2 / 2.3, X2 / 2.2], [X2 /

2.5, X2 / 2.4], [X3 / 2.7, X3 / 2.6], [X5 / 4.1,
X5 / 4.0], [X5 / 4.3, X6 / 4.2], [X6 / 4.5, X6 /
4.4], [X6 / 4.7, X6 / 4.6]

Reference connections (AGND1) X2 / 1.0, X2 / 1.2, X2 / 1.4, X3 / 1.6

Reference connections (AGND2) X5 / 3.0, X5 / 3.2, X6 / 3.4, X6 / 3.6

Max. potential difference AGND1/2 <-> M ± 1 V

Type of inputs Voltage bipolar, current unipolar, temperature
measurement

Line frequency suppression Not available

Time constant of the input filter Replacement device: Voltage: 100 µs, current
100 µs
Existing device: no RC combination available

Conversion cycle Replacement device: 2 ms over 8 inputs, 1 s
during temperature measurement
Existing device: 30 ms to 150 ms, depending
on configuration

Protection against reversed voltage Yes

Overvoltage protection Up to 30 V DC

For further information, please refer to the existing documentation System
description Advant Controller 31.

Analog voltage input

Data Value
Input resistance Replacement device: > 100 kW

Existing device: > 1 MW

Measuring ranges nominal values Replacement device: ± 10 V, ± 5 V

Existing device: ± 10 V, ± 5 V, ± 500 mV, ± 50
mV

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3977

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
Resolution 12 bit + sign (measuring range ± 10 V)

11 bit + sign (measuring range ± 5 V)

Total error Replacement device: ± 1 % of full range value

Existing device: ± 0.5 % of full range value

Common mode input voltage range (e.g. X2 /
2.1, reference e.g. X2 / 1.0 (AGND1))

-10 V ... +10 V

For further information, please refer to the existing documentation System
description Advant Controller 31.

Current input 0 … 20 mA / 4 … 20 mA
Total error:
Replacement device: ±1 % of full range value ± tolerance of current-sensing resistor

Existing device: ±0.5 % of full range value + tolerance of current-sensing resistor

Pt100/Pt1000 input

Data Value
Measurement method Replacement device: 3-wire configuration

Existing device: 4-wire configuration. It is no
longer possible to connect sensors in series.

Evaluation errors in measuring range -50…
+400 °C

Replacement device: ± 1 % of full range value

Existing device: ± 0.5 % of full range value at
Pt100, ± 1 % of full range value at Pt1000

Current source for Pt100/Pt1000 resistors The replacement device has a constant cur-
rent source that is alternately connected to up
to 8 analog channels (depending on configu-
ration).

Unused input channels
See existing documentation 07AI91.

Connection of other temperature-dependent resistors
Other temperature-dependent resistors cannot be used in the replacement device.

Input with thermocouples
Thermocouples cannot be used in the replacement device. The existing documentation is no
longer valid.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3978

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Connection to the CS31 bus

Data Value
Connections X1 / B2, X1 / B1

CS31 bus type 01 (analog input)

Terminating resistor Not available (must be provided externally if
needed)

Mechanical data

Data Value
Width x height x depth Replacement device: 120 x 140 x approx. 80

mm
Existing device: 120 x 140 x 85 mm

Weight Replacement device: 384 g
Existing device: 450 g

Dimensions for mounting See operating and assembly instructions of
the replacement device (3ADR020086M0401)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3979

Mounting information

The dimensions are in mm and in brackets in inch.

The dimensions for the assembly holes are the same for the replacement
device and the existing device.

To assemble or disassemble the replacement device, grab the device at the housing and not
directly at the S500 module.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3980

Ordering data

Order No. Scope of delivery
1SAP 800 200 R0010 Analog input module 07AI91-AD

1 3-pole terminal block
3 5-pole terminal blocks
2 9-pole terminal blocks

Replacement device 07DC91-AD

Fig. 791: 3ADR331192S0015_07DC91-AD

The replacement device 07DC91-AD of the AC31 adapter series replaces the existing device
07DC91 of the 90 series.
During the development of the replacement device, care was taken to keep the device configu-
ration identical to the configuration of the existing device. Thus, the existing documentation of
device 07DC91 remains valid and serves as reference (system description Advant Controller
31). The document structure of this document is based on the document structure of the existing
documentation.
This document adds the following points to the still valid existing documentation:
● Unavoidable device deviations, e.g. due to technical limitations.
● Expansion of documentation as a result of normative requirements.
● Additional contents not described in the existing documentation.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3981

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Further information on replacement devices 07DC91-AD can be found in the operating and
assembly instructions of device 07DC91-AD: 3ADR020083M0401. Please note that for device
07DC91 no separate operating and assembly instructions are available.
Please also observe the system data as well as the information on CS31 bus Ä Chapter
1.6.2.3.3.3 “System data and CS31 bus system data” on page 3876.

Device configuration

1 Connection for CS31 bus (X1)
2 8 digital inputs 24 V DC (X2)
3 8 digital inputs 24 V DC (X3)
4 Hole for screw mounting (screw diameter 4 mm, extension torque 1.2 Nm)
5 Status LEDs for DC532
6 DIP switch for address setting (ADDR)
7 8 digital inputs/outputs 24 V DC / 0.5 A (X6)
8 8 digital outputs (X5)
9 Supply 24 V DC (X4)
10 Ventilation
11 TA525: Label
12 4 Status LEDs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3982

LED display

Fig. 792: Front view: DC532

No. Displays of module
1 8 yellow LEDs to indicate the signal status of the digital inputs (X2).

2 8 yellow LEDs to indicate the signal status of the digital inputs (X3).

3 8 yellow LEDs to indicate the signal status of the digital outputs (X5).

4 8 yellow LEDs to indicate the signal status of the digital inputs/outputs (X6).

5 4 red LEDs to indicate errors (of DC532 module).

6 1 green LED to indicated the status of the supply voltage of the DC532 module (is
supplied via X4).

The replacement device does not provide a test button to measure functionality.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3983

Connections

Fig. 793: Connection

Table 339: Pin assignment CS31 bus (X1)
Connector / Terminal Pin Assignment / Signal
X1 / Shield 1 No internal connection

X1 / B2 2 BUS 2

X1 / B1 3 BUS 1

The shield connection of the CS31 bus is not galvanically connected to the
functional earth of the supply voltage.

Table 340: Pin assignment DI (X2)
Connector / Terminal Pin Assignment / Signal
X2 / NC 4 No internal connection

X2 / 1.0 5 DC532 / I0

X2 / 1.1 6 DC532 / I1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3984

Connector / Terminal Pin Assignment / Signal
X2 / 1.2 7 DC532 / I2

X2 / 1.3 8 DC532 / I3

X2 / 1.4 9 DC532 / I4

X2 / 1.5 10 DC532 / I5

X2 / 1.6 11 DC532 / I6

X2 / 1.7 12 DC532 / I7

Table 341: Pin assignment DI (X3)
Connector / Terminal Pin Assignment / Signal
X3 / 2.0 13 DC532 / I8

X3 / 2.1 14 DC532 / I9

X3 / 2.2 15 DC532 / I10

X3 / 2.3 16 DC532 / I11

X3 / 2.4 17 DC532 / I12

X3 / 2.5 18 DC532 / I13

X3 / 2.6 19 DC532 / I14

X3 / 2.7 20 DC532 / I15

X3 / NC 21 No internal connection

Table 342: Pin assignment DC (X6)
Connector / Terminal Pin Assignment / Signal
X6 / 4.0 36 DC532 / C24

X6 / 4.1 37 DC532 / C25

X6 / 4.2 38 DC532 / C26

X6 / 4.3 39 DC532 / C27

X6 / 4.4 40 DC532 / C28

X6 / 4.5 41 DC532 / C29

X6 / 4.6 42 DC532 / C30

X6 / 4.7 43 DC532 / C31

X6 / NC 44 No internal connection

Table 343: Pin assignment DO (X5)
Connector / Terminal Pin Assignment / Signal
X5 / NC 27 No internal connection

X5 / 3.0 28 DC532 / C16

X5 / 3.1 29 DC532 / C17

X5 / 3.2 30 DC532 / C18

X5 / 3.3 31 DC532 / C19

X5 / 3.4 32 DC532 / C20

X5 / 3.5 33 DC532 / C21

X5 / 3.6 34 DC532 / C22

X5 / 3.7 35 DC532 / C23

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3985

Table 344: Pin assignment 24 V DC 200 W (X4)
Connector / Terminal Pin Assignment / Signal
X4 / L+ 22 L+

X4 / L+ 23 L+

X4 / M 24 M

X4 / M 25 M

X4 / FE 26 FE

The device 07DC91-AD has 16 digital outputs, each with 0.5 A output current.
This results in a maximum output current of 8 A. With an output current of 4 A
and higher, both terminals (L+) of connector X4 must be used.

CAUTION!
System damage caused by voltage!
The exchange of a replacement device under voltage can cause permanent
system damage (destruction).

Fig. 794: Connection example: digital input

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3986

Fig. 795: Connection example: digital output

Addressing
In the following, the information in the "Type" column refers to the data type designation of the
Automation Builder (see AC31 system data Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus
system data” on page 3876). The information in the "Type" column must be interpreted from
the viewpoint of the CS31 bus master. The information in brackets must be interpreted from the
viewpoint of the replacement device (CS31 bus slave).

Table 345: CS31 bus (16 inputs / 16 outputs)
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X2 / 1.0

X2 / 1.1

X2 / 1.2

X2 / 1.3

X2 / 1.4

X2 / 1.5

X2 / 1.6

X2 / 1.7

2 8 bit input (send) 0 ... 7 X3 / 2.0

X3 / 2.1

X3 / 2.2

X3 / 2.3

X3 / 2.4

X3 / 2.5

X3 / 2.6

X3 / 2.7

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3987

Byte Type Bit Connector / Terminal
3 8 bit output (receive) 0 ... 7 X5 / 3.0

X5 / 3.1

X5 / 3.2

X5 / 3.3

X5 / 3.4

X5 / 3.5

X5 / 3.6

X5 / 3.7

4 8 bit output (receive) 0 ... 7 X6 / 4.0

X6 / 4.1

X6 / 4.2

X6 / 4.3

X6 / 4.4

X6 / 4.5

X6 / 4.6

X6 / 4.7

Table 346: CS31 bus (24 inputs / 16 outputs)
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X2 / 1.0 ... 1.7

2 8 bit input (send) 0 ... 7 X3 / 2.0 ... 2.7

3 8 bit output (receive) 0 ... 7 X5 / 3.0 ... 3.7

4 8 bit input (send) 0 ... 7 X6 / 4.0 ... 4.7

5 8 bit output (receive) 0 ... 7 X6 / 4.0 ... 4.7

I/O configuration
The existing device had a DIP switch on the upper printed circuit board. Since the replacement
device is not equipped with an upper printed circuit board, the white DIP switch is arranged on
the lower printed circuit board instead.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3988

Fig. 796: DIP switch for 07DC91-AD

The DIP switches are read by the device only once after the supply voltage has
been connected.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Behavior during normal operation
Interpretation of the LEDs:
● The device initializes automatically after the supply voltage is switched on. During this time,

the S-ERR LED flashes.
● The PWR LED lights up as soon as the internal supply voltage of the device is present.
● After successful initialization of the I/O bus communication to the S500 module, the I/O bus

LED lights up.
● After successful initialization of the CS31 bus communication, the CS31 bus LED lights up.

The S-ERR LED goes out.
● During operation, the yellow LEDs indicate the signal statuses of the channels.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3989

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

The RAM is checked during the initialization of the device. In addition, the firmware in the Flash
memory is checked by means of a checksum during initialization. When the control system
(PLC/central unit) is stopped during normal operation, the outputs of the device 07DC91-AD
are switched off. The inputs remain active. The outputs are also switched off in case of a
malfunction of the CS31 bus.

Diagnosis and displays
LEDs are used for diagnosis and display purposes. In addition, some diagnosis information can
be transmitted via the CS31 bus.

The replacement device does not provide a test button to measure functionality.

Table 347: Diagnosis information of the CS31 bus
Error description Channel Error code

(CODESYS)
Error code
(CS31 bus)

Description

Device error 0 43 1 Internal error

Channel error 0, 4, 8, 12 *) 46 4 Overload or short
circuit on a digital
output

*) The channel numbers are grouped as follows:
0 - for X5/3.0, X5/3.1, X5/3.2, X5/3.3
4 - for X5/3.4, X5/3.5, X5/3.6, X5/3.7
8 - for X6/4.0, X6/4.1, X6/4.2, X6/4.3
12 - for X6/4.4, X6/4.5, X6/4.6, X6/4.7

The error codes that are transferred by the replacement device via the CS31
bus bus are newly displayed in CODESYS. Each error code of the CS31 bus
(table column 3) produces the error code in CODESYS (table column 2). As
a result, it is possible to operate the replacement device with a new control
system (PLC/control unit), e.g. 07KT98-ARC-AD, as well as with an old control
system (PLC/central unit), e.g. 07KT98.

Table 348: Device LEDs
LED Status Color LED off LED on LED flashes
PWR Voltage supply Gree

n
No internal supply
voltage

Internal supply
voltage

-

CS31
bus

CS31 bus com-
munication

Gree
n

No CS31 bus com-
munication

CS31 bus bus
communication

Only diagnosis, no
data transfer. Trans-
mission is disturbed.

S-ERR Error Red No error Static error
(must be con-
firmed by the
control system)

No CS31 bus con-
nection or activity

I/O bus I/O bus commu-
nication

Gree
n

No I/O bus commu-
nication

I/O bus com-
munication

Error I/O bus com-
munication

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3990

The S-ERR LED remains on even if the error no longer occurs. The error must be confirmed by
the control system (PLC/central unit), e.g. by means of a function block Ä Chapter 1.6.2.3.3.3
“System data and CS31 bus system data” on page 3876.
Special cases with rapidly flashing LEDs (approx. 5 Hz):
● All 4 LEDs flash rapidly: An incorrect S500 module is connected to the device. The device

fails to initialize.
● The LEDs of the CS31 bus, S-ERR bus and I/O bus flash rapidly: Invalid position of DIP

switches. The device fails to initialize.
● The LEDs of the S-ERR bus and I/O bus flash rapidly: A checksum error occurred in an

internal Flash memory.
● The LED of the I/O bus flashes rapidly: An error occurred in an internal RAM.

Table 349: LEDs of the S500 module DC532
LED Status Color LED off LED on LED flashes
I0…I7 (see
No. 1 in the
following
figure)

Digital inputs Yellow Input is not acti-
vated

Input is activated
(input voltage is
indicated even if
supply is switched
off)

-

- I8…I15 (see
No. 2 in the
following
figure)

Digital inputs Yellow Input is not acti-
vated

Input is activated
(input voltage is
indicated even if
supply is switched
off)

-

C16…C23
(see No. 3 in
the following
figure)

Digital outputs Yellow Output is not
activated

Output is activated -

C24…C31
(see No. 4 in
the following
figure)

Digital inputs
or digital out-
puts

Yellow Input or output
is not activated

Input is activated
(input voltage is
indicated even if
supply is switched
off)

-

Error indica-
tions left (see
No. 5 in the
following
figure)

Error indica-
tion

Red No error Internal error -

Error indica-
tions right
(see No. 5 in
the following
figure)

Error indica-
tion

Red No error Internal error Overload or
short circuit on
a channel of
the corre-
sponding
group

Indication
supply
voltage (see
No. 6 in the
following
figure)

Process
voltage

Green Process voltage
not available

Process voltage OK -

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3991

Fig. 797: Front view: DC532

Technical data
This section provides additional information on section Ä Chapter 1.6.2.3.3.3 “System data and
CS31 bus system data” on page 3876. In case of doubt, the following information applies.

Technical Data of the complete device

Data Value
Process voltage:

-> Connections X4/L+ (pin 22), X4/L+ (pin 23), X4/M (pin 24),
X4/M (pin 25)

-> Fuse for L+ 10 A, fast acting

- Galvanic isolation No

Current consumption:

-> via L+ 0.19 A and max. 0.5 A per output

- Inrush current via L+ (when voltage is
switched on)

0.17 A²s

Power consumption Replacement device: 200 W
Existing device: 202 W

Max. power dissipation within the module (out-
puts unloaded)

Replacement device: 6 W
Existing device: 5 W

Address setting and configuration DIP switch on right side of the housing

Operating and error indications Replacement device: 41 LEDs
Existing device: 33 LEDs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3992

For further information, please refer to the existing documentation System
description Advant Controller 31.

CAUTION!
System damage caused by voltage!
Exceeding the maximum supply or process voltage (>30 V DC) results in per-
manent system damage (destruction).

Technical data of the digital inputs

Data Value
Connections X2/1.0, X2/1.1, X2/1.2, X2/1.3, X2/1.4, X2/1.5,

X2/1.6, X2/1.7, X3/2.0, X3/2.1, X3/2.2, X3/2.3,
X3/2.4, X3/2.5, X3/2.6, X3/2.7

Input type according to EN 61131-2 Type 1 (realized through current sink)

Input delay: 0 -> 1 or 1 -> 0 *) Replacement device: Typ. 8 ms
Existing device: Typ. 7 ms

Indication of the input signals Replacement device: One yellow LED per
channel. The LED corresponds functionally to
the input signal.
Existing device: One green LED per channel.
The LED corresponds functionally to the input
signal.

Input signal voltage: 24 V DC

-> 0 signal Replacement device: -3 V…+5 V
Existing device: -30 V…+5 V

-> Undefined signal Replacement device: > +5 V…< +15 V
Existing device: > +5 V…< +13 V

-> 1 signal Replacement device: +15 V…+30 V
Existing device: +13 V…+30 V

-> Residual ripple at 0 signal Replacement device: within -3 V…+5 V
Existing device: within -30 V…+5 V

-> Residual ripple at 1 signal Replacement device: within +15 V…+30 V
Existing device: within +13 V…+30 V

Input current per channel:

Input voltage +24 V Replacement device: Typ. 5 mA
Existing device: Typ. 7 mA

Input voltage +5 V Replacement device: > 1 mA
Existing device: ³ 1 mA

Input voltage +15 V Replacement device: > 5 mA
Existing device: ³ 2 mA (at input voltage +13
V)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3993

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
Input voltage +30 V Replacement device: < 8 mA

Existing device: £ 9 mA

Maximum cable length:

-> Shielded 1000 m

-> Unshielded 600 m

Protection against reversed voltage Yes

Overvoltage protection Up to 30 V DC

*) Input delay of the S500 module DC532. The transmission rate via serial buses has not been
taken into account.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Technical data of the digital outputs

Data Value
Connections X5/3.0, X5/3.1, X5/3.2, X5/3.3, X5/3.4, X5/3.5,

X5/3.6, X5/3.7

Type of digital outputs High-side switch

Demagnetization with inductive load With a varistor inside the device (with other
circuitry)

Switching frequency with ohmic load On request

Output voltage at signal 1 X4 / L+ (typ. 24 V) -0.8 V

Output delay: 0 -> 1 or 1 -> 0 On request

Maximum cable length:

-> Shielded 1000 m

-> Unshielded 600 m

For further information, please refer to the existing documentation System
description Advant Controller 31.

Technical data of the configurable inputs/outputs

Data Value
Connections X6/4.0, X6/4.1, X6/4.2, X6/4.3, X6/4.4, X6/4.5,

X6/4.6, X6/4.7

Use as digital input See Ä Chapter 1.6.2.3.3.5.4.8.2 “Technical
data of the digital inputs” on page 3993

Use as digital output See Ä Chapter 1.6.2.3.3.5.4.8.3 “Technical
data of the digital outputs” on page 3994

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3994

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Fig. 798: Protective circuits inputs/outputs

Due to the changed protective circuit on the inputs and outputs, the restrictions
concerning the input signal voltage described in the existing documentation no
longer apply.

When the channels of connector X6 are to be used as inputs, the respective
outputs (high-end switches) must be switched off.

Connection to the CS31 bus

Data Value
Connections X1/B2, X1/B1

CS31 bus type 04 (digital input/output)

Terminating resistor Not available (must be provided externally if
needed)

Mechanical data

Data Value
Width x height x depth Replacement device: 120 x 140 x approx. 80

mm
Existing device: 120 x 140 x 85 mm

Weight Replacement device: 351 g (incl. terminals)
Existing device: 450 g

Dimensions for mounting See operating and assembly instructions of
the replacement device (3ADR020083M0401)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3995

Assembly / Disassembly

The dimensions are in mm and in brackets in inch.

The dimensions for the assembly holes are the same for the replacement
device and the existing device.

To assemble or disassemble the replacement device, grab the device at the housing and not
directly at the S500 module.

CAUTION!
System damage caused by voltage!
The exchange of a replacement device under voltage can cause permanent
system damage (destruction).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3996

Ordering data

Order No. Scope of delivery
1SAP 800 300 R0010 Digital input/output module 07DC91-AD

1 5-pin terminal block (5.08 mm grid space)
1 3-pin terminal block (5.08 mm grid space)
4 9-pin terminal blocks (3.81 mm grid space)

Replacement device 07DC92-AD

Fig. 799: 3ADR333196F0015_07DC92-AD

The replacement device 07DC92-AD of the AC31 adapter series replaces the existing device
07DC92 of the 90 series.
During the development of the replacement device, care was taken to keep the device configu-
ration identical to the configuration of the existing device. Thus, the existing documentation of
device 07DC92 remains valid and serves as a reference (system description Advant Controller
31). The document structure of this document is based on the document structure of the existing
documentation.
This document adds the following points to the still valid existing documentation:
● Unavoidable device deviations, e.g. due to technical limitations.
● Expansion of documentation as a result of normative requirements.
● Additional contents not described in the existing documentation.
Further information on replacement device 07DC92-AD can be found in the operating and
assembly instructions of device 07DC92-AD: 3ADR020151M0401. Please note that no separate
operating and assembly instructions are available for device 07DC92.
Please also observe the system data as well as the information on CS31 bus Ä Chapter
1.6.2.3.3.3 “System data and CS31 bus system data” on page 3876.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3997

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Device configuration

1 Connector X1: CS31 bus
2 Connector X2: 8 DC + voltage supply (incl. DO524)
3 Connector X3: 8 DC + voltage supply (incl. DO524)
4 Hole for screw mounting (screw diameter 4 mm, extension torque 1.2 Nm)
5 Status LEDs for DO524
6 DIP switch for address setting (ADDR)
7 Connector X6: 8 DC + voltage supply (incl. DO524)
8 Connector X5: 8 DC + voltage supply (incl. DO524)
9 Connector X4: Voltage supply (incl. DO524)
10 Ventilation
11 TA525: Label
12 4 LEDs to display the status of the complete 07DC92-AD device

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US3998

LED display

Fig. 800: LEDs DO524

No. Displays of module
1 8 yellow LEDs to indicate the signal status of the digital inputs/outputs (X2).

2 8 yellow LEDs to indicate the signal status of the digital inputs/outputs (X3).

3 8 yellow LEDs to indicate the signal status of the digital inputs/outputs (X5).

4 8 yellow LEDs to indicate the signal status of the digital inputs/outputs (X6).

5 4 red LEDs to indicate errors (from the DO524 module).

6 1 green LED to indicate the status of the supply voltage of the DO524 module (is
supplied via UP/L+).

The replacement device does not provide a test button to measure functionality.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 3999

Connections

Fig. 801: Connection

Table 350: Pin assignment CS31 bus (X1)
Connector / Terminal Pin Assignment / Signal
X1 / Shield 1 No internal connection

X1 / B2 2 BUS 2

X1 / B1 3 BUS 1

The shield connection of the CS31 bus is not galvanically connected to the
functional earth of the supply voltage.

Table 351: Pin assignment DC (X2)
Connector / Terminal Pin Assignment / Signal
X2 / ZP/M 4 ZP/M

X2 / 1.0 5 DO524 / O0

X2 / 1.1 6 DO524 / O1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4000

Connector / Terminal Pin Assignment / Signal
X2 / 1.2 7 DO524 / O2

X2 / 1.3 8 DO524 / O3

X2 / 1.4 9 DO524 / O4

X2 / 1.5 10 DO524 / O5

X2 / 1.6 11 DO524 / O6

X2 / 1.7 12 DO524 / O7

X2 / UP/L+ 13 UP/L+

Table 352: Pin assignment DC (X3)
Connector / Terminal Pin Assignment / Signal
X3 / ZP/M 14 ZP/M

X3 / 2.0 15 DO524 / O8

X3 / 2.1 16 DO524 / O9

X3 / 2.2 17 DO524 / O10

X3 / 2.3 18 DO524 / O11

X3 / 2.4 19 DO524 / O12

X3 / 2.5 20 DO524 / O13

X3 / 2.6 21 DO524 / O14

X3 / 2.7 22 DO524 / O15

X3 / UP/L+ 23 UP/L+

Table 353: Pin assignment 24 V DC (X4)
Connector / Terminal Pin Assignment / Signal
X4 / L+ 24 L+

X4 / L+ 25 L+

X4 / M 26 M

X4 / M 27 M

X4 / FE 28 FE

Table 354: Pin assignment DC (X5)
Connector / Terminal Pin Assignment / Signal
X5 / ZP/M 29 ZP/M

X5 / 3.0 30 DO524 / O16

X5 / 3.1 31 DO524 / O17

X5 / 3.2 32 DO524 / O18

X5 / 3.3 33 DO524 / O19

X5 / 3.4 34 DO524 / O20

X5 / 3.5 35 DO524 / O21

X5 / 3.6 36 DO524 / O22

X5 / 3.7 37 DO524 / O23

X5 / UP/L+ 38 UP/L+

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4001

Table 355: Pin assignment DC (X6)
Connector / Terminal Pin Assignment / Signal
X6 / ZP/M 39 ZP/M

X6 / 4.0 40 DO524 / O24

X6 / 4.1 41 DO524 / O25

X6 / 4.2 42 DO524 / O26

X6 / 4.3 43 DO524 / O27

X6 / 4.4 44 DO524 / O28

X6 / 4.5 45 DO524 / O29

X6 / 4.6 46 DO524 / O30

X6 / 4.7 47 DO524 / O31

X6 / UP/L+ 48 UP/L+

CAUTION!
System damage caused by voltage!
The exchange of a replacement device under voltage can cause permanent
system damage (destruction).

Fig. 802: Connection example: digital output

Addressing
In the following, the information in the "Type" column refers to the data type designation of the
Automation Builder (see AC31 system data Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus
system data” on page 3876). The information in the "Type" column must be interpreted from
the viewpoint of the CS31 bus master. The information in brackets must be interpreted from the
viewpoint of the replacement device (CS31 bus slave).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4002

Table 356: CS31 bus (32 inputs / 32 outputs)
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X2 / 1.0 ... 1.7

2 8 bit input (send) 0 ... 7 X3 / 2.0 to 2.7

3 8 bit input (send) 0 ... 7 X5 / 3.0 to 3.7

4 8 bit input (send) 0 ... 7 X6 / 4.0 to 4.7

5 8 bit output (receive) 0 ... 7 X2 / 1.0 ... 1.7

6 8 bit output (receive) 0 ... 7 X3 / 2.0 to 2.7

7 8 bit output (receive) 0 ... 7 X5 / 3.0 to 3.7

8 8 bit output (receive) 0 ... 7 X6 / 4.0 to 4.7

Table 357: CS31 bus (32 outputs)
Byte Type Bit Connector / Terminal
1 8 bit output (receive) 0 ... 7 X2 / 1.0 ... 1.7

2 8 bit output (receive) 0 ... 7 X3 / 2.0 to 2.7

3 8 bit output (receive) 0 ... 7 X5 / 3.0 to 3.7

4 8 bit output (receive) 0 ... 7 X6 / 4.0 to 4.7

NOTICE!
In case of overloading or a short-circuit, the output limits the electricity and
switches off thermally. The LED of the overloaded output is also switched off
and the corresponding error indication of the DO524 flashes.

I/O configuration
The existing device had a DIP switch on the upper printed circuit board. Since the replacement
device is not equipped with an upper printed circuit board, the white DIP switch is arranged on
the lower printed circuit board instead.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4003

Fig. 803: DIP switch for 07DC92-AD:

The DIP switches are read by the device only once after the supply voltage has
been connected.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Behavior during normal operation
Interpretation of the LEDs:
● The device initializes automatically after the supply voltage is switched on. During this time,

the S-ERR LED flashes.
● The PWR LED lights up as soon as the internal supply voltage of the device is present.
● After successful initialization of the I/O bus communication to the S500 module, the I/O bus

LED lights up.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4004

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

● After successful initialization of the CS31 bus communication, the CS31 bus LED lights up.
The S-ERR LED goes out.

● During operation, the yellow LEDs indicate the signal statuses of the channels.

Diagnosis and Displays
LEDs are used for diagnosis and display purposes. In addition, some diagnosis information can
be transmitted via the CS31 bus.

The replacement device does not provide a test button to measure functionality.

Table 358: Diagnosis information of the CS31 bus
Error description Channel Error code

(CODESYS)
Error code
(CS31 bus)

Description

Device error 0 43 1 Internal error

Channel error 0, 8, 15 *) 46 4 Overload or short
circuit on a digital
output

*) The channel numbers are grouped as follows:
0 - for X2 / 1.0 to 1.7
8 - for X2 / 2.0 to 2.7
15 - for X5 / 3.0 to 3.7 and X6 / 4.0 to 4.7

The error codes that are transferred by the replacement device via the CS31
bus bus are newly displayed in CODESYS. Each error code of the CS31 bus
(table column 3) produces the error code in CODESYS (table column 2). As
a result, it is possible to operate the replacement device with a new control
system (PLC/control unit), e.g. 07KT98-ARC-AD, as well as with an old control
system (PLC/central unit), e.g. 07KT98.

Table 359: Device LEDs
LED Status Color LED off LED on LED flashes
PWR Voltage supply Gree

n
No internal supply
voltage

Internal supply
voltage

-

CS31
bus

CS31 bus com-
munication

Gree
n

No CS31 bus com-
munication

CS31 bus bus
communication

Only diagnosis, no
data transfer. Trans-
mission is disturbed.

S-ERR Error Red No error Static error
(must be con-
firmed by the
control system)

No CS31 bus con-
nection or activity

I/O bus I/O bus commu-
nication

Gree
n

No I/O bus commu-
nication

I/O bus com-
munication

Error I/O bus com-
munication

The S-ERR LED remains on even if the error no longer occurs. The error must be confirmed by
the control system (PLC/central unit), e.g. by means of a function block Ä Chapter 1.6.2.3.3.3
“System data and CS31 bus system data” on page 3876.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4005

Special cases with rapidly flashing LEDs (approx. 5 Hz):
● All 4 LEDs flash rapidly: An incorrect S500 module is connected to the device. The device

fails to initialize.
● The LEDs of the CS31 bus, S-ERR bus and I/O bus flash rapidly: Invalid position of DIP

switches. The device fails to initialize.
● The LEDs of the S-ERR bus and I/O bus flash rapidly: A checksum error occurred in an

internal Flash memory.
● The LED of the I/O bus flashes rapidly: An error occurred in an internal RAM.

Table 360: LEDs of the S500 module DO524
LED Status Color LED off LED on LED flashes
O0…O7 (see
No. 1 in the
following
figure)

Digital inputs/
outputs

Yellow Input/output is
not activated

Input/output is acti-
vated (input voltage
is indicated even if
supply is switched
off)

-

I8 to I15 (see
No. 2 in the
following
figure)

Digital inputs/
outputs

Yellow Input/output is
not activated

Input/output is acti-
vated (input voltage
is indicated even if
supply is switched
off)

-

O16 to O23
(see No. 3 in
the following
figure)

Digital inputs/
outputs

Yellow Input/output is
not activated

Input/output is acti-
vated (input voltage
is indicated even if
supply is switched
off)

-

C24 to C31
(see No. 4 in
the following
figure)

Digital inputs/
outputs

Yellow Input/output is
not activated

Input/output is acti-
vated (input voltage
is indicated even if
supply is switched
off)

-

Error indica-
tions right
(see No. 5 in
the following
figure)

Error indica-
tion

Red No error Internal error Overload or
short circuit on
a channel of
the corre-
sponding
group

Indication
supply
voltage (see
No. 6 in the
following
figure)

Process
voltage

Green Process voltage
not available

Process voltage OK -

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4006

Fig. 804: LEDs DO524

Technical data
This section provides additional information on section Ä Chapter 1.6.2.3.3.3 “System data and
CS31 bus system data” on page 3876. In case of doubt, the following information applies.

Technical data of the complete device

Data Value
Process voltage:

-> Connections L+ X2 (pin 13)
X3 (pin 23),
X4 (pin 24, pin 25)
X5 (pin 38),
X6 (pin 48)

-> Connections M X2 (pin 4)
X3 (pin 14)
X4 (pin 26, pin 27)
X5 (pin 29)
X6 (pin 39)

-> Fuse for L+ 10 A, fast acting

- Galvanic isolation None (07DC92: Group against group, all
groups in relation to the rest of the device

Current consumption:

-> via L+ 0.19 A and max. 0.5 A per output

- Inrush current via L+ (when voltage is
switched on)

0.17 A²s

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4007

Data Value
Power consumption Replacement device: 200 W

Existing device: 394 W

Max. power dissipation within the module (out-
puts unloaded)

Replacement device: 6 W
Existing device: 5 W

Address setting and configuration DIP switch right side of housing

Operating and error indications Replacement device: 41 LEDs
Existing device: 33 LEDs

For further information, please refer to the existing documentation System
description Advant Controller 31.

CAUTION!
System damage caused by voltage!
Exceeding the maximum supply or process voltage (>30 V DC) results in per-
manent system damage (destruction).

Changes to the process voltage connections

Fig. 805: Process voltage connections - 07DC92

CAUTION!
System damage caused by voltage!
Changed potential ranges!

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4008

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Fig. 806: Process voltage connections - 07DC92-AD

NOTICE!
Process voltage must always be connected to connector X4 on device 07DC92-
AD.

Connector X4 also supplies the internal electronics for the device 07DC92-AD with 0.15 A.

Process voltage connections (X2, X3, X5, X6):

– Maximum current for digital outputs X2 + X3: 4 A / 4 to
– Maximum current for digital outputs X5 + X6: 4 A / 4 to

– Input currents > 4 A require the connection of the second L+ contact of
connector X4.

– For input currents > 8 A, additional L+ contacts from X2, X3, X5 or X6 must
be used.

– The L+ contacts for the connectors X2, X3, X5 or X6 may be loaded with a
maximum of 4 A.

Technical details of the I/O channels as binary inputs

Data Value
Connections X2 / 1.0 to 1.7

X3 / 2.0 to 2.7
X5 / 3.0 to 3.7
X6 / 4.0 to 4.7

Input type according to EN 61131-2 Type 1 (realized through resistors)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4009

Data Value
Input delay: 0 -> 1 or 1 -> 0 *) Replacement device: Type. 8 ms

Existing device: Type. 7 ms

Indication of the input signals Replacement device: One yellow LED per
channel. The LED corresponds functionally to
the input signal.
Existing device: One green LED per channel.
The LED corresponds functionally to the input
signal.

Input signal voltage: 24 V DC

-> 0 signal Replacement device: -3 V…+5 V
Existing device: -6 V…+5 V

-> Undefined signal Replacement device: > +5 V…< +15 V
Existing device: > +5 V…< +13 V

-> 1 signal Replacement device: +15 V…+30 V
Existing device: +13 V…+30 V

-> Residual ripple at 0 signal Replacement device: within -3 V…+5 V
Existing device: within -6 V…+5 V

-> Residual ripple at 1 signal Replacement device: within +15 V…+30 V
Existing device: within +13 V…+30 V

Input current per channel:

Input voltage +24 V Replacement device: Type. 3.5 mA / 4 to
Existing device: Type. 7 mA / 4 to

Input voltage +5 V Replacement device: > 0.5 mA
Existing device: ³ 0.2 mA

Input voltage +15 V Replacement device: > 2 mA
Existing device: ³ 2 mA (at input voltage +13
V)

Maximum cable length:

-> Shielded 1000 m

-> Unshielded 600 m

Protection against reversed voltage Yes

Overvoltage protection Up to 30 V DC

*) Input delay of the S500 module DO524. The transmission rate via serial buses has not been
taken into account.

For further information, please refer to the existing documentation System
description Advant Controller 31.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4010

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Technical details of the I/O channels as digital outputs

Data Value
Connections X2 / 1.0 to 1.7

X3 / 2.0 to 2.7
X5 / 3.0 to 3.7
X6 / 4.0 to 4.7

Type of digital outputs High-side switch

Reference potentials for the outputs M (07DC92: ZP0, ZP1, ZP2 and ZP3)

Supply voltage for the outputs L+ (07DC92: UP0, UP1, UP2 and UP3)

Galvanic isolation No (07DC92: Group against group, all groups
in relation to the rest of the device

Output current (maximum value) X2 + X3 = 4 A, X5 + X6 = 4 A (07DC92: 4 A
per group)

Demagnetization with inductive load Internally with a varistor (with other circuitry)

Switching frequency with ohmic load On request

Output voltage at signal 1 X4 / L+ (typ. 24 V) -0.8 V

Output delay: 0 -> 1 or 1 -> 0 On request

Maximum cable length:

-> Shielded 1000 m

-> Unshielded 600 m

For further information, please refer to the existing documentation System
description Advant Controller 31.

Fig. 807: Protective circuits inputs/outputs

Due to the changed protective circuit on the inputs and outputs, the restrictions
concerning the input signal voltage described in the existing documentation no
longer apply.

If the channels are to be used as inputs, the respective outputs (high-side
switches) must be switched off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4011

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Connection to the CS31 bus

Data Value
Connections X1/B2, X1/B1

CS31 bus type 04 (digital input/output)

Terminating resistor Not available (must be provided externally if
needed)

Mechanical data

Data Value
Width x height x depth Replacement device: 120 x 140 x approx. 80

mm
Existing device: 120 x 140 x 85 mm

Weight Replacement device: 351 g (incl. terminals)
Existing device: 450 g

Dimensions for mounting See operating and assembly instructions of
the replacement device (3ADR020151M0401)

Assembly / Disassembly

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4012

The dimensions are in mm and in brackets in inch.

The dimensions for the assembly holes are the same for the replacement
device and the existing device.

To assemble or disassemble the replacement device, grab the device at the housing and not
directly at the S500 module.

CAUTION!
System damage caused by voltage!
The exchange of a replacement device under voltage can cause permanent
system damage (destruction).

Ordering data

Order No. Scope of delivery
1SAP 800 500 R0010 Digital input/output module 07DC92-AD

1 5-pole terminal block (5.08 mm grid space)
1 3-pole terminal block (5.08 mm grid space)
4 10-pole terminal blocks (3.81 mm grid
space)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4013

Replacement unit DC501-CS31-AD
Introduction

Fig. 808: 3ADR331189S0015_DC501-CS31-AD

The replacement device DC501-CS31-AD of the AC31 adapter series replaces the existing
device DC501-CS31.
The existing device DC501-CS31 supported the use of so-called extension box modules to
increase I/O functionality. The following modules were supported:
● Module AX501 for analog signals: 3 analog inputs, 1 analog output
● Module DI501 for digital signals: 4 digital inputs
● Module DO501 for relay output: 8 relays
The replacement device DC501-CS31-AD does not support the use of extension box modules.
Instead, the functionality of modules AX501 and DI501 is integrated in the replacement device.
The functionality of module DO501 is not supported.
This document describes only changes that have been integrated in the replacement device
and expansions to the existing device DC501-CS31. Thus, the existing documentation of device
DC501-CS31 remains valid and serves as reference. The extension box modules are docu-
mented in the existing documentation of the I/O-S500 hardware. This description is replaced by
this document.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4014

http://search.abb.com/library/Download.aspx?DocumentID=2CDC124001M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC124001M0202&LanguageCode=en&DocumentPartId=&Action=Launch

This document adds the following points to the still valid existing documentation:
● Unavoidable device deviations, e.g. due to technical limitations.
● Expansion of documentation as a result of normative requirements.
● Additional contents not described in the existing documentation.
Further information on replacement device DC501-CS31-AD can be found in the operating and
assembly instructions of device DC501-CS31-AD: 3ADR020087M0401. Please note that for
device DC501-CS31 no separate operating and assembly instructions are available.
Please also observe the system data as well as the information on CS31 bus Ä Chapter
1.6.2.3.3.3 “System data and CS31 bus system data” on page 3876.

Device configuration

1 Connection for CS31 bus (X1)
2 Bus termination (CS31 bus)
3 Status LEDs for DC532
4 TA525: Label
5 Terminals signal level (X4). 16 digital inputs, 8 digital outputs, 8 DC voltage supply (incl.

DC532)
6 Terminals signal level (plug-in power bus)
7 Ventilation
8 4 Status LEDs
9 Hole for screw mounting (screw diameter 4 mm, extension torque 1.2 Nm)
10 Function selector switch for I/O extension
11 4 digital inputs (X2): 24 V DC. 3 analog inputs, 1 analog output (X3): 0 V … +10 V.
12 DIP switch for ADDR (X1)

LED display
The LED display on the replacement device is changed:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4015

Fig. 809: Front view: DC532

No. Displays of module
1 8 yellow LEDs to indicate the signal status of the digital inputs (X2).

2 8 yellow LEDs to indicate the signal status of the digital inputs (X3).

3 8 yellow LEDs to indicate the signal status of the digital outputs (X5).

4 8 yellow LEDs to indicate the signal status of the digital inputs/outputs (X6).

5 4 red LEDs to indicate errors (of DC532 module).

6 1 green LED to indicated the status of the supply voltage of the DC532 module (is
supplied via X4).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4016

Connections

Fig. 810: Connection

Table 361: Pin assignment CS31 bus (X1)
Connector / Terminal Pin Assignment / Signal
X1 / Shield 1 Shield (internally connected to pins 2 and 6. No internal

connection to functional earth)

X1 / Shield 2 Shield (internally connected to pins 1 and 6. No internal
connection to functional earth)

X1 / B2 3 BUS 2

X1 / B1 4 BUS 1

X1 / NC 5 Not connected

X1 / Shield 6 Shield (internally connected to pins 1 and 2. No internal
connection to functional earth)

Correction to existing documentation
In the existing documentation, connection X1 / 2 is incorrectly documented as
"free / not connected". On the replacement device DC501-CS31-AD, the selec-
tion of the pin assignment of connector X1 is identical to the realization of
device DC501-CS31. Thus, the pin assignment described in this document is
valid for the replacement device and the existing device.

Table 362: Pin assignment DI501 (X2)
Connector / Terminal Pin Assignment / Signal
X2 / S+ 1 Auxiliary voltage (max. 32 mA total load of S+ permitted)

for DI0 - DI3. Voltage derived from input voltage Vs+ (X4)

X2 / S+ 2 Auxiliary voltage (max. 32 mA total load of S+ permitted)
for DI0 - DI3. Voltage derived from input voltage Vs+ (X4)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4017

Connector / Terminal Pin Assignment / Signal
X2 / DI0 3 Digital extension input 0

X2 / DI1 4 Digital extension input 1

X2 / DI2 5 Digital extension input 2

X2 / DI3 6 Digital extension input 3

X2 / S+ 7 Auxiliary voltage (max. 32 mA total load of S+ permitted)
for DI0 - DI3. Voltage derived from input voltage Vs+ (X4)

X2 / S+ 8 Auxiliary voltage (max. 32 mA total load of S+ permitted)
for DI0 - DI3. Voltage derived from input voltage Vs+ (X4)

Table 363: Pin assignment AX501 (X3)
Connector / Terminal Pin Assignment / Signal
X3 / Sensor shield 1 Sensor shield

X3 / GND 2 GND

X3 / AI0 3 Analog extension input 0

X3 / AI1 4 Analog extension input 1

X3 / AI2 5 Analog extension input 2

X3 / AO0 6 Analog extension output 0

X3 / GND 7 GND

X3 / Sensor shield 8 Sensor shield

The connections X3 / 2 and X3 / 7 (GND) are directly connected to X4 / Vs-, X4 / V-. There is
no AGND potential in accordance with module AX501. In module AX501, AGND is connected to
GND via a resistor.
Both sensor shield connections of X3 are interconnected and jointly connected to FE via 10 MW
|| 4 nF.

The connections X3 / 2 and X3 / 7 (GND) are directly connected to X4 / Vs-, X4 / V-. There is
no AGND potential in accordance with module AX501. In module AX501, AGND is connected to
GND via a resistor.
Both sensor shield connections of X3 are interconnected and jointly connected to FE via 10 MW
|| 4 nF.

The terminal blocks of X2 and X3 have the following connection data:
● Conductor cross section, single wire/ flexible: 0.14 mm² to 1.5 mm²
● Conductor cross section, flexible with wire-end ferrule (without plastic ferrule): 0.25 mm² to

1.5 mm²
● Conductor cross section, flexible with wire-end ferrule (with plastic ferrule): 0.25 mm² to 0.5

mm²

Table 364: Pin assignment 54 pin connector (X4)
Connector /
Block

Pin Assignment / Signal

X4 / 1 +0 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

X4 / 1 00 DC532 / I0

X4 / 1 01 DC532 / I1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4018

Connector /
Block

Pin Assignment / Signal

X4 / 1 02 DC532 / I2

X4 / 1 03 DC532 / I3

X4 / 1 04 DC532 / I4

X4 / 1 05 DC532 / I5

X4 / 1 06 DC532 / I6

X4 / 1 07 DC532 / I7

X4 / 1 08 DC532 / I8

X4 / 1 09 DC532 / I9

X4 / 1 10 DC532 / I10

X4 / 1 11 DC532 / I11

X4 / 1 12 DC532 / I12

X4 / 1 13 DC532 / I13

X4 / 1 14 DC532 / I14

X4 / 1 15 DC532 / I15

X4 / 1 -0 GND

X4 / 2 Vs+ Voltage supply for electronics system (also for functionality of
AX501 and DI501)

X4 / 2 16 DC532 / C16

X4 / 2 17 DC532 / C17

X4 / 2 18 DC532 / C18

X4 / 2 19 DC532 / C19

X4 / 2 20 DC532 / C20

X4 / 2 21 DC532 / C21

X4 / 2 22 DC532 / C22

X4 / 2 23 DC532 / C23

X4 / 2 24 DC532 / C24

X4 / 2 25 DC532 / C25

X4 / 2 26 DC532 / C26

X4 / 2 27 DC532 / C27

X4 / 2 28 DC532 / C28

X4 / 2 29 DC532 / C29

X4 / 2 30 DC532 / C30

X4 / 2 31 DC532 / C31

X4 / 2 V+ Voltage supply of inputs/outputs (module DC532 and auxiliary
voltage)

X4 / 3 Vs- GND

X4 / 3 +1 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

X4 / 3 +2 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4019

Connector /
Block

Pin Assignment / Signal

X4 / 3 +3 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

X4 / 3 +4 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

X4 / 3 +5 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

X4 / 3 +6 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

X4 / 3 +7 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

X4 / 3 +8 Auxiliary voltage (max. 200 mA total load of +0/ +1/ …/ +7/ +8
permitted). Voltage derived from input voltage V+ (X4)

X4 / 3 -1 GND

X4 / 3 -2 GND

X4 / 3 -3 GND

X4 / 3 -4 GND

X4 / 3 -5 GND

X4 / 3 -6 GND

X4 / 3 -7 GND

X4 / 3 -8 GND

X4 / 3 V- GND

Connection data of spring terminals (X4):
● Conductor cross section, single wire: 0.2 mm² to 2.5 mm²
● Conductor cross section, flexible: 0.2 mm² to 1.5 mm² (existing device: 2.5 mm² flexible)
● Conductor cross section, flexible with wire-end ferrule: 0.25 mm² to 1.5 mm²

Fig. 811: Connection example: digital input (X4)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4020

Fig. 812: Connection example: digital output

Fig. 813: Connection example: digital input (X2)

Fig. 814: Connection example: Voltage input

1) Galvanically isolated power supply of analog sensor.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4021

Fig. 815: Connection example: Voltage output

Analog signal lines must be routed in shielded cables. The shield must be
grounded on both sides and should be grounded to replacement device and
signal source / signal sink as close as possible.

CAUTION!
System damage caused by voltage!
The exchange of a replacement device under voltage can cause permanent
system damage (destruction).

Fig. 816: Plug-in power bus

A power bus can be plugged into the replacement device. The contacts of the power bus have
no electrical connection to the electronic system of the replacement device. Furthermore, no FE
connection is available.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4022

Fig. 817: Schematic diagram

For further information on grounding of the individual connections as well as shielding, please
refer to Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus system data” on page 3876.

Addressing
In the existing device, the address DIP switch was arranged on the top right of the device. In the
replacement device, this DIP switch is located on the left side of the device.
An additional DIP switch (SEL) has been implemented for the selection of the extension
(AX501, 3AI1AO or DI501/4DI). Please note that only one extension at a time can be used.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4023

Fig. 818: DIP switch for DC501-CS31-AD

The function of the address DIP switch 1 (channel switch) available in the
existing device is no longer supported. This DIP switch must be switched off.

Table 365: Extension DIP switch (SEL)
S1 S2 Description
OFF OFF Normal, without extension

OFF ON Normal, with 3AI1AO/ AX501 extension

ON OFF Normal, with 4DI/ DI501 extension

ON ON Version DC501R0100, without extension

The device version DC501R0100 differs only in the data format of the CS31 bus. Further
information, Ä Chapter 1.6.2.3.3.3.2 “CS31 bus system data” on page 3882.

The DIP switches are read by the device only once after the supply voltage has
been connected.

For further information, please refer to the existing documentation System
description Advant Controller 31.

In the following, the information in the "Type" column refers to the data type designation of the
Automation Builder (see AC31 system data Ä Chapter 1.6.2.3.3.3 “System data and CS31 bus
system data” on page 3876). The information in the "Type" column must be interpreted from
the viewpoint of the CS31 bus master. The information in brackets must be interpreted from the
viewpoint of the replacement device (CS31 bus slave).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4024

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Table 366: CS31 bus: 16 DI and 16 DO, normal and version DC501R0100
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X4 / 00 ... 07

2 8 bit input (send) 0 ... 7 X4 / 08 ... 15

3 8 bit output (receive) 0 ... 7 X4 / 16 ... 23

4 8 bit output (receive) 0 ... 7 X4 / 24 ... 31

Table 367: CS31 bus: 24 DI and 16 DO, normal
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X4 / 00 ... 07

2 8 bit input (send) 0 ... 7 X4 / 08 ... 15

3 8 bit input (send) 0 ... 7 X4 / 24 ... 31

4 8 bit input (send, filling byte) 0 ... 7 -

5 8 bit output (receive) 0 ... 7 X4 / 16 ... 23

6 8 bit output (receive) 0 ... 7 X4 / 24 ... 31

Table 368: CS31 bus: 24 DI and 16 DO, version DC501R0100
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X4 / 00 ... 07

2 8 bit input (send) 0 ... 7 X4 / 08 ... 15

3 8 bit output (receive) 0 ... 7 X4 / 16 ... 23

4 8 bit input (send) 0 ... 7 X4 / 24 ... 31

5 8 bit output (receive) 0 ... 7 X4 / 24 ... 31

Table 369: CS31 bus: 16 DI, 16 DO, 3AI1AO, normal
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X4 / 00 ... 07

2 8 bit input (send) 0 ... 7 X4 / 08 ... 15

3 8 bit input (send) 0 ... 7 X3 / 3

4 8 bit input (send) 0 ... 7 X3 / 4

5 8 bit input (send) 0 ... 7 X3 / 5

6 8 bit output (receive) 0 ... 7 X4 / 16 ... 23

7 8 bit output (receive) 0 ... 7 X4 / 24 ... 31

8 8 bit output (receive) 0 ... 7 X3 / 6

Table 370: CS31 bus: 16 DI, 16 DO, 4 DI, normal
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X4 / 00 ... 07

2 8 bit input (send) 0 ... 7 X4 / 08 ... 15

3 8 bit input (send) 0 ... 3 X2 / 3 ... 6

8 bit input (send) 4 .. .7 -

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4025

Byte Type Bit Connector / Terminal
4 8 bit output (receive) 0 ... 7 X4 / 16 ... 23

5 8 bit output (receive) 0 ... 7 X4 / 24 ... 31

Table 371: CS31 bus: 24 DI, 16 DO, 3AI1AO, normal
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X4 / 00 ... 07

2 8 bit input (send) 0 ... 7 X4 / 08 ... 15

3 8 bit input (send) 0 ... 7 X4 / 24 ... 31

4 8 bit input (send, filling byte) 0 ... 7 -

5 8 bit input (send) 0 ... 7 X3 / 3

6 8 bit input (send) 0 ... 7 X3 / 4

7 8 bit input (send) 0 ... 7 X3 / 5

8 8 bit input (send, filling byte) 0 ... 7 -

9 8 bit output (receive) 0 ... 7 X4 / 16 ... 23

10 8 bit output (receive) 0 ... 7 X4 / 24 ... 31

11 8 bit output (receive) 0 ... 7 X3 / 6

12 8 bit output (receive, filling byte) 0 ... 7 -

Table 372: CS31 bus: 24 DI, 16 DO, 4 DI, normal
Byte Type Bit Connector / Terminal
1 8 bit input (send) 0 ... 7 X4 / 00 ... 07

2 8 bit input (send) 0 ... 7 X4 / 08 ... 15

3 8 bit input (send) 0 ... 7 X4 / 24 ... 31

4 8 bit input (send, filling byte) 0...7 -

5 8 bit input (send) 0 ... 3 X2 / 3 ... 6

4 ... 7 -

6 8 bit input (send, filling byte) 0 ... 7 -

7 8 bit output (receive) 0 ... 7 X4 / 16 ... 23

8 8 bit output (receive) 0 ... 7 X4 / 24 ... 31

Table 373: CS31 bus: analog values
Nominal range 0…+10 V Digital value (decimal) Digital value (hexadecimal)
9.961 V 255 FF

9.922 V 254 FE

… … …

0.039 V 1 01

0.000 V 0 00

Relationship between analog voltage and digital representation (applies to analog inputs and
analog output):

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4026

Fig. 819: Formula: Voltage

Documentation change
The replacement device does not have an I/O bus. Communication interface
module cannot be connected. For this reason, chapter "1.1.3 Addressing" of the
technical description of DC501-CS31 concerning the expansion modules (e.g.
DX511, DI511, DO511, AX511, AI511, AI512) is not valid for the replacement
device. Possible data structures for the replacement device are indicated in the
following table.

Behavior during normal operation
Interpretation of the LEDs:
● The device initializes automatically after the supply voltage is switched on. During this time,

the S-ERR LED flashes.
● The PWR LED lights up as soon as the internal supply voltage of the device is present.
● After successful initialization of the I/O bus communication to the S500 module, the I/O bus

LED lights up.
● After successful initialization of the CS31 bus communication, the CS31 bus LED lights up.

The S-ERR LED goes out.
● During operation, the yellow LEDs indicate the signal statuses of the channels.

The RAM is checked during the initialization of the device. In addition, the firmware in the Flash
memory is checked by means of a checksum during initialization. When the control system
(PLC/central unit) is stopped during normal operation, the outputs of the device are switched off.
The inputs remain active. The outputs are also switched off in case of a malfunction of the CS31
bus.

Diagnosis and display
The replacement device transmits diagnosis information also via the CS31 bus.

Table 374: Diagnosis information CS31 bus
Error description Chann

el
Error code
(CODESYS)

Error code
(CS31 bus)

Description

Device error 0 43 1 Internal error

Device error 1 45 2 No supply voltage V+ avail-
able

Channel error 0…15 46 4 Overload or short circuit on
a digital output

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4027

The error codes that are transferred by the replacement device via the CS31
bus bus are newly displayed in CODESYS. Each error code of the CS31 bus
(table column 3) produces the error code in CODESYS (table column 2). As
a result, it is possible to operate the replacement device with a new control
system (PLC/control unit), e.g. 07KT98-ARC-AD, as well as with an old control
system (PLC/central unit), e.g. 07KT98.

Since in the replacement device the functionality of the extension box is integrated in the
hardware, error code 6 (failure of extension box) does not occur.
The input/output functions of the extensions (AX501/ 3AI1AO, DI501/ 4DI) have no diagnoses.

Table 375: Device LEDs
LED Status Color LED off LED on LED flashes
PWR Voltage supply Gree

n
No internal supply
voltage

Internal supply
voltage

-

CS31
bus

CS31 bus com-
munication

Gree
n

No CS31 bus com-
munication

CS31 bus bus
communication

Only diagnosis, no
data transfer. Trans-
mission is disturbed.

S-ERR Error Red No error Static error
(must be con-
firmed by the
control system)

No CS31 bus con-
nection or activity

I/O bus I/O bus commu-
nication

Gree
n

No I/O bus commu-
nication

I/O bus com-
munication

Error I/O bus com-
munication

The S-ERR LED remains on even if the error no longer occurs. The error must be confirmed by
the control system (PLC/central unit), e.g. by means of a function block Ä Chapter 1.6.2.3.3.3
“System data and CS31 bus system data” on page 3876.
Special cases with rapidly flashing LEDs (approx. 5 Hz):
● All 4 LEDs flash rapidly: An incorrect S500 module is connected to the device. The device

fails to initialize.
● The LEDs of the CS31 bus, S-ERR bus and I/O bus flash rapidly: Invalid position of DIP

switches. The device fails to initialize.
● The LEDs of the S-ERR bus and I/O bus flash rapidly: A checksum error occurred in an

internal Flash memory.
● The LED of the I/O bus flashes rapidly: An error occurred in an internal RAM.

Table 376: S500 module DC532 LEDs
LED Status Color LED off LED on LED flashes
I0…I7 (see No.
1 in the following
figure)

Digital
inputs

Yellow Input is not
activated

Input is activated (input
voltage is indicated
even if supply is
switched off)

-

I8…I15 (see No.
2 in the following
figure)

Digital
inputs

Yellow Input is not
activated

Input is activated (input
voltage is indicated
even if supply is
switched off)

-

C16…C23 (see
No. 3 in the fol-
lowing figure)

Digital
outputs

Yellow Output is not
activated

Output is activated -

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4028

LED Status Color LED off LED on LED flashes
C24…C31 (see
No. 4 in the fol-
lowing figure)

Digital
inputs or
digital
outputs

Yellow Input or
output is not
activated

Input/output is activated
(input voltage is indi-
cated even if supply is
switched off)

-

Indication supply
voltage (see No.
6 in the following
figure)

Process
voltage

Green Process
voltage not
available

Process voltage OK -

Error indications
left (see No. 5
in the following
figure)

Error
indication

Red No error Internal error

Error indications
right (see No. 5
in the following
figure)

Error
indication

Red No error Internal error Overload or
short circuit
on a channel
of the corre-
sponding
group

Fig. 820: Front view: DC532

Technical data
This section expands the details provided in the chapter Ä Chapter 1.6.2.3.3.3 “System data
and CS31 bus system data” on page 3876 and contains information on electromagnetic com-
patibility. The conformity is described in the declaration of conformity, which is available on the
ABB website.

To ensure proper function of the replacement device DC501-CS31-AD, both
supply voltages Vs+ and V+ must be applied.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4029

Technical data of the complete device
Table 377: Supply voltage Vs
Data Value
Process voltage: Fuse for Vs+ 10 A, fast acting

Current consumption:

-> via Vs+ Replacement device: 0.15 A
Existing device DC501-CS31: approx. 60 ... 230 mA

- Inrush current via Vs+ (when
voltage is switched on)

0.06 A²s

Power consumption 5 W

For further information, please refer to the existing documentation System
description Advant Controller 31.

CAUTION!
System damage caused by voltage!
Exceeding the maximum supply or process voltage (>30 V DC) results in per-
manent system damage (destruction).

Table 378: Supply voltage V
Data Value
Process voltage:

-> Fuse for V+ 10 A, fast acting

-> Additional V-/Vs- connections
(GND)

X4 / -0, X4 / -1, X4 / -2, X4 / -3, X4 / -4, X4 / -5, X4 / -6,
X4 / -7, X4 / -8

Current consumption:

-> via V+ Replacement device: 0.15 A incl. load current
Existing device DC501-CS31: approx. 100 mA without
load current

- Inrush current via V+ (when
voltage is switched on)

0.013 A2s

Power consumption 220 W

Power consumption outputs
unloaded

6 W

Sensor supply voltage connections X4 / +0, X4 / +1, X4 / +2, X4 / +3, X4 / +4, X4 / +5, X4 /
+6, X4 / +7, X4 / +8

Current sensor supply voltage (all
connections combined)

Replacement device: max. 200 mA
Existing device DC501-CS31: Microfuse 8 A, fast acting
*)

*) The existing device contained an 8 A fuse to be exchanged by the user. The replacement
device has an integrated electronic current limiter instead.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4030

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

For further information, please refer to the existing documentation System
description Advant Controller 31.

CAUTION!
System damage caused by voltage!
Exceeding the maximum supply or process voltage (>30 V DC) results in per-
manent system damage (destruction).

Connection to the CS31 bus

Data Value
Connections X1 / 3, X1 / 4

CS31 bus type 04 (digital input/output)

Expansion interface
The replacement device does not have an expansion interface.

Interface extension box
Table 379: Analog inputs
Data Value
Number of channels 3

Connections X3 / 3, X3 / 4, X3 / 5

Reference connections (GND) X3 / 2, X3 / 7

Type of inputs Voltage unipolar

Galvanic isolation Not available

Nominal range 0…10 V

Input resistance per channel Replacement device: > 100 kW

Existing device AX501: 95 kW

Time constant of the input filter Replacement device: approx. 8 ms
Existing device AX501: approx. 7 ms

Total errors (due to non-linearity,
offset, resolution and temperature)

Replacement device: max. 3 %
Existing device AX501: 0.6 % ± 1 digit ± 150 ppm/K

Indication of the input signals Replacement device: not available
Existing device AX501: green LED per channel

Conversion cycle *) Replacement device: 1.5 ms for all three channels
Existing device AX501: 1.64 ms for all three channels

Conversion process Successive approximation

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4031

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Data Value
Averaging of measured values not available

Resolution 8 bit

Unused voltage inputs Can remain open or be short-circuited after GND or V+
to increase noise immunity

Overvoltage protection Available

Overload range ± 30 V DC

Max. line length of analog lines, line
cross section > 0.14 mm²

100 m

*) Conversion cycle of MCU of I/O processing. The transmission via serial buses is slower.

For further information, please refer to the existing documentation System
description Advant Controller 31.

Table 380: Analog output
Data Value
Number of channels 1

Connections X3 / 6

Reference connections (GND) X3 / 2, X3 / 7

Type of outputs Voltage unipolar

Galvanic isolation not available

Nominal range 0 ... 10 V

Output load capability max. ± 5 mA

Indication of the output signals Replacement device: Not available
Existing device AX501: green LED per channel

Resolution 8 bit

Total errors (due to non-linearity,
offset, resolution and temperature)

Replacement device: max. 3 %
Existing device AX501: 0.6 % ± 1 digit ± 150 ppm/K

Update cycle 1.5 ms

Unused output remains unconnected

Short-circuit-proof Yes *)

External supply protection Up to +30 V DC (no external supply protection available
for negative voltages!)

Max. line length of analog lines, line
cross section > 0.14 mm²

100 m

For further information, please refer to the existing documentation System
description Advant Controller 31.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4032

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

CAUTION!
System damage caused by short-circuit!
*) A short-circuit can result in up to 2 W additional power dissipation in the
device. If this power dissipation cannot be discharged, the replacement device
can be damaged.

Table 381: Digital inputs
Data Value
Number of channels 4

Connections X2 / 3, X2 / 4, X2 / 5, X2 / 6

Reference connection (GND) X4 / Vs-

Connections switch supply X2 / 1, X2 / 2, X2 / 7, X2 / 8

Current switch supply (all connec-
tions combined)

Replacement device: max. 32 mA
Existing device DI501: max. 30 mA

Input type according to EN 61131-2 Type 1

Galvanic isolation Not available

Indication of the input signals Replacement device: Not available
Existing device DI501: green LED per channel

Input delay (0->1 or 1->0) Typ. 3 ms

Scanning cycle 500 µs

Input signal voltage:

- 24 V DC

-> 0 signal Replacement device: -3 V … +5 V
Existing device DI501: -30 V … +5 V

-> Undefined signal Replacement device: > +5 V … < +15 V
Existing device DI501: > +5 V … < +13 V

-> 1 signal Replacement device: +15 V … +30 V
Existing device DI501: +13 V … +30 V

-> Residual ripple at 0 signal Within -3 V … +5 V

-> Residual ripple at 1 signal Within +15 V … +30 V

Input current per channel:

-> Input voltage +24 V Typ. 5.5 mA

-> Input voltage +5 V ³ 0.5 mA

-> Input voltage +15 V ³ 2 mA

-> Input voltage +30 V £ 8 mA

Maximum cable length:

-> Shielded 1000 m

-> Unshielded 600 m

Overvoltage protection Available

Overload range ±30 V DC

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4033

For further information, please refer to the existing documentation System
description Advant Controller 31.

Inputs 24 V DC

Data Value
Connections X4 / 00, X4 / 01, X4 / 02, X4 / 03, X4 / 04, X4 / 05, X4 / 06,

X4 / 07, X4 / 08, X4 / 09, X4 / 10, X4 / 11, X4 / 12, X4 / 13,
X4 / 14, X4 / 15, X4 / 24, X4 / 25, X4 / 26, X4 / 27, X4 / 28,
X4 / 29, X4 / 30, X4 / 31

Input type according to EN
61131-2

Type 1

Galvanic isolation Not available

Status display Replacement device: 1 yellow LED per input
Existing device DC501-CS31: 1 green LED per input

Input delay (0-> 1 or 1-> 0) Replacement device: Typ. 8 ms
Existing device DC501-CS31: Typ. 3 ms

Input signal voltage:

- 24 V DC

-> 0 signal Replacement device: -3 V … +5 V
Existing device DC501-CS31: -30 V … +5 V

-> Undefined signal Replacement device: > +5 V … < +15 V
Existing device DC501-CS31: > +5 V … < +13 V

-> 1 signal Replacement device: +15 V … +30 V
Existing device DC501-CS31: +13 V … +30 V

-> Residual ripple at 0 signal Within -3 V … +5 V

-> Residual ripple at 1 signal Within +15 V … +30 V

Input current per channel:

-> Input voltage +24 V Replacement device: typ. 5 mA
Existing device DC501-CS31: typ. 4 mA

-> Input voltage +5 V > 1 mA

-> Input voltage +15 V > 5 mA

-> Input voltage +30 V < 8 mA

Maximum cable length:

-> Shielded 1000 m

-> Unshielded 600 m

Overvoltage protection Up to 30 V DC

Marking Replacement device: not possible
Existing device DC501-CS31: with label strip possible

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4034

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

For further information, please refer to the existing documentation System
description Advant Controller 31.

Outputs 24 V DC

Data Value
Connections X4 / 16, X4 / 17, X4 / 18, X4 / 19, X4 / 20, X4 / 21, X4 / 22,

X4 / 23, X4 / 24, X4 / 25, X4 / 26, X4 / 27, X4 / 28, X4 / 29,
X4 / 30, X4 / 31

Type of digital outputs High-side switches

Demagnetization with inductive
load

Via internal varistor (see following figure)

Status display Replacement device: 1 yellow LED per output
Existing device DC501-CS31: 1 green LED per output

Output delay (0-> 1 or 1-> 0) On request

Switching frequency:

-> With ohmic load Replacement device: on request
Existing device DC501-CS31: £ 100 Hz

-> With inductive load Replacement device: max. 0.5 Hz
Existing device DC501-CS31: £ 2 Hz

-> With lamp load Replacement device: max. 11 Hz at max. 5 W
Existing device DC501-CS31: £ 10 Hz at max. 5 W

Inductive cut-off voltage Replacement device: Typ. -67 V
Existing device DC501-CS31: Typ. (voltage V) -55 V

Maximum cable length:

-> Shielded 1000 m

-> Unshielded 600 m

Marking Replacement device: not possible
Existing device DC501-CS31: with label strip possible

For further information, please refer to the existing documentation System
description Advant Controller 31.

The following figure shows the circuitry of a digital input/output with the varistors for demagneti-
zation when switching off inductive loads.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4035

http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=2CDC120059M0202&LanguageCode=en&DocumentPartId=&Action=Launch

Fig. 821: Protective circuits inputs/outputs

When the channels of X4 / 24 to X4 / 31 are to be used as inputs, the respective
outputs (high-end switches) must be switched off.

Mechanical data

Data Value
Width x height x depth Replacement device: 104 x 118 x 75.1 mm

Existing device DC501-CS31: 102 x 112 x 77 mm

Weight Replacement device: 354 g
Existing device DC501-CS31: approx. 150 g

Dimensions for mounting See operating and assembly instructions of the replace-
ment device: 3ADR020087M0401

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4036

Mounting information

The dimensions are in mm and in brackets in inch.

CAUTION!
System damage caused by voltage!
The exchange of a replacement device under voltage can cause permanent
system damage (destruction).

Data Value
Mounting position Vertical, terminal block facing downward

Cooling The natural convection cooling must not be hindered by
cable ducts or other switchgear cabinet equipment (clear-
ance between cable duct and device at least 20 mm).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4037

Ordering data

Order No. Scope of delivery
1SAP 800 400 R0010 Communication interface module CS31 16 DI, 8 DC, 8

DO, DC501-CS31-AD
1 6-pole terminal block
2 8-pole terminal blocks

1.6.2.4 Communication modules (AC500 standard)
1.6.2.4.1 Overview

AC500 communication modules are required for
● a connection to standard field bus systems and
● for integration into existing networks.
AC500 communication modules
● enable communication on different field buses.
● are mounted on the left side of the processor module on the same terminal base.
● are directly powered via the internal communication module bus of the terminal base.

A separate voltage source is not required.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4038

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

For information on mounting and demounting, please refer to the chapter
mounting and demounting the communication modules Ä Chapter 1.6.3.6.3.6
“Mounting/Demounting the communication modules” on page 5335.

The communication between the processor module and the communication modules takes
place via the communication module bus, which is integrated in the terminal base. Depending
on the used terminal base up to 6 communication modules can be connected.
● Ä Chapter 1.6.2.2.1 “TB51x-TB54x” on page 3786

There are no restrictions concerning which communication modules can be arranged for a
processor module.
Within the AC500 control system, the communication modules can be used as
● bus master or
● slave.
It depends on the
● selected protocol,
● the functionality of the communication module and
● the several field buses and networks.
The following name extensions of the device names describe the supported field bus/protocol:
● CMxyz-ETH: Ethernet
● CMxyz-DP: PROFIBUS
● CMxyz-PNIO: PROFINET
● CMxyz-ETHCAT: EtherCAT
● CMxyz-CN: CANopen
● CMxyz-RCOM: RCOM/RCOM+ protocol (and 2 serial interfaces)
● CMxyz-RS: 2 serial interfaces (COM1/COM2)
If a XC version of the device is available, for use in extreme ambient conditions (e.g. wider
temperature and humidity range), this is indicated with a snowflake sign.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4039

Compatibility of communication modules and communication interface modules
Table 382: Modbus TCP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

CM597-ETH CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

Table 383: PROFIBUS DP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM592-DP
master

CI541-DP
CI542-DP

x x -- remote I/O

CM592-DP
master

CI541-DP
CI542-DP

x -- -- hot-swap I/O

Table 384: PROFINET IO RT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x -- -- hot swap I/O

CM579-PNIO
controller

CI504-PNIO
CI506-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI504-PNIO
CI506-PNIO

x -- -- hot swap I/O

Table 385: CANopen
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM598-CN
master

CI581-CN
CI582-CN

x x -- remote I/O

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4040

Table 386: EtherCAT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-ETHCAT
master

CI511-ETHCAT
CI512-ETHCAT

x x -- remote I/O

Table 387: CS31 bus
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard COM1
interface

DC551-CS31
CI592-CS31

x x -- remote I/O

Onboard COM1
interface

CI590-CS31-HA x -- -- high availability

CM574-RS DC551-CS31
CI592-CS31

x x -- remote I/O

CM574-RS CI590-CS31-HA x -- -- high availability

Technical data (Overview)

Com-
muni-
cation
modul
e

Field
bus

Trans-
mis-
sion
rate

Field
bus
con-
nector

Pro-
cessor

Com-
muni-
cation
modul
e inter-
face

Cur-
rent
con-
sump-
tion
from
24 V
DC
power
supply
at the
ter-
minal
base of
the
CPU

Interna
l RAM
memor
y

External
RAM
memory

External
flash
memory

CM574
-RCOM

RCOM/
RCOM
+

2.4 ...
19.2
kBit/s

MC
0.5/9-
G-2.5,
9-pin,
male

Pow-
erPC

Dual-
port
memor
y, 8 kB

Typ. 80
mA

256 kB -- --

CM574
-RS

Serial
(ASCII/
Modbu
s)

9.6 ...
187.5
kBit/s

MC
0.5/9-
G-2.5,
9-pin,
male

Pow-
erPC

Dual-
port
memor
y, 8 kB

Typ. 80
mA

256 kB -- 512 kB
(firm-
ware) +
2 x 64
kB (user
data)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4041

Com-
muni-
cation
modul
e

Field
bus

Trans-
mis-
sion
rate

Field
bus
con-
nector

Pro-
cessor

Com-
muni-
cation
modul
e inter-
face

Cur-
rent
con-
sump-
tion
from
24 V
DC
power
supply
at the
ter-
minal
base of
the
CPU

Interna
l RAM
memor
y

External
RAM
memory

External
flash
memory

CM579
-
ETHCA
T

EtherC
AT

10 or
100
MBit/s

2 x
RJ45

Hilsche
r NETX
100

Dual-
port
memor
y, 16
kB

Typ. 85
mA

128 kB 8 MB 4 or 8
MB

CM582
-DP
CM592
-DP

PROFI
BUS
DP

9.6
kBit/s ..
. 12
MBit/s

D-sub,
9-pin,
female,
bended

Hilsche
r NETX
100

Dual-
port
memor
y, 16
kB

Typ. 65
mA

128 kB 8 MB 8 MB

CM598
-CN
CM588
-CN

CANop
en

10 ... 1
MBit/s

COM-
BICON
2x 5-
pin,
bended

Hilsche
r NETX
100

Dual-
port
memor
y, 16
kB

Typ. 65
mA

128 kB 8 MB 8 MB

CM589
-
PNIO(-
4)
CM579
-PNIO

PROFI
NET

100
MBit/s

2 x
RJ45

Hilsche
r NETX
100

Dual-
port
memor
y, 16
kB

Typ. 85
mA

128 kB 8 MB 4 or 8
MB

CM597
-ETH

2 x
Etherne
t

10 or
100
MBit/s

2 x
RJ45

Hilsche
r NETX
100

Dual-
port
memor
y, 16
kB

Typ. 85
mA

128 kB 8 MB 8 MB

1.6.2.4.2 Compatibility of communication modules and communication interface modules
Table 388: Modbus TCP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

CM597-ETH CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4042

Table 389: PROFIBUS DP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM592-DP
master

CI541-DP
CI542-DP

x x -- remote I/O

CM592-DP
master

CI541-DP
CI542-DP

x -- -- hot-swap I/O

Table 390: PROFINET IO RT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x -- -- hot swap I/O

CM579-PNIO
controller

CI504-PNIO
CI506-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI504-PNIO
CI506-PNIO

x -- -- hot swap I/O

Table 391: CANopen
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM598-CN
master

CI581-CN
CI582-CN

x x -- remote I/O

Table 392: EtherCAT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-ETHCAT
master

CI511-ETHCAT
CI512-ETHCAT

x x -- remote I/O

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4043

Table 393: CS31 bus
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard COM1
interface

DC551-CS31
CI592-CS31

x x -- remote I/O

Onboard COM1
interface

CI590-CS31-HA x -- -- high availability

CM574-RS DC551-CS31
CI592-CS31

x x -- remote I/O

CM574-RS CI590-CS31-HA x -- -- high availability

1.6.2.4.3 RCOM / RCOM+
CM574-RCOM for RCOM/RCOM+

1 5 LEDs for state display
2 Label
3 2 interfaces: 1 RCOM protocol interface, 1 CONSOLE

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4044

Purpose
Communication module CM574-RCOM is equipped with 2 serial interfaces (RCOM protocol
communication and Console) which provide the remote protocol RCOM/RCOM+.
Depending on the connection, the physical interface of the RCOM protocol interface and of the
debugging terminal interface is either RS-232 or RS-485.

Connections
Serial interfaces

The serial interface connectors (COM1/COM2) have the following pin assignment:

Pin Signal Interface Description

1

9

1 Term. P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit, positive

3 RxD/TxD-N RS-485 Receive/Transmit, negative

4 Term. N RS-485 Terminator N

5 RTS RS-232 Request to send (output)

6 TxD RS-232 Transmit data (output)

7 SGND Signal Ground Signal Ground

8 RxD RS-232 Receive data (input)

9 CTS RS-232 Clear to send (input)

Table 394: Protocols:
No. Protocol Description
COM1

1 Online access Online access for IEC 61131-3 programming via serial driver

2 Modbus Modbus RTU, master or slave

3 ASCII Any protocol with FB COM_SEND, COM_REC

4 SysLibCom Support for blocks contained in the SysLibCom.lib library

5 Multi Switch between two protocols (Online access, Modbus, ASCII,
SysLibCom) using the block COM_SET_PROT

6 CS31 bus CS31 bus master

7 RCOM/RCOM+ ABB remote protocol RCOM or RCOM+ (only available as sepa-
rate communication module CM574-RCOM)

COM2

1 Online access Online access for IEC 61131-3 programming with serial driver

2 Modbus Modbus RTU, master or slave

3 ASCII Any protocol with FB COM_SEND, COM_REC

4 SysLibCom Support for SysLibCom.lib library blocks

5 Multi Switch between two protocols (Online access, Modbus, ASCII,
SysLibCom) using the block COM_SET_PROT

PIN assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4045

Bus cable for RS-485

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω...150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Remarks Commonly used telephone cables with PE insulation and a
core diameter of > 0.8 mm are usually sufficient.

Cables with PVC core insulation and core diameter of
0.8 mm can be used up to a length of approx. 250 m. In
this case, the bus terminating resistor is approx. 100 Ω.

Cable lengths
The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate (transmission rate).
COM1 - RCOM:

Parameter Value
Transmission rate 2.4 kBaud to 19.2 kBaud

Maximum cable length On request

COM2 - CONSOLE:

Parameter Value
Transmission rate 19.2 kBaud

Maximum cable length On request

Transmission rate Maximum cable length

19.2 kBaud On request

Bus termination (RS-485 only)
The line ends of the bus segment must be equipped with bus terminating resistors. Normally,
these resistors are integrated in the interface connectors.

Bus cable

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4046

Master at the bus line end,
pull-up and pull-down activated,
bus termination 120 Ohms

Slave within
the bus line

Slave at the bus line end,
bus termination 120 Ohms

1
2
3
4

RxD/TxD-P
RxD/TxD-N

1
2
3
4

1
2
3
4

120
Ohms

120
Ohms

Term. P

Term. N

State LEDs

LED Color State Description
PWR Green ON Voltage is present

OFF Voltage is missing

RDY Yellow ON Communication module is ready

Flashes
cyclically

Event queue blocked (slave devices only)

OFF Hardware defective

RUN Green ON Normal operation

Flashes
cyclically

Protocol error occurred

OFF No communication

STA Yellow Flashes Traffic detected

ERR Red ON Error

OFF No error

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Interface Serial interface

Transmission rate 2.4 kbit/s to 19.2 kbit/s

Protocol RCOM/RCOM+

Interface connector MC 0.5/9-G-2.5, 9-pin, male

Processor PowerPC

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4047

Parameter Value
Usable CPUs PM57x, PM58x, PM59x Ä Chapter 1.6.2.3.2.1

“PM57x (-y), PM58x (-y) and PM59x (-y)”
on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Ambient temperature see:
System data AC500 Ä Chapter 1.6.3.6.1
“System data AC500” on page 5313

System Data AC500 XC Ä Chapter 1.6.3.7.1
“System data AC500-XC” on page 5389

Communication module bus Dual-port memory, 8 kB

Internal power supply Through the communication module bus of
the terminal base

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 80 mA

Internal RAM memory 256 kB

External RAM memory -

External flash memory 512 kB (firmware)

State display PWR, RDY, RUN, STA, ERR

Weight Ca. 150 g

Table 395: Technical data of the interfaces
Parameter Value
Serial interface standard EIA RS-232 or EIA RS-485

Interface connector Pluggable 9-pin terminal block

Potential separation Yes, from the CPU, 500 V DC

Serial interface parameters Protocol interface configurable via PLC config-
uration. Preset configuration for debugging the
terminal interface.

Modes of operation Data exchange

Protocols supported RCOM/RCOM+

The pin assignment of the serial interfaces RCOM and OPERATOR is identical to the serial
interface COM1 of the processor modules PM57x, PM58x and PM59x.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 170 401 R0201 CM574-RCOM, communication

module, 2 serial RS-232/485,
RCOM/RCOM+ protocol

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4048

1.6.2.4.4 Serial
CM574-RS with 2 serial interfaces

1 5 LEDs for state display
2 2 rotary switches for address setting
3 Label
4 2 serial communication interfaces

Purpose
Communication module CM574-RS is equipped with 2 serial interfaces (COM1 and COM2)
which can be used as programming interface or for communication e.g. for communication via
Modbus or ASCII.
The CM574-RS can be a CS31 master at COM1 and COM2.
Depending on the connection, the physical interface of COM1 and COM2 is either RS-232 or
RS-485.

Connections
Serial interfaces

The serial interface connectors (COM1/COM2) have the following pin assignment:PIN assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4049

Pin Signal Interface Description

1

9

1 Term. P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit, positive

3 RxD/TxD-N RS-485 Receive/Transmit, negative

4 Term. N RS-485 Terminator N

5 RTS RS-232 Request to send (output)

6 TxD RS-232 Transmit data (output)

7 SGND Signal Ground Signal Ground

8 RxD RS-232 Receive data (input)

9 CTS RS-232 Clear to send (input)

Table 396: Protocols:
No. Protocol Description
COM1

1 Online access Online access for IEC 61131-3 programming via serial driver

2 Modbus Modbus RTU, master or slave

3 ASCII Any protocol with FB COM_SEND, COM_REC

4 SysLibCom Support for blocks contained in the SysLibCom.lib library

5 Multi Switch between two protocols (Online access, Modbus, ASCII,
SysLibCom) using the block COM_SET_PROT

6 CS31 bus CS31 bus master

7 RCOM/RCOM+ ABB remote protocol RCOM or RCOM+ (only available as sepa-
rate communication module CM574-RCOM)

COM2

1 Online access Online access for IEC 61131-3 programming with serial driver

2 Modbus Modbus RTU, master or slave

3 ASCII Any protocol with FB COM_SEND, COM_REC

4 SysLibCom Support for SysLibCom.lib library blocks

5 Multi Switch between two protocols (Online access, Modbus, ASCII,
SysLibCom) using the block COM_SET_PROT

Bus cable for RS-485

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω...150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Bus cable

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4050

Bus line
Remarks Commonly used telephone cables with PE insulation and a

core diameter of > 0.8 mm are usually sufficient.

Cables with PVC core insulation and core diameter of
0.8 mm can be used up to a length of approx. 250 m. In
this case, the bus terminating resistor is approx. 100 Ω.

Cable lengths
The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate (transmission rate).
RS-232 (for point-to-point connection):

Parameter Value
Transmission rate 9.6 kBaud to 187.5 kBaud

Maximum cable length On request

RS-485 (for point-to-point or bus connection):

Parameter Value
Transmission rate 9.6 kBaud to 187.5 kBaud

Maximum cable length On request

Bus termination (RS-485 only)
The line ends of the bus segment must be equipped with bus terminating resistors. Normally,
these resistors are integrated in the interface connectors.

Master at the bus line end,
pull-up and pull-down activated,
bus termination 120 Ohms

Slave within
the bus line

Slave at the bus line end,
bus termination 120 Ohms

1
2
3
4

RxD/TxD-P
RxD/TxD-N

1
2
3
4

1
2
3
4

120
Ohms

120
Ohms

Term. P

Term. N

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4051

State LEDs

LED Color State Description
PWR Green ON (light) Voltage is present

OFF (dark) Voltage is missing

RDY Yellow Programmable Depends on user program

RUN Green Programmable Depends on user program

STA Yellow Programmable Depends on user program

ERR Red Programmable Depends on user program

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Protocol Programmable with Automation Builder e.g.

Modbus / ASCII via serial interfaces

Interface Serial interface

Serial interface standard EIA RS-232 or EIA RS-485

Potential separation Yes, from the CPU, 500 V DC

Serial interface parameters Configurable via software

Modes of operation Programming or data exchange

Transmission rate 9.6 kbit/s to 187.5 kbit/s

Protocol Programmable

Interface connector MC 0.5/9-G-2.5, 9-pin, male

Processor PowerPC

Usable CPUs PM57x, PM58x, PM59x Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x (-y) and PM59x (-y)”
on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Ambient temperature see:
System data AC500 Ä Chapter 1.6.3.6.1
“System data AC500” on page 5313

System Data AC500 XC Ä Chapter 1.6.3.7.1
“System data AC500-XC” on page 5389

Communication module bus Dual-port memory, 8 kB

Internal power supply Through the communication module bus of
the terminal base

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 80 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4052

Parameter Value
Internal RAM memory 256 kB

External RAM memory -

External Flash memory 512 kB (firmware) + 2 x 64 kB (user data)

Status display PWR, RDY, RUN, STA, ERR

Weight Ca. 150 g

Ordering data

Part no. Description Product life cycle phase *)
1SAP 170 400 R0201 CM574-RS, communication module,

2 serial RS232/485, free configurable
serial interface module

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.4.5 CANopen
CM588-CN - CANopen slave

● CANopen slave 1 Mbit/s
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4053

1 5 LEDs for state display
2 Label
3 Communication interface, 5-pin, Combicon, male, removable plug with spring terminals

Sign for XC version

Purpose
Communication module CM588-CN enables communication via the CANopen field bus. CM588-
CN Ä Chapter 1.6.2.4.5.1 “CM588-CN - CANopen slave” on page 4053 is a slave in a
CANopen network. It is connected to the processor module via an internal communication bus.
CM588-CN allows communicating of multiple CPUs in a CANopen network.

Connections
Field bus interface

Interface socket 5-pin COMBICON

Transmission standard ISO 11898, potential-free

Transmission protocol CANopen (CAN), 1 Mbaud max.

Transfer rate (transmis-
sion rate)

10 kbit/s, 20 kbit/s, 50 kbit/s, 100 kbit/s, 125 kbit/s, 250 kbit/s, 500
kbit/s, 800 kbit/s and 1 Mbit/s,

The CANopen connector has the following pin assignment:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4054

Interface PIN Signal Description

Terminal block
removed

Terminal block
inserted

1 CAN_GND CAN reference potential

2 CAN_L Bus line, receive/transmit line,
LOW

3 CAN_SHLD Shield of the bus line

4 CAN_H Bus line, receive/transmit line,
HIGH

5 NC Not connected

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

62.5 kbit/s 1000 m

20 kbit/s 2500 m

10 kbit/s 5000 m

For CANopen, only bus cables with characteristics as recommended in ISO 11898 are to be
used. The requirements for the bus cables depend on the length of the bus segment. Regarding
this, the following recommendations are given by ISO 11898:

Length of seg-
ment [m]

Bus cable (shielded, twisted pair) Max. transmis-
sion rate [kbit/s]

 Conductor
cross section
[mm²]

Line resistance
[W/km]

Wave impe-
dance [W]

0...40 0.25...0.34 /
AWG23, AWG22

70 120 1000 at 40 m

40...300 0.34...0.60 /
AWG22, AWG20

< 60 120 < 500 at 100 m

Pin assignment

Bus length

Types of bus
cables

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4055

Length of seg-
ment [m]

Bus cable (shielded, twisted pair) Max. transmis-
sion rate [kbit/s]

 Conductor
cross section
[mm²]

Line resistance
[W/km]

Wave impe-
dance [W]

300...600 0.50...0.60 /
AWG20

< 40 120 < 100 at 500 m

600...1000 0.75...0.80 /
AWG18

< 26 120 < 50 at 1000 m

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 822: CANopen interface, bus terminating resistors connected to the line ends

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

Bus terminating
resistors

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4056

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 823: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear. Please refer to
Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4057

State LEDs
The state of the CANopen communication module is displayed by means of 5 state LEDs.

Table 397: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green ON (light) Power supply available

OFF (dark) Power supply not available or defective
hardware

RDY Yellow ON Boot procedure

Blinking Boot failure

RUN Green ON Communication module is operational

OFF Communication module is not operational

CAN-RUN Green ON Device configured, CANopen bus in
OPERATIONAL state and cyclic data
exchange running

Blinking CANopen bus in PRE-OPERATIONAL
state and slave are being configured

CAN-ERR Red ON CANopen bus is off

Blinking Configuration error

Single flash Error counter overflow due to too many
error frames

Double flash A node-guard or a heartbeat event
occurred

OFF No error

CAN-RUN Yellow Blinking
(synchronously)

No production data available,
No bus communication possible.CAN-ERR Yellow

LED state
during
firmware
update

CAN-RUN Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.CAN-ERR Red

CAN-RUN Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

CAN-ERR Red

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Protocol CANopen slave

Technology Hilscher NETX 100

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4058

Parameter Value
Usable CPUs PM57x, PM58x, PM59x Ä Chapter 1.6.2.3.2.1

“PM57x (-y), PM58x (-y) and PM59x (-y)”
on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Bus connection Pluggable connector COMBICON, 2x5-pin

Internal power supply Via the communication module Interface of the
terminal base

Transfer rate 10 kbit/s to 1 Mbit/s

Transfer method According to CAN standard

Bus length (segment length max.) According to table: Maximum cable length
within a CANopen field bus

Indicators 5 LEDs

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 65 mA

Weight Ca. 150 g

Ambient temperature see:
System data AC500 Ä Chapter 1.6.3.6.1
“System data AC500” on page 5313

System Data AC500-XC Ä Chapter 1.6.3.7.1
“System data AC500-XC” on page 5389

Adjusting elements None

Quantity of input and output data per I/O
device

Max. 512 byte (respectively for input and
output)

Supported protocol services NMT slave
PDO
SDO server
Heartbeat
Nodeguard

Min. bus cycle 1 ms

Ordering data

Part no. Description Product life cycle phase *)
1SAP 172 800 R0001 CM588-CN, communication module

CANopen slave
Active

1SAP 372 800 R0001 CM588-CN-XC, communication
module CANopen slave, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4059

CM598-CN - CANopen master
● CANopen master 1 Mbit/s
● XC version for use in extreme ambient conditions available

1 5 LEDs for state display
2 Label
3 Communication interface, 5-pin, Combicon, male, removable plug with spring terminals

Sign for XC version

Purpose
Communication module CM598-CN enables communication over the CANopen field bus.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4060

Connections
Field bus interface

Interface socket 5-pin COMBICON

Transmission standard ISO 11898, potential-free

Transmission protocol CANopen (CAN), 1 Mbaud max.

Transfer rate (transmis-
sion rate)

10 kbit/s, 20 kbit/s, 50 kbit/s, 100 kbit/s, 125 kbit/s, 250 kbit/s, 500
kbit/s, 800 kbit/s and 1 Mbit/s,

The CANopen connector has the following pin assignment:

Interface PIN Signal Description

Terminal block
removed

Terminal block
inserted

1 CAN_GND CAN reference potential

2 CAN_L Bus line, receive/transmit line,
LOW

3 CAN_SHLD Shield of the bus line

4 CAN_H Bus line, receive/transmit line,
HIGH

5 NC Not connected

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

62.5 kbit/s 1000 m

20 kbit/s 2500 m

10 kbit/s 5000 m

For CANopen, only bus cables with characteristics as recommended in ISO 11898 are to be
used. The requirements for the bus cables depend on the length of the bus segment. Regarding
this, the following recommendations are given by ISO 11898:

Pin assignment

Bus length

Types of bus
cables

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4061

Length of seg-
ment [m]

Bus cable (shielded, twisted pair) Max. transmis-
sion rate [kbit/s]

 Conductor
cross section
[mm²]

Line resistance
[W/km]

Wave impe-
dance [W]

0...40 0.25...0.34 /
AWG23, AWG22

70 120 1000 at 40 m

40...300 0.34...0.60 /
AWG22, AWG20

< 60 120 < 500 at 100 m

300...600 0.50...0.60 /
AWG20

< 40 120 < 100 at 500 m

600...1000 0.75...0.80 /
AWG18

< 26 120 < 50 at 1000 m

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 824: CANopen interface, bus terminating resistors connected to the line ends

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

Bus terminating
resistors

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4062

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 825: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear. Please refer to
Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4063

State LEDs
Table 398: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green ON (light) Power supply available

OFF (dark) Power supply not available or defective
hardware

RDY Yellow ON Boot procedure

Blinking Boot failure

OFF ---

RUN Green ON Communication module is operational

Blinking ---

OFF Communication module is not operational

CAN-RUN Green ON Operational: Device is in the
OPERATIONAL state

Single Flash Stopped: Device is in STOPPED state

Blinking Pre-operational: Device is in the
PREOPERATIONAL state

OFF No communication or no power supply

CAN-ERR Red ON CANopen bus is off

Single flash Warning limit reached: At least one of the
error counters of the CAN controller has
reached or exceeded the warning level
(too many error frames)

Double flash Error control event: A guard event (NMT
Slave or NMTmaster) or a heartbeat event
(Heartbeat consumer) has occurred

OFF No Error: Device is in working condition

CAN-RUN Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.CAN-ERR Yellow

LED state
during
firmware
update

CAN-RUN Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.CAN-ERR Red

CAN-RUN Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

CAN-ERR Red

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4064

Parameter Value
Protocol CANopen master, CAN2A, CAN2B

Transmission rate 10 kbit/s to 1 Mbit/s

Ambient temperature see:
System data AC500 Ä Chapter 1.6.3.6.1
“System data AC500” on page 5313

System Data AC500 XC Ä Chapter 1.6.3.7.1
“System data AC500-XC” on page 5389

Usable terminal bases All TB5xx
Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Field bus connector Pluggable connector COMBICON, 5-pin

Technology Hilscher NETX 100

Indicators 5 LEDs

Internal power supply Via the communication module interface of the
terminal base

Current consumption from 24 V DC power
supply at the Terminal Base of the CPU

Typ. 65 mA

Number of Slaves Max. 126

Number of receive/transmit PDOs Max. 512 (respectively for receive and
transmit)

Total quantity of input and output data Max. 3584 byte (respectively for input and
output)

Weight Ca. 150 g

Ordering data

Part no. Description Product life cycle phase *)
1SAP 173 800 R0001 CM598-CN, communication module

CANopen master
Active

1SAP 373 800 R0001 CM598-CN-XC, communication
module CANopen master, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4065

1.6.2.4.6 EtherCAT
CM579-ETHCAT - EtherCAT master

1 5 LEDs for state display
2 2 rotary switches for address setting (not used)
3 Label
4 2 communication interfaces RJ45 (ETHCAT1 and ETHCAT2)

Intended purpose
Communication module CM579-ETHCAT is for EtherCAT communication.
The comunication module is configured via the dual-port memory by means of a system config-
urator. The configuration is saved on a non-volatile Flash EPROM memory.
Ä Chapter 1.7.3.4.3 “CM579-ETHCAT” on page 6500

Connections
Field bus interfaces

The EtherCAT communication module provides 2 RJ45 interfaces with the following pin assign-
ment. The pin assignment is used for the EtherCAT slaves (communication interface modules
CI5xy-ETHCAT) as well.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4066

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4067

State LEDs
The EtherCAT state is shown by the EtherCAT communication module's LEDs. Some LEDs are
two-colored.

Table 399: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN Green On Communication module is operational

Blinking ---

Off Communication module is not operational

STA1 Green On No bus error, communication running

Blinking Establishing communication

Off System error

STA2 Red On Configuration error

Blinking ---

Off No error

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 400: Meaning of the diagnosis LEDs
LED Color State Description

ETHCAT1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

ETHCAT1 LED "RX/TX" Yellow On Device sends/receives frames

Off No Ethernet connection

ETHCAT2 LED "Link" Green Connector ETHCAT2 is not used

ETHCAT2 LED "RX/TX" Yellow

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4068

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Internal Supply Via the communication module interface of the

terminal base

Protocol EtherCAT

Field bus connector 2 x RJ45 (ETHCAT1 and ETHCAT2)

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Bus length (segment length max.) 100 m at 100 Mbit/s

Indicators 5 LEDs

Usable CPUs PM57x, PM58x, PM59x Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x (-y) and PM59x (-y)”
on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Ambient temperature System data AC500 Ä Chapter 1.6.3.6.1
“System data AC500” on page 5313

System Data AC500 XC Ä Chapter 1.6.3.7.1
“System data AC500-XC” on page 5389

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal supply Via the communication module interface of the
terminal base

Number of slaves Limited to 200

Quantity of input and output data for a single
slave

Max. 5760 bytes (respectively for input and
output)

Total quantity of input and output data Max. 5760 bytes (only valid for asynchro-
nous operation, for synchronous operation the
reachable values depends on the additional
load of SoE, CoE and EoE, typical reachable
values are 1024 bytes).

Supported protocols RTC - Real-time cyclic protocol, class 1
RTA - Real-time acyclic protocol

Acyclic services ● CoE upload
● CoE download (1500 bytes max.)
● Emergency

Min. bus cycle 1 ms

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4069

Parameter Value
Max. size of the bus configuration file 2 MB

Weight Ca. 170 g

Ordering data

Part no. Description Product life cycle phase *)
1SAP 170 902 R0101 CM579-ETHCAT, EtherCAT

communication module
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.4.7 Ethernet
CM597-ETH - Communication module Ethernet

● TCP/IP with integrated 2-port switch
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4070

1 5 LEDs for state display
2 2 rotary switches for address setting
3 Label
4 2 communication interfaces Ethernet RJ45

Sign for XC version

Purpose
The communication module provides communication via the Ethernet bus. Ethernet connection
can be established directly to the communication module, an additional switch is not necessary.
The Ethernet communication module is an intelligent 100Base-T-Ethernet communication inter-
face based on the highly integrated netX100 microcontroller. The complete TCP/IP protocol and
the application layers are supported.
The user interface is based on a dual-port memory. The Ethernet communication runs via RJ45
interfaces.
The communication module is configured via the dual-port memory, the diagnosis interface or a
TCP/IP connection by means of a system configurator.

It is not possible to close a RSTP ring by using the two ports of the communica-
tion module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4071

Applications:
● TCP/IP for PC/ Automation Builder (programming)
● UDP (communication via the function blocks ETH_UDP_SEND Ä Chapter 1.5.4.13.1.11

“ETH_UDP_SEND” on page 1225 and ETH_UDP_REC Ä Chapter 1.5.4.13.1.10
“ETH_UDP_REC” on page 1222

● Modbus on TCP/IP (Modbus on TCP/IP, client and server)
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Connections
Field bus interfaces

The Ethernet communication module has 2 RJ45 interfaces:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

State LEDs
The Ethernet state is shown by the Ethernet communication module's LEDs.

Pin assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4072

Table 401: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

RUN Green On Communication module is operational

Off Communication module is not operational

STA1 Green Blinking (1 Hz) Device ready

Blinking (5 Hz) Device configured / UDP traffic

On Modbus communication established

STA2 Red On Modbus communication error

Off No error

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 402: Meaning of the diagnosis LEDs
LED Color State Description

ETH1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

ETH1 LED "RX/TX" Yellow On ---

Blinking Device sends/receives frames

Off ---

ETH2 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

ETH2 LED "RX/TX" Yellow On ---

Blinking Device sends/receives frames

Off ---

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4073

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Field bus 2 x Ethernet

Transmission rate 10 Mbit/s or 100 Mbit/s

Protocol Ethernet TCP/IP, UDP/IP, Modbus TCP, ICMP
(Ping), DNS, SMTP (email)

Field bus connectors 2 x RJ45, with integrated 2-port switch

Processor Hilscher NETX 100

Usable CPUs PM57x, PM58x, PM59x Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x (-y) and PM59x (-y)”
on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Communication module interface Dual-port memory, 16 kB

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal power supply Via the communication module interface of the
terminal base

External RAM memory 8 MB

External flash memory 8 MB

State display PWR, RDY, RUN, STA, ERR, 2 x LINK, 2 x
ACT

Ethernet 10/100 Base-TX, internal switch, 2 x RJ45
socket

LED indication State indication via 5 LEDs

Station identification Rotary switch, 0...255 (00...FFhex)

Transmission mode Half or full-duplex operation, adjustable

Transmission rate 10 or 100 Mbit/s, adjustable

Auto negotiation Optionally adjustable

MAC address Optionally configurable

Ethernet frame types Ethernet II (RFC 894), IEEE 802.3 receive
only (RFC 1042)

Weight Ca. 170 g

Ordering data

Part no. Description Product life cycle phase *)
1SAP 173 700 R0001 CM597-ETH, communication module

Ethernet TCP/IP with integrated 2-port
switch

Active

1SAP 373 700 R0001 CM597-ETH-XC,
communication module Ethernet
TCP/IP with integrated 2-port switch,
XC version

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4074

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.4.8 PROFIBUS
CM582-DP - PROFIBUS DP slave

● PROFIBUS DP slave 12 Mbit/s
● Compatible with Automation Builder version starting from V2.0.2, and with CPU firmware

version starting from V2.6
● XC version for use in extreme ambient conditions available

1 5 LEDs for state display
2 Label
3 Communication interface PROFIBUS DP D-sub, 9-pin, female

Sign for XC version

Purpose
Communication module CM582-DP enables communication over the PROFIBUS DP field bus.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4075

For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Connections
Field bus interface

The PROFIBUS DP connector (9-pin, female) has the following pin assignment:

Pin Signal Description
1 NC Not connected

2 NC Not connected

3 RxD/TxD-P Receive/Transmit positive

4 CNTR-P Control signal for repeater, positive

5 DGND Reference potential for data exchange and +5 Vl

6 VP +5 V (power supply for the bus terminating resistors)

7 NC Not connected

8 RxD/TxD-N Receive/Transmit negative

9 NC Not connected

Table 403: Correlation of transmission rate, bit time and cable length:
Tranmission rate in [kbit/s] Bit time [tBit] Max. cable length in [m]
9.6 104.2 µs 1200

19.2 52.1 µs 1200

31.25 32 µs 1200

45.45 22 µs 1200

93.75 10.7 µs 1200

187.5 5.3 µs 1000

500 2 µs 400

1500 666.7 ns 200

3000 333.3 ns 100

6000 166.7 ns 100

12000 83.3 ns 100

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4076

State LEDs
The PROFIBUS state is shown by state LEDs.

Table 404: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green ON (light) Power supply available.

OFF (dark) Power supply not available or defective
hardware

RDY Yellow ON Boot procedure

Blinking Boot failure

OFF ---

RUN Green ON Communication module is operational

Blinking ---

OFF Communication module is not operational

STA Green ON Communication to all slaves is established

Flashes cyclic ---

Flashes non-
cyclic

No configuration or stack error

OFF No communication

ERR Red Blinking No data exchange to the master module
or the cable is disconnected

OFF No error

STA Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.ERR Yellow

LED state
during
firmware
update

STA Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.ERR Red

STA Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

ERR Red

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4077

Parameter Value
State indication By 5 LEDs

PWR, RDY, RUN, STA, ERR

Usable CPUs PM57x, PM58x, PM59x Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x (-y) and PM59x (-y)”
on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 65 mA

Internal power supply Through the communication module interface
of the terminal base

Maximum number of cyclic input data 244 bytes

Maximum number of cyclic output data 244 bytes

Maximum number of acyclic read/write 240 bytes

Configuration data max. 244 bytes

Parameter data 237 bytes application specific parameters

Processor Hilscher NETX 100

Internal RAM memory 8 MB

External Flash memory 8 MB

Weight Ca. 150 g

Parameter Value
Interface socket 9-pin, D-sub socket

Transmission standard EIA RS-485 acc. to IEC 61158/61784, poten-
tial-free

Transmission protocol PROFIBUS DP

Transmission rate 9.6 kbit/s up to 12 Mbit/s

Ordering data

Part no. Description Product life cycle phase *)
1SAP 172 200 R0001 CM582-DP, communication module

PROFIBUS DP slave, 12 MBit/s
Active

1SAP 372 200 R0001 CM582-DP, communication module
PROFIBUS DP slave, 12 MBit/s,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Technical data
of the interface

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4078

CM592-DP - PROFIBUS DP master
● Master 12 Mbit/s
● XC version for use in extreme ambient conditions available

1 5 LEDs for state display
2 Label
3 Communication interface PROFIBUS DP D-sub, 9-pin, female

Sign for XC version

Purpose
Communication module CM592-DP enables communication over the PROFIBUS DP field bus.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4079

Connections
Field bus interface

The PROFIBUS DP connector (9-pin, female) has the following pin assignment:

Pin Signal Description
1 NC Not connected

2 NC Not connected

3 RxD/TxD-P Receive/Transmit positive

4 CNTR-P Control signal for repeater, positive

5 DGND Reference potential for data exchange and +5 Vl

6 VP +5 V (power supply for the bus terminating resistors)

7 NC Not connected

8 RxD/TxD-N Receive/Transmit negative

9 NC Not connected

Table 405: Correlation of transmission rate, bit time and cable length:
Tranmission rate in [kbit/s] Bit time [tBit] Max. cable length in [m]
9.6 104.2 µs 1200

19.2 52.1 µs 1200

31.25 32 µs 1200

45.45 22 µs 1200

93.75 10.7 µs 1200

187.5 5.3 µs 1000

500 2 µs 400

1500 666.7 ns 200

3000 333.3 ns 100

6000 166.7 ns 100

12000 83.3 ns 100

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4080

State LEDs
The PROFIBUS state is shown by state LEDs.

Table 406: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green ON (light) Power supply available

OFF (dark) Power supply not available or defective
hardware

RDY Yellow ON Boot procedure

Blinking Boot failure

OFF ---

RUN Green ON Communication module is operational

Blinking ---

OFF Communication module is not operational

STA Green ON Communication to all slaves is established

Flashes cyclic ---

Flashes non-
cyclic

No configuration or stack error

OFF No communication

ERR Red ON Communication to one/all slaves is dis-
connected

Flashes cyclic Communication to at least one slave is
disconnected

OFF No error

STA Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.ERR Yellow

LED state
during
firmware
update

STA Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.ERR Red

STA Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

ERR Red

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4081

Parameter Value
State indication By 5 LEDs

PWR, RDY, RUN, STA, ERR

Usable CPUs PM57x, PM58x, PM59x Ä Chapter 1.6.2.3.2.1
“PM57x (-y), PM58x (-y) and PM59x (-y)”
on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 65 mA

Internal power supply Through the communication module interface
of the terminal base

Maximum number of supported slaves 125 (DPV0/DPV1)

Maximum number of total cyclic input data 5712 bytes
(Status information is separately managed)

Maximum number of total cyclic output data 5760 bytes

Maximum number of cyclic intput data 244 bytes/slave

Maximum number of cyclic output data 244 bytes/slave

Configuration data max. 244 bytes per slave

Parametrization data per slave 7 bytes/slave standard parameters
237 bytes/slave application specific parame-
ters

Maximum number of acyclic read/write 240 bytes per slave and telegram

Processor Hilscher NETX 100

Internal RAM memory 8 MB

External Flash memory 8 MB

Weight Ca. 150 g

Parameter Value
Interface socket 9-pin, D-sub socket

Transmission standard EIA RS-485 acc. to IEC 61158/61784, poten-
tial-free

Transmission protocol PROFIBUS DP

Transmission rate 9.6 kbit/s up to 12 Mbit/s

Ordering data

Part no. Description Product life cycle phase *)
1SAP 173 200 R0001 CM592-DP, communication module

PROFIBUS DP master, 12 MBit/s
Active

1SAP 373 200 R0001 CM592-DP, communication module
PROFIBUS DP master, 12 MBit/s,
XC version

Active

Technical data
of the interface

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4082

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PROFIBUS connection details
9-pin D-sub connector, male

Parameter Value
Fastening torque 0.4 Nm

Pin Signal Description
1 Shield Shielding, protective ground

2 not used -

3 RxD/TxD-P Reception / transmission line,
positive

4 CBTR-P Control signal for repeater,
positive (optional)

5 DGND Reference potential for data
lines and +5 V

6 VP +5 V, supply voltage for bus
terminating resistors

7 not used -

8 RxD/TxD-N Reception / transmission line,
negative

9 CNTR-N Control signal for repeater,
negative (optional)

Parameter Value
Type Twisted pair (shielded)

Characteristic impedance 135 Ω...165 Ω

Cable capacitance < 30 pF/m

Conductor diameter of the cores ≥ 0.64 mm

Conductor cross section of the cores ≥ 0.34 mm²

Cable resistance per core ≤ 55 Ω/km

Loop resistance (resistance of two cores) ≤ 110 Ω/km

The maximum possible cable length of a PROFIBUS subnet within a segment depends on the
tranmission rate (baud rate).

Attachment plug
for the bus
cable

Assignment

Bus cable

Cable lengths

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4083

Transmission Rate Maximum Cable Length
9.6 / 19.2 / 93.75 kBaud 1200 m

187.5 kBaud 1000 m

500 kBaud 400 m

1.5 MBaud 200 m

3 MBaud to 12 MBaud 100 m

Branch lines are generally permissible for transmission rates of up to 1500 kbit/s. But in fact
they should be avoided for transmission rates higher than 500 kbit/s.

The line ends (of the bus segments) have to be terminated using bus terminating resistors
according to the drawing below. The bus terminating resistors are usually placed inside the bus
connector.

390 Ohms

220 Ohms

390 Ohms

VP (+5 V)

GND (0 V)

RxD/TxD-P

RxD/TxD-N

Data Line B

Data Line A

6

3

8

5

One bus segment can have up to 32 subscribers. Using repeaters a system can be expanded to
up to 126 subscribers. Repeaters are also required for longer transfer lines. Please note that a
repeater's load to the bus segment is the same as the load of a normal bus subscriber. The sum
of normal bus subscribers and repeaters in one bus segment must not exceed 32.

Station 32 Station 61

Bus segment 2:
max. 30 stations
+ 2 repeaters

R Repeater RR Repeater R

Station 1 Station 31

Bus segment 1:
max. 31 stations
+ 1 repeater

R

max. 200 m max. 200 m

Fig. 826: Principle example for a PROFIBUS-DP system with repeaters (1500 kbit/s baud rate)

1.6.2.4.9 PROFINET
CM579-PNIO - PROFINET IO RT controller

● PROFINET IO controller
● Integrated 2-port switch
● XC version for use in extreme ambient conditions available

Bus terminating
resistors

Repeaters

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4084

1 5 LEDs for state display
2 2 rotary switches for address setting (not used)
3 Label
4 2 communication interfaces RJ45 (PNIO1 and PNIO2)

Sign for XC version

Intended purpose
The communication module is for PROFINET RT communication.
The PROFINET communication module includes an internal Ethernet switch. The connection to
the Ethernet can be established directly to the communication module. An additional switch is
not necessary.
The communication module is configured via the dual-port memory by means of a system
configurator. The configuration is saved on a non-volatile Flash EPROM memory.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4085

Functionality

Parameter Value
Protocol PROFINET IO RT

Usable CPUs PM57x, PM58x, PM59x
Ä Chapter 1.6.2.3.2.1 “PM57x (-y), PM58x (-
y) and PM59x (-y)” on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Field bus connector 2 RJ45 (PNIO1 and PNIO2), with integrated
2-port switch

Internal supply Via the communication module interface of the
terminal base

Connections
Field bus interfaces

The communication module provides 2 RJ45 interfaces.

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

Pin assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4086

State LEDs
The PROFINET state is shown by the state LEDs.

Table 407: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN Green On Communication module is operational

Blinking ---

Off Communication module is not operational

STA1 Red On Diagnosis alarm reported. At least one
device is having a diagnosis alarm. In
incorporation with STA2 PNIO: License
fault.

Blinking System error

Off No system error

STA2 Red On No connection; in incorporation with STA1
PNIO: license fault

Blinking Configuration fault: some configured I/O
modules are not connected

Off No bus error, communication is running

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 408: Meaning of the diagnosis LEDs
LED Color State Description

PNIO1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

PNIO1 LED "RX/TX" Yellow On ---

Blinking PROFINET device sends/receives
frames

Off ---

PNIO2 LED "Link" Green On Ethernet connection established

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4087

LED Color State Description
Off No Ethernet connection

PNIO2 LED "RX/TX" Yellow On ---

Blinking PROFINET device sends/receives
frames

Off ---

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Protocol PROFINET IO RT

Bus connection 2 RJ45 (PNIO1 and PNIO2), with integrated 2-
port switch

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Bus length (segment length max.) 100 m

Indicators 5 LEDs

Usable terminal bases All TB5xx
Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Supported alarm types Process alarm, diagnostic alarm, return of Sub-
Module, plug alarm, pull alarm

Alarm processing Requires handling in application program

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal supply Via the communication module interface of the
terminal base

Weight Ca. 170 g

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4088

Parameter Value
Supported protocols RTC - real-time cyclic protocol, class 1

RTA - real-time acyclic protocol
DCP - discovery and configuration protocol *)
CL-RPC - connectionless remote procedure call
Since revision FW 2.4.8.0 additionally
LLDP - link layer discovery protocol
SNMP - simply network management protocol
(SNMP v1)

Acyclic services PNIO read / write (max. 1392 bytes per telegram,
max. 4096 bytes per service request)

Total quantity of input and output data

 CM579-PNIO < FW 2.4.8.0 1024 bytes per I/O module
3072 bytes in total

 CM579-PNIO = FW 2.4.8.0 1024 bytes per I/O module
4096 bytes in total

 CM579-PNIO > FW 2.4.8.0 1440 bytes per I/O module
4096 bytes in total

Min. bus cycle 1 ms

Conformance class CC A

*) CM579-PNIO does not allow setting "Station name" by using PROFINET service "DCP SET
NameOfStation".

Ordering data

Part no. Description Product life cycle phase *)
1SAP 170 901 R0101 CM579-PNIO, PROFINET

communication module
Active

1SAP 370 901 R0101 CM579-PNIO-XC, PROFINET
communication module, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CM589-PNIO(-4) - PROFINET IO RT with 4 devices
● PROFINET IO device
● Integrated 2-port switch
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4089

1 5 LEDs for state display
2 2 rotary switches for setting the IO device identifier
3 Label
4 2 communication interfaces RJ45 (PNIO1 and PNIO2)

Sign for XC version

The communication module is for PROFINET RT communication.
The PROFINET communication module includes an internal Ethernet switch. The connection to
the Ethernet can be established directly to the communication module. An additional switch is
not necessary.
The communication module is configured via the dual-port memory by means of a system
configurator. The configuration is saved on a non-volatile Flash EPROM memory.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

CM589-PNIO(-4)
CM589-PNIO supports one application relation to communicate to one single
PROFINET IO controller.

CM589-PNIO-4 supports 4 application relations to communicate to up to 4
PROFINET IO controllers in parallel using PROFINET Shared Device tech-
nology.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4090

Functionality

Parameter Value
Protocol PROFINET IO RT

Usable CPUs PM57x, PM58x, PM59x
Ä Chapter 1.6.2.3.2.1 “PM57x (-y), PM58x (-
y) and PM59x (-y)” on page 3848

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Field bus connector 2 RJ45 (PNIO1 and PNIO2), with integrated
2-port switch

Internal supply Via the communication module interface of the
terminal base

Connections
Field bus interfaces

The PROFINET communication module provides 2 RJ45 interfaces:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4091

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

State LEDs
The PROFINET state is shown by the state LEDs.

Table 409: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN Green On Communication module is operational

Blinking ---

Off Communication module is not operational

STA1 Red On System error; watchdog timeout

Blinking

Off No system error

STA2 Red On No connection; no configuration

Blinking No data exchange

Off No bus error, communication is running

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4092

Table 410: Meaning of the diagnosis LEDs
LED Color State Description

PNIO1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

PNIO1 LED "RX/TX" Yellow On PROFINET device sends/receives
frames

Blinking PROFINET device sends/receives
frames

Off ---

PNIO2 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

PNIO2 LED "RX/TX" Yellow On PROFINET device sends/receives
frames

Blinking PROFINET device sends/receives
frames

Off ---

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Protocol PROFINET IO RT

Bus connection 2 RJ45 (PNIO1 and PNIO2), with integrated
2-port switch

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Bus length (segment length max.) 100 m

Indicators 5 LEDs

Usable terminal bases All TB5xx Ä Chapter 1.6.2.2.1 “TB51x-TB54x”
on page 3786

Supported alarm types Process alarm, diagnostic alarm, return of
SubModule, plug alarm, pull alarm

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal supply Via the communication module interface of the
terminal base

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4093

Parameter Value
Setting of the I/O device identifier With 2 rotary switches at the front side of the

module

Weight Ca. 170 g

Supported protocols RTC - real-time cyclic protocol, class 1
RTA - real-time acyclic protocol
DCP - discovery and configuration protocol *)
CL-RPC - connectionless remote procedure
call
LLDP - link layer discovery protocol
SNMP - simply network management protocol
MRP - MRP Client

Acyclic services PNIO read / write
CM589-PNIO < FW 1.4.0: max. 1024 bytes
CM589-PNIO ≥ FW 1.4.0: max. 8096 bytes
CM589-PNIO-4: max. 8096 bytes

Total quantity of input and output data CM589-PNIO < FW 1.4.0 (respectively for
input and output): max. 1024 byte
CM589-PNIO ≥ FW 1.4.0 (respectively for
input and output): max. 1440 byte
CM589-PNIO-4 (respectively for input and
output): max. 1440 byte

Min. bus cycle 1 ms

Conformance class CC B

*) Setting NameOfStation via service "DCP SET NameOfStation" is enabled only if rotary
switches are adjusted to position "00".

Ordering data

Part no. Description Product life cycle phase *)
1SAP 172 900 R0011 CM589-PNIO, PROFINET

communication module
Active

1SAP 372 900 R0011 CM589-PNIO-XC, PROFINET
communication module, XC version

Active

1SAP 172 900 R0111 CM589-PNIO-4, PROFINET
communication module

Active

1SAP 372 900 R0111 CM589-PNIO-4-XC, PROFINET
communication module, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4094

1.6.2.5 Terminal units (AC500 standard)

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor module PM585-ETH with firmware version as of V2.8.1.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Hot swap
Further information about hot swap: Ä Chapter 1.6.4.1.7 “Hot swap”
on page 5463.

1.6.2.5.1 TU507-ETH and TU508-ETH for Ethernet communication interface modules
● TU507-ETH, Ethernet terminal unit, 24 V DC, screw terminals
● TU508-ETH, Ethernet terminal unit, 24 V DC, spring terminals
● TU508-ETH-XC, Ethernet terminal unit, 24 V DC, spring terminals, XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4095

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2x 25 pins) to connect the inserted Ethernet communication interface module
2b Plug (3x 19 pins) to connect the inserted Ethernet communication interface module
3 With a screwdriver, inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
4 2 holes for wall mounting
5 2 RJ45 interfaces with indication LEDs for connection with the Ethernet network
6 30 terminals for signals and process supply voltages (UP and UP3)
7 DIN rail

The Ethernet communication interface modules plug into the Ethernet terminal unit. When
properly seated, they are secured with two mechanical locks. All the connections are made
through the Ethernet terminal unit, which allows removal and replacement of the Ethernet
communication interface modules without disturbing the wiring at the Ethernet terminal unit.
The Ethernet terminal units TU507-ETH and TU508-ETH are specifically designed for use with
AC500/S500 Ethernet communication interface modules (e. g. CI501-PNIO).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4096

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.3.6.4.3 “Terminals at the terminal unit”
on page 5338.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.3.6.2.3 “Mechanical dimen-
sions S500” on page 5323

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

The assignment of the other terminals is dependent on the inserted communication interface
module.

XC version

Terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4097

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of I/O channels per module Max. 24 (depending on the inserted communi-

cation interface module)

Distribution of the channels into groups 3 groups of max. 8 channels each (1.0...1.7,
2.0...2.7, 3.0...3.7), the allocation of the chan-
nels is given by the inserted Ethernet bus
module

Network interface connector 2 RJ45, 8-pole

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP, UP3 and
ZP)

Ethernet 10/100 base-TX or 100 base-TX (depending
on CI5xx module plugged in), 2 RJ45 socket

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring-type terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4098

Ordering data

Part no. Description Product life cycle phase *)
1SAP 214 200 R0001 TU507-ETH, Ethernet terminal unit,

24 V DC, screw terminals
Active

1SAP 214 000 R0001 TU508-ETH, Ethernet terminal unit,
24 V DC, spring terminals

Active

1SAP 414 000 R0001 TU508-ETH-XC, Ethernet terminal
unit, 24 V DC, spring terminals,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.5.2 TU509 and TU510 for communication interface modules
● TU509, terminal unit, 24 V DC, screw terminals
● TU510, terminal unit, 24 V DC, spring terminals
● TU510-XC, terminal unit, 24 V DC, spring terminals, XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4099

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2 25 pins) to connect the inserted communication interface module
2b Plug (3 19 pins) to connect the inserted communication interface module
3 With a screwdriver, inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
4 2 holes for wall mounting
5 D-sub 9 (female) for connection with the PROFIBUS network
6 30 terminals for signals and process supply voltages (UP and UP3)
7 DIN rail

The communication interface modules plug into the terminal unit. When properly plugged-in,
they are secured with two mechanical locks. All the connections are established via the terminal
unit, which allows removal and replacement of the communication interface modules without
disturbing the wiring at the terminal unit.
The terminal units TU509 and TU510 are specifically designed for use with AC500/S500 com-
munication interface modules (e. g. CI451-DP).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4100

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.3.6.4.3 “Terminals at the terminal unit”
on page 5338.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.3.6.2.3 “Mechanical dimen-
sions S500” on page 5323

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
Terminal 4.8: process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V

The assignment of the other terminals depends on the inserted communication interface module
(see communication interface modules for CANopen and PROFIBUS).

XC version

Terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4101

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of I/O channels per module Max. 24 (depending on the inserted communi-

cation interface module)

Distribution of the channels into groups 3 groups of max. 8 channels each (2.0...2.7,
3.0...3.7, 4.0...4.7), the allocation of the chan-
nels is given by the inserted communication
interface module

Network interface connector 9-pin D-sub connector, female

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP, UP3 and
ZP)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

Ordering data

Part no. Description Product life cycle phase *)
1SAP 211 000 R0001 TU509, terminal unit, 24 V DC, screw

terminals
Active

1SAP 210 800 R0001 TU510, terminal unit, 24 V DC, spring
terminals

Active

1SAP 410 800 R0001 TU510-XC, terminal unit, 24 V DC,
spring terminals, XC version

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4102

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.5.3 TU515, TU516, TU541 and TU542 for I/O modules
● TU515, I/O terminal unit, 24 V DC, screw terminals
● TU516, I/O terminal unit, 24 V DC, spring terminals
● TU516-XC, I/O terminal unit, 24 V DC, spring terminals, XC version
● TU516-H, I/O terminal unit, hot swap, 24 V DC, spring terminals
● TU516-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals, XC version
● TU541, I/O terminal unit, 24 V DC, screw terminals
● TU542, I/O terminal unit, 24 V DC, spring terminals
● TU542-XC, I/O terminal unit, 24 V DC, spring terminals, XC version
● TU542-H, I/O terminal unit, hot swap, 24 V DC, spring terminals
● TU542-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals, XC version
The input/output modules plug into the I/O terminal unit. When properly seated, they are
secured with two mechanical locks. All the connections are established via the terminal unit,
which allows removal and replacement of the I/O modules without disturbing the wiring at the
terminal unit.

1 I/O bus (10 pins, male) to connect the previous terminal unit, the CPU terminal base or the
communication interface module to the terminal unit

2 I/O bus (10 pins, female) to connect other terminal units
3a Plug (2 x 25 pins) to connect the inserted I/O modules

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4103

3b Plug (2 x 19 pins) to connect the inserted I/O modules
4 With a screwdriver inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
5 Holes for screw mounting
6 40 terminals for signals and process supply voltage
7 DIN rail
8 White border signifies hot swap capability of the terminal unit

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor module PM585-ETH with firmware version as of V2.8.1.

Hot swap is not supported by AC500-eCo V3 CPU!

Hot swap

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4104

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4105

Device Min. required device index for I/O module as of
FW Version 3.0.14

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC561 B2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for XC
version.

The figure 4 in the Part no. 1SAP4... (lable) identifies the XC version.

XC version

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4106

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.3.6.4.3 “Terminals at the terminal unit”
on page 5338.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.3.6.2.3 “Mechanical dimen-
sions S500” on page 5323

The following terminals are used for connection of the process supply voltage.

 Terminals
Type 1.8 2.8 3.8 4.8 1.9 2.9 3.9 4.9

TU515,
TU516
and
TU516-H

These terminals are internally connected
with assignment: process supply voltage
UP = +24 V DC

These terminals are internally connected
with assignment: process supply voltage
ZP = 0 V

TU541,
TU542
and
TU542-H

These terminals
are internally con-
nected with assign-
ment: process
voltage UP = +24 V
DC

Separate
process
supply
voltage
UP3 =
+24 V
DC

Separate
process
supply
voltage
UP4 =
+24 V
DC

These terminals
are internally con-
nected with assign-
ment: process
supply voltage ZP =
0 V

Separate
process
supply
voltage
ZP = 0 V

Separate
process
supply
voltage
ZP = 0 V

The assignment of the other terminals depends on the inserted communication interface module
(see the description of the respective module used).

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4107

Parameter Value
Number of channels per module Max. 32

Distribution of the channels into groups 4 groups of 8 channels each (1.0...1.7,
2.0...2.7, 3.0...3.7, 4.0...4.7), the allocation of
the channels is given by the inserted I/O
module

Rated voltage 24 V DC

Max. permitted total current 10 A, per separated process voltage terminal
or for internal connection of process voltages

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

Ordering data

Part no. Description Product life cycle phase *)
1SAP 212 200 R0001 TU515, I/O terminal unit, 24 V DC,

screw terminals
Active

1SAP 212 000 R0001 TU516, I/O terminal unit, 24 V DC,
spring terminals

Active

1SAP 412 000 R0001 TU516-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

1SAP 215 000 R0001 TU516-H, I/O terminal unit, hot swap,
24 V DC, spring terminals, XC version

Active

1SAP 415 000 R0001 TU516-H-XC, I/O terminal unit,
hot swap, 24 V DC, spring terminals

Active

1SAP 213 000 R0001 TU541, I/O terminal unit, 24 V DC,
screw terminals

Active

1SAP 213 200 R0001 TU542, I/O terminal unit, 24 V DC,
spring terminals

Active

1SAP 413 200 R0001 TU542-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

1SAP 215 200 R0001 TU542-H, I/O terminal unit, hot swap,
24 V DC, spring terminals

Active

1SAP 415 200 R0001 TU542-H-XC, I/O terminal unit,
hot swap, 24 V DC, spring terminals,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4108

1.6.2.5.4 TU517 and TU518 for communication interface modules
● TU517, terminal unit, 24 V DC, screw terminals
● TU518, terminal unit, 24 V DC, spring terminals
● TU518-XC, terminal unit, 24 V DC, spring terminals, XC version

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2 25 pins) to connect the inserted communication interface module
2b Plug (2 19 pins) to connect the inserted communication interface module
3 With a screwdriver, inserted in this place, the terminal unit and the adjacent I/O terminal unit

can be shoved from each other
4 2 holes for wall mounting
5 10 terminals for connection with the bus system
6 30 terminals for signals and process supply voltages (UP and UP3)
7 DIN rail

The communication interface modules plug into the terminal unit. When properly plugged-in,
they are secured with two mechanical locks. All the connections are established via the terminal
unit, which allows removal and replacement of the communication interface modules without
disturbing the wiring at the terminal unit.
The terminal units TU517 and TU518 are specifically designed for use with AC500/S500 com-
munication interface modules (e. g. CI581-CN, CI541-DP):
● CANopen communication interface modules
● DeviceNet modules
● PROFIBUS DP communication interface modules

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4109

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.3.6.4.3 “Terminals at the terminal unit”
on page 5338.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.3.6.2.3 “Mechanical dimen-
sions S500” on page 5323

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted communication interface
module:
● Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
● Terminal 4.8: process supply voltage UP3 = +24 V DC
● Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V
The assignment of the other terminals depends on the inserted communication interface module
(see communication interface modules for CANopen and PROFIBUS).

XC version

Terminals

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4110

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of I/O channels per module Max. 24 (depending on the inserted communi-

cation interface module)

Distribution of the channels into groups 3 groups of max. 8 channels each (2.0...2.7,
3.0...3.7, 4.0...4.7), the allocation of the chan-
nels is given by the inserted communication
interface module

Network interface connector 10 screw or spring terminals (1.0...1.9)

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP, UP3 and
ZP)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

Ordering data

Part no. Description Product life cycle phase *)
1SAP 211 400 R0001 TU517, terminal unit, 24 V DC, screw

terminals
Active

1SAP 211 200 R0001 TU518, terminal unit, 24 V DC, spring
terminals

Active

1SAP 411 200 R0001 TU518-XC, terminal unit, 24 V DC,
spring terminals, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4111

1.6.2.5.5 TU520-ETH for PROFINET communication interface modules
● TU520-ETH, 2 RJ45 interfaces for connection to PROFIBUS network, 3 removable connec-

tors for bus systems
● TU520-ETH-XC, 2 RJ45 interfaces for connection to PROFIBUS network, 3 removable

connectors for bus systems, XC version

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2 25 pins) to connect the inserted PROFINET communication interface module
2b Plug (3 19 pins) to connect the inserted PROFINET communication interface module
3 With a screwdriver, inserted in this place, the PROFINET I/O terminal unit and the adjacent

I/O terminal unit can be shoved from each other
4 2 holes for wall mounting
5 3 removable connectors to connect the subordinated bus systems
6 2 RJ45 interfaces with indication LEDs for connection with the PROFINET network
7 6 spring terminals for process supply voltage (UP)
8 DIN rail

The PROFINET communication interface modules plug into the PROFINET IO terminal unit.
When properly plugged-in, they are secured with two mechanical locks. All the connections are
established via the PROFINET IO terminal unit, which allows removal and replacement of the
communication interface modules without disturbing the wiring at the PROFINET IO terminal
unit.
The PROFINET IO terminal unit TU520-ETH are specifically designed for use with AC500/S500
PROFINET communication interface modules (e. g. CI504-PNIO, CI506-PNIO).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4112

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver (opens terminal)

For information about wiring specifications see the description for the terminal
unit Ä Chapter 1.6.3.6.4.3 “Terminals at the terminal unit” on page 5338.

For a detailed description of the mounting, disassembly and connection of the
terminal units and the I/O modules, please refer to the "System Assembly,
Construction and Connection" chapter Ä Chapter 1.6.3.6.3 “Mounting and
demounting” on page 5325.

The terminals 1.0, 2.0, 3.0, 1.1, 2.1 and 3.1 are electrically interconnected within the PROFINET
IO terminal unit and always have the same assignment, irrespective of the inserted PROFINET
communication interface module:

XC version

Spring terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4113

● Terminals 1.0, 2.0 and 3.0: process supply voltage UP = +24 V DC
● Terminals 1.1, 2.1 and 3.1: process supply voltage ZP = 0 V
The assignment of the bus system terminals depends on the inserted PROFINET communica-
tion interface module (see Ethernet communication interface modules overview).

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Ethernet 10/100 base-TX or 100 base-TX (depending

on the plugged CI5xx module), 2 RJ45 socket

Number of bus system connectors 3 (the type of bus system depends on
the PROFINET IO communication interface
module)

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP and ZP)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

Ordering data

Part no. Description Product life cycle phase *)
1SAP 214 400
R0001

TU520-ETH, PROFINET I/O terminal
unit, 24 V DC, spring terminals

Active

1SAP 414 400
R0001

TU520-ETH-XC, PROFINET I/O
terminal unit, 24 V DC, spring
terminals, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.5.6 TU531 and TU532 for I/O modules
● TU531, I/O terminal unit, 230 V AC, screw terminals
● TU532, I/O terminal unit, 230 V AC, spring terminals

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4114

● TU532-XC, I/O terminal unit, 230 V AC, spring terminals, XC version
● TU532-H, I/O terminal unit, hot swap, 230 V AC, spring terminals
● TU532-H-XC, I/O terminal unit, hot swap, 230 V AC, spring terminals, XC version

1 I/O bus (10 pins, male) to connect the previous terminal unit, the CPU terminal base or the
communication interface module to the terminal unit

2 I/O bus (10 pins, female) to connect other terminal units
3a Plug (2 x 25 pins) to connect the inserted I/O modules
3b Plug (3 x 19 pins) to connect the inserted I/O modules
4 With a screwdriver inserted in this place, the terminal unit and the adjacent I/O terminal unit

can be shoved from each other
5 Holes for screw mounting
6 40 terminals for signals and process supply voltage
7 DIN rail
8 White border signifies hot swap capability of the terminal unit

The input/output modules (I/O modules) plug into the I/O terminal unit. When properly plugged-
in, they are secured with two mechanical locks. All the connections are established via the
terminal unit, which allows removal and replacement of the I/O modules without disturbing the
wiring at the terminal unit.
The terminal units TU531 and TU532 are specifically designed for use with AC500/S500 I/O
modules that incorporate 115-230 V AC inputs and/or 230 V AC relay outputs.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4115

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor module PM585-ETH with firmware version as of V2.8.1.

Hot swap is not supported by AC500-eCo V3 CPU!

Hot swap

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4116

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4117

Device Min. required device index for I/O module as of
FW Version 3.0.14

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC561 B2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

XC version

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4118

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.3.6.4.3 “Terminals at the terminal unit”
on page 5338.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.3.6.2.3 “Mechanical dimen-
sions S500” on page 5323

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, independent of the inserted module:
● Terminals 1.8 to 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 to 4.9: process supply voltage ZP = 0 V
The assignment of the other terminals depends on the inserted communication interface module
(see the description of the respective module used).
The supply voltage of 24 V DC for the module's circuitry comes from the I/O expansion bus (I/O
bus).

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4119

Parameter Value
Number of channels per module 32

Distribution of the channels into groups 4 groups of 8 channels each (1.0...1.7,
2.0...2.7, 3.0...3.7, 4.0...4.7), the allocation of
the channels is given by the inserted I/O
module

Terminals 1.8...4.8 and 1.9...4.9

 Max. voltage 30 V DC

 Max. permitted total current 10 A

Terminals 1.0...1.7, 2.0...2.7, 3.0...3.7, 4.0...4.7

 Max. voltage 300 V AC 1)

 Max. permitted current 3 A 2)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

1) Only when the voltage is not limited by the specification of the I/O channel or the supply input
which is internally connected to the terminal.
2) The terminals are connected to the electronic module via internal connectors (X22 (or 3b),
X23 (or 3b), X32, X33 and X34). The current per terminal is limited by the permitted current of
these connectors.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 217 200
R0001

TU531, terminal unit, 230 V AC,
relays, screw terminals

Active

1SAP 217 000
R0001

TU532, terminal unit, 230 V AC,
relays, spring terminals

Active

1SAP 417 000
R0001

TU532-XC, terminal unit, 230 V AC,
relays, spring terminals, XC version

Active

1SAP 215 100
R0001

TU532-H, terminal unit, hot swap,
230 V AC, relays, spring terminals

Active

1SAP 415 100
R0001

TU532-H-XC, terminal unit, hot swap,
230 V AC, relays, spring terminals, XC
version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4120

1.6.2.5.7 TU551-CS31 and TU552-CS31 for CS31 communication interface modules
● TU551-CS31, CS31 bus terminal unit, 24 V DC, screw terminals
● TU552-CS31, CS31 bus terminal unit, 24 V DC, spring terminals
● TU552-CS31-XC, CS31 bus terminal unit, 24 V DC, spring terminals, XC version

1 I/O bus (10 pins, female) to connect other terminal units
2a Plug (2 25 pins) to connect the inserted I/O modules
2b Plug (2 19 pins) to connect the inserted I/O modules
3 With a screwdriver inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
4 2 holes for wall mounting
5 CS31 bus interface
6 30 terminals for signals and process supply voltage
7 DIN rail

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4121

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

R1

R2

B1

B2

FE

B1

B2

FE

UP

ZP

R1 Resistor + (end-of-line)

R2 Resistor - (end-of-line)

B1 CS31 bus +

B2 CS31 bus -

FE Functional earth

B1 CS31 bus +

B2 CS31 bus -

FE Functional earth

UP 24 V DC process voltage

ZP 0 V process voltage

The CS31 communication interface modules plug into the terminal unit. When properly plugged-
in, they are secured with two mechanical locks. All the connections are established via the
terminal unit, which allows removal and replacement of the CS31 communication interface
modules without disturbing the wiring at the terminal unit.
The terminal units TU551-CS31 and TU552-CS31 are specifically designed for use with S500
CS31 communication interface modules that incorporate only 24 V DC inputs/outputs or inter-
face signals.

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

PIN assignment
for bus interface

XC version

Terminals

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4122

– For information about wiring specifications see the description of the
terminal units Ä Chapter 1.6.3.6.4.3 “Terminals at the terminal unit”
on page 5338.

– For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly, Construction and Con-
nection chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

– For information about mechanical dimensions, please refer to the Mechan-
ical dimensions S500 chapter Ä Chapter 1.6.3.6.2.3 “Mechanical dimen-
sions S500” on page 5323

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
● Terminals 1.8 to 4.8: process voltage UP = +24 V DC
● Terminals 1.9 to 4.9: process voltage ZP = 0 V
The assignment of the other terminals depends on the inserted CS31 bus module.

The supply voltage of 24 V DC for the module's circuitry comes from ZP and UP.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of channels per module 24

Distribution of the channels into groups 3 groups of 8 channels each (2.0...2.7,
3.0...3.7, 4.0...4.7), the allocation of the chan-
nels is given by the inserted CS31 communi-
cation interface module

CS31 field bus connector Terminals 1.0 to 1.7

Rated voltage 24 V DC

Max. permitted total current 10 A (between the terminals 1.8...4.8 and
1.9...4.9)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4123

Ordering data

Part no. Description Product life cycle phase *)
1SAP 210 600
R0001

TU551-CS31, CS31 bus terminal unit,
24 V DC, screw terminals

Active

1SAP 210 400
R0001

TU552-CS31, CS31 bus terminal unit,
24 V DC, spring terminals

Active

1SAP 410 400
R0001

TU552-CS31-XC, CS31 bus terminal
unit, 24 V DC, spring terminals,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.6 I/O modules

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor module PM585-ETH with firmware version as of V2.8.1.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Hot swap
Further information about hot swap: Ä Chapter 1.6.4.1.7 “Hot swap”
on page 5463.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4124

1.6.2.6.1 Digital I/O modules
S500-eCo
DC561 - Digital input/output module

● 16 configurable digital inputs/outputs 24 V DC,
● Connection via Interfast
● Module-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the states of the inputs/outputs C0 to C15
3 Terminal number
4 Allocation of signal name
5 Interfast connector (20-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The digital I/O module DC561 can be connected to the following devices via the I/O bus
connector:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4125

● S500 communication interface modules (e. g. CI501-PNIO, CI541-DP, CI581-CN)
● AC500 CPUs
● other AC500 I/O modules

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

The module contains 16 digital channels in 1 group, each channel can be used as a digital 24 V
DC input or 24 V DC output.
The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

Functionality

Parameter Value
Digital inputs Max. 16 (24 V DC), can be used as sink inputs

Digital outputs Max. 16 (transistor outputs 24 V DC, max. 0.1 A)

LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage 24 V
DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is established out by using the 20-pin Interfast connector. For further informa-
tion, refer to the Interfast documentation.
The assignment of the terminals:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4126

Table 411: Assignment of the terminals for DC561
 PIN Signal Description

1 C0 Input/output signal C0

2 C1 Input/output signal C1

3 C2 Input/output signal C2

4 C3 Input/output signal C3

5 C4 Input/output signal C4

6 C5 Input/output signal C5

7 C6 Input/output signal C6

8 C7 Input/output signal C7

9 C8 Input/output signal C8

10 C9 Input/output signal C9

11 C10 Input/output signal C10

12 C11 Input/output signal C11

13 C12 Input/output signal C12

14 C13 Input/output signal C13

15 C14 Input/output signal C14

16 C15 Input/output signal C15

17 UP Process voltage UP +24 V DC

18 ZP Process voltage ZP 0 V DC

19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

The arrow located next to the Interfast connector marks terminal 1.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DC561.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4127

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Process supply voltage must be connected to UP/ZP of the module. The inputs
and UP/ZP must use the same power supply.

If DC561 with index A0 is used, the process supply voltage must stem from the
same source as the power supply voltage of the CPU. The index consists of 1
letter, followed by 1 digit, and can be found on the type plate of the module next
to the type designator "DC561".

The module provides several diagnosis functions Ä Chapter 1.6.2.6.1.1.1.6 “Diagnosis”
on page 4130.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.2.6.1.1.1.7
“State LEDs” on page 4130.

I/O Configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4128

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6100 1) WORD 6100
0x17D4

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

Remarks:

1) With CS31 and addresses smaller than 70, the value is increased by 1
2) The module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0x25, 0x17, 0x00;

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4129

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DI571

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs/outputs
C0...C15

Digital input
or
digital output

Yellow Input/output
is OFF

Input/output is ON
(the LEDs are only
operating if the
module's circuitry is
supplied via the
I/O bus)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4130

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process voltage UP

 Connections Terminals 17 and 19 for UP (+24 V DC); termi-
nals 18 and 20 for ZP (0 V)

 Rated value 24 V DC

 Current consumption via UP terminal 10 mA + 0.1 A per output (max.)

 Max. ripple 5 %

 Inrush current 0.000001 A2s

 Protection against reversed voltage Yes

 Protection fuse on UP Recommended; the outputs must be protected
by an 1 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the input/output group and the
rest of the module

Isolated groups 1 group for 16 channels

Surge voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module On request

Input data length 2 bytes

Output data length 2 bytes

Weight Ca. 115 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 16 configurable inputs (24 V DC)

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminals 18 and 20 (negative pole of the
process voltage, name ZP)

No effects of
multiple over-
loads

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4131

Parameter Value
Indication of the input signals 1 yellow LED per channel; the LED is ON when

the input signal is high (signal 1). The module is
powered via the I/O bus.

Input type according to EN 61131-2 Type 1 sink

Input signal range +24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal +5 V...+15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 -3 V...+5 V

Ripple with signal 1 +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire
proximity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 16 configurable transistor outputs

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminals 18 and 20 (negative pole of the
process voltage, signal name ZP)

Common power supply voltage Terminals 17 and 19 (positive pole of the
process voltage, signal name UP)

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1). The
module is powered via the I/O bus.

Way of operation Non-latching type

Output voltage at signal 1 UP -0.3 V at max. current

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output current

 Rated current per channel (max.) 0.1 A at UP 24 V DC

 Rated current per group (max.) 1.6 A

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4132

Parameter Value
 Rated current (all channels together,

max.)
1.6 A

 Lamp load (max.) Not applicable

 Max. leakage current with signal 0 < 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 1 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
load specification

Switching frequency

 With inductive loads Max. 0.5 Hz

Short-circuit-proof / overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC
signals

Yes

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2001 DC561, digital input/output module,

16 configurable inputs/outputs,
transistor output, interfast connector

Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DC562 - Digital input/output module
● 16 configurable digital inputs/outputs in 1 group, 24 V DC
● Module-wise galvanically isolated

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4133

1 I/O bus
2 16 yellow LEDs to display the states of the inputs/outputs C0 to C15
3 Terminal number
4 Allocation of signal name
5 Terminal block for input and output signals (9-pin)
6 Terminal block for input and output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4134

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage 24 V
DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital inputs and outputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4135

--- 1

C0 2

C1 3

C2 4

C3 5

C4 6

C5 7

C6 8

C7 9

--- 10

C8 11

C9 12

C10 13

C11 14

C12 15

C13 16

C14 17

C15 18

UP 19

ZP 20

Table 412: Assignment of the terminals:
Terminal Signal Description
1 --- Reserved

2 C0 Input/output signal C0

3 C1 Input/output signal C1

4 C2 Input/output signal C2

5 C3 Input/output signal C3

6 C4 Input/output signal C4

7 C5 Input/output signal C5

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4136

Terminal Signal Description
8 C6 Input/output signal C6

9 C7 Input/output signal C7

10 --- Reserved

11 C8 Input/output signal C8

12 C9 Input/output signal C9

13 C10 Input/output signal C10

14 C11 Input/output signal C11

15 C12 Input/output signal C12

16 C13 Input/output signal C13

17 C14 Input/output signal C14

18 C15 Input/output signal C15

19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DC562.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4137

Process supply voltage must be connected to UP/ZP of the module. The inputs
and UP/ZP must use the same power supply.

The following figure shows the connection of the digital input/output module DC562:

1

2

--

C0

4 C2

24 VDC
-
+

3 C1

5 C3

6 C4

7 C5

8 C6

9 C7

10

11

C8

13 C10

12 C9

14 C11

15 C12

16 C13

17 C14

18 C15

19 UP

20 ZP

In this connection example, the inputs/outputs C0...C7 are connected as inputs and the inputs/
outputs C8...C15 are connected as outputs.
The module provides several diagnosis functions Ä Chapter 1.6.2.6.1.1.2.6 “Diagnosis”
on page 4140.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.2.6.1.1.2.7
“State LEDs” on page 4140.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4138

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6155 1) WORD 6155
0x180B

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses less than 70, the value is increased by 1
2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x06
0x18, 0x0C, 0x00, 0x02, 0x00, 0x00;

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4139

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Inter-
face

Device Module Channel Error-
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DC562

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (4 = DC); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs/outputs
C0...C15

Digital input
or
digital output

Yellow Input/output
is OFF

Input/output is ON
(the LEDs are only
operating if the
module's circuitry is
supplied via the
I/O bus)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4140

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption via UP terminal 90 mA + 0.5 A per output (max.)

 Max. ripple 5 %

 Inrush current 0.000001 A2s

 Protection against reversed voltage Yes

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the input/output group and the
rest of the module

 Isolated groups 1 group for 16 channels

Surge voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 4.8 W

Input data length 2 bytes

Output data length 2 bytes

Weight Ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 16 configurable inputs (24 V DC)

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminal 20 (negative pole of the process
voltage, name ZP)

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1). The
module is powered through the I/O bus.

Input type according to EN 61131-2 Type 1 sink

No effects of
multiple over-
loads

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4141

Parameter Value
Input signal range +24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal +5 V...+15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 -3 V...+5 V

Ripple with signal 1 +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire
proximity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 16 configurable transistor outputs

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminal 20 (negative pole of the process
voltage, signal name ZP)

Common power supply voltage Terminal 19 (positive pole of the process
voltage, signal name UP)

Indication of the input signals 1 yellow LED per channel; the LED is ON when
the input signal is high (signal 1). The module
is powered through the I/O bus.

Way of operation Non-latching type

Output voltage at signal 1 UP -0.3 V at max. current

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 8 A

 Rated current (all channels together,
max.)

8 A

 Lamp load (max.) 5 W

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4142

Parameter Value
 Max. leakage current with signal 0 < 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching frequency

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC
signals

Yes

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 231 900 R0000 DC562, digital input/output module,

16 configurable inputs/outputs,
transistor output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4143

DI561 - Digital input module
● 8 digital inputs 24 V DC / 24 V AC (I0 to I7) in 1 group
● Module-wise galvanically isolated

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4144

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using a removable 9-pin terminal block. These terminal blocks
differ in their connection system (spring terminals or screw terminals, cable mounting from the
front or from the side). The terminal blocks are not included in the module's scope of delivery
and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital inputs:

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Table 413: Assignment of the terminals:
Terminal Signal Description
1 C0...7 Input common for signals I0 to

I7

2 I0 Input signal I0

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4145

Terminal Signal Description
3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI561.
An external power supply connection is not needed.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4146

The following figure shows the connection of the digital input module DI561:

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Connection of DI561 - sink inputs Connection of DI561 - source inputs

The module provides several diagnosis functions Ä Chapter 1.6.2.6.1.1.3.6 “Diagnosis”
on page 4148.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.2.6.1.1.3.7
“State LEDs” on page 4149.

I/O Configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4147

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6105 1) WORD 6105
0x17D9

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDA, 0x17, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4148

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input group and the rest of

the module

 Isolated groups 1 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 1.6 W

Weight Ca. 110 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4149

Technical data of the digital inputs

Parameter Value
Number of channels per module 8 inputs (24 V DC / 24 V AC)

Distribution of the channels into
groups

1 (8 channels per group)

Connections of the channels I0 to I7 Terminals 2 to 9

Reference potential for the channels
I0 to I7

Terminal 1 (plus or negative pole of the process supply
voltage, signal name C0..7)

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1). The module is powered
through the I/O bus.

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

 Signal 0 -5 V...+3 V -3 V...+5 V 0 V AC...5 V AC

 Undefined signal -15 V...-5 V +5 V...+15 V 5 V AC...14 V AC

 Signal 1 -30 V...-15 V +15 V...+30 V 14 V AC...27 V AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at
2-wire proximity switches)

1 mA Typ. 1 mA r.m.s.

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.
Refer to Ä Chapter 1.6.3.5.1 “System data AC500-eCo” on page 5233 for details

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2101 DI561, digital input module, 8 DI,

24 V DC / 24 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4150

Part no. Description Product life cycle phase *)
1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw

front, cable front, 6 pieces per unit
Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI562 - Digital input module
● 16 digital inputs 24 V DC / 24 V AC (I0 to I15) in 2 groups
● Group-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the signal states of the inputs I0 to I15
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4151

6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
The other electronic circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw-type terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital inputs:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4152

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

I8 11

I9 12

I10 13

I11 14

I12 15

I13 16

I14 17

I15 18

C8..15 10

−−− 19

−−− 20

The assignment of the terminals:

Terminal Signal Description
1 C0...7 Input common for signals I0 to I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 C8...15 Input common for signals I8 to I15

11 I8 Input signal I8

12 I9 Input signal I9

13 I10 Input signal I10

14 I11 Input signal I11

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4153

Terminal Signal Description
15 I12 Input signal I12

16 I13 Input signal I13

17 I14 Input signal I14

18 I15 Input signal I15

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI562.
An external power supply connection is not needed.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.2.6.1.1.4.6 “Diagnosis”
on page 4156.
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4154

The following figure shows the connection of the digital input module DI562:

1

2

C0..7

I0

4 I2

3 I1

5 I3

6 I4

7 I5

8 I6

9 I7

10

11

C8..15

I8

13 I10

12 I9

14 I11

15 I12

16 I13

17 I14

18 I15

19 ---

20 ---

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6 I4

7 I5

8 I6

9 I7

10

11

C8..15

I8

13 I10

12 I9

14 I11

15 I12

16 I13

17 I14

18 I15

19 ---

20 ---

24 V
DC/AC

+ / ~

– / ~

Connection of DI562 - sink inputs Connection of DI562 - source inputs

The meaning of the LEDs is described in section State LEDs Ä Chapter 1.6.2.6.1.1.4.7 “State
LEDs” on page 4157.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4155

For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6110 1) WORD 6110
0x17DE

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

Remarks:

1) With CS31 and addresses less than 70, the value is increased by 1
2) The module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDF, 0x17, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DI562

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4156

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I15 Digital input Yellow Input is OFF Input is ON

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4157

Parameter Value
Galvanic isolation Yes, between the input groups and the rest of

the module

 Isolated groups 2 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 3.2 W

Weight Ca. 115 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16 inputs (24 V DC / 24 V AC)

Distribution of the channels into groups 2 (8 channels per group)

Connections of the channels I0 to I7 Terminals 2 to 9

Connections of the channels I8 to I15 Terminals 11 to 18

Reference potential for the channels I0
to I7

Terminal 1 (positive or negative pole of the process
supply voltage, signal name C0..7)

Reference potential for the channels I8
to I15

Terminal 10 (positive or negative pole of the process
supply voltage, signal name C8..15)

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1). The module is pow-
ered through the I/O bus.

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

 Signal 0 -5 V...+3 V -3 V...+5 V 0 V AC...5 V AC

 Undefined signal -15 V...-5 V +5 V...+15 V 5 V AC...14 V AC

 Signal 1 -30 V...-15 V +15 V...+30 V 14 V AC...27 V
AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at 2-
wire proximity switches)

1 mA Typ. 1 mA r.m.s.

Input delay (0->1 or 1->0) Typ. 8 ms

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4158

Parameter Value
Input data length 2 bytes

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.
Refer to Ä Chapter 1.6.3.5.1 “System data AC500-eCo” on page 5233 for details

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2102 DI562, digital input module, 16 DI,

24 V DC / 24 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI571 - Digital input module
● 8 digital inputs 100-240 V AC (I0 to I7) in 8 groups
● Module-wise galvanically isolated

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4159

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4160

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital inputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4161

N0 2

I0 1

N1 4

I1 3

N2 6

I2 5

N3 8

I3 7

N4 11

I4 10

N5 13

I5 12

N6 15

I6 14

N7 17

I7 16

−−− 9

−−− 18

−−− 19

−−− 20

Table 414: Assignment of the terminals:
Terminal Signal Description
1 I0 Input signal I0

2 N0 Neutral conductor for the input signal I0

3 I1 Input signal I1

4 N1 Neutral conductor for the input signal I1

5 I2 Input signal I2

6 N2 Neutral conductor for the input signal I2

7 I3 Input signal I3

8 N3 Neutral conductor for the input signal I3

9 --- Reserved

10 I4 Input signal I4

11 N4 Neutral conductor for the input signal I4

12 I5 Input signal I5

13 N5 Neutral conductor for the input signal I5

14 I6 Input signal I6

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4162

Terminal Signal Description
15 N6 Neutral conductor for the input signal I6

16 I7 Input signal I7

17 N7 Neutral conductor for the input signal I7

18 --- Reserved

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI571.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the digital input module DI571:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4163

1

2

I0

N0

4 N1

3 I1

5 I2

6 N2

7 I3

8 N3

9 −−−

10

11

I4

N4

13 N5

12 I5

14 I6

15 N6

16 I7

17 N7

18 −−−

19 −−−

20 −−−

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L0
N0

L7
N7

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions Ä Chapter 1.6.2.6.1.1.5.7 “Diagnosis”
on page 4166.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.2.6.1.1.5.8
“State LEDs” on page 4166.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4164

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 0

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of the modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6115 1) WORD 6115
0x17E3

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses less than 70, the value is increased by 1
2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDF, 0x17, 0x00;

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4165

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

(the input voltage is
only displayed if the
supply voltage of the
module is ON)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4166

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the channels and the rest of the

module

 Isolated groups 8 (1 channel per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module On request

Weight Ca. 135 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8 AC inputs (100-240 V AC)

Distribution of the channels into groups 8 (1 channel per group)

Input voltage range 0 V AC..264 V AC (47 Hz...63 Hz)

Input current per channel (typically at 25 °C) <5 mA (at 40 V AC)
>6 mA (at 159 V AC, 50 Hz)
>7 mA (at 159 V AC, 60 Hz)

Connections of the channels I0 to I7 Terminals 1, 3, 5, 7, 10, 12, 14, 16

Reference potential for the channels I0 to I7 Terminals 2, 4, 6, 8, 11, 13, 15, 17

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1)

Input type according to EN 61131-2 Type 1

Input signal range

 Signal 0 (max.) 20 V AC

 Undefined signal 20 V AC < U < 79 V AC

 Signal 1 (min.) 79 V AC

Input delay

 Signal 0 -> 1 Typ. 15 ms

 Signal 1 -> 0 Typ. 30 ms

Input data length 1 byte

Max. permissible leakage current (at 2-wire
proximity switches)

1 mA

Max. cable length

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4167

Parameter Value
 Shielded 500 m

 Unshielded 300 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2103 DI571, digital input module, 8 DI,

100 V AC...240 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI572 - Digital input module
● 16 digital inputs 100-240 V AC (I0 to I15) in 2 groups
● Module-wise galvanically isolated

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4168

1 I/O bus
2 16 yellow LEDs to display the signal states of the inputs I0 to I15
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4169

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

I1 2

I0 1

I3 4

I2 3

I5 6

I4 5

I7 8

I6 7

I9 11

I8 10

LI11 13

I10 12

I13 15

I12 14

I15 17

I14 16

N0..7 9

N8..15 18

--- 19

--- 20

Fig. 827: Block diagram for the internal construction of the digital inputs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4170

Table 415: Assignment of the terminals
Terminal Signal Description
1 I0 Input signal I0

2 I1 Input signal I1

3 I2 Input signal I2

4 I3 Input signal I3

5 I4 Input signal I4

6 I5 Input signal I5

7 I6 Input signal I6

8 I7 Input signal I7

9 N0...7 Neutral conductor for the input signals I0...I7

10 I8 Input signal I8

11 I9 Input signal I9

12 I10 Input signal I10

13 I11 Input signal I11

14 I12 Input signal I12

15 I13 Input signal I13

16 I14 Input signal I14

17 I15 Input signal I15

18 N8...15 Neutral conductor for the input signals I8...I15

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI572.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4171

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4172

1

2

I0

I1

4 I3

3 I2

5 I4

6 I5

7 I6

8 I7

9 N0..7

10

11

I8

I9

13 I11

12 I10

14 I12

15 I13

16 I14

17 I15

18 N8..15

19 ---

20 ---

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

N

N

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions Ä Chapter 1.6.2.6.1.1.6.6 “Diagnosis”
on page 4175.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4173

Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Param-
eter
name

Value Internal
value

Data type
of
internal
value

Default
value

Min. Max. EDS Slot
Index

Module ID Internal 6160 1) WORD 6160
0x1810

0 65535 xx01 2)

Ignore
module

No 0 BYTE No
0x00

- - -

Yes 1

Parameter
length

Internal 3 BYTE 3 0 255 xx02 2)

Input
delay

20 ms 0 BYTE 20 ms
0x00

0 1 -

100 ms 1

1) With CS31 and addresses less than 70, the value is increased by 1.
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n).
GSD file:

Ext_Module_Prm_Data_Len = 7

Ext_User_Prm_Data_Const(0) = 0x18, 0x11, 0x00, 0x03, 0x00, 0x00, 0x00;

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4174

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

Param-
eter

Remark

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I15 Digital input Yellow Input is OFF Input is ON

(the input voltage is
only displayed if the
supply voltage of the
module is ON)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4175

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input groups and the rest of

the module

Isolated groups 2 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 6 W

Weight Ca. 222 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16 AC inputs (100-240 V AC)

Distribution of the channels into groups 2 (8 channels per group)

Input voltage range 0 V AC...264 V AC (47 Hz...63 Hz)

Input current per channel (typically at 25 °C) < 3 mA (at 40 V AC)
> 6 mA (at 164 V AC)
> 8 mA (at 240 V AC)

Connections of the channels I0..I7 Terminals 1...8

Connections of the channels I8...I15 Terminals 10...17

Reference potential for the channels I0...I7 Terminal 9

Reference potential for the channels I8...I15 Terminal 18

Indication of the input signals 1 yellow LED per channel. The LED is on
when the input signal is high (signal 1).

Input type according to EN 61131-2 Type 1

Input signal range

 Signal 0 (max.) 40 V AC

 Undefined signal 40 V AC < U < 79 V AC

 Signal 1 (min.) 79 V AC

Input delay

 Signal 0 -> 1 Typ. 24 ms

 Signal 1 -> 0 Typ. 24 ms

Input data length 2 bytes

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4176

Parameter Value
Max. permissible leakage current (at 2-wire prox-
imity switches)

1 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 230 500 R0000 DI572, digital input module, 16 DI,

100 V AC...240 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO561 - Digital output module
● 8 digital outputs 24 V DC (O0 to O7) in 1 group
● Module-wise galvanically isolated

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4177

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 to O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4178

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital outputs:

O0 11

O1 12

O2 13

O3 14

O4 15

O5 16

O6 17

O7 18

−−− 10

UP 19

ZP 20

Table 416: Assignment of the terminals:
Terminals Signal Description
10 --- Reserved

11 O0 Output signal O0

12 O1 Output signal O1

13 O2 Output signal O2

14 O3 Output signal O3

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4179

Terminals Signal Description
15 O4 Output signal O4

16 O5 Output signal O5

17 O6 Output signal O6

18 O7 Output signal O7

19 UP Process supply voltage
UP +24 V DC

20 ZP Process supply voltage
ZP 0 V

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO561.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the digital output module DO561:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4180

10

11

−−−

O0

13 O2

12 O1

14 O3

15 O4

16 O5

17 O6

18 O7

19 UP

20 ZP

24 VDC
−
+

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.2.6.1.1.7.6
“Diagnosis” on page 4182).
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.2.6.1.1.7.7
“State LEDs” on page 4183.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4181

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6120 1) WORD 6120
0x17E8

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xE9, 0x17, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DO561
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4182

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DO561
3 14 1...10 31 31 43 Internal error in the

module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
O0...O7

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4183

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal
20 for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A2s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by an 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the output group and the rest of
the module

Isolated groups 1 (8 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Power dissipation within the module (max.) 1.6 W

Weight Ca. 115 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 (8 channels per group)

Connection of the channels O0 to O7 Terminals 11 to 18

Common power supply voltage Terminal 19 (positive pole of the process
voltage, signal name UP)

Reference potential for the channels O0 to O7 Terminal 20 (negative pole of the process
voltage, signal name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered via the I/O bus

No effects of
multiple over-
loads

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4184

Parameter Value
Way of operation Non-latching type

Min. output voltage at signal 1 20 V DC at max. current consumption

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 4 A

 Lamp load (max.) 5 W

Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V
DC

No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2201 DO561, digital output module, 8 DO,

transistor output
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4185

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO562 - Digital output module
● 16 digital outputs 24 V DC (O0 to O15) in 1 group
● Module-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the signal states of the outputs O0 to O15
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4186

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital outputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4187

O8 11

O9 12

O10 13

O11 14

O12 15

O13 16

O14 17

O15 18

--- 10

UP 19

ZP 20

--- 1

O0 2

O1 3

O2 4

O3 5

O4 6

O5 7

O6 8

O7 9

Table 417: Assignment of the terminals:
Terminal Signal Description
1 --- Reserved

2 O0 Output signal O0

3 O1 Output signal O1

4 O2 Output signal O2

5 O3 Output signal O3

6 O4 Output signal O4

7 O5 Output signal O5

8 O6 Output signal O6

9 O7 Output signal O7

10 --- Reserved

11 O8 Output signal O8

12 O9 Output signal O9

13 O10 Output signal O10

14 O11 Output signal O11

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4188

Terminal Signal Description
15 O12 Output signal O12

16 O13 Output signal O13

17 O14 Output signal O14

18 O15 Output signal O15

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO562.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the digital output module DO562:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4189

10

11

O8

13 O10

12 O9

14 O11

15 O12

16 O13

17 O14

18 O15

19 UP

20 ZP

24 VDC
-
+

1

2

O0

4 O2

3 O1

5 O3

6 O4

7 O5

8 O6

9 O7

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4190

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.2.6.1.1.8.6
“Diagnosis” on page 4192).
The meaning of the LEDs is described in the section Status LEDs Ä Chapter 1.6.2.6.1.1.8.7
“State LEDs” on page 4192.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6145 1) WORD 6145
0x1801

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x06
0x18, 0x02, 0x00, 0x02, 0x00, 0x00;

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4191

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Inter- face Device Module Channel Error-
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = Module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
O0...O15

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4192

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 20 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A2s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be protected
by an 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the output group and the rest of
the module

Isolated groups 1 (16 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 1.4 W

Weight Ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 (16 channels per group)

Connection of the channels O0 to O7 Terminals 1 to 9

Connection of the channels O8 to O15 Terminals 11 to 18

Common power supply voltage Terminal 19 (positive pole of the process voltage,
signal name UP)

Reference potential for the channels O0 to
O15

Terminal 20 (negative pole of the process
voltage, signal name ZP)

No effects of
multiple over-
loads

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4193

Parameter Value
Indication of the output signals 1 yellow LED per channel; the LED is on when

the output signal is high (signal 1) and the
module is powered via the I/O bus

Way of operation Non-latching type

Min. output voltage at signal 1 UP -0.3 V at max. current consumption

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 2 bytes

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 8 A

 Lamp load (max.) 5 W

Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to driven
load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V
DC

No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 230 900 R0000 DO562, digital output module, 16 DO,

transistor output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4194

Part no. Description Product life cycle phase *)
1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw

front, cable front, 6 pieces per unit
Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO571 - Digital output module
● 8 digital normally open relay outputs 24 V DC / 24 V AC or 100-240 V AC, 2 A max.

(NO0 to NO7) in 2 groups
● Group-wise galvanically isolated

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4195

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 to O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4196

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminal L+ (process voltage 24 V DC). The negative
pole is provided by the I/O bus.

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital outputs:

NO212

NO111

R0..314

NO313

NO617

NO516

R4..719

NO718

NO010

NO415

L+20

Table 418: Assignment of the terminals:
Terminal Signal Description
10 NO0 Normally-open contact of the output NO0

11 NO1 Normally-open contact of the output NO1

12 NO2 Normally-open contact of the output NO2

13 NO3 Normally-open contact of the output NO3

14 R0..3 Output common for signals NO0 to NO3

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4197

Terminal Signal Description
15 NO4 Normally-open contact of the output NO4

16 NO5 Normally-open contact of the output NO5

17 NO6 Normally-open contact of the output NO6

18 NO7 Normally-open contact of the output NO7

19 R4..7 Output common for signals NO4 to NO7

20 L+ Process voltage L+ +24 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DO571.
The external power supply connection is carried out via the L+ (+24 V DC) terminal. The
negative pole of the external power supply is realized via the I/O bus. Therefore, the CPU/
communication interface module and the DO571 must have a common power supply.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4198

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..3 and
R4..7) does not exceed 8 A.
Never connect total currents > 8 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

The following figure shows the connection of the module:

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

24 VDC
-
+

24 VDC
-
+

Fig. 828: Connection of 24 V DC actuators

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4199

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

120 VAC/
240 VAC

 24 VAC/
~

~

L

N

L

N
120 VAC/
240 VAC

 24 VAC/

Fig. 829: Connection of 24 V AC or 100-240 V AC actuators

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

24 VDC

– +

CPU or
Bus Module

DO571

20

L+ / UP

I/O-Bus

M / ZP

L+

Fig. 830: Power supply - the negative connection is realized via the I/O bus

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4200

The L+ connection of the DO571 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.2.6.1.1.9.6
“Diagnosis” on page 4202).
The meaning of the LEDs is described in the section Status LEDs Ä Chapter 1.6.2.6.1.1.9.7
“State LEDs” on page 4203.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6125 1) WORD 6125
0x17ED

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4201

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x04
0xEF, 0x17, 0x00,\
0x01;

Diagnosis

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in

the I/O module
Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = Hardware address (e. g. of the DC551-CS31)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4202

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2:
1..10 = expansion 1..10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
O0...O7

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 20 for L+ (+24 V DC). The negative
pole is provided by the I/O bus.

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Inrush current (at power-up) 0.0035 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by a 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the output group and the rest
of the module

Isolated groups 2 (4 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.0 W

Weight Ca. 150 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4203

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 normally-open relay outputs

Distribution of the channels into groups 2 (4 channels per group)

Connection of the channels O0 to O3 Terminals 10 to 13

Connection of the channels O4 to O7 Terminals 15 to 18

Reference potential for the channels O0 to O3 Terminal 14 (signal name R0..3)

Reference potential for the channels O4 to O7 Terminal 19 (signal name R4..7)

Relay coil power supply Terminal 20 (positive pole of the process
supply voltage, signal name L+). The nega-
tive pole is provided by the I/O bus.

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)
and the module is powered via the I/O bus

Way of operation Non-latching type

Relay output voltage

 Rated value 24 V DC / 24 V AC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 1 byte

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC /
120 V AC / 240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only
pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 8 A

 Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 1 Hz

 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

No effects of
multiple over-
loads

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4204

Parameter Value
 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2202 DO571, digital output module, 8 DO,

relay output
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO572 - Digital output module
● 8 digital triac outputs (O0 to O7) in 8 groups
● 240 V AC
● Module-wise galvanically isolated

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4205

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 to O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4206

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital outputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4207

N02

O01

N14

O13

N27

O26

N39

O38

N412

O411

N514

O513

N617

O616

N719

O718

−−−5

−−−10

−−−15

−−−20

Table 419: Assignment of the terminals:
Terminal Signal Description
1 O0 Output signal O0

2 N0 Neutral conductor for the
output signal O0

3 O1 Output signal O1

4 N1 Neutral conductor for the
output signal O1

5 --- Reserved

6 O2 Output signal O2

7 N2 Neutral conductor for the
output signal O2

8 O3 Output signal O3

9 N3 Neutral conductor for the
output signal O3

10 --- Reserved

11 O4 Output signal O4

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4208

Terminal Signal Description
12 N4 Neutral conductor for the

output signal O4

13 O5 Output signal O5

14 N5 Neutral conductor for the
output signal O5

15 --- Reserved

16 O6 Output signal O6

17 N6 Neutral conductor for the
output signal O6

18 O7 Output signal O7

19 N7 Neutral conductor for the
output signal O7

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO572.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4209

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the module:

1

2

O0

N0

4 N1

3 O1

5 −−−

6 O2

7 N2

8 O3

9 N3

10

11

−−−

O4

13 O5

12 N4

14 N5

15 −−−

16 O6

17 N6

18 O7

19 N7

20 −−−

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L

N

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4210

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions (see chapter Diagnosis Ä Chapter
1.6.2.6.1.1.10.6 “Diagnosis” on page 4212).
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.2.6.1.1.10.7
“State LEDs” on page 4213.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6130 1) WORD 6130
0x17F2

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) With CS31 and addresses smaller than 70, the value is increased by 1
2) The module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4211

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xF3, 0x17, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4212

State LEDs

LED State Color LED = OFF LED = ON
Outputs
O0...O7

Digital output Yellow Output is
OFF

Output is ON

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the channels and the rest of the

module

Isolated groups 8 (1 channel per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module On Request

Weight ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 triac outputs

Distribution of the channels into groups 8 groups (1 channel per group)

Connection of the channels O0 to O7 Terminals 1, 3, 5, 7, 10, 12, 14, 16

Reference potential for the channels O0 to O7 Terminals 2, 4, 6, 8, 11, 13, 15, 17

Output voltage for signal 1 On Request

Max. leakage current with signal 0 1.1 mA root mean square at 132 V AC and
1.8 mA root mean square at 264 V AC

Output voltage

 Rated value 120 V AC or 240 V AC

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered via the I/O bus

No effects of
multiple over-
loads

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4213

Parameter Value
Way of operation Non-latching type

Output delay On Request

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.3 A

 Rated current per group (max.) 0.3 A

Surge current (max.) On request

Lamp load (max.) On request

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 10 Hz

 With inductive loads Not applicable

 With lamp loads Max. 10 Hz

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse 2 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

 Output current limitation No

Resistance to feedback against 230 V AC No

Connection of 2 outputs in parallel Not applicable

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2203 DO572, digital output module, 8 DO,

triac output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4214

Part no. Description Product life cycle phase *)
1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring

front, cable front, 6 pieces per unit
Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO573 - Digital output module
● 16 digital normally open relay outputs 24 V DC or 100-240 V AC (NO0 to NO15) in 2

groups, 2 A max.
● Group-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the signal states of the outputs O0 to O15
3 Terminal number

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4215

4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals L+ (process voltage 24 V DC) and M (0 V
DC); the M terminal is connected to the M terminal of the CPU
via the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital outputs:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4216

NO1012

NO911

NO1214

NO1113

NO1517

NO1416

L+19

R8..1518

NO810

NO1315

M20

NO01

NO23

NO12

NO56

NO45

NO78

NO67

NO34

R0..79

Table 420: Assignment of the terminals:
Terminal Signal Description
1 NO0 Normally-open contact of the output NO0

2 NO1 Normally-open contact of the output NO1

3 NO2 Normally-open contact of the output NO2

4 NO3 Normally-open contact of the output NO3

5 NO4 Normally-open contact of the output NO4

6 NO5 Normally-open contact of the output NO5

7 NO6 Normally-open contact of the output NO6

8 NO7 Normally-open contact of the output NO7

9 R0..7 Output common for signals NO0 to NO7

10 NO8 Normally-open contact of the output NO8

11 NO9 Normally-open contact of the output NO9

12 NO10 Normally-open contact of the output NO10

13 NO11 Normally-open contact of the output NO11

14 NO12 Normally-open contact of the output NO12

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4217

Terminal Signal Description
15 NO13 Normally-open contact of the output NO13

16 NO14 Normally-open contact of the output NO14

17 NO15 Normally-open contact of the output NO15

18 R8..15 Output common for signals NO8 to NO15

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DO573.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V
DC) terminals. The M terminal is electrically interconnected to the M/ZP terminal of the CPU/
communication interface module.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4218

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..7 and
R8..15) does not exceed 10 A.
Never connect total currents > 10 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

The following figure shows the connection of the module:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4219

10

11

NO8

NO9

13 NO11

12 NO10

14 NO12

15 NO13

16 NO14

17 NO15

18 R8..15

19 L+

20 M

24 V DC
-
+

1

2

NO0

NO1

4 NO3

3 NO2

5 NO4

6 NO5

7 NO6

8 NO7

9 R0..7

24 V DC
-
+

24 V DC -
+

Fig. 831: Connection of 24 V DC actuators

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4220

10

11

NO8

NO9

13 NO11

12 NO10

14 NO12

15 NO13

16 NO14

17 NO15

18 R8..15

19 L+

20 M

1

2

NO0

NO1

4 NO3

3 NO2

5 NO4

6 NO5

7 NO6

8 NO7

9 R0..7

24 V DC -
+

120 V AC/
240 V AC ~

L

N

120 V AC/
240 V AC ~

L

N

Fig. 832: Connection of 100-240 V AC actuators

The module provides several diagnosis functions (see section Diagnosis Ä Chapter
1.6.2.6.1.1.11.6 “Diagnosis” on page 4223).
The meaning of the LEDs is described in the section State LEDs Ä Chapter 1.6.2.6.1.1.10.7
“State LEDs” on page 4213.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4221

CPU /
Bus Module

24 V DC

− +

L+ / UPM / ZP

I/O−Bus DO573

L+M

Fig. 833: Power supply - the negative connection is realized via the I/O bus

The L+ connection of the DO573 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply .

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4222

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6150 1) WORD 6150
0x1806

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07 0x18, 0x07, 0x00, 0x03, 0x01, 0x00,
0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in

the I/O module
Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4223

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 11 Process voltage too

low
Check
process
voltage11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself, 1...10 = decentralized communication interface module 1...10,
ADR = Hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
NO0...NO15

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4224

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminals 19 for L+ (+24 V DC) and 20
for M (0 V DC)

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for L+ Recommended; the outputs must be
protected by an 5 A fast-acting fuse

Current consumption from 24 V DC power supply at
the L+/UP and M/ZP terminals of the CPU/communi-
cation interface module

Ca. 5 mA

Galvanic isolation Yes, between the output groups and the
rest of the module

Isolated groups 2 (8 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.0 W

Weight Ca. 160 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other
parts in the switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 normally-open relay outputs

Distribution of the channels into groups 2 (8 channels per group)

Connection of the channels NO0 to NO7 Terminals 1 to 8

Connection of the channels NO8 to NO15 Terminals 10 to 17

Reference potential for the channels NO0 to
NO7

Terminal 9 (signal name R0..7)

Reference potential for the channels NO8 to
NO15

Terminal 18 (signal name R8..15)

Relay coil power supply Terminals 19 and 20 (signal names L+ and
M)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered via the I/O bus

Way of operation Non-latching type

No effects of
multiple over-
loads

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4225

Parameter Value
Relay output voltage

 Rated value 24 V DC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 2 bytes

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC /
120 V AC / 240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only
pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 10 A

Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 1 Hz

 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 231 300 R0000 DO573, digital output module, 16 DO,

relay output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4226

Part no. Description Product life cycle phase *)
1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,

screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DX561 - Digital input/output module
● 8 digital inputs 24 V DC (I0 to I7) in 1 group
● 8 digital transistor outputs 24 V DC (O0 to O7) in 1 group
● Group-wise galvanically isolated

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4227

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 8 yellow LEDs to display the signal states of the outputs O0 to O7
4 Terminal number
5 Allocation of signal name
6 Terminal block for input signals (9-pin)
7 Terminal block for output signals (11-pin)
8 2 holes for wall-mounting with screws
9 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs and outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4228

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage 24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital inputs and outputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4229

O0 11

O1 12

O2 13

O3 14

O4 15

O5 16

O6 17

O7 18

−−− 10

UP 19

ZP 20

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Table 421: Assignment of the terminals:
Terminal Signal Description
1 C0...7 Input common for signals I0 to

I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 --- Reserved

11 O0 Output signal O0

12 O1 Output signal O1

13 O2 Output signal O2

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4230

Terminal Signal Description
14 O3 Output signal O3

15 O4 Output signal O4

16 O5 Output signal O5

17 O6 Output signal O6

18 O7 Output signal O7

19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DX561.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4231

The following figure shows the connection of the inputs to the digital input/output module
DX561:

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

Fig. 834: Connection of inputs - sink inputs

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Fig. 835: Connection of inputs - source inputs

The following figure shows the connection of the outputs to the module:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4232

10

11

−−−

O0

13 O2

12 O1

14 O3

15 O4

16 O5

17 O6

18 O7

19 UP

20 ZP

24 VDC
−
+

Fig. 836

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions (see chapter Diagnosis Ä Chapter
1.6.2.6.1.1.12.6 “Diagnosis” on page 4235).
The meaning of the LEDs is described in the Displays section Ä Chapter 1.6.2.6.1.1.12.7 “State
LEDs” on page 4236 chapter.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4233

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6135 1) WORD 6135
0x17F7

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =
(0) =

0x03
0xF8, 0x17, 0x00,\
0x01;

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4234

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4235

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

Outputs
O0...O7

Digital output Yellow Output is
OFF

Output is ON

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and ter-
minal 20 for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A²s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by an 3 A fast-acting fuse

Current consumption from 24 V DC power supply
at the L+/UP and M/ZP terminals of the CPU/com-
munication interface module

Ca. 10 mA

Galvanic isolation Yes, between the input group and the
output group and the rest of the module

Isolated groups 2 groups (1 group for 8 input channels, 1
group for 8 output channels)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.3 W

Weight ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

No effects of
multiple over-
loads

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4236

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group for 8 channels

Connections of the channels I0 to I7 Terminals 2 to 9

Reference potential for the channels I0 to I7 Terminal 1

Indication of the input signals 1 yellow LED per channel; the
LED is ON when the input signal
is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

Signal 0 -5 V...+3 V -3 V...+5 V

Undefined signal -15 V...+ 5 V +5 V...+15 V

Signal 1 -30 V...-15 V +15 V...+30 V

Ripple with signal 0 -5 V...+3 V -3 V...+5 V

Ripple with signal 1 -30 V...-15 V +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire proximity
switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 group of 8 channels

Connection of the channels O0 to O7 Terminals 11 to 18

Reference potential for the channels O0 to O7 Terminal 20 (negative pole of the process
voltage, name ZP)

Common power supply voltage Terminal 19 (positive pole of the process
voltage, name UP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)
and the module is powered via the I/O bus

Monitoring point of output indicator Controlled together with transistor

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4237

Parameter Value
Way of operation Non-latching type

Max. output voltage at signal 1 20 V DC at max. current consumption

Output delay

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 4 A

 Rated current (all channels together,
max.)

4 A

 Lamp load (max.) 5 W

 Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2301 DX561, digital input/output module,

8 DI 24 V DC, 8 DO 24 V DC,
transistor output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4238

Part no. Description Product life cycle phase *)
1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,

screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DX571 - Digital input/output module
● 8 digital inputs 24 V DC / 24 V AC (I0 to I7) in 1 group
● 8 digital normally open relay outputs 24 V DC / 24 V AC or 100-240 V AC, 2 A max.

(NO0 to NO7) in 2 groups
● Group-wise galvanically isolated

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4239

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 8 yellow LEDs to display the signal states of the outputs NO0 to NO7
4 Terminal number
5 Allocation of signal name
6 Terminal block for input signals (9-pin)
7 Terminal block for output signals (11-pin)
8 2 holes for wall-mounting with screws
9 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs and outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4240

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminal L+ (process voltage 24 V DC). The negative
pole is provided by the I/O bus.

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the digital inputs and outputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4241

NO212

NO111

R0..314

NO313

NO617

NO516

R4..719

NO718

NO010

NO415

L+20

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Table 422: Assignment of the terminals:
Terminal Signal Description
1 C0...7 Input common for signals I0 to

I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 NO0 Normally-open contact of the
output 0

11 NO1 Normally-open contact of the
output 1

12 NO2 Normally-open contact of the
output 2

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4242

Terminal Signal Description
13 NO3 Normally-open contact of the

output 3

14 R0...3 Output common for signals
O0 to O3

15 NO4 Normally-open contact of the
output 4

16 NO5 Normally-open contact of the
output 5

17 NO6 Normally-open contact of the
output 6

18 NO7 Normally-open contact of the
output 7

19 R4...7 Output common for signals
O4 to O7

20 L+ Process voltage +24 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DX571.
The external power supply connection is carried out via the L+ (+24 V DC) terminal. The
negative pole of the external power supply is realized via the I/O bus. Therefore, the CPU/
communication interface module and the DX571 must have a common power supply.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4243

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..3 and
R4..7) does not exceed 8 A.
Never connect total currents > 8 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.2.6.1.1.13.6
“Diagnosis” on page 4248).
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figures show the connection of the inputs to the digital input/output module
DX571:

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

Fig. 837: Connection of inputs - sink inputs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4244

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Fig. 838: Connection of inputs - source inputs

The following figures show the connection of the outputs to the module:

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

24 VDC
-
+

24 VDC
-
+

Fig. 839: Connection of 24 V DC actuators

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4245

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

120 VAC/
240 VAC

 24 VAC/
~

~

L

N

L

N
120 VAC/
240 VAC

 24 VAC/

Fig. 840: Connection of 24 V AC or 100-240 V AC actuators

The L+ connection of the DX571 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply.

CPU or
Bus Module

DX571

20

L+ / UP

I/O-Bus

M / ZP

L+

24 VDC

– +

Fig. 841: Power supply - the minus connection is realized via the I/O bus

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4246

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

The meaning of the LEDs is described in the Displays section Ä Chapter 1.6.2.6.1.1.13.7 “State
LEDs” on page 4249.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6140 1) WORD 6140
0x17FC

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4247

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =
(0) =

0x04
0xFD, 0x17, 0x00,\
0x01;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC

Browser
Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis

block
Class Inter face Device Module Channel Error

Identifier
Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace

I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

4 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Remarks:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4248

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = Module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or PNIO = Module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

Outputs
NO0...NO7

Digital output Yellow Output is
OFF

Output is ON

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 20 for L+ (+24 V DC). The neg-
ative pole is provided by the I/O bus.

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Inrush current (at power-up) 0.0035 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for L+ Recommended; the outputs must be pro-
tected by a 3 A fast-acting fuse

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4249

Parameter Value
Current consumption from 24 V DC power supply at
the L+/UP and M/ZP terminals of the CPU/commu-
nication interface module

Ca. 5 mA

Galvanic isolation Yes, between the input group and the
output group and the rest of the module

Isolated groups 3 groups (1 group for 8 input channels, 2
groups for 8 output channels)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.3 W

Weight Ca. 150 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into
groups

1 group for 8 channels

Connections of the channels I0 to I7 Terminals 2 to 9

Reference potential for the channels
I0 to I7

Terminal 1

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

Signal 0 -5 V...+3 V -3 V...+5 V 0 V AC...5 V AC

Undefined signal -15 V...+ 5 V +5 V...+15 V 5 V AC...14 V AC

Signal 1 -30 V...-15 V +15 V...+30 V 14 V AC...27 V AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at
2-wire proximity switches)

1 mA Typ. 1 mA r.m.s.

No effects of
multiple over-
loads

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4250

Parameter Value
Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.
Refer to Ä Chapter 1.6.3.5.1 “System data AC500-eCo” on page 5233 for details

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 normally-open relay outputs

Distribution of the channels into groups 2 (4 channels per group)

Connection of the channels O0 to O3 Terminals 10 to 13

Connection of the channels O4 to O7 Terminals 15 to 18

Reference potential for the channels
O0 to O3

Terminal 14 (signal name R0..3)

Reference potential for the channels
O4 to O7

Terminal 19 (signal name R4..7)

Relay coil power supply Terminal 20 (positive pole of the process supply
voltage, signal name L+). The negative pole is pro-
vided by the I/O bus.

Indication of the output signals 1 yellow LED per channel; the LED is on when the
output signal is high (signal 1) and the module is
powered through the I/O bus

Monitoring point of output indicator Controlled together with relay

Way of operation Non-latching type

Relay output voltage

 Rated value 24 V DC / 24 V AC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 1 byte

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC / 120 V AC /
240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 8 A

Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC
loads

Must be performed externally according to driven
load specification

Switching Frequencies

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4251

Parameter Value
 With resistive loads Max. 1 Hz

 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse or circuit
breaker

 Overload message No

 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2302 DX571, digital input/output module,

8 DI 24 V DC / 24 V AC, 8 DO, relay
output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4252

S500
DC522 - Digital input/output module

● 16 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 Sensor power supply 24 V DC / 0.5 A
4 16 yellow LEDs to display the signal states at the digital inputs/outputs (C0 - C15)
5 1 green LED to display the state of the process supply voltage UP
6 4 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4253

Digital configurable input/output unit.
● 2 sensor supply voltages 24 V DC, 0.5 A, with short-circuit and overload protection
● 16 digital configurable inputs/outputs 24 V DC (C0 to C15) in 1 group (2.0...2.7 and

4.0...4.7), each of which can be used
– as an input,
– as a transistor output with short-circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

The device is plugged on a terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 4103. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).

Connections

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4254

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Switchgear cabinet earth
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.3 +24 V 4 x sensor power supply sources (loadable with 0.5

A in total)

1.4 to 1.7 0 V 0 V (reference potential)

2.0 to 2.7 C0 to C7 8 digital inputs/outputs

3.0 to 3.3 +24 V 4 x sensor power supply sources (loadable with 0.5
A in total)

3.4 to 3.7 0 V 0 V (reference potential)

4.0 to 4.7 C8 to C15 8 digital inputs/outputs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4255

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC522.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC522.
Connect a 470 W / 1 W resistor in series to inputs C8/C9 if they are used as fast
counter inputs to avoid any influences.

The modules provide several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 6472.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4256

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 2 4

Digital outputs (bytes) 2 4

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O Configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1220
1)

Word 1220
0x04C4

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 7 Byte 7-CPU
6-FBP

0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4257

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:

10 3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Short-cir-
cuit detec-
tion of
output or
sensor
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
Bit 15 =
Output 15
Bit 0 =
Output 0

0...
65535

0...
0xffff

Word 0
0x0000

0 65535 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351
4) With FBP or CS31 without the parameter Fast Counter

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

9
0x04, 0xc5, 0x06, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00;

Diagnosis
In case of overload or short-circuit, the outputs switch off automatically and try to switch on
again cyclically. Therefore an acknowledgement of the outputs is not necessary. The LED error
message, however, is stored.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4258

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 2 0...15 47 Short-circuit at an
output

Check
connection11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4259

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (4 = DC); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
C0...C15

Digital input
or digital
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4260

Parameter Value
 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the L+/UP
and M/ZP terminals of the CPU/commu-
nication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.15 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.005 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Sensor power supply

 Connections Terminals 1.0...1.3 = +24 V, 1.4...1.7 = 0 V
Terminals 3.0...3.3 = +24 V, 3.4...3.7 = 0 V

 Voltage 24 V DC with short-circuit and overload protec-
tion

 Loadability Terminals 1.0...1.3, in total max. 0.5 A
Terminals 3.0...3.3, in total max. 0.5 A

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4261

Parameter Value
Number of channels per module 16 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

If the channels are used as inputs

 Channels C0...C7 Terminals 2.0...2.7

 Channels C8...C15 Terminals 4.0...4.7

If the channels are used as outputs

 Channels C0...C7 Terminals 2.0...2.7

 Channels C8 C15 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON
when the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 16 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V *)

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4262

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 16 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4263

UPx (+24 V)

Digital input/output

ZPx (0 V)

for demagnitization when inductive
loads are switched off

Fig. 842: Digital input/output (circuit diagram)

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C8 / C9

Used outputs C10

Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 600 R0001 DC522, digital input/output module,

16 DC, 24 V DC / 0.5 A, 2-wires
Active

1SAP 440 600 R0001 DC522-XC, digital input/output
module, 16 DC, 24 V DC / 0.5 A,
2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DC523 - Digital input/output module
● 24 configurable digital inputs/outputs
● Module-wise galvanically isolated

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4264

● Fast counter
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 Sensor power supply 24 V DC / 0.5 A
4 24 yellow LEDs to display the signal states at the digital inputs/outputs (C0 - C23)
5 1 green LED to display the status of the process supply voltage UP
6 4 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4265

Digital configurable input/output unit.
● 1 sensor supply voltage 24 V DC, 0.5 A, with short circuit and overload protection
● 24 digital configurable inputs/outputs 24 V DC (C0 to C23) in 1 group (2.0...2.7, 3.0...3.7 and

4.0...4.7), of which each can be used
– as an input,
– as a transistor output with short circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

The device is plugged on a terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 4103. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).

Connections
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4266

Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Switchgear cabinet earth
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.3 +24 V 4 x sensor power supply sources (loadable

with 0.5 A in total)

1.4 to 1.7 0 V 0 V (reference potential)

2.0 to 2.7 C0 to C7 8 digital inputs/outputs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4267

Terminals Signal Description
3.0 to 3.7 C8 to C15 8 digital inputs/outputs

4.0 to 4.7 C16 to C23 8 digital inputs/outputs

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC523.
Connect a 470 W / 1 W resistor in series to inputs C16/C17 if they are used as
fast counter inputs to avoid any influences.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4268

The modules provide several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 6472.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 3 5

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1215
1)

Word 1215
0x04BF

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 9 Byte 9-CPU
8-FBP

0 255 0x0Y02

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4269

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x=Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Short cir-
cuit detec-
tion of
output or
sensor
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
B23 =
Output 23
Bit 0 =
Output 0

0...
16777215

0...
0x00ff-ffff

DWord 0
0x0000
-0000

0 224−1 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351
4) With FBP or CS31 without the parameter Fast Counter

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

11
0x04, 0xc0, 0x08, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00;

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4270

Diagnosis
In case of overload or short circuit, the outputs switch off automatically and try to switch on
again cyclically. Therefore an acknowledgement of the outputs is not necessary. The LED error
message, however, is stored.

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 2 0...23 47 Short circuit at an
output

Check
connection11 / 12 ADR 1...10

Remarks:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4271

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = Hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = Module type (4 = DC); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
C0...C23

Digital input
or digital
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4272

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP) as
well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the
terminals UP/L+ and ZP/M of the CPU/
communication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.1 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.008 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Sensor power supply

 Connections Terminals 1.0...1.3 = +24 V, 1.4...1.7 = 0 V

 Voltage 24 V DC with short circuit and overload protec-
tion

 Loadability Terminals 1.0...1.3, in total max. 0.5 A

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the switch-
gear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4273

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 24 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 24 channels

If the channels are used as inputs

 Channels C0...C7 Terminals 2.0...2.7

 Channels C8...C15 Terminals 3.0...3.7

 Channels C16...C23 Terminals 4.0...4.7

If the channels are used as outputs

 Channels C0...C7 Terminals 2.0...2.7

 Channels C8 C15 Terminals 3.0...3.7

 Channels C16...C23 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 24 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V *)

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4274

Parameter Value
 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 24 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4275

UPx (+24 V)

Digital input/output

ZPx (0 V)

for demagnitization when inductive
loads are switched off

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C16 / C17

Used outputs C18

Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 500 R0001 DC523, digital input/output module,

24 DC, 24 V DC / 0.5 A, 1-wire
Active

1SAP 440 500 R0001 DC523-XC, digital input/output
module, 24 DC, 24 V DC / 0.5 A,
1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DC532 - Digital input/output module
● 16 digital inputs 24 V DC, 16 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4276

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the digital inputs (I0 - I15)
4 16 yellow LEDs to display the signal states at the digital inputs/outputs (C16 - C31)
5 1 green LED to display the state of the process supply voltage UP
6 4 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4277

Digital configurable input / output unit.
● 16 digital inputs 24 V DC in 2 groups (1.0...1.7 and 2.0...2.7)
● 16 digital configurable inputs/outputs 24 V DC (C16 to C31) in 1 group (3.0...3.7 and

4.0...4.7), of which each can be used
– as an input,
– as a transistor output with short circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Digital inputs 16 (24 V DC)

Digital inputs/outputs 16 (24 V DC)

Fast counter Integrated, many configurable operating
modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

The device is plugged on a terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 4103. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4278

Connections
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 switchgear cabinet earth
The assignment of the other terminals:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4279

Terminals Signal Description
1.0 to 1.7 I0 to I7 8 digital inputs

2.0 to 2.7 I8 to I15 8 digital inputs

3.0 to 3.7 C16 to C23 8 digital inputs/outputs

4.0 to 4.7 C24 to C31 8 digital inputs/outputs

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC532.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4280

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC532.
Connect a 470 W / 1 W resistor in series to inputs C24/C25 if using them as fast
counter inputs to avoid any influences.

The module provides several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 6472.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 4 6

Digital outputs (bytes) 2 4

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4281

Name Value Internal
value

Internal
value,
type

Default Min. Max.

Module ID Internal 1200
1)

Word 1200
0x04B0

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 7 Byte 7-CPU
6-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Output
short cir-
cuit detec-
tion

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
Bit 15 =
Output 15
Bit 0 =
Output 0

0...
65535

0...
0xffff

Word 0
0x0000

0 65535 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351
4) With FBP or CS31 without the parameter Fast Counter

GSD file:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4282

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

9
0x04, 0xb1, 0x06, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00;

Diagnosis
In case of overload or short circuit, the outputs switch off automatically and try to switch on
again cyclically. Therefore, an acknowledgement of the outputs is not necessary. The LED error
message, however, is stored.

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firm-
ware versions in
the module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New
start11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4283

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1...10

Channel error DC532

4 14 1...10 2 16...31 47 Short circuit at a
digital output

Check
connec-
tion11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (4 = DC); COM1/COM2: 1...10
= expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4284

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I15

Digital input Yellow Input = OFF Input = ON 1) --

Inputs/ out-
puts
C16...C31

Digital input/
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module Error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4285

Parameter Value
 From UP at normal operation / with out-

puts
0.15 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.007 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16

Distribution of the channels into groups 1 group of 16 channels

Terminals of the channels I0 to I7 1.0 to 1.7

Terminals of the channels I8 to I15 2.0 to 2.7

Reference potential for all inputs Terminals 1.9, 2.8, 3.8 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Galvanic isolation From the rest of the module (I/O bus)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal > +5 V...< +15 V
Parameter

 Signal 1 +15 V...+30 V

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4286

Parameter Value
Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 16 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

If the channels are used as inputs

 Channels I16...I23 Terminals 3.0...3.7

 Channels I24...I31 Terminals 4.0...4.7

If the channels are used as outputs

 Channels Q16...Q23 Terminals 3.0...3.7

 Channels Q24...Q31 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 16 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Input current, per channel See Technical Data of the Digital Inputs
Ä Chapter 1.6.2.6.1.2.3.9.1 “Technical data of
the digital inputs” on page 4286

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4287

Parameter Value
Signal 0 -3 V...+5 V *)

undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 16 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4288

Parameter Value
 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

UPx (+24 V)

Digital input/output

ZPx (0 V)

for demagnitization when inductive
loads are switched off

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C24 / C25

Used outputs C26

Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 100 R0001 DC532, digital input/output module,

16 DI, 16 DC, 24 V DC / 0.5 A, 1-wire
Active

1SAP 440 100 R0001 DC532-XC, digital input/output
module, 16 DI, 16 DC,
24 V DC / 0.5 A, 1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4289

DC541-CM - Digital input/output module
● 8 configurable digital inputs/outputs 24 V DC, in a communication module housing
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 Allocation between terminal number and signal name
2 8 yellow LEDs to display the signal states at the inputs/outputs C0 to C7
3 1 green LED to display the state of the process supply voltage UP
4 1 red LED to display errors (CH-ERR1)
5 Label
6 Terminal block with 10 terminals for 8 inputs/outputs and process power supply (ZP/UP)

Sign for XC version

Intended purpose
In contrast to other I/O modules, the digital I/O module (multi-function module) DC541-CM is
connected to a communication module slot to the left of the AC500 CPU. It contacts the internal
communication module bus. This way, the full functionality of the communication module bus
is available for the module DC541-CM. Depending on the terminal base TB5x1 used, up to 4
DC541-CM modules can be connected.
The multi-function module DC541-CM can optionally (not at the same time) be configured
as an interrupt module or as a fast counter module for 24 V signals (e.g. 24 V incremental
encoder).Automation Builder is used for the configuration.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4290

The module contains 8 fast channels (C0...C7) with the following features:
● 8 digital inputs/outputs in one group (1.0...1.7), of which each can be used

– as an input,
– as a transistor output with short-circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
The states of the inputs/outputs are indicated by yellow LEDs (one per channel). There is no
potential separation between the channels.

Functionality

Parameter Value
Digital inputs/outputs 8 (24 V DC)

Fast counter Integrated, many configurable operating
modes

LED displays For signal states, errors and supply voltage

Internal power supply Through the communication module bus

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

In the operating mode Interrupt I/O module, the channels can be configured as follows:
● Input
● Output
● Interrupt input
In this way, important input information can be evaluated independently of the program cycle
and outputs can be set.
In the operating mode Counter, the channels can be configured as follows:
● Input
● Output
● 32-bit bidirectional counter (uses C0...C3) as a 32-bit-counter without limit
● 32-bit periodic counter as a 32-bit counter with a limit
● Limiter for a 32-bit counter (limit channel 0)
● 32-bit count up counter (forward counter) with the frequencies 50 kHz, 5 kHz and 2.5 kHz
● Pulse-width modulation (PWM) with a resolution of 10 kHz
● Time and frequency measurement
● Frequency output
Used as a fast counter module, the 8 channels of the multi-function module DC541-CM can
be configured and combined individually, easily and versatilely in the PLC configuration. The
module is therefore also excellent for universal high-frequency counting tasks up to 50 kHz. In
addition, it has measuring functions for rotational speed, time and frequency.
These different channel configurations can now be combined flexibly on-board.
Example 1: 32-bit bidirectional counter incl. zero trace and touch-trigger for max. 50 kHz plus
4 accompanying limiting values (comparison values). When the counter reaches one of the
comparison values, the corresponding output can be set in order to trigger control functions at
the machine or installation directly.
Example 2: 2 counters for 50 kHz plus frequency measurement with a resolution of 200 µs plus
4 digital I/Os.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4291

Further examples and a detailed description of the fields of application are contained in the
chapter "System Technology of Ä Chapter 1.6.4.4.1 “DC541-CM interrupt and counter module”
on page 5685.
Commissioning is carried out via the user program by using the appropriate function blocks.

Connections
The I/O module DC541-CM is mounted to the left of an AC500 CPU on the same terminal base.
The connection to the communication module bus is automatically established while mounting.
The connection of the I/O channels is carried out using the 10 terminals of the removable
terminal block. I/O modules can be replaced without re-wiring.
The process voltage is connected in the following way:
Terminal 1.8: process voltage UP = +24 V DC
Terminal 1.9: process voltage ZP = 0 V DC

1 1.0 - 1.7: Connected with UP (switch) -> Input;
Connected with ZP (load) -> Output

2 Switchgear cabinet earth

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4292

The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 C0 to C7 8 digital inputs/outputs

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The internal supply voltage for the module's circuitry comes from the communication module
bus. The process voltage for the inputs/outputs is provided via ZP and UP.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC522.
Connect a 470 W / 1 W resistor in series to inputs C8/C9 if they are used as fast
counter inputs to avoid any influences.

The module provides several diagnostic functions Ä Chapter 1.6.2.6.1.2.4.5 “State LEDs”
on page 4294).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4293

I/O configuration and parameterization
The DC541-CM module does not store configuration data itself. Configuration and parameter-
ization are performed with Automation Builder software. Ä Chapter 1.6.5.2.8.1 “DC541-CM
interrupt and counter module” on page 5974

State LEDs
In case of overload or short-circuit, the outputs switch off automatically and try to switch on
again cyclically. Therefore, an acknowledgement of the outputs is not necessary.

LED State Color LED = OFF LED = ON
Inputs/ out-
puts C0...C7

Digital input or
digital output

Yellow Input/output = OFF Input/output = ON

UP Process
supply voltage
24 V DC via
terminal

Green Process supply
voltage is missing

Process supply
voltage OK
and initialization
terminated

CH-ERR1 Module Error Red No error Error

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8 for +24 V (UP) and 1.9 for 0 V
(ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Absolute limits at XC version Above 60 °C: 20 V DC...30 V DC

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the Ter-
minal Base of the CPU

10 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4294

Parameter Value
 Current consumption from UP at normal

operation / with outputs
10 mA + 5 mA per input

 Inrush current from UP (at power up) 0.002 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Max. power dissipation within the module On request

Weight (without terminal block) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Altitude > 2000 m: On request

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 8 channels

If the channels are used as inputs

Channels C0...C7 Terminals 1.0...1.7

If the channels are used as outputs

Channels C0...C7 Terminals 1.0...1.7

Reference potential for all inputs/outputs Terminal 1.9 (ZP = Negative pole of the
process supply voltage)

Indication of the input/output signals 1 yellow LED per channel, the LED is ON
when the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4295

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 8 digital inputs

Reference potential for all inputs Terminal 1.9 (negative pole of the process
supply voltage, signal name ZP)

Input current per channel

Input voltage +24 V Typ. 5 mA

Input voltage +5 V > 1 mA

Input voltage +15 V > 5 mA

Input voltage +30 V < 8 mA

Input type acc. to EN 61131-2 Type 1

Input delay (0 -> 1 or 1 -> 0) Typ. 2 µs

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V *)

Undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Max. cable length

Shielded 1000 m

Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 8 transistor outputs

Common power supply voltage For all outputs: terminal 1.8 (positive pole of
the process supply voltage, signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0 -> 1 or 1 -> 0) Typ. 10 µs

Output current

Rated value, per channel 500 mA at UP = 24 V

Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse for UP 10 A fast

De-magnitization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

With resistive load On request

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4296

Parameter Value
With inductive loads Max. 0.5 Hz

With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

Shielded 1000 m

Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

UPx (+24 V)

Digital input/output

ZPx (0 V)

for demagnitization when inductive
loads are switched off

Technical data of the fast counters

Parameter Value
Used inputs for the traces A and B C0 / C1

Used input for the zero trace, touch trigger C2 / C3

Used outputs C4 to C7, if needed

Operating modes Ä Chapter 1.6.2.6.1.2.4.2 “Functionality”
on page 4291

Ordering data

Part no. Description Product life cycle phase *)
1SAP 270 000 R0001 DC541-CM, digital input/output

module, 8 DC, 24 V DC / 0.5 A, 1-wire
Active

1SAP 470 000 R0001 DC541-CM-XC, digital input/output
module, 8 DC, 24 V DC / 0.5 A, 1-wire,
XC version

Active

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4297

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI524 - Digital input module
● 32 digital inputs 24 V DC in 4 groups (1.0...1.7, 2.0...2.7, 3.0...3.7 and 4.0...4.7)
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 32 yellow LEDs to display the signal states at the digital inputs (I0 - I31)
4 1 green LED to display the state of the process supply voltage UP
5 4 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4298

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating modes (only

with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal units TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Effect of incorrect input terminal con-
nection

Wrong or no signal detected, no damage up to 35 V

The device is plugged on a terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 4103. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, irrespective of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4299

Table 423: Assignment of the other terminals:
Terminals Signal Description
1.0 to 1.7 I0 to I7 8 digital inputs

2.0 to 2.7 I8 to I15 8 digital inputs

3.0 to 3.7 I16 to I23 8 digital inputs

4.0 to 4.7 I24 to I31 8 digital inputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DI524.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4300

1 I/O bus
2 switchgear cabinet earth

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 6472.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 4 6

Digital outputs (bytes) 0 2

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4301

 Without the fast counter With the fast counter (only
with AC500)

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1000
1)

Word 1000
0x03E8

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length

Internal 3-CPU
2-FBP

Byte 3
2

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4302

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

5 Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

6 Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351
4) With FBP or CS31 without the parameter Fast counter

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

5
0x03, 0xe9, 0x02, \
0x01, 0x02;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4303

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4304

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I31

Digital input Yellow Input = OFF Input = ON 1) --

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs
combined
into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the
terminals UP/L+ and ZP/M of the CPU/
communication interface module

ca. 2 mA

 From UP at normal operation 0.15 A

 Inrush current from UP (at power up) 0.008 A²s

Weight (without terminal unit) ca. 105 g

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4305

Parameter Value
Mounting position Horizontal or vertical with derating (output

load reduced to 50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 32

Distribution of the channels into groups 1 group of 32 channels

Terminals of the channels I0 to I7 1.0 to 1.7

Terminals of the channels I8 to I15 2.0 to 2.7

Terminals of the channels I16 to I23 3.0 to 3.7

Terminals of the channels I24 to I31 4.0 to 4.7

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module (I/O bus)

Indication of the input signals One yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0 -> 1 or 1 -> 0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4306

Parameter Value
 Shielded 1000 m

 Unshielded 600 m

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs I24 / I25

Used outputs None

Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 000 R0001 DI524, digital input module, 32 DI,

24 V DC, 1-wire
Active

1SAP 440 000 R0001 DI524-XC, digital input module, 32 DI,
24 V DC, 1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO524 - Digital output module
● 32 digital outputs 24 V DC / 0.5 A in 4 groups (1.0...4.7) with short circuit and overload

protection
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4307

1 I/O bus
2 Allocation between terminal number and signal name
3 32 yellow LEDs to display the signal states at the digital outputs (O0 - O31)
4 1 green LED to display the state of the process supply voltage UP
5 4 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are galvanically isolated from all other circuitry of the module. There is no potential
separation between the channels.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4308

Functionality

Parameter Value
LED displays For signal states, errors and supply voltage

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

The device is plugged on a terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541 and
TU542 for I/O modules” on page 4103. Position the module properly and press until it locks in
place. The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, independent of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 O0 to O7 8 digital outputs

2.0 to 2.7 O8 to O15 8 digital outputs

3.0 to 3.7 O16 to O23 8 digital outputs

4.0 to 4.7 O24 to O31 8 digital outputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DO524.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4309

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following block diagram shows the internal construction of the digital outputs:
4.0 O 24

4.1 O 25

4.2 O 26

4.3 O 27

4.4 O 28

4.5 O 29

4.6 O 30

4.7 O 31

4.9

4.8

1.0 O 0

1.1 O 1

1.2 O 2

1.3 O 3

1.4 O 4

1.5 O 5

1.6 O 6

1.7 O 7

1.9

1.8

ZP 0 V

UP +24 V

2.0 O 8

2.1 O 9

2.2 O 10

2.3 O 11

2.4 O 12

2.5 O 13

2.6 O 14

2.7 O 15

2.9

2.8

3.0 O 16

3.1 O 17

3.2 O 18

3.3 O 19

3.4 O 20

3.5 O 21

3.6 O 22

3.7 O 23

3.9

3.8

The module provides several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 6472.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4310

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 4

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Module ID Internal 1101
1)

WORD 1101
0x044D

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

BYTE No
0x00

 not for
FBP

Parameter
length

Internal 7 BYTE 7-CPU
7-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

BYTE On
0x01

0 1 0x0Y03

Output
short cir-
cuit detec-
tion

Off
On

0
1

BYTE On
0x01

0 1 0x0Y04

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4311

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

BYTE Off
0x00

0 2 0x0Y05

Substitute
value at
outputs
Bit 31 =
Output 31
Bit 0 =
Output 0

0...
42949672
95

0...
0xffffffff

DWORD 0
0x000000
00

0 42949672
95

0x0Y06

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

10
0x04, 0x4d, 0x07, \
0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00;

Diagnosis
In case of overload or short circuit, the outputs switch off automatically and try to switch on
again cyclically. Therefore, an acknowledgement of the outputs is not necessary. The LED error
message, however, is stored.

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4312

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 2 0...31 47 Short circuit at a digital
output

Check
connection11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = Hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (4 = DC); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4313

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0...O31

Digital output Yellow Output =
OFF

Output = ON --

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital outputs
combined
into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.10 A + max. 0.5 A per output

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4314

Parameter Value
 Inrush current from UP (at power up) 0.005 A2s

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) Ca. 100 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital outputs

Parameter Value
Number of channels per module 32 outputs (with transistors)

Distribution of the channels into groups 1 group of 32 channels

Connection of the channels

 O0 to O7 Terminals 1.0 to 1.7

 O8 to O15 Terminals 2.0 to 2.7

 O16 to O23 Terminals 3.0 to 3.7

 O24 to O31 Terminals 4.0 to 4.7

Indication of the output signals 1 yellow LED per channel, the LED is ON if the
output signal is high (signal 1)

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0 -> 1 or 1 -> 0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (channels O0 to O15) 4 A

 Maximum value (channels O16 to O31) 4 A

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4315

Parameter Value
 Maximum value (all channels together) 8 A

Max. leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit proof / overload proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short-cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital output with the varistors for demagnetiza-
tion when inductive loads are switched off.

UPx (+24 V)

Digital output

ZPx (0 V)

for demagnetization when inductive
loads are switched off

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 700 R0001 DO524, digital output module, 32 DO,

24 V DC / 0.5 A, 1-wire
Active

1SAP 440 700 R0001 DO524-XC, digital output module,
32 DO, 24 V DC / 0.5 A, 1-wire,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4316

DO526 - Digital output module
● 8 digital outputs 24 V DC (O0 to O7) in 2 groups without short circuit and without overload

protection.
● Module and group-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the outputs O0 to O7
4 3 green LEDs to display the states of the process supply voltage UP, UP3 and UP4
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN-rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4317

All other circuitry of the module is galvanically isolated from the outputs.
Potential separation between the channel groups.

Functionality

Parameter Value
LED displays For signal states, errors and supply voltages

Internal power supply Via I/O bus

External power supply Via the terminals ZP, ZP3, ZP4, UP, UP3 and UP4
(process voltage 24 V DC)

Required terminal unit TU542 Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541
and TU542 for I/O modules” on page 4103

The output module is plugged on the terminal unit TU542. Properly position the module and
press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 2.8 and 1.9 to 2.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:

Terminals 1.8 to 2.8: Process voltage UP = +24 V DC

Terminals 1.9 to 2.9: Process voltage ZP = 0 V

Terminal 3.8: Process voltage UP3 = +24 V DC

Terminal 3.9: Process voltage ZP3 = 0 V

Terminal 4.8: Process voltage UP4 = +24 V DC

Terminal 4.9: Process voltage ZP4 = 0 V

Terminals Signal Description
3.0, 3.1, 3.4, 3.5 O0 to O3 4 digital outputs

4.0, 4.1, 4.4, 4.5 O4 to O7 4 digital outputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DO526.
The external power supply connection is carried out via the UP, UP3, UP4 (+24 V DC) and the
ZP, ZP3, ZP4 (0 V DC) terminals.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4318

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following block diagram shows the internal construction of the digital outputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4319

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Switchgear cabinet earth

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 1.7.3.3 “S500 I/O modules diag-
nosis” on page 6472.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4320

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 1

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software, versions
≥ 1.2.3.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...7

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Module ID Internal 1105
1)

WORD 1105
0x0451

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

BYTE No
0x00

 not for
FBP

Parameter
length

Internal 6 BYTE 6-CPU
6-FBP

0 6 0x0Y02

Check
supply

Off
on

0
1

BYTE On
0x01

0 1 0x0Y03

Reserve 0...255 0...0xff BYTE On
0x01

0 1 0x0Y04

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

BYTE Off
0x00

0 2 0x0Y05

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4321

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Substitute
value at
outputs
Bit 7 =
Output 7
Bit 0 =
Output 0

0...255 0...0xff BYTE 0x00 0 255 0x0Y06

Reserve 0...255 0...0xff BYTE 0x00 0 255 0x0Y07

Reserve 0...255 0...0xff BYTE 0x00 0 255 0x0Y08
1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len = 10

Ext_User_Prm_Data_Const(0) = 0x04, 0x51, 0x00, 0x06, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4322

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage UP3
and/or UP4 too low

Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage UP is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 31 0(UP3)
4(UP4)

11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module
1...10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (2 = DO); COM1/COM2: 1...10
= expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4323

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0...O7

Digital output Yellow Output =
OFF

Output = ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

UP3 Process
supply
voltage out-
puts 0...3
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

UP4 Process
supply
voltage out-
puts 4...7
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR3 Channel
Error, error
messages in
groups (dig-
ital outputs
combined
into the
groups 3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on in the
corresponding
groupCH-ERR4 Red

CH-ERR 1) Module Error Red -- Internal error --
1) All of the LEDs CH-ERR3 to CH-ERR4 light up together
2) The state of the LEDs corresponds to the logic state of the output. In case
of missing or low process supply voltage UP3 or UP4, the signal on the output
terminal is off even though the LED is on.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP, UP3 and UP4

 Connections Terminals 1.8 and 2.8 for +24 V (UP) as well as
1.9 and 2.9 0 V (ZP)
Terminals 3.8 for +24 V (UP3) as well as 3.9 for
0 V (ZP3)
Terminals 4.8 for +24 V (UP4) as well as 4.9 for
0 V (ZP4)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4324

Parameter Value
 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP, UP3 and
UP4

10 A fast (for each process supply voltage)

 Galvanic isolation Yes, per module and per output channel groups

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

Ca. 20 mA + 1.5 mA per output

 From UP3 or UP4 at normal operation /
with outputs

Ca. 0.01 A + max. 2 A per output

 Inrush current from UP (at power up) 0.015 A²s

 Inrush current from UP3 or UP4 (at
power up)

0.005 A²s (without output load)

Max. power dissipation within the module 6 W

Weight (without terminal unit) Ca. 135 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply and continuous overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 outputs (with transistors, non-latching type)

Distribution of the channels into groups 2 groups of 4 channels

Connection of the channels

 O0 to O3 Terminals 3.0, 3.1, 3.4, 3.5

 O4 to O7 Terminals 4.0, 4.1, 4.4, 4.5

Indication of the output signals 1 yellow LED per channel, the LED is ON if the
output signal is high (signal 1)

No effects of
multiple over-
loads

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4325

Parameter Value
Power supply voltage for the module Terminals 1.8 and 2.8 (positive pole of the

process supply voltage, signal name UP)

Reference potential for module power supply Terminals 1.9 and 2.9 (negative pole of the
process supply voltage, signal name ZP)

Power supply voltage for the outputs O0 to
O3

Terminal 3.8 (positive pole of the process
supply voltage, signal name UP3)

Reference potential for the outputs O0 to O3 Terminal 3.9 (negative pole of the process
supply voltage, signal name ZP3)

Power supply voltage for the outputs O4 to
O7

Terminal 4.8 (positive pole of the process
supply voltage, signal name UP4)

Reference potential for the outputs O4 to O7 Terminal 4.9 (negative pole of the process
supply voltage, signal name ZP4)

Output voltage for signal 1 UP (-0.4 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 2 A at UP3 or UP4 = 24 V

 Maximum value (channels O0 to O3) 8 A

 Maximum value (channels O4 to O7) 8 A

Leakage current with signal 0 < 0.1 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With clamp diode in output high side driver

Switching frequency

 With resistive load On request

 With inductive loads Max. 2 Hz

 With lamp loads Max. 11 Hz with max. 48 W

Short-circuit proof / overload proof No (should be done externally)

Overload message No

Output current limitation No (should be done externally)

Resistance to feedback against 24 V signals Yes to UP3 or UP4. No to outputs in same
group.

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 800 R0001 DO526, digital output module, 8 DO,

24 V DC / 2 A, 1-wire
Active

1SAP 440 800 R0001 DO526-XC, digital output module,
8 DO, 24 V DC / 2 A, 1-wire,
XC version

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4326

Part no. Description Product life cycle phase *)
1SAP 213 200 R0001 TU542, I/O terminal unit, 24 V DC,

spring terminals
Active

1SAP 413 200 R0001 TU542-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

DX522 - Digital input/output module
● 8 digital inputs 24 V DC, module-wise galvanically isolated
● 8 relay outputs
● Fast counter
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the digital inputs (I0 - I7)
4 8 yellow LEDs to display the signal states at the digital relay outputs (R0 - R7)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4327

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Digital configurable input/output unit.
● 8 digital inputs 24 V DC in 1 group (1.0...1.7)
● 8 digital relay outputs with one change-over contact each (R0...R7). All output channels are

galvanically isolated from each other.
● Fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating modes (only with

AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Required terminal units TU531 or TU532 Ä Chapter 1.6.2.5.6 “TU531 and TU532
for I/O modules” on page 4114

The device is plugged on a terminal unit Ä Chapter 1.6.2.5.6 “TU531 and TU532 for I/O
modules” on page 4114. Position the module properly and press until it locks in place. The
terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).

Connections

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4328

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, irrespective of the inserted module:
● Terminals 1.8 to 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 to 4.9: process supply voltage ZP = 0 V DC

Table 424: Assignment of the other terminals:
Terminals Signal Description
1.0 to 1.7 I0 to I7 Input signals of the 8 digital

inputs

1.8 to 4.8 UP Process supply voltage +24 V
DC

1.9 to 4.9 ZP Reference potential for the 8
digital inputs and the process
supply voltage

2.0 R0 Common contact of the first
relay output

3.0 NO 0 Normally-open contact of the
first relay output

4.0 NC 0 Normally-closed contact of the
first relay output

2.1 R1 Common contact of the
second relay output

3.1 NO 1 Normally-open contact of the
second relay output

4.1 NC 1 Normally-closed contact of the
second relay output

: : :

2.7 R7 Common contact of the eighth
relay output

3.7 NO 7 Normally-open contact of the
eighth relay output

4.7 NC 7 Normally-closed contact of the
eighth relay output

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DX522.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4329

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions (see Diagnosis and State LEDs Ä Chapter
1.7.3.3 “S500 I/O modules diagnosis” on page 6472).
The following figure shows the connection of the digital input/output module DX522.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4330

Fig. 843: Connection of the module

1 I/O bus
2 Switchgear cabinet earth

NOTICE!
– If the relay outputs have to switch inductive DC loads, free-wheeling diodes

must be circuited in parallel to these loads.
– If the relay outputs have to switch inductive AC loads, spark suppressors

are required.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4331

NOTICE!
Risk of damaging the PLC module!
The following has to be considered when connecting input and output voltages
to the module:
– All 230 V AC feeds must be single-phase from the same supply system.
– Connection of 2 or more relay contacts in series is possible; however, vol-

tages above 230 V AC and 3-phase loads are not allowed.
– The 8 change-over contacts of the relays are galvanically isolated from

channel to channel. This allows to connect loads of 24 V DC and 230 V AC
to relay outputs of the same module. In such cases it is necessary that both
supply voltages are grounded to prevent unsafe floating grounds.

NOTICE!
Risk of damaging the PLC module!
There is no internal short-circuit or overload protection for the relay outputs.
Protect the relay contacts by back-up fuses of 6 A max. (characteristic gG/gL).
Depending on the application, fuses can be used for single channels or module-
wise.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 1 3

Digital outputs (bytes) 1 3

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4332

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1210
1)

Word 1210
0x04BA

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 5 Byte 5-CPU
4-FBP

0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
Counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

Substitute
value at
outputs)
Bit 7 =
Output 7
Bit 0 =
Output 0

0...
255

0...
0xff

Byte 0
0x00

0 255 0x0Y06

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351
4) With FBP and without the parameter Fast Counter

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4333

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const
(0) =

7
0x04, 0xbb, 0x04, \
0x01, 0x02, 0x00, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process supply voltage
too low

Check
process
supply
voltage

11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process supply voltage
is switched off (ON −>
OFF)

Process
supply
voltage ON11 / 12 ADR 1...10

Remarks:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4334

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or FBP = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I7

Digital input Yellow Input = OFF Input = ON 1) --

Outputs
R0...R7
(relays)

Digital output Yellow Relay output
= OFF

Relay output =
ON

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1 and
2)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR2 Red

CH-ERR 2) Module Error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR2 light up together

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4335

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the
terminals UP/L+ and ZP/M of the CPU/
communication interface module

ca. 2 mA

 From UP at normal operation / with out-
puts

0.05 A + output loads

 Inrush current from UP (at power up) 0.010 A²s

Max. power dissipation within the module 6 W (outputs OFF)

Weight (without terminal unit) ca. 300 g

Mounting position Horizontal or vertical with derating (output
load reduced to 50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

No effects of
multiple over-
loads

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4336

Parameter Value
Terminals of the channels I0 to I7 1.0 to 1.7

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Galvanic isolation From the rest of the module (I/O bus)

Indication of the input signals One yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V

Undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the relay outputs

Parameter Value
Number of channels per module 8 relay outputs

Distribution of channels into groups 8 groups of 1 channel each

Connection of the channel R0 Terminal 2.0 (common), 3.0 (NO) and 4.0 (NC)

Connection of the channel R1 Terminal 2.1 (common), 3.1 (NO) and 4.1 (NC)

Connection of the channel R6 Terminal 2.6 (common), 3.6 (NO) and 4.6 (NC)

Connection of the channel R7 Terminal 2.7 (common), 3.7 (NO) and 4.7 (NC)

Galvanic isolation Between the channels and from the rest of the module

Indication of the output signals One yellow LED per channel, the LED is ON when the
relay coil is energized

Monitoring point of output indicator LED is controlled by process CPU

Way of operation Non-latching type

Output delay (0->1 or 1->0) On request

Relay power supply By UP process supply voltage

Relay outputs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4337

Parameter Value
 Output short circuit protection Should be provided externally with a fuse or circuit

breaker

Rated protection fuse 6 A gL/gG per channel

Min. switching current 10 mA

Output switching capacity

 Resistive load, max. 3 A; 3 A (230 V AC), 2 A (24 V DC)

 Inductive load, max. 1.5 A; 1.5 A (230 V AC), 1.5 A (24 V DC)

 Lamp load 60 W (230 V AC), 10 W (24 V DC)

Output switching capacity (XC ver-
sion above 60 °C)

On request

Lifetime (cycles) Mechanical: 300 000;
Under load: 300 000 (24 V DC at 2 A), 200 000 (120 V
AC at 2 A), 100 000 (230 V AC at 3 A)

Spark suppression with inductive AC
load

Must be performed externally according to driven load
specifications

Demagnetization with inductive DC
load

A free-wheeling diode must be circuited in parallel to
the inductive load

Switching frequency

 With resistive load Max. 10 Hz

 With inductive load Max. 2 Hz

 With lamp load On request

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs I0 / I1

Used outputs None

Counting frequency 50 kHz max.

Detailed description See Ä Chapter 1.6.4.1.10 “Fast counters”
on page 5498

Operating modes See Ä Chapter 1.6.4.4.2.2 “Operating modes”
on page 5716

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4338

Ordering data

Part no. Description Product life cycle phase *)
1SAP 245 200 R0001 DX522, digital input/output module,

8 DI, 24 V DC, 8 DO relays
Active

1SAP 445 200 R0001 DX522-XC, digital input/output
module, 8 DI, 24 V DC, 8 DO relays,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DX531 - Digital input/output module
● 8 digital inputs 120/230 V AC
● 4 relay outputs with one change-over contacts each
● Module-wise galvanically isolated

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the digital inputs (I0 - I7)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4339

4 4 yellow LEDs to display the signal states at the digital relay outputs (R0 - R3)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Digital configurable input / output unit.
● 8 digital inputs 120/230 V AC in 1 group (2.0...2.3 and 3.0...3.3)
● 4 digital relay outputs with one change-over contact each (R0...R3). All output channels are

galvanically isolated from each other.

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Required terminal units TU531 or TU532 Ä Chapter 1.6.2.5.6 “TU531 and
TU532 for I/O modules” on page 4114

The device is plugged on a terminal unit Ä Chapter 1.6.2.5.6 “TU531 and TU532 for I/O
modules” on page 4114. Position the module properly and press until it locks in place. The
terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4340

Connections

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
● Terminals 1.8 to 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 to 4.9: process supply voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 unused

2.0 and 3.0 I0 and I1 Input signals for the digital
inputs I0 and I1

4.0 N01 Neutral conductor for the dig-
ital inputs I0 and I1

2.1 and 3.1 I2 and I3 Input signals for the digital
inputs I2 and I3

4.1 N23 Neutral conductor for the dig-
ital inputs I2 and I3

2.2 and 3.2 I4 and I5 Input signals for the digital
inputs I4 and I5

4.2 N45 Neutral conductor for the dig-
ital inputs I4 and I5

2.3 and 3.3 I6 and I7 Input signals for the digital
inputs I6 and I7

4.3 N67 Neutral conductor for the dig-
ital inputs I6 and I7

2.4 R0 Common contact of the first
relay output

3.4 and 4.4 NO0 and NC0 NO and NC contacts of the
first relay output

2.5 R1 Common contact of the
second relay output

3.5 and 4.5 NO1 and NC1 NO and NC contacts of the
second relay output

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4341

Terminals Signal Description
2.6 R2 Common contact of the third

relay output

3.6 and 4.6 NO2 and NC2 NO and NC contacts of the
third relay output

2.7 R3 Common contact of the fourth
relay output

3.7 and 4.7 NO3 and NC3 NO and NC contacts of the
fourth relay output

Fig. 844: Internal construction

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DX531. The external power supply connection is carried out via
the UP (+24 V DC) and the ZP (0 V DC) terminals.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4342

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the module:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4343

1 I/O bus
2 Switchgear cabinet earth

NOTICE!
– If the relay outputs have to switch inductive DC loads, free-wheeling diodes

must be circuited in parallel to these loads.
– If the relay outputs have to switch inductive AC loads, spark suppressors

are required.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4344

NOTICE!
Risk of damaging the PLC module!
The following has to be considered when connecting input and output voltages
to the module:
– All 230 V AC feeds must be single phase from the same supply system.
– Connection of 2 or more relay contacts in series is possible; however, vol-

tages above 230 V AC and 3-phase loads are not allowed.
– The 4 change-over contacts of the relays are galvanically isolated from

channel to channel. This allows to connect loads of 24 V DC and 230 V AC
to relay outputs of the same module. In such cases it is necessary that both
supply voltages are grounded to prevent unsafe floating grounds.

– All input signals must come from the same phase of the same supply
system (together with the used neutral conductor). The module is designed
for 120/230 V AC max., not for 400 V AC, not even between two input
terminals.

– All neutral conductor connections must be common to the same supply
system, since the terminals 4.0 to 4.3 are interconnected within the module.
Otherwise, accidental energization could occur.

NOTICE!
Risk of damaging the PLC module!
There is no internal short-circuit or overload protection for the relay outputs.
Protect the relay contacts by back-up fuses of 6 A max. (characteristic gG/gL).
Depending on the application, fuses can be used for single channels or module-
wise.

The module provides several diagnosis functions (see chapter Diagnosis and State LEDs
Ä Chapter 1.7.3.3 “S500 I/O modules diagnosis” on page 6472).

Internal data exchange

Digital inputs (bytes) 1

Digital outputs (bytes) 1

Counter input data (words) 0

Counter output data (words) 0

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4345

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

Module ID Internal 1205
1)

Word 1205
0x04B5

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

Parameter
length

Internal 4 Byte 4-CPU
4-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

20 ms
100 ms

0
1

Byte 20 ms
0x00

0 1 0x0Y04

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

Substitute
value at
outputs
Bit 3 =
Output 3
Bit 0 =
Output 0

0...15 0...
0x0f

Byte 0
0x00

0 15 0x0Y06

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const
(0) =

7
0x04, 0xb6, 0x04, \
0x01, 0x00, 0x00, 0x00;

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4346

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1...10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process supply voltage
too low

Check
process
supply
voltage

11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process supply voltage
is switched off (ON −>
OFF)

Process
supply
voltage ON11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4347

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (2 = DO); COM1/COM2: 1...10
= expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I7

Digital input Yellow Input = OFF Input = ON --

Outputs
R0...R3
(relays)

Digital output Yellow Relay output
= OFF

Relay output =
ON

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR2 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 2 and
3)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR3 Red

CH-ERR *) Module Error Red -- Internal error --

*) All of the LEDs CH-ERR2 to CH-ERR3 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4348

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for
+24 V DC (UP) as well as 1.9, 2.9,
3.9 and 4.9 for 0 V DC (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication inter-
face module

ca. 2 mA

 From UP at normal operation / with outputs 0.15 A + output loads

Inrush current from UP (at power up) 0.004 A2s

Max. power dissipation within the module 6 W (outputs OFF)

Weight (without terminal unit) Ca. 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40
°C per group)

Cooling The natural convection cooling
must not be hindered by cable
ducts or other parts in the switch-
gear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 4 groups of 2 channels each

Terminals of the channels I0 to I7 Ä Chapter 1.6.2.6.1.2.9.3 “Connections”
on page 4341

Galvanic isolation 2500 V AC from the rest of the module (I/O
bus)

Indication of the input signals 1 yellow LED per channel
The LEDs are only operating if the module is
initialized

No effects of
multiple over-
loads

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4349

Parameter Value
Monitoring point of input indicator LED is controlled by process CPU

Input type acc. to EN 61131-2 Type 2

Input delay (0->1 or 1->0) Typ. 20 ms

Input signal voltage 230 V AC or 120 V AC

Input signal range 0 V AC...265 V AC

Input signal frequency 47 Hz...63 Hz

Input characteristic According EN 61132-2 Type 2

Signal 0 0 V AC...40 V AC

Undefined signal > 40 V AC...< 74 V AC

Signal 1 74 V AC...265 V AC

Input current per channel

 Input voltage = 159 V AC > 7 mA

 Input voltage = 40 V AC < 5 mA

Overvoltage protection Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the relay outputs

Parameter Value
Number of channels per module 4 relay outputs

Distribution of channels into groups 4 groups of 1 channel each

Connection of the four relays Ä Chapter 1.6.2.6.1.2.9.3 “Connections”
on page 4341

Galvanic isolation Between the channels and from the rest of the
module

Indication of the output signals 1 yellow LED per channel, the LED is ON when
the relay coil is energized

Monitoring point of output indicator LED is controlled by process CPU

Way of operation Non-latching type

Output delay (0->1 or 1->0) On request

Relay power supply By UP process supply voltage

Relay outputs

 Output short circuit protection Must be provided externally with a fuse or cir-
cuit breaker

 Rated protection fuse 6 A gL/gG per channel

Output switching capacity

 Resistive load, max. 3 A; 3 A (230 V AC), 2 A (24 V DC)

 Inductive load, max. 1.5 A; 1.5 A (230 V AC), 1.5 A (24 V DC)

 Lamp load 60 W (230 V AC), 10 W (24 V DC)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4350

Parameter Value
Lifetime (cycles) Mechanical: 300 000;

Under load: 300 000 (24 V DC at 2 A), 200 000
(120 V AC at 2 A), 100 000 (230 V AC at 3 A)

Spark suppression with inductive AC load Must be performed externally according to
driven load specifications

Demagnetization with inductive DC load A free-wheeling diode must be circuited in par-
allel to the inductive load

Switching frequency

 With resistive load Max. 10 Hz

 With inductive load Max. 2 Hz

 With lamp load On request

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 245 000 R0001 DX531, digital input/output module,

8 DI, 230 V AC, 4 DO relays, 2-wires
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Fast counter
More information can be found in the Automation Builder chapter, “Fast counters in AC500
devices”.
Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

1.6.2.6.2 Analog I/O modules
S500-eCo
AI561 - Analog input module

● 4 configurable analog inputs (I0 to I3) in 1 group
● Resolution: 11 bits plus sign or 12 bits

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4351

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are not galvanically isolated from each other.
All other circuitry of the module is not galvanically isolated from the inputs or from the I/O bus.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4352

Functionality
4 analog inputs, individually configurable for
● Not used (default setting)
● -2.5 V...+2.5 V
● -5 V...+5 V
● 0 V...+5 V
● 0 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-2.5 V...+2.5 V; -5 V...+5 V) 11 bits plus sign

 Voltage unipolar (0 V...5 V; 0 V...10 V) 12 bits

 Current (0 mA...20 mA; 4 mA...20 mA) 12 bits

LED displays 2 LEDs for process voltage and error mes-
sages

Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24
V DC) and M (0 V DC); the M terminal is
connected to the M terminal of the CPU via
the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the analog inputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4353

I0+ 2

I0− 3

R0 1

+
−

I1+ 5

I1− 6

R1 4

+
−

I2+ 8

I2− 9

R2 7

+
−

I3+ 11

I3− 12

R3 10

+
−

−−− 13

−−− 14

−−− 16

−−− 17

−−− 15

L+ 19

M 20

SG 18

The assignment of the terminals:

Terminal Signal Description
1 R0 Burden resistor for input

signal 0 for current sensing

2 I0+ Positive pole of input signal 0

3 I0- Negative pole of input signal 0

4 R1 Burden resistor for input
signal 1 for current sensing

5 I1+ Positive pole of input signal 1

6 I1- Negative pole of input signal 1

7 R2 Burden resistor for input
signal 2 for current sensing

8 I2+ Positive pole of input signal 2

9 I2- Negative pole of input signal 2

10 R3 Burden resistor for input
signal 3 for current sensing

11 I3+ Positive pole of input signal 3

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4354

Terminal Signal Description
12 I3- Negative pole of input signal 3

13 --- Reserved

14 --- Reserved

15 --- Reserved

16 --- Reserved

17 --- Reserved

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per AI561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V DC)
terminals. The M terminal is interconnected to the M/ZP terminal of the CPU/communication
interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.2.6.2.1.1.6 “Diagnosis”
on page 4358.
The following figure is an example of the internal construction of the analog input AI0. The
analog inputs AI1...AI3 are designed in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4355

250 Ω
R0
I0+
I0−

CAUTION!
Risk of damaging the analog input!
The 250 Ω input resistor can be damaged by overcurrent.
Make sure that the current through the resistor never exceeds 30 mA.

The following figures are an example of the connection of analog sensors (voltage) to the input
I0 of the analog input module AI561. Proceed with the inputs I1 to I3 in the same way.

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

+

-
UIN

-2.5 ... +2.5 V
-5 ... +5 V
0 ... 5 V
0 ... 10 V

24 VDC

-+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

-2.5 ... +2.5 V
-5 ... +5 V
0 ... 5 V
0 ... 10 V

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sensors
(voltage)

The following figures are an example of the connection of analog sensors (current) to the input
I0 of the analog input module AI561. Proceed with the inputs I1 to I3 in the same way.

24 VDC
−
+

1

2

R0

I0+

3 I0–

18 SG

19 L+

20 M

+

−

UIN 4 ... 20 mA
0 ... 20 mA

24 VDC
−
+

1

2

R0

I0+

3 I0–

18 SG

19 L+

20 M

−

+
4 ... 20 mA

Connection of active-type analog sensors
(current)

Connection of passive-type analog sensors
(current)

The meaning of the LEDs is described in the Displays section Ä Chapter 1.6.2.6.2.1.1.7 “State
LEDs” on page 4359.

I/O configuration
The analog input module AI561 does not store configuration data itself.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4356

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6500 1) WORD 0x1964 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Internal 6 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1...n)

GSD file: Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0
) =

0x09
0x65, 0x19, 0x06, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00

0 65535

Table 425: Channel configuration 2)
Internal value Operating modes for the analog inputs, individu-

ally configurable
0 Not used (default)

1 0 V...10 V

3 0 mA...20 mA

4 4 mA...20 mA

6 0 V...5 V

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4357

Internal value Operating modes for the analog inputs, individu-
ally configurable

7 -5 V...+5 V

20 -2,5 V...+2,5 V

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...3 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1...0

4 14 1...10 1 0...3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...0

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4358

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/COM2:
1...10 = expansion 1..10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Measuring ranges

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

Range -2.5 ...
+2.5 V

-5 ... +5
V

0 ... 5 V 0 ... 10 V 0 ... 20
mA

4 ... 20
mA

Digital value

 Decimal Hex.
Overflow >2.9397 >5.8795 >5.8795 >11.758

9
>23.517
8

>22.814
2

32767 7FFF

Meas-
ured
value too
high

2.9397
:
2.5014

5.8795
:
5.0029

5.8795
:
:
:
5.0015

11.7589
:
:
:
10.0029

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal
range

2.5000
:
0.0014

5.0000
:
0.0029

5.0000
:
:
:
0.0015

10.0000
:
:
:
0.0029

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4359

Range -2.5 ...
+2.5 V

-5 ... +5
V

0 ... 5 V 0 ... 10 V 0 ... 20
mA

4 ... 20
mA

Digital value

 Decimal Hex.
Normal
range or
meas-
ured
value too
low

0.0000 0.0000 0.0000 0.0000 0 4 0 0000

:
-0.0014
:
:
:
-2.5000

:
-0.0029
:
:
:
-5.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Meas-
ured
value too
low

-2.5014
:
-2.9398

-5.0029
:
-5.8795

 -27664
:
-32512

93F0
:
8100

Under-
flow

<-2.9398 <-5.8795 <-0.0300 <-0.0600 <-0.1200 <-0.1200 -32768 8000

The represented resolution corresponds to 12 bits respectively 11 bits plus sign.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption via L+ terminal 0.1 A

 Inrush current (at power up) 0.05 A2s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of the
CPU/communication interface module

Ca. 10 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.7 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4360

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 4 individually configurable voltage or current

inputs

Distribution of channels into groups 1 (4 channels per group)

Resolution

 Unipolar Voltage: 0 V...+5 V; 0 V...+10 V: 12 bits
Current 0 mA...20 mA; 4 mA...20 mA: 12 bits

 Bipolar Voltage -2.5 V...+2.5 V; -5 V...+5 V: 11 bits plus
sign

Connection of the signals I0- to I3- Terminals 3, 6, 9, 12

Connection of the signals I0+ to I3+ Terminals 2, 5, 8, 11

Input type Differential

Galvanic isolation No galvanic isolation between the inputs and
the I/O bus

Common mode input range Signal voltage plus common mode voltage
must be within ±12 V

Indication of the input signals No

Channel input resistance Voltage: > 1 MW

Current: ca. 250 W

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale (voltage)
±0.5 % of full scale (current 0
mA...20 mA)
±0.7 % of full scale (current 4
mA...20 mA)
at 25 °C

Max. ±2 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Time constant of the input filter Voltage: 300 µs
Current: 300 µs

Relationship between input signal and hex
code

Ä Chapter 1.6.2.6.2.1.1.8 “Measuring ranges”
on page 4359

Analog to digital conversion time Typ. 500 µs per channel

Unused inputs Can be left open and should be configured as
"unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC only for voltage input

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4361

Parameter Value
Max. cable length (conductor cross section
> 0,14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1101 AI561, analog input module, 4 AI, U/I Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI562 - Analog input module
● 2 configurable analog resistance temperature detector (RTD) inputs (I0 and I1) in 1 group
● Resolution: 15 bits plus sign

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4362

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are not galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4363

Functionality
2 analog RTD-inputs, individually configurable for
● Not used (default)
● Pt100, -50 °C...+400 °C, 2-wire
● Pt100, -50 °C...+400 °C, 3-wire
● Pt1000, -50 °C...+400 °C, 2-wire
● Pt1000, -50 °C...+400 °C, 3-wire
● Ni1000, -50 °C...+150 °C, 2-wire
● Ni1000, -50 °C...+150 °C, 3-wire
● Ni100, -50 °C...+150 °C, 2-wire
● Ni100, -50 °C...+150 °C, 3-wire
● Analog input resistance 0 W...150 W
● Analog input resistance 0 W...300 W

Parameter Value
Resolution of the analog channels

 Temperature 0.1 °C

LED displays 2 LEDs for process voltage and error messages

Internal supply Via I/O bus

External supply Via the terminals UP (process voltage 24 V DC) and
ZP (0 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the analog inputs:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4364

I0 1

I0 2

O0+ 10

O1+ 13

I1+ 14

−−− 16

SG 17

I1− 15

UP 19

ZP 20

SG 18

+ 1

− 1

+
−

+
−

The assignment of the terminals:

Terminal Signal Description
10 O0+ Current source of channel 0

11 I0+ Sense input of channel 0

12 I0- Return input of channel 0

13 O1+ Current source of channel 1

14 I1+ Sense input of channel 1

15 I1- Return input of channel 1

16 --- Reserved

17 SG Shield grounding

18 SG Shield grounding

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per AI562.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4365

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.2.6.2.1.2.6 “Diagnosis”
on page 4368.
The following figures show the connection of RTDs to the inputs of the analog input module
AI562.

24 VDC
-
+

10

11

O0+

I0+

13 O1+

12 I0-

14 I1+

15 I1-

16 ---

17 SG

18 SG

19 UP

20 ZP

24 VDC
-
+

10

11

O0+

I0+

13 O1+

12 I0-

14 I1+

15 I1-

16 ---

17 SG

18 SG

19 UP

20 ZP

2-wires input 3-wires input

With 2-wires connection, the resistance of the connection wires influences the
accuracy of the measured value. Use 3-wires connection to achieve the guaran-
teed measuring accuracy.

The meaning of the LEDs is described in the Displays section Ä Chapter 1.6.2.6.2.1.2.7 “State
LEDs” on page 4369.

I/O configuration
The analog input module AI562 does not store configuration data itself.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4366

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6505 1) WORD 0x1969 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 4 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07
0x6A, 0x19, 0x04, \
0x01, 0x00, \
0x00, 0x00;

Input channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 3)

0 65535

Table 426: Channel configuration 2)
Internal value Operating modes for the analog inputs,

individually configurable
0 Not used (default)

3)

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C

16 2-wire Pt1000, -50 °C...+400 °C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4367

Internal value Operating modes for the analog inputs,
individually configurable

17 3-wire Pt1000, -50 °C...+400 °C

18 2-wire Ni1000 -50 °C...+150 °C

19 3-wire Ni1000 -50 °C...+150 °C

22 2-wire Ni100, -50 °C...+150 °C

23 3-wire Ni100, -50 °C...+150 °C

32 Analog input resistor 0 W...150 W

33 Analog input resistor 0 W...300 W

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...1 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...1 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

Remarks:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4368

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/COM2: 1...10
= expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Measuring ranges

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

Resistance temperature detectors

Range Pt100 / Pt1000
-50 ... +400 °C

Ni1000 / Ni100
-50 ... +150 °C

Digital value

 Decimal Hex.
Overflow > 450.0 °C > 160.0 °C 32767 7FFF

Measured value
too high

450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4369

Range Pt100 / Pt1000
-50 ... +400 °C

Ni1000 / Ni100
-50 ... +150 °C

Digital value

 Decimal Hex.
 160.0 °C

:
150.1 °C

1600
:
1501

0640
:
05DD

Normal range 400.0 °C
:
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
2000
1500
700
:
1

0FA0
07D0
05DC
02BC
:
1

0,0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500
-2000

FFFF
:
FE0C
F830

Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Resistances

Range Resistance 0 ...
150 W

Resistance 0 ...
300 W

Digital value

 Decimal Hex.
Overflow >176.383 >352.767 32767 7FFF

Measured value
too high

176.383
150.005

352.767
300.011

32511
27649

7EFF
6C01

Normal range 150.000
:
0.005

300.000
:
0.011

27648
:
1

6C00
:
0001

0 0 0 0000

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4370

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption 0.04 A

 Inrush current (at power-up) 0.05 A2s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for UP Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the input group and the rest of the
module

 Isolated groups 1 (2 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 1.1 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 2 configurable RTD (resistance temperature detector)

inputs

Distribution of channels into groups 1 (2 channels per group)

Resolution

 RTD 0.1 °C / 0.1 °F

 Resistance 15 bits + sign

Connection of the signals O0+ and
O1+

Terminals 10 and 13

Connection of the signals I0- and I1- Terminals 11 and 14

Connection of the signals I0+ and I1+ Terminals 12 and 15

Input type Module ground referenced RTD for 2-wire and 3-wire
resistance temperature detectors

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4371

Parameter Value
Galvanic isolation Against internal power supply and other modules

Input ranges Pt100, Pt1000, Ni100, Ni1000

150 W, 300 W

Indication of the input signals No

Module update time All channels: < 1 s

Channel input resistance > 100 kW

Input filter attenuation -3 dB at 3.6 kHz

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. Depending on RTD max. ±0.6 % of full scale
(guaranteed for 3-wires connection only)
at 25 °C

Max. ±2 % of full scale (guaranteed for 3-wires
connection only)
at 0 °C...60 °C or EMC disturbances

Measuring range Ä Chapter 1.6.2.6.2.1.2.8 “Measuring ranges”
on page 4369

Analog to digital conversion time Typ. 140 ms per channel

Unused inputs Can be left open and should be configured as
"unused"

Input data length 4 bytes

Power dissipation inside the sensor
(max.)

1 mW

Suppression of interference On request

Maximum input voltage 30 V DC (sense), 5 V DC (source)

Basic error (resistance) 0.1 % of full-scale

Repeatability 0.05 % of full-scale

Overvoltage protection Yes, up to 30 V DC

Wire loop resistance < 20 W

Max. cable length (conductor cross
section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1102 AI562, analog input module, 2 AI, RTD Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4372

Part no. Description Product life cycle phase *)
1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,

screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI563 - Analog input module
● 4 configurable thermocouple (TC) / -80 mV...+80 mV inputs (I0 to I3) in 1 group
● Resolution: 15 bits plus sign

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4373

4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
The other electronic circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality
4 analog TC inputs, individually configurable for
● Not used (default)
● Voltage -80 mV ... + 80 mV
● Thermocouple J-type -210 °C...+1200 °C
● Thermocouple K-type -270 °C...+1372 °C
● Thermocouple R-type -50 °C...+1768 °C
● Thermocouple S-type -50 °C...+1768 °C
● Thermocouple T-type -270 °C...+400 °C
● Thermocouple E-type -270 °C...+1000 °C
● Thermocouple N-type -270 °C...+1300 °C

Parameter Value
Resolution of the analog channels

 Temperature 0.1 °C

LED displays 2 LEDs for process voltage and error mes-
sages

Internal supply Via I/O bus

External supply Via the terminals UP (process voltage 24 V
DC) and ZP (0 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4374

After powering up the system, input channels, which are configured will have
undefined values /diagnosis message for typically 45 seconds, if the wires of all
configured channels are broken.

If the AI563 is connected to a PROFINET communication interface module, the
firmware version of PROFINET communication interface module must be 1.2 or
above.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the analog inputs:

−−− 11

−−− 12

−−− 10

−−− 13

−−− 14

SG 16

SG 17

SG 15

UP 19

ZP 20

SG 18

I2− 6

I3+ 7

I2+ 5

+
−

I3− 8

−−− 9

I0− 2

I1+ 3

I0+ 1 +
−

I1− 4

+
−

+
−

The assignment of the terminals:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4375

Terminal Signal Description
1 I0+ Positive pole of channel 0

2 I0- Negative pole of channel 0

3 I1+ Positive pole of channel 1

4 I1- Negative pole of channel 1

5 I2+ Positive pole of channel 2

6 I2- Negative pole of channel 2

7 I3+ Positive pole of channel 3

8 I3- Negative pole of channel 3

9 --- Reserved

10 --- Reserved

11 --- Reserved

12 --- Reserved

13 --- Reserved

14 --- Reserved

15 SG Shield grounding

16 SG Shield grounding

17 SG Shield grounding

18 SG Shield grounding

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AI563.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4376

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.2.6.2.1.3.6 “Diagnosis”
on page 4379.
The following figure shows the connection of thermocouples to the inputs of the module:

1

2

I0+

I0-

4 I1-

24 VDC
-
+

3 I1+

5 I2+

6 I2-

7 I3+

8 I3-

9 ---

10

11

13 ---

12 ---

14 ---

15 SG

16 SG

17 SG

18 SG

19 UP

20 ZP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.6.2.1.3.7 “State LEDs”
on page 4380 chapter.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4377

I/O configuration
The analog input module AI563 does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6510 1) WORD 0x196E 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 6 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x09
0x6F, 0x19, 0x06, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4378

Table 427: Channel configuration 2)
Internal value Operating modes for the analog inputs, individually configurable
0 Not used (default)

21 Voltage -80 mV...+80 mV

24 Thermocouple J-type -210 °C...+1200 °C

25 Thermocouple K-type -270 °C...+1372 °C

26 Thermocouple R-type -50 °C...+1768 °C

27 Thermocouple S-type -50 °C...+1768 °C

28 Thermocouple T-type -270 °C...+400 °C

29 Thermocouple E-type -270 °C...+1000 °C

30 Thermocouple N-type -270 °C...+1300 °C

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...3 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

Remarks:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4379

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hard-
ware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the
master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2:
1...10 = expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/
COM2: 1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Measuring ranges

AI563 needs typ. 6 to 8 seconds for initialization after applying the process
supply voltage to clamp UP/ZP. During this time, the accuracy of the measure-
ment values is not within specification. After that, valid measurement values are
provided by the module. After that, valid measurement values are provided by
the module.

After an interruption of the process supply voltage > 10 ms, a re-initialization is
performed by AI563.

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4380

When a wire break occurs on a sensor wire, the temperature measurement
value of the corresponding channel changes to Overflow (Hexadecimal 7FFF).

Range Type J
-210 ...
+1200 °C

Type K
-270 ...
+1372 °C

Type N
-270 ...
+1300 °C

Type T
-270 ...
+400 °C

Digital value

 Decimal Hex.
Overflow > 1200.0 °C > 1372.0 °C > 1300.0 °C > 400.0 °C 32767 7FFF

Normal
range

 17680 4510

 1372.0 °C 13720 3598

 : 1300.0 °C 13000 32C8

1200.0 °C : : 12000 2EE0

: : : 400.0 °C 4000 0FA0

: : : : : :

0.1 °C 0.1 °C 0.1 °C 0.1 °C 1 1

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C -0.1 °C -0.1 °C -0.1 °C -1 FFFF

: : : : : :

: : : : -500 FE0C

-210.0 °C : : : -2100 F7CC

 -270.0 °C -270.0 °C -270.0 °C -2700 F574

Underflow < -210.0 °C < -270.0 °C < -270.0 °C < -270.0 °C -32768 8000

Range -80 mV ... +80
mV

Type E
-270 ... +1000
°C

Types R, S
-50 ... +1768
°C

Digital value

 Decimal Hex.
Overflow > +90 mV > 1000.0 °C > 1768.0 °C 32767 7FFF

Normal range +80 mV 27648 6C00

 1768.0 °C 17680 4510

 1000.0 °C 10000 2710

 9000 2328

: : : : :

3 µV 0.1 °C 0.1 °C 1 1

0 µV 0.0 °C 0.0 °C 0 0000

-3 µV -0.1 °C -0.1 °C -1 FFFF

: : : : :

: : -50.0 °C -500 FE0C

: -270.0 °C -2700 F574

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4381

Range -80 mV ... +80
mV

Type E
-270 ... +1000
°C

Types R, S
-50 ... +1768
°C

Digital value

 Decimal Hex.
-80 mV -27648 9400

Underflow < -90 mV < -270.0 °C < -50.0 °C -32768 8000

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption 0.10 A

 Inrush current (at power-up) 0.07 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP Not necessary

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the channels and the rest of the
module

 Isolated groups 1 (4 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.6 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4382

Technical data of the analog inputs

Parameter Value
Number of channels per module 4 configurable thermocouple (TC) inputs

Distribution of channels into groups 1 (4 channels per group)

Resolution

 Temperature 0.1 °C

 Voltage 15 bits plus sign

Connection of the signals I0+ to I3+ Terminals 1, 3, 5 and 7

Connection of the signals I0- to I3- Terminals 2, 4, 6 and 8

Input type Floating thermocouple

Galvanic isolation Against internal power supply and other modules

Common mode rejection > 120 dB at 120 V AC

Indication of the input signals No

Module update time All channels: < 1.6 s

Channel input resistance On request

Input filter attenuation -3 dB at 15 kHz

Cold junction error ±1.5 °C

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. 0.1 % of full-scale (voltage)
Depending on thermocouple, see table
Ä Chapter 1.6.2.6.2.1.3.9.1.1 “Accuracy of
thermocouple ranges at 25 °C (with cold junc-
tion compensation)” on page 4384

at 25 °C

Max. ±2 % of full scale (T-Type: ±3 % for -240
°C...-270 °C)
at 0 °C...60 °C

Relationship between input signal
and hex code

Ä Chapter 1.6.2.6.2.1.3.8 “Measuring ranges”
on page 4380

Analog to digital conversion time 400 ms per channel

Unused inputs Can be left open and should be configured as "unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC

Repeatability On request

Wire loop resistance < 100 W

Max. cable length (conductor cross
section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4383

Accuracy of thermocouple ranges at 25 °C (with cold junction compensation)

Thermocouple Type Range Accuracy
E -270 °C...-220 °C

-220 °C...+1000 °C
±2 %
±0.6 %

J -210 °C...+1200 °C ±0.6 %

K -270 °C...-220 °C
-220 °C...+1372 °C

±1.5 %
±0.6 %

N -270 °C...-150 °C
-150 °C...+1300 °C

±2 %
±0.6 %

R -50 °C...+150 °C
+150 °C...+1768 °C

±1.5 %
±0.6 %

S -50 °C...+150 °C
+150 °C...+1768 °C

±1.5 %
±0.6 %

T -270 °C...-240 °C
-240 °C...-0 °C
0 °C...+400 °C

±3 %
±2 %
±0.6 %

These accuracy values are valid only for stable module temperatures.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1103 AI563, analog input module, 4 AI,

thermocouple
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4384

AO561 - Analog output module
● 2 configurable analog outputs (O0 and O1) in 1 group
● Resolution: 11 bits plus sign or 12 bit

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are not galvanically isolated from each other.
The other electronic circuitry of the module is not galvanically isolated from the outputs or from
the I/O bus.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4385

The I/O module must not be used as communication interface module at CI590-
CS31-HA bus modules.

Functionality
2 analog outputs, individually configurable for
● Not used (default setting)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-10 V...+10 V) 11 bits plus sign

 Current (0 mA...20 mA; 4 mA...20 mA) 12 bits

LED displays 2 LEDs for process voltage and error messages

Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24 V DC)
and M (0 V DC); the M terminal is connected to
the M terminal of the CPU via the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

If the output is configured as not used, the voltage and current output signals
are undefined and must not be connected.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the analog outputs:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4386

−−− 11

−−− 12

−−− 10

O0U+ 13

O0I+ 14

O1I+ 16

O01− 17

O1U+ 15

L+ 19

M 20

SG 18

+

+

−

−

The assignment of the terminals:

Terminal Signal Description
10 --- Reserved

11 --- Reserved

12 --- Reserved

13 O0U+ Voltage output of channel 0

14 O0I+ Current output of channel 0

15 O1U+ Voltage output of channel 1

16 O1I+ Current output of channel 1

17 O01- Negative pole of channels O0 and O1

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AO561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V
DC) terminals. The M terminal is electrically interconnected to the M/ZP terminal of the CPU/
communication interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4387

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 1.6.2.6.2.1.4.6 “Diagnosis”
on page 4390.
The following figures show the connection of analog actuators to the analog output module
AO561.

U

24 VDC
-
+

10

11

13 O0U+

12 ---

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

U

24 VDC
-
+

10

11

13 O0U+

12 ---

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

I

I

Connection of analog voltage actuators Connection of analog current actuators

The output signal is undefined if the supply voltage at the L+ terminal is below
10 V. This can, for example, occur if the supply voltage has a slow ramp-up /
ramp-down behavior and must be foreseen when planning the installation.

If the output is configured in current mode, the voltage output signal is unde-
fined and must not be connected.

If the output is configured in voltage mode, the current output signal is unde-
fined and must not be connected.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4388

I/O configuration
The analog output module AO561 does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6515 1) WORD 0x1973 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 4 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07
0x74, 0x19, 0x04, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Output channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4389

Table 428: Channel configuration 2)
Internal value Operating modes for the analog outputs, individually configu-

rable
0 Not used (default)

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 3 0...1 48 Analog value overflow
at an analog output

Check
output
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 3 0...1 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4390

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Output ranges

Range -10 ... +10 V 0 ... 20 mA 4 ... 20 mA Digital value
 Decimal Hex.
Overflow >11.7589 >23.5178 >22.8142 32767 7FFF

Value too high 11.7589
:
10.0058
:
:

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058
:

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal range
Normal range
or value too
low

10.0000
:
0.0058
:
:

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0 4 0 0000

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4391

Range -10 ... +10 V 0 ... 20 mA 4 ... 20 mA Digital value
 Decimal Hex.

:
-0.0058
:
:
:
-10.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Value too low -10.0058
:
-11.7589

 -27664
:
-32512

93F0
:
8100

Underflow <-11.7589 <0.0000 -32768 8000

The represented resolution corresponds to 12 bit respectively 11 bit plus sign.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption 0.1 A + output load

 Inrush current (at power-up) 0.05 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 3.1 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4392

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog outputs

Parameter Value
Number of channels per module 2 configurable voltage or current outputs

Distribution of channels into groups 1 (2 channels per group)

Connection of the signals O0U- and O1U+ Terminals 13 and 15

Connection of the signals O0I+ and O1I+ Terminals 14 and 16

Output type Bipolar with voltage, unipolar with current

Resolution 12 bits or 11 bits plus sign

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±2 % of full scale
at 0 °C...+60 °C or EMC disturbances

Indication of the output signals No

Output Resistance (load) as current output 0 W...500 W

Output load ability as voltage output ±2 mA max.

Output data length 4 bytes

Relationship between output signal and hex
code

Ä Chapter 1.6.2.6.2.1.4.8 “Output ranges”
on page 4391

Unused outputs Must not be connected and must be configured
as "unused"

Overvoltage protection Yes, up to 30 V DC

Max. cable length (conductor cross section
> 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1201 AO561, analog output module, 2 AO,

U/I
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4393

Part no. Description Product life cycle phase *)
1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,

screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AX561 - Analog input/output module
● 4 configurable analog inputs (I0 to I3) in 1 group
● 2 configurable analog outputs (O0 and O1) in 1 group
● Resolution: 11 bits plus sign or 12 bits

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4394

3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are not galvanically isolated from each other.
The outputs are not galvanically isolated from each other.
All other circuitry of the module is not galvanically isolated from the inputs/outputs or from the
I/O bus.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality
4 analog inputs, individually configurable for
● Not used (default)
● -2.5 V...+2.5 V
● -5 V...+ 5 V
● 0 V...+5 V
● 0 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
2 analog outputs, individually configurable for
● Not used (default)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-2.5 V...+2.5 V; -5 V...+5 V) 11 bits plus sign

 Voltage unipolar (0 V...5 V; 0 V...10 V) 12 bits

 Current (0 mA...20 mA; 4 mA...20 mA) 12 bits

LED displays 2 LEDs for process voltage and error mes-
sages

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4395

Parameter Value
Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24 V
DC) and M (0 V DC); the M terminal is con-
nected to the M terminal of the CPU via the
I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

If the output is configured as not used, the voltage and current output signals
are undefined and must not be connected.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.
Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal blocks” on page 5204

The following block diagram shows the internal construction of the analog inputs and outputs:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4396

I0+ 2

I0− 3

R0 1

+
−

I1+ 5

I1− 6

R1 4

+
−

I2+ 8

I2− 9

R2 7

+
−

I3+ 11

I3− 12

R3 10

+
−

O0U+ 13

O0I+ 14

O1I+ 16

O01− 17

O1U+ 15

L+ 19

M 20

SG 18

+

+

−

−

The assignment of the terminals:

Terminal Signal Description
1 R0 Burden resistor for input signal 0 for current sensing

2 I0+ Positive pole of input signal 0

3 I0- Negative pole of input signal 0

4 R1 Burden resistor for input signal 1 for current sensing

5 I1+ Positive pole of input signal 1

6 I1- Negative pole of input signal 1

7 R2 Burden resistor for input signal 2 for current sensing

8 I2+ Positive pole of input signal 2

9 I2- Negative pole of input signal 2

10 R3 Burden resistor for input signal 3 for current sensing

11 I3+ Positive pole of input signal 3

12 I3- Negative pole of input signal 3

13 O0U+ Voltage output of channel 0

14 O0I+ Current output of channel 0

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4397

Terminal Signal Description
15 O1U+ Voltage output of channel 1

16 O1I+ Current output of channel 1

17 O01- Negative pole of channels O0 and O1

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AX561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V DC)
terminals. The M terminal is interconnected to the M/ZP terminal of the CPU/communication
interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4398

The module provides several diagnosis functions Ä Chapter 1.6.2.6.2.1.5.6 “Diagnosis”
on page 4402.
The following figure is an example of the internal construction of the analog input AI0. The
analog inputs AI1...AI3 are designed in the same way.

250 Ω
R0
I0+
I0−

CAUTION!
Risk of damaging the analog input!
The 250 W input resistor can be damaged by overcurrent.

Make sure that the current through the resistor never exceeds 30 mA.

The following figures are an example of the connection of analog sensors (voltage) to the input
I0 of the analog input/output module AX561. Proceed with the inputs I1 to I3 in the same way.

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

+

-
UIN

-2.5 ... +2.5 V
-5 ... +5 V
0 ... 5 V
0 ... 10 V

24 VDC

-+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

-2.5 ... +2.5 V
-5 ... +5 V
0 ... 5 V
0 ... 10 V

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sensors
(voltage)

The following figures are an example of the connection of analog sensors (current) to the input
I0 of the analog input/output module AX561. Proceed with the inputs I1 to I3 in the same way.

24 VDC
−
+

1

2

R0

I0+

3 I0–

18 SG

19 L+

20 M

+

−

UIN 4 ... 20 mA
0 ... 20 mA

24 VDC
−
+

1

2

R0

I0+

3 I0–

18 SG

19 L+

20 M

−

+
4 ... 20 mA

Connection of active-type analog sensors
(current)

Connection of passive-type analog sensors
(current)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4399

The following figures are an example of the connection of analog actuators to the analog input/
output module AX561.

24 V DC
-
+

10

11

R3

I3+

13 O0U+

12 I3-

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

U

U

24 V DC
-
+

10

11

R3

I3+

13 O0U+

12 I3-

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

I

I

Connection of analog voltage actuators Connection of analog current actuators

The output signal is undefined if the supply voltage at the L+ terminal is below
10 V. This can, for example, occur if the supply voltage has a slow ramp-up /
ramp-down behavior and must be foreseen when planning the installation.

If the output is configured in current mode, the voltage output signal is unde-
fined and must not be connected.

If the output is configured in voltage mode, the current output signal is unde-
fined and must not be connected.

The meaning of the LEDs is described in the displays chapter Ä Chapter 1.6.2.6.2.1.5.7 “State
LEDs” on page 4403.

I/O configuration
The I/O module does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4400

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6520 1) WORD 0x1978 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Internal 8 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0 1 BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

1) With CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0...7), LowByte is index (1...n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x0B
0x79, 0x19, 0x08, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00;

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

Table 429: Channel configuration 2)
Internal value Operating modes for the analog inputs, individually configu-

rable
0 Not used (default)

1 0 V...+10 V

3 0 mA...20 mA

4 4 mA...20 mA

6 0 V...+5 V

7 -5 V...+5 V

20 -2.5 V...+2.5 V

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4401

Output channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see see
table 2)

see see
table 2)

BYTE 0
0x00 see
table 2)

0 65535

Table 430: Channel configuration 2)
Internal value Operating modes for the analog outputs, individually configurable
0 Not used (default)

128 -10 V...+ 10 V

129 0 mA...20 mA

130 4 mA...20 mA

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...3 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4402

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 3 0...1 48 Analog value overflow
at an analog output

Check
output
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 3 0...1 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI, 3 = AO); COM1/
COM2: 1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4403

Measuring ranges

CAUTION!
Risk of wrong analog input values!
The analog input values may be wrong if the measuring range of the inputs are
exceeded.
Make sure that the analog signal at the connection terminals is always within
the signal range.

Range -2.5 ...
+2.5 V

-5 ... +5
V

0 ... 5 V 0 ... 10 V 0 ... 20
mA

4 ... 20
mA

Digital value

 Decimal Hex.
Overflow >2.9397 >5.8795 >5.8795 >11.758

9
>23.517
8

>22.814
2

32767 7FFF

Meas-
ured
value too
high

2.9397
:
2.5014

5.8795
:
5.0029

5.8795
:
:
:
5.0015

11.7589
:
:
:
10.0029

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal
range
Normal
range or
meas-
ured
value too
low

2.5000
:
0.0014

5.0000
:
0.0029

5.0000
:
:
:
0.0015

10.0000
:
:
:
0.0029

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0.0000 0.0000 0.0000 0 4 0 0000

:
-0.0014
:
:
:
-2.5000

:
-0.0029
:
:
:
-5.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Meas-
ured
value too
low

-2.5014
:
-2.9398

-5.0029
:
-5.8795

 -27664
:
-32512

93F0
:
8100

Under-
flow

<-2.9398 <-5.8795 <-0.0300 <-0.0600 <-0.1200 <-0.1200 -32768 8000

The represented resolution corresponds to 12 bits respectively 11 bits plus sign.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4404

Output ranges

Range -10 ... +10 V 0 ... 20 mA 4 ... 20 mA Digital value
 Decimal Hex.
Overflow > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Output value
too high

11.7589
:
10.0058
:
:

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058
:

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal range
Normal range
or output
value too low

10.0000
:
0.0058
:
:

20,0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0 4 0 0000

:
-0.0058
:
:
:
-10.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Output value
too low

-10.0058
:
-11.7589

 -27664
:
-32512

93F0
:
8100

Underflow < -11.7589 <0.0000 -32768 8000

The represented resolution corresponds to 12 bits respectively 11 bits plus sign.

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption via L+ terminal 0.14 A + output load

 Inrush current (at power-up) 0.05 A

 Max. ripple 5 %

 Protection against reversed voltage Yes

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4405

Parameter Value
 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 4.9 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the switch-
gear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per
module

4 individually configurable voltage or current inputs

Distribution of channels into
groups

1 (4 channels per group)

Resolution

 Unipolar Voltage: 0 V...+5 V; 0 V...+10 V: 12 bits
Current 0 mA...20 mA; 4 mA...20 mA: 12 bits

 Bipolar Voltage -2.5 V...+2.5 V; -5 V...+5 V: 11 bits plus sign

Connection of the signals I0- to
I3-

Terminals 3, 6, 9, 12

Connection of the signals I0+ to
I3+

Terminals 2, 5, 8, 11

Input type Differential

Galvanic isolation No galvanic isolation between the inputs and the I/O bus

Common mode input range Signal voltage plus common mode voltage must be within
±12 V

Indication of the input signals No

Channel input resistance Voltage: >1 MW

Current: ca. 250 W

Conversion error of the analog
values caused by non-linearity,
adjustment error at factory and
resolution within the normal
range

Typ. ±0.5 % of full scale (voltage)
±0.5 % of full scale (current 0 mA...20 mA)
±0.7 % of full scale (current 4 mA...20 mA)
at 25 °C

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4406

Parameter Value
Max. ±2 % of full scale (all ranges)

at 0 °C...60 °C or EMC disturbance

Time constant of the input filter Voltage: 300 µs
Current: 300 µs

Relationship between input
signal and hex code

Ä Table on page 4404

Analog to digital conversion
time

Typ. 500 µs per channel

Unused inputs Can be left open and should be configured as "unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC only for voltage input

Max. cable length (conductor
cross section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Technical data of the analog outputs

Parameter Value
Number of channels per module 2 configurable voltage or current outputs

Distribution of channels into groups 1 (2 channels per group)

Connection of the signals O0U- and O1U+ Terminals 13 and 15

Connection of the signals O0I+ and O1I+ Terminals 14 and 16

Output type Bipolar with voltage, unipolar with current

Resolution 12 bits or 11 bits plus sign

Indication of the output signals No

Output resistance (load) as current output 0 W...500 W

Output load ability as voltage output 2 mA max.

Relationship between input signal and hex code Table Output Ranges Ä Table
on page 4405

Conversion error of the analog values caused
by non-linearity, adjustment error at factory and
resolution within the normal range

Typ. ±0.5 % of full scale (voltage)
±0.5 % of full scale (current 0
mA...20 mA)
±0.7 % of full scale (current 4
mA...20 mA)
at 25°C

Max. ±2 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Unused outputs Can be left open and should be configured
as "unused"

Output data length 4 bytes

Overvoltage protection Yes, up to 30 V DC

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4407

Parameter Value
Max. cable length (conductor cross section
> 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1301 AX561, analog input/output module,

4 AI, 2 AO, U/I
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

S500
AC522 - Analog input/output module

● 8 configurable analog inputs/outputs in one group (2.0...2.7 and 3.0...3.7)
● Resolution 12 bits plus sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4408

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the analog inputs/outputs (C0 - C7)
4 1 green LED to display the state of the process supply voltage UP
5 1 red LED to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The configuration is performed by software. The modules are supplied with a process voltage of
24 V DC.
The inputs and outputs are galvanically isolated from all other circuitry of the module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4409

Functionality
8 analog inputs (I0...I7), individually configurable for
● Unused (default setting)
● 0 V...10 V
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire), requires 2 channels
● Pt100, -50 °C...+70 °C (2-wire)
● Pt100, -50 °C...+70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels
● 0 V...10 V with differential inputs, requires 2 channels
● -10 V...+10 V with differential inputs, requires 2 channels
● Digital signals (digital input)
4 analog outputs (O0...O3), individually configurable for
● Unused (default setting)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
4 analog outputs (O4...O7), individually configurable for
● Unused (default setting)
● -10 V...+10 V

Parameter Value
Resolution of the analog channels

 Voltage -10 V...+10 V 12 bits plus sign

 Voltage 0 V...10 V 12 bits

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

 Temperature 0.1 °C

LED displays 10 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4410

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541
and TU542 for I/O modules” on page 4103. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9, 3.9 and 4.9 are electrically intercon-
nected within the I/O terminal units and always have the same assignment, independent of the
inserted module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 Unused Unused

2.0 to 2.7 C0- to C7- Negative poles of the 8 analog
inputs/outputs

3.0 to 3.7 C0+ to C7+ Positive poles of the analog
inputs/outputs

4.0 to 4.7 Unused Unused

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4411

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module. The external power supply connection is carried out
via the UP (+24 V DC) and the ZP (0 V DC) terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the I/O module.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4412

1 4 analog I/O channels
as inputs for 0 V...10 V, -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA, Pt100/Pt1000/Ni1000
digital signals
as outputs for -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA

2 4 analog I/O channels
as inputs for 0 V...10 V, -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA, Pt100/Pt1000/Ni1000
digital signals
as outputs for -10 V...+10 V

The process voltage must be included in the grounding concept of the control
system (e.g. grounding the negative pole).

By installing equipotential bonding conductors between the different parts of the
system, it must be made ensured that the potential difference between ZP and
AGND never exeeds 1 V.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4413

Pt100 -50 °C...+70 °C 2-wire configuration, one
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4414

1 Return line
2 Twisted pair within the cable

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. C1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C...+70 °C 3-wire configuration, two
channels used

Pt100 -50 °C...+400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C...+400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C...+150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4415

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

By connecting to AGND the galvanically isolated voltage source of the sensor is referred to ZP.
The following measuring ranges can be configured:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4416

The following measuring ranges can be configured:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4417

Connection of passive-type analog sensors (Current)

Current 4 mA...20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and I-). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential
difference with respect to ZP (max. ±1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4418

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4419

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Connection of analog output loads (Voltage, current)

Voltage -10 V...+10 V Load max. ±10 mA 1 channel used

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

Only the channels 0...3 can be configured as current output (0 mA...20 mA or 4 mA...20 mA).
Unused analog outputs can be left open-circuited.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4420

Internal data exchange

Analog inputs (words) 8

Analog outputs (words) 8

I/O configuration
The module does not store configuration data itself. The 8 configurable analog channels are
defined as inputs or outputs by the configuration, i.e. each of the configurable channels can
used as input or output (or re-readable output in case of voltage input/output).
When a channel is used as input, the corresponding output must be configured unused.
When a channel is used as output, the corresponding input must be configured unused.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1520
1)

Word 1520
0x05f0

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

3 Param-
eter
length in
bytes

Internal 37 Byte 37-CPU
37-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4421

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

7 Channel
configu-
ration
Input
channel
0

see table
Channel configura-
tion

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y07

9
to
22

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 7

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y15

23 Channel
configu-
ration
Output
channel
0

see table
Channel configura-
tion

Byte Default
0x00

0 130 0x0Y16

24 Channel
moni-
toring
Output
channel
0

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y17

25 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0...0xffff Word Default
0x0000

0 65535 0x0Y18

26 to 31 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 3

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y19
to
0x0Y1E

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4422

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

32 Channel
configu-
ration
Output
channel
4

see table
Channel configura-
tion

Byte Default
0x00

0 128 0x0Y1F

33 Channel
moni-
toring
Output
channel
4

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y20

34
to
39

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
5 to 7

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y21
to
0x0Y26

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

40
0x05, 0xf1, 0x25, \
0x01, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4423

Table 431: Input channel (8x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Table 432: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V...10 V

2 Digital input

3 Analog input 0 mA...20 mA

4 Analog input 4 mA...20 mA

5 Analog input -10 V...+10 V

8 Analog input Pt100, -50 °C...+400 °C (2-wire)

9 Analog input Pt100, -50 °C...+400 °C (3-wire), requires 2 channels *)

10 Analog input 0...10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V...+10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C...+70 °C (2-wire)

15 Analog input Pt100, -50 °C...+70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C...+400 °C (2-wire)

17 Analog input Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C...+150 °C (2-wire)

19 Analog input Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 433: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

1 Open-circuit and short-circuit

2 Plausibility

3 No monitoring

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4424

Table 434: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0...65535 0...
0xffff

Word 0

Table 435: Output channels 1...7 (7x)
No. Name Internal value, type Default
1 Channel configura-

tion

see table 4)

Byte see table 4)

2 Channel monitoring

see table 5)

Byte see table 5)

Table 436: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V...+10 V

129 Analog output 0 mA...20 mA (not with the channels 4...7)

130 Analog output 4 mA...20 mA (not with the channels 4...7)

Table 437: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

1 Open-circuit (broken wire) and short-circuit

2 Plausibility

3 No monitoring

Table 438: Substitute value 6)
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value Last value 0

Substitute value Off or last value 1...65535

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4425

Diagnosis
Table 439: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0..20 mA Error identifier = 7 Error identifier = 4

4..20 mA

-10..+10 V

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0..20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4..20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10..+10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

Table 440: Content of diagnosis messages
E1...E4 d1 d2 d3 d4 Identifier

000...063
AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4426

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1...10

Channel error

 AX521 AX522

4 14 1...10 1 0...3 0...7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware address
(e.g. of the DC551)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4427

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
00...07

Analog input/
output

Yellow Input/output
is OFF

Input/output is
ON (bright-
ness depends
on the value
of the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR3 Channel
error, error
messages
combined
into group 3

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
group

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON 27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 OFF 0 0000

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4428

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal range :
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

:
150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4429

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
The System Data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
Only additional details are therefore documented below.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 VDC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 VDC power supply at the terminals
UP/L+ and ZP/M of the CPU/bus module

Ca. 2 mA

 From UP at normal operation 0.10 A + output loads

Inrush current from UP (at power up) 0.040 A2s

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4430

Parameter Value
Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switch-gear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels C0- to C7- Terminals 2.0 to 2.7

Connections of the channels C0+ to C7+ Terminals 3.0 to 3.7

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between input signal and hex
code

See table Ä Chapter 1.6.2.6.2.2.1.9.1 “Input
ranges of voltage, current and digital input”
on page 4428

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4431

Parameter Value
Unused inputs Must be configured as "unused".

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels C0+ to C7+ Terminals 3.0 to 3.7

Reference potential for the inputs Terminals 1.9 to 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 VDC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 8, all channels for voltage, the first 4 channels

also for current

Distribution of channels into groups 1 group of 8 channels

 Channels C0-...C7- Terminals 2.0...2.7

 Channels C0+...C7+ Terminals 3.0...3.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually),
current outputs only channels 0...3

Output resistance (load), as current output 0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Resolution 12 bits (+ sign)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4432

Parameter Value
Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between output signal and hex
code

See table Ä Chapter 1.6.2.6.2.2.1.9.3 “Output
ranges voltage and current” on page 4430

Unused outputs Must be configured as "unused".

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 500 R0001 AC522, analog input/output module,

8 AC, U/I/RTD, 12 bits + sign, 2-wires
Active

1SAP 450 500 R0001 AC522-XC, analog input/output
module, 8 AC, U/I/RTD, 12 bits + sign,
2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI523 - Analog input module
● 16 configurable analog inputs (I0 to I15) in 2 groups (1.0...2.7 and 3.0...4.7)

Resolution 12 bits plus sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4433

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the analog inputs (I0 - I15)
4 1 green LED to display the state of the process supply voltage UP
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
16 analog inputs, individually configurable for
● Unused (default setting)
● 0 V...10 V
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4434

● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire), requires 2 channels
● Pt100, -50 °C...+70 °C (2-wire)
● Pt100, -50 °C...+70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels
● 0 V...10 V with differential inputs, requires 2 channels
● -10 V...+10 V with differential inputs, requires 2 channels
● Digital signals (digital input)

Parameter Value
Resolution of the analog channels

 Voltage -10 V... +10 V 12 bits plus sign

 Voltage 0 V...10 V 12 bits

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

 Temperature 0.1 °C

LED displays 19 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Connections
The modules are plugged on an I/O terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541
and TU542 for I/O modules” on page 4103. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal
units and have always the same assignment, independent of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V
The assignment of the other terminals:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4435

Terminals Signal Description
1.0 to 1.7 I0- to I7- Negative poles of the first 8

analog inputs

2.0 to 2.7 I0+ to I7+ Positive poles of the first 8
analog inputs

3.0 to 3.7 I8- to I15- Negative poles of the fol-
lowing 8 analog inputs

4.0 to 4.7 I8+ to I15+ Positive poles of the following
8 analog inputs

CAUTION!
The negative poles of the analog inputs are galvanically connected to each
other. They form an "Analog Ground" signal for the module. The negative poles
of the analog outputs are also galvanically connected to each other to form an
"Analog Ground" signal.

CAUTION!
There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

CAUTION!
Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AI523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4436

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the module:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4437

Fig. 845: 16 analog inputs in two groups, individually configurable Ä Chapter 1.6.2.6.2.2.2.2
“Functionality” on page 4434

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The modules provide several diagnosis functions Ä Chapter 1.6.2.6.2.2.2.7 “Diagnosis”
on page 4449.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4438

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module AI523
provides a constant current source which is multiplexed over the 8 analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 846: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.2.6 “Parameteriza-
tion” on page 4446.

Pt100 -50 °C...+70 °C 2-wire configuration, one
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, one
channel used

The function of the LEDs is described under Displays Ä Chapter 1.6.2.6.2.2.2.7 “Diagnosis”
on page 4449.
The module AI523 performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module AI523
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4439

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 847: Connection example

If several measuring points are adjacent to each other, the return line is neces-
sary only once. This saves wiring costs.

With 3-wire configuration, two adjacent analog channels belong together (e.g. the channels 0
and 1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.2.6 “Parameteriza-
tion” on page 4446

Pt100 -50 °C...+70 °C 3-wire configuration, two
channels used

Pt100 -50 °C...+400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C...+400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C...+150 °C 3-wire configuration, two
channels used

The function of the LEDs is described under Displays Ä Chapter 1.6.2.6.2.2.2.7 “Diagnosis”
on page 4449.
The module AI523 performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4440

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

AGND

Fig. 848: Connection example

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.2.6 “Parameteriza-
tion” on page 4446 Ä Chapter 1.6.2.6.2.2.2.9 “Measuring ranges” on page 4451

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Displays Ä Chapter 1.6.2.6.2.2.2.7 “Diagnosis”
on page 4449.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4441

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 849: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.2.6 “Parameteriza-
tion” on page 4446 Ä Chapter 1.6.2.6.2.2.2.9 “Measuring ranges” on page 4451

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Displays Ä Chapter 1.6.2.6.2.2.2.7 “Diagnosis”
on page 4449.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V

AGND

Fig. 850: Connection example

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4442

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1 V, not even in case of long lines .

If AGND does not get connected to ZP, the sensor current flows to ZP via
the AGND line. The measuring signal is distorted, as a very low current flows
over the voltage line. The total current through the PTC should not exceed 50
mA. This measuring method is therefore only suitable for short lines and small
sensor currents. If there are bigger distances, the difference measuring method
has to be preferred.

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.2.9 “Measuring
ranges” on page 4451

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range

The function of the LEDs is described under Displays Ä Chapter 1.6.2.6.2.2.2.7 “Diagnosis”
on page 4449.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

4 ... 20 mA

-

+

Fig. 851: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.2.6 “Parameteriza-
tion” on page 4446 Ä Chapter 1.6.2.6.2.2.2.9 “Measuring ranges” on page 4451

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Displays Ä Chapter 1.6.2.6.2.2.2.7 “Diagnosis”
on page 4449.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4443

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA
for more than 1 second into an analog input, this input is switched off by the
module (input protection). In such cases, it is recommended to protect the
analog input by a 10 volt Zener diode (in parallel to I+ and I-). But, in general, it
is a better solution to use sensors with fast initialization or without current peaks
higher than 25 mA.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V within the full signal range). Otherwise problems
can occur concerning the common-mode input voltages of the involved analog
inputs.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

Fig. 852: Connection example

The negative pole of the sensor must be grounded next to the sensor.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4444

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.2.6 “Parameteriza-
tion” on page 4446 Ä Chapter 1.6.2.6.2.2.2.9 “Measuring ranges” on page 4451:

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

The function of the LEDs is described under Displays Ä Chapter 1.6.2.6.2.2.2.7 “Diagnosis”
on page 4449.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 853: Connection example

The following operating mode can be configured Ä Chapter 1.6.2.6.2.2.2.6 “Parameterization”
on page 4446 Ä Chapter 1.6.2.6.2.2.2.9 “Measuring ranges” on page 4451

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

The function of the LEDs is described under Displays.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 16

Counter output data (words) 0

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4445

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
That means replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1515
1)

Word 1515
0x05eb

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

3 Param-
eter
length in
bytes

Internal 34 Byte 34-CPU
34-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Channel
configu-
ration
Input
channel
0

See
Ä Table 441 “Chan
nel configuration 2)”
on page 4448

Byte Default
0x00

0 19 0x0Y05

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4446

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

7 Channel
moni-
toring
Input
channel
0

See
Ä Table 442 “Chan
nel monitoring 4)”
on page 4448

Byte Default
0x00

0 3 0x0Y06

8
to
35

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 14

See
Ä Table 441 “Chan
nel configuration 2)”
on page 4448

and
Ä Table 442 “Chan
nel monitoring 4)”
on page 4448

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y07
to
0x0Y22

36 Channel
configu-
ration
Input
channel
15

See
Ä Table 441 “Chan
nel configuration 2)”
on page 4448

Byte Default
0x00

0 19 0x0Y23

37 Channel
moni-
toring
Input
channel
15

See
Ä Table 442 “Chan
nel monitoring 4)”
on page 4448

Byte Default
0x00

0 3 0x0Y24

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

37
0x05, 0xec, 0x22, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4447

No. Name Value Internal value Internal
value, type

Default

1 Channel con-
figuration

see table 2) see table 2) Byte 0

0x00 see 3)

2 Channel mon-
itoring

see table 4) see table 4) Byte 0

0x00 see 5)

Table 441: Channel configuration 2)
Interna
l value

Operating modes of the analog inputs, individually configurable

0 Unused (default)
3)

1 Analog input 0 V...10 V

2 Digital input

3 Analog input 0 mA...20 mA

4 Analog input 4 mA...20 mA

5 Analog input -10 V...+10 V

8 Analog input Pt100, -50 °C...+400 °C (2-wire)

9 Analog input Pt100, -50 °C...+400 °C (3-wire), requires 2 channels *)

10 Analog input 0...10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V...+10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C...+70 °C (2-wire)

15 Analog input Pt100, -50 °C...+70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C...+400 °C (2-wire)

17 Analog input Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C...+150 °C (2-wire)

19 Analog input Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs, two
adjacent analog inputs belong together (e.g. the channels 0 and 1). In these cases,
both channels are configured in the desired operating mode. The lower address must
be the even address (channel 0). The next higher address must be the odd address
(channel 1). The converted analog value is available at the higher address (channel
1).

Table 442: Channel monitoring 4)
Intern
al
value

Monitoring

0 Plausibility, open-circuit (broken wire) and short circuit
5)

1 Open-circuit and short circuit

2 Plausibility

3 No monitoring

Input channel
(16 x with AI523)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4448

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON ->
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...15 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...15 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

4 14 1...10 1 0...15 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1...10

Remarks:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4449

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1..10 = expansion module 1...10, ADR = hardware address
(e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1..10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (1 = AI); COM1/COM2: 1..10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I7 and
I8...I15

Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages in
groups
(analog
inputs or out-
puts com-
bined into the
groups 2 and
4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4450

Measuring ranges
Input ranges of voltage, current and digital input

Range 0...10
V

-10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 OFF 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < -1.7593 <-11.7589 <0.0000 <1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector
The resolution corresponds to 16 bits.

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4451

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Normal
range

:
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

:
150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24
V (UP) as well as 1.9, 2.9, 3.9 and 4.9
for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

Ca. 2 mA

 From UP at normal operation / with outputs 0.15 A + output loads

Inrush current from UP (at power up) 0.050 A2s

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4452

Parameter Value
Max. length of analog cables, conductor cross section
> 0.14 mm2

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must
not be hindered by cable ducts or
other parts in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 16

Distribution of channels into groups 2 groups of 8 channels each

Connections of the channels I0- to I7-
Connections of the channels I0+ to I7+

Terminals 1.0 to 1.7
Terminals 2.0 to 2.7

Connections of the channels I8- to I15-
Connections of the channels I8+ to I15+

Terminals 3.0 to 3.7 Terminals 4.0 to 4.7

Input type Bipolar (not with current or Pt100/ Pt1000/
Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V...10 V, -10 V...+10 V, 0/4 mA...20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel

Conversion cycle 2 ms (for 16 inputs), with Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits

Range -10 V...+10 V: 12 bits + sign

Range 0 mA...20 mA: 12 bits

Range 4 mA...20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at 25 °C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4453

Parameter Value
Max. ±1 % of full scale (all ranges)

at 0 °C...60 °C or EMC disturbance

Relationship between input signal and hex
code

Ä Chapter 1.6.2.6.2.2.2.9.1 “Input ranges of
voltage, current and digital input” on page 4451

Ä Chapter 1.6.2.6.2.2.2.9.2 “Input ranges
resistance temperature detector” on page 4451

Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-
circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 16

Distribution of channels into groups 2 groups of 8 channels each

Connections of the channels I0+ to I7+
Connections of the channels I8+ to I15+

Terminals 2.0 to 2.7
Terminals 4.0 to 4.7

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 300 R0001 AI523, analog input module, 16 AI,

U/I/Pt100, 12 bits + sign, 2-wires
Active

1SAP 450 300 R0001 AI523-XC, analog input module, 16 AI,
U/I/Pt100, 12 bits + sign, 2-wires,
XC version

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4454

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI531 - Analog input module
● 8 configurable analog inputs (I0 to I7) in 2 groups (1.0...1.7 and 2.0...2.7 as well as 3.0...3.7

and 4.0...4.7)
Resolution 15 bits plus sign

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal names
3 4 yellow LEDs to display the states at the inputs I0 to I3
4 4 yellow LEDs to display the states at the inputs I4 to I7
5 1 green LED to display the process supply voltage UP
6 2 red LEDs to display errors (CH-ERR2 and CH-ERR4)
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4455

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
8 analog inputs, individually configurable for
● Unused (default setting)
● 0 V...5 V, 0 V...10 V
● -50 mV...+50 mV, -500 mV...+500 mV
● -1 V...+1 V, -5 V...+5 V, -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
● -20 mA...20 mA
● Pt100, -50 °C...+70 °C or 400 °C (2-, 3- and 4-wire)
● Pt100, -200 °C...+850 °C (2-, 3- and 4-wire)
● Pt1000, -50 °C...+400 °C (2-, 3- and 4-wire)
● Ni1000, -50 °C...+150 °C (2-, 3- and 4-wire)
● Cu50 (1.426): -50 °C...+200 °C (2-, 3- and 4-wire)
● Cu50 (1.428): -200 °C...+200 °C (2-, 3- and 4-wire)
● 0 Ω...50 kΩ
● Thermocouples of types J, K, T, N, S
● Resistance measuring bridge
● Digital signals (digital input)

Parameter Value
Resolution of the analog channels

 Voltage and current, bipolar 15 bits plus sign

 Voltage and current, unipolar 15 bits

 Temperature 0.1 °C (0,01°C at Pt100 -50 °C...+70 °C)

LED displays 11 LEDs for signals and error messages

Internal power supply through the I/O bus interface (I/O bus)

External power supply via terminals (process voltage UP = 24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4456

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541
and TU542 for I/O modules” on page 4103. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8, 4.8, 1.9, 2.9, 3.9 and 4.9 are electrically interconnected within the
I/O terminal units and always have the same assignment, independent of the inserted module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V
The assignment of the other terminals:

Terminals Signal Description
2.0, 2.2, 2.4, 2.6 I0+ to I3+ Positive poles of the first 4

analog inputs

1.0, 1.2, 1.4, 1.6 I0- to I3- Negative poles of the first 4
analog inputs

2.1, 2.3, 2.5, 2.7 I0A to I3A Connections A (supply) of the
first 4 analog inputs

1.1, 1.3, 1.5, 1.7 I0B to I3B Connections B (analog
ground) of the first 4 analog
inputs

4.0, 4.2, 4.4, 4.6 I4+ to I7+ Positive poles of the following
4 analog inputs

3.0, 3.2, 3.4, 3.6 I4- to I7- Negative poles of the fol-
lowing 4 analog inputs

4.1, 4.3, 4.5, 4.7 I4A to I7A Connections A (supply) of the
following 4 analog inputs

3.1, 3.3, 3.5, 3.7 I4B to I7B Connections B (analog
ground) of the following 4
analog inputs

CAUTION!
Analog sensors must be galvanically isolated against the ground. In order to
avoid inaccuracy with the measuring results, the analog sensors should also be
isolated against the power supply.

The "IxB" clamps (x=0..7) of the analog inputs are galvanically connected to
each other. They form an "Analog Ground Signal" (AGND) for the module.

The negative poles of the analog inputs Ix- may accept a potential difference
up to ±20 V DC with regard to the common reference potential IxB (AGND,
ZP). Observing this maximum voltage difference, analog current inputs of one
module can be switched in series to each other and also with current inputs of
other modules.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4457

For the open-circuit detection (cut wire), each positive analog input channel Ix+
is pulled up to "plus" by a high-resistance resistor and each negative analog
input channel Ix- is pulled down to "minus" by a resistor. If cut wire occurs, a
maximum voltage (overflow or underflow) will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AI531.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4458

Fig. 854: 8 analog inputs in two groups, individually configurable Ä Chapter 1.6.2.6.2.2.3.2
“Functionality” on page 4456

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 1.6.2.6.2.2.3.7 “Diagnosis”
on page 4477.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4459

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

-50 ... +50 mV
-500 ... +500 mV
-1 ... +1 V
-5 ... +5 V
-10 ... +10 V
-50 ... +50 mV
0 ... +5 V
0 ... +10 V

+

-
UIN

Fig. 855: Connection example

The measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameterization”
on page 4474:

Voltage -50 mV...+50 mV 1 channel used

Voltage -500 mV...+500 mV 1 channel used

Voltage -1 V...+1 V 1 channel used

Voltage -5 V...+5 V 1 channel used

Voltage -10 V...+10 V 1 channel used

Voltage 0 V...+5 V 1 channel used

Voltage 0 V...+10 V 1 channel used

Fig. 856: Connection example

The measuring range can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameterization”
on page 4474:

Standard ranges

Common mode
range (+/-20 V)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4460

Voltage Common mode voltage 1 channel used

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

Fig. 857: Connection example

CAUTION!
If GND is not directly connected to ZP at the sensor, the supply current flows
via the GND line to ZP. Measuring errors can only occur caused by voltage
differences higher than ±20 V DC between GND and ZP.

The measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameterization”
on page 4474 :

Voltage -50 mV...+50 mV 1 channel used

Voltage -500 mV...+500 mV 1 channel used

Voltage -1 V...+1 V 1 channel used

Voltage -5 V...+5 V 1 channel used

Voltage -10 V...+10 V 1 channel used

Voltage 0 V...+5 V 1 channel used

Voltage 0 V...+10 V 1 channel used

Standard ranges

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4461

Fig. 858: Connection example

CAUTION!
If GND is not directly connected to ZP at the sensor, the supply current flows
via the GND line to ZP. Measuring errors can only occur caused by voltage
differences higher than ±20 V DC between GND and ZP.

The measuring range can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameterization”
on page 4474:

Voltage Common mode voltage 1 channel used

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 859: Connection example

Common mode
range (+/-20 V)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4462

Figure:
The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474:

Current -20 mA...20 mA 1 channel used

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
Unused input channels can be left open, because they are of low resistance.

Connection of active-type analog sensors (Current) with galvanically isolated power supply and series-
connection of an additional input

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

-20 ... +20 mA
0 ... +20 mA

+4 ... +20 mA

+

-

UP

+

-

1

Fig. 860: Connection example

1 Analog input of the second device

If series-connection of an additional input is used, the input resistance of the
module (ca. 330 Ω) must be added to the input resistance of the second device.
Make sure that the maximum permitted load resistance of the analog sensor is
not exceeded (see the data sheet of the analog sensor).

The input of the module is not related to ZP. If the input of the second device is
related to ZP, the order of sequence in the series-connection must be observed
by all means (from the sensor to the module and then to the input of the second
device).

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474:

Current -20 mA...20 mA 1 channel used

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4463

For a description of the functions of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
Unused input channels can be left open, because they are of low resistance.

Connection of passive-type analog sensors (Current)

Fig. 861: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474:

Current -20 mA... 20 mA *) 1 channel used

Current 0 mA... 20 mA *) 1 channel used

Current 4 mA... 20 mA 1 channel used

*) This setting is not applicable with passive-type analog sensors (current).

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
Unused input channels can be left open, because they are of low resistance.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4464

Connection of passive-type analog sensors (Current) and series-connection of an additional analog sensor

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

+4 ... +20 mA

-

+

UP

+

-

1

Fig. 862: Connection example

1 Analog input of the second device

If series-connection of an additional input is used, the input resistance of the
module (ca. 330 Ω) must be added to the input resistance of the second device.
Make sure that the maximum permitted load resistance of the analog sensor is
not exceeded (see the data sheet of the analog sensor).

The input of the module is not related to ZP. If the input of the second device is
related to ZP, the order of sequence in the series-connection must be observed
by all means (from the sensor to the module and then to the input of the second
device).

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474:

Current -20 mA...20 mA *) 1 channel used

Current 0 mA...20 mA *) 1 channel used

Current 4 mA...20 mA 1 channel used

*) This setting is not applicable with passive-type analog sensors (current).

The function of the LEDs is described under Diagnosis and displays / displays Ä Chapter
1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
Unused input channels can be left open, because they are of low resistance.

Connection of digital signal sources at analog inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4465

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

UP

ZP

Fig. 863: Connection example

The following operating mode can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameterization”
on page 4474 :

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

Fig. 864: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4466

Pt100 -50 °C...+70 °C / +400 °C;
-200 °C...+850 °C

1 channel used

Pt1000 -50 °C...+400 °C 1 channel used

Ni1000 -50 °C...+150 °C 1 channel used

Cu50 -50 °C...+200 °C (1.426); -200
°C...+200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
The module linearizes the resistance thermometer characteristics.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

Fig. 865: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474:

Pt100 -50 °C...+70 °C / +400 °C;
-200 °C ... +850 °C

1 channel used

Pt1000 -50 °C...+400 °C 1 channel used

Ni1000 -50 °C...+150 °C 1 channel used

Cu50 -50 °C...+200 °C (1.426); -200
°C...+200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
The module linearizes the resistance thermometer characteristics. In order to keep measuring
errors as small as possible, it is necessary by all means to have all the involved conductors in
the same cable. All the conductors must have the same cross section.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4467

In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 4-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZPZP

UP

Pt100
Pt1000
Ni1000
Cu50

Fig. 866: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474:

Pt100 -50 °C...+70 °C / +400 °C;
-200 °C...+850 °C

1 channel used

Pt1000 -50 °C...+400 °C 1 channel used

Ni1000 -50 °C...+150 °C 1 channel used

Cu50 -50 °C...+200 °C (1.426); -200
°C...+200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
The module linearizes the resistance thermometer characteristics. In order to keep measuring
errors as small as possible, it is necessary by all means, to have all the involved conductors in
the same cable.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistors in 2-wire configuration
For evaluating resistors, a constant current must flow through them to build the necessary
voltage drop. For this, the module AI531 provides a constant current source which is multi-
plexed over the 4 analog channels.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4468

Fig. 867: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474 :

Resistor 50 kΩ 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of a resistance measuring bridge with internal supply
When resistance measuring bridges are connected, the short-circuit-proof voltage output
(internal supply) at pin I0A (or I2A, I4A, I6A) must be used. This supply voltage is activated
as soon as "Voltage Measurement" is configured for the relevant channel.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4469

Fig. 868: Connection example

1 Internal supply
All voltage measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameterization”
on page 4474.
The calculation of the resistor deviation must be performed via the bridge voltage by the PLC
user program.

Connection of a resistance measuring bridge with external supply
With the connection of a resistance measuring bridge with external supply, the supply voltage is
provided separately.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4470

UP

ZP

1.2
I1-
1.3
I1B

1.8
UP
1.9
ZP

1.0
I0-
1.1
I0B

PTC

2.2
I1+
2.3
I1A

2.8
UP
2.9
ZP

2.0
I0+
2.1
I0A

-50 ... +50 mV
-500 ... +500 mV
-1 ... +1 V
-5 ... +5 V
-10 ... +10 V
0 ... +5 V
0 ... +10 V

1)

-50 ... +50 mV
-500 ... +500 mV
-1 ... +1 V
-5 ... +5 V
-10 ... +10 V
0 ... +5 V
0 ... +10 V

0 V

<= 10 V

Fig. 869: Connection example

1 Bridge to IxB necessary with galvanically isolated supply
All voltage measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameterization”
on page 4474 .
The calculation of the resistor deviation must be performed via the bridge voltage by the PLC
user program.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4471

Connection of thermocouples

Fig. 870: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.3.6 “Parameteriza-
tion” on page 4474 :

J type -210 °C...1200 °C Fe-CuNi 1 channel used

K type -270 °C...1372 °C Ni-CrNi 1 channel used

N type -270 °C...1300 °C NiCrSi-NiSi 1 channel used

S type -50 °C...1768 °C Pt10Rh-Pt 1 channel used

T type -270 °C...400 °C Cu-CuNi 1 channel used

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4472

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 1.6.2.6.2.2.3.7 “Diagnosis” on page 4477.
The module linearizes the thermocouple characteristics. It supports the following possibilities of
temperature compensation and handling with cold junctions:

Internal compensation
An internal temperature sensor which is located next to the terminal unit is used to detect the
temperature of the cold junction. So the compensating cables must be connected directly to the
terminal unit, where the cold junction is located.
The setting "Internal compensation (default)" for the parameter "Compensation channel" should
be selected.

To get more precise temperature measurements, the use of an external com-
pensation method is recommended.

External compensation with temperature input
The temperature for the cold junction can be determinated externally.
A measured or known temperature value (e.g. ambient temperature in the cabinet) is transferred
to the module via the output data word to all required channels. The possible temperature range
is from -25 °C to +60 °C and is monitored by the AI531.
The setting "External with temperature value" for the parameter "Compensation channel" should
be selected.

External compensation with compensation box
A compensation box balances the temperature difference between the cold junction and the
reference temperature by generating a bridge voltage. The reference temperature is transferred
via the output data word.
The compensation box must fit to the type of thermocouple and is located at the end of the
compensating cables, where the cold junction is located. The cabling to the AI531 can be
carried out with normal cables. The operating manual of the compensation box also has to be
considered.
The setting "External with temperature value" for the parameter "Compensation channel" should
be selected.

External compensation with flanking channel
A flanking channel of the same input group can be used for compensation, e. g. for channel
3, the channels 0, 1 and 2 can be selected as reference channels. The type of sensor for the
reference channel can be selected in the parameters for the flanking channel. For example, a
RTD sensor which is located next to the thermocouple terminal can be used as reference point
for other channels.
The setting "Channel x" for the parameter "Compensation channel" should be selected. Refer to
Channel configuration Ä Chapter 1.6.2.6.2.2.3.6 “Parameterization” on page 4474 for possible
settings.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4473

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Analog inputs (words) 8

Analog outputs (words) 1

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
This means that replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1535
1)

Word 1535
0x05ff

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length in
bytes

Internal 36 Byte 36 0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

 0x0Y03

Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4474

2) Not with FBP
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

39
0x05, 0xff, 0x24, \
0x01, 0x00, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

No. Name Value Internal
value

Internal
value, Type

Default EDS Slot
Index

1 Channel
configura-
tion

see
Ä Table 44
3 “Channel
configura-
tion”
on page 4475

see
Ä Table 44
3 “Channel
configura-
tion”
on page 4475

Byte 0
0x00

0x0Y07

2 Channel
monitoring

see
Ä Table 44
4 “Channel
monitoring”
on page 4477

see
Ä Table 44
4 “Channel
monitoring”
on page 4477

Byte 0
0x03

3 Line fre-
quency sup-
pression

see Ä Fur-
ther infor-
mation
on page 4477

see Ä Fur-
ther infor-
mation
on page 4477

Byte 0
0x00

4 Compensa-
tion channel

see Ä Fur-
ther infor-
mation
on page 4477

see Ä Fur-
ther infor-
mation
on page 4477

Byte 0
0x00

Table 443: Channel configuration
Internal
value

Operating modes for the analog inputs, individually configurable

0 Unused (default)

2 Digital input

34 Analog input -50 mV...+50 mV

35 Analog input -500 mV...+500 mV

36 Analog input -1 V...+1 V

7 Analog input -5 V...+5 V

5 Analog input -10 V...+10 V

6 Analog input 0 V...+5 V

Input channel
(8x)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4475

Internal
value

Operating modes for the analog inputs, individually configurable

1 Analog input 0 V...+10 V

37 Analog input -20 mA...+20 mA

3 Analog input 0 mA...20 mA

4 Analog input 4 mA...20 mA

14 Analog input Pt100 (2-wire), -50 °C...+70 °C

15 Analog input Pt100 (3-wire), -50 °C...+70 °C

48 Analog input Pt100 (4-wire), -50 °C...+70 °C

57 Analog input Pt100 (2-wire), -50 °C...+70 °C (resolution: 0,01 K)

58 Analog input Pt100 (3-wire), -50 °C...+70 °C (resolution: 0,01 K)

59 Analog input Pt100 (4-wire), -50 °C...+70 °C (resolution: 0,01 K)

8 Analog input Pt100 (2-wire), -50 °C...+400 °C

9 Analog input Pt100 (3-wire), -50 °C...+400 °C

49 Analog input Pt100 (4-wire), -50 °C...+400 °C

45 Analog input Pt100 (2-wire), -200 °C...+850 °C

46 Analog input Pt100 (3-wire), -200 °C...+850 °C

47 Analog input Pt100 (4-wire), -200 °C...+850 °C

16 Analog input Pt1000 (2-wire), -50 °C...+400 °C

17 Analog input Pt1000 (3-wire), -50 °C...+400 °C

50 Analog input Pt1000 (4-wire), -50 °C...+400 °C

18 Analog input Ni1000 (2-wire), -50 °C...+150 °C

19 Analog input Ni1000 (3-wire), -50 °C...+150 °C

51 Analog input Ni1000 (4-wire), -50 °C...+150 °C

39 Analog input Cu50 1.426 (2-wire) -50 °C...+200 °C

40 Analog input Cu50 1.426 (3-wire) -50 °C...+200 °C

41 Analog input Cu50 1.426 (4-wire) -50 °C...+200 °C

42 Analog input Cu50 1.428 (2-wire) -200 °C...+200 °C

43 Analog input Cu50 1.428 (3-wire) -200 °C...+200 °C

44 Analog input Cu50 1.428 (4-wire) -200 °C...+200 °C

24 Analog input J-type thermocouple -210 °C...+1200 °C

25 Analog input K-type thermocouple -270 °C...+1372 °C

30 Analog input N-type thermocouple -270 °C...+1300 °C

27 Analog input S-type thermocouple -50 °C...+1768 °C

28 Analog input T-type thermocouple -270 °C...+400 °C

38 Analog input resistor 50 kW

52 Temperature-internal reference point

53 Common mode voltage

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4476

Table 444: Channel monitoring
Internal
value

Monitoring

0 Plausibility, open-circuit (cut wire) and short circuit (default)

3 No monitoring

Table 445: Line frequency suppression
Internal
value

Line frequency suppression

0 50 Hz

1 60 Hz

2 No line frequency suppression

Table 446: Compensation channel
Internal
value

Compensation channel

0 Internal compensation (default)

1 Channel 0 (possible with channels 1, 2, 3)

2 Channel 1 (possible with channels 0, 2, 3)

3 Channel 2 (possible with channels 0, 1, 3)

4 Channel 3 (possible with channels 0, 1, 2)

5 Channel 4 (possible with channels 5, 6, 7)

6 Channel 5 (possible with channels 4, 6, 7)

7 Channel 6 (possible with channels 4, 5, 7)

8 Channel 7 (possible with channels 4, 5, 6)

9 External with temperature value

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4477

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module, e.g. internal
analog voltage is not
correct

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched OFF (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 1 0...7 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 0...7 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

4 14 1...10 1 0...7 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1...10

4 14 1...10 1 0...7 1 Possibly wrong meas-
ured value caused
by inadmissible temper-
ature of the compensa-
tion channel

Check the
tempera-
ture com-
pensation
channel

11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4478

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 1 0...7 2 Invalid measured value
of the channel caused
by overly high voltage
difference

Check
voltage dif-
ference;
install
equalizing
conductors
if neces-
sary

11 / 12 ADR 1...10

4 14 1...10 1 0...7 11 Output voltage 10 V
faulty

Check
output load11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 expansion module 1...10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:

Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (1 = AI); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.
States of the LEDs (see also section Diagnosis LEDs in the S500 system data):

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4479

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I3 and
I4...I7

Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, mes-
sages in
groups
(analog
inputs com-
bined into the
groups 2 and
4)

Red No error, or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs CH-ERR2 and CH-ERR4 light up together

Measuring ranges
Voltage input ranges
Bipolar voltage input range, measuring bridge

The represented resolution corresponds to 16 bits.

Range -50 ...
+50 mV

-500 ...
+500
mV

-1 ... +1
V

-5 ... +5
V

-10 ...
+10 V

Commo
n Mode
Voltage

Digital value
Decimal Hex.

Over-
flow

>
58.7945

>
587.944
9

>
1.17589

> 5.8794 >
11.7589

>
20.0000

32767 7FFF

Meas-
ured
value
too high

58.7945
:
50.0018

587.944
9
:
500.018
1

1.17589
:
1.00004

5.8794
:
5.0002

11.7589
:
10.0004

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
Meas-
ured
value
too low

50.0000
:
0.0018

500.000
0
:
0.0181

1.00000
:
0.00004

5.0000
:
0.0002

10.0000
:
0.0004

20.0000
:
0.0008

27648
:
1

6C00
:
0001

0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0 0000

-0.0018
:
-50.0000

-0.0181
:
-500.000
0

-0.00004
:
-1.00000

-0.0002
:
-5.0000

-0.004
:
-10.0000

-0.0008
:
-20.0000

-1
:
-27648

FFFF
:
9400

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4480

Range -50 ...
+50 mV

-500 ...
+500
mV

-1 ... +1
V

-5 ... +5
V

-10 ...
+10 V

Commo
n Mode
Voltage

Digital value
Decimal Hex.

Meas-
ured
value
too low

-50.0018
:
-58.7945

-500.018
1
:
-587.944
9

-1.00004
:
-1.17589

-5.0002
:
-5.8794

-10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<
-58.7945

<
-587.944
9

<
-1.17589

<
-5.8794

<
-11.7589

<
-20.0000

-32768 8000

Unipolar voltage input range, measuring bridge, digital input

Range 0 ... +5 V 0 ... +10 V Digital
input

Digital value
Decimal Hex.

Measured
value too
high

 5.8794
:
5.0002

11.7589
:
10.0004

 32511
:
27649

7EFF
:
6C01

Normal
range

 5.0000
:
0.0002

10.0000
:
0.0004

ON

27648
:
1

6C00
:
0001

 0.0000 0.0000 OFF 0 0000

Measured
value too
low

 -0.0002
:
-0.8794

-0.0004
:
-1.1759

 -1
:
-4864

FFFF
:
ED00

Underflow < -0.8794 < -1.1759 -32768 8000

Current input ranges

Range -20 ... +20
mA

0 ... +20 mA 4 ... 20 mA Digital value
Decimal Hex.

Overflow > 23.5178 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

23.5178
:
20.0007

23.5178
:
20.0007

22.8142
:
20.0006

32511
:
27649

7EFF
:
6C01

Normal
range

20.0000
:
0.0007

20.0000
:
0.0007

20.0000
:
4.0006

27648
:
1

6C00
:
0001

0.0000 0.0000 4.0000 0 0000

-0.0007
:
-20.0000

 -1
:
-27648

FFFF
:
9400

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4481

Range -20 ... +20
mA

0 ... +20 mA 4 ... 20 mA Digital value
Decimal Hex.

Measured
value too low

 -0.0007
:
-3.5178

3.9994
:
1.1852

-1
:
-4864

FFFF
:
ED00

-20.0007
:
-23.5178

 -27649
:
-32512

93FF
:
8100

Underflow < -23.5178 < -3.5178 < 1.1852 -32768 8000

Resistance thermometer input ranges
The represented resolution corresponds to 16 bits.

Range Pt100
-50 ...
+70 °C 1)

Pt100 /
Pt1000
-50 ...
+400 °C

Pt100
-200 ...
+850 °C

Ni1000
-50 ...
+150 °C

Cu50
-200 ...
+200 °C

Digital value
Decimal Hex.

Overflow > 80.0 °C > 450.0
°C

> 850 °C > 160.0
°C

> 200 °C 32767 7FFF

Measured
value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

 1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal
range

:
:
:
:
70.0 °C
:
0.1 °C

:
400.0 °C
:
:
:
:
0.1 °C

850.0 °C
:
:
:
:
:
0.1 °C

:
:
:
150.0 °C
:
:
0.1 °C

:
:
200.0 °C
:
:
:
0.1 °C

8500
4000
2000
1500
700
:
1

2134
0FA0
07D0
05DC
02BC
:
1

0.0 °C 0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
:
-200 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C
2)
-200.0 °C
2)

-1
:
-500
-2000

FFFF
:
FE0C
F830

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4482

Range Pt100
-50 ...
+70 °C 1)

Pt100 /
Pt1000
-50 ...
+400 °C

Pt100
-200 ...
+850 °C

Ni1000
-50 ...
+150 °C

Cu50
-200 ...
+200 °C

Digital value
Decimal Hex.

Measured
value too
low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

 -50.1 °C
:
-60.0 °C

 -501
:
-600

FE0B
:
FDA8

Under-
flow

< -60.0
°C

< -60.0
°C

< -200 °C < -60.0
°C

< -200 °C
2)

-32768 8000

1) also possible with resolution 0.01 K
2) if Cu50 with 1.426, -50 °C is valid; if Cu50 with 1.428, -200.0 °C is valid

Resistor input range
The represented resolution corresponds to 16 bits.

Range Resistor [W] Digital value
Decimal Hex.

Overflow > 55000 32767 7FFF

Measured value
too high

55000
:
50001

30413
:
27649

76CD
:
6C01

Normal range 50000
:
2
1
0

27648
:
1
1
0

6C00
:
0001
0001
0000

Thermocouple input ranges
The represented resolution corresponds to 16 bits.

Range Typ J
-210 ...
+1200 °C

Typ K
-270 ...
+1372 °C

Typ N
-270 ...
+1300 °C

Typ S
-50 ...
+1768 °C

Typ T
-270 ...
+400 °C

Digital value
Decimal Hex.

Overflow > 1200.0
°C

> 1372.0
°C

> 1300.0
°C

> 1768.0
°C

> 400.0
°C

32767 7FFF

Normal
range

 1768.0 °C 17680 4510

 1372.0 °C : 13720 3598

 : 1300.0 °C : 13000 32C8

1200.0 °C : : : 12000 2EE0

: : : : 400.0 °C 4000 0FA0

: : : : : : :

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4483

Range Typ J
-210 ...
+1200 °C

Typ K
-270 ...
+1372 °C

Typ N
-270 ...
+1300 °C

Typ S
-50 ...
+1768 °C

Typ T
-270 ...
+400 °C

Digital value
Decimal Hex.

0.1 °C 0.1 °C 0.1 °C 0.1 °C 0.1 °C 1 1

0.0 °C 0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C -0.1 °C -0.1 °C -0.1 °C -0.1 °C -1 FFFF

: : : : : : :

: : : -50.0 °C : -500 FE0C

-210.0 °C : : : : -2100 F7CC

 -270.0 °C -270.0 °C -270.0 °C -2700 F574

Under-
flow

< -210.0
°C

< -270.0
°C

< -270.0
°C

< -50.0
°C

< -270.0
°C

-32768 8000

Temperature-internal reference point ranges

Range Value Digital value
Decimal Hex.

Overflow > +85 °C 32767 7FFF

Normal range +85 °C 850 0352

0 °C 0 0000

-40 °C -400 FE70

Underflow < -40 °C -32768 8000

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0 V
(ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4484

Parameter Value
 From 24 V DC power supply at the termi-

nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

Ca. 2 mA

 Current consumption from UP in normal
operation

130 mA

 Inrush current from UP (at power up) 0.056 A2s

Max. length of analog cables, conductor cross
section > 0.14 mm²

100 m

Weight 130 g

Mounting position Horizontal or vertical with derating (max.
temperature 40 °C)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 2 groups of 4 channels each

Connections of the channels I0 to I3 Terminals 1.0 to 1.7 and terminals 2.0 to
2.7

Connections of the channels I4 to I7 Terminals 3.0 to 3.7 and terminals 4.0 to
4.7

Input type Bipolar (not with current or Pt100/
Pt1000/ Ni1000/ Cu50/ resistor)

Galvanic isolation Against internal supply and other
modules

Common mode input range ±20 V DC plus signal voltage

Configurability Digital input, -50 mV...+50 mV,
-500mV...+500 mV, -1 V...+1 V,
-5 V...+5 V, -10 V...+10 V, 0 V...+5 V,
0 V...+10 V, -20 mA...+20 mA,
0 mA...20 mA, 4 mA...20 mA, Pt100,
Pt1000, Ni1000, Cu50, resistor, thermo-
couple types J, K, N, S, T (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW, current: ca. 330 W

Time constant of the input filter Line-frequency suppression 50 Hz, 60
Hz, none

Indication of the input signals 1 yellow LED per channel, the bright-
ness depends on the value of the
analog signal

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4485

Parameter Value
Conversion time 1 ms (none),

100 ms (50 Hz / 60 Hz) per channel

Resolution Ran
ge

unipolar 15 bits

bipolar 15 bits + sign

Conversion error of the analog values caused by
non-linearity, adjustment error at factory and resolu-
tion within the normal range

Typ. ±0.1 % (voltage)
±0.3 % (current, resistor)
at 25 °C

Max
.

±0.7 % (voltage)
±0.9 % (current, resistor)
±0.5 % (thermocouple type J, N,
S, T; thermocouple type K > -220
°C)
1.0 K (resistance temperature
detectors)
at 0 °C...60 °C or EMC disturb-
ance

Maximum permanent allowed overload (no damage)

 Current input When the input current exceeds the
overflow value of the measurement
range, the input impedance is switched
to high impedance for protection. The
maximum allowed overload is then 30
V. The digital value corresponds to the
overflow value. Periodically, the input
impedance is switched to the normal
value and the input current is measured.
If the input current is within the meas-
urement range, the input impedance
remains at the normal level and the dig-
ital value corresponds to the measured
current.

 Voltage input 30 V

Relationship between input signal and hex code Ä Table 444 “Channel monitoring”
on page 4477

Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-
circuited

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 2 groups of 4 channels each

Connections of the channels I0+ to I3+
Connections of the channels I4+ to I7+

Terminals 2.0, 2.2, 2.4, 2.6
Terminals 4.0, 4.2, 4.4, 4.6

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4486

Parameter Value
Input delay Typ. 2 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V Typ. 3.1 mA

 Input voltage +30 V < 7 mA

Input resistance Ca. 4.8 kW

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 600 R0001 AI531, analog input module, 8 AI,

U/I/Pt100, TC, 15 bits + sign, 4-wires
Active

1SAP 450 600 R0001 AI531-XC, analog input module, 8 AI,
U/I/Pt100, TC, 15 bits + sign, 4-wires,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AO523 - Analog output module
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4487

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the analog outputs (O0 - O15)
4 1 green LED to display the state of the process supply voltage UP
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
● 16 analog outputs in two groups:

– 8 channels configurable for voltage or currrent output (O0...O3 / O8...O11)
– 8 channels for voltage output (O4...O7 / O12...O15)
Resolution 12 bits plus sign

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4488

Parameter Value
Resolution of the analog channels

 Voltage -10 V...+10 V 12 bits plus sign

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

LED displays 19 LEDs for signals and error messages

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541
and TU542 for I/O modules” on page 4103. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the I/O terminal
units and have always the same assignment, independent of the inserted module:
Terminals 1.8 to 4.8: process voltage UP = +24 V DC
Terminals 1.9 to 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 O0- to O7- Negative poles of the first 8

analog outputs

2.0 to 2.7 O0+ to O7+ Positive poles of the first 8
analog outputs

3.0 to 3.7 O8- to O15- Negative poles of the fol-
lowing 8 analog outputs

4.0 to 4.7 O8+ to O15+ Positive poles of the following
8 analog outputs

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4489

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AO523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the module:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4490

Fig. 871: 16 analog outputs in two groups Ä Chapter 1.6.2.6.2.2.4.2 “Functionality”
on page 4488

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The modules provide several diagnosis functions Ä Chapter 1.6.2.6.2.2.4.7 “Diagnosis”
on page 4497.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4491

Connection of analog output loads (Voltage, current)

UP

ZP

1.0
O0-
1.1
O1-

1.8
UP
1.9
ZP

PTC

2.0
O0+
2.1
O1+

2.8
UP
2.9
ZP

-10 ... +10 V

0 ... 20 mA
4 ... 20 mA

Fig. 872: Connection example

The following measuring ranges can be configured Ä Chapter 1.6.2.6.2.2.4.6 “Parameteriza-
tion” on page 4493:

Voltage -10 V...+10 V Load max. ±10 mA 1 channel used

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4...20 mA Load 0 W...500 W 1 channel used

Only the channels 0...3 and 8...11 can be configured as current output (0 mA...20 mA or 4
mA...20 mA).
The function of the LEDs is described under Displays.
Unused analog outputs can be left open-circuited.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 0

Counter output data (words) 16

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
That means replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4492

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1510
1)

Word 1510
0x05e6

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length in
bytes

Internal 39 Byte 39-CPU
39-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

7 Channel
con-
figura
tion
Output
channel
0

See
Ä Table 447 “Chan
nel configuration 3)”
on page 4496

Byte Default
0x00

0 130 0x0Y06

8 Channel
moni-
toring
Output
channel
0

See
Ä Table 448 “Chan
nel monitoring 4)”
on page 4496

Byte Default
0x00

0 3 0x0Y07

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4493

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

9 Substi-
tute
value
Output
channel
0

Output
channel
0!

0...0xffff Word Default
0x0000

0 65535 0x0Y08

10 to 15 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 3

See
Ä Table 447 “Chan
nel configuration 3)”
on page 4496

and
Ä Table 448 “Chan
nel monitoring 4)”
on page 4496

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y09
to
0x0Y0E

16 to 23 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
4 to 7

See
Ä Table 447 “Chan
nel configuration 3)”
on page 4496

and
Ä Table 448 “Chan
nel monitoring 4)”
on page 4496

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y0F
to
0x0Y16

24 Channel
con-
figura
tion
Output
channel
8

See
Ä Table 447 “Chan
nel configuration 3)”
on page 4496

Byte Default
0x00

0 130 0x0Y17

25 Channel
moni-
toring
Output
channel
8

See
Ä Table 448 “Chan
nel monitoring 4)”
on page 4496

Byte Default
0x00

0 3 0x0Y18

26 Substi-
tute
value
Output
channel
8

Output
channel
8!

0...0xffff Word Default
0x0000

0 65535 0x0Y19

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4494

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

27
to
32

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
9 to 11

See
Ä Table 447 “Chan
nel configuration 3)”
on page 4496

and
Ä Table 448 “Chan
nel monitoring 4)”
on page 4496

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y1A
to
0x0Y1F

33
to
40

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
12 to 15

See
Ä Table 447 “Chan
nel configuration 3)”
on page 4496

and
Ä Table 448 “Chan
nel monitoring 4)”
on page 4496

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y20
to
0x0Y27

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

42
0x05, 0xe7, 0x27, \
0x01, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4495

No. Name Value Internal value Internal
value, type

Default

1 Channel con-
figuration

see below
Ä Table 447 “
Channel con-
figuration 3)”
on page 4496

see below
Ä Table 447 “
Channel con-
figuration 3)”
on page 4496

Byte see below
Ä Table 447 “
Channel con-
figuration 3)”
on page 4496

2 Channel mon-
itoring

see below
Ä Table 448 “
Channel mon-
itoring 4)”
on page 4496

see below
Ä Table 448 “
Channel mon-
itoring 4)”
on page 4496
*8)

Byte see below
Ä Table 448 “
Channel mon-
itoring 4)”
on page 4496

3 Substitute
value
Ä Table 449 “
Substitute
value”
on page 4497

0...65535 0...
0xffff

Word 0

No. Name Internal value, type
1 Channel configuration

see table 3)

Byte

2 Channel monitoring

see table 4)

Byte

Table 447: Channel configuration 3)
Internal value Operating modes of the analog outputs,

individually configurable
0 Unused (default)

128 Analog output -10 V...+10 V

129 Analog output 0 mA...20 mA (not with the
channels 4...7 and 12...15)

130 Analog output 4 mA...20 mA (not with the
channels 4...7 and 12...15)

Table 448: Channel monitoring 4)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and

short circuit (default)

1 Open-circuit (broken wire) and short circuit

2 Plausibility

3 No monitoring

Output channels
0 and 8 (2 chan-
nels, AO523)

Output channels
1...7 and 9...15
(14 channels,
AO523)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4496

Table 449: Substitute value
Intended behavior of
channel 0 when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF OFF 0

Last value Last value 0

Substitute value OFF or Last value 1...65535

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON ->
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error

4 14 1...10 3 0...15 48 Analog value overflow
at an analog output

Check
output
value

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4497

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

11 / 12 ADR 1...10

4 14 1...10 3 0...15 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 =
expansion 1...10
Channel error: I/O bus or FBP = module type (3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4498

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0...O7
and
O8...O15

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages in
groups
(analog
inputs or out-
puts com-
bined into the
groups 2 and
4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Output ranges
Output ranges voltage and current

The represented resolution corresponds to 16 bits.

Range -10...+10 V 0...20 mA 4...20 mA Digital value
Decimal Hex.

Overflow > 11.7589 V > 23.5178
mA

> 22.8142
mA

> 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4499

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for
0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

Ca. 2 mA

 Current consumption from UP at normal oper-
ation

0.15 A + output loads

 Inrush current from UP (at power up) 0.040 A2s

Max. length of analog cables, conductor cross sec-
tion > 0.14 mm2

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other
parts in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4500

Technical data of the analog outputs

Parameter Value
Number of channels per module 16, of which channnels O0...O3 and O8...O11

for voltage and current, and channels O4...7 and
O12...15 only for voltage

Distribution of channels into groups 2 groups of 8 channels each

 Channels O0-...O7-
Channels O0+...O7+

Terminals 1.0...1.7
Terminals 2.0...2.7

 Channels O8-...O15-
Channels O8+...O15+

Terminals 3.0...3.7
Terminals 4.0...4.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA (each
output can be configured individually), current out-
puts only channels 0...3 and 8...11

Output resistance (load), as current
output

0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Resolution 12 bits (+ sign)

Settling time for full range change (resis-
tive load, output signal within specified
tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the
normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between output signal and
hex code

Ä Chapter 1.6.2.6.2.2.4.9 “Output ranges”
on page 4499

Unused outputs Can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 200 R0001 AO523, analog output module, 16 AO,

U/I, 12 bits + sign, 2-wires
Active

1SAP 450 200 R0001 AO523-XC, analog output module,
16 AO, U/I, 12 bits + sign, 2-wires,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4501

AX521 - Analog input/output module
● 4 configurable analog inputs (I0 to I3) in 1 group (1.0...2.3)

Resolution 12 bits plus sign
● 4 configurable analog outputs (O0 to O3) in 1 group (3.0...4.3)

Resolution 12 bits plus sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 4 yellow LEDs to display the signal states at the analog inputs (I0 - I3)
4 4 yellow LEDs to display the signal states at the analog outputs (O0 - O3)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4502

Functionality
4 analog inputs (I0...I3), individually configurable for
● Unused (default setting)
● 0 V...10 V
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire), requires 2 channels
● Pt100, -50 °C...+70 °C (2-wire)
● Pt100, -50 °C...+70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels
● 0 V...10 V with differential inputs, requires 2 channels
● -10 V...+10 V with differential inputs, requires 2 channels
● Digital signals (digital input)
4 analog outputs (O0...O3), individually configurable for
● Unused (default setting)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage -10 V... +10 V 12 bits plus sign

 Voltage 0 V...10 V 12 bits

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

 Temperature 0.1 °C

LED displays 11 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

AX521

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4503

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541
and TU542 for I/O modules” on page 4103. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9, 3.9 and 4.9 are electrically intercon-
nected within the I/O terminal units and have always the same assignment, irrespective of the
inserted module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.3 I0- to I3- Negative poles of the 4 analog

inputs

2.0 to 2.3 I0+ to I3+ Positive poles of the 4 analog
inputs

3.0 to 3.3 O0- to O3- Negative poles of the 4 analog
outputs

4.0 to 4.3 O0+ to O3+ Positive poles of the 4 analog
outputs

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4504

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the I/O module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4505

Fig. 873: 4 analog inputs and 4 analog outputs, individually configurable Ä Chapter
1.6.2.6.2.2.5.2 “Functionality” on page 4503

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 874: Connection example

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4506

Pt100 -50 °C...+70 °C 2-wire configuration, one
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 875: Connection example

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4507

Pt100 -50 °C...+70 °C 3-wire configuration, two
channels used

Pt100 -50 °C...+400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C...+400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C...+150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

AGND

Fig. 876: Connection example

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

The following measuring ranges can be configured for AX521 Ä Chapter 1.6.2.6.2.2.5.6
“Parameterization” on page 4513 and for AX522 Ä Chapter 1.6.2.6.2.2.6.6 “Parameterization”
on page 4538:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4508

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 877: Connection example

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V

AGND

Fig. 878: Connection example

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4509

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

4 ... 20 mA

-

+

Fig. 879: Connection example

Current 4 mA...20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and I-). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4510

The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential
difference with respect to ZP (max. ±1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

Fig. 880: Connection example

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4511

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 881: Connection example

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Connection of analog output loads (Voltage, current)

UP

ZP

3.0
O0-
3.1
O1-

3.8
UP
3.9
ZP

PTC

4.0
O0+
4.1
O1+

4.8
UP
4.9
ZP

-10 ... +10 V

0 ... 20 mA
4 ... 20 mA

Fig. 882: Connection example

Voltage -10 V...+10 V Load max. ±10 mA 1 channel used

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

Only the channels 0...3 can be configured as current output (0 mA...20 mA or 4 mA...20 mA).
Unused analog outputs can be left open-circuited.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4512

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 4

Counter output data (words) 4

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1505
1)

Word 1505
0x05E1

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length in
bytes

Internal 21 Byte 21-CPU
21-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4513

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

7 Channel
configu-
ration
Input
channel
0

See table
Ä Table 451 “Chan
nel configuration 2)”
on page 4515

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

See table
Ä Table 452 “Chan
nel monitoring 3)”
on page 4516

Byte Default
0x00

0 3 0x0Y07

9
to
14

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 3

See tables
Ä Table 451 “Chan
nel configuration 2)”
on page 4515 and
Ä Table 452 “Chan
nel monitoring 3)”
on page 4516

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y0D

15 Channel
configu-
ration
Output
channel
0

See table
Ä Table 451 “Chan
nel configuration 2)”
on page 4515

Byte Default
0x00

0 130 0x0Y0E

16 Channel
moni-
toring
Output
channel
0

See table
Ä Table 452 “Chan
nel monitoring 3)”
on page 4516

Byte Default
0x00

0 3 0x0Y0F

17 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0...0xffff Word Default
0x0000

0 65535 0x0Y10

18 to 21 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 2

See tables
Ä Table 451 “Chan
nel configuration 2)”
on page 4515 and
Ä Table 452 “Chan
nel monitoring 3)”
on page 4516

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y11
to
0x0Y14

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4514

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

22 Channel
configu-
ration
Output
channel
3

See table
Ä Table 451 “Chan
nel configuration 2)”
on page 4515

Byte Default
0x00

0 130 0x0Y15

23 Channel
moni-
toring
Output
channel
3

See table
Ä Table 452 “Chan
nel monitoring 3)”
on page 4516

Byte Default
0x00

0 3 0x0Y16

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

24
0x05, 0xe2, 0x15, \
0x01, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00;

Table 450: Input channel (4x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Table 451: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V...10 V

2 Digital input

3 Analog input 0 mA...20 mA

4 Analog input 4 mA...20 mA

5 Analog input -10 V...+10 V

8 Analog input Pt100, -50 °C...+400 °C (2-wire)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4515

Internal value Operating modes of the analog inputs, individually configurable
9 Analog input Pt100, -50 °C...+400 °C (3-wire), requires 2 channels *)

10 Analog input 0...10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V...+10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C...+70 °C (2-wire)

15 Analog input Pt100, -50 °C...+70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C...+400 °C (2-wire)

17 Analog input Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C...+150 °C (2-wire)

19 Analog input Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 452: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

3 No monitoring

Table 453: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0...65535 0...
0xffff

Word 0

Table 454: Output channels 1...3 (3x)
No. Name Internal value, type
1 Channel configuration

see table 4)

Byte

2 Channel monitoring

see table 6)

Byte

Table 455: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V...+10 V

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4516

Internal value Operating modes of the analog outputs, individually configurable
129 Analog output 0 mA...20 mA (not with the channels 4...7 and 12...15)

130 Analog output 4 mA...20 mA (not with the channels 4...7 and 12...15)

Table 456: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

3 No monitoring

Table 457: Substitute value 6)
Intended behaviour of
output channel when the
control system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
Table 458: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0..20 mA Error identifier = 7 Error identifier = 4

4..20 mA

-10..+10 V

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0..20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4..20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10..+10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4517

Table 459: Content of diagnosis messages
E1...E4 d1 d2 d3 d4 Identifier

000...063
AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1...10

Channel error

 AX521 AX522

4 14 1...10 1 0...3 0...7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4518

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 3 4...7 8...15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware address
(e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4519

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I3

Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

Outputs
O0...O3

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages in
groups
(analog
inputs or out-
puts com-
bined into the
groups 2 and
4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0...10 V -10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.758
9

>23.517
8

>22.814
2

 32767 7FFF

Meas-
ured
value too
high

11.7589
.
.
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
meas-
ured
value too
low

10.0000
.
.
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON 27648
:
1

6C00
:
0001

0.0000 0 4 OFF 0 0000

0.0000 -0.0004
:
:

 3.9994 -1
-4864
-6912

FFFF
ED00
E500

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4520

Range 0...10 V -10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value
Decimal Hex.

-0.0004
-1.7593

:
-10.0000

:
-27648

:
9400

Meas-
ured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<-1.7593 <-11.758
9

<0.0000 <1.1858 -32768 8000

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value
Decimal Hex.

Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal
range

:
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

:
150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4521

Range -10...+10 V 0...20 mA 4...20 mA Digital value
Decimal Hex.

Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

Ca. 2 mA

 From UP at normal operation 0.15 A + output loads

Inrush current from UP (at power up) 0.020 A2s

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4522

Parameter Value
Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels I0- to I3- Terminals 1.0 to 1.3

Connections of the channels I0+ to I3+ Terminals 2.0 to 2.3

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each input can
be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between input signal and
hex code

See tables Ä Chapter 1.6.2.6.2.2.5.9.1 “Input ranges
of voltage, current and digital input” on page 4520

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4523

Parameter Value
Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels I0+ to I3+ Terminals 2.0 to 2.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 4, all channels for voltage and current

Distribution of channels into groups 1 group of 4 channels

 Channels O0-...O3- Terminals 3.0...3.3

 Channels O0+...O3+ Terminals 4.0...4.3

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA (each
output can be configured individually), current out-
puts only channels 0...3

Output resistance (load), as current
output

0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Resolution 12 bits (+ sign)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4524

Parameter Value
Settling time for full range change
(resistive load, output signal within
specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between output signal and
hex code

See table Ä Chapter 1.6.2.6.2.2.5.9.3 “Output ranges
voltage and current” on page 4521

Unused outputs Can be left open-circuited

Ordering Data

Part no. Description Product life cycle phase *)
1SAP 250 100 R0001 AX521, analog input/output module,

4 AI, 4 AO, U/I/Pt100, 12 bits + sign,
2-wires

Active

1SAP 450 100 R0001 AX521-XC, analog input/output
module, 4 AI, 4 AO, U/I/Pt100,
12 bits + sign, 2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AX522 - Analog input/output module
● 8 configurable analog inputs (I0 to I7) in 1 group (1.0...2.7)

Resolution 12 bits plus sign
● 8 configurable analog outputs (O0 to O7) in 1 group (3.0...4.7)

Resolution 12 bits plus sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4525

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the analog inputs (I0 - I7)
4 8 yellow LEDs to display the signal states at the analog outputs (O0 - O7)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
8 analog inputs (I0...I7), individually configurable for
● Unused (default setting)
● 0 V...10 V
● -10 V...+10 V
● 0 mA...20 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4526

● 4 mA...20 mA
● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire), requires 2 channels
● Pt100, -50 °C...+70 °C (2-wire)
● Pt100, -50 °C...+70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels
● 0 V...10 V with differential inputs, requires 2 channels
● -10 V...+10 V with differential inputs, requires 2 channels
● Digital signals (digital input)
4 analog outputs (O0...O3), individually configurable for
● Unused (default setting)
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA
4 analog outputs (O4...O7), individually configurable for
● Unused (default setting)
● -10 V...+10 V

Parameter Value
Resolution of the analog channels

 Voltage -10 V...+10 V 12 bits plus sign

 Voltage 0 V...10 V 12 bits

 Current 0 mA...20 mA, 4 mA...20 mA 12 bits

 Temperature 0.1 °C

LED displays 19 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The modules are plugged on an I/O terminal unit Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541
and TU542 for I/O modules” on page 4103. Properly position the modules and press until they
lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4527

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9,3.9 and 4.9 are electrically interconnected
within the I/O terminal units and always have the same assignment, independent of the inserted
module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 I0- to I7- Negative poles of the 8 analog

inputs

2.0 to 2.7 I0+ to I7+ Positive poles of the 8 analog
inputs

3.0 to 3.7 O0- to O7- Negative poles of the 8 analog
outputs

4.0 to 4.7 O0+ to O7+ Positive poles of the 8 analog
outputs

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4528

The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figure shows the connection of the I/O module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4529

Fig. 883: 8 analog inputs and 8 analog outputs, individually configurable Ä Chapter
1.6.2.6.2.2.6.2 “Functionality” on page 4526

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4530

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 884: Connection example

Pt100 -50 °C...+70 °C 2-wire configuration, one
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 885: Connection example

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4531

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C...+70 °C 3-wire configuration, two
channels used

Pt100 -50 °C...+400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C...+400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C...+150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

AGND

Fig. 886: Connection example

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4532

The following measuring ranges can be configured for AX521 Ä Chapter 1.6.2.6.2.2.5.6
“Parameterization” on page 4513 and for AX522 Ä Chapter 1.6.2.6.2.2.6.6 “Parameterization”
on page 4538:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 887: Connection example

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4533

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V

AGND

Fig. 888: Connection example

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4534

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

4 ... 20 mA

-

+

Fig. 889: Connection example

Current 4 mA...20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and I-). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential
difference with respect to ZP (max. ±1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4535

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

0 ... 10 V
-10 ... +10 V

+

-
UIN

Fig. 890: Connection example

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 891: Connection example

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4536

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Connection of analog output loads (Voltage, current)

UP

ZP

3.0
O0-
3.1
O1-

3.8
UP
3.9
ZP

PTC

4.0
O0+
4.1
O1+

4.8
UP
4.9
ZP

-10 ... +10 V

0 ... 20 mA
4 ... 20 mA

Fig. 892: Connection example

Voltage -10 V...+10 V Load max. ±10 mA 1 channel used

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

Only the channels 0...3 can be configured as current output (0 mA...20 mA or 4 mA...20 mA).
Unused analog outputs can be left open-circuited.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 8

Counter output data (words) 8

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4537

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module slot address: Y = 1...7

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1500
1)

Word 1500
0x05dc

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

3 Param-
eter
length in
bytes

Internal 37 Byte 37-CPU
37-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

7 Channel
configu-
ration
Input
channel
0

See
Ä Table 461 “Chan
nel configuration 2)”
on page 4540

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

See
Ä Table 462 “Chan
nel monitoring 3)”
on page 4541

Byte Default
0x00

0 3 0x0Y07

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4538

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

9
to
22

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 7

See
Ä Table 461 “Chan
nel configuration 2)”
on page 4540

and
Ä Table 462 “Chan
nel monitoring 3)”
on page 4541

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y15

23 Channel
configu-
ration
Output
channel
0

See
Ä Table 461 “Chan
nel configuration 2)”
on page 4540

Byte Default
0x00

0 130 0x0Y16

24 Channel
moni-
toring
Output
channel
0

See
Ä Table 462 “Chan
nel monitoring 3)”
on page 4541

Byte Default
0x00

0 3 0x0Y17

25 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0...0xffff Word Default
0x0000

0 65535 0x0Y18

26 to 31 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 3

See
Ä Table 461 “Chan
nel configuration 2)”
on page 4540

and
Ä Table 462 “Chan
nel monitoring 3)”
on page 4541

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y19
to
0x0Y1E

32 Channel
configu-
ration
Output
channel
4

See
Ä Table 461 “Chan
nel configuration 2)”
on page 4540

Byte Default
0x00

0 128 0x0Y1F

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4539

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

33 Channel
moni-
toring
Output
channel
4

See
Ä Table 462 “Chan
nel monitoring 3)”
on page 4541

Byte Default
0x00

0 3 0x0Y20

34
to
39

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
5 to 7

See
Ä Table 461 “Chan
nel configuration 2)”
on page 4540

and
Ä Table 462 “Chan
nel monitoring 3)”
on page 4541

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y21
to
0x0Y26

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

24
0x05, 0xe2, 0x15, \
0x01, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00;

Table 460: Input channel (4x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Table 461: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V...10 V

2 Digital input

3 Analog input 0 mA...20 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4540

Internal value Operating modes of the analog inputs, individually configurable
4 Analog input 4 mA...20 mA

5 Analog input -10 V...+10 V

8 Analog input Pt100, -50 °C...+400 °C (2-wire)

9 Analog input Pt100, -50 °C...+400 °C (3-wire), requires 2 channels *)

10 Analog input 0...10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V...+10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C...+70 °C (2-wire)

15 Analog input Pt100, -50 °C...+70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C...+400 °C (2-wire)

17 Analog input Pt1000, -50 °C...+400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C...+150 °C (2-wire)

19 Analog input Ni1000, -50 °C...+150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 462: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

3 No monitoring

Table 463: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0...65535 0...
0xffff

Word 0

Table 464: Output channels 1...3 (3x)
No. Name Internal value, type
1 Channel configuration

see table 4)

Byte

2 Channel monitoring

see table 6)

Byte

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4541

Table 465: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V...+10 V

129 Analog output 0 mA...20 mA (not with the channels 4...7 and 12...15)

130 Analog output 4 mA...20 mA (not with the channels 4...7 and 12...15)

Table 466: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

3 No monitoring

Table 467: Substitute value 6)
Intended behaviour of
output channel when the
control system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
Table 468: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0..20 mA Error identifier = 7 Error identifier = 4

4..20 mA

-10..+10 V

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4542

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0..20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4..20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10..+10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

Table 469: Content of diagnosis messages
E1...E4 d1 d2 d3 d4 Identifier

000...063
AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1...10

Channel error

 AX521 AX522

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4543

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 1 0...3 0...7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1...10

4 14 1...10 1 0...3 0...7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

4 14 1...10 3 4...7 8...15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = expansion module 1...10, ADR = hardware address
(e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4544

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0...I7

Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

Outputs
O0...O7

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages in
groups
(analog
inputs or out-
puts com-
bined into the
groups 2 and
4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0...10 V -10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.758
9

>23.517
8

>22.814
2

 32767 7FFF

Meas-
ured
value too
high

11.7589
.
.
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
meas-
ured
value too
low

10.0000
.
.
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON 27648
:
1

6C00
:
0001

0.0000 0 4 OFF 0 0000

0.0000 -0.0004
:
:

 3.9994 -1
-4864
-6912

FFFF
ED00
E500

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4545

Range 0...10 V -10...+10
V

0...20
mA

4...20
mA

Digital
input

Digital value
Decimal Hex.

-0.0004
-1.7593

:
-10.0000

:
-27648

:
9400

Meas-
ured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<-1.7593 <-11.758
9

<0.0000 <1.1858 -32768 8000

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value
Decimal Hex.

Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal
range

:
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

:
150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4546

Range -10...+10 V 0...20 mA 4...20 mA Digital value
Decimal Hex.

Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

Ca. 2 mA

 From UP at normal operation 0.15 A + output loads

Inrush current from UP (at power up) 0.020 A2s

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4547

Parameter Value
Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels I0- to I7- Terminals 1.0 to 1.7

Connections of the channels I0+ to I7+ Terminals 2.0 to 2.3

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Unused voltage inputs Are configured as "unused"

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4548

Parameter Value
Unused current inputs Have a low resistance, can be left open-circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital Inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels I0+ to I7+ Terminals 2.0 to 2.7

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 8, all channels for voltage, the first 4 channels

also for current

Distribution of channels into groups 1 group of 8 channels

 Channels O0-...O7- Terminals 3.0...3.7

 Channels O0+...O7+ Terminals 4.0...4.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually),
current outputs only channels 0...3

Output resistance (load), as current output 0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Resolution 12 bits (+ sign)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4549

Parameter Value
Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. ±0.5 % of full scale
at 25 °C

Max. ±1 % of full scale (all ranges)
at 0 °C...60 °C or EMC disturbance

Relationship between output signal and hex
code

See table, Ä Chapter 1.6.2.6.2.2.6.9.3
“Output ranges voltage and current”
on page 4546

Unused outputs Can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 000 R0001 AX522, analog input/output module,

8 AI, 8 AO, U/I/Pt100, 12 bits + sign,
2-wires

Active

1SAP 450 000 R0001 AX522-XC, analog input/output
module, 8 AI, 8 AO, U/I/Pt100,
12 bits + sign, 2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.6.3 Digital/Analog I/O modules
S500
DA501 - Digital/Analog input/output module

● 16 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● 4 analog inputs, voltage, current and RTD.

Resolution 12 bits plus sign
● 2 analog outputs, voltage and current

Resolution 12 bits plus sign
● Fast counter

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4550

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states of the digital inputs DI0 to DI15
4 4 yellow LEDs to display the signal states of the analog inputs AI0 to AI3
5 2 yellow LEDs to display the signal states of the analog outputs AO0 to AO1
6 8 yellow LEDs to display the signal state of the configurable digital inputs/outputs DC16 to

DC23
7 1 green LED to display the state of the process supply voltage UP
8 4 red LEDs to display errors
9 Label
10 Terminal unit
11 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
● 16 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4551

● 4 analog inputs, voltage, current and RTD.
Resolution 12 bits plus sign

● 2 analog outputs, voltage and current
Resolution 12 bits plus sign

● Fast counter

Parameter Value
Fast Counter Integrated, many configurable operating

modes

Power supply From the process supply voltage UP

LED displays For system displays, signal states, errors and
power supply

Internal supply voltage Via the I/O bus interface (I/O bus)

External supply voltage Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection is carried out by using the 40 terminals of the terminal unit TU515/TU516
Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541 and TU542 for I/O modules” on page 4103.
The assignment of the terminals:

Terminal Signal Description
1.0 DI0 Signal of the digital input DI0

1.1 DI1 Signal of the digital input DI1

1.2 DI2 Signal of the digital input DI2

1.3 DI3 Signal of the digital input DI3

1.4 DI4 Signal of the digital input DI4

1.5 DI5 Signal of the digital input DI5

1.6 DI6 Signal of the digital input DI6

1.7 DI7 Signal of the digital input DI7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4552

Terminal Signal Description
2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 AI0+ Positive pole of analog input signal 0

3.1 AI1+ Positive pole of analog input signal 1

3.2 AI2+ Positive pole of analog input signal 2

3.3 AI3+ Positive pole of analog input signal 3

3.4 AI- Negative pole of analog input signals 0 to 3

3.5 AO0+ Positive pole of analog output signal 0

3.6 AO1+ Positive pole of analog output signal 1

3.7 AO- Negative pole of analog output signals 0
and 1

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 C16 Signal of the configurable digital input/
output C16

4.1 C17 Signal of the configurable digital input/
output C17

4.2 C18 Signal of the configurable digital input/
output C18

4.3 C19 Signal of the configurable digital input/
output C19

4.4 C20 Signal of the configurable digital input/
output C20

4.5 C21 Signal of the configurable digital input/
output C21

4.6 C22 Signal of the configurable digital input/
output C22

4.7 C23 Signal of the configurable digital input/
output C23

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DA501.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4553

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

CAUTION!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalization of a
low resistance to avoid high potential differences between different parts of the
plant.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4554

DI0 1.0

DI1 1.1

DI2 1.2

DI3 1.3

DI4 1.4

DI5 1.5

DI6 1.6

DI7 1.7

DI8 2.0

DI9 2.1

DI10 2.2

DI11 2.3

DI12 2.4

DI13 2.5

DI14 2.6

DI15 2.7

+-AI0 3.0

+-AI1 3.1

+-AI2 3.2

+-AI3 3.3

AO03.5

AO13.7

AI- 3.4

AO-3.8

DC164.0

DC174.1

DC184.2

DC194.3

DC204.4

DC214.5

DC224.6

DC234.7

PTCPTC

1.8
3.82.8

4.8UP +24 V DC

1.9
3.92.9

4.9ZP 0 V

+-

+-

Fig. 893: Terminal assignment of the module

The module provides several diagnosis functions Ä Chapter 1.6.2.6.3.1.1.7 “Diagnosis”
on page 4571.

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI15 in the same way.

Fig. 894: Connection of the module

The meaning of the LEDs is described in the Displays Ä Chapter 1.6.2.6.3.1.1.8 “State LEDs”
on page 4574 chapter.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4555

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC16 and
DC17. DC16 is connected as an input and DC17 is connected as an output. Proceed with the
configurable digital inputs/outputs DC18 to DC23 in the same way.

Fig. 895: Connection of configurable digital inputs/outputs to the module

CAUTION!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DA501.
If the inputs are used as fast counter inputs, connect a 470 W / 1 W resistor in
series to inputs DC16/DC17.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA501
provides a constant current source which is multiplexed over the max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4556

Fig. 896: Connection of resistance thermometers in 2-wire configuration to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.6.3.1.1.8 “State LEDs” on page 4574.
The module DA501 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA501
provides a constant current source which is multiplexed over the max. 4 analog input channels.
0
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4557

Fig. 897: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.6.3.1.1.7 “Diagnosis” on page 4571.
0
The module DA501 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4558

Fig. 898: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.6.3.1.1.8 “State LEDs” on page 4574.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4559

Fig. 899: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.6.3.1.1.8 “State LEDs” on page 4574.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4560

Fig. 900: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ±1 V.

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.2.6.3.1.1.8 “State LEDs” on page 4574.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4561

Fig. 901: Connection of passive-type analog sensors (current) to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:

Current 4 mA...20 mA 1 channel used

For a description of function of the LEDs, please refer to the Diagnosis and displays / Displays
chapter Ä Chapter 1.6.2.6.3.1.1.8 “State LEDs” on page 4574.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Only use sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and I-.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4562

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 902: Connection of active-type analog sensors (voltage) to differential analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.2.6.3.1.1.8 “State LEDs” on page 4574.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4563

Fig. 903: Use of analog inputs as digital inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:

Digital input 24 V 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.2.6.3.1.1.8 “State LEDs” on page 4574.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4564

Fig. 904: Connection of analog output loads (voltage)

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567 :

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.2.6.3.1.1.8 “State LEDs” on page 4574.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4565

Fig. 905: Connection of analog output loads (current)

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.1.6 “Parameteriza-
tion” on page 4567:
0

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 1.6.2.6.3.1.1.8 “State LEDs” on page 4574.
Unused analog outputs can be left open-circuited.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 1 3

Analog inputs (words) 4 4

Digital outputs (words) 2 2

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4566

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Module ID
1)

Internal 1810 WORD 1810 0x0Y01

Ignore module

see table 2)

Internal Yes
No

BYTE No not for FBP

Parameter
length

Internal 8 BYTE 8 0xY02

Check supply off 0 BYTE 1 0xY03

on 1

Fast counter
3)

0
:
10
4)

0
:
10

BYTE 0 not for FBP

Behavior out-
puts at comm.
error
5)

Off Last value
Last value 5
sec Last value
10 sec Substi-
tute value
Substitute
value 5 sec
Substitute
value 10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

0x0Y07

2) Setting Description

 On Error LED lights up at errors of all error classes, Failsafe
mode off

 Off by E4 Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe mode off

 Off by E3 Error LED lights up at errors of error classes E1 and E2,
Failsafe mode off

 On +Failsafe Error LED lights up at errors of all error classes, Failsafe
mode on *)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4567

2) Setting Description

 Off by E4 + Failsafe Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe mode on *)

 Off by E3 + Failsafe Error LED lights up at errors of error classes E1 and E2,
Failsafe mode on *)

Remarks:
1) With a faulty ID, the Modules reports a "parameter error" and does not perform cyclic process
data transmission
2) Not for FBP
3) With FBP or CS31 without the parameter "Fast Counter"

The fast counter of the module does not work if the module is connected to an
FBP interface module or CS31 bus module.

4) For counter operating modes, please refer to the description of the fast counter Ä Chapter
1.6.2.6.1.2.10 “Fast counter” on page 4351
5) The parameter Behavior outputs at comm. error is only analyzed if the Failsafe-mode is ON.

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0x0Y05

Detect short
circuit at out-
puts

Off
On

0
1

BYTE On
0x01

0x0Y06

Substitute
value at
output

0...255 00h...FFh BYTE 0
0x0000

0x0Y08

*) The parameters Behavior DO at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the analog part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Analog data
format

Standard
Reserved

0
255

BYTE 0 0x0Y04

*) The parameter Behavior AO at comm. error is only analyzed if the Failsafe mode is ON.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4568

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input 0,
Channel con-
figuration

see
Ä Table 470 “
Channel con-
figuration”
on page 4569

see
Ä Table 470 “
Channel con-
figuration”
on page 4569

BYTE 0 0x0Y09

Input 0,
Check
channel

see
Ä Table 471 “
Channel mon-
itoring”
on page 4570

see
Ä Table 471 “
Channel mon-
itoring”
on page 4570

BYTE 0 0x0Y0A

: : : : :

: : : : :

Input 3,
Channel con-
figuration

see
Ä Table 470 “
Channel con-
figuration”
on page 4569

see
Ä Table 470 “
Channel con-
figuration”
on page 4569

BYTE 0 0x0Y0F

Input 3,
Check
channel

see
Ä Table 471 “
Channel mon-
itoring”
on page 4570

see
Ä Table 471 “
Channel mon-
itoring”
on page 4570

BYTE 0 0x0Y10

Table 470: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0 V...10 V

2 Digital input

3 0 mA...20 mA

4 4 mA...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C...+70 °C

15 3-wire Pt100 -50 °C...+70 °C *)

16 2-wire Pt1000 -50 °C...+400 °C

17 3-wire Pt1000 -50 °C...+400 °C *)

18 2-wire Ni1000 -50 °C...+150 °C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4569

Internal value Operating modes of the analog inputs, individually configurable
19 3-wire Ni1000 -50 °C...+150 °C *)

 *) In the operating modes with 3-wire configuration or with differ-
ential inputs, two adjacent analog inputs belong together (e.g. the
channels 0 and 1). In these cases, both channels are configured in
the desired operating mode. The lower address must be the even
address (channel 0). The next higher address must be the odd
address (channel 1). The converted analog value is available at the
higher address (channel 1).

Table 471: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

0
Output 0,
Channel con-
figuration

see
Ä Table 472 “
Channel con-
figuration”
on page 4571

see
Ä Table 472 “
Channel con-
figuration”
on page 4571

BYTE 0 0x0Y11

Output 0,
Check
channel

see
Ä Table 473 “
Channel mon-
itoring”
on page 4571

see
Ä Table 473 “
Channel mon-
itoring”
on page 4571

BYTE 0 0x0Y12

Output 0,
Substitute
value

see
Ä Table 474 “
Substitute
value”
on page 4571

see
Ä Table 474 “
Substitute
value”
on page 4571

WORD 0 0x0Y13

Output 1,
Channel con-
figuration

see
Ä Table 472 “
Channel con-
figuration”
on page 4571

see
Ä Table 472 “
Channel con-
figuration”
on page 4571

BYTE 0 0x0Y14

Output 1,
Check
channel

see
Ä Table 473 “
Channel mon-
itoring”
on page 4571

see
Ä Table 473 “
Channel mon-
itoring”
on page 4571

BYTE 0 0x0Y15

Output 1,
Substitute
value

see
Ä Table 474 “
Substitute
value”
on page 4571

see
Ä Table 474 “
Substitute
value”
on page 4571

WORD 0 0x0Y16

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4570

Table 472: Channel configuration
Internal value Operating modes of the analog outputs, individually configurable
0 (default) Not used

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Table 473: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 474: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of
the module parameter
"Behavior of outputs in
case of a communication
error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4571

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

0
3

14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error DA501

4 14 1...10 2 22...29 5) 47 Short circuit at a digital
output

Check
connection11 / 12 ADR 1...10

Channel error DA501

4 14 1...10 1 16...19 6) 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 16...19 6) 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

4 14 1...10 1 16...19 6) 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1...10

4 14 1...10 3 20...21 7) 4 Analog value overflow
at an analog output

Check
output
value11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4572

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 3 20...21 7) 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expan-
sion 1...10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO, 4 = DC); COM1/
COM2: 1...10 = expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.
5) Ch = 22...29 indicates the digital inputs/outputs DC16...DC23
6) Ch = 16...19 indicates the analog inputs AI0...AI3
7) Ch = 20...21 indicates the analog outputs AO0...AO1

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4573

State LEDs

LED State Color LED = OFF LED = ON LED flashes
DI0 to DI15 Digital input Yellow Input is OFF Input is ON 1) --

DC16 to
DC23

Digital input/
output

Yellow Input/output
is OFF

Input/output is
ON 1)

--

AI0 to AI3 Analog input Yellow Input is OFF Input is ON 2) --

AO0 to
AO1

Analog
output

Yellow Output is
OFF

Output is ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Severe error
within the cor-
responding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 3) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) Brightness depends on the value of the analog signal
3) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10 V 0...20 mA 4...20 mA Digital input
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142

Measured
value too high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

Normal range
Normal range
or measured
value too low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

on

0.0000 0.0000 0 4 off

-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994
:
0

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4574

Range 0...10 V -10...+10 V 0...20 mA 4...20 mA Digital input
Measured
value too low

 -10.0004
:
-11.7589

Underflow < 0.0000 < -11.7589 < 0.0000 < 0.0000

Range Digital value
 Decimal Hex.
Overflow 32767 7FFF

Measured value too high 32511
:
27649

7EFF
:
6C01

Normal range Normal range
or measured value too low

27648
:
1

6C00
:
0001

0 0000

-1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured value too low -27649
:
-32512

93FF
:
8100

Underflow -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...70 °C

Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Overflow > 80.0 °C > 450.0 °C > 160.0 °C

Measured value too high 450.0 °C
:
400.1 °C

 160.0 °C
:
150.1 °C

80.0 °C
:
70.1 °C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4575

Range Pt100 / Pt1000
-50...70 °C

Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Normal range :
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

0.0 °C 0.0 °C 0.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

Measured value too low -50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

Underflow < -60.0 °C < -60.0 °C < -60.0 °C

Range Digital value
 Decimal Hex.
Overflow 32767 7FFF

Measured value too high 4500
:
4001

1194
:
0FA1

1600
:
1501

0640
:
05DD

800
:
701

0320
:
02BD

Normal range 4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0 0000

-1
:
-500

FFFF
:
FE0C

Measured value too low -501
:
-600

FE0B
:
FDA8

Underflow -32768 8000

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4576

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA
Overflow >11.7589 V >23.5178 mA >22.8142 mA

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

0.0000 V 0.0000 mA 4.0000 mA

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

Underflow 0 V 0 mA 0 mA

Range Digital value
 Decimal Hex.
Overflow > 32511 > 7EFF

Value too high 32511
:
27649

7EFF
:
6C01

Normal range 27648
:
1

6C00
:
0001

0 0000

-1
-6912
-27648

FFFF
E500
9400

Value too low -27649
:
-32512

93FF
:
8100

Underflow < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
Technical data of the module

The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4577

The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24
V DC) and 1.9, 2.9, 3.9 and 4.9 for ZP (0 V
DC)

 Protection against reverse voltage yes

 Rated protection fuse at UP 10 A fast

 Rated value 24 V DC

 Max. ripple 5 %

Current consumption

 From UP 0.07 A + max. 0.5 A per output

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

ca. 2 mA

 Inrush current from UP (at power-up) 0.04 A2s

Galvanic isolation Yes, per module

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal mounting or vertical with
derating (output load reduced to 50 % at
40 °C)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4578

Technical data of the digital inputs

Parameter Value
Number of channels per module 16

Distribution of the channels into groups 2 groups of 8 channels

Terminals of the channels DI0 to DI7 Terminals 1.0 to 1.7

Terminals of the channels DI8 to DI15 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable digital I/O channels can be defined as input or output by the user
program. This is done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC16...DC23 Terminals 4.0...4.7

If the channels are used as outputs

 Channels DC16...DC23 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4579

Parameter Value
Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation Yes, per module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 to DC23 Terminals 4.0 to 4.7

Reference potential for all inputs Terminals 1.9...4.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 shielded 1000 m

 unshielded 600 m

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 to DC23 Terminals 4.0 to 4.7

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4580

Parameter Value
Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the

supply voltage, signal name ZP)

Common power supply voltage For all outputs terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the supply voltage, signal
name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 rated value per channel 500 mA at UP = 24 V

 max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 906: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4581

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to an
FBP interface module or CS31 bus module.

Parameter Value
Used inputs DC16 / DC17

Used outputs DC18

Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for AI0+ to AI3+ Terminal 3.4 (AI-) for voltage and RTD
measurement
Terminal 1.9, 2.9, 3.9 and 4.9 for current
measurement

Input type

 Unipolar Voltage 0 V...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V...+10 V

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each
input can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on
the value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs
Pt/Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1
°C

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4582

Parameter Value
Conversion error of the analog values caused
by non-linearity, adjustment error at factory and
resolution within the normal range

Typ. 0.5 %, max. 1 %
For XC version below 0 °C and above 60 °C:
on request

Relationship between input signal and hex code Ä Chapter 1.6.2.6.3.1.1.9.1 “Input ranges
voltage, current and digital input”
on page 4574

Ä Chapter 1.6.2.6.3.1.1.9.2 “Input
ranges resistance temperature detector”
on page 4575

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 3.5 and 3.6

Reference potential for AO0+ to AO1+ Terminal 3.7 (AO-) for voltage output
Terminals 1.9, 2.9, 3.9 and 4.9 for current
output

Output type

 Unipolar Current

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4583

Parameter Value
 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually)

Output resistance (load) as current output 0 W...500 W

Output loadability as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Ä Chapter 1.6.2.6.3.1.1.9.3 “Output ranges
voltage and current” on page 4577

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 1 3

Analog inputs (words) 4 4

Analog outputs (words) 2 2

Counter input data (words) 0 4

Counter output data (words) 0 8

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 700 R0001 DA501, digital/analog input/output

module, 16 DI, 8 DC, 4 AI, 2 AO
Active

1SAP 450 700 R0001 DA501-XC, digital/analog input/output
module, 16 DI, 8 DC, 4 AI, 2 AO,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4584

DA502 - Digital/Analog input/output module
● 16 digital outputs, 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● 4 analog inputs, voltage, current and RTD, resolution 12 bits plus sign
● 2 analog outputs, voltage and current, resolution 12 bits plus sign
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states of the digital outputs DO0 to DO15
4 4 yellow LEDs to display the signal states of the analog inputs AI0 to AI3
5 2 yellow LEDs to display the signal states of the analog outputs AO0 to AO1
6 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs DC16 to

DC23
7 1 green LED to display the state of the process supply voltage UP
8 4 red LEDs to display errors
9 Label
10 Terminal unit
11 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4585

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
iInterface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes

Power supply From the process supply voltage UP

LED displays For system displays, signal states, errors and
power supply

Internal supply voltage Via the I/O bus interface (I/O bus)

External supply voltage Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 4103

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection is carried out by using the 40 terminals of the terminal unit TU515/TU516
Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541 and TU542 for I/O modules” on page 4103.
The assignment of the terminals:

Terminal Signal Description
1.0 DO0 Signal of the digital output DO0

1.1 DO1 Signal of the digital output DO1

1.2 DO2 Signal of the digital output DO2

1.3 DO3 Signal of the digital output DO3

1.4 DO4 Signal of the digital output DO4

1.5 DO5 Signal of the digital output DO5

1.6 DO6 Signal of the digital output DO6

1.7 DO7 Signal of the digital output DO7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DO8 Signal of the digital output DO8

2.1 DO9 Signal of the digital output DO9

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4586

Terminal Signal Description
2.2 DO10 Signal of the digital output DO10

2.3 DO11 Signal of the digital output DO11

2.4 DO12 Signal of the digital output DO12

2.5 DO13 Signal of the digital output DO13

2.6 DO14 Signal of the digital output DO14

2.7 DO15 Signal of the digital output DO15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 AI0+ Positive pole of analog input signal 0

3.1 AI1+ Positive pole of analog input signal 1

3.2 AI2+ Positive pole of analog input signal 2

3.3 AI3+ Positive pole of analog input signal 3

3.4 AI- Negative pole of analog input signals 0 to 3

3.5 AO0+ Positive pole of analog output signal 0

3.6 AO1+ Positive pole of analog output signal 1

3.7 AO- Negative pole of analog output signals 0 and 1

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DC16 Signal of the configurable digital input/output
DC16

4.1 DC17 Signal of the configurable digital input/output
DC17

4.2 DC18 Signal of the configurable digital input/output
DC18

4.3 DC19 Signal of the configurable digital input/output
DC19

4.4 DC20 Signal of the configurable digital input/output
DC20

4.5 DC21 Signal of the configurable digital input/output
DC21

4.6 DC22 Signal of the configurable digital input/output
DC22

4.7 DC23 Signal of the configurable digital input/output
DC23

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DA502.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4587

WARNING!
Removal/Insertion under power
Removal or insertion under power is only permissible under conditions
described in Hot Swap chapter Ä Chapter 1.6.2.6 “I/O modules” on page 4124.
The devices are not designed for removal or insertion under power when Hot
Swap conditions do not apply. Because of unforeseeable consequences, it is
not allowed to plug or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

CAUTION!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalization of a
low resistance to avoid high potential differences between different parts of the
plant.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4588

+-AI0 3.0

+-AI1 3.1

+-AI2 3.2

+-AI3 3.3

AO03.5

AO13.6

AI- 3.4

AO-3.7

PTCPTC

1.8
3.82.8

UP +24 V DC

1.9
3.92.9

ZP 0 V

+-

+-

DC164.0

DC174.1

DC184.2

DC194.3

DC204.4

DC214.5

DC224.6

DC234.7

4.8

4.9

D001.0

D011.1

DO21.2

DO31.3

DO41.4

DO51.5

DO61.6

DO71.7

D082.0

D092.1

DO102.2

DO112.3

DO122.4

DO132.5

DO142.6

DO152.7

Fig. 907: Terminal assignment of the module

The module provides several diagnosis functions Ä Chapter 1.6.2.6.3.1.2.7 “Diagnosis”
on page 4605.

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 to DO15 in the same way.

For a description of the meaning of the LEDs, please refer to the Displays chapter Ä Chapter
1.6.2.6.3.1.2.8 “State LEDs” on page 4608.

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC16 and
DC17. DC16 is connected as an input and DC17 is connected as an output. Proceed with the
configurable digital inputs/outputs DC18 to DC23 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4589

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DA502.
Connect a 470 W / 1 W resistor in series to inputs DC16/DC17 if they are used
as fast counter inputs to avoid any influences.

For a description of tthe meaning of the LEDs, please refer to the Displays Ä Chapter
1.6.2.6.3.1.2.8 “State LEDs” on page 4608 chapter.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA502
provides a constant current source which is multiplexed over max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4590

Fig. 908: Connection of resistance thermometers in 2-wire configuration to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.
The module DA502 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA502
provides a constant current source which is multiplexed over max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4591

Fig. 909: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.
The module DA502 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4592

Fig. 910: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4593

Fig. 911: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4594

Fig. 912: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ±1 V.

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4595

Fig. 913: Connection of passive-type analog sensors (current) to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Current 4 mA...20 mA 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.

NOTICE!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and I-.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4596

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 914: Connection of active-type analog sensors (voltage) to differential analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4597

Fig. 915: Use of analog inputs as digital inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608 :

Digital input 24 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4598

Fig. 916: Connection of analog output loads (voltage)

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601 Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4599

Fig. 917: Connection of analog output loads (current)

The following measuring ranges can be configured Ä Chapter 1.6.2.6.3.1.2.6 “Parameteriza-
tion” on page 4601Ä Chapter 1.6.2.6.3.1.2.9 “Measuring ranges” on page 4608:

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 1.6.2.6.3.1.2.8 “State LEDs” on page 4608.
Unused analog outputs can be left open-circuited.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 1 1

Digital outputs (bytes) 3 3

Analog inputs (words) 4 4

Analog outputs (words) 2 2

Counter input data (words) 0 5

Counter output data (words) 0 9

I/O configuration
The module itself does not store configuration data. It draws its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4600

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Module ID 1) Internal 1815 WORD 1815 0x0Y01

Ignore module Internal Yes
No

BYTE No

Parameter
length

Internal 8 BYTE 8 0xY02

Check supply off 0 BYTE 1 0xY03

on 1

Fast counter
3)

0
:

10 2)

0
:
10

BYTE 0 Not for FBP

Behavior out-
puts at comm.
error 5)

Off Last value
Last value 5 s
Last value 10
s Substitute
value
Substitute
value 5 s
Substitute
value 10 s

0
1 6
11
2
7
12

BYTE Off
0x00

0x0Y07

2) Setting Description

 On Error LED lights up at errors of all error
classes, Failsafe mode off

 Off by E4 Error LED lights up at errors of error
classes E1, E2 and E3, Failsafe mode off

 Off by E3 Error LED lights up at errors of error
classes E1 and E2, Failsafe mode off

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4601

2) Setting Description

 On +Failsafe Error LED lights up at errors of all error
classes, Failsafe mode on *)

 Off by E4 + Failsafe Error LED lights up at errors of error
classes E1, E2 and E3, Failsafe mode on
*)

 Off by E3 + Failsafe Error LED lights up at errors of error
classes E1 and E2, Failsafe mode on *)

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission
2) For a description of the counter operating modes, please refer to the 'Fast Counter' section
Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351
3) With CS31 without the parameter "Fast Counter"

The fast counter of the module does not work if the module is connected to a
CS31 bus module.

5) The parameter Behavior outputs at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0x0Y05

Detect short
circuit at out-
puts

Off
On

0
1

BYTE On
0x01

0x0Y06

Substitute
value at
output

0...255 00h...FFh BYTE 0
0x0000

0x0Y08

*) The parameters Behavior DO at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the analog part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Analog data
format

Standard
Reserved

0
255

BYTE 0 0x0Y04

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe mode is ON.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4602

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input 0,
Channel con-
figuration

see
Ä Table 475 “
Channel con-
figuration”
on page 4603

see
Ä Table 475 “
Channel con-
figuration”
on page 4603

BYTE 0 0x0Y09

Input 0,
Check
channel

see
Ä Table 476 “
Channel mon-
itoring”
on page 4604

see
Ä Table 476 “
Channel mon-
itoring”
on page 4604

BYTE 0 0x0Y0A

: : : : :

: : : : :

Input 3,
Channel con-
figuration

see
Ä Table 475 “
Channel con-
figuration”
on page 4603

see
Ä Table 475 “
Channel con-
figuration”
on page 4603

BYTE 0 0x0Y0F

Input 3,
Check
channel

see
Ä Table 476 “
Channel mon-
itoring”
on page 4604

see
Ä Table 476 “
Channel mon-
itoring”
on page 4604

BYTE 0 0x0Y10

Table 475: Channel configuration
Internal value Operating modes of the analog inputs, individually configu-

rable
0 (default) Not used

1 0 V...10 V

2 Digital input

3 0 mA...20 mA

4 4 mA...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C...+70 °C

15 3-wire Pt100 -50 °C...+70 °C *)

16 2-wire Pt1000 -50 °C...+400 °C

17 3-wire Pt1000 -50 °C...+400 °C *)

18 2-wire Ni1000 -50 °C...+150 °C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4603

Internal value Operating modes of the analog inputs, individually configu-
rable

19 3-wire Ni1000 -50 °C...+150 °C *)

 *) In the operating modes with 3-wire configuration or with differen-
tial inputs, two adjacent analog inputs belong together (e.g. the
channels 0 and 1). In these cases, both channels are configured in
the desired operating mode. The lower address must be the even
address (channel 0). The next higher address must be the odd
address (channel 1). The converted analog value is available at
the higher address (channel 1).

Table 476: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

0
Output 0,
Channel con-
figuration

see
Ä Table 477 “
Channel con-
figuration”
on page 4605

see
Ä Table 477 “
Channel con-
figuration”
on page 4605

BYTE 0 0x0Y11

Output 0,
Check
channel

see
Ä Table 478 “
Channel mon-
itoring”
on page 4605

see
Ä Table 478 “
Channel mon-
itoring”
on page 4605

BYTE 0 0x0Y12

Output 0,
Substitute
value

see
Ä Table 479 “
Substitute
value”
on page 4605

see
Ä Table 479 “
Substitute
value”
on page 4605

WORD 0 0x0Y13

Output 1,
Channel con-
figuration

see
Ä Table 477 “
Channel con-
figuration”
on page 4605

see
Ä Table 477 “
Channel con-
figuration”
on page 4605

BYTE 0 0x0Y14

Output 1,
Check
channel

see
Ä Table 478 “
Channel mon-
itoring”
on page 4605

see
Ä Table 478 “
Channel mon-
itoring”
on page 4605

BYTE 0 0x0Y15

Output 1,
Substitute
value

see
Ä Table 479 “
Substitute
value”
on page 4605

see
Ä Table 479 “
Substitute
value”
on page 4605

WORD 0 0x0Y16

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4604

Table 477: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Table 478: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 479: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of
the module parameter
"Behavior of outputs in
case of a communication
error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 s 0

Last value for 10 s and then
turn off

Last value 10 s 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 s Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 s Depending on configuration

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4605

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1...10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout in the I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 40 Different hard-/firmware
versions in the module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module11 / 12 ADR 1...10

3 14 1...10 31 31 36 Internal data exchange
failure11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1...10

Channel error DA502

4 14 1...10 2 0...15

22...29 5)

47 Short-circuit at a digital
output

Check
connection11 / 12 ADR 1...10

Channel error DA502

4 14 1...10 1 16...19 6) 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1...10 1 16...19 6) 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1...10

4 14 1...10 1 16...19 6) 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1...10

4 14 1...10 3 20...21 7) 4 Analog value overflow
at an analog output

Check
output
value11 / 12 ADR 1...10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4606

E1...E4 d1 d2 d3 d4 Identifier
000...063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 3 20...21 7) 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.

2) With "Device" the following allocation applies:
31 = module itself,
1...10 = communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus: 31 = Module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus = module type (1 = AI, 3 = AO, 4 = DC); COM1/COM2:
1...10 = expansion 1...10

4) In case of module errors, with channel "31 = module itself" is output.
5) Ch = 22...29 indicate the digital inputs/outputs DC16...DC23
6) Ch = 16...19 indicates the analog inputs AI0...AI3
7) Ch = 20...21 indicates the analog outputs AO0...AO1

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4607

State LEDs

LED State Color LED = OFF LED = ON LED flashes
DO0 to
DO15

Digital output Yellow Output is
OFF

Output is ON --

DC16 to
DC23

Digital input/
output

Yellow Input/output
is OFF

Input/output is
ON 1)

--

AI0 to AI3 Analog input Yellow Input is OFF Input is ON 2) --

AO0 to
AO1

Analog
output

Yellow Output is
OFF

Output is ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Severe error
within the cor-
responding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 3) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) Brightness depends on the value of the analog signal
3) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

On 27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4608

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 0.0000 <
-11.7589

< 0.0000 < 0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 /
Pt1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal range :
:
70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4609

Range Pt100 /
Pt1000
-50...70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Measured value too
low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
Technical data of the module

The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4610

Parameter Value
Process supply voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24
V DC) and 1.9, 2.9, 3.9 and 4.9 for ZP (0
V)

 Protection against reverse voltage yes

 Rated protection fuse at UP 10 A fast

 Rated value 24 V DC

 Max. ripple 5 %

Current consumption

 From UP 0.07 A + max. 0.5 A per output

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

ca. 2 mA

 Inrush current from UP (at power-up) 0.04 A2s

Galvanic isolation Yes, per module

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal mounting or vertical with
derating (output load reduced to 50% at 40
°C)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in
the switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

Connection of the channels

 DO0 to DO7 Terminals 1.0 to 1.7

 DO8 to DO15 Terminals 2.0 to 2.7

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4611

Parameter Value
Indication of the output signals 1 yellow LED per channel, the LED is ON if the

output signal is high (signal 1)

Monitoring point of output indicator LED is controlled by process CPU

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (channels O0 to O15) 4 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable digital I/O channels can be defined as input or output by the user
program. This is done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC16...DC23 Terminals 4.0...4.7

If the channels are used as outputs

 Channels DC16...DC23 Terminals 4.0...4.7

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4612

Parameter Value
Indication of the input/output signals 1 yellow LED per channel, the LED is ON

when the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation Yes, per module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 to DC23 Terminals 4.0 to 4.7

Reference potential for all inputs Terminals 1.9...4.9 (Negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4613

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 to DC23 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the supply voltage, signal name
UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 rated value per channel 500 mA at UP = 24 V

 max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 918: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4614

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a
CS31 bus module.

Parameter Value
Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for AI0+ to AI3+ Terminal 3.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9, 3.9 and 4.9 for current
measurement

Input type

 Unipolar Voltage 0 V...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V...+10 V

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA,
4 mA...20 mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %
For XC version below 0 °C and above 60 °C:
on request

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4615

Parameter Value
Relationship between input signal and hex
code

Ä Chapter 1.6.2.6.3.1.2.9.1 “Input ranges
voltage, current and digital input”
on page 4608

Ä Chapter 1.6.2.6.3.1.2.9.2 “Input
ranges resistance temperature detector”
on page 4609

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 3.5 and 3.6

Reference potential for AO0+ to AO1+ Terminal 3.7 (AO-) for voltage output
Terminals 1.9, 2.9, 3.9 and 4.9 for current
output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4616

Parameter Value
Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA

(each output can be configured individually)

Output resistance (load),
as current output

0 W...500 W

Output loadability,
as voltage output

±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on
the value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Ä Chapter 1.6.2.6.3.1.2.9.3 “Output ranges
voltage and current” on page 4610

Unused outputs Are configured as "unused" (default value)
and can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 800 R0001 DA502, digital/analog input/output

module, 16 DO, 8 DC, 4 AI, 2 AO
Active

1SAP 450 800 R0001 DA502-XC, digital/analog input/output
module, 16 DO, 8 DC, 4 AI, 2 AO,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.7 Function modules
1.6.2.7.1 S500-eCo
FM562 for pulse train output

● 2 axes motion control
● 2 pulse train outputs per axis, RS-422
● 2 configurable digital inputs per axis, 24 V DC
● 32 bits registers for current position, registered position and speed value
● Group-wise galvanically isolated

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4617

1 I/O bus
2 1 green LED to display power supply
3 1 red LED to display error
4 4 yellow LEDs to display the signal states of the inputs I0 to I3
5 4 yellow LEDs to display the signal states of the pulse train outputs P0 to P3
6 2 yellow LEDs to display the signal states of O0 to O1 (reserved)
7 Terminal number
8 Allocation of signal name
9 Terminal block for axis signals (9-pin)
10 Terminal block for axis signals and process supply voltage (11-pin)
11 2 holes for wall-mounting with screws
12 DIN rail

Intended purpose
The function module FM562 for pulse train output (PTO) is used for simple positioning tasks
with servo drives or stepper drives. FM562 provides 2 axes with 2 inputs and 2 pulse-train
outputs each.
It can be used at the following devices:
● Communication interface modules (e. g. CI501-PNIO, CI541-DP)
● Processor modules
It contains the following features:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4618

● 2 axes control
● 2 configurable discrete digital inputs per axis for enable and limit switches signal inputs
● PTO output type: RS-422 differential output (P0, P1, P2 and P3)
● PTO frequency: 10 Hz to 250kHz
● Configurable PTO output mode: CW/CCW (clockwise/counterclockwise), pulse/direction
● Position and speed control with built in motion profile generators. Integration in the appli-

cation program by PLCopen Motion Control function blocks (PS552-MC-E motion control
library is required for programming)

The pulse outputs of the 2 axes are not galvanically isolated from each other.
The other circuitry of the module is galvanically isolated from the inputs/outputs.

Connections
The pulse-train output module FM562 can be connected to the following devices via the I/O bus
connector:
● S500 PROFIBUS and PROFINET communication interface module (e. g. CI501-PNIO,

CI541-DP)
● AC500 CPUs
● Other AC500 I/O modules

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

The module must not be used as a communication interface module at CI58x-
CN or CI59x-CS31.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). For more information, please refer to the chapter
terminal blocks for S500-eCo I/O modules Ä Chapter 1.6.2.9.3.1 “TA563-TA565 - Terminal
blocks” on page 5204. The terminal blocks are not included in the module's scope of delivery
and must be ordered separately.
The following block diagram shows the internal construction of the digital inputs and outputs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4619

The 2 SGND signals are internally interconnected.

The assignment of the terminals:

Terminal Signal Description
1 C0..1 Input common for signals I0 and I1

2 I0 Input signal I0 (axis enable and limit
switch)

3 I1 Input signal I1 (stop)

4 O0 Reserved - do not connect

5 P0+ Pulse output P0+ (positive line)

6 P0- Pulse output P0- (negative line)

7 P1+ Pulse or direction output P1+ (positive
line)

8 P1- Pulse or direction output P1- (negative
line)

9 SGND Signal ground for pulse output

10 C2..3 Input common for signals I2 and I3

11 I2 Input signal I2 (axis enable and limit
switch)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4620

Terminal Signal Description
12 I3 Input signal I3 (stop)

13 O1 Reserved - do not connect

14 P2+ Pulse output P2+ (positive line)

15 P2- Pulse output P2- (negative line)

16 P3+ Pulse or direction output P3+ (positive
line)

17 P3- Pulse or direction output P3- (negative
line)

18 SGND Signal ground for pulse output

19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

When wiring, the motor phase line and power line should be separated in order
to avoid signal disturbances between each other.

For cable length £ 30 m, unshielded cable can be used with Baldor and BSD
servo drives normally.

For cable length > 30 m, shielded cable must be used for surge purpose.

The earthing of the shield should take place at the switchgear cabinet,
see chapter System Data AC500 Ä Chapter 1.6.3.6.1 “System data AC500”
on page 5313.

The cable shields must be earthed at both ends of the cables. In order to avoid
unacceptable potential differences between different parts of the installation,
low resistance equipotential bonding conductors must be laid.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per FM562.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4621

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
Never connect any voltages or signals to reserved terminals (marked with --- or
O0 / O1). Reserved terminals may carry internal voltages.
Be sure to connect the pulse output signals in the right order. Otherwise, the
pulse number may be wrongly calculated and malfunctions may appear.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 1.6.2.7.1.1.6 “Diag-
nosis” on page 4630).
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

The following figure shows the connection of the inputs to the pulse-train output module FM562:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4622

Fig. 919: Connection of inputs to the FM562 - sink inputs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4623

Fig. 920: Connection of inputs to the FM562 - source inputs

The following figure shows the connection of the pulse-train outputs of the FM562 to a servo
amplifier:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4624

Fig. 921: Connection (differential) of pulse train output

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4625

Fig. 922: Connection (single-ended) of pulse train output

For drives/amplifiers with high-impedance pulse input interface like MicroFlex,
the cable ends must be equipped with 100 Ω terminating resistors to eliminate
signal reflections. Normally, the resistors are integrated in the interface connec-
tors.

Internal data exchange

Parameter Value
Axes input data (words) 16

Axes output data (words) 16

I/O configuration
The pulse-train output module FM562 does not store configuration data itself.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4626

Parameterization
The arrangement of the parameter data is performed with Automation Builder.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

For programming, the library package PS552-MC-E is required. This library
package is not part of Automation Builder and has to be purchased separately.

Module parameters

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Module ID Internal 1830 WORD 0x0726 0 65535

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Internal 19 BYTE 19 0 255

Check
Supply

Off
On

0
1

BYTE On
0x01

0 255

Input channels for axis 1

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Input 0,
channel
configura-
tion

No function
Axis
enable /
limit switch

0
1

BYTE No function
0x00

0 1

Input 0,
input delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0 3

Input 1,
channel
configura-
tion

No function
Stop
Registration
*)

0
1
2

BYTE No function
0x00

0 2

Input 1,
input delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0 3

*) Reserved - do not use

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4627

Output channel for axis 1

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Output 0,
channel
configura-
tion

No function 0 BYTE No function
0x00

0 2

Slot parameters for axis 1

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Output
mode

CW/CCW
Pulse/Direc-
tion

0
1

BYTE CW/CCW
0x00

0 1

Start fre-
quency *)

0...65535 0...65535 WORD 0
0x00

0 65535

*) Unit is Hz

Input channels for axis 2

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Input 2,
channel
configura-
tion

No function
Axis
enable /
limit switch

0
1

BYTE No function
0x00

0 1

Input 2,
input delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1ms
0x00

0 3

Input 3,
channel
configura-
tion

No function
Stop
Registration
*)

0
1
2

BYTE No function
0x00

0 2

Input 3,
input delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0 3

*) Reserved - do not use

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4628

Output channel for axis 2

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Output 1,
channel
configura-
tion

No function 0 BYTE No function
0x00

0 2

Slot parameters for axis 2

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Output
mode

CW/CCW
Pulse/Direc-
tion

0
1

BYTE CW/CCW
0x00

0 1

Start fre-
quency *)

0...65535 0...65535 WORD 0
0x00

0 65535

*) Unit is Hz

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x17
0x07, 0x27, 0x00, 0x13, 0x01\
0x00, 0x00, 0x00, 0x00, 0x00\
0x00, 0x00, 0x00, 0x00, 0x00\
0x00, 0x00, 0x00, 0x00, 0x00\
0x00, 0x00, 0x00;

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4629

Diagnosis

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

 Module error FM562
3 14 1...10 31 31 19 Checksum error in

the I/O module
Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 3 Timeout inside the
I/O module

Replace
I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

4 14 1...10 31 31 45 Process voltage is
switched off (ON =>
OFF)

Process
voltage
ON11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier
applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12
= COM2.
The PNIO diagnosis block does not contain
this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1..10 = decentralized com-
munication interface module 1..10, ADR =
hardware address (e. g. of the DC551-CS31)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4630

3) With "Module" the following allocation applies
depending on the master:
Module error: I/O bus or PNIO: 31 = module
itself; COM1/COM2: 1..10 = expansion 1..10
Channel error: I/O bus or PNIO = module type
(2 = DO); COM1/COM2: 1..10 = expansion
1..10

4) In case of module errors, with channel "31 =
Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal and
process
voltage via
I/O bus

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

I/O bus voltage
and external
24 V DC supply
voltage are
present (LED is
on after startup
of the module
(approx. 1 s))

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Axis related
error

P0...P3 Pulse output Yellow Output = OFF Output = ON LED follows
the state of the
outputs,
depending on
frequency

I0...I3 Digital Input Yellow Input = OFF Input = ON ---

O0...O1 Reserved Yellow --- --- ---

Technical data
The System Data of AC500-eCo apply Ä Chapter 1.6.3.5.1 “System data AC500-eCo”
on page 5233

Only additional details are therefore documented below.

Parameter Value
Digital inputs 4 inputs (2 per axis) 24 V DC, can be used as

source inputs or as sink inputs

Input channels 0 and 2 Input signal used for axis enable and limit
switch

Input channels 1 and 3 Stop, configurable

Input data length 32 bytes

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4631

Parameter Value
Pulse outputs Pulse specification

● 2 outputs for each axis, configurable
● Type: RS-422 differential signal
● Mode: CW & CCW or Pulse & Direction
● Frequency: 10 Hz to 250 kHz
● Pulse number: -2147483648 to

2147483647 (32 bits)
● Motion profiles generator

Output data lenth 32 bytes

LED displays For power supply, errors and signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Process supply voltage UP Value
Connections Terminal 19 for UP (+24 V DC) and terminal

20 for ZP (0 V)

Rated value 24 V DC

Current consumption via UP terminal 42 mA

Max. ripple 5 %

Inrush current from UP (at power up) 0.067 A²s

Protection against reversed voltage Yes

Rated protection fuse for UP Not necessary

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between input groups and the output
group and the rest of the module

Isolated groups 5 groups (2 groups for 4 input channels, 1
group for 4 pulse train output channels, 1
group for process supply voltage, 1 group for
the rest of the module)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 1.2 W

Weight Ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

No effects of
multiple over-
loads

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4632

Technical data of the digital inputs

Parameter Value
Number of channels per module 4

Distribution of the channels into axes 1 group of 2 channels for each axis

 Axis 1 Inputs I0...I1

 Axis 2 Inputs I2...I3

Connections of the channels I0 to I1 Terminals 2 to 3

Connections of the channels I1 to I3 Terminals 11 to 12

Reference potential for the channels I0 to
I1

Terminal 1 (Signal name C0..1)

Reference potential for the channels I2 to
I3

Terminal 10 (Signal name C2..3)

Galvanic isolation Yes, per axis

Indication of the input signals 1 yellow LED per channel; the LED is ON when
the input signal is high (signal 1)

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

 Signal 0 -5 V...+3 V -3 V...+5 V

 Undefined signal -15 V...+ 5 V +5 V...+15 V

 Signal 1 -30 V...-15 V +15 V...+30 V

Ripple with signal 0 -5 V...+3 V -3 V...+5 V

Ripple with signal 1 -30 V...-15 V +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-
wire proximity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 0.1 to 32 ms (configurable via software),
default: 0.1 ms

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the pulse outputs

Parameter Value
Number of channels 2 per axis, 4 per module

Output type RS-422

Output mode Clockwise and counter-
clockwise or pulse and
direction

Output frequency 10 Hz to 250 kHz

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4633

Parameter Value
Frequency accuracy

 From 10 Hz to 500 Hz ± 2 %

 From 501 Hz to 250 kHz ± 1 %

Differential output voltage (at terminal block) 2.8 V at 140 W differential
load
2.56 V at 100 W differen-
tial load

Output voltage of positive output (P0+, P1+) referenced to SGND if
used for single ended application

Max. 3.3 V without any
load
Typ. 2.5 V at 100 W load

Max. short circuit current 40 mA

Max. cable length

 Shielded 300 m (at max. fre-
quency, criterion: V
≥ 2 V, tested with 100 W
termination)

 Unshielded 30 m

Ordering data

Part no. Description Product life cycle phase *)
1SAP 233 100 R0001 FM562, pulse-train output module,

2 axes, RS-422, 4 DI, 24 V DC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4634

1.6.2.7.2 S500
CD522 - Encoder, counter and PWM module

● 2 encoder inputs with 2 integrated 5-V-power-supplies for the encoders
● 2 PWM outputs - 2 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation of terminal No. and signal name
3 3 yellow LEDs to display the signal states of the encoder 0 input
4 3 yellow LEDs to display the signal states of the encoder 1 input
5 2 green LEDs to display the 5-V-power-supply states
6 2 yellow LEDs to display the signal state of the digital input I3 and I11
7 8 yellow LEDs to display the input/output signal states
8 2 yellow LEDs to display the signal states of the PWM/pulse outputs
9 1 green LED to display the process voltage UP
10 3 red LEDs to display errors
11 Label
12 Terminal unit
13 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4635

Intended purpose
The encoder and PWM module CD522 can be used at the following devices:
● Communication interface modules (e. g. CI501-PNIO, CI541-DP)
● Processor modules
Features:
● 2 independent counting functions with up to 12 configurable modes (including incremental

position encoder and frequency input up to 300 kHz)
● 2 independent PWM (pulse-width modulator) or pulse outputs with push-pull driver
● Dedicated inputs/outputs for specific counting functions (e.g. touch, set, reset)
● All unused inputs/outputs can be used with the specifications of standard inputs/outputs

range
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.
Depending on the configuration used, some inputs and outputs are dedicated to specific
counting functions (touch, set, reset…). All unused inputs and outputs can be used with the
specification of standard inputs/outputs range.

Functionality

Digital inputs/outputs 24 V DC, dedicated inputs/outputs can be used for specific
counting functions:
- Catch/touch operation, counter value stored in separate vari-
able on external event (rising or falling edge)
- Set input to preset counter register with predefined value
- Set input to reset counter register
- End value output; the output is set when predefined value is
reached
- Reference point initialization (RPI) input for incremental
encoder initialization
All unused inputs/outputs can be used with the specification of
standard input/output range.
Effect of incorrect input terminal connection: Wrong or no
signal detected, no damage up to 35 V.

Fast counter/encoder integrated, 2 counters (hardware interface with +24 V DC,
+5 V DC, differential and 1 Vpp sinus input) with up to 12
configurable operation modes:
- 32 bits one counter mode
- 16 bits two counter mode
- Incremental position encoder
- Absolute SSI encoder
- Time frequency meter
- Frequency input up to 300 kHz

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4636

PWM/pulse outputs 2 pulse-width-modulators or pulse outputs
Output specification
- Push-pull output: 24 V DC, 100 mA max.
- Current limitation (thermal and over current)
PWM specification
- Frequency from 1 Hz to 100 kHz
- Value from 0 to 100 %
Pulse specification
- Frequency from 1 Hz to 15 kHz
- Pulse emission from 1 to 65535 pulses
- Number of pulses emitted indicator (0 to 100 %)
Frequency specification
- Frequency output = 100 kHz when duty cycle set to 50 %

Power supply for encoders 2 5V power supplies, max. 100 mA

LED displays For signal states, errors and supply voltage

Internal power supply Via I/O bus

External power supply Via the terminals UP (process voltage 24 V DC) and ZP (0 V
DC)

Required terminal unit TU515 or TU516 Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541
and TU542 for I/O modules” on page 4103

Connections
The function module CD522 can be connected to the following devices via the I/O bus con-
nector:
● CS31 bus module DC551-CS31
● AC500 CPU
● OtherAC500 I/O devices.
The connection is carried out by using the 40 terminals of the terminal unit TU515/TU516
Ä Chapter 1.6.2.5.3 “TU515, TU516, TU541 and TU542 for I/O modules” on page 4103.

Table 480: Assignment of the terminals
Terminal Signal Description
1.0 /A0 Inverted input signal A of encoder 0

1.1 /B0 Inverted input signal B of encoder 0

1.2 /Z0 Inverted input signal Z of encoder 0

1.3 5V0 +5 V DC power supply output 0 for sensors

1.4 0V 0 V reference input

1.5 O0 Output signal of the fast output O0

1.6 0V 0 V reference input

1.7 O1 Output signal of the fast output O1

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4637

Terminal Signal Description
2.0 A0 Input signal A of encoder 0

2.1 B0 Input signal B of encoder 0

2.2 Z0 Input signal Z of encoder 0

2.3 I3 Input signal I3 (standard input)

2.4...2.7 C4...C7 Signal of the configurable digital input/output C4...C7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 /A1 Inverted input signal A of encoder 1

3.1 /B1 Inverted input signal B of encoder 1

3.2 /Z1 Inverted input signal Z of encoder 1

3.3 5V1 +5 V DC power supply output 1 for sensors

3.4...3.7 0V 0 V reference input

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 A1 Input signal A of encoder 1

4.1 B1 Input signal B of encoder 1

4.2 Z1 Input signal Z of encoder 1

4.3 I11 Input signal I11 (standard input)

4.4...4.7 C12...C15 Signal of the configurable digital input/output C12...C15

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a processor module). Thus, the current
consumption from 24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/commu-
nication interface module increases by 2 mA per CD522.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4638

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The encoder is powered by the 5 V power supply which is integrated in CD522.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

A

B

Z

5 V DC +−

A
A
B
B
Z
Z

The encoder is powered by the 5 V power supply which is integrated in the CD522.

Connection of
encoders with
differential
RS-422 signal

Connection of
encoders with 5
V TTL signal

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4639

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

A

B

Z

5 V DC +−

A

B

Z

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

A

B

Z

24 V DC +−

A
A
B
B
Z
Z

Connection of
encoders with
24 V totem pole
signal

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4640

The wires A, B and Z need not to be connected to the module. They are left
open.

When using different power supplies for the encoder device and the CD522,
make sure that the reference potentials of both power supplies are intercon-
nected.

The encoder is powered through the 5 V power supply which is integrated in the CD522.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

A

B

Z

5 V DC +−

A
A
B
B
Z
Z

The encoder is powered by the 5 V power supply which is integrated in the CD522.

Connection of
encoders with 1
Vpp sine signal

Connection of
absolute
encoders with
SSI interface
and differential
RS-422 signal

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4641

The encoder can optionally be powered by the 5 V power supply which is integrated in the
CD522.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
-
+

5 V DC +-

D+
D-
Clk+
Clk-

Data

Clk

Connection of
absolute
encoders with
an SSI interface
and an optocou-
pler interface at
CLK input

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4642

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

NOTICE!
Risk of damaging the module
The PWM outputs have no protection against reverse polarity.

Proceed with the inputs/outputs I11 and C12-C15 in the same way.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

Proceed with the A0, B0, A1, B1 and Z1 in the same way.

Connection of
output loads to
the PWM/Pulse
putputs

Connection of
standard inputs/
outputs

Connection of
sensors with
frequency out-
puts

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4643

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

t

UIN

Fig. 923: Example of the connection of sensors with frequency outputs to the input Z0 of the
CD522

NOTICE!
Risk of malfunctions!
The edges of a signal must be strong enough (0.4 V/µs) to be recognized
correctly by the module.
Put a 1 kW resistor between 0 V and the Z terminal when using a standard
output as time generator.

Proceed with the 5 V power supply 1 in the same way.

Each 5-V-power supply provides a current of 100 mA max. It is possible to
parallel both integrated power supplies. In this case, the max. current is 200
mA.

Connection of
sensors to the 5
V power supply

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4644

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

5 V DC

3.0
A1
3.1
B1
3.2
Z1
3.3
5V1
3.4
0V
3.5
0V
3.6
0V
3.7
0V
3.8
UP
3.9
ZP

4.0
A1
4.1
B1
4.2
Z1
4.3
I11
4.4
C12
4.5
C13
4.6
C14
4.7
C15
4.8
UP
4.9
ZP

2 A 2 A

NOTICE!
Risk of damaging the module
The integrated 2 A fuse cannot be replaced. If it blows, the module must be
replaced.
Ensure that the current per 0 V connection does not exceed 0.5 A.

NOTICE!
Risk of damaging the module
The two 5 V outputs have no protection against reverse polarity.

Internal data exchange

Parameter Value
Digital inputs (bytes) 0

Digital outputs (bytes) 0

Analog inputs (words) 12

Analog outputs (words) 16

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4645

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1...10

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 1805 1) WORD 0x070D 0 65535 0x0Y01

Ignore
module 2)

No
Yes

0
1

BYTE No
0x00

 Not for
FBP

Parameter
length

Internal 42 BYTE 0 0 255 xx02 3)

Check
supply

Off
On

0
1

BYTE On
0x01

 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 8 ms
0x02

0 3 0x0Y04

Mode
Counter 0

see table
below

0 BYTE 0x00 0 15 0x0Y05

Counter 0
frequency
limit

No filter
50 Hz
500 Hz
5 kHz
20 kHz

0
1
2
3
4

BYTE No filter
0x00

0 4 0x0Y06

Counter 0
input level

0-24 V DC
0-5 V DC
Differen-
tial
1 Vpp
sinus

0
1
2
3

BYTE 0-24 V DC
0x00

0 3 0X0Y07

SSI 0 fre-
quency

200 kHz
500 kHz
1 MHz

2
3
4

BYTE 200 kHz
0x02

0 4 0x0Y08

SSI 0 res-
olution (in
bit)

8 to 32 bit BYTE 16 bit
16

8 32 0x0Y09

SSI 0
code type

Binary 0 BYTE Binary
0

0 0 0x0Y0A

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4646

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

SSI 0
polling
time

10 ms BYTE 10 1 255 0x0Y0B

5 V
sensor 0
supply

Off
On

0 BYTE Off
0x00

0 1 0x0Y0C

Mode
Counter 1

see table
below

0 BYTE 0x00 0 15 0x0Y0D

Counter 1
frequency
limit

No filter
50 Hz
500 Hz
5 kHz
20 kHz

0
1
2
3
4

BYTE No filter
0x00

0 4 0x0Y0E

Counter 1
input level

0-24 V DC
0-5 V DC
Differen-
tial
1 Vpp
sinus

0
1
2
3

BYTE 0-24 V DC
0x00

0 3 0X0Y0F

SSI 1 fre-
quency

200 kHz
500 kHz
1 MHz

2
3
4

BYTE 200 kHz
0x02

2 4 0x0Y10

SSI 1 res-
olution (in
bit)

8 to 32 bit BYTE 16 bit
16

8 32 0x0Y11

SSI 1
code type

Binary 0 BYTE Binary
0

0 0 0x0Y12

SSI 1
polling
time

10 ms BYTE 10 1 255 0x0Y13

5 V
sensor 1
supply

Off
On

0 BYTE Off
0x00

0 1 0x0Y14

Detection
SC on
sensors

Off
On

0 BYTE Off
0x00

0 1 0x0Y15

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4647

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Output
behaviour
com fault

Off
Last value
Substitute
Last value
5s
Substitute
5s
Last value
10s Sub-
stitute 10s

0
1
2
3
4
5
6

BYTE Off
0x00

0 1 0x0Y16

Substitute
value

0 0 WORD Default
0x0000

0 65536 0x0Y17

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP
3) Value is hexadecimal: HighByte is slot (xx: 1...10), LowByte is index (1...n)

Table 481: Operating modes for counters 0 and 1, configuration table
Internal value Operating modes of counter
0 No counter / No PWM (default value)

1 1-1 UpDown counter (A)

2 2-1 UpDown with release input

3 3-2 UpDown counters (A, B)

4 4-2 UpDown (A, B on falling edges)

5 5-1 UpDown dynamic set (B) / rising edge

6 6-1 UpDown dynamic set (B) / falling edge

7 Not used

8 8-1 UpDown with release (B), 0 cross detection

9 - 19 Not used

20 11-1 Incremental encoder

21 12-2 Incremental encoder X2

22 13-1 Incremental encoder X4

30 14-1 SSI, absolute encoder

40 15-1 Time frequency meter

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4648

Table 482: GSD file
Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

25
0x07, 0x0E, 0x17, \
0x01, 0x02, \
0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x0A,
0x00, \
0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x0A,
0x00, \
0x00, 0x00, 0x00, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500 dis-
play

<− Display in

Class Comp Dev Mod Ch Err PS501 PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 19 Checksum error
in the I/O module

Replace I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diag-
nosis buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage
too low

Check
process
voltage11 / 12 ADR 1...10

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4649

Table 483: Channel error CD522
E1...E4 d1 d2 d3 d4 Identi-

fier
000...06
3

AC500 dis-
play

<− Display in

Class Comp Dev Mod Ch Err PS501 PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diag-
nosis block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Channel error
4 14 1...10 1 0...15 47 Output short cir-

cuit
Check
output con-
nection or
terminal

11 / 12 ADR 1..10

4 14 1...10 1 0, 1, 8, 9 10 Input frequency
too high

Check fre-
quency filter
parameter
or sensor

11 / 12 ADR 1...10

4 14 1...10 1 0, 1 2 PWM frequency
too high

Clamp
min/max
value in pro-
gram

11 / 12 ADR 1...10

4 14 1...10 1 0, 1 10 PWM duty cycle
out of range
(0-1000)

Clamp min
value to 0 in
program11 / 12 ADR 1...10

4 14 1...10 1 0, 1 11 5 V sensor
supply too low

Check
wiring &
sensor
power

11 / 12 ADR 1...10

4 14 1...10 1 0, 1 18 Internal fuse on 0
V has blown, 0 V
not connected to
GND

Check
wiring,
replace
module

11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4650

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or FBP = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power-on procedure, the module initializes automatically. All LEDs (except the LEDs
for the signal states) are on during the initialization.

LED State Color LED = OFF LED = ON LED flashes
A0, B0, Z0 Encoder 0

inputs
Yellow Input ON Input OFF LED follows

the state of the
inputs,
depending on
frequency

A1, B1, Z1 Encoder 1
inputs

Yellow Input ON Input OFF LED follows
the state of the
inputs,
depending on
frequency

I3 and I11 Digital inputs Yellow Input = ON
(the input
voltage is
even dis-
played if the
supply
voltage is
OFF).

Input = OFF ---

C4 to C7
and
C12 to C15

Configurable
digital inputs/
outputs

Yellow Input/output
= ON (the
input voltage
is even dis-
played if the
supply
voltage is
OFF).

Input/output =
OFF

O0 and O1 Digital PWM
outputs

Yellow Output = ON Output = OFF LED follows
the state of the
outputs,
depending on
frequency and
operation
mode

5V0 and
5V1

Power supply
for encoders

Green Configura-
tion ON and
power 5-V-
power ready

Configuration
OFF or power
failure

Power supply
outputs are
short-circuited

UP Process
supply
voltage

Green Process
voltage OK

Process
voltage is
missing

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4651

LED State Color LED = OFF LED = ON LED flashes
CH-ERR1,
CH-ERR2,
CH-ERR4

 Red Severe error
within the
corre-
sponding
group

No error or
process
voltage is
missing

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR *) Error indica-
tion

Red Internal
error or con-
figuration is
not loaded

-- ---

*) All LEDs CH-ERR1, CH-ERR2 and CH-ERR4 light up simultaneously

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24 V DC) and
1.9, 2.9, 3.9 and 4.9 for ZP (0 V)

 Protection against reverse
voltage

Yes

 Rated protection fuse at UP 10 A fast

 Rated value 24 V DC

 Max. ripple 5 %

Current consumption

 From UP 0.07 A + max. 0.008 A per input + max. 0.5 A per output +
0.01 A for A, B and Z inputs

 Via I/O bus Ca. 5 mA

 Inrush current from UP (at
power-up)

0.04 A²s

Galvanic isolation Yes, per module

Max. power dissipation within the
module

6 W (outputs unloaded)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal mounting or vertical with derating (output load
reduced to 50 % at 40 °C)

Cooling The natural convection cooling must not be hindered by
cable ducts or other parts in the switchgear cabinet.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4652

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Number of channels 2 + 8 configurable digital inputs/outputs

Reference potential for all
inputs

Terminals 1.9...4.9 (negative pole of the process supply
voltage, signal name ZP)

Galvanic isolation From the rest of the module

Indication of the input signals 1 yellow LED per channel, the LED is ON when the input
signal is high (signal 1)

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input data length 24 bytes

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V *

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data
of the digital
inputs/outputs if
used as
standard inputs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4653

Parameter Value
Number of channels 8 configurable digital inputs/outputs

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the process
supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8...4.8 (positive pole
of the process supply voltage, signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) Typ. 10 µs

Output data length 32 bytes

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together,
PWM included)

8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Fig. 924: Circuitry of a digital input/output with the varistors for demagnetization when inductive
loads are switched off

Parameter Value
Number of channels per module 6

Reference potential for all inputs Terminal 1.9, 2.9, 3.9 and 4.9 (negative
pole of the process voltage, signal name
ZP)

Technical data
of the digital
inputs/outputs if
used as
standard out-
puts

Technical data
of the high-
speed inputs
(A0, B0, Z0; A1,
B1, Z1)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4654

Parameter Value
Input Type 24 V DC 5 V DC / Differential

Sinus 1 Vpp

Input current per channel

 Input voltage +24 V Typ. 14 mA

 Input voltage +5 V > 4.8 mA

 Input voltage +15 V > 12 mA

 Input voltage +30 V < 15 mA

Input type acc. to EN 61131-2 Type 1

Input frequency max. (fast counter) 300 kHz 300 kHz

Input frequency max. (frequency measurement) 5 kHz 5 kHz

Input signal voltage 24 V DC 5 V DC

Signal 0 -3 V...+5 V -3 V...+0,5 V

Undefined signal > +5 V...< +15 V --

Signal 1 +15 V...+30 V +0,5 V...+30 V

Ripple with signal 0 Within -3 V ... +5 V Within -3 V...+0.5 V

Ripple with signal 1 Within +15 V...+30
V

Within +0,5 V...+30
V

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Parameter Value
Number of channels 2

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the process
supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8...4.8 (positive pole
of the process supply voltage, signal name UP)

Indication of the output signals Brightness of the LED depends on the number
of pulses emitted (0 % to 100 %) (pulse output
mode only)

Output voltage for signal 1 UP (-0.1 V)

Output voltage for signal 0 ZP (+0.3 V)

Output delay (0->1 or 1->0) Typ. 1 µs

Output current

 Rated value, per channel 100 mA at UP = 24 V

 Maximum value (all channels together,
configurable outputs included))

8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

De-magnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure above)

Technical data
of the fast out-
puts O0 and O1

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4655

Parameter Value
Switching frequency PWM: up to 100 kHz (min. step for PWM value:

2 µs)
Pulse: up to 15 kHz

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.1x A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short-cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Resistance to feedback against reverse
polarity

No

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Parameter Value
Number of channels 2

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the
process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8...4.8 (positive
pole of the process supply voltage, signal
name UP)

Output voltage for signal 0 ≤ 1.5 V at 10 mA

Output delay (0->1 or 1->0) Typ. 0.3 µs

Output current ≤ 10 mA

Switching frequency < 1 MHz (depending on firmware)

Short-circuit-proof / overload-proof Yes

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Resistance to feedback against reverse
polarity

No

Max. cable length (shielded) Typ. 12.5 m at 500 kHz (depending on sensor)

Parameter Value
Number of channels 2

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the
process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8...4.8 (positive
pole of the process supply voltage, signal
name UP)

Output voltage for signal 1 ≥ 2.9 V at 10 mA

Output voltage for signal 0 ≤ 1.3 V at 10 mA

Output delay (0->1 or 1->0) Typ. 0.3 µs

Technical data
of the fast out-
puts (SSI CLK
output B0, B1
for optical inter-
face)

Technical data
of the fast out-
puts (SSI CLK
Output Differen-
tial)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4656

Parameter Value
Output current ≤ 10 mA

Switching frequency < 1 MHz (depending on firmware)

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.1x A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short-cir-
cuit/overload

Resistance to feedback against 24V signals Yes

Resistance to feedback against reverse
polarity

No

Max. cable length (shielded) 100 m

Parameter Value
Number of supplies 2, independently configuration

Voltage supply (outputs unloaded) 5 V DC +/- 5%

Resistance to feedback against reverse
polarity

No

Output current 100 mA max. (independently)
200 mA max. (parallel use)

Output diagnosis Yes, with diagnosis LED and error message

Parameter Value
Number of reference inputs (internally con-
nected to ZP through internal fuse)

6

Max. current per connection 0.5 A

Internal fuse protection

 Terminals 1.4 and 1.6 2 A

 Terminals 3.4 to 3.7 2 A

Ordering data

Part no. Description Product life cycle phase *)
1SAP 260 300 R0001 CD522, encoder & PWM module,

2 encoder inputs, 2 PWM outputs,
2 digital inputs 24 V DC, 8 digital
outputs 24 V DC

Active

1SAP 460 300 R0001 CD522-XC, encoder & PWM module,
2 encoder inputs, 2 PWM outputs,
2 digital inputs 24 V DC, 8 digital
outputs 24 V DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Technical data
of the 5 V
sensor supply

Technical data
of the 0 V refer-
ence input

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4657

FM502-CMS - Analog measurements
● 16 fast analog inputs, up to 50k samples/s.
● Counting functions with different configurable modes, including incremental position encoder

and frequency input.
● 4 dedicated inputs/outputs for specific counting measurement functions, e.g. touch, set,

reset, start measurement.
● All unused inputs/outputs can be used with the specifications of standard inputs/outputs

range.
● Synchronous sampling between all analog channels and the counting input.
FM502-CMS is used for condition monitoring via fast analog signals. For direct connection to
processor module PM592-ETH and wiring, the function module terminal bases TF501-CMS or
TF521-CMS are available, enabling AC500 communication modules and AC500 I/O modules
Ä Chapter 1.6.2.3.2.1 “PM57x (-y), PM58x (-y) and PM59x (-y)” on page 3848Ä Chapter
1.6.2.2.2 “TF501-CMS and TF521-CMS - Function module terminal bases ” on page 3796.
For usage in extreme ambient conditions a XC version is available.

1 Processor module PM592-ETH
2 Allocation between terminal no. and signal name
3 16 green/red LEDs to display the signal states at the analog inputs A0-A15
4 4 yellow LEDs to display digital inputs DI0, DI1 and digital inputs/outputs DC2,DC3
5 3 yellow LEDs display encoder/counter inputs
6 1 green LED to display the state of the process supply voltage L+
7 1 green LED to display the state of 5 V supply voltage for encoder
8 2 red LEDs to display errors
9 Label
10 Function module terminal base
11 DIN rail

Sign for XC version

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4658

Connections
FM502-CMS is plugged on the TF5x1-CMS together with PM592-ETH. The connection is
established using the terminals of the TF5x1-CMS. The FM502-CMS can be replaced without
re-wiring the TF5x1-CMS Ä Chapter 1.6.2.2.2 “TF501-CMS and TF521-CMS - Function module
terminal bases ” on page 3796.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4659

Fig. 925: Connection of IEPE sensor to the FM502-CMS

In order to avoid error messages or long processing times, we recommend to configure unused
analog input channels as "unused".

For the open-circuit detection (cut wire) in IEPE mode, each channel is pulled
up to the positive supply rail by a high impedance. If nothing is connected,
the maximum value will be read Ä Chapter 1.6.2.7.2.2.5 “Measuring ranges”
on page 4674.

Connection of
IEPE sensors

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4660

Every negative analog input is internally connected to M (0 V) via an individual low impedance
(PTC) return current path for the sensor supply current in IEPE mode. This is important for
applications where a high input impedance on the negative analog input is required. Example:
Stain gauges, bridge network.

NOTICE!
Analog sensors should be galvanically isolated against earth. In order to avoid
inaccuracy with the measuring results, the analog sensors should also be iso-
lated against the power supply.

Connection of
active-type
analog sensors
(Voltage) with
galvanically iso-
lated power
supply

Connection of
active-type
analog sensors
(Voltage) with
no galvanically
isolated power
supply

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4661

NOTICE!
If A- is not connected directly to M at the sensor, the supply current flows via A-
to M. Measuring errors can occur caused by voltage differences between M and
A-.

NOTICE!
At system start up, the 4 mA current source on each analog input is active for
< 10 s. During this limited time, a positive analog input will drift to < 21 V and
no current is flowing, when a high impedance sensor is connected. When a low
impedance sensor is connected to the analog input, the current is limited to 4
mA. For analog sensors other than standard IEPE, please make sure that the
connected sensor will not be damaged under these conditions.

Analog signals must be laid in shielded cables. The analog cable shield must only be connected
on the module side (SH terminals) to avoid isothermal relaxation currents influencing the meas-
uring results, and for optimal robustness against external noise. The shield connection must be
as short as possible (< 3 cm). The analog shield is capacitive coupled internally with functional
earth (FE). Generally to avoid unacceptable potential differences between different parts of the
installation, low-resistance equipotential bonding conductors must be laid.
In order to avoid error messages or long processing times, it is recommended to configure
unused analog input channels as "unused".
In order to avoid inaccuracy in the analog measurement, the FM502-CMS should be in thermal
balance > 15 minutes after power up and start of the PLC application, before measurements are
started.

The encoder is powered by the 5 V power supply which is integrated in the FM502-CMS.Connection of
encoders with
differential
RS-422 signal

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4662

The encoder is powered through the 5 V power supply which is integrated in the FM502-CMS.

The wires A-, B- and Z- must not be connected to the module for single-ended operation. They
are left open.
When using different power supplies for the encoder device and the FM502-CMS, make sure
that the reference potentials of both power supplies are interconnected.

Connection of
encoders with 5
V TTL signal

Connection of
encoders with
24 V totem pole
signal

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4663

The encoder is powered by the 5 V power supply which is integrated in the FM502-CMS.

The encoder is powered by the 5 V power supply which is integrated in the FM502-CMS.

Connection of
encoders with 1
Vpp sine signal

Connection of
absolute
encoders with
RS-422 differen-
tial SSI interface

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4664

The encoder can optionally be powered by the 5-V-power-supply which is integrated in the
FM502-CMS.

Encoder/counter signals must be laid in shielded cables. The cable shield must be grounded at
both sides of the cable. In order to avoid unacceptable potential differences between different
parts of the installation, low-resistance equipotential bonding conductors must be laid. Only for
applications with low disturbance and/or cables length < 30 m the shield might be omitted.

The 5 V output provides a current of 100 mA max.

NOTICE!
Risk of damaging the FM502-CMS!
The 5 V output has no protection against reverse polarity.

Connection of
absolute
encoders with
optical SSI inter-
face (optocou-
pler at CLK
input)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4665

Connection of
standard inputs/
outputs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4666

Fig. 926: Example for connection of sensors with frequency outputs to the input Z+

Internal data exchange

Parameter Value
Digital inputs (bytes) 4

Digital outputs (bytes) 8

Counter inputs (words) 4

Counter outputs (words) 2

Analog inputs (words) 16

Analog outputs (words) 0

Connection of
sensors with
frequency out-
puts

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4667

Diagnosis
Table 484: Module error FM502-CMS
E1...E4 d1 d2 d3 d4 Identi-

fier
000...06
3

AC500
display

<-- Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error
mes-
sage

Online
number

Remedy

 1) 2) 3) 4)

3 5 255 29 31 3 Timeout
in the I/O
module

1845452
19

Replace
I/O
module

3 5 255 29 31 11 Process
voltage
too low

1845452
27

Replace
I/O
module

4 5 255 29 31 13 FW
update
failed

1845452
29

Retry
FW
update

3 5 255 29 31 18 5 V
sensor
supply
too low

1845452
34

Check
wiring &
sensor
power,
Replace
I/O
module

3 5 255 29 31 19 Checksu
m error
in the I/O
module

1845452
35

Replace
I/O
module

3 5 255 29 31 36 Internal
data
exchang
e failure

1845452
52

Replace
I/O
module

3 5 255 29 31 43 Internal
error in
the
module

1845452
59

Replace
I/O
module

4 5 255 29 31 52 Produc-
tion data
missing

1845452
68

Call sup-
port

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4668

Table 485: Channel error FM502-CMS
E1...E4 d1 d2 d3 d4 Identi-

fier
000...06
3

AC500
display

<-- Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error
mes-
sage

Online
number

Remedy

 1) 2) 3) 4)

4 5 255 29 0..15 5 Analog
value
overflow
at an
analog
input

1845432
37,
1845433
01,
1845433
65,
1845434
29,
1845434
93,
1845435
57,
1845436
21,
1845436
85,
1845437
49,
1845438
13,
1845438
77,
1845439
41,
1845440
05,
1845440
69,
1845441
33,
1845441
97

Check
input
value

4 5 255 29 0..15 7 Analog
value
under-
flow at
an
analog
input

1845432
39,
1845433
03,
1845433
67,
1845434
31,
1845434
95,
1845435
59,
1845436

Check
input
value

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4669

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<-- Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error
mes-
sage

Online
number

Remedy

 1) 2) 3) 4)
23,
1845436
87,
1845437
51,
1845438
15,
1845438
79,
1845439
43,
1845440
07,
1845440
71,
1845441
35,
1845441
99

4 5 255 29 0..1 10 Encount
er/
counter
input fre-
quency
too high

1845432
42,
1845433
06

Check
fre-
quency
filter
param-
eter or
sensor

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4670

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<-- Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error
mes-
sage

Online
number

Remedy

 1) 2) 3) 4)

4 5 255 29 0..15 45 Cut wire
at an
analog
input
(only in
IEPE
mode)

1845432
77,
1845433
41,
1845434
05,
1845434
69,
1845435
33,
1845435
97,
1845436
61,
1845437
25,
1845437
89,
1845438
53,
1845439
17,
1845439
81,
1845440
45,
1845441
09,
1845441
73,
1845442
37

Check
terminal

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4671

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<-- Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error
mes-
sage

Online
number

Remedy

 1) 2) 3) 4)

4 5 255 29 0..15 46 Short cir-
cuit at an
analog
input
(only in
IEPE
mode)

1845432
78,
1845433
42,
1845434
06,
1845434
70,
1845435
34,
1845435
98,
1845436
62,
1845437
26,
1845437
90,
1845438
54,
1845439
18,
1845439
82,
1845440
46,
1845441
10,
1845441
74,
1845442
38

Check
terminal

4 5 255 29 2..3 47 Short cir-
cuit at an
digital
output

1845434
07,
1845434
71

Check
terminal
or output
connec-
tion

Remarks:

1) In AC500, the following interface identifier applies: 14 = I/O bus, 11 = COM1 (e.g.
CS31 bus), 12 = COM2. The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies: 31 = module itself, 1..10 = commu-
nication interface module 1..10, ADR = hardware address (e.g. of the DC551)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4672

3) With "Module" the following allocation applies depending on the master: Module
error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1..10 = expansion 1..10
channel error: I/O bus or FBP = module type (1 = AI); COM1/COM2: 1..10 =
expansion 1..10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power-on procedure, the module initializes automatically. All LEDs (except the LEDs
for the signal states) are on during the initialization.

LED State Color LED = ON LED = OFF LED flashing
AI0 - AI15 Analog

channel state
Green Channel acti-

vated and OK
Channel
deactivated

CMS meas-
urement run-
ning

Red Short circuit
(only in IEPE
mode) over- /
undervoltage
(only in +-10V
mode)

- Cable break
(only in IEPE
mode)

A, B, Z Encoder 0
inputs

Yellow Input ON Input OFF LED follows
the state of
the inputs,
depending on
frequency

DI0, DI1,
DC2, DC3

Digital inputs Yellow Input = ON
(the input
voltage is
even dis-
played if the
supply voltage
is OFF).

Input = OFF -

DC2, DC3 Digital outputs Yellow Output = ON Output OFF -

5 V Power supply
for encoders

Green Configuration
ON and power
5-V-power
ready

Configuration
OFF or power
failure

Power supply
outputs are
short-circuited

L+ Process
supply voltage

Green Process
voltage OK
Initialization
finished

Process
voltage OFF

Firmware
update

CH-ERR1,
CH-ERR2

 Red Serious error
within the cor-
responding
group

No error or
process
voltage is
missing

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4673

Measuring ranges
Table 486: Voltage input ranges
Range IEPE Digital value -10 V...+10

V
Digital value

Decimal Hex. Decimal Hex.
Open loop
overflow

≥ 7.5 3145728 300000 ≥ 12.0000 5033164 4CCCCC

Measured
value too
high

7.49999761
6...
6.00000238

3145727...
2516583

2FFFFF...
266667

11.9999976
2...
10.0000023
8

5033163...
4194305

4CCCCB...
400001

Normal
range

6.00000...
0.00000238

2516582...
1

266666... 1 10.0000...
0,00000238

4194304...
1

400000... 1

0.0000 0 0 0.0000 0 0

-0.0000023
8...
-6.00000

-1...
-2516582

-1...
-266666

-0.0000023
8...
-10.0000

-1...
-4194304

-1...
-400000

Measured
value too
low

-6.0000023
8...
-7.4999976
16

-2516583...
-3145727

-266667...
-2FFFFF

-10.000002
38...
-11.999997
62

-4194305...
-5033163

-400001...
-4CCCCB

Short cir-
cuit / under-
flow

≤ -7.5 -3145728 -300000 ≤ -12.0000 -5033164 -4CCCCC

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Table 487: Technical data of process supply voltage
Parameter Value
Connections of terminals The terminals 1.8, 4.8...7.8, 1.9, 4.9...7.9, 4.0...4.7, 7.0...7.7

are electrically interconnected within the TF5x1-CMS.
Terminals 1.8, 4.8...7.8: process voltage L+ = +24 V DC
Terminals 1.9, 4.9...7.9: process voltage M = 0 V
Terminals 4.0...4.7, 7.0...7.7: analog shield clamps SH
Terminal 1.0: FE shield clamp of encoder

Protection against reverse
voltage

Yes

Rated protection fuse at UP 10 A fast

Rated value 24 V DC

Max. ripple 5 %

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4674

Parameter Value
Current consumption from
L+ (FM502-CMS and PM592-
ETH, no communication
module)

Max. 0.43 A + max. 0.5 A per output

Inrush current from L+ (at
power up, FM502-CMS and
PM592-ETH, no communica-
tion module)

1.2 A2s

Galvanic isolation Yes, PM592-ETH and FM502-CMS to other I/O bus modules

Max. power dissipation within
the FM502-CMS

6.5 W (outputs unloaded)

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

For maritime applications a metal cabinet is required

Table 488: Technical data of the device
Parameter Value
Weight FM502-CMS 215 g

Weight FM502-CMS-XC 220 g

Mounting position Horizontal
Vertical with derating: max. temperature 40 °C

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Deratings for operation of FM502-CMS-XC
between +60 °C and +70 °C

No use of 24 V encoder mode.
Analog inputs: maximum number of config-
ured input channels limited to 75 % per group
AI0...AI7 and AI8...AI15.

Required Terminal Base TF501 or TF521 Ä Chapter 1.6.2.2.2 “TF501-
CMS and TF521-CMS - Function module ter-
minal bases ” on page 3796

Table 489: Technical data of the 5 V encoder supply
Parameter Value
Number of supplies 1

Connections Terminal 1.7

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4675

Parameter Value
Rated value 5 V DC (+/- 5%)

Resistance to feedback against reverse
polarity

No

Resistance to feedback against 24 V signals Yes

Output current 100 mA max.

Output diagnosis Yes, with diagnosis LED and error message

Table 490: Technical data of the digital inputs
Parameter Value
Number of channels 2 + 2 configurable inputs/outputs

Connections Terminals 2.8, 2.9, 3.8, 3.9

Reference potential Terminals 1.9, 4.9, 5.9, 6.9, 7.9 for M (0 V)

Indication of the input sig-
nals

One yellow LED per channel, the LED is ON when the input
signal is high (signal 1)

Input type acc. to EN
61131-2

Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V
Due to the direct connection to the output, the demagnetizing
varistor is also effective at the input. This is why the difference
between L+ and the input signal must not exceed the clamp
voltage of the varistor. The varistor limits the clamp voltage to
approx. 36 V. The input voltage must range from -12 V to +30 V
when L+ = 24 V and from -6 V to +30 V when L+ = 30 V.

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

Shielded 1000 m

Unshielded 600 m

Table 491: Technical data of digital outputs
Parameter Value
Number of channels per module 2 configurable inputs/outputs

Connection Terminal 3.8, 3.9

Reference potential Terminals 1.9, 4.9, 5.9, 6.9, 7.9 for M (0 V)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4676

Parameter Value
Indication of the output signal One LED per channel

Power supply voltage Terminals 1.8, 4.8, 5.8, 6.8, 7.8 for L+ (+24
V)

Output voltage for signal 1 L+ (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel: 500 mA at UP =
24 V

500 mA at L+ = 24 V

 Maximum value: 1 A 1 A

Leakage current with signal 0 < 0.5 mA

Demagnetization when inductive loads are
switched off

With varistors integrated in the module

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit proof / overload proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Fig. 927: Circuitry of a digital input/output with the varistors for demagnetization when inductive
loads are switched off.

Table 492: Technical data of high speed input (Encoder, A/B/Z)
Parameter Value
Number of channels per
module

3 (sampled synchronously with IEPE inputs)

Connection Terminals 1.1, 1.2, 1.3, 1.4, 1.5, 1.6

Reference potential Terminals 1.9, 4.9, 5.9, 6.9, 7.9 for M (0 V)

Indication of the input signals One LED per channel

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4677

Parameter Value
Resolution 32 bits

Input type 24 V DC 5 V DC Differential
RS-422 and 1
Vpp sine

Input current per channel

 Input voltage + 24 V Typ. 6 mA

 Input voltage + 5 V > 1 mA

 Input voltage + 15 V > 5 mA

 Input voltage + 30 V < 8 mA

Input type acc. to EN61131-2 Type 1

Input frequency max. (fre-
quency measurement)

100 kHz (accuracy -0 %/+3 %)

Input signal voltage 24 V DC 5 V DC Differential

Input frequence max. 300 kHz 1 MHz 1 MHz

Signal 0 -30 V...+5 V -30 V...+0.8 V ≤ 200 mV

Undefined signal > +5 V...< +15 V > +0.8 V...< +2.0
V

-

Signal 1 +15 V...+30 V +2.0 V...+30 V ≥ +200 mV

Ripple with signal 0 Within -30 V...+5 V Within -30 V...
+0.8 V

-

Ripple with signal 1 Within +15 V...+30 V Within +2.0 V...
+30 V

-

Max. cable length, shielded
(depending on sensor)

300 m 100 m

Table 493: Technical data of the fast outputs (SI CLK output B for optical interface)
Parameter Value
Number of channels 1

Connection Terminals 1.3, 1.4

Reference potential Terminals 1.9, 4.9, 5.9, 6.9, 7.9 for M (0 V)

Indication of output signal One LED per channel, the LED is ON when
SSI CLK output B is active

Differential output voltage for signal 1 > 2.4 V at 10 mA

Differential output voltage for signal 0 ≤ -2.4 V at 10 mA

Output delay (0->1 or 1->0) Max. 0.35 µs

Output current ≤ 10 mA

Switching frequency (selectable) 200 kHz, 500 kHz and 1 MHz

Short-circuit-proof/overload-proof Yes

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4678

Parameter Value
Resistance to feedback against reverse
polarity

Yes

Max. cable length, shielded (depending on
sensor)

Typ. 12.5 m at 1MHz

Table 494: Technical data of the fast outputs (SSI CLK output B, RS-422 differential)
Parameter Value
Number of channels 1

Connection Terminals 1.3, 1.4

Reference potential Terminals 1.9, 4.9, 5.9, 6.9, 7.9 for M (0 V)

Differential output voltage ≥ 2.4 V at 10 mA

Output delay (0->1 or 1->0) Max. 0.35 µs

Switching frequency (selectable) 200 kHz, 500 kHz, 1 MHz

Short-circuit-proof/overload-proof Yes

Output current limitation Yes, automatic reactivation after short-cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Resistance to feedback against reverse
polarity

Yes

Max. cable length, shielded (depending on
sensor)

100 m

Table 495: Technical data of analog inputs
Parameter Value
Number of channels per module 16 (synchronous sampled)

Connection Terminals 2.0...2.7, 5.0...5.1 for AI-, 3.0...3.7, 6.0...6.7
for AI+

Indication of the input signal One bicolor LED per channel for signal and error mes-
sages.

Measurement resolution ≥ 23 Bit

Resolution 32 bits external use

Accurracy at +25 °C ≤+/-0.1 %

Accurracy over operating tempera-
ture and vibration

≤+/-0.5 %

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4679

Parameter Value
Sample rate/bandwidth high (0 dB) 50 kHz/20 kHz (min. -121 dB/22.5 kHz)

25 kHz/10 kHz (min. -116 dB/11.25kHz)
12.5 kHz/5 kHz (min. -116 dB/5.63 kHz)
6.25 kHz/2.5 kHz (min. -116 dB/2.81 kHz)
3.13 kHz/1.25 kHz (min. -116 dB/1.41 kHz)
1.56 kHz/0.625 kHz (min. -116 dB/0.70 kHz)
0.78 kHz/0.312 kHz (min. -120 dB/0.36 kHz)
0.39 kHz/0.156 kHz (min. -121 dB/0.18 kHz)
0.20 kHz/0.080 kHz (min. -121 dB/0.09 kHz)
0.10 kHz/0.040 kHz (min. -130 dB/0.05 kHz)
selectable per channel

Data storage 128 MB

Measurement time Selectable per channel

Input type default setting unused

Input type (selectable per input) IEPE -10 V...+10 V

Bandwidth low min. 3 dB/< 0.1 Hz min. 3 dB/< 0.1 Hz or DC
(selectable)

Dynamic range (SFDR) > 100 dB

SINAD (300 Hz/1 kHz sine, 50 k
SPS)

 0 dB from full scale < -90 dB < -95 dB

 -20 dB from full scale < -75 dB < -80 dB

 -40 dB from full scale < -55 dB < -60 dB

Input range +2 V...+18 V -10 V...+10 V

Measurement range +/-6 V (DC coupled) -10 V...+10 V

Input DC bias range, common mode
range

+8 V...+12 V +/-1 V

Current source per channel Typ. 4.2 mA (+/- 7 % over
temperature)

-

Input resistance AI- to M Typ. 27 Ohm (PTC)

Channel input impedance (AI+/AI-)

 < 1 kHz > 1 MOhm > 2 MOhm

 5 kHz > 100 kOhm > 40 kOhm

 10 kHz > 60 kOhm > 25 kOhm

 20 kHz > 40 kOhm > 8 kOhm

Error detection Short circuit, open wire -

Max. cable length, shielded
(depending on sensor)

100 m

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4680

Ordering data

Part no. Description Product life cycle phase *)
1SAP260400R0001 Function module FM502-CMS Active

1SAP460400R0001 Function module FM502-CMS-XC,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.8 Communication interface modules (S500)

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor module PM585-ETH with firmware version as of V2.8.1.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Hot swap
Further information about hot swap: Ä Chapter 1.6.4.1.7 “Hot swap”
on page 5463.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4681

1.6.2.8.1 Compatibility of communication modules and communication interface modules
Table 496: Modbus TCP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

CM597-ETH CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

Table 497: PROFIBUS DP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM592-DP
master

CI541-DP
CI542-DP

x x -- remote I/O

CM592-DP
master

CI541-DP
CI542-DP

x -- -- hot-swap I/O

Table 498: PROFINET IO RT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x -- -- hot swap I/O

CM579-PNIO
controller

CI504-PNIO
CI506-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI504-PNIO
CI506-PNIO

x -- -- hot swap I/O

Table 499: CANopen
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM598-CN
master

CI581-CN
CI582-CN

x x -- remote I/O

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4682

Table 500: EtherCAT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-ETHCAT
master

CI511-ETHCAT
CI512-ETHCAT

x x -- remote I/O

Table 501: CS31 bus
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard COM1
interface

DC551-CS31
CI592-CS31

x x -- remote I/O

Onboard COM1
interface

CI590-CS31-HA x -- -- high availability

CM574-RS DC551-CS31
CI592-CS31

x x -- remote I/O

CM574-RS CI590-CS31-HA x -- -- high availability

1.6.2.8.2 CANopen
Comparison CI581 and CI582

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability Max. 10 S500 I/O modules

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

CI581/CI582:
Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4683

Parameter Value
Adjusting elements 2 rotary switches for generation of the node

address

Ambient temperature System data AC500 Ä Chapter 1.6.3.6.1
“System data AC500” on page 5313

System data AC500 XC Ä Chapter 1.6.3.7.1
“System data AC500-XC” on page 5389

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 1.6.2.5.2 “TU509 and TU510
for communication interface modules”
on page 4099

Ä Chapter 1.6.2.5.4 “TU517 and TU518
for communication interface modules”
on page 4109

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4684

The difference of those devices can be found in their input and output characteristics.

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC; delay time configu-

rable via software)
8 digital transistor outputs (24 V DC, 0.5 A
max.)
4 analog inputs, configurable as:
● -10 V...+10 V
● 0 V...+10 V
● -10 V...+10 V (differential voltage)
● 0 mA...20 mA
● 4 mA...20 mA
● Pt100 , Pt1000, Ni1000 (for each 2-wire

and 3-wire)
● 24 V digital input function
2 analog outputs, configurable as:
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Resolution of the analog channels 12 bits

Fast counter Integrated, configurable operating modes

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC)

8 digital transistor outputs (24 V DC, 0.5 A
max.)
8 configurable digital inputs/outputs (24 V DC,
0.5 A max.)

CI581-CN
● 4 analog inputs (resolution 12 bits plus sign)
● 2 analog outputs (resolution 12 bits plus sign)
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

CI581-CN: Input/
Output charac-
teristics

CI582-CN: Input/
Output charac-
teristics

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4685

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CI581

CH-ERR1 CH-ERR3CH-ERR2

2.4

2.0 AI0+

2.2 AI2+

2.7 AO-

2.9 ZP

2.3 AI3+

2.1 AI1+

AI -

2.5 AO0+

2.6 AO1+

2.8 UP

4.0 DO0

4.2 DO2

4.4 DO4

4.6 DO6

4.9 ZP

4.1 DO1

4.3 DO3

4.5 DO5

4.7 DO7

4.8 UP33.8 UP

3.9 ZP

3.0 DI0

3.2 DI2

3.3 DI3

3.5 DI5

3.6 DI6

3.4 DI4

3.7 DI7

3.1 DI1

UP 24VDC 100W CANopen Slave
4AI 2AO 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

PWR/
RUN

ADDR x01H

ADDR x10H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

1.8GND

1.9GND

1.0 CAN+

1.2 CAN-

1.3 CAN-

1.5 Term+

1.6 Term-

1.4 Term+

1.7 Term-

1.1 CAN+ CN-
RUN
CN-

ERR
S-

ERR
I/O-
Bus

12 3 4 5

6
7

8

9

10

12

13

11

1 I/O bus
2 Allocation between terminal No. and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, CN-RUN, CN-ERR, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the CANopen Node ID
11 10 terminals to connect the CANopen bus signals
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The CANopen communication interface module CI581-CN is used as decentralized I/O module
in CANopen networks. Depending on the used terminal unit the network connection is per-
formed either via 9-pin female D-sub or via 10 terminals (screw or spring terminals) which are
integrated in the terminal unit. The communication interface module contains 22 I/O channels
with the following properties:
● 4 analog inputs (2.0...2.3)
● 2 analog outputs (2.5...2.6)
● 8 digital inputs 24 V DC in 1 group (3.0...3.7)
● 8 digital outputs 24 V DC in 1 group (4.0...4.7)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4686

The inputs/outputs are galvanically isolated from the CANopen network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability Max. 10 S500 I/O modules

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

Ambient temperature System data AC500 Ä Chapter 1.6.3.6.1
“System data AC500” on page 5313

System data AC500 XC Ä Chapter 1.6.3.7.1
“System data AC500-XC” on page 5389

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4687

Parameter Value
 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 1.6.2.5.2 “TU509 and TU510
for communication interface modules”
on page 4099

Ä Chapter 1.6.2.5.4 “TU517 and TU518
for communication interface modules”
on page 4109

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4688

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC; delay time configu-

rable via software)
8 digital transistor outputs (24 V DC, 0.5 A
max.)
4 analog inputs, configurable as:
● -10 V...+10 V
● 0 V...+10 V
● -10 V...+10 V (differential voltage)
● 0 mA...20 mA
● 4 mA...20 mA
● Pt100 , Pt1000, Ni1000 (for each 2-wire

and 3-wire)
● 24 V digital input function
2 analog outputs, configurable as:
● -10 V...+10 V
● 0 mA...20 mA
● 4 mA...20 mA

Resolution of the analog channels 12 bits

Fast counter Integrated, configurable operating modes

Connections
The CANopen communication interface module is plugged on the I/O terminal units TU517
Ä Chapter 1.6.2.5.4 “TU517 and TU518 for communication interface modules” on page 4109
or TU518 Ä Chapter 1.6.2.5.4 “TU517 and TU518 for communication interface modules”
on page 4109 and accordingly TU509 Ä Chapter 1.6.2.5.2 “TU509 and TU510 for communi-
cation interface modules” on page 4099 or TU510 Ä Chapter 1.6.2.5.2 “TU509 and TU510 for
communication interface modules” on page 4099. Properly position the module and press until it
locks in place.
The connection of the I/O channels is established using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
Terminal 4.8: process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

CI581-CN: Input/
Output charac-
teristics

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4689

Do not connect any voltages externally to the digital outputs!

Reason: External voltages at an output or several outputs may cause other
outputs to be supplied via that voltage instead of voltage UP3 (reverse voltage).
This ist not the intended use.

CAUTION!
Risk of malfunctions by unintended use!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is connected at the outputs
DO0..DO7 and DC0..DC7.

Possibilities of connection
The assignment of the 9-pin female D-sub for the CANopen signals

1

5

6

9

1 --- Reserved

2 CAN- Inverted signal of the CAN bus

3 CAN_GND Ground potential of the CAN bus

4 --- Reserved

5 --- Reserved

6 --- Reserved

7 CAN+ Non-inverted signal of the CAN bus

8 --- Reserved

9 --- Reserved

Shield Cable shield Functional earth

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 928: CANopen interface, bus terminating resistors connected to the line ends

Mounting on ter-
minal units
TU509 or TU510

Bus terminating
resistors

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4690

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 929: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear. Please refer to
Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4691

Table 502: Assignment of the terminals
Terminal Signal Description
1.0 CAN+ Non-inverted signal of the CAN bus

1.1 CAN+ Non-inverted signal of the CAN bus

1.2 CAN- Inverted signal of the CAN bus

1.3 CAN- Inverted signal of the CAN bus

1.4 Term+ CAN bus termination for CAN+ (for bus termination,
Term+ must be connected with CAN+)

1.5 Term+ CAN bus termination for CAN+ (connecting alterna-
tive for terminal 1.4)

1.6 Term- CAN bus termination for CAN- (for bus termination,
Term- must be connected with CAN-)

1.7 Term- CAN bus termination for CAN- (connecting alterna-
tive for terminal 1.6)

1.8 CAN-GND Ground potential of the CAN bus

1.9 CAN-GND Ground potential of the CAN bus

At the line ends of a bus segment, terminating resistors must be connected. If TU517 or TU518
is used, the bus terminating resistors can be enabled by connecting the terminals Term+ and
Term- to the data lines CAN+ and CAN- (no external terminating resistors are required, see
figure below).
The following figures show the different connection options for the CANopen communication
interface module:

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen in

CANopen out

Mounting on ter-
minal units
TU517 or TU518

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4692

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen end

In the case of TU517/TU518, the terminating resistors are not located inside
the TU but inside the communication interface module CI581-CN. Hence, when
removing the device from the TU, the bus terminating resistors are no longer
connected to the bus. The bus itself will not be disconnected if a device is
removed.

The grounding of the shield should take place at the switchgear cabinet. Please
refer to the AC500 System-Data Ä Chapter 1.6.3.6.1 “System data AC500”
on page 5313.

Table 503: Assignment of the other terminals
Terminal Signal Description
2.0 AI0+ Positive pole of analog input signal 0

2.1 AI1+ Positive pole of analog input signal 1

2.2 AI2+ Positive pole of analog input signal 2

2.3 AI3+ Positive pole of analog input signal 3

2.4 AI- Negative pole of analog input signals 0 to 3

2.5 AO0+ Positive pole of analog output signal 0

2.6 AO1+ Positive pole of analog output signal 1

2.7 AI- Negative pole of analog output signals 0 and 1

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI0 Signal of the digital input DI0

3.1 DI1 Signal of the digital input DI1

3.2 DI2 Signal of the digital input DI2

3.3 DI3 Signal of the digital input DI3

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4693

Terminal Signal Description
3.4 DI4 Signal of the digital input DI4

3.5 DI5 Signal of the digital input DI5

3.6 DI6 Signal of the digital input DI6

3.7 DI7 Signal of the digital input DI7

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO0 Signal of the digital output DO0

4.1 DO1 Signal of the digital output DO1

4.2 DO2 Signal of the digital output DO2

4.3 DO3 Signal of the digital output DO3

4.4 DO4 Signal of the digital output DO4

4.5 DO5 Signal of the digital output DO5

4.6 DO6 Signal of the digital output DO6

4.7 DO7 Signal of the digital output DO7

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4694

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

Connection of CANopen communication interface module CI581-CN:

+
-

+
-

+
-

+
-

+
-

+
-

PTC

AI0+

AI1+

AI2+

AI3+
AI-

2.0

2.1

2.2

2.3
2.4

PTC

2.5

2.6
2.7

AO0+

AO1+
AO-

4.0 DO0

4.1 DO1

4.2 DO2

4.3 DO3

4.4 DO4

4.5 DO5

4.6 DO6

4.7 DO7

DI0 3.0

DI1 3.1

DI2 3.2

DI3 3.3

DI4 3.4

DI5 3.5

DI6 3.6

DI7 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 3.9

3.8
UP3 +24 V

ZP 0 V

Fig. 930: Connection of the communication interface module CI581-CN

The module provides several diagnosis functions Ä Chapter 1.6.2.8.2.2.8 “Diagnosis”
on page 4710.
For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization
Ä Chapter 1.6.2.8.2.2.7 “Parameterization” on page 4706.
The meaning of the LEDs is described in the section for the state LEDs Ä Chapter 1.6.2.8.2.2.9
“State LEDs” on page 4714.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bus length

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4695

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

62.5 kbit/s 1000 m

20 kbit/s 2500 m

10 kbit/s 5000 m

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI7 in the same way.

2.0
DI0
2.1
DI1
2.2
DI2
2.3
DI3
2.4
DI4
2.5
DI5
2.6
DI6
2.7
DI7
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 931: Connection of the digital inputs to the module CI581-CN

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 - DO7 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4696

4.0
DO0
4.1
DO1
4.2
DO2
4.3
DO3
4.4
DO4
4.5
DO5
4.6
DO6
4.7
DO7
4.8
UP3
4.9
ZP

24 V DC
-
+

Fig. 932: Connection of configurable digital inputs/outputs to the module CI581-CN

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
to build the necessary voltage drop for the evaluation. For this, the module CI581-CN provides a
constant current source which is multiplexed over the max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
3.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

Fig. 933: Connection of resistance thermometers in 2-wire configuration to the analog inputs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4697

Pt100 2-wire configuration, 1 channel used

Pt1000 2-wire configuration, 1 channel used

Ni1000 2-wire configuration, 1 channel used

For the measuring ranges that can be configured, please refer to sections Measuring Ranges
Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization Ä Chapter
1.6.2.8.2.2.7 “Parameterization” on page 4706.
The module CI581-CN performs a linearization of the resistance characteristic.
To avoid error messages, configure unused analog input channels as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI581-CN provides a constant current source which is multiplexed over the max. 4 analog input
channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

Fig. 934: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4698

Pt100 3-wire configuration, 2 channels used

Pt1000 3-wire configuration, 2 channels used

Ni1000 3-wire configuration, 2 channels used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization
Ä Chapter 1.6.2.8.2.2.7 “Parameterization” on page 4706.
The module CI581-CN performs a linearization of the resistance characteristic.
To avoid error messages, configure unused analog input channels as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

+

-
UIN

Fig. 935: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization
Ä Chapter 1.6.2.8.2.2.7 “Parameterization” on page 4706.
To avoid error messages, configure unused analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4699

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-

0 ... +20 mA
+4 ... +20 mA

UIN

Fig. 936: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

Current 0...20 mA 1 channel used

Current 4...20 mA 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization
Ä Chapter 1.6.2.8.2.2.7 “Parameterization” on page 4706.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4700

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

Fig. 937: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

For the measuring ranges that can be configured, plese refer to the sections Measuring Ranges
Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization Ä Chapter
1.6.2.8.2.2.7 “Parameterization” on page 4706.
To avoid error messages, configure unused analog input channels as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4701

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-

+

+4 ... +20 mA

Fig. 938: Connection of passive-type analog sensors (current) to the analog inputs

Current 4...20 mA 1 channel used

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Only use sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and I-.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4702

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-
UIN

Fig. 939: Connection of active-type analog sensors (voltage) to differential analog inputs

Voltage 0...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization
Ä Chapter 1.6.2.8.2.2.7 “Parameterization” on page 4706.
To avoid error messages, configure unused analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4703

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 940: Use of analog inputs as digital inputs

Digital input 24 V 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization
Ä Chapter 1.6.2.8.2.2.7 “Parameterization” on page 4706.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 941: Connection of analog output loads (voltage)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4704

Voltage -10 V...+10 V Load ± 10 mA max. 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization
Ä Chapter 1.6.2.8.2.2.7 “Parameterization” on page 4706.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 942: Connection of analog output loads (current)

Current 0...20 mA Load 0...500 W 1 channel used

Current 4...20 mA Load 0...500 W 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 1.6.2.8.2.2.10 “Measuring ranges” on page 4716 and Parameterization
Ä Chapter 1.6.2.8.2.2.7 “Parameterization” on page 4706.
Unused analog outputs can be left open-circuited.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4705

Addressing
A detailed description concerning addressing can be found in the documentation of ABB Control
Builder Plus Software.

The CANopen communication interface module reads the position of the rotary
switches only during power-up, i. e. changes of the switch position during oper-
ation will have no effect until the next module initialization.

The range of permitted CANopen slave addresses is 1 to 127. Setting a higher
address (> 128) does not lead to an error response, but results in a special
mode (DS401). In this special mode, the device creates the node address by
subtracting the value 128 from the address switch's value.

I/O configuration
The CI582-CN CANopen bus configuration is handled by CANopen master with the exception of
the slave node ID (via rotary switches) and the transmision rate (automatic detection).
The digital I/O channels and the fast counter are configured via software.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 0x1C84 WORD 0x1C84

Parameter length Internal 54 BYTE 54

Error LED / Fail-
safe function
(table error LED /
Failsafe function
Ä Further infor-
mation
on page 4706)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved 0 0 ARRAY of 24
BYTES

Check supply
(UP and UP3)

On 0 BYTE

Off 1 1

Fast counter 0 0 BYTE 0

: :

10 2) 10

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission
2) For a description of the counter operating modes, please refer to the fast counter section
Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4706

Table 504: Settings "Error LED / Failsafe function"
Setting Description
On Error LED (S-ERR) lights up at errors of all error classes, failsafe

mode off

Off by E4 Error LED (S-ERR) lights up at errors of error classes E1, E2 and E3,
failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error classes E1 and E2,
failsafe mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all error classes, failsafe
mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1, E2 and E3,
failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1 and E2,
failsafe mode on *)

*) The parameters Behaviour analog outputs at communication error and Behaviour digital
outputs at communication error are only evaluated if the failsafe function is enabled.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behavior analog
outputs at com-
munication error
*)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behavior analog outputs at communication error is only analyzed if the
failsafe mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Operation modes
of analog inputs

Operation modes
of analog inputs

BYTE 0

Input 0, Check
channel

Settings channel
monitoring

Settings channel
monitoring

BYTE 0

: : : : :

: : : : :

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4707

Name Value Internal value Internal value,
type

Default

Input 3, Channel
configuration

Operation modes
of analog inputs

Operation modes
of analog inputs

BYTE 0

Input 3, Check
channel

Settings channel
monitoring

Settings channel
monitoring

BYTE 0

Table 505: Channel configuration - Operating modes of the analog inputs
Internal Value Operating Modes (individually configu-

rable)
0 (default) Not used

1 0...10 V

2 Digital input

3 0...20 mA

4 4...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50...+400 °C

9 3-wire Pt100 -50...+400 °C *)

10 0...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50...+70 °C

15 3-wire Pt100 -50...+70 °C *)

16 2-wire Pt1000 -50...+400 °C

17 3-wire Pt1000 -50...+400 °C *)

18 2-wire Ni1000 -50...+150 °C

19 3-wire Ni1000 -50...+150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 506: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4708

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Operation modes
of analog outputs

Operation modes
of analog outputs

BYTE 0

Output 0, Check
channel

Channel moni-
toring

Channel moni-
toring

BYTE 0

Output 0, Substi-
tute value

Substitute value Substitute value WORD 0

Output 1,
Channel configu-
ration

Operation modes
of analog outputs

Operation modes
of analog outputs

BYTE 0

Output 1, Check
channel

Channel moni-
toring

Channel moni-
toring

BYTE 0

Output 1, Substi-
tute value

Substitute value Substitute value WORD 0

Table 507: Channel configuration - Operating modes of the analog outputs
Internal value Operating Modes (individually configu-

rable)
0 (default) Not used

128 -10 V...+10 V

129 0...20 mA

130 4...20 mA

Table 508: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 509: Substitute value
Intended Behavior of Output
Channel when the Control
System Stops

Required Setting of
the Module Parameter
"Behavior of Outputs in
Case of a Communication
Error"

Required Setting of the
Channel Parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4709

Intended Behavior of Output
Channel when the Control
System Stops

Required Setting of
the Module Parameter
"Behavior of Outputs in
Case of a Communication
Error"

Required Setting of the
Channel Parameter "Substi-
tute value"

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behavior digital
outputs at com-
muncation error
1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 255 00h ... FFh BYTE 0
0x00

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE Off
0x00

1) The parameter Behavior digital outputs at communcation error is only analyzed if the failsafe
mode is ON.

2) The state "externally voltage detected" appears if the output of a channel DC0..DC7 is to
be switched on while an external voltage is connected Ä Chapter 1.6.2.8.2.2.3 “Connections”
on page 4689. In this case, the start-up is disabled as long as the external voltage is con-
nected. The monitoring of this state and the resulting diagnosis message can be disabled by
setting the parameters to "OFF".

Diagnosis
Structure of the Diagnosis Block via CANOM_NODE_DIAG. Ä Chapter 1.5.4.7.1.8
“CANOM_NODE_DIAG” on page 933

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4710

Byte Number Description Possible Values
1 Diagnosis byte, slot number 31 = CI581-CN (e. g. error at integrated 8 DI /

8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

3 Diagnosis byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

4 Diagnosis byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4711

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4712

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Voltage feedback
on deactivated dig-
ital output 6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0..1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4713

1) In AC500, the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = position of the
communication module;14 = I/O bus; 31 = module itself
The identifier is not contained in the CI541-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = module itself; 1..10 = decen-
tralized communication interface module

3) With "Module" the following allocation applies:
31 = module itself
Channel error: module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears if external voltages at one or more terminals DO0..DO7
cause other digital outputs to be fed by that voltage (voltage feedback, descrip-
tion in 'Connections' Ä Chapter 1.6.2.8.2.2.3 “Connections” on page 4689). All
outputs of the digital output groups will be turned off for 5 seconds. The diag-
nosis message appears for the whole output group.

5) The voltage on digital outputs DO0..DO7 has overrun the process supply
voltage UP3 (description in 'Connections' Ä Chapter 1.6.2.8.2.2.3 “Connections”
on page 4689). Diagnosis message appears for the whole module.

6) This message appears if the output of a channel DO0..DO7 is to be switched
on while an external voltage is connected. In this case, start-up is disabled while
the external voltage is connected. Otherwise, this could produce reverse voltage
flowing from this output to other digital outputs. This diagnosis message appears
for each channel.

7) Short circuit: After a short circuit has been detected, the output is deactivated for
100ms seconds. Subsequently, a new start-up will be executed. This diagnosis
message appears for each channel.

State LEDs
The state LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, CN-RUN, CN-ERR, S-ERR and I/O bus) show the operation

states of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

States of the 5
system LEDs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4714

LED Color OFF ON Flashing
CN-RUN Green --- Device config-

ured, CANopen
bus in OPERA-
TIONAL state
and cyclic data
exchange run-
ning

Flashing:
CANopen bus in
PRE-OPERA-
TIONAL state
and slave is
being configured
Single flash:
CANopen bus in
STOPPED state.
Flickering: Auto-
detect is active

CN-ERR Red No system error CANopen Bus is
OFF

Flashing: Config-
uration error
Single flash: error
counter overflow
due to too many
error frames
Double flash: A
node-guard or a
heartbeat event
occurred
Flickering: Auto-
detect is active

S-ERR Red No error Internal error --

I/O bus Green No decentralized
I/O modules con-
nected or com-
munication error

Decentralized I/O
modules con-
nected and
operational

LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 toDO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

States of the 27
process LEDs:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4715

LED Color OFF ON Flashing
UP3 Green Process supply

voltage missing
Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
: 6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
: 8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 450.0 °C > 160.0 °C 32767 7FFF

Measured value
too high

450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4716

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
 160.0 °C

:
150.1 °C

1600
:
1501

0640
:
05DD

 800
:
701

0320
:
02BD

Normal range 400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4717

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 3.0 to 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V

Undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

Input voltage +24 V Typ. 5 mA

Input voltage +5 V > 1 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4718

Parameter Value
Input voltage +15 V > 2 mA

Input voltage +30 V < 8 mA

Max. cable length

Shielded 1000 m

Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

Rated value per channel 500 mA at UP3 = 24 V

Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

With resistive load On request

With inductive loads Max. 0.5 Hz

With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

Shielded 1000 m

Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4719

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 943: Digital input/output (circuit diagram)

1 Digital output

2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 2.0 to2.3

Reference potential for AI0+ to AI3+ Terminal 2.4 (AI-) for voltage and RTD meas-
urement
Terminal 2.9, 3.9 and 4.9 for current measure-
ment

Input type

 Unipolar Voltage 0...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10...+10 V

Galvanic isolation Against CANopen Bus

Configurability 0...10 V, -10...+10 V, 0/4...20 mA, Pt100/1000,
Ni1000 (each input can be configured individu-
ally)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0...10 V: 12 bits
Range -10...+10 V: 12 bits + sign
Range 0...20 mA: 12 bits
Range 4...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4720

Parameter Value
Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Tables Input Ranges Voltage, Current
Ä Chapter 1.6.2.8.2.2.10.1 “Input ranges
voltage, current and digital input” on page 4716
and Digital Input and IInput range resist-
ance temperature detector Ä Chapter
1.6.2.8.2.2.10.2 “Input ranges resistance tem-
perature detector” on page 4716

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 2.0 to 2.3

Reference potential for the inputs Terminals 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 VDC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+15 V

 Signal 1 +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

Reference potential for AO0+ to AO1+ Terminal 2.7 (AO-) for voltage output
Terminal 2.9, 3.9 and 4.9 for current output

Output type

 Unipolar Current

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4721

Parameter Value
 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10...+10 V, 0...20 mA, 4...20 mA (each output
can be configured individually)

Output resistance (load), as current output 0...500 W

Output loadability, as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

See Ä Chapter 1.6.2.8.2.2.10.3 “Output ranges
voltage and current” on page 4717

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI0), 3.1 (DI1)

Used outputs Terminal 4.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Detailed description Fast Counter Ä Chapter 1.6.2.6.1.2.10 “Fast
counter” on page 4351

Operating modes Operating modes Ä Chapter 1.6.2.6.1.2.10
“Fast counter” on page 4351

Ordering data

Part no. Description Product life cycle phase *)
1SAP 228 100
R0001

CI581-CN, CANopen
communication interface module with
8 DI, 8 DO, 4 AI and 2 AO

Active

1SAP 428 100
R0001

CI581-CN-XC, CANopen
communication interface module with
8 DI, 8 DO, 4 AI and 2 AO, XC version

Active

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4722

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI582-CN
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CI582

CH-ERR1 CH-ERR3CH-ERR2

UP 24VDC 100W CANopen Slave
4AI 2AO 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

PWR/
RUN

ADDR x01H

ADDR x10H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

1.8GND

1.9GND

1.0 CAN+

1.2 CAN-

1.3 CAN-

1.5 Term+

1.6 Term-

1.4 Term+

1.7 Term-

1.1 CAN+ CN-
RUN
CN-

ERR
S-

ERR
I/O-
Bus

2.0 DC0

2.2 DC2

2.9 ZP

2.3 DC3

2.1 DC1

2.5 DC5

2.6 DC6

2.8 UP

2.7 DC7

2.4 DC4

3.8 UP

3.9 ZP

3.0 DI8

3.2 DI10

3.3 DI11

3.5 DI13

3.6 DI14

3.4 DI12

3.7 DI15

3.1 DI9

4.0 DO8

4.2 DO10

4.4 DO12

4.6 DO14

4.9 ZP

4.1 DO9

4.3 DO11

4.5 DO13

4.7 DO15

4.8 UP3

12 3 4 5

6
7

8

9

10

12

13

11

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 - DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 - DO15)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, CN-RUN, CN-ERR, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the CANopen node ID

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4723

11 10 terminals to connect the CANopen bus signals
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The CANopen communication interface module CI582-CN is used as decentralized I/O module
in CANopen networks. Depending on the terminal unit used, the network connection is per-
formed either via a female 9-pin D-sub connector or via 10 terminals (screw or spring terminals)
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)

The inputs/outputs are galvanically isolated from the CANopen network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability Max. 10 S500 I/O modules

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4724

Parameter Value
Ambient temperature System data AC500 Ä Chapter 1.6.3.6.1

“System data AC500” on page 5313

System data AC500 XC Ä Chapter 1.6.3.7.1
“System data AC500-XC” on page 5389

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 1.6.2.5.2 “TU509 and TU510
for communication interface modules”
on page 4099

Ä Chapter 1.6.2.5.4 “TU517 and TU518
for communication interface modules”
on page 4109

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4725

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC)

8 digital transistor outputs (24 V DC, 0.5 A
max.)
8 configurable digital inputs/outputs (24 V DC,
0.5 A max.)

Connections
The CANopen communication interface module is plugged on the I/O terminal units TU517
Ä Chapter 1.6.2.5.4 “TU517 and TU518 for communication interface modules” on page 4109
or TU518 Ä Chapter 1.6.2.5.4 “TU517 and TU518 for communication interface modules”
on page 4109 and accordingly TU509 Ä Chapter 1.6.2.5.2 “TU509 and TU510 for communi-
cation interface modules” on page 4099 or TU510 Ä Chapter 1.6.2.5.2 “TU509 and TU510 for
communication interface modules” on page 4099. Properly position the module and press until it
locks in place.
The connection of the I/O channels is established using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
Terminal 4.8: process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Possibilities of connection
The assignment of the 9-pin female D-sub for the CANopen signals

1

5

6

9

1 --- Reserved

2 CAN- Inverted signal of the CAN bus

3 CAN_GND Ground potential of the CAN bus

4 --- Reserved

5 --- Reserved

6 --- Reserved

7 CAN+ Non-inverted signal of the CAN bus

CI582-CN: Input/
Output charac-
teristics

Mounting on ter-
minal units
TU509 or TU510

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4726

8 --- Reserved

9 --- Reserved

Shield Cable shield Functional earth

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 944: CANopen interface, bus terminating resistors connected to the line ends

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

Bus terminating
resistors

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4727

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 945: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear. Please refer to
Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313.

Table 510: Assignment of the terminals
Terminal Signal Description
1.0 CAN+ Non-inverted signal of the CAN bus

1.1 CAN+ Non-inverted signal of the CAN bus

1.2 CAN- Inverted signal of the CAN bus

1.3 CAN- Inverted signal of the CAN bus

1.4 Term+ CAN bus termination for CAN+ (for bus termination,
Term+ must be connected with CAN+)

1.5 Term+ CAN bus termination for CAN+ (connecting alterna-
tive for terminal 1.4)

Mounting on ter-
minal units
TU517 or TU518

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4728

Terminal Signal Description
1.6 Term- CAN bus termination for CAN- (for bus termination,

Term- must be connected with CAN-)

1.7 Term- CAN bus termination for CAN- (connecting alterna-
tive for terminal 1.6)

1.8 CAN-GND Ground potential of the CAN bus

1.9 CAN-GND Ground potential of the CAN bus

At the line ends of a bus segment, terminating resistors must be connected. If TU517 or TU518
is used, the bus terminating resistors can be enabled by connecting the terminals Term+ and
Term- to the data lines CAN+ and CAN- (no external terminating resistors are required, see
figure below).
The following figures show the different connection options for the CANopen communication
interface module:

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen in

CANopen out

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4729

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen end

In the case of TU517/TU518, the terminating resistors are not located inside
the TU but inside the communication interface module CI581-CN. Hence, when
removing the device from the TU, the bus terminating resistors are no longer
connected to the bus. The bus itself will not be disconnected if a device is
removed.

The grounding of the shield should take place at the switchgear cabinet. Please
refer to the AC500 System-Data Ä Chapter 1.6.3.6.1 “System data AC500”
on page 5313.

Table 511: Assignment of the other terminals
Terminal Signal Description
2.0 DC0 Signal of the configurable digital input/output DC0

2.1 DC1 Signal of the configurable digital input/output DC1

2.2 DC2 Signal of the configurable digital input/output DC2

2.3 DC3 Signal of the configurable digital input/output DC3

2.4 DC4 Signal of the configurable digital input/output DC4

2.5 DC5 Signal of the configurable digital input/output DC5

2.6 DC6 Signal of the configurable digital input/output DC6

2.7 DC7 Signal of the configurable digital input/output DC7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI8 Signal of the digital input DI8

3.1 DI9 Signal of the digital input DI9

3.2 DI10 Signal of the digital input DI10

3.3 DI11 Signal of the digital input DI11

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4730

Terminal Signal Description
3.4 DI12 Signal of the digital input DI12

3.5 DI13 Signal of the digital input DI13

3.6 DI14 Signal of the digital input DI14

3.7 DI15 Signal of the digital input DI15

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO8 Signal of the digital output DO8

4.1 DO9 Signal of the digital output DO9

4.2 DO10 Signal of the digital output DO10

4.3 DO11 Signal of the digital output DO11

4.4 DO12 Signal of the digital output DO12

4.5 DO13 Signal of the digital output DO13

4.6 DO14 Signal of the digital output DO14

4.7 DO15 Signal of the digital output DO15

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Connection of CANopen communication interface module CI582-CN:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4731

4.0 DO8

4.1 DO9

4.2 DO10

4.3 DO11

4.4 DO12

4.5 DO13

4.6 DO14

4.7 DO15

DI8 3.0

DI9 3.1

DI10 3.2

DI11 3.3

DI12 3.4

DI13 3.5

DI14 3.6

DI15 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 4.9

4.8
UP3 +24 V

ZP 0 V

DC0 2.0

DC1 2.1

DC2 2.2

DC3 2.3

DC4 2.4

DC5 2.5

DC6 2.6

DC7 2.7

Fig. 946: Connection of the communication interface module CI582-CN

For a description of the meaning of the LEDs, please refer to the section for the state LEDs
Ä Chapter 1.6.2.8.2.3.9 “State LEDs” on page 4740.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

62.5 kbit/s 1000 m

20 kbit/s 2500 m

10 kbit/s 5000 m

Connection of the digital inputs
The following figure shows the connection of the digital input DI8. Proceed with the digital inputs
DI9 to DI15 in the same way.

Bus length

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4732

3.0
DI8
3.1
DI9
3.2
DI10
3.3
DI11
3.4
DI12
3.5
DI13
3.6
DI14
3.7
DI15
3.8
UP
3.9
ZP

24 V DC
-
+

Fig. 947: Connection of the digital inputs to the module CI582-CN

Connection of the digital outputs
The following figure shows the connection of the digital output DO8. Proceed with the digital
outputs DO9 - DO15 in the same way.

4.0
DO8
4.1
DO9
4.2
DO10
4.3
DO11
4.4
DO12
4.5
DO13
4.6
DO14
4.7
DO15
4.8
UP
4.9
ZP

24 V DC
-
+

Fig. 948: Connection of configurable digital inputs/outputs to the module CI582-CN

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 to DC7 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4733

2.0
DC0
2.1
DC1
2.2
DC2
2.3
DC3
2.4
DC4
2.5
DC5
2.6
DC6
2.7
DC7
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 949: Connection of configurable digital inputs/outputs to the module CI582-CN

Internal data exchange

Parameter Value
Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing
A detailed description concerning addressing can be found in the documentation of ABB Control
Builder Plus Software.

The CANopen communication interface module reads the position of the rotary
switches only during power-up, i. e. changes of the switch position during oper-
ation will have no effect until the next module initialization.

The range of permitted CANopen slave addresses is 1 to 127. Setting a higher
address (> 128) does not lead to an error response, but results in a special
mode (DS401). In this special mode, the device creates the node address by
subtracting the value 128 from the address switch's value.

I/O configuration
The CI582-CN CANopen bus configuration is handled by CANopen master with the exception of
the slave node ID (via rotary switches) and the transmision rate (automatic detection).
The digital I/O channels and the fast counter are configured via software.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4734

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 0x1C89 WORD 0x1C89

Parameter length Internal 38 BYTE 38

Error LED / fail-
safe function
table error LED /
failsafe function
Ä Table 512 “Err
or LED / Failsafe
function”
on page 4735)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved 0 0 ARRAY of 24
BYTES

Check supply On 0 BYTE

Off 1 1

Fast counter 0 0 BYTE 0

: :

10 2) 10

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission.
2) For a description of the counter operating modes, please refer to the 'Fast Counter' section
Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351.

Table 512: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, failsafe mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, failsafe mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, failsafe mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, failsafe mode on *)

*) The parameter Behavior DO at comm. error is only analyzed if the failsafe mode is ON.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4735

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behavior DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 65535 0000h ... FFFFh WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0..DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behavior DO at comm. error is applied to DC and DO
channels and only analyzed if the failsafe mode is ON.

2) The state "externally voltage detected" appears if the output of a channel
DC0..DC7 is to be switched on while an external voltage is connected.
In this case, start-up is disabled while the externally voltage is con-
nected. The monitoring of this state and the resulting diagnosis message
can be disabled by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears if external voltage
at digital outputs DC0..DC7 and DO0..DO7 has exceeded the process
supply voltage UP3 (see 'Connections' Ä Chapter 1.6.2.8.2.3.3 “Con-
nections” on page 4726). The according diagnosis message "Voltage
overflow on outputs " can be disabled by setting the parameters to
"OFF". This parameter should only be disabled in exceptional cases as
voltage overflow may produce reverse voltage.

Diagnosis
Structure of the diagnosis block via CANOM_NODE_DIAG. Ä Chapter 1.5.4.7.1.8
“CANOM_NODE_DIAG” on page 933

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4736

Byte Number Description Possible Values
1 Diagnosis byte, slot number 31 = CI582-CN (e. g. error at integrated 8 DI /

8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

3 Diagnosis byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

4 Diagnosis byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to Bit 5, coded error description

5 Diagnosis byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4737

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4738

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8...15 46 Externally voltage
detected at digital
output DO0..DO7 6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0..DC7 6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at
digital output
DC0..DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO0..DO77)

Check
terminals

Remarks:

1) In AC500, the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = position of the
communication module;14 = I/O bus; 31 = module itself
The identifier is not contained in the CI542-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = module itself, 1..10 =
expansion module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4739

3) With "Module" the following allocation applies depending on the master:
Module error: 31 = module itself
Channel error: module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears if external voltages at one or more terminals DC0..DC7
or DO0..DO7 cause other digital outputs to be supplied by that voltage
(voltage feedback, see 'Connections' Ä Chapter 1.6.2.8.2.3.3 “Connections”
on page 4726). All outputs of the digital output groups will be turned off for 5
seconds. The diagnosis message appears for the whole output group.

5) The voltage at digital outputs DC0..DC7 and DO0..DO7 has exceeded the
process supply voltage UP3 (see 'Connections' Ä Chapter 1.6.2.8.2.3.3 “Con-
nections” on page 4726). A diagnosis message appears for the whole module.

6) This message appears if the output of a channel DC0..DC7 or DO0..DO7
should be switched on while an external voltage is connected. In this case
the start-up is disabled while the external voltage is connected. Otherwise, this
could produce reverse voltage flowing from this output to other digital outputs.
This diagnosis message appears for each channel.

7) Short circuit: After a short circuit has been detected, the output is deactivated
for 100ms. Subsequently, a new start-up will be executed. This diagnosis mes-
sage appears for each channel.

State LEDs
The LEDs are located at the front of the module. There are 2 different groups:
● The 5 system LEDs (PWR, CN-RUN, CN-ERR, S-ERR and I/O bus) show the operation

states of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

CN-RUN Green --- Device config-
ured, CANopen
bus in OPERA-
TIONAL state
and cyclic data
exchange run-
ning

Flashing:
CANopen bus in
PRE-OPERA-
TIONAL state
and slave is
being configured
Single flash:
CANopen bus in
STOPPED state.
Flickering: Auto-
detect is active

States of the 5
system LEDs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4740

LED Color OFF ON Flashing
CN-ERR Red No system error CANopen Bus is

OFF
Flashing: Config-
uration error
Single flash: error
counter overflow
due to too many
error frames
Double flash: A
node-guard or a
heartbeat event
occurred
Flickering: Auto-
detect is active

S-ERR Red No error Internal error --

I/O bus Green No decentralized
I/O modules con-
nected or com-
munication error

Decentralized I/O
modules con-
nected and
operational

LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/output is OFF Input/output is ON --

DI8 to DI15 Yellow Input is OFF Input is ON (the input
voltage is even dis-
played if the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and initi-
alization finished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to
CH-ERR3

Red No error or process
supply voltage
missing

Internal error Error on one channel
of the corresponding
group

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

States of the 29
process LEDs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4741

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 3.0 to 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V

Undefined signal > +5 V...< +15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

Input voltage +24 V Typ. 5 mA

Input voltage +5 V > 1 mA

Input voltage +15 V > 2 mA

Input voltage +30 V < 8 mA

Max. cable length

Shielded 1000 m

Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

Rated value per channel 500 mA at UP3 = 24 V

Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4742

Parameter Value
Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

With resistive load On request

With inductive loads Max. 0.5 Hz

With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

Shielded 1000 m

Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 950: Digital input/output (circuit diagram)

1 Digital output

2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

Channels DC0...DC07 Terminals 2.0...2.7

If the channels are used as outputs

Channels DC0...DC07 Terminals 2.0...2.7

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4743

Parameter Value
Indication of the input/output signals 1 yellow LED per channel, the LED is ON

when the input/output signal is high (signal 1)

Galvanic isolation From the CANopen network

Please refer to the Technical Data of the Digital Inputs Ä Chapter 1.6.2.8.2.3.10 “Technical
data” on page 4741. Deviation:
Terminals of the channels DC0 to DC7: Terminals 2.0 to 2.7
Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input. This is why the difference between UPx and the input signal must not exceed the clamp
voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V. Consequently, the
input voltage must range from -12 V to +30 V when UPx = 24 V and from -6 V to +30 V when
UPx = 30 V.

Please refer to the Technical Data of the Digital Outputs Ä Chapter 1.6.2.8.2.3.10 “Technical
data” on page 4741. Deviation:
Terminals of the channels DC0 to DC7: Terminals 2.0 to 2.7
The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 951: Digital input/output (circuit diagram)

1 Digital input/output

2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI8), 3.1 (DI9)

Used outputs Terminal 4.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Technical data
of the digital
inputs/outputs if
used as inputs

Technical data
of the digital
inputs/outputs if
used as outputs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4744

Parameter Value
Detailed description Fast Counter Ä Chapter 1.6.2.6.1.2.10 “Fast

counter” on page 4351

Operating modes Operating modes Ä Chapter 1.6.2.6.1.2.10
“Fast counter” on page 4351

Ordering data

Part no. Description Product life cycle phase *)
1SAP 228 200 R0001 CI582-CN, CANopen

communication interface module with
8 DI, 8 DO and 8 DC

Active

1SAP 428 200 R0001 CI582-CN-XC, CANopen
communication interface module with
8 DI, 8 DO and 8 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.8.3 CS31
CI590-CS31-HA

● 16 configurable digital inputs/outputs 24 V DC
● CS31 bus connection
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4745

1 I/O bus
2 Allocation between terminal number and signal name
3 5 system LEDs
4 16 yellow LEDs to display the signal states of the configurable digital inputs/outputs C0 to

C15
5 2 rotary switches to set the module's address (00d to 99d)
6 1 green LED to display the process voltage UP
7 2 red LEDs to display errors
8 DIN rail
9 Terminal unit

Sign for XC version

Intended purpose
The High Availability CS31 bus module CI590-CS31-HA is used as a decentralized I/O module
on CS31 field buses. The CI590-CS31-HA contains two RS-485 interfaces for connecting the
module to two separate CS31 buses to have redundancy/backup or high availability. In addi-
tion, the CI590-CS31-HA provides 16 I/O channels with 16 configurable digital inputs/outputs
(C0...C15) in one group. This group can be used as follows:
● 24 V DC input
● 24 V DC transistor output, 0.5 A (max.), short-circuit and overload protected
● re-readable output (combined input/output) with identical technical data of the digital inputs

and outputs
The inputs and outputs are group-wise galvanically isolated from the CS31 buses and from
other modules. Each CS31 bus is galvanically isolated from other terminals.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4746

Functionality

Parameter Value
Interface bus A RS-485, CS31 protocol, galvanically isolated

from other electronic.

Interface bus B RS-485, CS31 protocol, galvanically isolated
from other electronic.

Address switches Two rotary switches for setting the CS31 bus
address (00d to 99d).

I/O bus I/O bus to connect S500 I/O modules (max.
7).

Digital inputs/outputs 16 configurable digital inputs/outputs in one
group: 24 V DC, 0.5 A (max.), short-circuit and
overload protected.

High-speed counter Integrated, with many configurable operating
modes.

LED displays For system states, signal states, errors and
power supply.

External power supply Via UP and ZP terminal (process voltage: 24
V DC).

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU552-CS31 Ä Chapter 1.6.2.5.7 “TU551-
CS31 and TU552-CS31 for CS31 communica-
tion interface modules” on page 4121

Connections
The CS31-HA communication interface module CI590-CS31-HA is plugged on CS31 terminal
unit TU551-CS31 or TU552-CS31. Hereby, it clicks in with two mechanical locks. The terminal
unit is mounted on a DIN rail or with two screws plus the additional accessory for wall mounting
(TA526).

Mounting, disassembling and connection for the terminal units and the I/O
modules are described in detail in the S500 system data chapters.

The connection is carried out by using the 40 terminals of the terminal unit TU551-CS31/TU552-
CS31. It is possible to replace the CI590-CS31-HA without loosening the wiring.
Assignment of the terminals:

Terminal Signal Description
1.0 R1A Integrated terminating resistors for CS31 bus A, terminal 1

1.1 R2A Integrated terminating resistors for CS31 bus A, terminal 2

1.2 B1A CS31 bus A, bus line 1

1.3 B2A CS31 bus A, bus line 2

1.4 FE Functional earth

1.5 B1A CS31 bus A, bus line 1

1.6 B2A CS31 bus A, bus line 2

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4747

Terminal Signal Description
1.7 FE Functional earth

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 R1B Integrated terminating resistors for CS31 bus B, terminal 1

2.1 R2B Integrated terminating resistors for CS31 bus B, terminal 2

2.2 B1B CS31 bus B, bus line 1

2.3 B2B CS31 bus B, bus line 2

2.4 FE Functional earth

2.5 B1B CS31 bus B, bus line 1

2.6 B2B CS31 bus B, bus line 2

2.7 FE Functional earth

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 C0 Signal of the configurable digital input/output C0

3.1 C1 Signal of the configurable digital input/output C1

3.2 C2 Signal of the configurable digital input/output C2

3.3 C3 Signal of the configurable digital input/output C3

3.4 C4 Signal of the configurable digital input/output C4

3.5 C5 Signal of the configurable digital input/output C5

3.6 C6 Signal of the configurable digital input/output C6

3.7 C7 Signal of the configurable digital input/output C7

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 C8 Signal of the configurable digital input/output C8

4.1 C9 Signal of the configurable digital input/output C9

4.2 C10 Signal of the configurable digital input/output C10

4.3 C11 Signal of the configurable digital input/output C11

4.4 C12 Signal of the configurable digital input/output C12

4.5 C13 Signal of the configurable digital input/output C13

4.6 C14 Signal of the configurable digital input/output C14

4.7 C15 Signal of the configurable digital input/output C15

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

CAUTION!
Risk of damaging the PLC modules!
The PLC modules must not be removed if the plant is powered on. Make sure
that all voltage sources (supply and process voltage) are switched off before
removing or replacing a module.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4748

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits. Make
sure that all voltage sources (supply and process voltage) are switched off
before starting system operation.

The module provides several diagnostic functions (see chapter Ä Chapter 1.6.2.8.3.1.10 “Diag-
nosis” on page 4756).
The following figure demonstrates connection of the configurable digital inputs/outputs. The
digital input/output C0 is connected as an output and the digital input/output C1 is connected as
an input. Connect the digital inputs/outputs C2...C15 in the same way.

Fig. 952: CI590-02

CAUTION!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of CI590-
CS31-HA. Connect a 470 Ω / 1 W resistor in series configurable inputs/outputs
C8/C9 if using them as fast counter inputs to safely avoid any influences.

The meaning of the LEDs is described in the chapter Ä Chapter 1.6.2.8.3.1.11 “State LEDs”
on page 4758.

CS31 bus connections
CS31 bus is connected with terminals 1.0 to 1.7 and 2.0 to 2.7 through the terminal unit. The
end-of-line resistor can also be activated by using external wire jumpers.
The following figure describe the different possibilities of connecting CS31 buses to the CI590-
CS31-HA:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4749

Fig. 953: Connection of CS31 bus A with CI590-CS31-HA located at the bus end
1) Connection between the bus lines is located inside the terminal unit.
2) Terminating resistors are located in the terminal unit TU551-CS31/TU552-CS31.

Fig. 954: Connection of CS31 bus A with CI590-CS31-HA located in the middle of the bus
1) Connection between the bus lines is located inside the terminal unit.
2) Terminating resistors are located in the terminal unit TU551-CS31/TU552-CS31.

Option 1

Option 2

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4750

Fig. 955: Connection of CS31 bus B with CI590-CS31-HA located at the bus end
1) Connection between the bus lines is located inside the CI590-CS31-HA module.
2) Terminating resistors are located in the CI590-CS31-HA module.

Option 3

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4751

Fig. 956: Connection of CS31 bus B with CI590-CS31-HA located in the middle of the bus
1) Connection between the bus lines is located inside the CI590-CS31-HA module.
2) Terminating resistors are located in the CI590-CS31-HA module.

Details on CS31 wiring is described seperately Ä Chapter 1.6.3.6.4.8 “CS31 bus”
on page 5347.

Internal data exchange

Parameter Without fast counter With fast counter (only with
AC500)

Digital inputs (bytes) 2 + expansion modules 5 + expansion modules

Digital outputs (bytes) 2 + expansion modules 5 + expansion modules

Counter input data (words) 0 4 (+4 AI)

Counter output data (words) 0 8 (+8 AO)

Addressing
An address must be set at every module so that the field bus communication module can
access the specific inputs and outputs.

Option 4

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4752

Only one address is used to identify the module on bus A and bus B.

CI590-CS31-HA address must be set based on the “number of CS31
modules“ calculated by Automation Builder.

The address (00d to 99d) is set with two rotary switches on the front panel of the module.

CS31 bus module reads the position of the address switches only during initi-
alization after power on, i.e. changes of the settings during operation remain
ineffective.

CI590-CS31-HA limitations
The following peculiarities concerning the CS31 bus in the AC500 must be observed when
addressing S500 I/O devices at the CS31 bus:
● One CS31 software module can occupy a maximum of 15 bytes of inputs and 15 bytes of

outputs in the digital area. This corresponds to 15 x 8 = 120 digital inputs and 120 outputs.
● One CS31 software module can allocate a maximum of eight words of inputs and eight

words of outputs in the analog area.
● A maximum of 31 of these CS31 software modules are allowed for connection to the CS31

bus.
● If a device contains more than 15 bytes or eight words of inputs or outputs, it occupies two

or more of the 31 CS31 software modules.
● The CI590-CS31 can internally manage two CS31 software modules in the digital area and

five CS31 software modules in the analog area. This corresponds to a maximum of:
– 240 digital inputs (2 x 15 bytes) and
– 240 digital outputs (2 x 15 bytes) and
– 40 analog inputs (5 x 8 words) and
– 40 analog outputs (5 x 8 words).

● Address setting is done at the CI590-CS31 using two rotary switches at the module's front
plate.

● To enable the fast counter of the CI590-CS31 the hardware address (HW_ADR) has to be
set to the module address + 70. With activated fast counter, the module addresses 0...28
(hardware address setting 70...98) are allowed.
Then, the CI590-CS31 registers contain two CS31 software modules using the module
address (hardware address 70), once in the digital area and once in the analog area.

● CS31 software module 1 in digital area:
-> registers using the module address.
CS31 software module 2 in digital area:
-> registers using module address+7 and bit "Channel ³ 7" set.
CS31 software module 1 in analog area:
-> registers using the module address.
CS31 software module 2 in analog area:
-> registers using module address and bit "Channel ³ 7" set.
CS31 software module 3 in analog area:
-> registers using the module address+1.
CS31 software module 4 in analog area:
-> registers using module address+1 and bit "Channel ³ 7" set.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4753

● The CI590-CS31 can manage a maximum of 255 parameters. This does not cause any
restrictions in all configurations with the currently available S500 I/O devices.

● The next free address for a CI590-CS31 is derived from the highest address occupied in the
digital area or the analog area of the previous CI590-CS31.

● When connecting several S500 expansion modules to a CI590-CS31 via the I/O Bus, their
inputs and outputs follow the CI590-CS31s inputs and outputs without gap. Such a cluster
can occupy up to six CS31 software modules.

● A maximum of seven S500 expansion modules (extensions) can be connected to a CI590-
CS31.

I/O configuration
The CI590-CS31-HA does not store configuration data itself. The 16 configurable digital inputs/
outputs are defined as inputs or outputs by the user program, i.e. each of the configurable
channels can be used as input or output (or re-readable output) by interrogation or allocation
with the user program.

Parametrization
Arrangement of parameter data is performed by your master configuration software Automation
Builder.

CAUTION!
Risk of configuration errors!
Contradictory parameter settings may cause configuration errors of the CI590-
CS31-HA and attached I/O modules. Please make sure, the fast counter mode
is not set to value 0 if the module is included with fast counter in PLC configura-
tion.

The parameter data directly influences module functionality.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Module
address

1 2740 1) BYTE 2740
0 x 0AB4

0 61

Ignore
module

No
Yes

0
1

BYTE No (0 x 00) - -

Parameter
length

Internal 8

7 2)

BYTE 8

7 2)

0 255

Check
supply

Off
On

0
1

BYTE On
0 x 01

- -

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4754

Name Value Internal
Value

Internal
Value, Type

Default Min. Max.

Error LED /
Failsafe
Function

On
Off by E4
Off by E3
On + Fail-
safe
Off by E4 +
Failsafe
Off by E3 +
Failsafe

- - On - -

Stop
behavior

Switch over
Stop
Both stop/
failsafe

0
1
2

BYTE 0 - -

Output
compare

No check
Binary
Analog ±
256
Analog ±
512
Binary +
Analog 256
Binary +
Analog 512

0
1
2
3
4
5

BYTE 0 - -

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 8 ms
0 x 02

- -

Fast
counter

0
:

10 3)

0
:
10

BYTE Mode 0
0 x 00

- -

Detection
short-circuit
at outputs

Off
On

0
1

BYTE On
0 x 01

- -

Behavior
outputs at
communi-
cation fault

Off
Last value
Substitute
value

0
1
2

BYTE Off
0 x 00

- -

Substitute
value

0...65535 0...0xffff WORD 0 - -

1) with CS31 and addresses less than 70 and FBP, the value is increased by 1.
2) with CS31 and addresses less than 70, without the parameter "Fast Counter".
3) Counter operating modes, see description of the fast counter.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4755

Diagnosis
Structure of CI590-CS31-HA diagnosis block

If a CI590-CS31-HA module is connected via a CS31 bus, then the field bus master receives
diagnosis information by an extended diagnosis block. The following table specifies the struc-
ture of this information. In case of an error the user can get this information by the diagnosis
system, see Ä Chapter 1.6.2.8.3.1.10.2 “Diagnosis table CI590-CS31-HA” on page 4757.

Byte
Numbe
r

Description Possible values

1 Data length (header
included)

18

2 Diagnosis byte 0 = Communication with CI590-CS31-HA OK
1 = Communication with CI590-CS31-HA failed

3 CI590-CS31-HA diag-
nosis byte, module
number

0 = CI590-CS31-HA (e.g. error at the integrated 16 DC)
1 = 1st attached S500 I/O module
2 = 2nd attached S500 I/O module
...
7 = 7th attached S500 I/O module

4 CI590-CS31-HA diag-
nosis byte, slot

According to the I/O bus specification
passed on by modules to the fieldbus master

5 CI590-CS31-HA diag-
nosis byte, channel

According to the I/O bus specification
passed on by modules to the fieldbus master

6 CI590-CS31-HA diag-
nosis byte, error code

According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description
passed on by modules to the fieldbus master

7 CI590-CS31-HA diag-
nosis byte, flags

According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error
Bit 5: 1 = diag reset
Bit 2 to bit 4: reserved
Bit 1: 1 = explicit acknowledgement
Bit 0: 1 = static error
passed on by modules to the fieldbus master
Value = 0: static message for other systems,
which do not have a coming/leaving evaluation

8ff reserved

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4756

Diagnosis table CI590-CS31-HA
In case of overload or short circuit, the outputs switch off automatically and try to switch on
again cyclically. Therefore an acknowledgement of the outputs is not necessary. The LED error
message, however, is stored.

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500 display <− Display in

Class Comp Dev Mod Ch Err PS501 PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diagnosis
block

Class Inter-
face

Devic
e

Module Chann
el

Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module Error

3 11 ADR 31 31 3 Timeout in the I/O
module

Replace I/O
module

3 11 ADR 31 31 19 Checksum error in
the I/O module

3 11 ADR 31 31 36 Internal data
exchange failure

3 11 ADR 31 31 40 Different hard-/firm-
ware versions in the
module

3 11 ADR 31 31 43 Internal error in the
module

3 11 ADR 31 31 9 Overflow diagnosis
buffer

Restart

3 11 ADR 31 31 26 Parameter error Check master

3 11 ADR 31 31 11 Process voltage too
low

Check process
voltage

3 11 ADR 1...7 31 17 No communication
to the I/O module

Replace I/O
module

3 11 ADR 31 31
31

28 Configurations from
PLC A of PLC B are
different

Check PLC
CS31 module
configuration

3 11 ADR
ADR

31 31 36 Wait Com (Only 1
bus or 1 CPU is
active/operational)

Check second
CPU or other
bus connection

4 11 ADR 31 31 45 Process voltage
ON/OFF

Process voltage
ON

4 11 ADR 31/
1...7

31 34 Wait ready (No
reply during initiali-
zation of the I/O
module)

Replace I/O
module

4 11 ADR 31/
1...7

31 32 Wrong I/O module
in the slot

Replace I/O
module or check
configuration

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4757

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500 display <− Display in

Class Comp Dev Mod Ch Err PS501 PLC
browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

FBP diagnosis
block

Class Inter-
face

Devic
e

Module Chann
el

Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 11 ADR 31 31 54 CPU conflict
● Both CPUs are

in STOP mode
● HA cycle time

too small
● Mismatch in

comparison of
analog values

● Check CPU
status

● Check HA
cycle
Ä Chapter
1.5.5.1.2.3.4
“Task config-
uration”
on page 1999

● Check wiring
between the
analog
modules and
the CPU

Channel Error CI590-CS31-HA

4 11 ADR 31/
1...7

8...23 47 Short circuit at a
digital output

Check connec-
tion

Remarks:

1) In AC500 the following interface identifier applies:
11 = COM1 (protocol CS31 bus only possible with COM1)

2) With "Device" and CS31 bus master, the hardware address of the CI590-CS31-
HA (0...69) is output.

3) With "Module" the following allocation applies:
31 = module itself, 1...7 = Expansion 1...7

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
Table 513: States of the LEDs:
LED Status Color LED = OFF LED = ON LED Flashes
PWR System

voltage
Green System firm-

ware is not
running

System firm-
ware is run-
ning

--

CS31 A CS31 commu-
nication

Green No communi-
cation at
CS31 bus A

Communica-
tion at CS31
bus A OK

10 Hz: Not bit
lifetime man-
agement

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4758

LED Status Color LED = OFF LED = ON LED Flashes
C. B CS31 commu-

nication
Green No communi-

cation at
CS31 bus B

Communica-
tion at CS31
bus B OK

10 Hz: Not bit
lifetime man-
agement

S-ERR Sum Error Red -- Internal error
detected

2 Hz: Diag-
nostic event
happened

I/O-Bus Communica-
tion via the I/O
bus

Green No I/O bus
communica-
tion

Expansion
modules con-
nected

2 Hz: Error
I/O bus

RUN A CPU active Green CPU A is not
primary

CPU A is pri-
mary

RUN B LED
off:
CI590-CS31-
HA primary
self selection.
No primary
order from
both PLC.
PLC A has
been selected
as primary.
RUN B LED
on: 2 primary
orders. PLC B
is primary.

R. B CPU active Green CPU B is not
primary

CPU B is pri-
mary

RUN A LED
off:
CI590-CS31-
HA primary
self selection.
No primary
order from
both PLC.
PLC B has
been selected
as primary.
RUN A LED
on: 2 primary
orders. PLC A
is primary.

SYNC-ERR Outputs from
CPU A and
CPU B

Red -- Configuration
conflict
detected

10 Hz: Not
parameterized
2 Hz: Switch-
over has
occured

C0...C15 Digital inputs/
outputs

Yellow Input/output =
OFF

Input/output =
ON (the input
voltage is
even dis-
played if the
supply voltage
is OFF)

--

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4759

LED Status Color LED = OFF LED = ON LED Flashes
UP Process

supply voltage
and initializa-
tion

Green Process
voltage is
missing

Process
voltage
OK and initial-
ization com-
pleted

Module was
not initialized
correctly

CH-ERR3 Red No error Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short-circuit at
an output)

CH-ERR4 Red No error Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short-circuit at
an output)

CH-ERR *) Module error Red No error or
process
voltage is
missing

Internal error --

*) All LEDs CH-ERR2 to CH-ERR4 light up together

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Rated supply voltage of the module 24 V DC (UP/ZP)

Current consumption of the module (UP) 50 mA

Process voltage UP:

 Rated value 24 V DC (for inputs and outputs)

 Max. electric charge for the supply ter-
minals

10 A

 Protection against reversed voltage Yes

 Rated protection fuse at UP 10 A fast

 Galvanic isolation CS31 bus A interface from the rest of the
module
CS31 bus B interface from the rest of the
module

 Inrush current from UP (at power-up) 0.040 A²s

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4760

Parameter Value
 Current consumption from UP at normal

operation / with outputs
0.1 A + max. 0.008 A per input + max. 0.5 A per
output

 Connections Terminals 1.8 - 4.8 for +24 V (UP) and 1.9 - 4.9
for 0 V (ZP)

Max. power dissipation within the module 6 W (outputs unloaded)

Number of configurable digital inputs/outputs 16

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Address setting

Diagnosis, refer to Ä Chapter 1.6.2.8.3.1.10
“Diagnosis” on page 4756

With two rotary switches on the front panel

Operating and error displays 27 LEDs altogether

Weight (without terminal unit) Approx. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Configurable digital inputs/outputs
Each of the configurable digital inputs/outputs is defined as input or output by the user program.
This is done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 16 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

Connection of the channels C0 to C7 Terminals 3.0 to 3.7

Connection of the channels C8 to C15 Terminals 4.0 to 4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON if the
input/output signal is high (signal 1)

Galvanic isolation Yes, between the I/O channels and the rest of
the module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4761

Digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 16 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Input current per channel:

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

Signal 0 -3 V...+5 V *)

Undefined signal > +5 V...<+15 V

Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Max. cable length:

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V if UPx = 24 V and from
-6 V to +30 V if UPx = 30 V.

Digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 16 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current:

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 10 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4762

Parameter Value
Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency:

 With resistive loads On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after approx. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length:

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization if inductive loads are switched off.

Fig. 957: Digital input/output (circuit diagram)

Technical data of the fast counter

Parameter Value
Used inputs C8 / C9

Used outputs C10

Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering data

Part no. Description Product life cycle phase *)
1SAP 221 100
R0001

CI590-CS31-HA, CS31 redundant
communication interface module,
16 DC

Active

1SAP 421 100
R0001

CI590-CS31-HA-XC, CS31 redundant
communication interface module,
16 DC, XC version

Active

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4763

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI592-CS31 - Digital and analog inputs and outputs
● 8 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC
● 4 analog inputs (resolution 12 bits plus sign)
● 2 analog outputs (resolution 12 bits plus sign)
● CS31 bus connection
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CI592

CH-ERR4

UP 24VDC 100W CS31 8DI 8DC
4AI 2AO

Input 24VDC / Output 24VDC 0.5A

4.0DC8

4.2DC10

4.4DC12

4.6DC14

4.9ZP

4.1DC9

4.3DC11

4.5DC13

4.7DC15

4.8UP

CH-ERR3

CS31

PWR

S-
ERR
I/O-
Bus

3.8UP

3.9ZP

3.3AI3+

3.4AI-

3.7AO-

3.0AI0+

3.1AI1+

3.2AI2+

3.5AO0+

3.6AO1+

CH-ERR2

2.0DI0

2.2DI2

2.4DI4

2.6DI6

2.9ZP

2.1DI1

2.3DI3

2.5DI5

2.7DI7

2.8UP

1.9ZP

1.8UP

1.7FE

1.4FE

1.0R1

1.2B1

1.3B2

1.1R2

1.5B1

1.6B2

ADDR x1

0 59

4

8

3

7

2

6

1

ADDR x10

0 59

4

8

3

7

2

6

1

1

2

3 4 5

6

7

8
9

10

11

12

13

1 I/O bus
2 4 system LEDs
3 Allocation between terminal number and signal name
4 8 yellow LEDs to display the signal states of the digital inputs DI0 to DI7
5 4 yellow LEDs to display the signal states of the analog inputs AI0 to AI3
6 2 yellow LEDs to display the signal states of the analog outputs AO0 to AO1
7 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs DC8 to

DC15
8 2 rotary switches to set the module's address (00d to 99d)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4764

9 1 green LED to display the process voltage UP
10 3 red LEDs to display errors
11 Label
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The CS31 Bus Module is used as a decentralized I/O module on CS31 field buses. The bus
connection is performed on a RS-485 serial interface, which allows the connection of this
module to all existing CS31 buses. In addition, the CS31 Bus Module provides 22 I/O channels
with the following properties:
● 8 digital inputs, 24 V DC
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● 4 analog inputs, voltage, current and RTD, resolution 12 bits plus sign
● 2 analog outputs, voltage and current, resolution 12 bits plus sign
The configuration is performed by software.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Interface RS-485, CS31 protocol

Address switches For setting the module's address (00d to 99d)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Configurable digital inputs/outputs 8 (24 V DC, 0.5 A max.)

Analog inputs 4 (configurable via software), resolution 12
bits plus sign, voltage, current and RTD input

Analog outputs 2 (configurable via software), resolution 12
bits plus sign, voltage and current output

Fast counter Integrated, many configurable operating
modes

LED displays For system displays, signal statuses, errors
and power supply

External supply voltage Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU551-CS31 or TU552-CS31 Ä Chapter
1.6.2.5.7 “TU551-CS31 and TU552-CS31
for CS31 communication interface modules”
on page 4121

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4765

Connections
The CS31 communication interface module CI592-CS31 is plugged on the CS31 terminal unit
TU551-CS31 or TU552-CS31 Ä Chapter 1.6.2.5.7 “TU551-CS31 and TU552-CS31 for CS31
communication interface modules” on page 4121. Hereby, it clicks in with two mechanical locks.
The terminal unit is mounted on a DIN rail or with 2 screws plus the additional accessory for wall
mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory” on page 5180).

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection is carried out by using the 40 terminals of the terminal unit TU551-CS31/TU552-
CS31. It is possible to replace the CI592-CS31 without loosening the wiring.
The assignment of the terminals:

Terminal Signal Description
1.0 R1 Integrated terminating resistors for CS31-Bus,

Terminal 1

1.1 R2 Integrated terminating resistors for CS31-Bus,
Terminal 2

1.2 B1 CS31-Bus, bus line 1

1.3 B2 CS31-Bus, bus line 2

1.4 FE Functional earth

1.5 B1 CS31-Bus, bus line 1

1.6 B2 CS31-Bus, bus line 2

1.7 FE Functional earth

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI0 Signal of the digital input DI0

2.1 DI1 Signal of the digital input DI1

2.2 DI2 Signal of the digital input DI2

2.3 DI3 Signal of the digital input DI3

2.4 DI4 Signal of the digital input DI4

2.5 DI5 Signal of the digital input DI5

2.6 DI6 Signal of the digital input DI6

2.7 DI7 Signal of the digital input DI7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 AI0+ Positive pole of analog input signal 0

3.1 AI1+ Positive pole of analog input signal 1

3.2 AI2+ Positive pole of analog input signal 2

3.3 AI3+ Positive pole of analog input signal 3

3.4 AI- Negative pole of analog input signals 0 to 3

3.5 AO0+ Positive pole of analog output signal 0

3.6 AO1+ Positive pole of analog output signal 1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4766

Terminal Signal Description
3.7 AO- Negative pole of analog output signals 0 and 1

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 C8 Signal of the configurable digital input/output
C8

4.1 C9 Signal of the configurable digital input/output
C9

4.2 C10 Signal of the configurable digital input/output
C10

4.3 C11 Signal of the configurable digital input/output
C11

4.4 C12 Signal of the configurable digital input/output
C12

4.5 C13 Signal of the configurable digital input/output
C13

4.6 C14 Signal of the configurable digital input/output
C14

4.7 C15 Signal of the configurable digital input/output
C15

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4767

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

R1 1.0

R2 1.1

B1 1.2

B2 1.3

FE 1.4

B1 1.5

B2 1.6

FE 1.7

DI0 2.0

DI1 2.1

DI2 2.2

DI3 2.3

DI4 2.4

DI5 2.5

DI6 2.6

DI7 2.7

+-AI0 3.0

+-AI1 3.1

+-AI2 3.2

+-AI3 3.3

AO03.5

AO13.6

AI- 3.4

AO-3.7

DC84.0

DC94.1

DC104.2

DC114.3

DC124.4

DC134.5

DC144.6

DC154.7

PTCPTC

1.8
3.82.8

4.8UP +24 V DC

1.9
3.92.9

4.9ZP 0 V

+-

+-

C
S3

1
In

te
rfa

ce

+5 V DC

0 V DC

Fig. 958: Terminal assignment of the CS31 bus module CI592-CS31

The module provides several diagnosis functions Ä Chapter 1.6.2.8.3.2.9 “Diagnosis”
on page 4785.
The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
The meaning of the LEDs is described in the section Status LEDs Ä Chapter 1.6.2.8.3.2.10
“State LEDs” on page 4788.

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI7 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4768

Fig. 959: Connection of the digital inputs

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC8 and
DC9. DC8 is connected as an input and DC9 is connected as an output. Proceed with the
configurable digital inputs/outputs DC10 to DC15 in the same way.

Fig. 960: Connection of configurable digital inputs/outputs

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4769

CAUTION!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of CI592-
CS31.
If using inputs as fast counter inputs, connect a 470 W / 1 W resistor in series to
configurable inputs/outputs DC8/DC9.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow to build the necessary voltage drop for the evaluation. For this, the module CI592-CS31
provides a constant current source which is multiplexed over the max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

Fig. 961: Connection of resistance thermometers in 2-wire configuration to the analog inputs

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
The module CI592-CS31 performs a linearization of the resistance characteristic.
Configure unused analog input channels as "unused".

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4770

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow to build the necessary voltage drop for the evaluation. For this, the module CI592-CS31
provides a constant current source which is multiplexed over the max. 4 analog input channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

Fig. 962: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 3-wire configuration, 2 channels used

Pt1000 3-wire configuration, 2 channels used

Ni1000 3-wire configuration, 2 channels used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
The module CI592-CS31 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically power supply to the analog inputs
The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the
same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4771

Fig. 963: Connection of active-type analog sensors (voltage) with galvanically power supply to
the analog inputs

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4772

Fig. 964: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

Current 0...20 mA 1 channel used

Current 4...20 mA 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4773

Fig. 965: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4774

Fig. 966: Connection of passive-type analog sensors (current) to the analog inputs

Current 4...20 mA 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt zener diode in parallel to I+ and I-.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4775

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 967: Connection of active-type analog sensors (voltage) to differential analog inputs

Voltage 0...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4776

Fig. 968: Use of analog inputs as digital inputs

Digital input 24 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

Fig. 969: Connection of analog output loads (voltage)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4777

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

Fig. 970: Connection of analog output loads (current)

Current 0...20 mA Load 0...500 W 1 channel used

Current 4...20 mA Load 0...500 W 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.3.2.8
“Parameterization” on page 4780 Ä Chapter 1.6.2.8.3.2.11 “Measuring ranges” on page 4789:
Unused analog outputs can be left open-circuited.

CS31 bus connections
The following figures show the different possibilities of connecting the CS31 buses to the
CI592-CS31:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4778

1.0
R1
1.1
R2
1.2
B1
1.3
B2
1.4
FE
1.5
B1
1.6
B2
1.7
FE
1.8
UP
1.9
ZP FE

+5 V DC

CS31-Bus end

1.0
R1
1.1
R2
1.2
B1
1.3
B2
1.4
FE
1.5
B1
1.6
B2
1.7
FE
1.8
UP
1.9
ZP

CS31-Bus in

FE

+5 V DC

CS31-Bus out

Connection of CS31-Bus - the CI592-CS31 is
located at the bus end

Connection of CS31-Bus - the CI592-CS31 is
located at the middle of the bus

Details on CS31 wiring is described seperately Ä Chapter 1.6.3.6.4.8 “CS31 bus”
on page 5347.

Internal data exchange

 without the fast counter with the fast counter (only
with AC500)

Digital inputs (bytes) 2 + communication interface
modules

4 + communication interface
modules

Digital outputs (bytes) 1 + communication interface
modules

3 + communication interface
modules

Analog inputs (words) 4 + communication interface
modules

4 + communication interface
modules

Analog outputs (words) 2 + communication interface
modules

2 + communication interface
modules

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The CI592-CS31 module does not store configuration data itself. The configurable channels are
defined as inputs or outputs by the user program, i.e. each of the configurable channels can
be used as input or output (or re-readable output) by interrogation or allocation by the user
program.

Addressing
An address must be set at every module so that the field bus communication module can
access the specific inputs and outputs.
A detailed description concerning "addressing" can be found in the chapters "Addressing" of the
CPUs and Communication Modules.
The address (00d to 99d) is set with two rotary switches on the front panel of the module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4779

The CS31 Bus Module reads the position of the address switches only during
the initialization after power ON, i.e. changes of the setting during operation
remain ineffective.

Parameterization
Parameters of the module - if used with fast counter

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 2725 WORD 2725

Parameter length Internal 22 BYTE 22

Error LED / Fail-
safe function 2)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Check supply off 0 BYTE

on 1 1

If the communication interface module is configured as a fast counter module
and '0 - no Counter' in Automation Builder is selected the channel ERR LEDs
stays on and the module does not start up. The address was adjusted with '71'.

Only the '0- no Counter' mode does not operate. If any other counter is selected
e.g. '1-1 Up counter' the module starts up and can be utilized.

Parameters of the module - if used without fast counter

Name Value Internal value Internal value,
type

Default

Module ID
1)

Internal 2726 WORD 2726

Parameter length Internal 23 BYTE 23

Error LED / Fail-
safe function
2)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4780

Name Value Internal value Internal value,
type

Default

Check supply Off 0 BYTE

On 1 1

Remarks:
1) With a faulty Module ID, the Modules reports a "parameter error" and does not perform cyclic
process data transmission
2) Error LED/Failsafe function:

Setting Description
On Error-LED lights up at errors of all error classes, Failsafe mode off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3, Failsafe
mode off

Off by E3 Error LED lights up at errors of error classes E1 and E2, Failsafe
mode off

On +Failsafe Error-LED lights up at errors of all error classes, Failsafe mode on *)

Off by E4 + Failsafe Error LED lights up at errors of error classes E1, E2 and E3, Failsafe
mode on *)

Off by E3 + Failsafe Error LED lights up at errors of error classes E1 and E2, Failsafe
mode on *)

*) The parameters behaviourAOatCommunicationFault and behaviourDOatCommunicationFault
are only analyzed if the Failsafe mode is ON.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4781

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Fast counter No counter
1 Up counter
1 Up counter with
release input
2 UpDown coun-
ters
2 UpDown (2. On
falling edges)
1 Updown
dynamic set/
rising edge
1 Updown
dynamic set/
falling edge
1 UpDown direc-
tional discrimi-
nator
Reserved
1 UpDown direc-
tional discrimi-
nator x2
1 UpDown direc-
tional discrimi-
nator x4

0
1
2
3
4
5
6
7
8
9
10

BYTE 0

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error *)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0...255 00h...FFh BYTE 0
0x0000

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4782

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

see table 1) see table 1) BYTE 0

Input 0, Check
channel

see table 2) see table 2) BYTE 0

: : : : :

: : : : :

Input 3, Channel
configuration

see table 1) see table 1) BYTE 0

Input 3, Check
channel

see table 2) see table 2) BYTE 0

Table 514: Channel configuration 1)
Internal value Operating modes of the analog inputs, individually configu-

rable
0 (default) Not used

1 0...10 V

2 Digital input

3 0...20 mA

4 4...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50...+400 °C

9 3-wire Pt100 -50...+400 °C *)

10 0...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4783

Internal value Operating modes of the analog inputs, individually configu-
rable

14 2-wire Pt100 -50...+70 °C

15 3-wire Pt100 -50...+70 °C *)

16 2-wire Pt1000 -50...+400 °C

17 3-wire Pt1000 -50...+400 °C *)

18 2-wire Ni1000 -50...+150 °C

19 3-wire Ni1000 -50...+150 °C *)

 *) In the operating modes with 3-wire configuration or with differ-
ential inputs, two adjacent analog inputs belong together (e.g. the
channels 0 and 1). In these cases, both channels are configured
in the desired operating mode. The lower address must be the
even address (channel 0). The next higher address must be the
odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 515: Channel monitoring 2)
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

see table 3) see table 3) BYTE 0

Output 0, Check
channel

see table 4) see table 4) BYTE 0

Output 0, Substi-
tute value

see table 5) see table 5) WORD 0

Output 1,
Channel configu-
ration

see table 3) see table 3) BYTE 0

Output 1, Check
channel

see table 4) see table 4) BYTE 0

Output 1, Substi-
tute value

see table 5) see table 5) WORD 0

Table 516: Channel configuration 3)
Internal value Operating modes of the analog outputs, individually configurable
0 (default) Not used

128 -10 V...+10 V

129 0...20 mA

130 4...20 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4784

Table 517: Channel monitoring 4)
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 518: Substitute value 5)
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then turn
off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module errors CI592-CS31

3 11 ADR 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 11 ADR 31 31 3 Timeout in the I/O

module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4785

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 11 ADR 31 31 40 Different hard-/firm-
ware versions in
the module

3 11 ADR 31 31 43 Internal error in the
module

3 11 ADR 31 31 36 Internal data
exchange failure

3 11 ADR 31 31 9 Overflow diagnosis
buffer

Restart

3 11 ADR 31 31 26 Parameter error Check
master

3 11 ADR 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 11 ADR 31/1...7 31 17 No communication
with I/O module

Replace
I/O
module

3 11 ADR 1...7 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 11 ADR 31 31 45 Process voltage UP
OFF

Turn
process
voltage
ON

4 11 ADR 1...7 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 11 ADR 31/1...7 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

Channel error digital CI592-CS31

4 11 ADR 31/1...7 14...21
 5)

47 Short circuit at dig-
ital output

Check
terminals

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4786

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Channel error analog CI592-CS31

4 11 ADR 31/1...7 8...11 6) 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 11 ADR 31/1...7 8...11 6) 7 Analog value
underflow at an
analog input

Check
value

4 11 ADR 31/1...7 8...11 6) 47 Short-circuit at an
analog input

Check
terminals

4 11 ADR 31/1...7 12...13
 7)

4 Analog value over-
flow at an analog
output

Check
output
value

4 11 ADR 31/1...7 12...13
 7)

7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself, 1...7 = expansion module 1...7, ADR = Hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies:
31 = Module itself; 1...7 = expansion 1...7

4) In case of module errors, with channel "31 = Module itself" is output.
5) Ch = 14...21 indicates the digital inputs/outputs DC8...DC15
6) Ch = 8...11 indicates the analog inputs AI0...AI3
7) Ch = 12...13 indicates the analog outputs AO0...AO1

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4787

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 4 system LEDs (PWR, CS31, S-ERR and I/O-Bus) show the operation state of the

module and display possible errors.
● The 26 process LEDs (UP, inputs, outputs, CH-ERR2 to CH-ERR4) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 519: State of the 4 system-LEDs:
LED State Color OFF ON Flashing
PWR/RUN System

voltage
Green Process

supply voltage
missing

Internal
supply voltage
OK, module
ready for com-
munication
with I/O Con-
troller

Start-up / pre-
paring com-
munication

CS31 CS31 commu-
nication

Green No communi-
cation at the
CS31 bus
module

Communica-
tion at the
CS31 bus OK

Diagnosis
mode

S-ERR Sum Error Red No error Internal error --

I/O-Bus Communica-
tion via the I/O
bus

Green No communi-
cation inter-
face module
connected or
communica-
tion error

Communica-
tion interface
module con-
nected and
operational

Table 520: State of the 27 process LEDs:
LED State Color OFF ON Flashing
DI0 to DI7 Digital input Yellow Input is OFF Input is ON

(the input
voltage is
even dis-
played if the
supply voltage
is OFF)

--

DC8 to DC15 Digital input/
output

Yellow Input/output is
OFF

Input/output is
ON (the input
voltage is
even dis-
played if the
supply voltage
is OFF)

--

AI0 to AI3 Analog input Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4788

LED State Color OFF ON Flashing
AO0 to AO1 Analog output Yellow Output is OFF Output is ON

(brightness
depends on
the value of
the analog
signal)

--

UP Process
supply voltage
24 V DC via
terminal

Green Process
supply voltage
is missing

Process
supply voltage
OK

--

CH-ERR2 Channel Error,
error mes-
sages in
groups (digital
inputs/outputs
combined into
the groups 1,
2, 3, 4)

Red No error or
process
supply voltage
is missing

Severe error
within the cor-
responding
group

Severe error
within the cor-
responding
group (e.g.
short-circuit at
an output)

CH-ERR3 Red

CH-ERR4 Red

CH-ERR *) Module Error Red -- Internal error --

*) All of the LEDs CH-ERR2 to CH-ERR4 light up together

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4789

Input range resistor

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 450.0 °C > 160.0 °C 32767 7FFF

Measured value
too high

450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

 800
:
701

0320
:
02BD

Normal range 400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4790

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the module

Parameter Value
Process supply voltage UP:

 Rated value 24 V DC

 Protection against reverse voltage Yes

 Rated protection fuse at UP 10 A fast

Current consumption

 From UP 0.07 A + max. 0.5 A per output

 From 24 V DC power supply at the
terminals UP/L+ and ZP/M of the CPU/
communication interface module
(depending on system architecture)

5 mA

 Inrush current from UP (power-up) 0.040 A2s

Interface RS-485

Protocol CS31

Galvanic isolation Yes, CS31 bus from the rest of the module

Max. power dissipation within the module 6 W (outputs unloaded)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4791

Parameter Value
Rotary switch 2 rotary switches on the front panel for setting

the module's address

Operating and error displays 30 LEDs (totally)

Weight (without terminal unit) Approx. 125 g

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 1.0 to 1.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable digital I/O channels can be defined as input or output by the user
program. This is done by interrogating or allocating the corresponding channel.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4792

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC8...DC15 Terminals 4.0...4.7

If the channels are used as outputs

 Channels DC8...DC15 Terminals 4.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation Yes, per module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC8 to DC15 Terminals 4.0 to 4.7

Reference potential for all inputs Terminals 1.9...4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V *)

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4793

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC8 to DC15 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the supply voltage, signal
name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

1 Digital input/output
2 For demagnetization when inductive loads are turned off

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4794

Technical data of the fast counter

Parameter Value
Used inputs DC8 / DC9

Used outputs DC10

Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for AI0+ to AI3+ Terminal 3.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9, 3.9 and 4.9 for current
measurement

Input type

 Unipolar Voltage 0 V...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V...+10 V

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA, 4
mA...20mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4795

Parameter Value
Relationship between input signal and hex
code

Tables Input Ranges Voltage, Current and Dig-
ital Input Ä Chapter 1.6.2.8.3.2.11.1 “Input
ranges voltage, current and digital input”
on page 4789 and Input Range Resistor
Ä Chapter 1.6.2.8.3.2.11.2 “Input range
resistor” on page 4790

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 3.0 to 3.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 3.5 and 3.6

Reference potential for AO0+ to AO1+ Terminal 3.7 (AO-) for voltage output
Terminals 1.9, 2.9, 3.9 and 4.9 for current
output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4796

Parameter Value
Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA

(each output can be configured individually)

Output resistance (load),
as current output

0 W...500 W

Output loadability,
as voltage output

±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on
the value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory and
resolution within the normal range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output Ranges Voltage and Current
Ä Chapter 1.6.2.8.3.2.11.3 “Output ranges
voltage and current” on page 4790

Unused outputs Are configured as "unused" (default value)
and can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 221 200 R0001 CI592-CS31,

CS31 communication interface module
with 8 DI, 8 DC, 4 AI, 2 AO

Active

1SAP 421 200 R0001 CI592-CS31-XC,
CS31 communication interface module
with 8 DI, 8 DC, 4 AI, 2 AO,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DC551-CS31 - Digital inputs and outputs
● 8 digital inputs 24 V DC, 16 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4797

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

DC551

CH-ERR4

UP 24VDC 200W CS31 8DI 16DC
Input 24 VDC

Output 24 VDC 0.5A

4.0C16

4.2C18

4.4C20

4.6C22

4.9ZP

4.1C17

4.3C19

4.5C21

4.7C23

4.8UP

CH-ERR3

CS31

PWR

S-
ERR
I/O-
Bus

CH-ERR2

2.0I0

2.2I2

2.4I4

2.6I6

2.9ZP

2.1I1

2.3I3

2.5I5

2.7I7

2.8UP

1.9ZP

1.8UP

1.7FE

1.4FE

1.0R1

1.2B1

1.3B2

1.1R2

1.5B1

1.6B2

3.8UP

3.9ZP

3.3C11

3.0C8

3.1C9

3.2C10

3.5C13

3.6C14

3.4C12

3.7C15
ADDR x1

0 59

4

8

3

7

2

6

1

ADDR x10

0 59

4

8

3

7

2

6

1

1

2

3 4

5
6

7

9

10

11

4

8

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital inputs I0 to I7
4 16 yellow LEDs to display the signal states of the digital inputs/outputs C8 to C23
5 2 rotary switches to set the module's address (00d to 99d)
6 1 green LED to display the process voltage UP
7 3 red LEDs to display errors
8 4 system LEDs
9 Label
10 Terminal unit
11 DIN rail

Sign for XC version

Intended purpose

The CS31 communication interface module DC551-CS31 can only be used
together with the AC500 CPUs and dedicated PS501 control builder.

The CS31 communication interface module is used as a decentralized I/O module on CS31
field buses. The bus connection is performed on a RS-485 serial interface, which allows the
connection of this module to all existing CS31 buses. In addition, the CS31 communication
interface module provides 24 I/O channels with the following properties:
● 8 digital inputs 24 V DC in one group (2.0...2.7)
● 16 digital inputs/outputs in one group (3.0...4.7), of which each can be used
● as an input,

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4798

● as a transistor output with short circuit and overload protection, 0.5 A rated current or
● as a re-readable output (combined input/output) with the technical data of the digital inputs

and outputs.
The inputs and output are galvanically isolated from the other electronic circuitry of the module.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Interface RS-485, CS31 protocol

Supply of the module's electronic circuitry From UP and ZP (power supply)

Supply of the electronic circuitry of the I/O
modules attached

Through the bus interface (I/O bus)

Address switches For setting the CS31 field bus address (0 to
99)

Digital inputs 8 (24 V DC)

Digital inputs/outputs 16 (24 V DC)

Fast Counter Integrated, many configurable operating
modes

LED displays For system displays, signal statuses, errors
and power supply

External supply voltage Via the terminals ZP and UP (process voltage
24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU551-CS31 or TU552-CS31 Ä Chapter
1.6.2.5.7 “TU551-CS31 and TU552-CS31
for CS31 communication interface modules”
on page 4121

Connections
The CS31 communication interface module is plugged on the CS31 terminal unit TU551 or
TU552 Ä Chapter 1.6.2.5.7 “TU551-CS31 and TU552-CS31 for CS31 communication interface
modules” on page 4121. Hereby, it clicks in with two mechanical locks. The terminal unit is
mounted on a DIN rail or with 2 screws plus the additional accessory for wall mounting (TA526
Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory” on page 5180).
The connection of the I/O channels is carried out using the 40 terminals of the CS31 terminal
unit. It is possible, to replace CS31 bus modules and I/O modules without loosening the wiring.

The terminals 1.8 to 4.8 and 1.9 to 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
● Terminals 1.8 to 4.8: process voltage UP = +24 V DC
● Terminals 1.9 to 4.9: process voltage ZP = 0 V
The assignment of the other terminals depends on the inserted CS31 bus module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4799

1 I/O bus
2 4.0 - 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Switchgear cabinet earth
4 1.0 - 1.7: Ä Chapter 1.6.2.8.3.3.4 “CS31 bus connections” on page 4801

Assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 RS-485 CS31 bus interface

2.0 to 2.7 I0 to I7 8 digital inputs

3.0 to 4.7 C8 to C23 16 digital inputs/outputs

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4800

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative pole).

The supply voltage 24 V DC for the module's electronic circuitry comes from the ZP/UP termi-
nals.
The module provides several diagnosis functions Ä Chapter 1.6.2.8.3.3.11 “Diagnosis”
on page 4807).

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

CAUTION!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC551-
CS31.
Connect a 470 W / 1 W resistor in series to inputs C16/C17 if using them as fast
counter inputs to safely avoid any influences.

CS31 bus connections
The CS31 bus is connected through the terminal unit with the terminals 1.0 to 1.7. The end-of-
line resistor can also be activated by using external wire jumpers.
The following figure shows a CS31 communication interface module at the end of the CS31 bus
(end-of-line resistor activated).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4801

FE

R1
R2
B1
B2
FE
B1
B2
FE
UP
ZP

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CS31 Bus-end

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

+5V

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CS31 Bus-endCS31 bus end

Fig. 971: CS31 bus module at the end of the CS31 Bus

The following figure shows a CS31 communciation interface module in the middle of a CS31
bus (end-of-line resistor not activated).

F E

R1
R2
B 1
B 2
F E
B 1
B 2
F E
UP
Z P

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

1 . 7

1 . 8

1 . 9

C S 31 B us-e nd

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

1 . 7

1 . 8

1 . 9

+ 5 V

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

1 . 7

1 . 8

1 . 9

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

1 . 6

1 . 7

1 . 8

1 . 9

C S 31 B us-e ndC S 31 bus out

C S 31 B us-e ndC S 31 B us-e ndC S 31 bus in

Fig. 972: CS31 communication interface module in the middle of the CS31 bus

Details on CS31 wiring is described seperately Ä Chapter 1.6.3.6.4.8 “CS31 bus”
on page 5347.

Internal data exchange

 without the fast counter with the fast counter (only
with AC500)

Digital inputs (bytes) 3 + expansion modules (see
above)

5 + expansion modules (see
above)

Digital outputs (bytes) 2 + expansion modules (see
above)

4 + expansion modules (see
above)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4802

 without the fast counter with the fast counter (only
with AC500)

Counter input data (words) 0 5 (16 DI + 4 AI)

Counter output data (words) 0 9 (16 DO + 8 AO)

Addressing
An address must be set at every module so that the field bus communication module can
access the specific inputs and outputs.
The address (00 to 99) is set with two rotary switches on the front panel of the module.
CS31 communication interface module reads the position of the address switches only during
the initialization after power ON, i.e. changes of the setting during operation remain ineffective.

DC551-CS31 limitations
Digital I/O

DC551-CS31 is able to manage up to 240 digital I/O channels. It uses 2 digital bus addresses in
this case.

The physical address to identify the I/O is address n (switch address) for the 1st module
(120 I/O)

address n + 7 + bit 8/15 = 1 for the 2nd
module

To be compatible with old CPU and EC500 using this physical address, to address I/O in user
program: Use only 6 I/O modules with 32 DI.

Analog I/O
Analog limitation to 40 AI/AO with 4 bus addresses used.

Case of DC551-CS31 with fast counter
An additional bus address is used for "double word" values of the fast counter.
The maximum configuration is shown in the following table.

DC551-
CS31
8DI + 16
DC
+ counter

16 AI 16 AI DC532 DC532 DC532 DC532 DC532

The following configuration uses 7 bus addresses (the fast counter needs 16 DI + 16 DO + 4 AI
+ 8 AO):
2 bus addresses for digital I/O (24 + 16 + 5x32)DI + (16 + 16 + 5x16)DO = 200 DI (>120) + 112
DO
5 bus addresses for analog I/O (4 + 2x16)AI + 8 AO = 36 AI + 8 AO

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4803

If the communication interface module is configured as a fast counter module
and '0 - no Counter' in Automation Builder is selected the channel ERR LEDs
stays on and the module does not start up. The address was adjusted with '71'.

Only the '0- no Counter' mode does not operate. If any other counter is selected
e.g. '1-1 Up counter' the module starts up and can be utilized.

Small overview of the addressing possibilities
Configuration example with 32 analog inputs with or without 32 analog outputs (fast counter not
used) = 5 bus addresses by the communication interface module

DC551
8 DI

16 DC
16 AI 16 AI 16 AO 16 AOn

DC551
8 DI

16 DC
16 AI 16 AI 16 AO 16 AOmini n+2

DC551
8 DI

16 DC
16 AI 16 AI 16 AO 16 AO

DC551
8 DI

16 DC
16 AI 16 AI 16 AO 16 AO

DC551
8 DI

16 DC
16 AI 16 AI 16 AO 16 AO

DC551
8 DI

16 DC
16 AI 16 AI 16 AO 16 AO

Switch

mini n+4

mini n+6

mini n+8

mini n+10

address

If there are fewer analog outputs than analog inputs, no additional address is necessary.
Change the type from "analog in" to "analog I/O".
● 30 bus addresses used, 1 bus address free
● 192 analog inputs (+ 192 analog outputs)
● 48DI / 96DC (144 DI / 96 DO for CS31 and user program)
● Switch address incremented to avoid control overlap.
In CPU table module switch address n will be seen as (idem for AC500 or old CPU):
● Address n, type digital I/O, 8 DI/16 DC
● Address n, type analog I or I/O, 8 AI (+ 8 AO)
● Address n + bit 8/15=1, type analog I or I/O, 8 AI (+ 8 AO)
● Address n+1, type analog I or I/O, 8 AI (+ 8 AO)
● Address n+1 + bit 8/15=1, type analog I or I/O, 8 AI (+ 8 AO)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4804

I/O configuration
The DC551-CS31 module does not store configuration data itself. The 16 configurable channels
are defined as inputs or outputs by the user program, i.e. each of the configurable channels
can be used as input or output (or re-readable output) by interrogation or allocation by the user
program.

Parameterization

No. Name Value Internal
value

Internal
value,
type

Default Min. Max.

1 Module ID Internal 2715
1)

Word 2715
0x0a9b

0 65535

2 Ignore
module

No
Yes

0
1

Byte No
0x00

14 Parameter
length

Internal 8

(7 4)

Byte 8

(7 4)

0 255

16 Check
supply

Off
On

0
1

Byte On
0x01

17 Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

18 Fast
counter

0
:

10 3)

0
:
10

Byte Mode 0
0x00

Nr.+1 Detection
short-cir-
cuit at out-
puts

Off
On

0
1

Byte On
0x01

Nr.+1 Behaviour
outputs at
communi-
cation
errors

Off
Last value
Substitute
value

0
1
2

Byte Off
0x00

Nr.+1 Substitute
value out-
puts
Bit 15 =
Output 15
Bit 0 =
Output 0

0...65535 0...0xffff Word 0

1) With CS31 and addresses less than 70, the value is increased by 1
3) Counter operating modes Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351, description
of the fast counter Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351
4) With CS31 and addresses less than 70, without the parameter Fast Counter

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4805

Structure of the diagnosis block of the DC551-CS31
If a DC551-CS31 module is connected via a CS31 bus, then the field bus master receives
diagnosis information by an extended diagnosis block. The following table shows the structure
of this diagnosis block:

Byte
number

Description Possible values

1 Data length (header included) 18

2 Diagnosis byte 0 = Communication with DC551-CS31
OK
1 = Communication with DC551-CS31
failed

3 DC551-CS31 diagnosis byte, module
number

0 = DC551 (e.g. error at the integrated
8DI/16DC)
1 = 1st attached S500 I/O module
...
7 = 7th attached S500 I/O module

4 DC551-CS31 diagnosis byte, slot According to the I/O bus specification
passed on by modules to the fieldbus
master

5 DC551-CS31 diagnosis byte,
channel

According to the I/O bus specification
passed on by modules to the fieldbus
master

6 DC551-CS31 diagnosis byte, error
code

According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description
passed on by modules to the fieldbus
master

7 DC551-CS31 diagnosis byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error
Bit 5: 1 = Diag reset
Bit 2 to bit 4: reserved
Bit 1: 1 = explicit acknowledgement
Bit 0: 1 = static error
Passed on by modules to the fieldbus
master
Value = 0: static message for other
systems, which do not have a coming/
leaving evaluation

8ff Reserved

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4806

Diagnosis
In case of overload or short-circuit, the outputs switch off automatically and try to switch on
again cyclically. Therefore an acknowledgement of the outputs is not necessary. The LED error
message, however, is stored.

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error

3 11 ADR 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 11 ADR 31 31 3 Timeout in the I/O

module

3 11 ADR 31 31 40 Different hard-/firm-
ware versions in
the module

3 11 ADR 31 31 43 Internal error in the
module

3 11 ADR 31 31 36 Internal data
exchange failure

3 11 ADR 31 31 9 Overflow diagnosis
buffer

New
start

3 11 ADR 31 31 26 Parameter error Check
master

3 11 ADR 31 31 11 Process voltage too
low

Check
process
voltage

3 11 ADR 1...7 31 17 No communication
to the I/O module

Replace
I/O
module

4 11 ADR 31 31 45 Process voltage
ON/OFF

Process
voltage
ON

4 11 ADR 31/1..7 31 34 No reply at initial-
ization of the I/O
module

Replace
I/O
module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4807

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

FBP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 11 ADR 31/1.7 31 32 Wrong I/O module
in the slot

Replace
I/O
module
or check
configu-
ration

Channel error DC551-CS31

4 11 ADR 31/1..7 8..23 47 Short-circuit at a
digital output

Check
connec-
tion

Remarks:

1) In AC500 the following interface identifier applies:
11 = COM1 (protocol CS31 bus only possible with COM1)

2) With "Device" and CS31 bus master, the hardware address of the DC551-CS31
(0...69) is output.

3) With "Module" the following allocation applies:
31 = Module itself, 1...7 = Expansion 1...7

4) In case of module errors, with channel "31 = Module itself" is output.

Status LEDs
The LEDs are on the front panels of the modules. There are two different groups:
● The 4 system LEDs (PWR, S-ERR, CS31 and I/O-Bus) show the operating status of the

module and indicate possible errors.
● The 28 process LEDs (UP, inputs, outputs, CH-ERR2 to CH-ERR4) display the supply

voltage and signal statuses of the inputs and outputs and indicate possible errors.
All of the S500 modules have LEDs to display operating statuses and errors.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4808

LED Status Color LED = OFF LED = ON LED flashes
PWR System

voltage
Green Missing

internal
system
voltage or
field bus
supply is
missing

Internal
system
voltage is OK

--

CS31 CS31 commu-
nication

Green No communi-
cation at the
CS31 bus
module

Communica-
tion at the
CS31 bus OK

Diagnosis
mode

S-ERR Sum Error Red No error or
system
voltage is
missing

Internal error
(storing can
be parameter-
ized)

--

I/O-Bus Communica-
tion via the I/O
bus

Green No I/O
modules con-
nected or data
error

I/O modules
connected

Error I/O bus

Reserved Not defined - - - -

I0...I7 Digital inputs Yellow Input = OFF Input = ON
(the input
voltage is
even dis-
played if the
supply voltage
is OFF)

-

C8...C23 Digital inputs/
outputs

Yellow Input/output =
OFF

Input/output =
ON (the input
voltage is
even dis-
played if the
supply voltage
is OFF)

-

UP Process
supply voltage
and initializa-
tion

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel Error,
error mes-
sages in
groups (digital
inputs/outputs
combined into
the groups 2
to 4)

Red No error Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short-circuit at
an output)

CH-ERR3 Red

CH-ERR4 Red

CH-ERR *) Module Error Red No error or
process
voltage is
missing

Internal error --

*) All LEDs CH-ERR2 to CH-ERR4 light up together

The status of the LEDs concerning the CS31 communication interface module in connection
with the I/O modules is described in detail in the S500 system data.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4809

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Rated supply voltage of the module 24 V DC (UP/ZP)

Current consumption of the module (UP) 15 mA

Process voltage UP

 Rated value 24 V DC (for inputs and outputs)

 Max. electric charge for the supply termi-
nals

10 A

 Protection against reversed voltage Yes

 Rated protection fuse at UP 10 A fast

 Galvanic isolation CS31 bus interface from the rest of the module

 Inrush current from UP (at power-up) 0.040 A²s

 Current consumption from UP at normal
operation / with outputs

0.1 A + max. 0.008 A per input + max. 0.5 A per
output

 Connections Terminals 1.8 - 4.8 for +24 V (UP) and 1.9 - 4.9
for 0 V (ZP)

Max. power dissipation within the module 6 W (outputs unloaded)

Number of digital inputs 8

Number of configurable digital inputs/outputs 16

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Address setting With 2 rotary switches on the front panel

Diagnosis Diagnosis and Displays Ä Chapter
1.6.2.8.3.3.11 “Diagnosis” on page 4807

Operating and error displays 32 LEDs altogether

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40°C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4810

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels I0 to I7 2.0 to 2.7

Terminals of the channels C8 to C23 3.0 to 4.7

Reference potential for all inputs Terminals 1.9...4.9 (negative pole of the
process supply voltage, signal name ZP)

Galvanic isolation From the CS31 bus

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1-> 0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4811

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 16 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

If the channels are used as inputs

 Channels I8...I23 Terminals 3.0...4.7

If the channels are used as outputs

 Channels Q8...Q23 Terminals 3.0...4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the CS31 bus

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 16 transistor outputs

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the
process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8...4.8 (positive pole
of the process supply voltage, signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 10 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive loads On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4812

Parameter Value
 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

1 Digital input/output
2 For demagnitization when inductive loads are switched off

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 16 digital inputs

Reference potential for all inputs Terminals 1.9...4.9 (negative pole of the
process supply voltage, signal name ZP)

Input current, per channel Technical Data of the Digital Inputs

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V *)

 Undefined signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 within -3 V...+5 V *)

Ripple with signal 1 within +15 V...+30 V

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4813

Technical data of the fast counter

Parameter Value
Used inputs C16 / C17

Used outputs C18

Counting frequency Max. 50 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering data

Part no. Description Product life cycle phase *)
1SAP 220 500 R0001 DC551-CS31,

CS31 communication interface module, 8 DI
and 16 DC

Active

1SAP 420 500 R0001 DC551-CS31-XC,
CS31 communication interface module, 8 DI
and 16 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.8.4 EtherCAT
CI511-ETHCAT

● 4 analog inputs (resolution 12 bits plus sign)
● 2 analog outputs (resolution 12 bits plus sign)
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● Cam switch functionality (see also Extended Cam Switch Library)
● Extended Cam switch functionality *) (see also Extended Cam Switch Library)
● Module-wise galvanically isolated - Expandability with up to 10 S500 I/O Modules *)
*) Applicable for device index C0 and above.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4814

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

ETH1

ETH2

CI511

CH−ERR1 CH−ERR3CH−ERR2

1.4

1.0 AI0+

1.2 AI2+

1.7 AO−

1.9 ZP

1.3 AI3+

1.1 AI1+

AI −

1.5 AO0+

1.6 AO1+

1.8 UP

3.0 DO0

3.2 DO2

3.4 DO4

3.6 DO6

3.9 ZP

3.1 DO1

3.3 DO3

3.5 DO5

3.7 DO7

3.8 UP32.8 UP

2.9 ZP

2.0 DI0

2.2 DI2

2.3 DI3

2.5 DI5

2.6 DI6

2.4 DI4

2.7 DI7

2.1 DI1

UP 24VDC 100W 4AI 2AO 8DI 8DO
Analog Input / Output

Digital Input / Output 24VDC 0.5A

S−ERR

I/O−Bus

STA2 ETH

STA1 ETH

PWR/RUN

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5
ADDR

x10H

x01H

ADDR

12 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, NET, DC, S-ERR, I/O-Bus
9 2 rotary switches (reserved for future extensions)
10 Label
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Intended purpose
The EtherCAT communication interface module CI511-ETHCAT is used as decentralized I/O
module in EtherCAT networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 22 I/O
channels with the following properties:
● 4 analog inputs (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4815

● 8 digital outputs 24 V DC in 1 group (3.0...3.7)
● Cam switch functionality
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Functionality

Parameter Value
Interface Ethernet

Protocol EtherCAT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches Not used; reserved for future extensions

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 1.6.2.5.1 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 4095

Connections
The Ethernet communication interface module CI511-ETHCAT is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH. Properly seat the module and press until it locks in place. The
terminal unit is mounted on a DIN rail or with 2 screws plus the additional accessory for wall
mounting (TA526).

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4816

Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

The assignment of the other terminals:

Terminal Signal Description
1.0 to 1.3 AI0 to AI3 Positive pole of the 4 analog

inputs

1.4 AI- Negative pole of the analog
inputs

1.5 to 1.6 AO0 to AO1 Positive pole of the 2 analog
outputs

1.7 AO- Negative pole of the analog
outputs

2.0 to 2.7 DI0 to DI7 8 digital inputs

3.0 to 3.7 DO0 to DO7 8 digital outputs

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

CAUTION!
There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

CAUTION!
Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4817

For the open-circuit detection (cut wire), each channel is pulled up to "plus" by
a high-resistance resistor. If nothing is connected, the maximum voltage will be
read in then.

Analog signals are always laid in shielded cables. The cable shields are grounded at both ends
of the cables. In order to avoid unacceptable potential differences between different parts of the
installation, low resistance equipotential bonding conductors must be laid.
For simple applications (low disturbances, no high requirement on precision), the shielding can
also be omitted.
The following figures show the connection of the Ethernet communication interface module
CI511-ETHCAT.

+
−

+
−

+
−

+
−

+
−

+
−

PTC

AI 0+

AI 1+

AI 2+

AI 3+
AI −

AGND

1.0

1.1

1.2

1.3
1.4

PTC

1.5

1.6
1.7

AO 0+

AO 1+
AO −

3.0 DO 0

3.1 DO 1

3.2 DO 2

3.3 DO 3

3.4 DO 4

3.5 DO 5

3.6 DO 6

3.7 DO 7

DI 0 2.0

DI 1 2.1

DI 2 2.2

DI 3 2.3

DI 4 2.4

DI 5 2.5

DI 6 2.6

DI 7 2.7

1.8

1.9

UP +24 V

ZP 0 V

2.8

2.9 3.9

3.8
UP3 +24 V

ZP 0 V

1

2

3 4

Fig. 973: Connection of the communication interface module CI511-ETHCAT

1 4 analog inputs, configurable for 0...10 V, -10...+10 V, 0/4...20 mA, Pt100/Pt1000, Ni1000
and digital signals

2 2 analog outputs, configurable for -10...+10 V, 0/4...20 mA
3 8 digital inputs 24 V DC
4 8 digital outputs 24 V DC, 0.5 A max.

In case of voltage feedback, 2 cases are distinguished:

1. The outputs are already active

The output group will be switched off. A diagnosis message will appear. After 5
seconds, the module tries automatic reactivation.

2. The outputs are not active

Only the output with voltage feedback will not be set to active. A diagnosis
message will appear.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4818

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

CAUTION!
 The process supply voltage must be included within the grounding concept of
the plant (e. g. grounding of the negative pole).

The module provide several diagnosis functions Ä Chapter 1.6.2.8.4.1.8 “Diagnosis”
on page 4835.
The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.
The function of the LEDs is described in the section State LEDs Ä Chapter 1.6.2.8.4.1.8
“Diagnosis” on page 4835.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI511-ETHCAT provides a constant current source which is multiplexed over the max. 4 analog
input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration.

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

Fig. 974: Connection of resistance thermometers in 2-wire configuration

1 Pt100 (2-wire), Pt1000 (2-wire), Ni1000 (2-wire); 1 analog sensor requires 1 channel

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4819

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.
The module CI511-ETHCAT performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI511-ETHCAT provides a constant current source which is multiplexed over the max. 4 analog
input channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration.

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

2

3

1

Fig. 975: Connection of resistance thermometers in 3-wire configuration

1 Pt100 (3-wire), Pt1000 (3-wire), Ni1000 (3-wire); 1 analog sensor requires 2 channels
2 Twisted pair within the cable
3 Return line: The return line is only needed once if measuring points are adjacent to each

other. This saves wiring costs.
With 3-wire configuration, two adjacent analog channels belong together (e. g. the channels 0
and 1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4820

The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary, to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.
The module CI511-ETHCAT performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

+

–

0...10 V
–10 V...+10 V

AGND

2

1

3

Fig. 976: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply

1 1 analog sensor requires 1 channel
2 By connecting to AI-, the galvanically isolated voltage source of the sensor is referred to ZP
3 Galvanically isolated power supply for the analog sensor

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4821

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply
The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply.

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–1

2
+

–

0...20 mA
4...20 mA

Fig. 977: Connection of active-type analog sensors (current) with galvanically isolated power
supply

1 1 analog sensor requires 1 channel
2 Galvanically isolated power supply for the analog sensor

Current 0...20 mA 1 channel used

Current 4...20 mA 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.
Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
The following figure shows the connection of active-type sensors (voltage) with no galvanically
isolated power supply.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4822

0...10 V

AGND

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

UP (remote)

ZP (remote)

1

2

3

Fig. 978: Connection of active-type sensors (voltage) with no galvanically isolated power supply

1 1 analog sensor requires 1 channel
2 Power supply not galvanically isolated
3 The connection between the negative pole of the sensor and ZP has to be performed
4 Long cable

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V *) 1 channel used

*) if the sensor can provide this signal range
The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of passive-type analog sensors (Current)
The following figure shows the connection of passive-type analog sensors (current).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4823

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

4...20 mA

–

+

Fig. 979: Connection of passive-type analog sensors (current)

1 1 analog sensor requires 1 channel

Current 4...20 mA 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA
for more than 1 second into an analog input, this input is switched off by the
module (input protection). In such cases, it is recommended, to protect the
analog input by a 10-volt zener diode (in parallel to I+ and I-). But, in general,
it is a better solution to prefer sensors with fast initialization or without current
peaks higher than 25 mA.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4824

Important: The ground potential at the sensors must not have a too big potential difference with
respect to ZP (max. ±1 V within the full signal range). Otherwise problems can occur concerning
the common-mode input voltages of the involved analog inputs
The following figure shows the connection of active-type analog sensors (voltage) to differential
inputs.

+

–

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

3

1
2

0...10 V
–10 V...+10 V

4

Fig. 980: Connection of active-type analog sensors (voltage) to differential inputs

1 1 analog sensor requires 2 channels
2 Galvanically isolated power supply for the analog sensor
3 Grounding at the sensor
4 0 V...10 V / -10 V...+10 V connected to differential inputs

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital input. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the use of analog inputs as digital inputs.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4825

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

Fig. 981: Use of analog inputs as digital inputs

1 1 digital signal requires 1 channel

Digital input 24 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.

Connection of analog output loads (Voltage, current)
The following figure shows the connection of analog output loads (voltage, current).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4826

1.8

1.9

UP

ZP

UP

ZP

1.5

1.7

1.6
AO1+

AO0+

AO–

–10 V...+10 V

0...20 mA
4...20 mA

1

1.9
ZP

1.7
AO–

PTC 2

Fig. 982: Connection of analog output loads (voltage, current)

1 1 analog load requires 1 channel

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

Current 0...20 mA Load 0...500 Ω 1 channel used

Current 4...20 mA Load 0...500 Ω 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 1.6.2.8.4.1.7
“Parameterization” on page 4829 Ä Chapter 1.6.2.8.4.1.10 “Measuring ranges” on page 4838.
Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment. The pin assignment is used for the EtherCAT master (communica-
tion module CM5xy-ETHCAT) as well.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4827

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 1

Analog inputs (words) 4

Analog outputs (words) 2

Addressing
The Ethernet bus module CI511-ETHCAT does not consider the position of the rotary switches
at the front side of the module. The function of the rotary switches is reserved for future
expansions.

Pin assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4828

I/O configuration

In order to be able to use the CI51X-ETHCAT with device index C0 or above
properly, please download the corresponding device description (.xml-)files
from http://www.abb.com/plc and install them to the device repository of your
Automation Builder. This will allow you to use up to 10 Expandable S500 I/O
modules as well as the Extended Cam Switch Library with your CI51X-ETHCAT
device.

The CI511-ETHCAT does not store configuration data itself.
The analog I/O channels are configured via software.

Parameterization
Module parameter

Name Value Internal value Internal value,
type

Default

Module ID Internal 48155 WORD 48155

Parameter length Internal 28 BYTE 28

Error LED / Fail-
safe function 1)

On
Off by E4
Off by E3 On +
failsafe Off by E4
+ failsafe Off by
E3 + failsafe

0
1
3
16
17
19

BYTE 0

Check Supply Off
On

0
1

BYTE 1

Table 521: Error LED / Failsafe function 1)
Setting Description
On Error LED lights up at errors of all error classes, Failsafemode off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3, Failsa-
femode off

Off by E3 Error LED lights up at errors of error classes E1 and E2 auf, Failsa-
femode off

On + failsafe Error LED lights up at errors of all error classes, Failsafemode on *)

Off by E4 + failsafe Error LED lights up at errors of error classes E1, E2 and E3, Failsa-
femode on *)

Off by E3 + failsafe Error LED lights up at errors of error classes E1 and E2, Failsafe-
mode on *)

*) The parameters behaviourAOatCommunicationFault and behaviourDOatCommunicationFault
are only analyzed if the Failsafe-mode is ON.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4829

http://www.abb.com/plc

Group parameters of the cam switch

Name Value Internal value Internal value,
type

Default

numOfUsed-
Cams 1)

0 ... 32
128...160

0 ... 32
218...160

WORD 0

resolution 2) 0 ... 2
-1

0 ... 2
-1

DWORD 36000

zeroShift 3) 0 ... 2
-1

0 ... 2
-1

DWORD 0

EncoderBitReso-
lution 4)

8 ... 32 8 ... 32 WORD 18

Reserve - - WORD -

1) The parameter numOfUsedCams defines the interrupt cycle time (Therefore, it takes effect to
the accuracy of the track) and the behavior of the module if the DC information is lost.

Parameter setting
for numOfUsed-
Cams

Number of cams
used

Interrupt cycle time Behavior if DC infor-
mation is lost

0 0 50 µs Module changes
to "safe-operational"
state; the outputs are
activated trough the
user program

1...8 1...8 80 µs

9...16 9...16 100 µs

17...32 17...32 200 µs

128 0 50 µs Module keeps in
"operational" state;
the outputs are acti-
vated trough the user
program

129...136 1...8 80 µs Module keeps in
"operational" state;
the cam switch out-
puts are activated
according to an inter-
polated timing infor-
mation

137...144 9...16 100 µs

145...170 17...32 200 µs

2) The parameter resolution defines the angle resolution of the track. The value gives the
number of increments related to 360°; e. g. the value 36,000 corresponds to an angle resolution
of 0.01°.
3) The parameter zeroShift defines the zero shift. With it the encoder can be adjusted to the
mounting position. The value of zeroShift is set in encoder-increments. It is not assigned to the
parameter resolution of the cam switch.
4) The parameter EncoderBitResolution defines the resolution of the used encoder (in bits), e. g.
with the default setting 18 bits the encoder has 196,608 divisions.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4830

Channel parameters for the cam switch (max. 32x)

Name Value Internal value Internal value,
type

Default

camToTrack0 *) Digital Output
0 ... 7, none

0 ... 7, FF BYTE FF

: : : : :

camToTrack31 Digital Output
0 .. .7, none

0 ... 7, FF BYTE FF

*) The value of the parameter camToTrack# defines which DO (digital output) is assigned to the
track. camToTrack0 = 3 for example means that track 0 is assigned to the digital output 3. If the
value FFh is set to a track, no digital output is assigned to it.

Name Value Referred FB from
extended Cam Switch
Library 2)

Internal
value

Internal
value, type

Default

cam-
Type[0]
1)
...

Common
Pulsed
Timed
Comfort
Cam shift
Binary shift
Multiturn cam
Time timed
Reference
Multiturn timed

MCX_CamSwitchSimple_c
MCX_CamSwitchSimple_dc
MCX_PulseSwitch_dc
MCX_CamSwitchTimed_dc
MCX_CamSwitchCom-
fort_dc
MCX_CamShift_dc
MCX_BinaryShift_dc
MCX_CamSwitchMulti_dc
MCX_SwitchTimeTimed_dc
MCX_BinaryReference_dc
MCX_CamSwitchMulti-
Timed_dc

0

1
2
3
4
5
6
7
8
9

BYTE 0

1) camType additionally to camToTrack identifies the type of each cam switch and enables the
use of a specific function block from the Extended Cam Switch Library.
2) camType parameters and the Extended Camswitch Library Ä Chapter 1.5.4.6 “Extended
camswitch library” on page 862 are only available for CI511-ETHCAT and CI512-ETHCAT with
device index C0 and above.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4831

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard 0 BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, channel
configuration

see 1) see 1) BYTE 0

Input 0, check
channel

see 2) see 2) BYTE 0

: : : : :

: : : : :

Input 3, channel
configuration

see 1) see 1) BYTE 0

Input 3, channel
configuration

see 2) see 2) BYTE 0

Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0...10 V

2 Digital input

3 0...20 mA

4 4...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50...+400 °C

9 3-wire Pt100 -50...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50...+70 °C

15 3-wire Pt100 -50...+70 °C *)

Channel config-
uration 1)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4832

Internal value Operating modes of the analog inputs, individually configurable
16 2-wire Pt1000 -50...+400 °C

17 3-wire Pt1000 -50...+400 °C *)

18 2-wire Ni1000 -50...+150 °C

19 3-wire Ni1000 -50...+150 °C *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode.
The lower address must be the even address (channel 0). The next higher
address must be the odd address (channel 1). The converted analog value is
available at the higher address (channel 1).

Table 522: Channel monitoring 2)
Internal Value Check channel
0 Plausib(ility), cut wire, short circuit

3 not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
channel configu-
ration

see 3) see 3) BYTE 0

Output 0, check
channel

see 4) see 4) BYTE 0

Output 0, substi-
tute value

see 5) see 5) WORD 0

Output 1,
channel configu-
ration

see 3) see 3) BYTE 0

Output 1, check
channel

see 4) see 4) BYTE 0

Output 1, substi-
tute value

see 5) see 5) WORD 0

Table 523: Channel configuration 3)
Internal value Operating modes of the analog outputs, individually configu-

rable
0 Not used (default)

128 -10 V...+10 V

129 0...20 mA

130 4...20 mA

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4833

Table 524: Channel monitoring 4)
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 525: Substitute value 5)
Intended behavior of
output channel when the
control system stops

Required setting of the module
parameter "Behaviour of outputs
in case of a communication
error"

Required setting of
the channel parameter
"Substitute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s Last value 5 s 0

Last value for 10 s Last value 10 s 0

Substitute value infinite Substitute value Depending on configura-
tion

Substitute value for 5 s Substitute value 5 s Depending on configura-
tion

Substitute value for 10 s Substitute value 10 s Depending on configura-
tion

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default

Input delay 0.01 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.01 ms
0x00

Detect short circuits at
outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at comm.
error *)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute 5 sec
Substitute 10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value at
output

0 ... 255 00h ... FFh BYTE 0
0x0000

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4834

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

ETHCAT
Diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 20 Slave-to-Slave mal-
function

Check
configu-
ration

3 - 31 31 31 41 Distributed Clock
malfunction

Check
configu-
ration

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage
UP

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4835

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

ETHCAT
Diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs
4)

Check
terminals

Channel error digital

4 - 31 2 0..7 46 Voltage feedback
on deactivated dig-
ital output
5)

Check
terminals

4 - 31 2 0..7 47 Short circuit at dig-
ital output

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0..1 48 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI511-ETHCAT diagnosis block.

2) With "Device" the following allocation applies:
31 = Module itself or ADR = Hardware address (e. g. of the DC551)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4836

3) With "Module" the following allocation applies dependent of the master:
31 = Module itself (Module error) or Module type (1=AI, 2=DO, 3=AO; channel
error)

4) Diagnosis message appears for the whole output group and not per channel.
The message occurs if the output channel is already active.

5) Diagnosis message appears per channel. The message occurs if the output
channel is not active.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, NET, DC, S-ERR and I/O-Bus) show the operation state of the

module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 526: States of the 5 system LEDs
LED Color Off On Flashing 1x Flash 2x Flash
PWR/RUN Green Error in the

internal
supply
voltage or
process
voltage
missing

Internal
supply
voltage OK

Module is
not config-
ured

-- --

Yellow -- -- -- -- --

NET Green Init Operational Pre-opera-
tional

Safe-opera-
tional

--

Red No error PDI
Watchdog
Timeout

Invalid Con-
figuration

Unsolicited
State
Change

Application
time out

DC *) Green Distributed
Clock not
active

Distributed
Clock active

-- -- --

Red -- -- -- -- --

S-ERR Red No error Internal
error

-- -- --

I/O-Bus Green No commu-
nication
interface
modules
connected
or commu-
nication
error

--- --- -- --

ETH1 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4837

LED Color Off On Flashing 1x Flash 2x Flash
ETH2 Green No

EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

*) The state of this LED is only significant if the cam switch functionality is enabled

Table 527: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 toDO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4838

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 450.0 °C > 160.0 °C 32767 7FFF

Measured value
too high

450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

 800
:
701

0320
:
02BD

Normal range 400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4839

Range Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Bus connection 2 x RJ45

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4840

Parameter Value
Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability (S500 I/O modules) Up to 10 S500 I/O modules (Index C0 and
above), not available (Index below C0)

Indicators 5 LEDs for state indication

Adjusting elements 2 rotary switches (used for future topology
extensions)

Quantity of input/output data CI512-ETHCAT: 10 bytes input and 14 bytes
output
CI511-ETHCAT: 18 bytes input and 18 bytes
output

Limit of data for input and output 144 byte

Acyclic services SDO (1500 bytes max.)
Emergency ECAT_SLV_DIAG
Ä Chapter 1.5.4.14.1.5 “ECAT_SLV_DIAG”
on page 1308

Protective functions (according to
CODESYS)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation to network

Technical data of the module

Parameter Value
Process supply voltage UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4841

Parameter Value
Number of analog inputs 4

Number of analog outputs 2

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Diagnosis See Diagnosis and Displays Ä Chapter
1.6.2.8.4.1.8 “Diagnosis” on page 4835

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (Negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4842

Parameter Value
Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (Negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4843

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 983: Digital input/output (circuit diagram)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 1.0 to 1.3

Reference potential for AI0+ to AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminals 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V...+10 V

Galvanic isolation Against Ethernet network

Configurability 0 V...10 V, -10 V...+10 V, 0/4 mA...20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0...10 V: 12 bits
Range -10...+10 V: 12 bits + sign
Range 0...20 mA: 12 bits
Range 4...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4844

Parameter Value
Relationship between input signal and hex
code

Tables Input Ranges Voltage, Current and Dig-
ital Input Ä Chapter 1.6.2.8.4.1.10.1 “Input
ranges voltage, current and digital input”
on page 4838 and Input range resistance tem-
perature detector Ä Chapter 1.6.2.8.4.1.10.2
“Input ranges resistance temperature detector”
on page 4839

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 1.0 to 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

Reference potential for AO0+ to AO1+ Terminal 1.7 (AO-) for voltage outputTerminals
1.9, 2.9 and 3.9 (ZP) for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against Ethernet network

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4845

Parameter Value
Output resistance (load),
as current output

0 ... 500 W

Output loadability,
as voltage output

± 10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output Ranges Voltage and Current
Ä Chapter 1.6.2.8.4.1.10.3 “Output ranges
voltage and current” on page 4840

Unused outputs Are configured as unused (default value) and
can be left open-circuited

Ordering data

Part no. Description Product life cycle phase *)
1SAP 220 900 R0001 CI511-ETHCAT, EtherCAT communi-

cation interface module, 8 DI, 8 DO,
4 AI and 2 AO

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI512-ETHCAT
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Cam switch functionality (see also Extended Cam Switch Library)
● Extended Cam switch functionality *)

(see also Extended Cam Switch Library)
● Module-wise galvanically isolated
● Expandability with up to 10 S500 I/O modules *)
*) Applicable for device index C0 and above.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4846

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

ETH1

ETH2

CI512

CH−ERR1 CH−ERR3CH−ERR2

3.0 DO8

3.2 DO10

3.4 DO12

3.6 DO14

3.9 ZP

3.1 DO9

3.3 DO11

3.5 DO13

3.7 DO15

3.8 UP32.8 UP

2.9 ZP

2.0 DI8

2.2 DI10

2.3 DI11

2.5 DI13

2.6 DI14

2.4 DI12

2.7 DI15

2.1 DI9

UP 24VDC 200W 8DC 8DI 8DO
Digital Input 24VDC

Digital Output 24VDC 0.5A

S−ERR

I/O−Bus

STA2 ETH

STA1 ETH

PWR/RUN

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5
ADDR

x10H

x01H

ADDR

1.0 DC0

1.2 DC2

1.9 ZP

1.3 DC3

1.1 DC1

1.5 DC5

1.6 DC6

1.8 UP

1.7 DC7

1.4 DC4

12 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, NET, DC, S-ERR, I/O-Bus
9 2 rotary switches (reserved for future extensions)
10 Label
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Intended purpose
The EtherCAT communication interface module CI512-ETHCAT is used as decentralized I/O
module in EtherCAT networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)
● Cam switch functionality

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4847

The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the configurable digital inputs/outputs is
performed by software.

Functionality

Parameter Value
Interface Ethernet

Protocol EtherCAT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches Not used; reserved for future extensions

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 1.6.2.5.1 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 4095

Connections
The Ethernet communication interface module CI512-ETHCAT is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH. Properly seat the module and press until it locks in place. The
terminal unit is mounted on a DIN rail or with 2 screws plus the additional accessory for wall
mounting (TA526).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4848

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

The assignment of the other terminals:

Terminals Signal Description
1.0 to 1.7 DC0 to DC7 8 digital inputs/outputs (con-

figurable via software)

2.0 to 2.7 DI0 to DI7 8 digital inputs (delay time
configurable via software)

3.0 to 3.7 DO0 to DO7 8 digital outputs

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figures show the connection of the Ethernet communication interface module
CI512-ETHCAT.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4849

3.0 DO 8

3.1 DO 9

3.2 DO 10

3.3 DO 11

3.4 DO 12

3.5 DO 13

3.6 DO 14

3.7 DO 15

DI 8 2.0

DI 9 2.1

DI 10 2.2

DI 11 2.3

DI 12 2.4

DI 13 2.5

DI 14 2.6

DI 15 2.7

1.8

1.9

UP +24 V

ZP 0 V

2.8

2.9 3.9

3.8
UP3 +24 V

ZP 0 V

2 3

DC 0 1.0

DC 1 1.1

DC 2 1.2

DC 3 1.3

DC 4 1.4

DC 5 1.5

DC 6 1.6

DC 7 1.7

1

Fig. 984: Connection of the communication interface module CI512-ETHCAT

1 8 digital configurable inputs/outputs 24 V DC
2 8 digital inputs 24 V DC
3 8 digital outputs 24 V DC

In case of voltage feedback, 2 cases are distinguished:

1. The outputs are already active

The output group will be switched off. A diagnosis message will appear. After 5
seconds, the module tries automatic reactivation.

2. The outputs are not active

Only the output with voltage feedback will not be set to active. A diagnosis
message will appear.

CAUTION!
The process supply voltage must be included within the grounding concept of
the plant (e. g. grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 1.6.2.8.4.2.9 “Diagnosis”
on page 4855.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment. The pin assignment is used for the EtherCAT master (communica-
tion module CM5xy-ETHCAT) as well.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4850

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 1

Configurable digital inputs/outputs (bytes) 1 + 1

Addressing
The Ethernet communication interface module CI512-ETHCAT does not consider the position
of the rotary switches at the front side of the module. The function of the rotary switches is
reserved for future expansions.

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4851

I/O configuration

In order to be able to use the CI51X-ETHCAT with device index C0 or above
properly, please download the corresponding device description (.xml-)files
from http://www.abb.com/plc and install them to the device repository of your
Automation Builder. This will allow you to use up to 10 Expandable S500 I/O
modules as well as the Extended Cam Switch Library with your CI51X-ETHCAT
device.

The CI512-ETHCAT does not store configuration data itself.
The analog I/O channels are configured via software.

Parameterization
Module parameter

Name Value Internal value Internal value,
type

Default

Module ID Internal 49435 WORD 49435

Parameter length Internal 10 BYTE 10

Error LED / Fail-
safe function 1)

On
Off by E4
Off by E3 On +
failsafe Off by E4
+ failsafe Off by
E3 + failsafe

0
1
3
16
17
19

BYTE 0

Check Supply Off
On

0
1

BYTE 1

Table 528: Error LED / Failsafe function 1)
Setting Description
On Error LED lights up at errors of all error classes, Failsafe mode off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3, Failsafe
mode off

Off by E3 Error LED lights up at errors of error classes E1 and E2 auf, Failsafe
mode off

On + failsafe Error LED lights up at errors of all error classes, Failsafe mode on *)

Off by E4 + failsafe Error LED lights up at errors of error classes E1, E2 and E3, Failsafe
mode on *)

Off by E3 + failsafe Error LED lights up at errors of error classes E1 and E2, Failsafe mode
on *)

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4852

http://www.abb.com/plc

Group parameters of the cam switch

Name Value Internal value Internal value,
type

Default

numOfUsed-
Cams 1)

0 ... 32
128...160

0 ... 32
218...160

WORD 0

resolution 2) 0 ... 2
-1

0 ... 2
-1

DWORD 36000

zeroShift 3) 0 ... 2
-1

0 ... 2
-1

DWORD 0

EncoderBitReso-
lution 4)

8 ... 32 8 ... 32 WORD 18

Reserve - - WORD -

Remarks:
1) The parameter numOfUsedCams defines the interrupt cycle time (Therefore, it takes effect to
the accuracy of the track) and the behavior of the module if the DC information is lost.

Parameter setting
for numOfUsed-
Cams

Number of cams
used

Interrupt cycle time Behavior if DC infor-
mation is lost

0 0 50 µs Module changes
to "safe-operational"
state; the outputs are
activated trough the
user program

1...8 1...8 80 µs

9...16 9...16 100 µs

17...32 17...32 200 µs

128 0 50 µs Module keeps in
"operational" state;
the outputs are acti-
vated trough the user
program

129...136 1...8 80 µs Module keeps in
"operational" state;
the cam switch out-
puts are activated
according to an inter-
polated timing infor-
mation

137...144 9...16 100 µs

145...170 17...32 200 µs

2) The parameter resolution defines the angle resolution of the track. The value gives the
number of increments related to 360°; e. g. the value 36,000 corresponds to an angle resolution
of 0.01°.
3) The parameter zeroShift defines the zero shift. With it the encoder can be adjusted to the
mounting position. The value of zeroShift is set in encoder-increments. It is not assigned to the
parameter resolution of the cam switch.
4) The parameter EncoderBitResolution defines the resolution of the used encoder (in bits), e. g.
with the default setting 18 bits the encoder has 196,608 divisions.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4853

Channel parameters for the cam switch (max. 32x)

Name Value Internal value Internal value,
type

Default

camToTrack0 1) Digital Output
0 ... 15, none

0 ... 15, FF BYTE FF

: : : : :

camToTrack31 Digital Output
0 ... 15, none

0 ... 15, FF BYTE FF

1) The value of the parameter camToTrack# defines which DO (digital output) is assigned to the
track. camToTrack0 = 3 for example means that track 0 is assigned to the digital output 3. If the
value FFh is set to a track, no digital output is assigned to it.

Name Value Referred FB from extended
Cam Switch Library 2)

Internal
value

Internal
value,
type

Default

cam-
Type[0]
1)
...

Common
Pulsed
Timed
Comfort
Cam shift
Binary shift
Multiturn cam
Time timed
Reference
Multiturn
timed

MCX_CamSwitchSimple_c
MCX_CamSwitchSimple_dc
MCX_PulseSwitch_dc
MCX_CamSwitchTimed_dc
MCX_CamSwitchComfort_dc
MCX_CamShift_dc
MCX_BinaryShift_dc
MCX_CamSwitchMulti_dc
MCX_SwitchTimeTimed_dc
MCX_BinaryReference_dc
MCX_CamSwitchMulti-
Timed_dc

0

1
2
3
4
5
6
7
8
9

BYTE 0

1) camType additionally to camToTrack identifies the type of each cam switch and enables the
use of a specific function block from the Extended Cam Switch Library.
2) camType parameters and the Extended Camswitch Library Ä Chapter 1.5.4.6 “Extended
camswitch library” on page 862 are only available for CI511-ETHCAT and CI512-ETHCAT with
device index C0 and above.

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.01 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.01 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4854

Name Value Internal value Internal value,
type

Default

Behaviour DO at
comm. error *)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute values
DO

0 ... 65535 0000h ... FFFFh WORD 0
0x0000

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identifier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

ETHCAT
Diagnosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3)

Module error

3 - 31 31 31 43 Internal error in the
module

Replace
I/O module

3 - 31 31 31 20 Slave-to-Slave malfunc-
tion

Check
configura-
tion

3 - 31 31 31 41 Distributed Clock mal-
function

Check
configura-
tion

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP too
low

Check
process
supply
voltage

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4855

E1..E4 d1 d2 d3 d4 Identifier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6..7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0..5

ETHCAT
Diagnosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 45 Process voltage UP3
too low

Check
process
voltage

4 - 31 31 31 34 No response during ini-
tialization of the I/O
module

Replace
I/O module

4 - 31 31 31 46 Voltage feedback on
activated digital outputs
4)

Check ter-
minals

Channel error digital

4 - 31 2 0..15 46 Voltage feedback on
deactivated digital
output
5)

Check ter-
minals

4 - 31 4 0..7 47 Short circuit at digital
output

Check ter-
minals

4 - 31 2 8..15 47 Short circuit at digital
output

Check ter-
minals

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module; 14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI512-ETHCAT diagnosis block.

2) With "Device" the following allocation applies:
31 = Module itself or ADR = Hardware address (e. g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:
31 = Module itself (Module error) or Module type (1=AI, 2=DO, 3=AO; channel
error)

4) Diagnosis message appears for the whole output group and not per channel.
The message occurs if the output channel is already active.

5 Diagnosis message appears per channel. The message occurs if the output
channel is not active.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4856

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, NET, DC, S-ERR and I/O-Bus) show the operation state of the

module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 529: States of the 5 system LEDs
LED Color Off On Flashing 1x flash 2x flash
PWR/RUN Green Error in the

internal
supply
voltage or
process
voltage
missing

Internal
supply
voltage OK

Module is
not config-
ured

-- --

Yellow -- -- -- -- --

NET Green Init Operational Pre-opera-
tional

Safe-opera-
tional

--

Red No error PDI
Watchdog
Timeout

Invalid Con-
figuration

Unsolicited
State
Change

Application
time out

DC *) Green Distributed
Clock not
active

Distributed
Clock active

-- -- --

Red -- -- -- -- --

S-ERR Red No error Internal
error

-- -- --

I/O-Bus Green No commu-
nication
interface
modules
connected
or commu-
nication
error

--- --- -- --

ETH1 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

ETH2 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

*) The state of this LED is only significant if the camswitch functionality is enabled

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4857

Table 530: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 to DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Bus connection 2 x RJ45

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability (S500 I/O modules) Up to 10 S500 I/O modules (Index C0 and
above), not available (Index below C0)

Indicators 5 LEDs for state indication

Adjusting elements 2 rotary switches (used for future topology
extensions)

Quantity of input/output data CI512-ETHCAT: 10 bytes input and 14 bytes
output
CI511-ETHCAT: 18 bytes input and 18 bytes
output

Limit of data for input and output 144 byte

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4858

Parameter Value
Acyclic services SDO (1500 bytes max.)

Emergency ECAT_SLV_DIAG
Ä Chapter 1.5.4.14.1.5 “ECAT_SLV_DIAG”
on page 1308

Protective functions (according to
CODESYS)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation to network

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Diagnosis See Diagnosis and Displays Ä Chapter
1.6.2.8.4.2.9 “Diagnosis” on page 4855

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4859

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4860

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 985: Digital input/output (circuit diagram)

1 Digital Output
2 Varistors for demagnetization when inductive loads are turned off
Figure:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4861

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0...DC07 Terminals 1.0...1.7

If the channels are used as outputs

 Channels DC0...DC07 Terminals 1.0...1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V *)

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4862

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4863

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 986: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Ordering data

Part no. Description Product life cycle phase *)
1SAP 221 000 R0001 CI512-ETHCAT, EtherCAT communi-

cation interface module, 8 DI, 8 DO
and 8 DC

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.8.5 Modbus
CI521-MODTCP

● 4 analog inputs (resolution 12 bits plus sign)
● 2 analog outputs (resolution 12 bits plus sign)
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4864

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the IP address
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4865

Intended purpose
The Modbus TCP communication interface module CI521-MODTCP is used as decentralized
I/O module in Modbus TCP networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit. The communication interface module contains 22
I/O channels with the following properties:
● 4 analog inputs (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches for setting the last BYTE of the IP (00h to FFh)

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Required terminal unit TU507 or TU508 Ä Chapter 1.6.2.5.1 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 4095

Connections
The Ethernet communication interface module CI521-MODTCP is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH Ä Chapter 1.6.2.5.1 “TU507-ETH and TU508-ETH for Ethernet
communication interface modules” on page 4095. Properly seat the module and press until it
locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4866

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Conditions for undisturbed operating with older I/O expansion modules
All I/O expansion modules that are attached to the CI52x-MODTCP must be
powered up together with the CI52x-MODTCP if the firmware version of these
I/O expansion modules is V1.9 or lower.

The firmware version is related to the index. The index is printed on the module type label on
the right side.
Modules as of index listed in the following table can be powered up independently.

S500 I/O module type First index with firmware version above 1.9
AI523 D0

AI523-XC D0

AI531 A3

AI531-XC A0

AO523 D0

AO523-XC D0

AX521 D0

AX521-XC D0

AX522 D0

AX522-XC D0

CD522 A2

CD522-XC A0

DA501 A2

DA501-XC A0

DA502 A1

DA502-XC A1

DC522 D0

DC522-XC D0

DC523 D0

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4867

S500 I/O module type First index with firmware version above 1.9
DC523-XC D0

DC532 D0

DC532-XC D0

DI524 D0

DI524-XC D0

DO524 A2

DO524-XC A2

DX522 D0

DX522-XC D0

DX531 D0

AC522 D0

PD501 D0

Do not connect any voltages externally to digital outputs!

Reason: Externally voltages at an output or several outputs may cause that
other outputs are supplied through that voltage instead of voltage UP3 (reverse
voltage). This ist not intended usage.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0..DO7.

The assignment of the other terminals:

Terminal Signal Description
1.0 AI0+ Positive pole of analog input signal 0

1.1 AI1+ Positive pole of analog input signal 1

1.2 AI2+ Positive pole of analog input signal 2

1.3 AI3+ Positive pole of analog input signal 3

1.4 AI- Negative pole of analog input signals 0 to 3

1.5 AO0+ Positive pole of analog output signal 0

1.6 AO1+ Positive pole of analog output signal 1

1.7 AI- Negative pole of analog output signals 0 and 1

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI0 Signal of the digital input DI0

2.1 DI1 Signal of the digital input DI1

2.2 DI2 Signal of the digital input DI2

2.3 DI3 Signal of the digital input DI3

2.4 DI4 Signal of the digital input DI4

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4868

Terminal Signal Description
2.5 DI5 Signal of the digital input DI5

2.6 DI6 Signal of the digital input DI6

2.7 DI7 Signal of the digital input DI7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO0 Signal of the digital output DO0

3.1 DO1 Signal of the digital output DO1

3.2 DO2 Signal of the digital output DO2

3.3 DO3 Signal of the digital output DO3

3.4 DO4 Signal of the digital output DO4

3.5 DO5 Signal of the digital output DO5

3.6 DO6 Signal of the digital output DO6

3.7 DO7 Signal of the digital output DO7

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4869

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figures show the connection of the Ethernet communication interface module
CI521-MODTCP.

Fig. 987: Connection of the communication interface module CI521-MODTCP

Further information is provided in the System Technology chapter Ä Chapter 1.6.4.3.1 “Modbus
communication interface module” on page 5651.

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI7 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4870

Fig. 988: Connection of the digital inputs to the module CI521-MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.5.1.8.2 “State LEDs”
on page 4895.

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 - DO7 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4871

Fig. 989: Connection of configurable digital inputs/outputs to the module CI521-MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.5.1.8.2 “State LEDs”
on page 4895.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module CI521-
MODTCP provides a constant current source which is multiplexed over the max. 4 analog input
channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4872

Fig. 990: Connection of resistance thermometers in 2-wire configuration to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 and Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896:

Pt100 -50 °C...+70 °C 2-wire configuration, 1
channel used

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.
The module CI521-MODTCP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module CI521-
MODTCP provides a constant current source which is multiplexed over the max. 4 analog input
channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4873

Fig. 991: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 and Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896:

Pt100 -50 °C...+70 °C 3-wire configuration, 2 chan-
nels used

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.
The module CI521-MODTCP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4874

Connection of active-type analog sensors (voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

Fig. 992: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896:

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4875

Fig. 993: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896:

Current 0...20 mA 1 channel used

Current 4...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.
Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4...20 mA,
these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4876

Fig. 994: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ± 1 V).
Make sure that the potential difference never exceeds ± 1 V (also not with long
cable lengths).

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 and Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896.

Voltage 0...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4877

Fig. 995: Connection of passive-type analog sensors (current) to the analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 and Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896:

Current 4...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt zener diode in parallel to AIx+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4...20 mA,
these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4878

With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 996: Connection of active-type analog sensors (voltage) to differential analog inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 and Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896:

Voltage 0...10 V With differential inputs, 2
channels used

Voltage -10 V...+10 V With differential inputs, 2
channels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4879

To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs Ä Chapter 1.6.2.8.5.1.10.5
“Technical data of the analog inputs if used as digital inputs” on page 4902. The inputs are not
galvanically isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

Fig. 997: Use of analog inputs as digital inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 and Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896 :

Digital input 24 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4880

Fig. 998: Connection of analog output loads (voltage)

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 and Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4881

Fig. 999: Connection of analog output loads (current)

The following measuring ranges can be configured Ä Chapter 1.6.2.8.5.1.7 “Parameterization”
on page 4884 and Ä Chapter 1.6.2.8.5.1.9 “Measuring ranges” on page 4896:

Current 0...20 mA Load 0...500 W 1 channel used

Current 4...20 mA Load 0...500 W 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs” on page 4890.
Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

Pin assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4882

Interface PIN Signal Description
8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

The IP address of the CI521-MODTCP Module can be set with the "ABB IP Configuration
Tool". Ä Chapter 1.6.5.2.2.2.2 “Configuration of the IP settings with the IP configuration tool”
on page 5816

If the last byte of the IP is set to 0, the address switch will be used instead.
Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other stored
settings. This is a backup so the module can always get a valid IP address and can be
configured by the “ABB IP Configuration Tool”.
Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.
The factory setting for the IP is 192.168.0.x (last byte is address switch).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4883

I/O configuration
The CI521-MODTCP stores configuration parameters (IP address configuration, module param-
eters).
The analog/digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.2.8.5.1.7 “Parame-
terization” on page 4884.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7400 WORD 7000

Ignore Module Internal 0 BYTE 0

Parameter length Internal 63 BYTE 63

Error LED / Fail-
safe function see
table Error LED /
Failsafe function
Ä Table 531 “Err
or LED / Failsafe
function”
on page 4885

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4884

Name Value Internal value Internal value,
type

Default

Timeout for Bus
supervision

No supervision
10 ms timeout
20 ms timeout

0
1
2

BYTE No supervision

IO Mapping
Structure 3)

Fixed Mapping
Dynamic Map-
ping

0
1

BYTE 0

Reserved Internal 0 ARRAY[0..2] OF
BYTE

0,0,0

Check supply off
on

0
1

BYTE 1

Fast counter 0
:

10 3)

0
:
10

BYTE 0

1) With a faulty ID, the Modules reports a "parameter error" and does not perform cyclic
process data transmission.
2) Counter operating modes, see description of the Ä Chapter 1.6.4.1.10 “Fast counters”
on page 5498.
3) Fixed Mapping means each module has its own Modbus registers for data transfer inde-
pendent of the IO bus constellation. For details see Ä Chapter 1.6.4.3.1.2 “Modbus TCP
registers” on page 5652.
Dynamic mapping means the structure of the IO Date is dependent on the I/O bus constella-
tion. Each I/O bus expansion module starts directly after the module before on the next Word
adress.
4) If none of the parameters is set all masters / clients in the network have read and write rights
on the CI52x-MODTCP device and its connected expansion modules.
If at least one parameter is set only the configured masters / clients have write rights on
the CI52x-MODTCP device, all other masters / clients still have read access to the CI52x-
MODTCP device.

Table 531: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameters Behaviour AO at comm. error and Behaviour DO at comm. error are only
analyzed if the Failsafe-mode is ON.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4885

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 532 “Ch
annel configura-
tion”
on page 4887

Table Operating
modes of the
analog inputs
Ä Table 532 “Ch
annel configura-
tion”
on page 4887

BYTE 0

Input 0, Check
channel

Table Channel
montoring
Ä Table 533 “Ch
annel monitoring”
on page 4887

Table Channel
montoring
Ä Table 533 “Ch
annel monitoring”
on page 4887

BYTE 0

: : : : :

: : : : :

Input 3, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 532 “Ch
annel configura-
tion”
on page 4887

Table Operating
modes of the
analog inputs
Ä Table 532 “Ch
annel configura-
tion”
on page 4887

BYTE 0

Input 3, Check
channel

Table Channel
montoring
Ä Table 533 “Ch
annel monitoring”
on page 4887

Table Channel
montoring
Ä Table 533 “Ch
annel monitoring”
on page 4887

BYTE 0

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4886

Table 532: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0...10 V

2 Digital input

3 0...20 mA

4 4...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50...+400 °C

9 3-wire Pt100 -50...+400 °C *)

10 0...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50...+70 °C

15 3-wire Pt100 -50...+70 °C *)

16 2-wire Pt1000 -50...+400 °C

17 3-wire Pt1000 -50...+400 °C *)

18 2-wire Ni1000 -50...+150 °C

19 3-wire Ni1000 -50...+150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 533: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Table 534 “Ch
annel configura-
tion”
on page 4888

Table Operating
modes of the
analog outputs
Ä Table 534 “Ch
annel configura-
tion”
on page 4888

BYTE 0

Output 0, Check
channel

Table Channel
monitoring
Ä Table 535 “Ch
annel monitoring”
on page 4888

Table Channel
monitoring
Ä Table 535 “Ch
annel monitoring”
on page 4888

BYTE 0

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4887

Name Value Internal value Internal value,
type

Default

Output 0, Substi-
tute value

Table Substitute
value
Ä Table 536 “Su
bstitute value”
on page 4888

Table Substitute
value
Ä Table 536 “Su
bstitute value”
on page 4888

WORD 0

Output 1,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Table 534 “Ch
annel configura-
tion”
on page 4888

Table Operating
modes of the
analog outputs
Ä Table 534 “Ch
annel configura-
tion”
on page 4888

BYTE 0

Output 1, Check
channel

Table Channel
monitoring
Ä Table 535 “Ch
annel monitoring”
on page 4888

Table Channel
monitoring
Ä Table 535 “Ch
annel monitoring”
on page 4888

BYTE 0

Output 1, Substi-
tute value

Table Substitute
value
Ä Table 536 “Su
bstitute value”
on page 4888

Table Substitute
value
Ä Table 536 “Su
bstitute value”
on page 4888

WORD 0

Table 534: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V...+10 V

129 0...20 mA

130 4...20 mA

Table 535: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 536: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4888

Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal
value

Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value 5 sec
Substitute value 10
sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 255 00h ... FFh BYTE 0
0x0000

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE On
0x01

1) The parameters Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.
2) The state "externally voltage detected" appears, if the output of a channel DC0..DC7 should
be switched on while an externally voltage is connected Ä Chapter 1.6.2.8.5.1.3 “Connec-
tions” on page 4866. In this case the start up is disabled, as long as the externally voltage is
connected. The monitoring of this state and the resulting diagnosis message can be disabled
by setting the parameters to "OFF".

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4889

Diagnosis and state LEDs
Structure of the diagnosis block

Byte Number Description Possible Values
1 Diagnosis Byte, slot number 31 = CI521-MODTCP (e. g. error at inte-

grated 8 DI / 8 DO)
1 = 1st connected S500 I/O Module
...
10 = 10th connected S500 I/O Module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

For diagnosis firmware version ³ 3.2.6 is required.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4890

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 No process voltage
UP

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4891

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs DO0...DO7
on UP3 4)

Check
terminals

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4892

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 No process voltage
UP3

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Externally voltage
detected at digital
output DO0...DO7
6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4893

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 3 0..1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI521-MODTCP diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself; 1..10 =
Expansion module

3) With "Module" the following allocation applies:
31 = Module itself
Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals
DO0...DO7 cause that other digital outputs are supplied through that voltage
Ä Chapter 1.6.2.8.5.1.3 “Connections” on page 4866. All outputs of the
apply digital output groups will be turned off for 5 seconds. The diagnosis
message appears for the whole output group.

5) The voltage on digital outputs DO0...DO7 has overrun the process supply
voltage UP3 Ä Chapter 1.6.2.8.5.1.3 “Connections” on page 4866. Diag-
nosis message appears for the whole module.

6) This message appears, if the output of a channel DO0...DO7 should be
switched on while an externally voltage is connected. In this case the start
up is disabled, as long as the externally voltage is connected. Otherwise this
could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for
100ms. Then a new start up will be executed. This diagnosis message
appears per channel.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4894

8) In case of an I/O module doesn’t support hot swapping, do not perform any
hot swap operations (also not on any other terminal units (slots)) as modules
may be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 537: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with IO Controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Device config-
ured, acyclic data
exchange run-
ning

Red --- Communication
error (timeout)
appeared

IP address error

STA2 ETH
(System LED
"SF")

Green Device has valid
parameters

Device is running
parameterization
sequenze

Device has no
parameters

Red --- --- Device has
invalid parame-
ters

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4895

Table 538: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 toDO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

Normal
range or
measured
value too
low

-0.0004
-1.7593

-0.0004
:
:
:
-10,0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4896

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value

 Decimal Hex.
Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 /
Pt1000
-50...70 °C

Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value

 Decimal Hex.
Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too
high

 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

80.0 °C
:
70.1 °C

 800
:
701

0320
:
02BD

Normal range 70.0 °C
:
0.1 °C

400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

Normal range -0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4897

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4898

Parameter Value
 Connections Terminals 1.8 and 2.8 for +24 V (UP)

Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Ethernet 10/100 base-TX, internal switch, 2 x RJ45
socket

Setting of the IP address With ABB IP config tool and 2 rotary switches at
the front side of the module

Diagnose See Diagnosis and Displays Ä Chapter
1.6.2.8.5.1.8 “Diagnosis and state LEDs”
on page 4890

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40 °C per group)

Extended ambient temperature (XC version) > 60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4899

Parameter Value
 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4900

Parameter Value
Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 1000: Digital input/output (circuit diagram)

1 Digital Output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 1.0 to1.3

Reference potential for AI0+ to AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 ... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 ... +10 V

Galvanic isolation Against Ethernet network

Configurability 0...10 V, -10...+10 V, 0/4...20 mA, Pt100/1000,
Ni1000 (each input can be configured individu-
ally)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4901

Parameter Value
Resolution Range 0...10 V: 12 bits

Range -10...+10 V: 12 bits + sign
Range 0...20 mA: 12 bits
Range 4...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Tables Input ranges voltage, current and digital
input Ä Chapter 1.6.2.8.5.1.9.1 “Input ranges
voltage, current and digital input” on page 4896
Input range resistance temperature detector
Ä Chapter 1.6.2.8.5.1.9.2 “Input ranges resist-
ance temperature detector” on page 4897

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 1.0 to 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4902

Parameter Value
Reference potential for AO0+ to AO1+ Terminal 1.7 (AO-) for voltage outputTerminal

1.9, 2.9 and 3.9 for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10...+10 V, 0...20 mA, 4...20 mA (each output
can be configured individually)

Output resistance (load), as current output 0...500 W

Output loadability, as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output ranges voltage and current
Ä Chapter 1.6.2.8.5.1.9.3 “Output ranges
voltage and current” on page 4898

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI0), 2.1 (DI1)

Used outputs Terminal 3.0 (DO0)

Counting frequency Depending on operation mode:

Mode 1 - 6: max. 200 kHz

Mode 7: max. 50 kHz

Mode 9: max. 35 kHz

Mode 10: max. 20 kHz

Detailed description See Ä Chapter 1.6.4.1.10 “Fast counters”
on page 5498

Operating modes See Ä Chapter 1.6.4.4.2.2 “Operating modes”
on page 5716

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4903

Ordering data

Part no. Description Product life cycle phase *)
1SAP 222 100 R0001 CI521-MODTCP, Modbus TCP com-

munication interface module, 4 AI,
2 AO, 8 DI and 8 DO

Active

1SAP 422 100 R0001 CI521-MODTCP-XC, Modbus TCP
communication interface module, 4 AI,
2 AO, 8 DI and 8 DO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI522-MODTCP
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4904

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 - DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 - DO15)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the IP address
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4905

Intended purpose
Modbus TCP communication interface module CI522-MODTCP is used as decentralized I/O
module in Modbus TCP networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the configurable digital inputs/outputs is
performed by software.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Interface Ethernet

Protocol Modbus TCP

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches for setting the last BYTE of the IP ADDRESS
(00h to FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Required terminal unit TU507 or TU508 Ä Chapter 1.6.2.5.1 “TU507-
ETH and TU508-ETH for Ethernet communi-
cation interface modules” on page 4095

Connections
The Ethernet bus module CI522-MODTCP is plugged on the I/O terminal unit TU507-ETH
Ä Chapter 1.6.2.5.1 “TU507-ETH and TU508-ETH for Ethernet communication interface
modules” on page 4095 or TU508-ETH Ä Chapter 1.6.2.5.1 “TU507-ETH and TU508-ETH for
Ethernet communication interface modules” on page 4095. Properly seat the module and press
until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4906

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Conditions for undisturbed operating with older I/O expansion modules
All I/O expansion modules that are attached to the CI52x-MODTCP must be
powered up together with the CI52x-MODTCP if the firmware version of these
I/O expansion modules is V1.9 or lower.

The firmware version is related to the index. The index is printed on the module type label on
the right side.
Modules as of index listed in the following table can be powered up independently.

S500 I/O module type First index with firmware version above 1.9
AI523 D0

AI523-XC D0

AI531 A3

AI531-XC A0

AO523 D0

AO523-XC D0

AX521 D0

AX521-XC D0

AX522 D0

AX522-XC D0

CD522 A2

CD522-XC A0

DA501 A2

DA501-XC A0

DA502 A1

DA502-XC A1

DC522 D0

DC522-XC D0

DC523 D0

DC523-XC D0

DC532 D0

DC532-XC D0

DI524 D0

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4907

S500 I/O module type First index with firmware version above 1.9
DI524-XC D0

DO524 A2

DO524-XC A2

DX522 D0

DX522-XC D0

DX531 D0

AC522 D0

PD501 D0

Do not connect any voltages externally to digital outputs!

This ist not intended usage.

Reason: Externally voltages at one or more terminals DC0...DC7 or
DO8...DO15 may cause that other digital outputs are supplied through that
voltage instead of voltage UP3 (reverse voltage).

This is also possible, if DC channels are used as inputs. For this, the source for
the input signals should be the impressed UP3 of the device.

This limitation does not apply for the input channels DI0..DI7.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO8...DO15 and DC0...DC7.

The assignment of the other terminals:

Terminal Signal Description
1.0 DC0 Signal of the configurable digital input/output

DC0

1.1 DC1 Signal of the configurable digital input/output
DC1

1.2 DC2 Signal of the configurable digital input/output
DC2

1.3 DC3 Signal of the configurable digital input/output
DC3

1.4 DC4 Signal of the configurable digital input/output
DC4

1.5 DC5 Signal of the configurable digital input/output
DC5

1.6 DC6 Signal of the configurable digital input/output
DC6

1.7 DC7 Signal of the configurable digital input/output
DC7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4908

Terminal Signal Description
2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO8 Signal of the digital output DO8

3.1 DO9 Signal of the digital output DO9

3.2 DO10 Signal of the digital output DO10

3.3 DO11 Signal of the digital output DO11

3.4 DO12 Signal of the digital output DO12

3.5 DO13 Signal of the digital output DO13

3.6 DO14 Signal of the digital output DO14

3.7 DO15 Signal of the digital output DO15

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4909

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the Ethernet bus module CI522-MODTCP.

Fig. 1001: Connection of the communication interface module CI522-MODTCP

Further information is provided in the System Technology chapter Ä Chapter 1.6.4.3.1 “Modbus
communication interface module” on page 5651.

Connection of the digital inputs
The following figure shows the connection of the digital input DI8. Proceed with the digital inputs
DI9 to DI15 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4910

Fig. 1002: Connection of the digital inputs to the module CI522-MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.5.2.8.1 “State LEDs”
on page 4922.

Connection of the digital outputs
The following figure shows the connection of the digital output DO8. Proceed with the digital
outputs DO9 - DO15 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4911

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.5.2.8.1 “State LEDs”
on page 4922.

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 to DC7 in the same way.

CAUTION!
If a DC channel is used as input, the source for the input signals should
be the impressed UP3 of the device Ä Chapter 1.6.2.8.5.2.3 “Connections”
on page 4906.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4912

1.0
DC0
1.1
DC1
1.2
DC2
1.3
DC3
1.4
DC4
1.5
DC5
1.6
DC6
1.7
DC7
1.8
UP
1.9
ZP

-
+

24 V DC

2.4

DI14

2.0
DI8
2.1
DI9
2.2
DI10
2.3
DI11

DI12
2.5
DI13
2.6

2.7
DI15
2.8
UP
2.9
ZP

3.0
DO8
3.1
DO9
3.2
DO10
3.3
DO11
3.4
DO12
3.5
DO13
3.6
DO14
3.7
DO15
3.8
UP3
3.9
ZP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.5.2.8.1 “State LEDs”
on page 4922.

Assignment of the Ethernet ports
The terminal unit for the Communication Interface Module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4913

Internal data exchange

Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing
The IP address of the CI5221-MODTCP Module can be set with the “ABB IP Configuration
Tool”. Ä Chapter 1.6.5.2.2.2.2 “Configuration of the IP settings with the IP configuration tool”
on page 5816.
If the last byte of the IP is set to 0, the address switch will be used instead.
Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other stored
settings. This is a backup so the module can always get a valid IP address and can be
configured by the “ABB IP Configuration Tool”.
Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.
The factory setting for the IP is 192.168.0.x (last byte is address switch).

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI522-MODTCP stores configuration parameters (IP address configuration, module param-
eters).
The digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.2.8.5.2.7 “Parame-
terization” on page 4914.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7405 WORD 7405

Ignore Module Internal 0 BYTE 0

Parameter length Internal 47 BYTE 47

Error LED / Fail-
safe function
(Table Error
LED / Failsafe
function
Ä Table 539 “
Table Error LED /
Failsafe function”
on page 4916)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4914

Name Value Internal value Internal value,
type

Default

Off by E3 + fail-
safe

19

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Timeout for Bus
supervision

No supervision
10 ms timeout
20 ms timeout

0
1
2

BYTE No supervision

IO Mapping
Structure 3)

Fixed Mapping
Dynamic Map-
ping

0
1

BYTE 0

Reserved Internal 0 ARRAY[0..2] OF
BYTE

0,0,0

Check supply off
on

0
1

BYTE 1

Fast counter 0
:

10 2)

0
:
10

BYTE 0

Remarks:

1) With a faulty ID, the module reports a "parameter error" and does not
perform cyclic process data transmission.

2) Counter operating modes Ä Chapter 1.6.2.6.1.2.10 “Fast counter”
on page 4351

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4915

3) Fixed Mapping means each module has its own Modbus registers
for data transfer independent of the I/O bus constellation descrip-
tion. For details see Ä Chapter 1.6.4.3.1.2 “Modbus TCP registers”
on page 5652.
Dynamic mapping means the structure of the IO Date is dependent on
the I/O bus constellation. Each I/O bus expansion module starts directly
after the module before on the next Word adress.

4) If none of the parameters is set all masters / clients in the network have
read and write rights on the CI52x-MODTCP device and its connected
expansion modules.
If at least one parameter is set only the configured masters / clients have
write rights on the CI52x-MODTCP device, all other masters / clients still
have read access to the CI52x-MODTCP device.

Table 539: Table Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.

Group parameters for the digital part

Name Value Internal
value

Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4916

Name Value Internal
value

Internal value,
type

Default

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value 5
sec
Substitute value 10
sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 65535 0000h ...
FFFFh

WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0..DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behaviour DO at comm. error is apply to DC and DO
channels and only analyzed if the Failsafe-mode is ON.

2) The state "externally voltage detected" appears, if the output of a
channel DC0...DC7 should be switched on while an externally voltage
is connected. In this case the start up is disabled, as long as the exter-
nally voltage is connected. The monitoring of this state and the resulting
diagnosis message can be disabled by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears, if externally
voltage at digital outputs DC0...DC7 and accordingly DO8...DO15 has
exceeded the process supply voltage UP3 Ä Chapter 1.6.2.8.5.2.3
“Connections” on page 4906 (see description in section). The according
diagnosis message "Voltage overflow on outputs " can be disabled by
setting the parameters on "OFF". This parameter should only be disa-
bled in exceptional cases for voltage overflow may produce reverse
voltage.

Diagnosis
Structure of the Diagnosis Block

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4917

Byte Number Description Possible Values
1 Diagnosis Byte, slot

number
31 = CI502-PNIO (e. g. error at integrated
8 DI / 8 DO)
1 = 1st connected S500 I/O Module
...
10 = 10th connected S500 I/O Module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

6 Reserved 0

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

For diagnosis firmware version ³ 3.2.6 is required.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4918

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4919

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4920

E1..E4 d1 d2 d3 d4 Identi-
fier
000..063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6..7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0..5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 46 Reverse voltage
from digital out-
puts DO8...DO15 to
UP3 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
at outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8..15 46 Externally voltage
detected at digital
output DO8...DO15
6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0...DC7
6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at
digital output
DC0...DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO8...DO157)

Check
terminals

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4921

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI502-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself, 1..10 = Expan-
sion module

3) With "Module" the following allocation applies dependent of the master:
Module error: 31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals DC0...DC7
oder DO8...DO15 cause that other digital outputs are supplied through
that voltage (voltage feedback, see description in 'Connections' Ä Chapter
1.6.2.8.5.2.3 “Connections” on page 4906. All outputs of the apply digital output
groups will be turned off for 5 seconds. The diagnosis message appears for the
whole output group.

5) The voltage at digital outputs DC0...DC7 and accordingly DO8...DO15 has
exceeded the process supply voltage UP3 Ä Chapter 1.6.2.8.5.2.3 “Connec-
tions” on page 4906. Diagnosis message appears for the whole module.

6) This message appears, if the output of a channel DC0...DC7 or DO8...DO15
should be switched on while an externally voltage is connected. In this case the
start up is disabled, as long as the externally voltage is connected. Otherwise
this could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for 2000ms.
Then a new start up will be executed. This diagnosis message appears per
channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any hot
swap operations (also not on any other terminal units (slots)) as modules may be
damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 540: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4922

LED Color OFF ON Flashing
STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Device config-
ured, acyclic data
exchange run-
ning

Red --- Communication
error (timeout)
appeared

IP address error

STA2 ETH
(System LED
"SF")

Green Device has valid
parameters

Device is running
parameterization
sequenze

Device has no
parameters

Red --- --- Device has
invalid parame-
ters

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 541: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 to DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4923

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Ethernet 10/100 base-TX, internal switch, 2 x RJ45
socket

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnosis See Diagnosis and Displays Ä Chapter
1.6.2.8.5.2.8 “Diagnosis” on page 4917

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40°C per group)

Extended ambient temperature (XC version) > 60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4924

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI8 to DI15 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4925

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO8 to DO15 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 1003: Digital input/output (circuit diagram)

1 Digital Output
2 Varistors for demagnetization when inductive loads are turned off

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4926

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0...DC7 Terminals 1.0...1.7

If the channels are used as outputs

 Channels DC0...DC7 Terminals 1.0...1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V *)

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V *)

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4927

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0,8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4928

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 1004: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI8),Terminal 2.1 (DI9)

Used outputs Terminal 3.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1- 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Detailed description See Ä Chapter 1.6.4.1.10 “Fast counters”
on page 5498

Operating modes See Ä Chapter 1.6.4.4.2.2 “Operating modes”
on page 5716

Ordering data

Ordering No. Scope of delivery Product life cycle phase *)
1SAP 222 200
R0001

CI522-MODTCP, Modbus TCP com-
munication interface module, 8 DC,
8 DI and 8 DO

Active

1SAP 422 200
R0001

CI522-MODTCP-XC, Modbus TCP
communication interface module,
8 DC, 8 DI and 8 DO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4929

1.6.2.8.6 PROFIBUS
CI541-DP

● 4 configurable analog inputs (2-wire/single-ended) or 2 configurable analog inputs (3-wire/
differential)
Resolution 12 bits plus sign

● 2 analog outputs
Resolution 12 bits plus sign

● 8 digital inputs 24 V DC in 1 group
● 8 digital outputs 24 V DC in 1 group, 0.5 A max.
● Fast counter
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

BUS

CI541

CH-ERR1 CH-ERR3CH-ERR2

2.4

2.0 AI0+

2.2 AI2+

2.7 AO-

2.9 ZP

2.3 AI3+

2.1 AI1+

AI -

2.5 AO0+

2.6 AO1+

2.8 UP

4.0 DO0

4.2 DO2

4.4 DO4

4.6 DO6

4.9 ZP

4.1 DO1

4.3 DO3

4.5 DO5

4.7 DO7

4.8 UP33.8 UP

3.9 ZP

3.0 DI0

3.2 DI2

3.3 DI3

3.5 DI5

3.6 DI6

3.4 DI4

3.7 DI7

3.1 DI1

UP 24VDC 100W PROFIBUS DP Slave
4AI 2AO 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

S-ERR

I/O-Bus

STA2 DP

STA1 DP

PWR/RUN

ADDR

x10H

x01H

ADDR

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

1

2 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 DP, STA2 DP, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the PROFIBUS ID
11 9-pin D-SUB connector to connect the PROFIBUS DP signals

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4930

12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The PROFIBUS DP communication interface module is used as decentralized I/O module
in PROFIBUS DP networks. Depending on the used terminal unit the network connection is
performed either via 9-pole female D-sub or via 10 terminals (screw-type or spring terminals)
which are integrated in the terminal unit. The communication interface module contains 22 I/O
channels.
The inputs/outputs are galvanically isolated from the PROFIBUS DP network. There is no
potential separation between the channels. The configuration of the analog inputs/outputs is
performed by software.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

● 4 configurable analog inputs (2-wire/single-ended) or 2 configurable analog inputs (3-wire/
differential)
Resolution 12 bits plus sign

● 2 analog outputs
Resolution 12 bits plus sign

● 8 digital inputs 24 V DC in 1 group
● 8 digital outputs 24 V DC in 1 group, 0.5 A max.
● Fast counter
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

Functionality

Parameter Value
Interface PROFIBUS

Protocol PROFIBUS DP (DP-V0 and DP-V1)

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the PROFIBUS ID for configuration
purposes (00h to FFh)

Fast counter Integrated, configurable operating modes

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518 Ä Chapter
1.6.2.5.2 “TU509 and TU510 for communication
interface modules” on page 4099 Ä Chapter
1.6.2.5.4 “TU517 and TU518 for communication
interface modules” on page 4109

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4931

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The PROFIBUS DP communication interface module CI541-DP is plugged on the I/O terminal
units TU509 Ä Chapter 1.6.2.5.2 “TU509 and TU510 for communication interface modules”
on page 4099 or TU510 Ä Chapter 1.6.2.5.2 “TU509 and TU510 for communication interface
modules” on page 4099 and accordingly TU517 Ä Chapter 1.6.2.5.4 “TU517 and TU518 for
communication interface modules” on page 4109 or TU518 Ä Chapter 1.6.2.5.4 “TU517 and
TU518 for communication interface modules” on page 4109. Properly seat the module and
press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 2.8 and 3.8 as well as 2.9, 3.9 and 4.9 are interconnected within the terminal unit
and have always the same assignment, independent of the inserted module:
Terminals 2.8 and 3.8: Process supply voltage UP = +24 V DC
Terminal 4.8: Process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

Reason: Externally voltages at an output or several outputs may cause that
other outputs are supplied through that voltage instead of voltage UP3 (reverse
voltage). This ist not intended usage.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0..DO7.

Possibilities of connection
Connection on terminal units TU509 or TU510

The assignment of the 9-pole female D-sub for the PROFIBUS signals:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4932

1

5

6

9

1 --- Reserved

2 --- Reserved

3 B Data line B (receive and send
line, positive)

4 --- Reserved

5 DGND Reference potential for data
transmissions and +5 V

6 VP (5 V) +5 V (Power supply voltage for
terminating resistors)

7 --- Reserved

8 A Data line A (receive and send
line, negative)

9 --- Reserved

Shield Shield Shield, functional earth

Bus termination
The line ends of the bus segment must be equipped with bus terminating resistors. Normally,
these resistors are integrated in the interface connectors.

390 Ohms

220 Ohms

390 Ohms

VP (+5 V)

GND (0 V)

RxD/TxD-P

RxD/TxD-N

Data Line B

Data Line A

6

3

8

5

The grounding of the shield should take place at the switchgear cabinet, see
System Data AC500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313.

Mounting on terminal units TU517 or TU518
The assignment of the terminals 1.0 - 1.9:

Terminal Signal Description
1.0 B Data line B (receive and send line, positive)

1.1 B Data line B (receive and send line, positive)

1.2 A Data line A (receive and send line, negative)

1.3 A Data line A (receive and send line, negative)

1.4 TermB Bus termination data line B

1.5 TermB Bus termination data line B

1.6 TermA Bus termination data line A

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4933

Terminal Signal Description
1.7 TermA Bus termination data line A

1.8 DGND Reference potential for data transmission

1.9 DGND Reference potential for data transmission

At the line ends of a bus segment, terminating resistors must be connected. If using TU517/
TU518, the bus terminating resistors can be enabled by connecting the terminals TermA and
TermB to the data lines A and B (no external terminating resistors are required, see figure
below).

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
+5 V DC

GND

PROFIBUS in

PROFIBUS out

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
+5 V DC

GND

PROFIBUS end

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4934

If using TU517/TU518, note that the terminating resistors are not located inside
the TU, but inside the communication interface module CI541-DP. I. e. when
removing the device from the TU, the bus terminating resistors are not con-
nected to the bus any more. The bus itself will not be disconnected if a device is
removed.

If using TU517/TU518 the max. permitted transmission rate is limited to 1.5
MBaud.

The grounding of the shield should take place at the switchgear cabinet, see
System Data AC500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313.

Technical data bus cable

Parameter Value
Type Twisted pair (shielded)

Characteristic impedance 135...165 W

Cable capacitance < 30 pF/m

Conductor diameter of the cores ³ 0.64 mm

Conductor cross section of the cores ³ 0.34 mm²

Cable resistance per core £ 55 W/km

Loop resistance (resistance of two cores) £ 110 W/km

Cable length
The maximum possible cable length of a PROFIBUS subnet within a segment depends on the
transmission rate (baud rate).

Transmission rate Maximum cable length
9.6 kBaud to 93.75 kBaud 1200 m

187.5 kBaud 1000 m

500 kBaud 400 m

1.5 MBaud 200 m

3 MBaud to 12 MBaud 100 m

The assignment of the other terminals:

Terminal Signal Description
2.0 AI0+ Positive pole of analog input signal 0

2.1 AI1+ Positive pole of analog input signal 1

2.2 AI2+ Positive pole of analog input signal 2

2.3 AI3+ Positive pole of analog input signal 3

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4935

Terminal Signal Description
2.4 AI- Negative pole of analog input signals 0

to 3

2.5 AO0+ Positive pole of analog output signal 0

2.6 AO1+ Positive pole of analog output signal 1

2.7 AI- Negative pole of analog output signals 0
and 1

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI0 Signal of the digital input DI0

3.1 DI1 Signal of the digital input DI1

3.2 DI2 Signal of the digital input DI2

3.3 DI3 Signal of the digital input DI3

3.4 DI4 Signal of the digital input DI4

3.5 DI5 Signal of the digital input DI5

3.6 DI6 Signal of the digital input DI6

3.7 DI7 Signal of the digital input DI7

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO0 Signal of the digital output DO0

4.1 DO1 Signal of the digital output DO1

4.2 DO2 Signal of the digital output DO2

4.3 DO3 Signal of the digital output DO3

4.4 DO4 Signal of the digital output DO4

4.5 DO5 Signal of the digital output DO5

4.6 DO6 Signal of the digital output DO6

4.7 DO7 Signal of the digital output DO7

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4936

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

For the open-circuit detection (cut wire), each channel is pulled up to "plus" by
a high-resistance resistor. If nothing is connected, the maximum voltage will be
read in then.

Analog signals are always laid in shielded cables. The cable shields are
grounded at both ends of the cables. In order to avoid unacceptable potential
differences between different parts of the installation, low resistance equipoten-
tial bonding conductors must be laid.

For simple applications (low electromagnetic disturbances, no high requirement
on precision), the shielding can also be omitted.

The following figures show the connection of the PROFIBUS DP communication interface
module CI541-DP.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4937

+
-

+
-

+
-

+
-

+
-

+
-

PTC

AI0+

AI1+

AI2+

AI3+
AI-

2.0

2.1

2.2

2.3
2.4

PTC

2.5

2.6
2.7

AO0+

AO1+
AO-

4.0 DO0

4.1 DO1

4.2 DO2

4.3 DO3

4.4 DO4

4.5 DO5

4.6 DO6

4.7 DO7

DI0 3.0

DI1 3.1

DI2 3.2

DI3 3.3

DI4 3.4

DI5 3.5

DI6 3.6

DI7 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 3.9

3.8
UP3 +24 V

ZP 0 V

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI7 in the same way.

2.0
DI0
2.1
DI1
2.2
DI2
2.3
DI3
2.4
DI4
2.5
DI5
2.6
DI6
2.7
DI7
2.8
UP
2.9
ZP

24 V DC
-
+

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.6.1.9 “State LEDs”
on page 4958.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4938

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 - DO7 in the same way.

4.0
DO0
4.1
DO1
4.2
DO2
4.3
DO3
4.4
DO4
4.5
DO5
4.6
DO6
4.7
DO7
4.8
UP3
4.9
ZP

24 V DC
-
+

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.6.1.9 “State LEDs”
on page 4958.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI541-DP provides a constant current source which is multiplexed over the max. 4 analog input
channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
3.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4939

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.9 “State LEDs” on page 4958.
The module CI541-DP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI541-DP provides a constant current source which is multiplexed over the max. 4 analog input
channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4940

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.9 “State LEDs” on page 4958.
The module CI541-DP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

+

-
UIN

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.9 “State LEDs” on page 4958.
To avoid error messages from unused analog input channels, configure them as "unused".

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4941

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-

0 ... +20 mA
+4 ... +20 mA

UIN

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Ä Chapter 1.6.2.8.6.1.9 “State LEDs”
on page 4958.
Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4...20 mA,
these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4942

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ± 1 V).
Make sure that the potential difference never exceeds ± 1 V (also not with long
cable lengths).

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.9 “State LEDs” on page 4958.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4943

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-

+

+4 ... +20 mA

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.7 “Parameterization” on page 4948 :

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.9 “State LEDs” on page 4958.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt zener diode in parallel to AIx+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4 mA...20
mA, these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4944

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-
UIN

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

Voltage 0 V...10 V with differential inputs, 2 chan-
nels used

Voltage -10 V...+10 V with differential inputs, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.9 “State LEDs” on page 4958.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4945

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

Digital input 24 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.9 “State LEDs” on page 4958.

Connection of analog output loads (Voltage)
The following figure shows the connection of analog output loads (voltage) to the analog output
AO0. Proceed with the analog output AO1 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4946

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.9 “State LEDs” on page 4958.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of analog output loads (current) to the analog output
AO0. Proceed with the analog output AO1 in the same way.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

The following measuring ranges can be configured Ä Chapter 1.6.2.8.6.1.7 “Parameterization”
on page 4948 Ä Chapter 1.6.2.8.6.1.10 “Measuring ranges” on page 4959:

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.6.1.8 “Diagnosis” on page 4953.
Unused analog outputs can be left open-circuited.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4947

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI541-DP PROFIBUS DP Bus configuration is handled by PROFIBUS DP master with
the exception of the slave bus ID (via rotary switches) and the transmission rate (automatic
detection).
The analog/digital I/O channels and the fast counter are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.2.8.6.1.7 “Parame-
terization” on page 4948.

Parameterization
Parameters of the module

Table 542: Parameters of the module:
Name Value Internal value Internal value,

type
Default

Module ID 1) Internal 0x1C20 WORD 0x1C20

Parameter length Internal 47 BYTE 47

Reserved (1
byte)

0 0 BYTE 0

Error LED / Fail-
safe function
(see
Ä Table 543 “Set
tings "Error LED /
Failsafe func-
tion"”
on page 4949)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved (20
bytes)

0 0 BYTE 0

Check supply
(UP and UP3)

On 0 BYTE

Off 1 1

Fast counter 0 0 BYTE 0

: :

10 2) 10
1) With a faulty ID, the Modules reports a "parameter error" and does not perform cyclic
process data transmission
2) Counter operating modes, see description of the fast counter Ä Chapter 1.6.2.6.1.2.10 “Fast
counter” on page 4351.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4948

Table 543: Settings "Error LED / Failsafe function"
Setting Description
On Error LED (S-ERR) lights up at errors of all error classes,

Failsafe mode off

Off by E4 Error LED (S-ERR) lights up at errors of error classes E1, E2
and E3, Failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error classes E1 and
E2, Failsafe mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all error classes,
Failsafe mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1, E2
and E3, Failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1 and
E2, Failsafe mode on *)

*) The parameters Behaviour analog outputs at communication error and Behaviour digital
outputs at communication error are only evaluated if failsafe function is enabled.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour analog
outputs at com-
munication error
*)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour analog outputs at communication error is only analyzed if the
Failsafe mode is ON.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4949

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Operation modes
of analog inputs
Ä Table 544 “Op
eration modes of
analog inputs:”
on page 4950

Operation modes
of analog inputs
Ä Table 544 “Op
eration modes of
analog inputs:”
on page 4950

BYTE 0

Input 0, Check
channel

Settings channel
monitoring
Ä Further infor-
mation
on page 4951

Settings channel
monitoring
Ä Further infor-
mation
on page 4951

BYTE 0

: : : : :

: : : : :

Input 3, Channel
configuration

Operation modes
of analog inputs
Ä Table 544 “Op
eration modes of
analog inputs:”
on page 4950

Operation modes
of analog inputs
Ä Table 544 “Op
eration modes of
analog inputs:”
on page 4950

BYTE 0

Input 3, Check
channel

Settings channel
monitoring
Ä Further infor-
mation
on page 4951

Settings channel
monitoring
Ä Further infor-
mation
on page 4951

BYTE 0

Channel configuration
Table 544: Operation modes of analog inputs:
Internal value Operating modes of the analog inputs, individually configurable

0 (default) Not used

1 0...10 V

2 Digital input

3 0 mA...20 mA

4 4 mA...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C...+70 °C

15 3-wire Pt100 -50 °C...+70 °C *)

16 2-wire Pt1000 -50 °C...+400 °C

17 3-wire Pt1000 -50 °C...+400 °C *)

18 2-wire Ni1000 -50 °C...+150 °C

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4950

19 3-wire Ni1000 -50 °C...+150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Channel monitoring
Table 545: Table settings channel monitoring:
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Operation modes
of analog outputs
Ä Table 546 “Tab
le operation
modes of analog
outputs:”
on page 4952

Operation modes
of analog outputs
Ä Table 546 “Tab
le operation
modes of analog
outputs:”
on page 4952

BYTE 0

Output 0, Check
channel

Channel moni-
toring
Ä Table 547 “
Table channel
monitoring:”
on page 4952

Channel moni-
toring
Ä Table 547 “
Table channel
monitoring:”
on page 4952

BYTE 0

Output 0, Substi-
tute value

Substitute value
Ä Table 548 “
Table substitute
value:”
on page 4952

Substitute value
Ä Table 548 “
Table substitute
value:”
on page 4952

WORD 0

Output 1,
Channel configu-
ration

Operation modes
of analog outputs
Ä Table 546 “Tab
le operation
modes of analog
outputs:”
on page 4952

Operation modes
of analog outputs
Ä Table 546 “Tab
le operation
modes of analog
outputs:”
on page 4952

BYTE 0

Output 1, Check
channel

Channel moni-
toring
Ä Table 547 “
Table channel
monitoring:”
on page 4952

Channel moni-
toring
Ä Table 547 “
Table channel
monitoring:”
on page 4952

BYTE 0

Output 1, Substi-
tute value

Substitute value
Ä Table 548 “
Table substitute
value:”
on page 4952

Substitute value
Ä Table 548 “
Table substitute
value:”
on page 4952

WORD 0

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4951

Table 546: Table operation modes of analog outputs:
Internal value Operating modes of the analog outputs,

individually configurable
0 (default) Not used

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Table 547: Table channel monitoring:
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 548: Table substitute value:
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec depending on configuration

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Channel config-
uration

Channel moni-
toring

Substitute value

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4952

Name Value Internal value Internal value,
type

Default

Behaviour digital
outputs at com-
muncation error
1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0...255 00h...FFh BYTE 0
0x00

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE Off
0x00

1) The parameters Behaviour digital outputs at communcation error is only analyzed if the
Failsafe-mode is ON.
2) The state "externally voltage detected" appears, if the output of a channel DC0..DC7 should
be switched on while an externally voltage is connected Ä Chapter 1.6.2.8.6.1.3 “Connec-
tions” on page 4932. In this case the start up is disabled, as long as the externally voltage is
connected. The monitoring of this state and the resulting diagnosis message can be disabled
by setting the parameters to "OFF".

Diagnosis
Structure of the Diagnosis Block via DPM_SLV_DIAG function block. Ä Chapter 1.5.4.26.1.5
“DPM_SLV_DIAG” on page 1765.

Byte Number Description Possible Values
1 Data length (header included) 7

2 PROFIBUS DP V1 coding:
Vendor specific

129

3 Diagnosis Byte, slot number 31 = CI541-DP (e. g. error at integrated 8
DI / 8 DO)
1 = 1st connected S500 I/O Module
...
10 = 10th connected S500 I/O Module

4 Diagnosis Byte, module
number

According to the I/O Bus specification
passed on by modules to the fieldbus
master

5 Diagnosis Byte, channel According to the I/O Bus specification
passed on by modules to the fieldbus
master

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4953

Byte Number Description Possible Values
6 Diagnosis Byte, error code According to the I/O Bus specification

Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

7 Diagnosis Byte, flags According to the I/O Bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4954

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O device

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4955

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 46 Reverse voltage
from digital outputs
DO0...DO7 to UP3
4)

Check
connec-
tion

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4956

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Externally voltage
detected on digital
output DO0...DO7
6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0...3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0...3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0...3 47 Short-circuit at an
analog input

Check
terminals

4 - 31 3 0...1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0...1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4957

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0...4 or 10 = Position of
the Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI541-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself; 1...10 =
Expansion module

3) With "Module" the following allocation applies:
31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more termi-
nals DO0...DO7 cause that other digital outputs are supplied through
that voltage (voltage feedback, see description in section 'Connection'
Ä Chapter 1.6.2.8.6.1.3 “Connections” on page 4932). All outputs of the
apply digital output groups will be turned off for 5 seconds. The diagnosis
message appears for the whole output group.

5) The voltage on digital outputs DO0...DO7 has overrun the process
supply voltage UP3 (see description in section 'Connection' Ä Chapter
1.6.2.8.6.1.3 “Connections” on page 4932). Diagnosis message appears
for the whole module.

6) This message appears, if the output of a channel DO0...DO7 should
be switched on while an externally voltage is connected. In this case
the start up is disabled, as long as the externally voltage is connected.
Otherwise this could produce reverse voltage from this output to other
digital outputs. This diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for
100ms. Then a new start up will be executed. This diagnosis message
appears per channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform
any hot swap operations (also not on any other terminal units (slots)) as
modules may be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1-DP, STA2-DP, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 549: States of the 5 system LEDs:
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1-DP Green --- PROFIBUS run-
ning

Invalid device
parameters

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4958

LED Color OFF ON Flashing
STA2-DP Red No error Bus timeout No communica-

tion to master

S-ERR Red No error Internal error --

I/O-Bus Green No communica-
tion interface
modules con-
nected or com-
munication error

Communication
interface
modules con-
nected and
operational

Table 550: States of the 27 process LEDs:
LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 toDO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10 V 0...20 mA 4...20 mA Digital input
Overflow >11.7589 >11.7589 >23.5178 >22.8142

Measured
value too high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

Normal range 10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4959

Range 0...10 V -10...+10 V 0...20 mA 4...20 mA Digital input
Normal range
or measured
value too low

0.0000 0.0000 0 4 Off

-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994
:
0

Measured
value too low

 -10.0004
:
-11.7589

Underflow < -1.7593 <-11.7589 <0.0000 <0.0000

Range Digital value
 Decimal Hex.
Overflow 32767 7FFF

Measured value too high 32511
:
27649

7EFF
:
6C01

Normal range
Normal range or measured
value too low

27648
:
1

6C00
:
0001

0 0000

-1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured value too low -27649
:
-32512

93FF
:
8100

Underflow -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...70 °C

Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

Overflow > 80.0 °C > 450.0 °C > 160.0 °C

Measured value too
high

 450.0 °C
:
400.1 °C

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4960

Range Pt100 / Pt1000
-50...70 °C

Pt100 / Pt1000
-50...400 °C

Ni1000
-50...150 °C

 160.0 °C
:
150.1 °C

Normal range 400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

 0.0 °C 0.0 °C

 -0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

Measured value too
low

 -50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

Underflow < -60.0 °C < -60.0 °C < -60.0 °C

Range Digital value
 Decimal Hex.
Overflow 32767 7FFF

Measured value too high 4500
:
4001

1194
:
0FA1

1600
:
1501

0640
:
05DD

800
:
701

0320
:
02BD

Normal range 4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0 0000

-1
:
-500

FFFF
:
FE0C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4961

Range Digital value
 Decimal Hex.
Measured value too low -501

:
-600

FE0B
:
FDA8

Underflow -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA
Overflow >11.7589 V >23.5178 mA >22.8142 mA

Measured value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

0.0000 V 0.0000 mA 4.0000 mA

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

Measured value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

Underflow 0 V 0 mA 0 mA

Range Digital value
 Decimal Hex.
Overflow > 32511 > 7EFF

Measured value too high 32511
:
27649

7EFF
:
6C01

Normal range 27648
:
1

6C00
:
0001

0 0000

-1
-6912
-27648

FFFF
E500
9400

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4962

Range Digital value
 Decimal Hex.
Measured value too low -27649

:
-32512

93FF
:
8100

Underflow < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation PROFIBUS interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Configurable digital inputs/outputs 8

Number of digital inputs 8

Number of digital outputs 8

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the PROFIBUS DP identifier With 2 rotary switches at the front side of the
module

Diagnose See Diagnosis Ä Chapter 1.6.2.8.6.1.8 “Diag-
nosis” on page 4953

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4963

Parameter Value
Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 3.0 to 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4964

Parameter Value
Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The module provides several diagnosis functions Ä Chapter 1.6.2.8.6.1.8 “Diagnosis”
on page 4953.
The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4965

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 2.0 to 2.3

Reference potential for AI0+ to AI3+ Terminal 2.4 (AI-) for voltage and RTD meas-
urement
Terminal 2.9, 3.9 and 4.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V...+10 V

Galvanic isolation Against PROFIBUS

Configurability 0 V...10 V, -10 V...+10 V, 0/4 mA...20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0...10 V: 12 bits
Range -10...+10 V: 12 bits + sign
Range 0...20 mA: 12 bits
Range 4...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4966

Parameter Value
Relationship between input signal and hex
code

Tables Input Ranges Voltage, Current and Dig-
ital Input and Input range resistance tempera-
ture detector Ä Chapter 1.6.2.8.6.1.10 “Meas-
uring ranges” on page 4959

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 2.0 to 2.3

Reference potential for the inputs Terminals 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V ... +15 V

 Signal 1 +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 2.5 ... 2.6

Reference potential for AO0+ to AO1+ Terminal 2.7 (AO-) for voltage output
Terminal 2.9, 3.9 and 4.9 for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against PROFIBUS

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually)

Output resistance (load), as current output 0...500 W

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4967

Parameter Value
Output loadability, as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output Ranges Voltage and Current
Ä Chapter 1.6.2.8.6.1.10.3 “Output ranges
voltage and current” on page 4962

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI0), 3.1 (DI1)

Used outputs Terminal 4.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering data

Ordering No. Scope of delivery Product life cycle phase *)
1SAP 224 100 R0001 CI541-DP, PROFIBUS DP communi-

cation interface module, 8 DI, 8 DO,
4 AI and 2 AO

Active

1SAP 424 100 R0001 CI541-DP-XC, PROFIBUS DP com-
munication interface module, 8 DI,
8 DO, 4 AI and 2 AO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4968

CI542-DP
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

BUS

CI542

CH-ERR1 CH-ERR3CH-ERR2

4.0 DO8

4.2 DO10

4.4 DO12

4.6 DO14

4.9 ZP

4.1 DO9

4.3 DO11

4.5 DO13

4.7 DO15

4.8 UP33.8 UP

3.9 ZP

3.0 DI8

3.2 DI10

3.3 DI11

3.5 DI13

3.6 DI14

3.4 DI12

3.7 DI15

3.1 DI9

UP 24VDC 200W PROFIBUS DP Slave
8DC 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

S-ERR

I/O-Bus

STA2 DP

STA1 DP

PWR/RUN 2.0 DC0

2.2 DC2

2.9 ZP

2.3 DC3

2.1 DC1

2.5 DC5

2.6 DC6

2.8 UP

2.7 DC7

2.4 DC4

x10H
ADDR

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

ADDR
x01H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

12 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 - DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 - DO15)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 DP, STA2 DP, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the PROFIBUS ID
11 9-pin D-SUB connector to connect the PROFIBUS DP signals
12 Terminal unit
13 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4969

Intended purpose
The PROFIBUS DP communication interface module is used as decentralized I/O module in
PROFIBUS networks. Depending on the used terminal unit the network connection is performed
either via 9-pole female D-sub or via 10 terminals (screw-type or spring terminals) which are
integrated in the terminal unit.
The inputs/outputs are galvanically isolated from the PROFIBUS network. There is no potential
separation between the channels. The configuration of the configurable digital inputs/outputs is
performed by software.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Interface PROFIBUS

Protocol PROFIBUS DP (DP-V0 and DP-V1)

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the PROFIBUS ID for configuration
purposes (00h to FFh)

Fast counter Integrated, configurable operating modes

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518 Ä Chapter
1.6.2.5.2 “TU509 and TU510 for communication
interface modules” on page 4099 Ä Chapter
1.6.2.5.4 “TU517 and TU518 for communication
interface modules” on page 4109

Connections

For a detailed description of the mounting, disassembly and connection of
the module, please refer to the System Assembly chapter Ä Chapter 1.6.3.5
“AC500-eCo” on page 5233.

The PROFIBUS DP communication interface module CI542-DP is plugged on the I/O terminal
units TU509 Ä Chapter 1.6.2.5.2 “TU509 and TU510 for communication interface modules”
on page 4099 or TU510 Ä Chapter 1.6.2.5.2 “TU509 and TU510 for communication interface
modules” on page 4099 and accordingly TU517 Ä Chapter 1.6.2.5.4 “TU517 and TU518 for
communication interface modules” on page 4109 or TU518 Ä Chapter 1.6.2.5.4 “TU517 and
TU518 for communication interface modules” on page 4109. Properly seat the module and
press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting
accessory” on page 5180).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4970

The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 2.8 and 3.8 as well as 2.9, 3.9 and 4.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 2.8 and 3.8: Process supply voltage UP = +24 V DC
Terminal 4.8: Process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

This ist not intended usage.

Reason: Externally voltages at one or more terminals DC0...DC7 or DO0...DO7
may cause that other digital outputs are supplied through that voltage instead of
voltage UP3 (reverse voltage).

This is also possible, if DC channels are used as inputs. For this, the source for
the input signals should be the impressed UP3 of the device.

This limitation does not apply for the input channels DI0...DI7.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0...DO7 and DC0...DC7.

Possibilities of connection
Mounting on terminal units TU509 or TU510:
The assignment of the 9-pole female D-sub for the PROFIBUS DP signals.

Serial Inter-
face

Pin Signal Description

1

5

6

9

1 --- Reserved

2 --- Reserved

3 B PROFIBUS DP signal B

4 --- Reserved

5 DGND Ground for 5 V power supply

6 VP (5 V) 5 V power supply

7 --- Reserved

8 A PROFIBUS DP signal A

9 --- Reserved

Shield Cable shield Functional earth

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4971

Bus termination
The line ends of the bus segment must be equipped with bus terminating resistors. Normally,
these resistors are integrated in the interface connectors.

390 Ohms

220 Ohms

390 Ohms

VP (+5 V)

GND (0 V)

RxD/TxD-P

RxD/TxD-N

Data Line B

Data Line A

6

3

8

5

The grounding of the shield should take place at the switchgear cabinet, see
System-Data AC500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313.

Mounting on terminal units TU517 or TU518:
The assignment of the terminals 1.0 - 1.9:

Terminal Signal Description
1.0 B Data line B (receive and send line, posi-

tive)

1.1 B Data line B (receive and send line, posi-
tive)

1.2 A Data line A (receive and send line, nega-
tive)

1.3 A Data line A (receive and send line, nega-
tive)

1.4 TermB Bus termination data line B

1.5 TermB Bus termination data line B

1.6 TermA Bus termination data line A

1.7 TermA Bus termination data line A

1.8 DGND Reference potential for data transmis-
sion

1.9 DGND Reference potential for data transmis-
sion

At the line ends of a bus segment, terminating resistors must be connected. If using TU517/
TU518, the bus terminating resistors can be enabled by connecting the terminals TermA and
TermB to the data lines A and B (no external terminating resistors are required, see figure
below).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4972

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
+5 V DC

GND

PROFIBUS in

PROFIBUS out

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
+5 V DC

GND

PROFIBUS end

If using TU517/TU518, note that the terminating resistors are not located inside
the TU, but inside the communication interface module CI541-DP. I. e. when
removing the device from the TU, the bus terminating resistors are not con-
nected to the bus any more. The bus itself will not be disconnected if a device is
removed.

If using TU517/TU518 the max. permitted transmission rate is limited to 1.5
MBaud.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4973

Technical data bus cable

Parameter Value
Type Twisted pair (shielded)

Characteristic impedance 135 W...165 W

Cable capacitance < 30 pF/m

Conductor diameter of the cores ³ 0.64 mm

Conductor cross section of the cores ³ 0.34 mm²

Cable resistance per core £ 55 W/km

Loop resistance (resistance of two cores) £ 110 W/km

Cable length
The maximum possible cable length of a PROFIBUS subnet within a segment depends on the
transmission rate (baud rate).

Transmission rate Maximum cable length
9.6 kBaud to 93.75 kBaud 1200 m

187.5 kBaud 1000 m

500 kBaud 400 m

1.5 MBaud 200 m

3 MBaud to 12 MBaud 100 m

The assignment of the other terminals:

Terminal Signal Description
2.0 DC0 Signal of the configurable digital input/output DC0

2.1 DC1 Signal of the configurable digital input/output DC1

2.2 DC2 Signal of the configurable digital input/output DC2

2.3 DC3 Signal of the configurable digital input/output DC3

2.4 DC4 Signal of the configurable digital input/output DC4

2.5 DC5 Signal of the configurable digital input/output DC5

2.6 DC6 Signal of the configurable digital input/output DC6

2.7 DC7 Signal of the configurable digital input/output DC7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI8 Signal of the digital input DI8

3.1 DI9 Signal of the digital input DI9

3.2 DI10 Signal of the digital input DI10

3.3 DI11 Signal of the digital input DI11

3.4 DI12 Signal of the digital input DI12

3.5 DI13 Signal of the digital input DI13

3.6 DI14 Signal of the digital input DI14

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4974

Terminal Signal Description
3.7 DI15 Signal of the digital input DI15

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO8 Signal of the digital output DO8

4.1 DO9 Signal of the digital output DO9

4.2 DO10 Signal of the digital output DO10

4.3 DO11 Signal of the digital output DO11

4.4 DO12 Signal of the digital output DO12

4.5 DO13 Signal of the digital output DO13

4.6 DO14 Signal of the digital output DO14

4.7 DO15 Signal of the digital output DO15

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figures show the connection of the PROFIBUS DP communication interface
module CI542-DP.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4975

4.0 DO8

4.1 DO9

4.2 DO10

4.3 DO11

4.4 DO12

4.5 DO13

4.6 DO14

4.7 DO15

DI8 3.0

DI9 3.1

DI10 3.2

DI11 3.3

DI12 3.4

DI13 3.5

DI14 3.6

DI15 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 4.9

4.8
UP3 +24 V

ZP 0 V

DC0 2.0

DC1 2.1

DC2 2.2

DC3 2.3

DC4 2.4

DC5 2.5

DC6 2.6

DC7 2.7

Connection of the digital inputs
The following figure shows the connection of the digital input DI8. Proceed with the digital inputs
DI9 to DI15 in the same way.

3.0
DI8
3.1
DI9
3.2
DI10
3.3
DI11
3.4
DI12
3.5
DI13
3.6
DI14
3.7
DI15
3.8
UP
3.9
ZP

24 V DC
-
+

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4976

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.6.2.9 “State LEDs”
on page 4986.

Connection of the digital outputs
The following figure shows the connection of the digital output DO8. Proceed with the digital
outputs DO9 - DO15 in the same way.

4.0
DO8
4.1
DO9
4.2
DO10
4.3
DO11
4.4
DO12
4.5
DO13
4.6
DO14
4.7
DO15
4.8
UP
4.9
ZP

24 V DC
-
+

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.6.2.9 “State LEDs”
on page 4986.

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 to DC7 in the same way.

CAUTION!
If a DC channel is used as input, the source for the input signals should
be the impressed UP3 of the device Ä Chapter 1.6.2.8.6.2.3 “Connections”
on page 4970.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4977

2.0
DC0
2.1
DC1
2.2
DC2
2.3
DC3
2.4
DC4
2.5
DC5
2.6
DC6
2.7
DC7
2.8
UP
2.9
ZP

24 V DC
-
+

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.6.2.9 “State LEDs”
on page 4986.

Internal data exchange

Parameter Value
Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI542-DP PROFIBUS DP bus configuration is handled by PROFIBUS DP master with
the exception of the slave bus ID (via rotary switches) and the transmission rate (automatic
detection).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4978

The digital I/O channels and the fast counter are configured via software.
Details about configuration are described in Parameterization.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 0x1C25 WORD 0x1C25

Parameter length Internal 31 BYTE 31

Reserved (1
byte)

0 0 BYTE 0

Error LED / Fail-
safe function
Ä Table 551 “Set
tings "Error LED /
Failsafe func-
tion"”
on page 4979
(see table)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved (20
bytes)

0 0 BYTE 0

Check supply On 0 BYTE

Off 1 1

Fast counter 0 0 BYTE 0

: :

10 2) 10
1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission.
2) Counter operating modes, see 'Fast Counter' Ä Chapter 1.6.2.6.1.2.10 “Fast counter”
on page 4351.

Table 551: Settings "Error LED / Failsafe function"
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe mode on *)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4979

Setting Description
Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error

classes E1 and E2, Failsafe mode on *)

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0...65535 0000h...FFFFh WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0..DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4980

1) The parameter Behaviour DO at comm. error is apply to DC and DO channels
and only analyzed if the Failsafe-mode is ON.

2) The state "externally voltage detected" appears, if the output of a channel
DC0..DC7 should be switched on while an externally voltage is connected. In
this case the start up is disabled, as long as the externally voltage is connected.
The monitoring of this state and the resulting diagnosis message can be disabled
by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears, if externally voltage at
digital outputs DC0..DC7 and accordingly DO0..DO7 has exceeded the process
supply voltage UP3 Ä Chapter 1.6.2.8.6.2.3 “Connections” on page 4970. The
according diagnosis message "Voltage overflow on outputs " can be disabled
by setting the parameters on "OFF". This parameter should only be disabled in
exceptional cases for voltage overflow may produce reverse voltage.

Diagnosis
Structure of the Diagnosis Block via DPM_SLV_DIAG function block Ä Chapter 1.5.4.26.1.5
“DPM_SLV_DIAG” on page 1765.

Byte Number Description Possible Values
1 Data length (header

included)
7

2 PROFIBUS DP V1 coding:
Vendor specific

129

3 Diagnosis Byte, slot number 31 = CI542-DP (e. g. error at integrated 8 DI /
8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

4 Diagnosis Byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

5 Diagnosis Byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

6 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

7 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4981

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4982

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4983

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 46 Reverse voltage
from digital outputs
DO0..DO7 to UP3
4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
at outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8...15 46 Externally voltage
detected at digital
output DO0..DO7 6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0..DC7 6)

Check
terminals

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4984

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6...7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0...5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 4 0...7 47 Short circuit at
digital output
DC0..DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO0..DO77)

Check
terminals

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI542-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself, 1..10 =
expansion module

3) With "Module" the following allocation applies dependent of the master:
Module error: 31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals
DC0..DC7 oder DO0..DO7 cause that other digital outputs are supplied
through that voltage.
All outputs of the apply digital output groups will be turned off for 5 seconds.
The diagnosis message appears for the whole output group.

5) The voltage at digital outputs DC0..DC7 and accordingly DO0..DO7 has
exceeded the process supply voltage UP3 Ä Chapter 1.6.2.8.6.2.3 “Connec-
tions” on page 4970. Diagnosis message appears for the whole module.

6) This message appears, if the output of a channel DC0..DC7 or DO0..DO7
should be switched on while an externally voltage is connected. In this case
the start up is disabled, as long as the externally voltage is connected. Oth-
erwise this could produce reverse voltage from this output to other digital
outputs. This diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for 100ms.
Then a new start up will be executed. This diagnosis message appears per
channel.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4985

8) In case of an I/O module doesn’t support hot swapping, do not perform any hot
swap operations (also not on any other terminal units (slots)) as modules may
be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 DP, STA2 DP, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 552: States of the 5 system LEDs:
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1-DP Green --- PROFIBUS run-
ning

Invalid device
parameters

STA2-DP Red No error Bus timeout No communica-
tion to master

S-ERR Red No error Internal error --

I/O-Bus Green No communica-
tion interface
modules con-
nected or com-
munication error

Communication
interface module
connected and
operational

Table 553: States of the 29 process LEDs:
LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 to DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4986

LED Color OFF ON Flashing
UP3 Green Process supply

voltage missing
Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation PROFIBUS interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the PROFIBUS DP identifier With 2 rotary switches at the front side of the
module

Diagnose See Diagnosis Ä Chapter 1.6.2.8.6.2.8 “Diag-
nosis” on page 4981

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4987

Parameter Value
Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at 40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 3.0 to 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4988

Parameter Value
Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4989

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0...DC07 Terminals 2.0...2.7

If the channels are used as outputs

 Channels DC0...DC07 Terminals 2.0...2.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the PROFIBUS network

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4990

Parameter Value
Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 2.0 to 2.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4991

Parameter Value
Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI0),Terminal 3.1 (DI1)

Used outputs Terminal 4.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1- 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering Data

Part no. Description Product life cycle phase *)
1SAP 224 200 R0001 CI542-DP, PROFIBUS DP communica-

tion interface module, 8 DI, 8 DO and
8 DC

Active

1SAP 424 200 R0001 CI542-DP-XC, PROFIBUS DP com-
munication interface module, 8 DI,
8 DO and 8 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4992

1.6.2.8.7 PROFINET
Comparison of the CI5xx-PNIO modules

The PROFINET IO devices combine the advantages of decentralized I/O modules with the
reaction time of AC500 mounted central I/O modules. The devices for PROFINET provide the
extension -PNIO in the device name.
The communication module CM579-PNIO acts as I/O controller in a PROFINET network. It
is connected to the processor module via an internal communication bus. Depending on the
terminal base, several communication modules can be used for one processor module.
The communication interface modules CI5xx-PNIO act as I/O devices in a PROFINET network.
Additionally the communication module CM589-PNIO(-4) can be used to setup a AC500 PLC to
act as I/O module in a PROFINET network.

The difference of the CI5xx-PNIO devices can be found in their input and output characteristics
Ä Chapter 1.6.2.8.7.1.1.1 “Characteristics of CI50x-PNIO” on page 4993.
The characteristics for CM589-PNIO(-4) can be found in the device description for CM589-PNIO
Ä Further information on page 4093.

PROFINET IO devices CI50x-PNIO
Characteristics of CI50x-PNIO

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4993

Parameter Value
Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Input/Output characteristics of CI501-PNIO
The PROFINET communication interface module CI501-PNIO is used as decentralized I/O
module in PROFINET networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 22 I/O
channels with the following properties:
● 4 analog inputs (1.0...1.3), configurable as:

– -10 ... +10 V
– 0 ... +10 V
– -10 ... +10 V (differential voltage)
– 0 ... 20 mA
– 4 ... 20 mA
– Pt100 , Pt1000, Ni1000 (for each 2-wire and 3-wire)
– 24 V digital input function

● 2 analog outputs (1.5...1.6), configurable as:
– -10 ... +10 V
– 0 ... 20 mA
– 4 ... 20 mA

● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital transistor outputs 24 V DC (0.5 A max.) in 1 group (3.0...3.7)
● Resolution of the analog channels: 12 bits
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Input/Output characteristics of CI502-PNIO
● 8 digital inputs 24 V DC
● 8 digital transistor outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4994

Technical data of the serial interfaces of CI504-PNIO

Parameter Value
Number of serial interfaces 3

Connectors for serial interfaces X11 for COM1
X12 for COM2
X13 for COM3

Supported physical layers RS-232
RS-422
RS-485

Supported protocols ASCII

Transmission rate Configurable from 300 bit/s to 115.200 bit/s

Technical data of the serial interfaces of CI506-PNIO

Parameter Value
Number of serial interfaces 2

Connectors for serial interfaces X11 for COM1
X12 for COM2

Supported physical layers RS-232
RS-422
RS-485

Supported protocols ASCII

Transmission rate Configurable from 300 bit/s to 115.200 bit/s

Technical data of the CANopen interfaces (CI506-PNIO)

Parameter Value
Number of CANopen interfaces 1

Connector for CANopen Interface X13

Transmission rate Up to 1 Mbit/s

CI501-PNIO
● 4 analog inputs, 2 analog outputs, 8 digital inputs, 8 digital outputs
● Resolution 12 bits plus sign
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4995

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 - AI3, AO0 -

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 - DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 - DO7)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the I/O device identifier
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4996

Intended purpose
The PROFINET communication interface modules CI501-PNIO and CI502-PNIO are used
as communication interface modules in PROFINET networks. The network connection is per-
formed by Ethernet cables which are inserted in the RJ45 connectors in the terminal unit. An
Ethernet switch in the communication interface module allows daisy chaining of the network.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Functionality
The communication interface module contains 22 I/O channels with the following properties:
● 4 configurable analog inputs (2-wire / single-ended) or 2 configurable analog inputs (3-wire /

differential) (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC, 0.5 A max. in 1 group (3.0...3.7)
The inputs/outputs are galvanically isolated from the PROFINET network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Parameter Value
Interface Ethernet

Protocol PROFINET IO RT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the I/O device identifier for configu-
ration purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 1.6.2.5.1 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 4095

Connections
The Ethernet communication interface module CI501-PNIO is plugged on the I/O terminal unit
TU507-ETH or TU508-ETH Ä Chapter 1.6.2.5.1 “TU507-ETH and TU508-ETH for Ethernet
communication interface modules” on page 4095. Properly seat the module and press until it
locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the additional
accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory”
on page 5180).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4997

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

Reason: External voltages at an output or several outputs may cause that
other outputs are supplied through that voltage instead of voltage UP3 (reverse
voltage). This is unintended usage.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is connected at the outputs
DO0...DO7.

The assignment of the other terminals:

Terminal Signal Description
1.0 AI0+ Positive pole of analog input signal 0

1.1 AI1+ Positive pole of analog input signal 1

1.2 AI2+ Positive pole of analog input signal 2

1.3 AI3+ Positive pole of analog input signal 3

1.4 AI- Negative pole of analog input signals 0 to 3

1.5 AO0+ Positive pole of analog output signal 0

1.6 AO1+ Positive pole of analog output signal 1

1.7 AI- Negative pole of analog output signals 0 and 1

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI0 Signal of the digital input DI0

2.1 DI1 Signal of the digital input DI1

2.2 DI2 Signal of the digital input DI2

2.3 DI3 Signal of the digital input DI3

2.4 DI4 Signal of the digital input DI4

2.5 DI5 Signal of the digital input DI5

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US4998

Terminal Signal Description
2.6 DI6 Signal of the digital input DI6

2.7 DI7 Signal of the digital input DI7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO0 Signal of the digital output DO0

3.1 DO1 Signal of the digital output DO1

3.2 DO2 Signal of the digital output DO2

3.3 DO3 Signal of the digital output DO3

3.4 DO4 Signal of the digital output DO4

3.5 DO5 Signal of the digital output DO5

3.6 DO6 Signal of the digital output DO6

3.7 DO7 Signal of the digital output DO7

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

For the open-circuit detection (cut wire), each analog input channel is pulled up
to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 4999

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Only for simple applications (low electromagnetic disturbances, no high require-
ment on precision), the shielding can also be omitted.

The following figures show the connection of the Ethernet bus module CI501-PNIO.

Further information is provided in the System Technology chapter Ä Chapter 1.6.4.3.3
“PROFINET communication interface module” on page 5681.

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 to DI7 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5000

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.7.2.8.2 “State LEDs”
on page 5025.

Connection of the digital outputs
The following figure shows the connection of the digital output DO0. Proceed with the digital
outputs DO1 - DO7 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5001

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.7.2.8.2 “State LEDs”
on page 5025.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI501-PNIO provides a constant current source which is multiplexed over the max. 4 analog
input channels.
The following figure shows the connection of resistance thermometers in 2-wire configuration to
the analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5002

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027:

Pt100 -50 °C...+400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C...+400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C...+150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.
The module CI501-PNIO performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI501-PNIO provides a constant current source which is multiplexed over the max. 4 analog
input channels.
The following figure shows the connection of resistance thermometers in 3-wire configuration to
the analog inputs AI0 and AI1. Proceed with the analog inputs AI2 and AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5003

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027:

Pt100 -50 °C...+70 °C 3-wire configuration, 2 chan-
nels used

Pt100 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C...+400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C...+150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.
The module CI501-PNIO performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5004

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (voltage) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

The following figure shows the connection of active-type analog sensors (current) with galvani-
cally isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to AI3 in
the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5005

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027:

Current 0 mA...20 mA 1 channel used

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.
Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4 mA...20
mA, these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs AI1 to
AI3 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5006

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V (also not with long
cable lengths).

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.7 “Parameterization” on page 5014:

Voltage 0 V...10 V 1 channel used

Voltage -10 V...+10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 to AI3 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5007

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027:

Current 4 mA...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt zener diode in parallel to AIx+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range
4 mA...20 mA, these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5008

With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027:

Voltage 0 V...10 V With differential inputs, 2
channels used

Voltage -10 V...+10 V With differential inputs, 2
channels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5009

To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.
The following figure shows the connection of digital sensors to the analog input AI0. Proceed
with the analog inputs AI1 to AI3 in the same way.

Fig. 1005: Use of analog inputs as digital inputs

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027 :

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.

Connection of analog output loads (Voltage)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5010

Fig. 1006: Connection of analog output loads (voltage)

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027

Voltage -10 V...+10 V Load ±10 mA max. 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)
The following figure shows the connection of output loads to the analog output AO0. Proceed
with the analog output AO1 in the same way.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5011

Fig. 1007: Connection of analog output loads (current)

The following measuring ranges can be configured Ä Chapter 1.6.2.8.7.2.7 “Parameterization”
on page 5014 Ä Chapter 1.6.2.8.7.2.9.1 “Input ranges voltage, current and digital input”
on page 5027:

Current 0 mA...20 mA Load 0 W...500 W 1 channel used

Current 4 mA...20 mA Load 0 W...500 W 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs” on page 5020.
Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

Pin assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5012

Interface PIN Signal Description
8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI501-PNIO stores some PROFINET configuration parameters (I/O device identifier, I/O
device type and IP address configuration). No more configuration data is stored.
The analog/digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.2.8.7.2.7 “Parame-
terization” on page 5014.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5013

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7000 WORD 7000

Parameter length Internal 25 BYTE 25

Error LED / Fail-
safe function see
table Error LED /
Failsafe function
Ä Table 554 “Err
or LED / Failsafe
function”
on page 5015

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Process cycle
time 2)

1 ms process
cycle time

1 BYTE 1 ms

2 ms process
cycle time

2

3 ms process
cycle time

3

4 ms process
cycle time

4

5 ms process
cycle time

5

6 ms process
cycle time

6

7 ms process
cycle time

7

8 ms process
cycle time

8

9 ms process
cycle time

9

10 ms process
cycle time

10

11 ms process
cycle time

11

12 ms process
cycle time

12

13 ms process
cycle time

13

14 ms process
cycle time

14

15 ms process
cycle time

15

16 ms process
cycle time

16

Check supply off
on

0
1

BYTE 1

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5014

Name Value Internal value Internal value,
type

Default

Input delay 8 ms 8 ms BYTE 8 ms

Fast counter 0
:

10 3)

0
:
10

BYTE 0

Detect short cir-
cuit at outputs

On 1 BYTE On

Behavior digital
outputs at comm.
error

Off 0 BYTE Off

Substitute value
digital outputs

0 0..255 BYTE 0

Overvoltage
behavior on
output

Off 0 BYTE Off

Behavior analog
outputs atcomm.
error

Off 0 BYTE Off

I/O-Bus reset Off 0 BYTE Off

On 1 BYTE Off

Remarks:

1) With a faulty ID, the modules reports a "parameter error" and does not perform
cyclic process data transmission.

2) As for device index C0 the parameter is no longer evaluated.
3) Counter operating modes, see description of the Fast counter Ä Chapter

1.6.2.6.1.2.10 “Fast counter” on page 4351.

Table 554: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameters Behaviour AO at comm. error and Behaviour DO at comm. error are only
analyzed if the Failsafe-mode is ON.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5015

IO-BUS reset after PROFINET reconnection controls the behavior of PROFINET CI modules in
relation to connected I/O modules (both safety and non-safety I/O modules).
● IO-BUS reset after PROFINET reconnection = “On” resets and, thus, re-parameterizes

all attached I/O modules. All internal I/O modules states are reset, including the related
diagnosis information.
Note that if the parameter is set to “On” then:
– The bumpless re-start of non-safety I/O modules will not be supported. It means, for

example, that non-safety output channels will go from fail-safe values to “0” values
during the re-connection and re-parameterization time and after that go to new output
values.

– Safety I/O modules will be re-parameterized and re-started as newly started modules,
which may not require their PROFIsafe reintegration, depending on safety CPU state, in
the safety application.

● IO-BUS reset after PROFINET reconnection = “Off” will not reset all attached I/O modules. It
will re-parameterize I/O modules only if parameter change is detected during the reconnec-
tion. All internal I/O modules states are not reset, including the related diagnosis informa-
tion.
Note that if the parameter is set to “Off” then:
– The bumpless re-start of non-safety I/O modules is supported (if no parameters are

changed). It means, for example, that non-safety output channels will not go from fail-
safe values to “0” values during the re-connection and re-parameterization time, but
directly from fail-safe values to new output values.

– Safety I/O modules will not be re-parameterized (if no parameters are changed). Thus,
they may continue their operation, which may require their PROFIsafe reintegration in
the safety application on the safety CPU, e.g., if PROFIsafe watchdog time for this
safety I/O module has expired. Any reintegration of such safety I/O modules will be
not only application specific but also PROFIsafe specific and depend on the safety I/O
handling in the safety application.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

IO-BUS reset
after PROFINET
reconnection

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5016

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 555 “Ch
annel configura-
tion”
on page 5017

Table Operating
modes of the
analog inputs
Ä Table 555 “Ch
annel configura-
tion”
on page 5017

BYTE 0

Input 0, Check
channel

Table Channel
montoring
Ä Table 556 “Ch
annel monitoring”
on page 5018

Table Channel
montoring
Ä Table 556 “Ch
annel monitoring”
on page 5018

BYTE 0

: : : : :

: : : : :

Input 3, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 555 “Ch
annel configura-
tion”
on page 5017

Table Operating
modes of the
analog inputs
Ä Table 555 “Ch
annel configura-
tion”
on page 5017

BYTE 0

Input 3, Check
channel

Table Channel
montoring
Ä Table 556 “Ch
annel monitoring”
on page 5018

Table Channel
montoring
Ä Table 556 “Ch
annel monitoring”
on page 5018

BYTE 0

Table 555: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0 V...10 V

2 Digital input

3 0 mA...20 mA

4 4 mA...20 mA

5 -10 V...+10 V

8 2-wire Pt100 -50 °C...+400 °C

9 3-wire Pt100 -50 °C...+400 °C *)

10 0 V...10 V (voltage diff.) *)

11 -10 V...+10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C...+70 °C

15 3-wire Pt100 -50 °C...+70 °C *)

16 2-wire Pt1000 -50 °C...+400 °C

17 3-wire Pt1000 -50 °C...+400 °C *)

18 2-wire Ni1000 -50 °C...+150 °C

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5017

Internal value Operating modes of the analog inputs, individually configurable
19 3-wire Ni1000 -50 °C...+150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 556: Channel monitoring
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 5019

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 5019

BYTE 0

Output 0, Check
channel

Table Channel
monitoring
Ä Table 558 “Ch
annel monitoring”
on page 5019

Table Channel
monitoring
Ä Table 558 “Ch
annel monitoring”
on page 5019

BYTE 0

Output 0, Substi-
tute value

Table Substitute
value
Ä Table 559 “Su
bstitute value”
on page 5019

Table Substitute
value
Ä Table 559 “Su
bstitute value”
on page 5019

WORD 0

Output 1,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 5019

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 5019

BYTE 0

Output 1, Check
channel

Table Channel
monitoring
Ä Table 558 “Ch
annel monitoring”
on page 5019

Table Channel
monitoring
Ä Table 558 “Ch
annel monitoring”
on page 5019

BYTE 0

Output 1, Substi-
tute value

Table Substitute
value
Ä Table 559 “Su
bstitute value”
on page 5019

Table Substitute
value
Ä Table 559 “Su
bstitute value”
on page 5019

WORD 0

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5018

Table 557: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V...+10 V

129 0 mA...20 mA

130 4 mA...20 mA

Table 558: Channel monitoring
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 559: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5019

Name Value Internal value Internal value,
type

Default

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0...255 00h...FFh BYTE 0
0x0000

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE On
0x01

1) The parameters Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.
2) The state "externally voltage detected" appears, if the output of a channel DC0...DC7
should be switched on while an externally voltage is connected Ä Chapter 1.6.2.8.7.2.3
“Connections” on page 4997. In this case the start up is disabled, as long as the externally
voltage is connected. The monitoring of this state and the resulting diagnosis message can be
disabled by setting the parameters to "OFF".

Diagnosis and state LEDs
Structure of the diagnosis block via PNIO_DEV_ALARM function block

Byte Number Description Possible Values
1 Diagnosis Byte, slot number 31 = CI501-PNIO (e. g. error at inte-

grated 8 DI / 8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5020

Byte Number Description Possible Values
4 Diagnosis Byte, error code According to the I/O bus specification

Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5021

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 No process voltage
UP

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5022

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs DO0...DO7
on UP3 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

4 - 31 31 31 45 No process voltage
UP3

Check
process
supply
voltage

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5023

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Externally voltage
detected at digital
output DO0...DO7
6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0...3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0...3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0...3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0...1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0...1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5024

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0...4 or 10 = Position of the
communication module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI501-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself; 1...10 =
Expansion module

3) With "Module" the following allocation applies:
31 = Module itself
Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals
DO0...DO7 cause that other digital outputs are supplied through that voltage
Ä Chapter 1.6.2.8.7.2.3 “Connections” on page 4997. All outputs of the
apply digital output groups will be turned off for 5 seconds. The diagnosis
message appears for the whole output group.

5) The voltage on digital outputs DO0...DO7 has overrun the process supply
voltage UP3 Ä Chapter 1.6.2.8.7.2.3 “Connections” on page 4997. Diag-
nosis message appears for the whole module.

6) This message appears, if the output of a channel DO0...DO7 should be
switched on while an externally voltage is connected. In this case the start
up is disabled, as long as the externally voltage is connected. Otherwise this
could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for
100 ms. Then a new start up will be executed. This diagnosis message
appears per channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any
hot swap operations (also not on any other terminal units (slots)) as modules
may be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 560: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5025

LED Color OFF ON Flashing
Red --- --- Device is not

configured

STA2 ETH
(System LED
"SF")

Green --- --- Got identification
request from I/O
controller

Red No system error System error
(collective error)

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 561: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 to DO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5026

Measuring ranges
Input ranges voltage, current and digital input

Range 0...10 V -10...+10
V

0...20 mA 4...20 mA Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50...+70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value
Decimal Hex.

Overflow > 80.0 °C > 450.0 °C > 160.0 °C 32767 7FFF

Measured
value too
high

80.0 °C 450.0 °C
:
400.1 °C

 4500
:
4001

1194
:
0FA1

 160.0 °C
:
150.1 °C

1600
:
1501

0640
:
05DD

Normal
range

 400.0 °C
:
:
:
0.1 °C

150.0 °C
:
:
0.1 °C

800
:
701

0320
:
02BD

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5027

Range Pt100 / Pt1000
-50...+70 °C

Pt100 /
Pt1000
-50...400 °C

Ni1000
-50...150 °C

Digital value
Decimal Hex.

 0.0 °C 0.0 °C 4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

 -0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

0 0000

Measured
value too
low

< -60.0 °C -50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-1
:
-500

FFFF
:
FE0C

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -501
:
-600

FE0B
:
FDA8

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow > 11.7589 V > 23.5178

mA
> 22.8142
mA

> 32511 > 7EFF

Measured
value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow < -11.7589 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5028

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

Input data length 2 bytes

Output data length 2 bytes

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnose See Diagnosis and Displays Ä Chapter
1.6.2.8.7.2.8 “Diagnosis and state LEDs”
on page 5020

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40 °C per group)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5029

Parameter Value
Extended ambient temperature (XC version) >60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5030

Parameter Value
Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

Reference potential for all inputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 1-Signal +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5031

Parameter Value
Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5032

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 1.0 to1.3

Reference potential for AI0+ to AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V... +10 V

Galvanic isolation Against Ethernet network

Configurability 0 V...10 V, -10 V...+10 V, 0 mA...20 mA, 4
mA...20 mA Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0 V...10 V: 12 bits
Range -10 V...+10 V: 12 bits + sign
Range 0 mA...20 mA: 12 bits
Range 4 mA...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Tables Input ranges voltage, current and dig-
ital input and Input range resistance tem-
perature detector Ä Chapter 1.6.2.8.7.2.9.1
“Input ranges voltage, current and digital input”
on page 5027

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5033

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 1.0 to 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

Reference potential for AO0+ to AO1+ Terminal 1.7 (AO-) for voltage output terminal
1.9, 2.9 and 3.9 for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10 V...+10 V, 0 mA...20 mA, 4 mA...20 mA
(each output can be configured individually)

Output resistance (load), as current output 0 W...500 W

Output loadability, as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits (+ sign)

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5034

Parameter Value
Relationship between input signal and hex
code

Table Output ranges voltage and current
Ä Chapter 1.6.2.8.7.2.9.3 “Output ranges
voltage and current” on page 5028

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI0), 2.1 (DI1)

Used outputs Terminal 3.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

Ordering data

Part no. Description Product life cycle phase *)
1SAP 220 600 R0001 CI501-PNIO (V3), PROFINET commu-

nication interface module, 8 DI, 8 DO,
4 AI and 2 AO

Active

1SAP 420 600 R0001 CI501-PNIO-XC (V3), PROFINET
communication interface module, 8 DI,
8 DO, 4 AI and 2 AO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI502-PNIO
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5035

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs (DC0 -

DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 - DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 - DO15)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the I/O device identifier
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The PROFINET communication interface module CI502-PNIO is used as communication inter-
face module in PROFINET networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5036

Functionality
The CI502 communication interface module contains 24 I/O channels with the following proper-
ties:
● 8 digital configurable inputs/outputs
● 8 digital inputs: 24 V DC
● 8 digital outputs: 24 V DC, 0.5 A max.
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Parameter Value
Interface Ethernet

Protocol PROFINET IO RT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the IO device identifier for configura-
tion purposes (00h to FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507-ETH or TU508-ETH Ä Chapter
1.6.2.5.1 “TU507-ETH and TU508-ETH for
Ethernet communication interface modules”
on page 4095

Connections
The Ethernet communication interface module CI502-PNIO is plugged on the I/O terminal unit
TU507-ETH Ä Chapter 1.6.2.5.1 “TU507-ETH and TU508-ETH for Ethernet communication
interface modules” on page 4095 or TU508-ETH Ä Chapter 1.6.2.5.1 “TU507-ETH and TU508-
ETH for Ethernet communication interface modules” on page 4095. Properly seat the module
and press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws
plus the additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall
mounting accessory” on page 5180).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5037

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V.
The assignment of the other terminals:

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

This ist not intended usage.

Reason: Externally voltages at one or more terminals DC0..DC7 or DO0..DO7
may cause that other digital outputs are supplied through that voltage instead of
voltage UP3 (reverse voltage).

This is also possible, if DC channels are used as inputs. For this, the source for
the input signals should be the impressed UP3 of the device.

This limitation does not apply for the input channels DI0..DI7.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0...DO7 and DC0...DC7.

The assignment of the other terminals:

Terminal Signal Description
1.0 DC0 Signal of the configurable digital input/output

DC0

1.1 DC1 Signal of the configurable digital input/output
DC1

1.2 DC2 Signal of the configurable digital input/output
DC2

1.3 DC3 Signal of the configurable digital input/output
DC3

1.4 DC4 Signal of the configurable digital input/output
DC4

1.5 DC5 Signal of the configurable digital input/output
DC5

1.6 DC6 Signal of the configurable digital input/output
DC6

1.7 DC7 Signal of the configurable digital input/output
DC7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5038

Terminal Signal Description
2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO8 Signal of the digital output DO8

3.1 DO9 Signal of the digital output DO9

3.2 DO10 Signal of the digital output DO10

3.3 DO11 Signal of the digital output DO11

3.4 DO12 Signal of the digital output DO12

3.5 DO13 Signal of the digital output DO13

3.6 DO14 Signal of the digital output DO14

3.7 DO15 Signal of the digital output DO15

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5039

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The following figure shows the connection of the Ethernet communication interface module
CI502-PNIO.

Further information is provided in the System Technology chapter PROFINET Ä Chapter
1.6.4.3.3 “PROFINET communication interface module” on page 5681.

Connection of the Digital inputs
The following figure shows the connection of the digital input DI8. Proceed with the digital inputs
DI9 to DI15 in the same way.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5040

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.7.3.8.1 “State LEDs”
on page 5052.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5041

Connection of the Digital outputs
The following figure shows the connection of the digital output DO8. Proceed with the digital
outputs DO9 - DO15 in the same way.

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.7.3.8.1 “State LEDs”
on page 5052.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5042

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 to DC7 in the same way.

CAUTION!
If a DC channel is used as input, the source for the input signals should
be the impressed UP3 of the device Ä Chapter 1.6.2.8.7.3.3 “Connections”
on page 5037.

1.0
DC0
1.1
DC1
1.2
DC2
1.3
DC3
1.4
DC4
1.5
DC5
1.6
DC6
1.7
DC7
1.8
UP
1.9
ZP

-
+

24 V DC

2.4

DI14

2.0
DI8
2.1
DI9
2.2
DI10
2.3
DI11

DI12
2.5
DI13
2.6

2.7
DI15
2.8
UP
2.9
ZP

3.0
DO8
3.1
DO9
3.2
DO10
3.3
DO11
3.4
DO12
3.5
DO13
3.6
DO14
3.7
DO15
3.8
UP3
3.9
ZP

The meaning of the LEDs is described in Displays Ä Chapter 1.6.2.8.7.3.8.1 “State LEDs”
on page 5052.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5043

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

Internal data exchange

Parameter Value
Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI502-PNIO stores some PROFINET configuration parameters (I/O device identifier, I/O
device type and IP address configuration). No more configuration data is stored.
The digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 1.6.2.8.7.3.7 “Parame-
terization” on page 5044.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7005 WORD 7005

Parameter length Internal 8 BYTE 8

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5044

Name Value Internal value Internal value,
type

Default

Error LED / Fail-
safe function
(Table Error
LED / Failsafe
function Ä Fur-
ther information
on page 5044)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Process cycle
time

1 ms process
cycle time

1 BYTE 1 ms

2 ms process
cycle time

2

3 ms process
cycle time

3

4 ms process
cycle time

4

5 ms process
cycle time

5

6 ms process
cycle time

6

7 ms process
cycle time

7

8 ms process
cycle time

8

9 ms process
cycle time

9

10 ms process
cycle time

10

11 ms process
cycle time

11

12 ms process
cycle time

12

13 ms process
cycle time

13

14 ms process
cycle time

14

15 ms process
cycle time

15

 16 ms process
cycle time

16

Check supply Off
On

0
1

BYTE 1

Fast counter 0
:

10 2)

0
:
10

BYTE 0

I/O-Bus reset Off 0 BYTE Off

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5045

Name Value Internal value Internal value,
type

Default

On 1 BYTE Off
1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission.
2) Counter operating modes Ä Chapter 1.6.2.6.1.2.10 “Fast counter” on page 4351

Table 562: Table Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.

IO-BUS reset after PROFINET reconnection controls the behavior of PROFINET CI modules in
relation to connected I/O modules (both safety and non-safety I/O modules).
● IO-BUS reset after PROFINET reconnection = “On” resets and, thus, re-parameterizes

all attached I/O modules. All internal I/O modules states are reset, including the related
diagnosis information.
Note that if the parameter is set to “On” then:
– The bumpless re-start of non-safety I/O modules will not be supported. It means, for

example, that non-safety output channels will go from fail-safe values to “0” values
during the re-connection and re-parameterization time and after that go to new output
values.

– Safety I/O modules will be re-parameterized and re-started as newly started modules,
which may not require their PROFIsafe reintegration, depending on safety CPU state, in
the safety application.

● IO-BUS reset after PROFINET reconnection = “Off” will not reset all attached I/O modules. It
will re-parameterize I/O modules only if parameter change is detected during the reconnec-
tion. All internal I/O modules states are not reset, including the related diagnosis informa-
tion.
Note that if the parameter is set to “Off” then:
– The bumpless re-start of non-safety I/O modules is supported (if no parameters are

changed). It means, for example, that non-safety output channels will not go from fail-
safe values to “0” values during the re-connection and re-parameterization time, but
directly from fail-safe values to new output values.

– Safety I/O modules will not be re-parameterized (if no parameters are changed). Thus,
they may continue their operation, which may require their PROFIsafe reintegration in
the safety application on the safety CPU, e.g., if PROFIsafe watchdog time for this
safety I/O module has expired. Any reintegration of such safety I/O modules will be
not only application specific but also PROFIsafe specific and depend on the safety I/O
handling in the safety application.

IO-BUS reset
after PROFINET
reconnection

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5046

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0...65535 0000h...FFFFh WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0..DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behaviour DO at comm. error is apply to DC and DO channels
and only analyzed if the Failsafe-mode is ON.

2) The state "externally voltage detected" appears, if the output of a channel
DC0...DC7 should be switched on while an externally voltage is connected. In
this case the start up is disabled, as long as the externally voltage is connected.
The monitoring of this state and the resulting diagnosis message can be disabled
by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears, if externally voltage at
digital outputs DC0...DC7 and accordingly DO0...DO7 has exceeded the process
supply voltage UP3 Ä Chapter 1.6.2.8.7.3.3 “Connections” on page 5037 (see
description in section). The according diagnosis message "Voltage overflow on
outputs " can be disabled by setting the parameters on "OFF". This parameter
should only be disabled in exceptional cases for voltage overflow may produce
reverse voltage.

Diagnosis
Structure of the Diagnosis Block via PNIO_DEV_ALARM function block Ä Chapter 1.5.4.27.1.1
“PNIO_DEV_ALARM” on page 1794.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5047

Byte Number Description Possible Values
1 Diagnosis Byte, slot

number
31 = CI502-PNIO (e. g. error at integrated
8 DI / 8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5048

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O device

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O device
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5049

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5050

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 46 Reverse voltage
from digital outputs
DO0..DO7 to UP3
4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
at outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8...15 46 Externally voltage
detected at digital
output DO0..DO7 6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0..DC7 6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at
digital output
DC0..DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO0..DO77)

Check
terminals

Remarks:

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5051

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0...4 or 10 = Position of the
Communication Module;14 = I/O-Bus; 31 = Module itself
The identifier is not contained in the CI502-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself, 1..10 = Expan-
sion module

3) With "Module" the following allocation applies dependent of the master:
Module error: 31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals DC0...DC7
oder DO0...DO7 cause that other digital outputs are supplied through that voltage
(voltage feedback, see description in 'Connections' Ä Chapter 1.6.2.8.7.3.3
“Connections” on page 5037. All outputs of the apply digital output groups will
be turned off for 5 seconds. The diagnosis message appears for the whole output
group.

5) The voltage at digital outputs DC0...DC7 and accordingly DO0...DO7 has
exceeded the process supply voltage UP3 Ä Chapter 1.6.2.8.7.3.3 “Connec-
tions” on page 5037. Diagnosis message appears for the whole module.

6) This message appears, if the output of a channel DC0...DC7 or DO0...DO7
should be switched on while an externally voltage is connected. In this case the
start up is disabled, as long as the externally voltage is connected. Otherwise
this could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for 2000
ms. Then a new start up will be executed. This diagnosis message appears per
channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any hot
swap operations (also not on any other terminal units (slots)) as modules may be
damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 563: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with IO Controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System-LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5052

LED Color OFF ON Flashing
Red --- --- Device is not

configured

STA2 ETH
(System LED
"SF")

Green --- --- Got identification
request from I/O
controller

Red No system error System error
(collective error)

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 564: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 to DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 to DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 to DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5053

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Input data length 12 bytes

Output data length 20 bytes

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnosis See Diagnosis and Displays Ä Chapter
1.6.2.8.7.3.8 “Diagnosis” on page 5047

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at 40 °C per group)

Extended ambient temperature (XC version) > 60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5054

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 to DI7 Terminals 2.0 to 2.7

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5055

Parameter Value
Reference potential for all inputs Terminals 1.9...3.9 (Negative pole of the supply

voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 3.0 to 3.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5056

Parameter Value
 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0...DC07 Terminals 1.0...1.7

If the channels are used as outputs

 Channels DC0...DC07 Terminals 1.0...1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5057

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all inputs Terminals 1.9...3.9 (Negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V...+5 V

 Undefined Signal > +5 V...< +15 V

 Signal 1 +15 V...+30 V

Ripple with signal 0 Within -3 V...+5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V to +30 V when UPx = 24 V and from
-6 V to +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 to DC7 Terminals 1.0 to 1.7

Reference potential for all outputs Terminals 1.9...3.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5058

Parameter Value
 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI8),Terminal 2.1 (DI9)

Used outputs Terminal 3.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1- 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498

Ä Chapter 1.6.4.4.2.2 “Operating modes” on page 5716

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5059

Ordering data

Active Active Product life cycle phase *)
1SAP 220 700 R0001 CI502-PNIO (V3), PROFINET commu-

nication interface module, 8 DI, 8 DO
and 8 DC

Active

1SAP 420 700 R0001 CI502-PNIO-XC (V3), PROFINET
communication interface module, 8 DI,
8 DO and 8 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI504-PNIO
● 3 serial UART interfaces (RS-232, RS-422 or RS-485)
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5060

ETH1

ETH2

5

1
2
3
4

6
7
8
9

5

1
2
3
4

6
7
8
9

5

1
2
3
4

6
7
8
9

X11 X12 X13

1.0

1.1

3.0

3.1

2.0

2.1

CI504

UP 24VDC 5W PROFINET IO Device
3x Serial Interface (RS232/485/422)

STA1 ETH

PWR/RUN

STA2 ETH

S-ERR

COM1-ERR

I/O-Bus

1.1ZP

1.0UP

COM1 TxD

COM1 RxD

COM1 STA

X11 - COM1
1 Term-P
2 Rx/Tx-P
3 Rx/Tx-N
4 Term-N
5 RTS
6 TxD
7 SGND
8 RxD
9 CTS

COM3-ERR

3.1ZP

COM3 TxD

COM3 RxD

COM3 STA

X13 - COM3
1 Term-P
2 Rx/Tx-P
3 Rx/Tx-N
4 Term-N
5 RTS
6 TxD
7 SGND
8 RxD
9 CTS

3.0UP

COM2-ERR

2.1ZP

COM2 TxD

COM2 RxD

COM2 STA

X12 - COM2
1 Term-P
2 Rx/Tx-P
3 Rx/Tx-N
4 Term-N
5 RTS
6 TxD
7 SGND
8 RxD
9 CTS

2.0UP
ADDR
x01H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

x10H
ADDR

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

12 2

10

11

12

2

3

4 4 4

5
6

7

8

9

9

1010

1 I/O bus
2 3 x 3 yellow LEDs to display the signal states of the serial interfaces COM1, COM2 and

COM3
3 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
4 Allocation between terminal number and signal name of the serial interfaces
5 2 rotary switches for setting the I/O device identifier
6 1 green LED to display the process voltage UP
7 3 red LEDs to display errors (COM1-ERR, COM2-ERR, COM3-ERR) of the serial interfaces
8 Label
9 Ethernet Interfaces (ETH1, ETH2) on the terminal unit
10 3 removable connectors to connect the interfaces
11 6 spring terminals for power supply voltage (UP)
12 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5061

Intended purpose
The PROFINET communication interface module CI504-PNIO provides 3 onboard serial inter-
faces. The network connection is performed via 2 RJ45 connectors which are integrated in the
terminal unit.
The bus interfaces are galvanically isolated from the Ethernet network.
For usage in extreme ambient conditions (e. g. wider temperature and humidity range), a
special XC version of the device is available.

Functionality

Parameter Value
Interface Ethernet

Protocol PROFINET IO RT

Serial Interfaces 3 Serial UART interfaces
RS-232, RS-422 and RS-485 available as
physical layer

Serial protocol ASCII

I/O bus interface For up to 10 AC500 I/O Modules

Rotary switches For setting the I/O device identifier for configu-
ration purposes (00h to FFh)

LED displays For system displays, field bus indication, errors
and power supply

Power supply Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU520 Ä Chapter 1.6.2.5.5 “TU520-ETH for
PROFINET communication interface modules”
on page 4112

Connections
The PROFINET communication interface module CI504-PNIO is plugged on the terminal
unit TU520-ETH Ä Chapter 1.6.2.5.5 “TU520-ETH for PROFINET communication interface
modules” on page 4112. Properly seat the module and press until it locks in place. The terminal
unit is mounted on a DIN rail or with 2 screws plus the additional accessory for wall mounting
(TA526 Ä Chapter 1.6.2.9.2.6 “TA526 - Wall mounting accessory” on page 5180).
The connection of the power supply voltage is carried out using the 6 terminals and the 3
removable connectors of the terminal unit. The CI504-PNIO can be replaced without re-wiring
the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The terminals 1.0, 2.0 and 3.0 as well as 1.1, 2.1 and 3.1 are electrically interconnected within
the terminal unit and have always the same assignment, independent of the inserted module:

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5062

Table 565: Assignment of the terminals
Terminal Signal Description
1.0 UP Process voltage UP (+24 V DC)

1.1 ZP Process voltage ZP (0 V DC)

2.0 UP Process voltage UP (+24 V DC)

2.1 ZP Process voltage ZP (0 V DC)

3.0 UP Process voltage UP (+24 V DC)

3.1 ZP Process voltage ZP (0 V DC)

Table 566: Assignment of the terminals of removable connectors X11, X12 and X13 (Serial
interfaces)
Terminal Signal Description
1 Term-P RS-485 Internal line terminating resistor for non-

inverted signal (Rx/Tx-P)

RS-422 Non-inverted receive signal terminal
(RxD+)

2 Rx/Tx-P RS-485 Non-inverted I/O signal terminal for
each channel

RS-422 Non-inverted transmit signal terminal
(TxD+)

3 Rx/Tx-N RS-485 Inverted I/O signal terminal for each
channel

RS-422 Inverted transmit signal terminal (TxD-)

4 Term-N RS-485 Internal line-terminating resistor for
inverted signal (Rx/Tx-N) terminal

RS-422 Inverted receive signal terminal (RxD-)

5 RTS RS-232 Request To Send signal terminal for
each channel

6 TxD RS-232 Transmit signal terminal for each
channel

7 SGND RS-232 Signal ground for each channel

8 RxD RS-232 Receive signal terminal for each
channel

9 CTS RS-232 Clear To Send signal terminal for each
channel

The connection of SGND (ground) is optional for RS-485/RS-422.

For RS-422, no external line-terminating resistors have to connected. They are
already connected inside the module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5063

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provide several diagnosis functions Ä Chapter 1.6.2.8.7.4.7 “Diagnosis”
on page 5069.
Further information is provided in the System Technology chapter PROFINET Ä Chapter
1.6.4.2.3 “PROFINET communication modules” on page 5534.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

Pin assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5064

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7010 WORD 7010

Parameter length Internal 33 BYTE 33

Error LED / Fail-
safe function

see table 2)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

I/O-Bus reset Off 0 BYTE Off

On 1 BYTE Off

Remarks:
1) With a faulty module ID, the module reports a "parameter error" and does not perform cyclic
process data transmission

Table 567: Error LED / Failsafe function 2)
Setting Description
On Error LED lights up at errors of all error classes, Failsafe-mode

off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe-mode off

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5065

Setting Description
Off by E3 Error LED lights up at errors of error classes E1 and E2, Fail-

safe-mode off

On + Failsafe Error LED lights up at errors of all error classes, Failsafe-mode
on

Off by E4 + Failsafe Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe-mode on

Off by E3 + Failsafe Error LED lights up at errors of error classes E1 and E2, Fail-
safe-mode on

All values are validated during the parameterization of the CI504-PNIO according to the
appended expansion modules. In the case of error, a diagnosis message "parameter errors"
is generated and the cyclic process data transfer is terminated.

IO-BUS reset after PROFINET reconnection controls the behavior of PROFINET CI modules in
relation to connected I/O modules (both safety and non-safety I/O modules).
● IO-BUS reset after PROFINET reconnection = “On” resets and, thus, re-parameterizes

all attached I/O modules. All internal I/O modules states are reset, including the related
diagnosis information.
Note that if the parameter is set to “On” then:
– The bumpless re-start of non-safety I/O modules will not be supported. It means, for

example, that non-safety output channels will go from fail-safe values to “0” values
during the re-connection and re-parameterization time and after that go to new output
values.

– Safety I/O modules will be re-parameterized and re-started as newly started modules,
which may not require their PROFIsafe reintegration, depending on safety CPU state, in
the safety application.

● IO-BUS reset after PROFINET reconnection = “Off” will not reset all attached I/O modules. It
will re-parameterize I/O modules only if parameter change is detected during the reconnec-
tion. All internal I/O modules states are not reset, including the related diagnosis informa-
tion.
Note that if the parameter is set to “Off” then:
– The bumpless re-start of non-safety I/O modules is supported (if no parameters are

changed). It means, for example, that non-safety output channels will not go from fail-
safe values to “0” values during the re-connection and re-parameterization time, but
directly from fail-safe values to new output values.

– Safety I/O modules will not be re-parameterized (if no parameters are changed). Thus,
they may continue their operation, which may require their PROFIsafe reintegration in
the safety application on the safety CPU, e.g., if PROFIsafe watchdog time for this
safety I/O module has expired. Any reintegration of such safety I/O modules will be
not only application specific but also PROFIsafe specific and depend on the safety I/O
handling in the safety application.

Parameters of the 3 serial channels

Name Value Internal
value

Internal
value, type

Default

Behavior for serial
channel communication during
PROFINET communication
fault

Stop communi-
cation and
reset FIFO

0 BYTE 0

Continue serial
communication

1

Number of frames/data blocks
in reception FIFO

1...40 1...40 BYTE 1

IO-BUS reset
after PROFINET
reconnection

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5066

Name Value Internal
value

Internal
value, type

Default

Number of frames/Data blocks
in transmission FIFO

1...40 1...40 BYTE 1

Behavior during reception
FIFO overflow

Discard new
received
frames

1 BYTE 2

Overwrite
oldest frame in
FIFO

2

Discard new
received
frames and
send
PROFINET
alarm

3

Overwrite
oldest frame in
FIFO and send
PROFINET
alarm

4

Physical layer RS-232 1 BYTE 1

RS-485 2

RS-422 3

RTS control None 0 BYTE 1

Telegram 1

RTS/CTS
(DTE <-> DTE)

2

RTS/CTS
(DTE -> DCE)

3

RTS/CTS
(DCE <- DTE)

4

TLS (RTS leading cycle) 0...850 ms 0...850 WORD 0

CDLY (RTS trailing cycle) 0...850 ms 0...850 WORD 0

Character timeout 0/32 bits 0/32 WORD 0

Telegram ending selection None 0 BYTE None

String (check
reception)

1

Telegram
length

2

Character
timeout

4

Telegram ending character 0...255 0...255 BYTE 0

Telegram ending value 0...65535 0...65535 WORD 0

Checksum None 0 BYTE 0

CRC8 1

CRC16 2

LRC 3

ADD 4

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5067

Name Value Internal
value

Internal
value, type

Default

CS31 5

CRC8-FBP 6

XOR 7

CRC16 (Intel) 8

Handshake mode None 0 BYTE 0

XON/XOFF 2

Transmission rate Channel inac-
tive

0 DWORD 19200

300 bit/s 300

1200 bit/s 1200

4800 bit/s 4800

9600 bit/s 9600

14400 bit/s 14400

19200 bit/s 19200

38400 bit/s 38400

38400 bit/s 57600

57600 bit/s 57600

115200 bit/s 115200

Parity No parity 0 BYTE No parity

Odd parity 1

Even parity 2

Data bits 5 bits 0 BYTE 8

6 bits 1

7 bits 2

8 bits 3

Stop bits 1 bit 0 BYTE 1

2 bits 1

Configuration with Automation Builder
The physical layers are selectable as submodules in PROFINET configuration
(parameter Physical Layer not visible and fixed with the correct value). Certain
parameters are not visible if a certain physical layer is selected. This concept
of parameterization provides a better usability than configuring via GSDML (see
below).

Configuration via GSDML (use by 3rd party PROFINET configuration tool)
All parameters are visible independent of the configured physical layer (via
parameter “Physical Layer”). The user must take precautions for each param-
eter since certain parameter values are invalid for certain physical layers. Nev-
ertheless, the CI5xx-PNIO module performs a parameter check depending on
the configured physical layer and generates a diagnosis message (parameter
error) in the case of error.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5068

General precautions
● If parameter telegram ending selection is set to value Character Timeout, the value in the

parameter Character Timeout must be set to 0. The parameter End Value must be set to 32
(equivalent to 32-bits character timeout). Only 32-bits character timeout is supported.

● Checksum is only supported if a telegram ending selection is active.
● Please refer to AC500 serial channel documentation for additional precautions.

Precautions for RS-485/RS-422
DTE/DCE is not supported. The parameter RTS Control must be set to value Telegram or to
None.

Diagnosis
Structure of the Diagnosis Block via PNIO_DEV_ALARM function block Ä Chapter 1.5.4.27.1.1
“PNIO_DEV_ALARM” on page 1794

Byte Number Description Possible Values
1 Diagnosis Byte, slot

number
31 = CI504-PNIO (e. g. error at integrated
Serial Interface)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis Byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

3 Diagnosis Byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5069

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3)

Module error

3 - 31 31 31 43 Internal error in the
module

Replace
module

3 - 31 31 31 9 Overflow diagnosis
buffer

New
start

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage too
low

Check
process
voltage

3 - 31 31 31 45 Process voltage
gone

Check
process
voltage

3 - 1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

4 - 1...10 31 31 31 At least 1 I/O
Module does not
support failsafe
mode

Check
I/O
modules
and
parame-
terization

4 - 1...10 31 31 32 Wrong I/O Module
type on socket

Replace
I/O
module
Check
configu-
ration

4 - 1...10 31 31 34 No response during
initialization of the
I/O Module

Replace
I/O
module

Serial Channel error

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5070

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 1...3 12 Reception SW
FIFO overrun

Check
modules
and
parame-
terization

4 - 31 31 1...3 26 Parameter error Check
modules
and
parame-
terization

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0...4 or 10 = Position of
the Communication Module; 14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI504-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself
3) With "Module" the following allocation applies dependent of the master:

31 = Module itself or 1...10 expansion module

State LEDs
The LEDs are located at the front of module. There are 4 different groups:
● 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● 4 Ethernet state LEDs located at the terminal unit TU520-ETH
● 12 state LEDs for the serial interfaces
● 1 LED to display the presence of the process supply voltage UP

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5071

Table 568: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Red --- --- Device is not
configured

STA2 ETH
(System LED
"SF")

Green --- --- Got identification
request from I/O
controller

Red No system error System error
(collective error)

S-ERR Red No error Internal error --

I/O-Bus Green No communica-
tion interface
module con-
nected or com-
munication error

communication
interface module
connected and
operational

Table 569: States of the 4 Ethernet state LEDs
LED Color OFF ON Flashing
ETH1-Link Green No connection at

Ethernet inter-
face

Connected to
Ethernet inter-
face

ETH1-Rx Tx Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2-Link Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Eth2-Rx Tx Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5072

Table 570: States of the 12 state LEDs (4 per channel) of the serial interfaces
LED Color OFF ON Flashing
COMx TxD Yellow No data trans-

mission over
serial network

-- Channel is trans-
mitting data via
the serial inter-
face (flashing
rate depending
on the telegram
transmission fre-
quency)

COMx RxD Yellow No data recep-
tion from serial
network

-- Channel is
receiving data
from the serial
interface
(flashing rate
depending on the
telegram recep-
tion frequency)

COMx STA Yellow RS-232: RTS
signal not active
RS-485: Channel
is in reception
mode
RS-422:Channel
is not enabled

RS-232: RTS
signal is active
RS-485: Channel
is transmitting
RS-422: Channel
is enabled (able
to receive and
transmit)

--

COMx-ERR Red Channel enabled,
no error
OR
Channel deacti-
vated

Channel boot up Channel error
(receive buffer
overflow)

Table 571: State of the power supply LED
LED Color OFF ON Flashing
UP Green No process

voltage available
Process voltage
available

--

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5073

Technical data of the module

Parameter Value
Process supply voltages UP

 Rated value 24 V DC

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Connections Terminals 1.0, 2.0 and 3.0 for +24 V (UP)
Terminals 1.1, 2.1 and 3.1 for 0 V (ZP)

Input data length 0...36 bytes

Output data length 0...36 bytes

Max. power dissipation within the module 5 W

Setting of the I/O module identifier With 2 rotary switches at the front side of the
module

Operation and error displays 18 LEDs (total)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Galvanic isolation Ethernet interface against the rest of the
module, each serial port against each other and
the rest of the module

Diagnosis See Diagnosis Ä Chapter 1.6.2.8.7.4.7 “Diag-
nosis” on page 5069

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5074

Parameter Value
Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Technical data of the serial interfaces

Parameter Value
Number of serial interfaces 3

Connectors for serial interfaces X11 for COM1
X12 for COM2
X13 for COM3

Supported physical layers RS-232
RS-422
RS-485

Supported protocols ASCII

Transmission rate Configurable from 300 bit/s to 115.200 bit/s

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5075

Ordering data

Part no. Description Product life cycle phase *)
1SAP 221 300 R0001 CI504-PNIO, PROFINET communica-

tion interface module with 3 serial
interfaces

Active

1SAP 421 300 R0001 CI504-PNIO-XC, PROFINET commu-
nication interface module with 3 serial
interfaces, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CI506-PNIO
● 2 serial UART interfaces (RS-232, RS-422 or RS-485)
● 1 CANopen master interface
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5076

ETH1

ETH2

5

1
2
3
4

6
7
8
9

5

1
2
3
4

6
7
8
9

5

1
2
3
4

6
7
8
9

X11 X12 X13

1.0

1.1

3.0

3.1

2.0

2.1

CI506

UP 24VDC 5W PROFINET IO Device
2x Serial Interface (RS232/485/422)

STA1 ETH

PWR/RUN

STA2 ETH

S-ERR

COM1-ERR

I/O-Bus

1.1ZP

1.0UP

COM1 TxD

COM1 RxD

COM1 STA

X11 - COM1
1 Term-P
2 Rx/Tx-P
3 Rx/Tx-N
4 Term-N
5 RTS
6 TxD
7 SGND
8 RxD
9 CTS

Proxy to CAN2 0A / CANopen Master

CAN-ERR

3.1ZP

CAN TxD

CAN STA

X13 - CAN
1 Term+
2 CAN+
3 CAN-
4 Term-

7 CAN_GND

3.0UP

COM2-ERR

2.1ZP

COM2 TxD

COM2 RxD

COM2 STA

X12 - COM2
1 Term-P
2 Rx/Tx-P
3 Rx/Tx-N
4 Term-N
5 RTS
6 TxD
7 SGND
8 RxD
9 CTS

2.0UP
ADDR
x01H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

x10H
ADDR

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

12 2

12

13

14

15

3

4

5 5 6

7
8

9 10

11

12

1313

1 I/O bus
2 2 x 3 yellow LEDs to display the signal states of the serial interfaces COM1 and COM2
3 1 green and 1 yellow LEDs to display the signal states of the CANopen interface
4 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
5 Allocation between terminal number and signal name of the serial interfaces
6 Allocation between terminal number and signal name of the CANopen interface
7 2 rotary switches for setting the I/O device identifier
8 1 green LED to display the process voltage UP
9 2 red LEDs to display errors (COM1-ERR, COM2-ERR) of the serial interfaces
10 1 red LED to display errors (CAN-ERR) of the CANopen interface
11 Label
12 Ethernet Interfaces (ETH1, ETH2) on the terminal unit
13 3 removable connectors to connect the subordinated interfaces
14 6 spring terminals for power supply voltage (UP)
15 DIN rail

Sign for XC version

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5077

Intended purpose
The PROFINET communication interface module CI506-PNIO provides 2 onboard serial inter-
faces and 1 CANopen master interface. The network connection is performed via 2 RJ45
connectors which are integrated in the terminal unit.
The bus interfaces are galvanically isolated from the Ethernet network.
For usage in extreme ambient conditions (e. g. wider temperature and humidity range), a
special XC version of the device is available.

Functionality

Parameter Value
Primary interface Ethernet

Protocol (1st interface) PROFINET IO RT

Secondary interface CAN

Protocol (2nd interface) CANopen

CANopen master Transmission rate up to 1 Mbit/s
Support for up to 126 CANopen slaves

Serial Interfaces 2 Serial UART interfaces
RS-232, RS-422 and RS-485 available as
physical layer

Serial protocol ASCII

I/O bus interface For up to 10 AC500 I/O modules

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the I/O device identifier for configu-
ration purposes (00h to FFh)

LED displays For system displays, field bus indication, errors
and power supply

Power supply Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU520 Ä Chapter 1.6.2.5.5 “TU520-ETH for
PROFINET communication interface modules”
on page 4112

Connections
The Ethernet Bus Module CI506-PNIO is plugged on the terminal unit TU520-ETH Ä Chapter
1.6.2.5.5 “TU520-ETH for PROFINET communication interface modules” on page 4112. Prop-
erly seat the module and press until it locks in place. The terminal unit is mounted on a DIN rail
or with 2 screws plus the additional accessory for wall mounting (TA526 Ä Chapter 1.6.2.9.2.6
“TA526 - Wall mounting accessory” on page 5180).
The connection of the power supply voltage is carried out using the 6 terminals and the 3
removable connectors of the terminal unit. The CI506-PNIO can be replaced without re-wiring
the terminal units.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5078

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the System Assembly, Construction and Connection
chapter Ä Chapter 1.6.3.6 “AC500 (Standard)” on page 5313.

The terminals 1.0, 2.0 and 3.0 as well as 1.1, 2.1 and 3.1 are electrically interconnected within
the terminal unit and have always the same assignment, independent of the inserted module:

Table 572: Assignment of the terminals
Terminal Signal Description
1.0 UP Process voltage UP (+24 V DC)

1.1 ZP Process voltage ZP (0 V DC)

2.0 UP Process voltage UP (+24 V DC)

2.1 ZP Process voltage ZP (0 V DC)

3.0 UP Process voltage UP (+24 V DC)

3.1 ZP Process voltage ZP (0 V DC)

Table 573: Assignment of the terminals of removable connectors X11 and X12 (Serial inter-
faces)
Terminal Signal Description
1 Term-P RS-485 Internal line terminating resistor for non-

inverted signal (Rx/Tx-P)

RS-422 Non-inverted receive signal terminal (RxD+)

2 Rx/Tx-P RS-485 Non-inverted I/O signal terminal for each
channel

RS-422 Non-inverted transmit signal terminal (TxD+)

3 Rx/Tx-N RS-485 Inverted I/O signal terminal for each channel

RS-422 Inverted transmit signal terminal (TxD-)

4 Term-N RS-485 Internal line-terminating resistor for inverted
signal (Rx/Tx-N) terminal

RS-422 Inverted receive signal terminal (RxD-)

5 RTS RS-232 Request To Send signal terminal for each
channel

6 TxD RS-232 Transmit signal terminal for each channel

7 SGND RS-232 Signal ground for each channel

8 RxD RS-232 Receive signal terminal for each channel

9 CTS RS-232 Clear To Send signal terminal for each
channel

The connection of SGND (ground) is optional for RS-485/RS-422.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5079

For RS-422, no external line-terminating resistors have to connected. They are
already connected inside the module.

Table 574: Assignment of the terminals of removable connector X13 (CANopen interface)
Terminal Signal Description
1 TERM+ Internal line-terminating resistor for CAN bus. Bridging to

CAN HIGH terminal if bus termination is required

2 CAN+ Non-inverted CAN data terminal

3 CAN- Inverted CAN data terminal

4 TERM- Internal line-terminating resistor for CAN bus. Bridging to
CAN LOW terminal if bus termination is required

5 Not used Not used

6 Not used Not used

7 CAN_GND CAN ground terminal

8 Not used Not used

9 Not used Not used

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provide several diagnosis functions Ä Chapter 1.6.2.8.7.5.8 “Diagnosis”
on page 5087.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5080

Further information is provided in the System Technology chapter PROFINET Ä Chapter
1.6.4.2.3 “PROFINET communication modules” on page 5534.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface PIN Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

For further information regarding wiring and cable types see chapter Ethernet
Ä Chapter 1.6.3.6.4.10 “Ethernet connection details” on page 5353.

Addressing

The module reads the position of the rotary switches only during power-up, i. e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI506-PNIO stores some PROFINET configuration parameters:
● Slave station name
● Slave station type
● IP address configuration
● MAC address
● Production data

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5081

No more configuration data is stored. The serial interfaces and the CANopen interface is
configured via software. For details, refer to Parameterization Ä Chapter 1.6.2.8.7.5.7 “Parame-
terization” on page 5082.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7015 WORD 7015

Parameter length Internal 33 BYTE 33

Error LED / Fail-
safe function

see table 2)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

I/O-Bus reset Off 0 BYTE Off

On 1 BYTE Off

Remarks:
1) With a faulty module ID, the module reports a "parameter error" and does not perform cyclic
process data transmission

Table 575: Error LED / Failsafe function 2)
Setting Description
On Error LED lights up at errors of all error classes, Failsafe-

mode off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe-mode off

Off by E3 Error LED lights up at errors of error classes E1 and E2,
Failsafe-mode off

On + Failsafe Error LED lights up at errors of all error classes, Failsafe-
mode on

Off by E4 + Failsafe Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe-mode on

Off by E3 + Failsafe Error LED lights up at errors of error classes E1 and E2,
Failsafe-mode on

All values are validated during the parameterization of the CI506-PNIO according to the
appended communication interface modules. In the case of error, a diagnosis message "param-
eter error" is generated and the cyclic process data transfer is terminated.

IO-BUS reset after PROFINET reconnection controls the behavior of PROFINET CI modules in
relation to connected I/O modules (both safety and non-safety I/O modules).

IO-BUS reset
after PROFINET
reconnection

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5082

● IO-BUS reset after PROFINET reconnection = “On” resets and, thus, re-parameterizes
all attached I/O modules. All internal I/O modules states are reset, including the related
diagnosis information.
Note that if the parameter is set to “On” then:
– The bumpless re-start of non-safety I/O modules will not be supported. It means, for

example, that non-safety output channels will go from fail-safe values to “0” values
during the re-connection and re-parameterization time and after that go to new output
values.

– Safety I/O modules will be re-parameterized and re-started as newly started modules,
which may not require their PROFIsafe reintegration, depending on safety CPU state, in
the safety application.

● IO-BUS reset after PROFINET reconnection = “Off” will not reset all attached I/O modules. It
will re-parameterize I/O modules only if parameter change is detected during the reconnec-
tion. All internal I/O modules states are not reset, including the related diagnosis informa-
tion.
Note that if the parameter is set to “Off” then:
– The bumpless re-start of non-safety I/O modules is supported (if no parameters are

changed). It means, for example, that non-safety output channels will not go from fail-
safe values to “0” values during the re-connection and re-parameterization time, but
directly from fail-safe values to new output values.

– Safety I/O modules will not be re-parameterized (if no parameters are changed). Thus,
they may continue their operation, which may require their PROFIsafe reintegration in
the safety application on the safety CPU, e.g., if PROFIsafe watchdog time for this
safety I/O module has expired. Any reintegration of such safety I/O modules will be
not only application specific but also PROFIsafe specific and depend on the safety I/O
handling in the safety application.

Parameters of the 2 serial channels

Name Value Internal value Internal
value, type

Default

Behavior for serial channel
communication during
PROFINET communica-
tion fault

Stop communica-
tion and reset FIFO

0 BYTE 0

Continue serial
communication

1

Number of frames/data
blocks in reception FIFO

1...40 1...40 BYTE 1

Number of frames/Data
blocks in transmission
FIFO

1...40 1...40 BYTE 1

Behavior during reception
FIFO overflow

Discard new
received frames

1 BYTE 2

Overwrite oldest
frame in FIFO

2

Discard new
received frames
and send
PROFINET alarm

3

Overwrite oldest
frame in FIFO and
send PROFINET
alarm

4

Physical layer RS-232 1 BYTE 1

RS-485 2

RS-422 3

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5083

Name Value Internal value Internal
value, type

Default

RTS control None 0 BYTE 1

Telegram 1

RTS/CTS (DTE <-
> DTE)

2

RTS/CTS (DTE ->
DCE)

3

RTS/CTS (DCE <-
DTE)

4

TLS (RTS leading cycle) 0...850 ms 0...850 WORD 0

CDLY (RTS trailing cycle) 0...850 ms 0...850 WORD 0

Character timeout 0/32 bits 0/32 WORD 0

Telegram ending selection None 0 BYTE None

String (check
reception)

1

Telegram length 2

Character timeout 4

Telegram ending character 0 - 255 0 - 255 BYTE 0

Telegram ending value 0 - 65535 0 - 65535 WORD 0

Checksum None 0 BYTE 0

CRC8 1

CRC16 2

LRC 3

ADD 4

CS31 5

CRC8-FBP 6

XOR 7

CRC16 (Intel) 8

Handshake mode None 0 BYTE 0

XON/XOFF 2

Transmission rate Channel inactive 0 DWORD 19200

300 bit/s 300

1200 bit/s 1200

4800 bit/s 4800

9600 bit/s 9600

14400 bit/s 14400

19200 bit/s 19200

38400 bit/s 38400

38400 bit/s 57600

57600 bit/s 57600

115200 bit/s 115200

Parity No parity 0 BYTE No parity

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5084

Name Value Internal value Internal
value, type

Default

Odd parity 1

Even parity 2

Data bits 5 bits 0 BYTE 8

6 bits 1

7 bits 2

8 bits 3

Stop bits 1 bit 0 BYTE 1

2 bits 1

Configuration with Automation Builder
The physical layers are selectable as submodules in PROFINET configuration
(parameter Physical Layer not visible and fixed with the correct value). Certain
parameters are not visible if a certain physical layer is selected. This concept
of parameterization provides a better usability than configuring via GSDML (see
below).

Configuration via GSDML (use by 3rd party PROFINET configuration tool)
All parameters are visible independent of the configured physical layer (via
parameter “Physical Layer”). The user must take precautions for each param-
eter since certain parameter values are invalid for certain physical layers. Nev-
ertheless, the CI5xx-PNIO module performs a parameter check depending on
the configured physical layer and generates a diagnosis message (parameter
error) in the case of error.

General precautions
● If parameter telegram ending selection is set to value Character Timeout, the value in the

parameter Character Timeout must be set to 0. The parameter End Value must be set to 32
(equivalent to 32-bits character timeout). Only 32-bits character timeout is supported.

● Checksum is only supported if a telegram ending selection is active.
● Please refer to AC500 serial channel documentation for additional precautions.

Precautions for RS-485/RS-422
DTE/DCE is not supported. The parameter RTS Control must be set to value Telegram or to
None.

Parameters of the CANopen master

Name Value Internal
value

Internal
value, type

Default

CANopen master transmis-
sion rate

1000 kbit/s 0 DWORD 0

800 kbit/s 1

500 kbit/s 2

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5085

Name Value Internal
value

Internal
value, type

Default

250 kbit/s 3

125 kbit/s 4

100 kbit/s 5

50 kbit/s 6

20 kbit/s 7

10 kbit/s 8

CANopen master SYNC
object ID *)

0x01 to
0x7FFF

1 - 32767 DWORD 0x80

CANopen master SYNC cycle
time *)

SYNC OFF 0 DWORD 0

1 ms to 65535
ms

1 - 65535

CANopen master heartbeat
producer time *)

Heartbeat pro-
ducer OFF

0 DWORD 10

1 ms to 65535
ms

1 - 65535

*) Parameter becomes irrelevant if the CANopen master function is not selected.

The CANopen master functionality can only be activated when using Control-
BuilderPlus/Automation Builder.

CAN2A / CAN2B parameters

Name Value Internal value Internal value,
type

Default

CAN transmis-
sion rate

1000 kbit/s 0 DWORD 0

800 kbit/s 1

500 kbit/s 2

250 kbit/s 3

125 kbit/s 4

100 kbit/s 5

50 kbit/s 6

20 kbit/s 7

10 kbit/s 8

Configuration via GSDML (use by 3rd party PROFINET configuration tool)
The parameter CAN transmission rate must be set twice for each CAN2A and
CAN2B interfaces, and they must be set with identical values.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5086

Buffer parameters (to be configured for each used buffer)

Name Value Internal
value

Internal value,
type

Default

Identifier 0..2047
(CAN2A)

0..2047
(CAN2A)

WORD
(CAN2A)

0

0..536870911
(CAN2B)

0..536870911
(CAN2B)

DWORD
(CAN2B)

Receive buffer size (size in
numbers of telegrams)

1...32 1...32 BYTE 1

Behaviour on receive buffer
overflow *)

Overwrite 0 BYTE 0

Discard 1

Overwrite and
send diagnos-
tics
(PROFINET
alarm)

3

Discard and
send diagnos-
tics
(PROFINET
alarm)

4

*) The following table describes the values in detail.

Setting Description
Overwrite The oldest buffer entry which is stored in the buffer is over-

written with the new incoming telegram.

Discard The new incoming telegram is discarded.

Overwrite and send diagnostics
(PROFINET alarm)

The oldest buffer entry which is stored in the buffer is
overwritten with the new incoming telegram. Additionally,
a PROFINET alarm (diagnostic) will be sent to inform the
user of the overflow occurrence.

Discard and send diagnostics
(PROFINET alarm)

The new incoming telegram is discarded. Additionally a
PROFINET alarm (diagnostic) will be sent to inform the
user of the overflow occurrence.

Up to 64 buffers are allowed to be configured for each CAN2A and CAN2B
type, each buffer containing the parameters described above.

Diagnosis
Structure of the Diagnosis Block via PNIO_DEV_ALARM function block Ä Chapter 1.5.4.27.1.1
“PNIO_DEV_ALARM” on page 1794

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5087

Byte Number Description Possible Values
1 Diagnosis Byte, slot

number
31 = CI506-PNIO (e. g. error at integrated
serial interface)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis Byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

3 Diagnosis Byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3)

Module error

3 - 31 31 31 43 Internal error in the
module

Replace
module

3 - 31 31 31 9 Overflow diagnosis
buffer

New
start

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage too
low

Check
process
voltage

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5088

E1...E4 d1 d2 d3 d4 Identi-
fier
000...06
3

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 4
Bit 6...7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0...5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3)

3 - 1..10 31 31 17 No communication
with I/O Module

Replace
I/O
module

4 - 1..10 31 31 31 At least 1 I/O
Module does not
support failsafe
mode

Check
I/O
modules
and
parame-
terization

4 - 1..10 31 31 32 Wrong I/O Module
type on socket

Replace
I/O
module
Check
configu-
ration

4 - 1..10 31 31 34 No response during
initialization of the
I/O Module

Replace
I/O
Module

Serial Channel error

4 - 31 31 1...2 12 Reception SW
FIFO overrun

Check
modules
and
parame-
terization

4 - 31 31 1...2 26 Parameter error Check
modules
and
parame-
terization

CANopen Channel error 4)

4 - 31 31 12...75 12 Reception SW
FIFO (CAN2.0A)
overrun (Buffer
number 1...64) 5)

Check
modules
and
parame-
terization

4 - 31 31 112...175 12 Reception SW
FIFO (CAN2.0B)
overrun (Buffer
number 1...64) 5)

Check
modules
and
parame-
terization

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5089

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0...4 or 10 = Position of
the Communication Module; 14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI506-PNIO diagnosis block.

2) With "Device" the following allocation applies: ADR = Hardware address
(e.g. of the CI506-PNIO)

3) With "Module" the following allocation applies dependent of the master:
31 = Module itself

4) All CANopen master and slave diagnostics are not available as
PROFINET alarms; instead they can be read via PROFINET acyclic
service. In AC500 PLC these are available in form of function blocks.

5) CAN2A Buffers 1...64 are mapped to the channel values 12...75, so the
correlation value 11 has to be subtracted from the channel value to get
the correct buffer number.
CAN2B Buffers 1...64 are mapped to the channel values 112...175, so the
correlation value 111 has to be subtracted from the channel value to get
the correct buffer number

State LEDs
The LEDs are located at the front of module. There are 4 different groups:
● 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● 4 Ethernet state LEDs located at the terminal unit TU520-ETH
● 11 state LEDs for the serial interfaces an the CANopen Interface
● 1 LED to display the presence of the process supply voltage UP

Table 576: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System-LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Red --- --- Device is not
configured

STA2 ETH
(System-LED
"SF")

Green --- --- Got identification
request from I/O
controller

Red No system error System error
(collective error)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5090

LED Color OFF ON Flashing
S-ERR Red No error Internal error --

I/O-Bus Green No communica-
tion interface
modules con-
nected or com-
munication error

Communication
interface module
connected and
operational

Table 577: States of the 4 Ethernet state LEDs
LED Color OFF ON Flashing
ETH1-Link Green No connection at

Ethernet inter-
face

Connected to
Ethernet inter-
face

ETH1-Rx Tx Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2-Link Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Eth2-Rx Tx Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 578: States of the 8 state LEDs (4 per channel) of the serial interfaces
LED Color OFF ON Flashing
COMx TxD Yellow No data trans-

mission over
serial network

-- Channel is trans-
mitting data via
the serial inter-
face (flashing
rate depending
on the telegram
transmission fre-
quency)

COMx RxD Yellow No data recep-
tion from serial
network

-- Channel is
receiving data
from the serial
interface
(flashing rate
depending on the
telegram recep-
tion frequency)

COMx STA Yellow RS-232: RTS
signal not active
RS-485: Channel
is in reception
mode
RS-422:Channel
is not enabled

RS-232: RTS
signal is active
RS-485: Channel
is transmitting
RS-422: Channel
is enabled (able
to receive and
transmit)

--

COMx-ERR Red Channel enabled,
no error
or
Channel deacti-
vated

Channel boot up Channel error
(receive buffer
overflow)

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5091

Table 579: States of the 3 state LEDs of the CANopen interfaces
LED Color OFF ON Flashing
CAN-RUN Yellow -- Device config-

ured, CANopen
Bus in OPERA-
TIONAL state
and cyclic data
exchange run-
ning

Flashing cycli-
cally:
CANopen Bus in
Pre-operational
state and slave is
being configured
Single flash:
CANopen Bus in
Stopped state.

CAN-STA Yellow No data trans-
mission

Channel is trans-
mitting data

--

CAN-ERR Red No error CANopen bus is
OFF

Flashing cycli-
cally:
Configuration
error
Single flash:
Error counter
overflow due to
too many error
frames
Double flash:
A Node-Guard or
a Heartbeat
event occurred

Table 580: State of the power supply LED
LED Color OFF ON Flashing
UP Green No process

voltage available
Process voltage
available

--

Technical data
The system data of AC500 and S500 Ä Chapter 1.6.3.6.1 “System data AC500” on page 5313
are applicable to the standard version.
The system data of AC500-XC Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389 are
applicable to the XC version.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Technical data of the module

Parameter Value
Process supply voltages UP

 Rated value 24 V DC

 Max. load for the terminals 10 A

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5092

Parameter Value
 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Connections Terminals 1.0, 2.0 and 3.0 for +24 V (UP)
Terminals 1.1, 2.1 and 3.1 for 0 V (ZP)

Input data length 0...36 bytes

Output data length 0...36 bytes

Max. power dissipation within the module 5 W

Setting of the I/O module identifier With 2 rotary switches at the front side of the
module

Operation and error displays 18 LEDs (total)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
switchgear cabinet.

Galvanic isolation Ethernet interface against the rest of the
module, each serial and CAN port against each
other and the rest of the module

Diagnosis See Diagnosis Ä Chapter 1.6.2.8.7.5.8 “Diag-
nosis” on page 5087

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5093

Parameter Value
Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Technical data of the serial interfaces

Parameter Value
Number of serial interfaces 2

Connectors for serial interfaces X11 for COM1
X12 for COM2

Supported physical layers RS-232
RS-422
RS-485

Supported protocols ASCII

Transmission rate Configurable from 300 bit/s to 115.200 bit/s

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5094

Technical data of the CANopen interface

Parameter Value
Number of CANopen interfaces 1

Connector for CANopen Interface X13

Transmission rate Up to 1 Mbit/s

Ordering data

Part no. Description Product life cycle phase *)
1SAP 221 500 R0001 CI506-PNIO, PROFINET communica-

tion interface module with 2 serial
interfaces and 1 CANopen master
interface

Active

1SAP 421 500 R0001 CI506-PNIO-XC, PROFINET commu-
nication interface module with 2 serial
interfaces and 1 CANopen master
interface, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.9 Accessories
1.6.2.9.1 AC500-eCo
CR2032 - Battery for real-time clock

A standard lithium battery (type CR2032) is used to backup the real-time clock (RTC)
in the adapters TA561-RTC Ä Chapter 1.6.2.9.1.6 “TA561-RTC - Real-time clock adapter”
on page 5113 and TA562-RS-RTC Ä Chapter 1.6.2.9.1.8 “TA562-RS-RTC - Serial RS-485
adapter with real-time clock” on page 5125 during power failures.
The CPU monitors the discharge degree of the battery. An diagnoses message is output before
the battery condition becomes critical (about 2 weeks before). After the diagnosis message has
appeared, the battery should be replaced as soon as possible.

● The handling instructions of the battery manufacturer must be observed.
● The Material Safety Data Sheet (MSDS) of the battery manufacturer must be observed.
● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Recycle exhausted batteries meeting the environmental standards.

Intended pur-
pose

Handling
instruction

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5095

Transport of lithium batteries or equipment with installed lithium batteries:
● The transport and handling instructions of the battery producer must be observed.
● The transport regulations for transport of lithium batteries must be observed e.g. for trans-

port by road or air.
● The forwarder must be informed if batteries are contained in the shipment.

Assembling and connection of the battery is described in chapters of TA561-RTC Ä Chapter
1.6.2.9.1.6 “TA561-RTC - Real-time clock adapter” on page 5113 and TA562-RS-RTC
Ä Chapter 1.6.2.9.1.8 “TA562-RS-RTC - Serial RS-485 adapter with real-time clock”
on page 5125.

The battery lifetime is the time the battery can operate the RTC while the CPU is not powered.
The typical lifetime is 300 days (at 25 °C).
As long as the CPU is powered, the battery will only be discharged by its own leakage current.

The battery must meet die following technical data:

Parameter Value
Battery designation CR2032

Description Manganese dioxide button cell, primary cell,
not rechargeable

Nominal voltage 3 V DC

Capacity 230 mAh (measured with 5.6 kW load at
20 °C, discharging down to 2.0 V)

Typical lifetime (at 25 °C, CPU not powered) 300 days

Temperature range ³ 0 °C ...+70 °C

Diameter 20 mm

Height 3.2 mm

MC502 - Memory card
● Solid state flash memory storage

Transport

Connections

Battery lifetime

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5096

1 MC502 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.2.9.1.3 “MC503 - Memory
card adapter” on page 5101

Purpose

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5097

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V2 and AC500-eCo V2

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Fig. 1008: Insert memory card into PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Dimensions

Insert the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5098

Fig. 1009: Insert memory card into PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

AC500 V2 and AC500-eCo V2

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!
Remove the memory card only when the RUN LED is not blinking.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Remove the
memory card

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5099

Fig. 1010: Remove memory card from PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Fig. 1011: Remove memory card from PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5100

Parameter Value
Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0001 MC502, memory card Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC503 - Memory card adapter

The MC503 memory card adapter is used for expanding processor modules PM55x-xP or
PM56x-xP with a memory card slot.
A memory card MC502 or a micro memory card MC5102 with micro memory card adapter is not
included in the scope of delivery and must be ordered separately.
The memory card can be used for:
● saving process data,
● saving user programs,
● upgrading the firmware.

Ordering data

Intended pur-
pose

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5101

1. Make sure, that the power supply of the processor module is turned off.

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor

module before you open the option board slot cover.
– Make sure that the option board slot cover is closed before recon-

necting the processor module to the power supply.

2. Remove the option board slot cover of the processor module totally by pushing it to the left
side.

3. Plug the memory card adapter to the left expansion slot of the processor module. Make
sure that the 2 noses of the expansion module fit to the holes of the processor module
printed circuit board.

4. Remove the bar located in the middle of the option board slot cover for memory card slot.
5. Refit the option board slot cover.
6. To insert the memory card, see MC502 Ä Chapter 1.6.2.9.1.2 “MC502 - Memory card”

on page 5096 or MC5102 Ä Chapter 1.6.2.9.1.4 “MC5102 - Micro memory card with micro
memory card adapter” on page 5103.

1. Make sure that the power supply of the processor module is turned off.

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor

module before you open the option board slot cover.
– Make sure that the option board slot cover is closed before recon-

necting the processor module to the power supply.

2. Remove the option board slot cover of the processor module totally by pushing it to the left
side.

3. Remove the memory card adapter out of the processor module by lifting it up with a
screwdriver.

4. Refit the option board slot cover. The option board slot cover is available as a spare part
(see TA570 spare part set for AC500-eCo V2 processor modules). Ä Chapter 1.6.2.9.1.10
“TA570 - Spare part set” on page 5136

Part no. Description Product life cycle phase *)
1TNE 968 901 R0100 MC503, memory card adapter

for PM55x-xP or PM56x-xP
Active

Insert the
memory card
adapter

Remove the
memory card
adapter

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5102

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5102 - Micro memory card with micro memory card adapter
● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5103

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.2.9.1.3 “MC503 - Memory
card adapter” on page 5101

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.

The dimensions are in mm and in brackets in inch.

Purpose

Dimensions

Micro memory
card

Micro memory
card adapter

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5104

The dimensions are in mm and in brackets in inch.

1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Fig. 1012: Insert micro memory card into PM57x, PM58x and PM59x

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot

Insert the micro
memory card
AC500 V2 and
AC500-eCo V2

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5105

Fig. 1013: Insert micro memory card into PM55x-xP and PM56x-xP

1 Micro memory card
2 Micro memory card adapter
3 MC503 memory card adapter

NOTICE!
Removal of the micro memory card
Do not remove the micro memory card when it is working!
Remove the micro memory card with micro memory card adapter only when the
RUN LED is not blinking.
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

1. To remove the micro memory card adapter with the integrated micro memory card, push
on the micro memory card adapter until it moves forward.

2. By this, the micro memory card adapter is unlocked and can be removed.

Remove the
micro memory
card
AC500 V2 and
AC500-eCo V2

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5106

Fig. 1014: Remove micro memory card from PM57x, PM58x and PM59x

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot

Fig. 1015: Remove micro memory card from PM55x-xP and PM56x-xP

1 Micro memory card
2 Micro memory card adapter
3 MC503 memory card adapter

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5107

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the micro memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5141 - Memory card
● Solid state flash memory storage

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5108

1 MC5141 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.2.9.1.3 “MC503 - Memory
card adapter” on page 5101

Purpose

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5109

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V2 and AC500-eCo V2

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Fig. 1016: Insert memory card into PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Dimensions

Insert the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5110

Fig. 1017: Insert memory card into PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

AC500 V2 and AC500-eCo V2

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!
Remove the memory card only when the RUN LED is not blinking.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Remove the
memory card

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5111

Fig. 1018: Remove memory card from PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Fig. 1019: Remove memory card from PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5112

Parameter Value
Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0041 MC5141, memory card Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA561-RTC - Real-time clock adapter

The TA561-RTC real-time clock adapter is used for equipping AC500-eCo processor modules
with a real-time clock.
The real-time clock can be buffered via an optional standard lithium battery (CR2032) during
power supply failures (see lithium battery for real-time clock of AC500-eCo processor modules
Ä Chapter 1.6.2.9.1.1 “CR2032 - Battery for real-time clock” on page 5095).

Ordering data

Intended pur-
pose

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5113

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor module

before you open the option board slot cover.
– Make sure that the option board slot cover is closed before reconnecting the

processor module to the power supply.

The option board slot cover is available as a spare part (see TA570 spare part set for AC500-
eCo processor modules Ä Chapter 1.6.2.9.1.10 “TA570 - Spare part set” on page 5136).

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

1. Switch off power supply of the system and verify that the CPU is powerless.

ð LEDs (PWR, RUN, ERR) must be off.

Insertion and
replacement of
the adapter

Replacement of
the battery

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5114

2. Remove the option board slot cover.

ð Remove the option board slot cover of the CPU totally by pushing it to the outer side.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge,
which can cause internal damage and affect normal operation.
Observe the following rules when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe

packaging.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5115

3. Remove the option board from the CPU by lifting it up with a screwdriver.

ð
Remove memory card (if installed) / terminal block (COM2).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5116

4. Remove the battery.

ð
ATTENTION!
Lithium batteries must not be recharged, not be disassembled and not
be disposed of in fire.

Exhausted batteries must be recycled to respect the environment.

Dispose of battery properly according to disposal procedures for
lithium batteries.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5117

5. Insert replacement battery.

ð
ATTENTION!
A standard battery CR2032 can be used for TA561-RTC and TA562-
RS-RTC.

Nominal voltage: 3 V DC.

Required capacity: 230 mAh.

Required temperature range for discharge: 0 °C...+70 °C.

After replacement of the battery, the real-time clock (RTC) date and
time must be set again by the user.

Don’t use a battery older than 3 years for replacement (e.g. battery
kept too long in stock).

Batteries must be stored in a dry place.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5118

6. Insert option board into the CPU.

ð Insert the adapter TA56x-RTC into the slot on the right of the CPU.

Make sure that the 2 noses of the extension module fit to the holes of
the CPU PCB.

See white circle in figure above.

7. Refit the option board slot cover of the CPU.

ð
Remember to re-insert a memory card first if it has been removed
previously.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5119

8. Only now the CPU can be connected to power.

Set the time of the real-time clock.

Parameter Value
RTC accuracy (at 25 °C) Typ. ±2 s / 24 h

Part no. Description Product life cycle phase *)
1SAP 181 400 R0001 TA561-RTC, real-time clock

adapter for PM55x-xP and
PM56x-xP

Active

1TNE 968 901 R3200 TA561-RTC, real-time clock
adapter for PM55x-xP and
PM56x-xP, lithium battery
included (available in China
only)

Limited

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA562-RS - Serial RS-485 adapter

The serial RS-485 adapter is used for equipping AC500-eCo processor modules with a second
serial interface COM2. The COM2 interface can be used for:
● online access
● free protocol communication
● Modbus RTU, client and server

CAUTION!
The serial RS-485 Interface is not galvanically isolated.

Technical data

Ordering data

Intended pur-
pose

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5120

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor module

before you open the option board slot cover.
– Make sure that the option board slot cover is closed before reconnecting the

processor module to the power supply.

The option board slot cover is available as a spare part (see TA570 spare part set for AC500-
eCo processor modules Ä Chapter 1.6.2.9.1.10 “TA570 - Spare part set” on page 5136).

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

1. Switch off power supply of the system and verify that the CPU is powerless.

ð LEDs (PWR, RUN, ERR) must be off.

Insertion/
Removal of the
adapter

Removal of the
option board

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5121

2. Remove the option board slot cover.

ð Remove the option board slot cover of the CPU totally by pushing it to the outer side.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge,
which can cause internal damage and affect normal operation.
Observe the following rules when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe

packaging.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5122

3. Remove the option board.

ð
Remove memory card (if installed) / terminal block (COM2).

Remove the option board from the CPU by lifting it up with a screwdriver.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5123

1. Insert option board into the CPU.

ð
Make sure that the 2 noses of the expansion module fit to the holes of
the CPU PCB.

See white circle in figure above.

2. Refit the option board slot cover of the CPU.

ð
Remember to re-insert a memory card first if it has been removed
previously.

Insertion of the
option board

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5124

Part no. Description Product life cycle phase *)
1TNE 968 901 R4300 TA562-RS, serial RS-485

adapter for PM55x/PM56x
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA562-RS-RTC - Serial RS-485 adapter with real-time clock

The TA562-RS-RTC serial RS-485 adapter with real-time clock is used for equipping AC500-
eCo processor modules with a real-time clock and a second serial RS-485 interface COM2.
The real-time clock can be buffered via an optional standard lithium battery (CR2032) during
power supply failures (see lithium battery for real-time clock of AC500-eCo processor modules
Ä Chapter 1.6.2.9.1.1 “CR2032 - Battery for real-time clock” on page 5095).

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor module

before you open the option board slot cover.
– Make sure that the option board slot cover is closed before reconnecting the

processor module to the power supply.

The option board slot cover is available as a spare part (see TA570 spare part set for AC500-
eCo processor modules Ä Chapter 1.6.2.9.1.10 “TA570 - Spare part set” on page 5136).

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

Ordering data

Intended pur-
pose

Insertion/
Removal of the
adapter

Replacement of
the battery

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5125

1. Switch off power supply of the system and verify that the CPU is powerless.

ð LEDs (PWR, RUN, ERR) must be off.

2. Remove the option board slot cover.

ð Remove the option board slot cover of the CPU totally by pushing it to the outer side.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge,
which can cause internal damage and affect normal operation.
Observe the following rules when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe

packaging.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5126

3. Remove the option board from the CPU by lifting it up with a screwdriver.

ð
Remove memory card (if installed) / terminal block (COM2).

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5127

4. Remove the battery.

ð
ATTENTION!
Lithium batteries must not be recharged, not be disassembled and not
be disposed of in fire.

Exhausted batteries must be recycled to respect the environment.

Dispose of battery properly according to disposal procedures for
lithium batteries.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5128

5. Insert replacement battery.

ð
ATTENTION!
A standard battery CR2032 can be used for TA561-RTC and TA562-
RS-RTC.

Nominal voltage: 3 V DC.

Required capacity: 230 mAh.

Required temperature range for discharge: 0 °C...+70 °C.

After replacement of the battery, the real-time clock (RTC) date and
time must be set again by the user.

Don’t use a battery older than 3 years for replacement (e.g. battery
kept too long in stock).

Batteries must be stored in a dry place.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5129

6. Insert option board into the CPU.

ð Insert the adapter TA56x-RTC into the slot on the right of the CPU.

Make sure that the 2 noses of the extension module fit to the holes of
the CPU PCB.

See white circle in figure above.

7. Refit the option board slot cover of the CPU.

ð
Remember to re-insert a memory card first if it has been removed
previously.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5130

8. Only now the CPU can be connected to power.

Set the time of the real-time clock.

Parameter Value
RTC accuracy (at 25 °C) Typ. ±2 s / 24 h

Part no. Description Product life cycle phase *)
1SAP 181 500 R0001 TA562-RS-RTC, serial

RS-485 adapter with real-
time clock for PM55x-xP and
PM56x-xP

Active

1TNE 968 901 R5210 TA562-RS-RTC, serial
RS-485 adapter with real-
time clock for PM55x-xP
and PM56x-xP, lithium battery
included (available in China
only)

Limited

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA569-RS-ISO - Serial RS-485 isolated adapter

The TA569-RS-ISO serial RS-485 isolated adapter is used for equipping AC500-eCo processor
modules with a second serial interface COM2. The COM2 interface can be used for:
● online access
● free protocol communication
● Modbus RTU, client and server
The serial interface is isolated.

Technical data

Ordering data

Intended pur-
pose

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5131

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor module

before you open the option board slot cover.
– Make sure that the option board slot cover is closed before reconnecting the

processor module to the power supply.

The option board slot cover is available as a spare part (see TA570 spare part set for AC500-
eCo processor modules Ä Chapter 1.6.2.9.1.10 “TA570 - Spare part set” on page 5136).

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

1. Switch off power supply of the system and verify that the CPU is powerless.

ð LEDs (PWR, RUN, ERR) must be off.

Insertion/
Removal of the
adapter

Removal of the
option board

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5132

2. Remove the option board slot cover.

ð Remove the option board slot cover of the CPU totally by pushing it to the outer side.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge,
which can cause internal damage and affect normal operation.
Observe the following rules when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe

packaging.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5133

3. Remove the option board.

ð
Remove memory card (if installed) / terminal block (COM2).

Remove the option board from the CPU by lifting it up with a screwdriver.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5134

1. Insert option board into the CPU.

ð
Make sure that the 2 noses of the expansion module fit to the holes of
the CPU PCB.

See white circle in figure above.

2. Refit the option board slot cover of the CPU.

ð
Remember to re-insert a memory card first if it has been removed
previously.

Insertion of the
option board

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5135

Part no. Description Product life cycle phase *)
1SAP 186 400 R0001 TA569-RS-ISO, serial RS-485

isolated adapter for PM55x/
PM56x

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA570 - Spare part set

The TA570 spare part set is used to replace lost or damaged parts of AC500-eCo processor
modules. It contains the following parts:
● Option board slot cover
● Terminal block for power supply
● Terminal block for serial RS-485 adapter
Every spare is included 6x inside TA570.

Table 581: Option board slot cover
Parameter Value
Weight 5 g

Dimensions 40 mm x 40 mm x 3 mm

Table 582: Terminal block for power supply
Parameter Value
Type Screw clamp plug, wire connection from front

Usage For AC500-eCo processor modules

Conductor cross section

 Solid 0.2 mm²...2.5 mm²

 Flexible (with wire-end ferrule only) 0.2 mm²...2.5 mm²

Stripped conductor end 7 mm...8 mm

Fastening torque 0.5 Nm

Degree of protection IP20

Ordering data

Intended pur-
pose

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5136

Parameter Value
Dimensions 25.4 mm x 17.4 mm x 15.1 mm

Weight 5 g

Table 583: Terminal block for serial RS-485 adapter
Parameter Value
Type Screw clamp plug, wire connection from side

Usage for Ä Chapter 1.6.2.9.1.7 “TA562-RS - Serial
RS-485 adapter ” on page 5120

Ä Chapter 1.6.2.9.1.9 “TA569-RS-ISO - Serial
RS-485 isolated adapter” on page 5131

Ä Chapter 1.6.2.9.1.8 “TA562-RS-RTC -
Serial RS-485 adapter with real-time clock”
on page 5125

Conductor cross section

 Solid 0.14 mm²...1.5 mm²

 Flexible (with wire-end ferrule only) 0.14 mm²...1.5 mm²

Stripped conductor end 7 mm

Fastening torque 0.4 Nm

Degree of protection IP20

Dimensions 19.05 mm x 8.7 mm x 19.1 mm

Weight 5 g

Part no. Description Product life cycle phase *)
1TNE 968 901 R3203 TA570, spare part set

for AC500-eCo processor
modules, 3x6 pieces

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA571-SIM - Input simulator
● Input Simulator for 6 digital inputs 24 V DC
● For usage with AC500-eCo processor modules

Ordering data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5137

1 Contacts to connect to clamps of onboard I/Os
2 6 switches for the digital inputs DI0 ... DI5 (0 means opened switch, 1 means closed switch)
3 Terminal block for power supply connector of processor module PM55x/PM56x

The input simulator TA571-SIM is used for test and training purposes with AC500-eCo pro-
cessor modules PM55x and PM56x. It can simulate 6 digital 24 V DC input signals to the digital
inputs DI0...DI5 of onboard I/Os.

Intended pur-
pose

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5138

The dimensions are in mm and in brackets in inch.

The diagram below shows the connection of the input simulator.

Dimensions

Electrical dia-
gram

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5139

1. Make sure that the power supply of the processor module is turned off.

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits.
Make sure that all voltage sources (supply and process voltage) are
switched off before you begin with operations on the system. Never con-
nect any voltages > 24 V DC to pins 4/5 of the terminal block of input
simulator TA571-SIM.

CAUTION!
Risk of damaging the input simulator or PLC modules!
The input simulator must only be used with AC500-eCo processor
modules PM55x and PM56x. Never use the input simulator with other
devices.

The input simulator must only be used for test and training purposes.
Never use it within productive plants.

2. Remove the terminal block for power supply from the processor module by a flat-blade
screwdriver.

3. Make sure that all clamps of the onboard I/Os are totally open.
4. Use a flat-blade screwdriver to unplug the terminal block for power supply of the processor

module.

Mounting

Insertion of the
input simulator

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5140

5. Insert the input simulator as shown in the figure.

6. Tighten all screws of the onboard I/O clamps (max. torque 1.2 Nm).
7. Plug in the terminal block for power supply of the TA571-SIM to the connector of the

processor module.
8. Connect the CPU power supply wires (24 V DC or 100-240 V AC).

With input simulator TA571-SIM, the digital 24 V DC inputs DI0...DI5 of can be turned OFF and
ON separately:
● If the lever of the switch is on the right side, the input is ON.
● If the lever of the switch is on the left side, the input is OFF.

1. Make sure that the power supply of the processor module is turned off.

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits.
Make sure that all voltage sources (supply and process voltage) are
switched off before you begin with operations on the system.

Usage

Removal

Removal of the
input simulator

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5141

2. Disconnect the processor module power supply wires (24 V DC or 100-240 V AC) from
the terminal block for power supply.

3. Unplug the terminal block for power supply with a flat-blade screwdriver of the power
connector.

4. Loosen all screws of the onboard I/Os.
5. Remove the input simulator by pulling it to the left side.

Table 584: Technical data of the module
Parameter Value
Process Supply Voltage

 Connections Terminal 4 (L+) for +24 V DC and terminal 5
(M) for 0 V DC

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

Galvanic isolation Yes, per module

Isolated Groups 1 (6 channels per group)

Weight On request

Mounting position Horizontal or vertical

Table 585: Technical data of the inputs
Parameter Value
Number of channels per module 6 digital input channels (+24 V DC)

Distribution of the channels into groups 1 (6 channels per group)

Connections of channels DI0 to DI5 Terminals 2...7

Reference potential for the channels DI0 to
DI5

Terminal 1 (negative pole of the process supply
voltage, signal name C0...7)

Input current per active channel (at input
voltage +24 V DC)
The current is given through the used pro-
cessor module.

Typ. 5 mA

Inrush current per active channel
The current is given through the used pro-
cessor module.

Typ. 5 mA

Part no. Description Product life cycle phase *)
1TNE 968 903 R0203 TA571-SIM, input simulator for

PM55x and PM56x
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5142

TK504 - COM2 USB programming cable
● PC-side: USB connector type A
● AC500-side: 5-pole terminal block
● Length 3 m

TK504 programming cable connects the USB interface of a PC with the serial interface of
processor module PM55x and PM56x. It is used for programming purposes.

CAUTION!
Risk of communication faults!
The mechanical connection of TK504 may get lost due to mechanical vibration.
Use TK504 only for programming and debugging. A permanent usage is not
foreseen.

With AC500/AC500-eCo processor modules, only the ABB programming cables
TK50x can be used. Other cables may cause communication faults and must
not be used.

USB 1

USB 4

31

Pin 5

Pin 1

2..
..
.

Pin 4
Pin 3
Pin 2

1 USB connector type A (PC side)
2 USB/RS-485 converter
3 Terminal block, 5-pin, (RS-485, PLC side)

Table 586: TK504 programming cable wiring USB pin
USB pin Signal Description
USB 1 VBUS USB power

USB 2 -D USB data negative

USB 3 +D USB data positive

USB 4 GND Ground

Intended pur-
pose

Connections

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5143

Table 587: TK504 programming cable wiring Terminal block, 5-pin
Pin Signal Description
Pin 1 - Not connected

Pin 2 RXD/TXD-P Receive/Transmit positive

Pin 3 RXD/TXD-N Receive/Transmit negative

Pin 4 - Not connected

Pin 5 FE Functional earth

1. Install the device driver for the programming cable (see).

Once you have installed the device driver of the cable in your Windows
system, make sure that you always use the same USB port on your
computer.

Otherwise, Windows will ask you to install the driver a second time if you
connect the cable to a different USB port of your computer.

2. Connect the 5-pole terminal block of the TK504 to the processor module Ä Chapter
1.6.3.5.4.3 “Serial interface COM2” on page 5254.

3. Plug the USB connector to an USB interface at your PC.

Parameter Value
Connector at the PC (USB interface) USB connector type A

Connector at the processor module Single conductors

Length 3 m

Cable type Programming cable

Weight 0.4 kg

Part no. Description Product life cycle phase *)
1TNE 968 901 R2100 TK504, COM2 USB program-

ming cable -> single conduc-
tors, length 3 m

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Technical data

Ordering data

Installation of
cable driver

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5144

—
OPER ATION INSTRUCTION

PROGRAMMING CABLE TK503 / TK504
USB DRIVER INSTALLATION

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5145

2 3ADR010872, 1, en_US

Contents

1 Introduction and Basics ... 3
1.1 Intended Use ... 3
1.2 PC System Requirements ... 3
1.3 Content of the Installation Package... 3

2 Installation.. 4
2.1 Installation Steps .. 4
2.2 Pre-Installation Routine ... 4

3 Communication .. 6
3.1 Virtual Communication Port Configuration.. 6

4 Automation Builder Communication ... 8

5 Uninstallation / Update ... 10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5146

 PROGRAMMING CABLE TK503 / TK504

3 3ADR010872, 1, en_US

1 Introduction and Basics

1.1 Intended Use

The TK503/TK504 programming cable can be used to operate and to configure the PLC via a

PC or laptop. For this, CODESYS software, driver and utility programs must be installed and a

TK503 or TK504 programming cable must be connected.

NOTICE!

The TK503/TK504 programming cable cannot be used for AC500 V3 Processor Mod-

ules.

1.2 PC System Requirements

– Platform: Microsoft Windows Vista, Windows 7, Windows 10

– CD-ROM drive

– USB port available for connecting the TK503/TK504 programming cable

NOTICE!

Microsoft, Windows and the Windows logo are trademarks of Microsoft Corporation

in the USA and/or other countries. All other product and company names are trade-

marks of their respective owners.

1.3 Content of the Installation Package

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5147

 PROGRAMMING CABLE TK503 / TK504

4 3ADR010872, 1, en_US

2 Installation

2.1 Installation Steps

Before you can use the TK503/TK504 programming cable, the appropriate USB driver must be

installed on your PC or laptop.

The driver for the TK503/TK504 programming cable is installed in two steps:

– Pre-installation of the driver on your PC using the program TK503_TK504_Installer.exe.

– Installation of the new hardware in Windows after the TK503 programming cable or TK504

programming cable is plugged in for the first time.

NOTICE!

Before you connect the TK503/TK504 programming cable with the PC, install the

USB driver first.

2.2 Pre-Installation Routine

1. Uninstall all existing versions of the driver software.

2. Start the pre-installation of the driver by calling TK503_TK504_Installer.exe.

NOTICE!

You must have administrator rights to run the installation.

3. Define the installation directory and click Install.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5148

 PROGRAMMING CABLE TK503 / TK504

 3ADR010872, 1, en_US 5

Windows Vista users only:

Start the TK503&TK504Installer.exe with the Run as administrator option, even if you have ad-

ministrator rights. Acknowledge the following dialog with Allow.

Windows 7 users only:

Windows will display an error message after clicking Install.

On this condition, decrypt the installation folder:

Then, start TK503_TK504_Installer.exe with the Run as administrator option again.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5149

 PROGRAMMING CABLE TK503 / TK504

6 3ADR010872, 1, en_US

3 Communication

3.1 Virtual Communication Port Configuration

If the TK503/TK504 programming cable is plugged in a USB interface, Windows creates a vir-

tual communication port (COM port).

All communication ports can be viewed in the Windows Control Panel under Device Manager.

4. In the Ports settings click Properties to set the baud rate.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5150

 PROGRAMMING CABLE TK503 / TK504

 3ADR010872, 1, en_US 7

5. Set the COM port number under Advanced (up to COM32).

NOTICE!

When configuring the communication connection in CODESYS, the baud rate can also

be set separately for each COM connection.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5151

 PROGRAMMING CABLE TK503 / TK504

8 3ADR010872, 1, en_US

4 Automation Builder Communication

1. Install TK503/TK504 programming cable driver.

2. Connect the TK503 or TK504 programming cable to a PC or laptop. Windows detects the

new hardware – complete the installation.

3. Start Automation Builder and open the project.

4. Right-click the PLC root node and select Communication Parameters.

5. Select the new virtual COM port.

NOTICE!

The port number must be the same as the port number in the Device manager – Port

– TK503/TK504 programming cable (COMx). Otherwise the communication cannot

be built up.

The number of COM ports depends on the availability on your computer.

The baud rate can be selected between 19200 and 115200 bps.

6. In CODESYS, create the communication between Automation Builder and the PLC.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5152

 PROGRAMMING CABLE TK503 / TK504

 3ADR010872, 1, en_US 9

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5153

 PROGRAMMING CABLE TK503 / TK504

10 3ADR010872, 1, en_US

5 Uninstallation / Update

1. In the Windows Control Panel open the Device Manger.

2. Right-click on the entry TK503/TK504 programming cable and select Uninstall or Update

Driver.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5154

__

__

ABB AG

Eppelheimer Straße 82

69123 Heidelberg, Germany

Phone: +49 62 21 701 1444

Fax : +49 62 21 701 1382

E-Mail: plc.support@de.abb.com

www.abb.com/plc

We reserve the right to make technical

changes or modify the contents of this

document without prior notice. With re-

gard to purchase orders, the agreed par-

ticulars shall prevail. ABB AG does not ac-

cept any responsibility whatsoever for

potential errors or possible lack of infor-

mation in this document.

We reserve all rights in this document and

in the subject matter and illustrations con-

tained therein. Any reproduction, disclo-

sure to third parties or utilization of its

contents – in whole or in parts – is forbid-

den without prior written consent of ABB

AG.

Copyright© 2017 - 2021 ABB. All rights re-

served

D
o

c
u

m
e

n
t

N
u

m
b

e
r:

3

A
D

R
0

10
8

7
2

, 1
, e

n
_

U
S

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5155

TK506 - RS-485 isolator for COM1

● Isolated side: 5-pin terminal
● AC500-eCo-side: D-sub 9-pin, male
● Length 0.6 m

1 D-sub 9-pin, male, RS-485
2 DIN rail mounting spring
3 Holes for mounting with 2x M4 screws
4 5-pin terminal, screw-type, RS-485

Intended purpose
The TK506 RS-485 isolator for COM1 of processor modules PM55x and PM56x allows longer
cable length for serial communication. The product can be used for the communication proto-
cols Modbus RTU or CS31 bus.

The TK506 RS-485 isolator supports the processor modules PM55x and PM56x
with the following ordering numbers and version indices:

– 1TNE968900Rxxxx with version index ≥ A3 (see figure below)
– 1SAP12xx00Rxxxx independent of the version index Ä Table 269 “Pro-

cessor modules for AC500-eCo” on page 3818

The isolator provides galvanic isolation of the RS-485 communication signals. It is supplied via
the 3.3 V output of the COM1 interface of the processor module. The isolator automatically
detects and follows serial data flow direction changes. It is adapted to communication speeds
up to 187.5 kBaud.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5156

Dimensions

The dimensions are in mm and in brackets in inch.

Connections

 PIN Signal Description
1 Terminator P Terminator positive

2 RxD/TxD-P Receive/transmit positive

3 RxD/TxD-N Receive/transmit negative

4 Terminator N Terminator negative

5 FE Functional earth (internally con-
nected to DIN rail spring)

RS-485 communication requires an electrical termination of the communication line. The fol-
lowing is necessary:
● 2 suitable resistors at both line ends (to avoid signal reflections)
● a pull-up resistor at RxD/TxD-P and a pull-down resistor at RxD/TxD-N. These 2 resistors

care for a defined high level on the bus, while there is no data exchange.
In every RS-485 network 1 pull-up and pull-down resistors must be activated. It is recom-
mended to activate the pull-up and the pull-down resistors at the bus master. These 2 resistors
are integrated inside the TK506 RS-485 isolator. They can be activated by connecting the
terminals 1-2 and 3-4 of the terminal block with cable bridges.

Connection:
Interface

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5157

The following figure shows a RS-485 bus with the master at the end of bus line.

1 Master at the end of bus line, pull-up and pull-down resistors are activated, bus termination
with 180 Ω resistor

2 Slave within the bus line
3 Slave at the end of bus line, bus termination with 120 Ω resistor

The following figure shows an CS31 bus with the master at the end of bus line.

1 Master at the end of bus line, pull-up and pull-down activated, bus termination with 180 W
resistor

2 Direct grounding clip or steel plate

NOTICE!
Risk of EMC disturbances!
Unshielded cables may cause EMC disturbances.
Always use shielded cables and connect the shield at every device.

Technical data

Parameter Value
Physical link RS-485

Galvanic isolation Yes

Usage / Supported protocols Modbus (Master and Slave)
CS31 (Master only)

Supported transmission rates [baud]

 Modbus 9.6 k, 14.4 k, 19.2 k, 38.4 k and 187.5 k

 CS31 bus 187.5 k

Connector at the communication line 5-pin screw terminal block

Connector at PM554 or PM564 D-sub 9, male

Master at the
bus line end

Connection:
CS31 protocol

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5158

Parameter Value
Cable type and specification Twist rate minimum 10 per meter, with common

shield
Capacitance between the cores: < 55 nF/km
Characteristic impedance: 120 W

 Recommended cable cross section Conductor cross section 0.5 mm²

Resistance per core: < 40 W/km

 Thinnest cable cross section Conductor cross section 0.22 mm²

Resistance per core: < 100 W/km

Max. cable length for Modbus

 at 19.2 kBaud 500 m with cable cross section 0.5 mm² or 400
m with cable cross section 0.22 mm²

Max. cable length for CS31 bus 500 m with cable cross section 0.5 mm² or 400
m with cable cross section 0.22 mm²

Specification for external terminating resistor 120 W, 1 %, ≥ 0.25 W

or
180 W, 1 %, ≥ 0.25 W

Length 0.6 m

Weight 80 g

Isolation voltage 500 V DC (type test)

Surge voltage (common mode) 1000 V (type test)

Ordering data

Part no. Description Product life cycle phase *)
1SAP 186 100 R0001 TK506, RS-485 isolator for

COM1, D-sub 5 terminal
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.9.2 AC500 (standard)
MC502 - Memory card

● Solid state flash memory storage

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5159

1 MC502 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.2.9.1.3 “MC503 - Memory
card adapter” on page 5101

Purpose

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5160

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V2 and AC500-eCo V2

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Fig. 1020: Insert memory card into PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Dimensions

Insert the
memory card

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5161

Fig. 1021: Insert memory card into PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

AC500 V2 and AC500-eCo V2

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!
Remove the memory card only when the RUN LED is not blinking.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Remove the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5162

Fig. 1022: Remove memory card from PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Fig. 1023: Remove memory card from PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5163

Parameter Value
Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0001 MC502, memory card Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5102 - Micro memory card with micro memory card adapter
● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5164

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.2.9.1.3 “MC503 - Memory
card adapter” on page 5101

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.

Purpose

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5165

The dimensions are in mm and in brackets in inch.

The dimensions are in mm and in brackets in inch.

1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Dimensions

Micro memory
card

Micro memory
card adapter

Insert the micro
memory card
AC500 V2 and
AC500-eCo V2

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5166

Fig. 1024: Insert micro memory card into PM57x, PM58x and PM59x

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot

Fig. 1025: Insert micro memory card into PM55x-xP and PM56x-xP

1 Micro memory card
2 Micro memory card adapter
3 MC503 memory card adapter

Remove the
micro memory
card

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5167

NOTICE!
Removal of the micro memory card
Do not remove the micro memory card when it is working!
Remove the micro memory card with micro memory card adapter only when the
RUN LED is not blinking.
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

1. To remove the micro memory card adapter with the integrated micro memory card, push
on the micro memory card adapter until it moves forward.

2. By this, the micro memory card adapter is unlocked and can be removed.

Fig. 1026: Remove micro memory card from PM57x, PM58x and PM59x

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot

AC500 V2 and
AC500-eCo V2

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5168

Fig. 1027: Remove micro memory card from PM55x-xP and PM56x-xP

1 Micro memory card
2 Micro memory card adapter
3 MC503 memory card adapter

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the micro memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5169

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5141 - Memory card
● Solid state flash memory storage

1 MC5141 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5170

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.2.9.1.3 “MC503 - Memory
card adapter” on page 5101

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V2 and AC500-eCo V2

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Purpose

Dimensions

Insert the
memory card

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5171

Fig. 1028: Insert memory card into PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Fig. 1029: Insert memory card into PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

AC500 V2 and AC500-eCo V2Remove the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5172

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!
Remove the memory card only when the RUN LED is not blinking.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Fig. 1030: Remove memory card from PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5173

Fig. 1031: Remove memory card from PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5174

Part no. Description Product life cycle phase *)
1SAP 180 100 R0041 MC5141, memory card Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA521 - Battery
● Manganese dioxide lithium battery, 3 V, 560 mAh
● Non-rechargeable

The TA521 battery is the only applicable battery for the AC500 processor modules Ä Chapter
1.6.2.3.2.1 “PM57x (-y), PM58x (-y) and PM59x (-y)” on page 3848. It cannot be recharged.

The processor modules are supplied without lithium battery. It must be ordered separately. The
TA521 lithium battery is used for data (SRAM) and RTC buffering while the processor module is
not powered.
See system technology - AC500 battery. Ä Chapter 1.6.4.1.4.2 “AC500 battery” on page 5419

The CPU monitors the discharge degree of the battery. A warning is issued before the battery
condition becomes critical (about 2 weeks before). Once the warning message appears, the
battery should be replaced as soon as possible.

● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Replace the battery with supply voltage ON in order not to risk data being lost.
● Recycle exhausted batteries meeting the environmental standards.

The battery lifetime is the time, the battery can store data while the processor module is not
powered. As long as the processor module is powered, the battery will only be discharged by its
own leakage current.

Ordering data

Purpose

Handling
instructions

Battery lifetime

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5175

To avoid a short battery discharge, the battery should always be inserted or
replaced while the process module is under power, then the battery is correctly
recognized and will not shortly discharged.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

WARNING!
Risk of fire or explosion!
Use of incorrect Battery may cause fire or explosion.

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front face of the processor module and cannot
be removed.

2. Remove the TA521 battery from its package and hold it by the small cable. Remove then
the small connector from the socket, do this best by lifting it out with a screwdriver.

3. Insert the battery connector into the small connector port of the compartment. The con-
nector is keyed to find the correct polarity (red = positive pole = above).

4. Insert first the cable and then the battery into the compartment, push it until it reaches the
bottom of the compartment.

5. Arrange the cable in order not to inhibit the door to close.
6. Pull-up the door and press until the locking mechanism snaps.

Insertion

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5176

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front view of the processor module and cannot
be removed.

2. Remove the old TA521 battery from the battery compartment by pulling it by the small
cable. Remove then the small connector from the socket, do this best by lifting it out with a
screwdriver.

3. Follow the previous instructions to insert a new battery.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

Replacement of
the battery

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5177

Parameter Value
Nominal voltage 3 V

Nominal capacity 560 mAh

Temperature range (index below C0) Operating: 0 °C...+60 °C
Storage: -20 °C...+60 °C
Transport: -20 °C...+60 °C

Temperature range (index C0 and above) Operating: -40 °C...+70 °C
Storage: -40 °C...+85 °C
Transport: -40 °C...+85 °C

Battery lifetime Typ. 3 years at 25 °C

Self-discharge 2 % per year at 25 °C
5 % per year at 40 °C
20 % per year at 60 °C

Protection against reverse polarity Yes, by mechanical coding of the plug.

Insulation The battery is completely insulated.

Connection Red = positive pole = above at plug, black =
negative pole,

Weight 7 g

Dimensions Diameter of the button cell: 24.5 mm
Thickness of the button cell: 5 mm

Part no. Description Product life cycle phase *)
1SAP 180 300 R0001 TA521, lithium battery Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5178

TA524 - Dummy communication module

1 Type
2 Label

TA524 is used to cover an unused communication module slot of a terminal base Ä Chapter
1.6.2.2.1 “TB51x-TB54x” on page 3786. It protects the terminal base from dust and inadvertent
touch.

TA524 is mounted in the same way as a common communication module Ä Chapter 1.6.3.6.3.6
“Mounting/Demounting the communication modules” on page 5335.

Parameter Value
Weight 50 g

Dimensions 135 mm x 28 mm x 62 mm

Part no. Description Product life cycle phase *)
1SAP 180 600 R0001 TA524, dummy communica-

tion module
Active

Purpose

Handling
instructions

Technical data

Ordering data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5179

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA526 - Wall mounting accessory

If a terminal base TB5xx or a terminal unit TU5xx should be mounted with screws, the wall
mounting accessories TA526 must be inserted at the rear side first. This plastic parts prevent
bending of terminal bases and terminal units while screwing up.

Handling of the wall mounting accessory is described in detail in the section Mounting and
disassembling the terminal unit Ä “Mounting with screws” on page 5328 and Mounting/Disas-
sembling Terminal Bases and Function Module Terminal Bases Ä “Mounting with screws”
on page 5326.

Parameter Value
Weight 5 g

Dimensions 67 mm x 35 mm x 5,5 mm

Part no. Description Product life cycle phase *)
1SAP 180 800 R0001 TA526, wall mounting acces-

sory
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA541 - Battery
● Manganese dioxide lithium battery, 3 V
● Non-rechargeable

Purpose

Handling
instructions

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5180

The TA541 lithium battery is the only applicable battery for PM595 Ä Chapter 1.6.2.3.2.2
“PM595-4ETH” on page 3863. It is used to save RAM content of the processor module
(PM595-4ETH-F only) and to back-up the real-time clock (all PM595 variants). It cannot be
recharged.
The processor modules are supplied without a lithium battery. It therefore must be ordered
separately. The lithium battery is used to save RAM contents of AC500 processor modules and
back-up the real-time clock. Although the processor modules can work without a battery, its use
is still recommended in order to avoid process data being lost.
The CPU monitors the discharge degree of the battery. A warning is output, before the battery
condition becomes critical (about 2 weeks before). After the warning message has appeared,
the battery should be replaced as soon as possible.

● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Replace the battery with supply voltage ON in order not to risk data being lost.
● Recycle exhausted batteries meeting the environmental standards.

The battery lifetime is the time the battery can store data while the CPU is not powered. As long
as the CPU is powered, the battery will only be discharged by its own leakage current.

The TA541 lithium battery is the only applicable battery for processor modules
PM595.

Purpose

Handling
instructions

Battery lifetime

Insertion

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5181

1. Remove the front cover / display by pressing the marked areas with your fingers and pull it
to the front.

FE

L+
L+
M
M5

1
2
3
4

6
7
8
9

1
2
3
4
5

2. Remove the old battery from the battery compartment by pulling it by the small cable.
Remove then the small connector from the socket.

3. Remove the battery from its package and hold it by the small cable.

4. Insert the battery connector into the connector port of the PCB. The connector is keyed to
find the correct polarity (red = positive pole = right side).

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5182

5. Insert the battery into the battery compartment on the left side as shown in the figure.

6. Re-assemble the front cover / display by pressing it straight from the front until it snaps in.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

For PM595-4ETH-F only: battery replacement should be done with the system
under power. Without battery and power supply there is no data buffering pos-
sible.

For PM595-4ETH-M-XC only: battery only back-ups the real-time clock.

1. Remove the front cover / display by pressing the marked areas and pull it to the front.
2. Remove the old battery from the battery compartment by pulling it by the small cable.

Remove then the small connector from the socket, do this best by lifting it out with a
screwdriver.
Follow the previous instructions to insert a new battery.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

Parameter Value
Nominal voltage 3 V

Nominal capacity 1800 mAh

Replacement of
the battery

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5183

Parameter Value
Temperature range Operating: -40 °C...+70 °C

Storage: -40 °C...+85 °C
Transport: -40 °C...+85 °C

Battery lifetime Typ. 3 years at 25 °C

Self-discharge 1 % per year at 25 °C
5 % per year at 40 °C
20 % per year at 60 °C

Protection against reverse polarity Yes, by mechanical coding of the plug

Insulation The battery is completely insulated.

Connection Red = positive pole = above at plug
Black = negative pole

Weight 17 g

Dimensions Diameter of the battery: ca. 18 mm
Height of the battery: ca. 35 mm

Part no. Description Product life cycle phase *)
1SAP 182 700 R0001 TA541, lithium battery Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA543 - Screw mounting accessory

The TA543 screw mounting accessory is used for mounting the processor module PM595
without DIN rail.

3 TA543 must be snapped on the backside of PM595 Ä Chapter 1.6.3.6.3.3 “Mounting/
Demounting the processor module PM595” on page 5330.

Ordering data

Intended pur-
pose

Handling
instruction

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5184

1 3 parts of screw mounting accessory TA543
2 3 slots for screw mounting accessory TA543
3 5 holes for screw mounting

Parameter Value
Weight 5 g

Dimensions 12 mm x 8.5 mm x 10 mm

Part no. Description Product life cycle phase *)
1SAP 182 800 R0001 TA543, screw mounting

accessory for PM595
Active

Technical data

Ordering data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5185

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TK501 - Programming cable
● Cable on PC side: D-sub, 9-pole, female, RS-232, for COM interface
● Cable on AC500 side: D-sub, 9-pole, male, RS-232, for COM2 interface
● Cable length: 5 m

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5186

16

59

2
3

2
3
4

5
6

5
6

SGND
DSR

SGND

Shield

4DTR

PC side:
SUB-D

male

RTS RxD
CTS

9RI

1DCD

Cable side:
SUB-D,
female

Cable side:
SUB-D

male

AC500 side:
SUB-D,
female

RxD
TxD

FEHousing
1

9 CTS

Programming cable TK501

59

16

TxD

RTS

FE
HousingFE

TK501
PC

TK501
AC500

7
8

7
8

Cable side:
SUB-D

male

Cable side:
SUB-D,
female

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5187

CTS Clear To Send
DCD Data carrier detect
DTR Data terminal ready
DSR Data set ready
FE Functional earth
RI Ring indicator
RTS Request To Send
RxD Receive data
SGND Signal ground
TxD Transmit data

The TK501 cable connects a 9-pole serial COM interface of a PC with the serial COM2 interface
of PM57x, PM58x and PM59x. It is used for programming purposes.

With AC500/AC500-eCo processor modules, only the ABB programming cables
TK50x can be used. Other cables may cause communication faults and must
not be used.

The 2 plugs are put on the 2 COM interfaces and tightened there.

Parameter Value
Connector at the PC (COM interface) D-sub, 9-pole, female

Connector at the processor module (COM2) D-sub, 9-pole, male

Cable length 5 m

Cable type LiYCY 5 x 0.14 mm², shielded

Weight 220 g

Part no. Description Product life cycle phase *)
1SAP 180 200 R0001 TK501, programming cable

D-sub / D-sub, length: 5 m
Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TK502 - Programming cable
● Cable on PC side: D-sub, 9-pole, female, RS-232, for COM interface
● Cable on AC500 side: terminal block, 9-pole, female, RS-232, for COM1 interface
● Cable length: 5 m

Purpose

Connections

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5188

TK502
PC

16

59

1

9

2
3

2
3
4

5
6

5
6

SGND
DSR

RTS
TxD

Shield

4DTR

RTS SGND
CTS RxD

9RI

1DCD
RxD
TxD

FEHousing
1

9 CTS

Programming cable TK502

FE

PE

7
8

7
8

Cable side
(Plug 1):
SUB-D,
female

Cable side
(Plug 1):
SUB-D,
female

PC side:
SUB-D

male

Cable side
(Plug 2):

terminal block
female

Cable side
(Plug 2):

terminal block
female

AC500 side:
terminal block,
male

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5189

CTS Clear To Send
DCD Data carrier detect
DTR Data terminal ready
DSR Data set ready
FE Functional earth
RI Ring indicator
RTS Request To Send
RxD Receive data
SGND Signal ground
TxD Transmit data

The TK502 cable connects a 9-pole serial COM interface of a PC with the serial COM1 interface
of PM57x, PM58x and PM59x. It is used for programming purposes.

With AC500/AC500-eCo processor modules, only the ABB programming cables
TK50x can be used. Other cables may cause communication faults and must
not be used.

The 2 plugs are put on the two COM interfaces and the plug at the PC side is tightened then.

Parameter Value
Connector at the PC (COM interface) D-sub, 9-pole, female

Connector at the AC500 CPU (COM1) terminal block, 9-pole, female

Cable length 5 m

Cable type LiYCY 5 x 0.14 mm², shielded

Weight 220 g

Part no. Description Product life cycle phase *)
1SAP 180 200 R0101 TK502, programming cable

terminal block / D-sub, length:
5 m

Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TK503 - COM1 USB programming cable
● PC-side: USB connector type A
● AC500-side: D-sub, 9-pin, male
● Length 3 m

Purpose

Connections

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5190

TK503 programming cable connects the USB interface of a PC with the serial interface of a
processor module. It is used for programming purposes. TK503 can be used with all AC500
processor modules.

With AC500/AC500-eCo processor modules, only the ABB programming cables
TK50x can be used. Other cables may cause communication faults and must
not be used.

USB 1

USB 4

Pin 6

Pin 5

Pin 1

31 2..
..
.. ..
..

..
..

Pin 9

1 USB connector type A (PC side)
2 USB/RS-485 converter
3 D-sub, 9-pin, (RS-485, PLC side)

Table 588: TK503 programming cable wiring USB pin
USB pin Signal Description
USB 1 VBUS USB power

USB 2 -D USB data negative

USB 3 +D USB data positive

USB 4 GND Ground

Table 589: TK503 programming cable wiring D-sub, 9-pin
Pin Signal Description
Pin 1 FE Functional earth

Pin 2 - Not connected

Pin 3 RXD/TXD-P Receive/Transmit positive

Pin 4 - Not connected

Pin 5 SGND Signal ground

Pin 6 3.3 V/5 V Power supply

Intended pur-
pose

Connections

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5191

Pin Signal Description
Pin 7 - Not connected

Pin 8 RXD/TXD-N Receive/Transmit negative

Pin 9 - Not connected

1. Install the device driver for the programming cable (see Ä “Installation of cable driver”
on page 5192).

Once you have installed the device driver of the cable in your Windows
system, make sure that you always use the same USB port on your
computer.

Otherwise, Windows will ask you to install the driver a second time if you
connect the cable to a different USB port of your computer.

2. Plug the 9-pin D-sub male connector to the connector at the processor module and tighten
it there.

3. Plug the USB connector to an USB interface at your PC.

Parameter Value
Connector at the PC (USB interface) USB connector type A

Connector at the processor module D-sub, 9-pin, male

Length 3 m

Cable type Programming cable

Weight 0.4 kg

Part no. Description Product life cycle phase *)
1TNE 968 901 R1100 TK503, COM1 USB pro-

gramming cable -> D-sub
(RS-485), length 3 m

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Technical data

Ordering data

Installation of
cable driver

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5192

—
OPER ATION INSTRUCTION

PROGRAMMING CABLE TK503 / TK504
USB DRIVER INSTALLATION

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5193

2 3ADR010872, 1, en_US

Contents

1 Introduction and Basics ... 3
1.1 Intended Use ... 3
1.2 PC System Requirements ... 3
1.3 Content of the Installation Package... 3

2 Installation.. 4
2.1 Installation Steps .. 4
2.2 Pre-Installation Routine ... 4

3 Communication .. 6
3.1 Virtual Communication Port Configuration.. 6

4 Automation Builder Communication ... 8

5 Uninstallation / Update ... 10

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5194

 PROGRAMMING CABLE TK503 / TK504

3 3ADR010872, 1, en_US

1 Introduction and Basics

1.1 Intended Use

The TK503/TK504 programming cable can be used to operate and to configure the PLC via a

PC or laptop. For this, CODESYS software, driver and utility programs must be installed and a

TK503 or TK504 programming cable must be connected.

NOTICE!

The TK503/TK504 programming cable cannot be used for AC500 V3 Processor Mod-

ules.

1.2 PC System Requirements

– Platform: Microsoft Windows Vista, Windows 7, Windows 10

– CD-ROM drive

– USB port available for connecting the TK503/TK504 programming cable

NOTICE!

Microsoft, Windows and the Windows logo are trademarks of Microsoft Corporation

in the USA and/or other countries. All other product and company names are trade-

marks of their respective owners.

1.3 Content of the Installation Package

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5195

 PROGRAMMING CABLE TK503 / TK504

4 3ADR010872, 1, en_US

2 Installation

2.1 Installation Steps

Before you can use the TK503/TK504 programming cable, the appropriate USB driver must be

installed on your PC or laptop.

The driver for the TK503/TK504 programming cable is installed in two steps:

– Pre-installation of the driver on your PC using the program TK503_TK504_Installer.exe.

– Installation of the new hardware in Windows after the TK503 programming cable or TK504

programming cable is plugged in for the first time.

NOTICE!

Before you connect the TK503/TK504 programming cable with the PC, install the

USB driver first.

2.2 Pre-Installation Routine

1. Uninstall all existing versions of the driver software.

2. Start the pre-installation of the driver by calling TK503_TK504_Installer.exe.

NOTICE!

You must have administrator rights to run the installation.

3. Define the installation directory and click Install.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5196

 PROGRAMMING CABLE TK503 / TK504

 3ADR010872, 1, en_US 5

Windows Vista users only:

Start the TK503&TK504Installer.exe with the Run as administrator option, even if you have ad-

ministrator rights. Acknowledge the following dialog with Allow.

Windows 7 users only:

Windows will display an error message after clicking Install.

On this condition, decrypt the installation folder:

Then, start TK503_TK504_Installer.exe with the Run as administrator option again.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5197

 PROGRAMMING CABLE TK503 / TK504

6 3ADR010872, 1, en_US

3 Communication

3.1 Virtual Communication Port Configuration

If the TK503/TK504 programming cable is plugged in a USB interface, Windows creates a vir-

tual communication port (COM port).

All communication ports can be viewed in the Windows Control Panel under Device Manager.

4. In the Ports settings click Properties to set the baud rate.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5198

 PROGRAMMING CABLE TK503 / TK504

 3ADR010872, 1, en_US 7

5. Set the COM port number under Advanced (up to COM32).

NOTICE!

When configuring the communication connection in CODESYS, the baud rate can also

be set separately for each COM connection.

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5199

 PROGRAMMING CABLE TK503 / TK504

8 3ADR010872, 1, en_US

4 Automation Builder Communication

1. Install TK503/TK504 programming cable driver.

2. Connect the TK503 or TK504 programming cable to a PC or laptop. Windows detects the

new hardware – complete the installation.

3. Start Automation Builder and open the project.

4. Right-click the PLC root node and select Communication Parameters.

5. Select the new virtual COM port.

NOTICE!

The port number must be the same as the port number in the Device manager – Port

– TK503/TK504 programming cable (COMx). Otherwise the communication cannot

be built up.

The number of COM ports depends on the availability on your computer.

The baud rate can be selected between 19200 and 115200 bps.

6. In CODESYS, create the communication between Automation Builder and the PLC.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5200

 PROGRAMMING CABLE TK503 / TK504

 3ADR010872, 1, en_US 9

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5201

 PROGRAMMING CABLE TK503 / TK504

10 3ADR010872, 1, en_US

5 Uninstallation / Update

1. In the Windows Control Panel open the Device Manger.

2. Right-click on the entry TK503/TK504 programming cable and select Uninstall or Update

Driver.

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5202

__

__

ABB AG

Eppelheimer Straße 82

69123 Heidelberg, Germany

Phone: +49 62 21 701 1444

Fax : +49 62 21 701 1382

E-Mail: plc.support@de.abb.com

www.abb.com/plc

We reserve the right to make technical

changes or modify the contents of this

document without prior notice. With re-

gard to purchase orders, the agreed par-

ticulars shall prevail. ABB AG does not ac-

cept any responsibility whatsoever for

potential errors or possible lack of infor-

mation in this document.

We reserve all rights in this document and

in the subject matter and illustrations con-

tained therein. Any reproduction, disclo-

sure to third parties or utilization of its

contents – in whole or in parts – is forbid-

den without prior written consent of ABB

AG.

Copyright© 2017 - 2021 ABB. All rights re-

served

D
o

c
u

m
e

n
t

N
u

m
b

e
r:

3

A
D

R
0

10
8

7
2

, 1
, e

n
_

U
S

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5203

1.6.2.9.3 S500-eCo
TA563-TA565 - Terminal blocks

These terminal blocks must only be used with AC500-eCo I/O modules and
AC500-eCo processor modules.

The TA563-TA565 terminal blocks are used to connect process signals and process voltages
to AC500-eCo I/O modules and AC500-eCo processor modules (with -P extension inside their
type designator only). 3 different kind of terminal blocks are available:
● Screw terminals with cable insertion on the side
● Screw terminals with cable insertion on the front
● Spring terminals with cable insertion on the front
Of each kind, 2 sizes are available:
● Terminals with 9 pins
● Terminals with 11 pins.
There are 2 compatible variants of each kind and size.

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

Table 590: Screw-type terminals (TA563/TA564)
Parameter Value
Type Front terminal or side terminal (depending on

model)

Conductor cross section

 Solid 0.5 mm2 to 2.5 mm2

 Flexible 0.5 mm2 to 2.5 mm2

Stripped conductor end

 TA563 8 mm

 TA564 10 mm

Width of the screwdriver 3.5 mm

Fastening torque 0.4 Nm - 0.5 Nm

Degree of protection IP 20 (if all terminal screws are tightened)

Conductor cross section flexible, with ferrule
with/without plastic sleeve

Min. 0.25 mm2

Max. 1.5 mm2

Intended pur-
pose

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5204

Table 591: Spring terminals (TA565)
Parameter Value
Type Front terminal

Conductor cross section

 Solid 0.5 mm2 to 2.5 mm2

 Flexible 0.5 mm2 to 2.5 mm2

Stripped conductor end 10 mm

Degree of protection IP 20

Conductor cross section flexible, with ferrule
with/without plastic sleeve

Min. 0.25 mm2

Max. 1.5 mm2

Part no. Description Product life cycle phase *)
1TNE 968 901 R3101 Terminal Block TA563-9, 9-

pole, screw front, cable side,
6 pieces per unit

Active

1TNE 968 901 R3102 Terminal Block TA563-11, 11-
pole, screw front, cable side, 6
pieces per unit

Active

1TNE 968 901 R3103 Terminal Block TA564-9, 9-
pole, screw front, cable front,
6 pieces per unit

Active

1TNE 968 901 R3104 Terminal Block TA564-11, 11-
pole, screw front, cable front,
6 pieces per unit

Active

1TNE 968 901 R3105 Terminal Block TA565-9, 9-
pole, spring front, cable front,
6 pieces per unit

Active

1TNE 968 901 R3106 Terminal Block TA565-11, 11-
pole, spring front, cable front,
6 pieces per unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA566 - Wall mounting accessory

The TA566 wall mounting accessory is used for mounting S500-eCo I/O modules and AC500-
eCo processor modules without DIN rail.

Ordering data

Intended pur-
pose

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5205

The TA566 is snapped into the back side of the device's housing Ä Chapter 1.6.3.5.3.2
“Mounting and demounting of S500-eCo I/O modules” on page 5245.

Parameter Value
Weight 5 g

Dimensions 29 mm x 28 mm x 5 mm

Part no. Description Product life cycle phase *)
1TNE 968 901 R3107 TA566, wall mounting acces-

sory, 100 pieces
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.2.9.4 S500
CP-E - Economic range

Handling
instruction

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5206

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
● Wide-range input voltage
● Mounting on DIN rail
● High efficiency of up to 90 %
● Low power dissipation and low heating
● Wide ambient temperature range from -40 °C...+70 °C
● No-load-proof, overload-proof, continuous short-circuit-proof
● Power factor correction (depending on the type)
● Approved in accordance with all relevant international standards

Table 592: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR427030R0000 CP-E
24/0.75

100-240 V
AC or
120-370 V
DC

24 V DC,
0.75 A

- 22.5

1SVR427031R0000 CP-E
24/1.25

100-240 V
AC or
90-375 V DC

24 V DC,
1.25 A

- 40.5

1SVR427032R0000 CP-E 24/2.5 100-240 V
AC or
90-375 V DC

24 V DC, 2.5
A

- 40.5

1SVR427034R0000 CP-E 24/5.0 115/230 V
AC auto
select or
210-370 V
DC

24 V DC, 5 A - 63.2

1SVR427035R0000 CP-E
24/10.0

115/230 V
AC auto
select or
210-370 V
DC

24 V DC, 10
A

- 83

1SVR427036R0000 CP-E
24/20.0

115-230 V
AC or
120-370 V
DC

24 V DC, 20
A

- 175

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5207

CP-C.1 - High performance range

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
The CP-C.1 power supplies are ABB’s high performance and most advanced range. With
excellent efficiency, high reliability and innovative functionality it is prepared for the most
demanding industrial applications. These power supplies have a 50 % integrated power reserve
and operate at an efficiency of up to 94 %. They are equipped with overheat protection and
active power factor correction. Combinded with a broad AC and DC input range and extensive
worldwide approvals the CP-C.1 power supplies are the preferred choice for professional DC
applications.
● Typical efficiency of up to 94 %
● Power reserve design delivers up to 150 % of the nominal output current
● Signaling outputs for DC OK and power reserve mode
● High power density leads to very compact and small devices
● No-load-proof, overload-proof, continuous short-circuit-proof
● Active power factor correction (PFC)

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5208

Table 593: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR360563R1001 CP-C.1
24/5.0

110-240 V
AC or
90-300 V DC

24 V DC, 5 A +50 % 40

1SVR360663R1001 CP-C.1
24/10.0

110-240 V
AC or
90-300 V DC

24 V DC, 10
A

+50 % 60

1SVR360763R1001 CP-C.1
24/20.0

110-240 V
AC or
90-300 V DC

24 V DC, 20
A

+30 % 82

TA523 - Pluggable label mounting
For labelling the channels of S500 I/O modules.

1 Pluggable label mounting TA523
2 Plastic labels to be inserted into the holder

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5209

The pluggable label mounting is used to hold 4 plastic labels, on which the meaning of the I/O
channels of I/O modules can be written down. The holder is transparent so that after snapping it
onto the module the LEDs shine through.

The plastic labels can be printed out from TA563.doc http://new.abb.com/products/
ABB1SAP180500R0001.

Parameter Value
Use For labelling channels of I/O modules

Mounting Snap-on to the module

Weight 20 g

Dimensions 82 mm x 67 mm x 13 mm

Part no. Description Product life cycle phase *)
1SAP 180 500 R0001 TA523, pluggable label

mounting (10 pieces)
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA525 - Plastic labels
Accessory to label AC500 and S500 modules.

Purpose

Handling
instructions

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5210

http://new.abb.com/products/ABB1SAP180500R0001
http://new.abb.com/products/ABB1SAP180500R0001

DC532

1.0 I0

1.1 I1

1.2 I2

1.3 I3

1.4 I4

1.5 I5

1.6 I6

1.7 I7

1.8 UP

1.9 ZP

2.0 I8

2.1 I9

2.2 I10

2.3 I11

2.4 I12

2.5 I13

2.6 I14

2.7 I15

2.8 UP

2.9 ZP

3.0 C16

3.1 C17

3.2 C18

3.3 C19

3.4 C20

3.5 C21

3.6 C22

3.7 C23

3.8 UP

3.9 ZP

4.0 C24

4.1 C25

4.2 C26

4.3 C27

4.4 C28

4.5 C29

4.6 C30

4.7 C31

4.8 UP

4.9 ZP

CH-ERR3 CH-ERR4

16 DI 16 DC
Input 24 V DC

Output 24 V DC 0.5 A

CH-ERR2CH-ERR1

TA525

DC532

1.0 I0

1.1 I1

1.2 I2

1.3 I3

1.4 I4

1.5 I5

1.6 I6

1.7 I7

1.8 UP

1.9 ZP

2.0 I8

2.1 I9

2.2 I10

2.3 I11

2.4 I12

2.5 I13

2.6 I14

2.7 I15

2.8 UP

2.9 ZP

3.0 C16

3.1 C17

3.2 C18

3.3 C19

3.4 C20

3.5 C21

3.6 C22

3.7 C23

3.8 UP

3.9 ZP

4.0 C24

4.1 C25

4.2 C26

4.3 C27

4.4 C28

4.5 C29

4.6 C30

4.7 C31

4.8 UP

4.9 ZP

CH-ERR3 CH-ERR4

16 DI 16 DC
Input 24 V DC

Output 24 V DC 0.5 A

CH-ERR2CH-ERR1

2
UP 24VDC 200WUP 24VDC 200W

1

1 Module without plastic label TA525
2 Module with plastic label TA525

The plastic labels are suitable for labelling AC500 and S500 modules (CPUs, communication
modules and I/O modules). The small plastic parts can be written on with a standard waterproof
pen.

The plastic labels are inserted under a slight pressure. For disassembly, a small screwdriver is
inserted at the lower edge of the module.

Parameter Value
Use For labelling AC500 and S500 modules

Mounting Insertion under a slight pressure

Disassembly With a small screwdriver

Scope of delivery 10 pieces

Weight 1 g per piece

Dimensions 8 mm x 20 mm x 5 mm

Part no. Description Product life cycle phase *)
1SAP 180 700 R0001 TA525, Set of 10 white plastic

labels
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Purpose

Handling
instructions

Technical data

Ordering data

PLC Automation with V2 CPUs

PLC integration (hardware) > Device specifications

2022/01/20 3ADR010582, 3, en_US 5211

TA526 - Wall mounting accessory

If a terminal base TB5xx or a terminal unit TU5xx should be mounted with screws, the wall
mounting accessories TA526 must be inserted at the rear side first. This plastic parts prevent
bending of terminal bases and terminal units while screwing up.

Handling of the wall mounting accessory is described in detail in the section Mounting and
disassembling the terminal unit Ä “Mounting with screws” on page 5328 and Mounting/Disas-
sembling Terminal Bases and Function Module Terminal Bases Ä “Mounting with screws”
on page 5326.

Parameter Value
Weight 5 g

Dimensions 67 mm x 35 mm x 5,5 mm

Part no. Description Product life cycle phase *)
1SAP 180 800 R0001 TA526, wall mounting acces-

sory
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA535 - Protective caps for XC devices

Accessory to cover unused connectors of XC devices in salt mist environments.
One TA535 package includes different cap types for the following connectors:
● RJ45 connectors
● 9-pole D-sub connector
● FieldBusPlug connector
Protection should be done for all unused slots of -XC devices.

Purpose

Handling
instructions

Technical data

Ordering data

Purpose

PLC Automation with V2 CPUs
PLC integration (hardware) > Device specifications

2022/01/203ADR010582, 3, en_US5212

Part no. Description Product life cycle phase *)
1SAP 182 300 R0001 TA535, Protective Caps for

XC devices
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

1.6.3 System assembly, construction and connection
1.6.3.1 Introduction

This chapter provides information on assembly, construction and connection of control systems
of the product family AC500.

The AC500 product family consists of the sub-families:
● AC500 (standard): standard PLC that offers a wide range of performance levels and scala-

bility.
● AC500-eCo: cost-effective PLC that offers total inter-operability with the core AC500 range.
● AC500-S: PLC for special safety requirements in all functional safety applications.
AC500 (standard) and AC500-S provide devices with -XC extension as a product variant. Those
devices operate mainly identical to the appropriate AC500 product family, however, can be oper-
ated under extreme conditions Ä Chapter 1.6.3.7.1 “System data AC500-XC” on page 5389.
AC500 product family is characterized by functional modularity, i.e. the devices of all AC500
sub-families can be combined flexible.
As assembly, construction and connection for the devices of the AC500 product family is similar,
information that is valid for all sub-families is provided within an overall section. Details that are
only valid for a specific AC500 sub-family are described in separate sections.

As assembly, construction and connection for the devices of the AC500 product family is similar,
information that is valid for all sub-families is provided within an overall section Ä Chapter
1.6.3.4 “Overall information (valid for complete AC500 product family)” on page 5218. Details
that are only valid for a specific AC500 sub-family are described in separate sections.

Consider the safety instructions
In the description, special attention must be paid to designs using galvanic
isolation, grounding and EMC measures for the reasons stated. Consider
the safety instructions for AC500 product family Ä Chapter 1.6.3.3 “Safety
instructions” on page 5214.

1.6.3.2 Regulations
The following regulations have to be taken into due consideration:
● DIN VDE 0100: "Regulations for the Setting up of Power Installations"
● DIN VDE 0110 Part 1 and Part 2: "The Rating of Creepage Distances and Clearances"
● DIN VDE 0160 and DIN VDE 0660 Part 500: "The Equipment of Power Installations with

Electrical Components"

Ordering data

Appropriate
system setup

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5213

To ensure project success and proper installation of all systems, customers must be familiar and
proficient with the following standards and must comply with their directives:
● DIN VDE 0113 Part 1 & Part 200: "Working & Process Machinery"
● DIN VDE 0106 Part 100: "Close proximity to dangerous voltages"
● DIN VDE 0160, DIN VDE 0110 Part 1: "Protection against direct contact"
The user has to guarantee that the devices and the components are mounted following these
regulations. For operating the machines and installations, other national and international rele-
vant regulations, concerning prevention of accidents and using technical working means, also
have to be met.
AC500 devices are designed according to IEC 1131 Part 2 under overvoltage category II per
DIN VDE 0110 Part 2.
For direct connection of AC Category III overvoltages provide protection measures for over-
voltage category II according to IEC-Report 664/1980 and DIN VDE 0110 Part 1.
Equivalent standards:
● DIN VDE 0110 Part 1 ↔ IEC 664
● DIN VDE 0113 Part 1 ↔ EN 60204 Part 1
● DIN VDE 0660 Part 500 ↔ EN 60439-1 ↔ IEC 439-1
All rights reserved to change design, size, weight, etc.

Both the control system AC500 and other components in the vicinity are operated with dan-
gerous contact voltages. Touching parts, which are under such voltages, can cause grave
damage to health.
In order to avoid such risks and the occurrence of material damage, persons involved with the
assembly, starting up and servicing must possess pertinent knowledge of the following:
● Automation technology sector
● Dealing with dangerous voltages
● Using standards and regulations, in particular VDE, accident prevention regulations and

regulations concerning special ambient conditions (e.g. areas potentially endangered by
explosive materials, heavy pollution or corrosive influences).

1.6.3.3 Safety instructions
The examples and diagrams in this manual are included solely for illustrative purposes.
Because of the many variants and requirements associated with any particular installation, ABB
cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by ABB with respect to use of information, circuits, equipment or
software described in this manual. No liability is assumed for the direct or indirect consequences
of the improper use, improper application or inadequate maintenance of these devices. In no
event will ABB be responsible or liable for indirect or consequential damages resulting from the
use or application of this equipment.

The product family AC500 control system is designed according to EN 61131-2
IEC 61131-2 standards. Data, different from IEC 61131, are caused by the
higher requirements of Maritime Services. Other differences are described in
the technical data description of the devices.

Qualified per-
sonnel

PLC specific
safety notices

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5214

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

NOTICE!
PLC damage due to operation conditions
Protect the devices from dampness, dirt and damage during transport, storage
and operation!

NOTICE!
PLC damage due to wrong enclosures
Due to their construction (degree of protection IP 20 according to EN 60529)
and their connection technology, the devices are suitable only for operation in
enclosed switchgear cabinets.

Cleaning instruction
Do not use cleaning agent for cleaning the device.

Use a damp cloth instead.

Connection plans and user software must be created so that all technical safety aspects, legal
regulations and standards are observed. In practice, possible shortcircuits and breakages must
not be able to lead to dangerous situations. The extent of resulting errors must be kept to a
minimum.

Do not operate devices outside of the specified, technical data!

Trouble-free functioning cannot be guaranteed outside of the specified data.

NOTICE!
PLC damage due to missing grounding
– Ensure to earth the devices.
– The grounding (switch cabinet grounding, PE) is supplied both by the mains

connection (or 24 V supply voltage) and via DIN rail. The DIN rail must be
connected to the ground before the device is subjected to any power. The
grounding may be removed only if it is certain that no more power is being
supplied to the control system.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5215

In the description for the devices (operating manual or AC500 system description), reference is
made at several points to grounding, galvanic isolation and EMC measures. One of the EMC
measures consists of discharging interference voltages into the grounding via Y-type capacitors.
Capacitor discharge currents must basically be able to flow off to the grounding (in this respect,
see also VBG 4 and the relevant VDE regulations).

CAUTION!
Do not obstruct the ventilation for cooling!
The ventilation slots on the upper and lower side of the devices must not be
covered.

CAUTION!
Run signal and power wiring separately!
Signal and supply lines (power cables) must be laid out so that no malfunctions
due to capacitive and inductive interference can occur (EMC).

WARNING!
Labels on or inside the device alert people that dangerous voltage may be
present or that surfaces may have dangerous temperatures.

WARNING!
Splaying of strands can cause hazards!
During wiring of terminals with stranded conductors, splaying of strands shall be
avoided.
– Ferrules can be used to prevent splaying.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5216

CAUTION!
Use only ABB approved lithium battery modules!
At the end of the battery’s lifetime, always replace it only with a genuine battery
module.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

Environment considerations
Recycle exhausted batteries. Dispose batteries in an environmentally conscious
manner, in accordance to local-authority regulations.

This equipment is intended for use in a Pollution Degree 2 industrial environ-
ment, in overvoltage Category II applications (as defined in IEC publication
60664-1), at altitudes up to 2.000 meters without derating.

This equipment is considered Group 1, Class A industrial equipment according
to IEC/CISPR Publication 11. Without appropriate precautions, there may
be potential difficulties ensuring electromagnetic compatibility in other environ-
ments due to conducted as well as radiated disturbance.

This equipment is supplied as "open type" equipment. It must be mounted
within an enclosure that is suitably designed for those specific environmental
conditions that will be present and appropriately designed to prevent personal
injury resulting from accessibility to live parts. The interior of the enclosure must
be accessible only by the use of a tool. Subsequent sections of this publication
may contain additional information regarding specific enclosure type ratings that
are required to comply with certain product safety certifications.

Refer to NEMA Standards publication 250 and IEC publication 60529, as appli-
cable, for explanations of the degrees of protection provided by different types
of enclosure. Also see the appropriate sections in this manual.

1.6.3.3.1 Safety notice
Throughout the documentation we use the following types of safety and information notices
according to ANSI Z535 make you aware of safety considerations or advice on AC500 products
usage.

Information on
batteries

Environment
and enclosure
information

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5217

1 Safety alert symbol indicates the danger.
2 Signal word classifies the danger.
3 Type and source of the risk are mentioned.
4 Possible consequences of the risk are described.
5 Measures to avoid these consequences (enumerations).

DANGER!
DANGER indicates a hazardous situation which, if not avoided, will result in
death or serious injury.
Ensure to take measures to prevent the described impending danger.

WARNING!
WARNING indicates a hazardous situation which, if not avoided, could result in
death or serious injury.
Ensure to take measures to prevent the described dangerous situation.

CAUTION!
CAUTION indicates a hazardous situation which, if not avoided, could result in
minor or moderate injury.
Ensure to take measures to prevent the described dangerous situation.

NOTICE!
NOTICE is used to address practices not related to physical injury but might
lead to property damage for example damage of the product.
Ensure to take measures to prevent the described dangerous situation.

NOTE provides additional information on the product, e.g. advices for configura-
tion or best practice scenarios.

1.6.3.4 Overall information (valid for complete AC500 product family)
1.6.3.4.1 Serial I/O bus

The synchronized serial I/O bus is the I/O data bus for the I/O modules connected with the
processor modules or communication interface modules. Through this bus, I/O and diagnosis
data are transferred.

Signal words

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5218

Up to 10 I/O terminal units (for 1 I/O module each) can be added to one terminal base or to one
AC500-eCo processor module. The I/O terminal units and the AC500-eCo I/O modules, have
a bus input at the left side and a bus output at the right side. Thus the length of the I/O bus
increases with the number of attached I/O modules.

1 I/O bus connection
The connection of the I/O bus is performed automatically by telescoping the modules on the DIN
rail. The I/O bus provides the following signals:
● Supply voltage of 3.3 V DC for feeding the electronic interface components
● 3 data lines for the synchronized serial data exchange
● several control signals

NOTICE!
The I/O bus is not designed for plugging and unplugging modules while in
operation. If a module is plugged or replaced while the bus is in operation, the
following consequences are possible
– reset of the station or of the CPU
– system lockup
– damage of the module

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5219

With its fast data transmission, the I/O bus obtains very low reaction times. Depending on the
device and on the version of firmware and Automation Builder, the following numbers of I/O
devices can be connected to the I/O bus.

Device Version Automation
Builder

Version firmware Max. number of I/O
devices

AC500-eCo PM55x
and PM56x (-ETH
variants only)

As of V2.0.0 As of V2.0.0 7

AC500-eCo PM55x
and PM56x

As of V2.1.0 As of V2.0.6 10

CS31 bus modules
DC551-CS31 and
CI592-CS31-HA

All All 7

CANopen bus
modules CI581-CN
and CI582-CN

As of V2.1.0 All 10

PROFIBUS bus
modules CI541-DP
and CI542-DP

As of V2.1.0 all 10

PROFINET bus
modules CI504-PNIO
and CI506-PNIO

As of V2.1.0 all 10

EtherCAT com-
munication inter-
face module CI511-
ETHCAT and
CI512-ETHCAT

As of V1.1 As of V2.0.x 10

Table 594: General data
Parameter Value
Supply voltage, signal level 3.3 V DC ± 10 %

Max. supply current On request

Type of the data interface Synchronized serial data exchange

Bus data transmission speed 1.8 Mb/s

Minimum bus cycle time 500 µs 1)

Galvanic isolation I/O bus is galvanic connected to CPU and
communication interface logic ciruits. Galvanic
isolation of I/O bus is I/O module specific. See
each module specification for details.

Protection against electrostatic discharge
(ESD)

TB5xx, TB56xx: with protection diodes,
no ESD discharge allowed on the port.

Max. bus length 1 m
1) Minimum bus cycle time: This value is valid for all module combinations (from 1 to 10 I/O
modules)

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5220

Table 595: Wiring (bus connection)
Parameter Value
Bus connection Left-side and right-side connection from

module to module via a 10-pole HE plug (male
at the left side, female at the right side)

Mechanical connection Established by the terminal units

Max. bus length 1 m

1.6.3.4.2 Mechanical encoding

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Pos.
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Fig. 1032: Possible positions for mechanical encoding (1 to 18)

NOTICE!
Terminal units and terminal bases have a mechanical coding which prevents
modules (from) being inserted into the wrong places for cases that might result
in dangerous parasitic voltages or if modules could be destroyed.

The coding either makes it impossible to insert the module to the wrong place or blocks its
electrical function (outputs are not activated).
The following figures show the possible encodings.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5221

Fig. 1033: Encoding for processor modules with Ethernet interface

Fig. 1034: Encoding for processor modules with ARCNET interface

Fig. 1035: Encoding for real-time Ethernet modules

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5222

Fig. 1036: Encoding for communication interface modules

Fig. 1037: Encoding for I/O modules (24 VDC)

Fig. 1038: Encoding for communication interface modules with PROFINET interface

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5223

Fig. 1039: Encoding for I/O modules (120 VAC / 230 VAC)

Fig. 1040: Encoding for positioning modules

Fig. 1041: Encoding for CS31 fieldbus modules

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5224

1.6.3.4.3 Earthing concept (Block diagrams)

NOTICE!
PLC damage due to missing grounding
– Ensure to earth the devices.
– The grounding (switch cabinet grounding, PE) is supplied both by the mains

connection (or 24 V supply voltage) and via DIN rail. The DIN rail must be
connected to the ground before the device is subjected to any power. The
grounding may be removed only if it is certain that no more power is being
supplied to the control system.

Power

DC532/DI524

I/O Terminal Unit TU515/TU516

ZP

supply

DIN
rail

I/O-Bus

Digital

UP CH-ERRx

0V
UP

+24V
Inputs/outputs

I/O-Bus

I/Os

I/O interface

1 M

1 M

ZP ZP

Block diagram:
Digital I/O
modules

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5225

Power

AX522

I/O Terminal Unit TU515/TU516

ZP

supply

DIN
rail

I/O-Bus

UP CH-ERRx

0V
UP

+24V
I+ I–

I/O-Bus
Analog I/O interface

Inputs Outputs

+ – + –

I+ I– O+ O–

+ – + –

O+ O–

PTC PTC

1 M

1
M

1.6.3.4.4 EMC-conforming assembly and construction
General principles

Electric and electronical devices have to work correctly on site. This is also valid when electro-
magnetic influences affect them in defined and/or expected strength. The devices themselves
must not emit electro-magnetic noises.
Advant Controller components have a very high noise immunity.
When the wiring and grounding instructions are met, an error-free operation is given.
High electro-magnetic noises of nearby mounted applications must be taken in consideration
during the planning phase.
An EMC compatible earthing concept will also guarantee an error-free operation here.

Block diagram:
Analog I/O
modules

General consid-
erations

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5226

There are three important principles to be especially considered:
– Keep all connections as short as possible (in particular the grounding con-

ductors)
– Use large conductor cross sections (in particular for the grounding conduc-

tors)
– Create low-impedance, i.e. good and large-sized contacts (in particular for

the grounding conductors)

Pay attention to the following:
– Use vibration-resistant connections
– Clean metallic contact areas
– Use solid plug and screw-type connections
– Use earth cable shields with clips on a well-grounded metallic surface
– Do not use aluminium parts
– Do not use sheath wires
– Do not use toothed lock washers under screw connections

Fig. 1042: Assembly: wrong

Fig. 1043: Assembly: correct

Make a connection between the DIN rails and PE (Protective Earth). For this, use an grounding
wire with a minimum conductor cross section of 10 mm².
The wire is connected to the DIN rail with an M6 screw.
A large-area contact of the DIN rail with the metallic mounting plate improves the EMC behavior
significantly, as the disturbances can be discharged more effective.

Cable routing
● Route cables meeting the standards.
● Sort the cables into cable groups:

– Power current cables
– Power supply cables
– Signal cables
– Data cables

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5227

● Rout signal cables and data cables separately from the power cables.
– Separate cable ducts or cable bundles.
– The distance should be 20 cm or greater.

● Lay signal and data cables close to earthed surfaces.

Cable shields
● Use only shielded data cables. The shield should be grounded at both ends.

A cable shield only grounded at one end can only protect from capacitively coupled interfer-
ence and low-frequency disturbances (50 Hz hum).

● Avoid parasitic currents flowing through the cable shields.
This can be done by installing current-carrying equipotential bondings.

● Use only cables with braided shields.
Foil shields are not robust enough, cannot be contacted well and have poor HF properties.

● Use only metallic or [metal]-plated plugs for shielded data cables.
● Use only shielded cables for analog signals.

For small signals ground the shield only at one end.
● Ground the cable shield directly with a clip when entering the switchgear cabinet.

Do not cut the shield until the cable reaches the module connected.

The connection between the PE bar and the shield bar must have a low impe-
dance.

Switchgear cabinet

According to DNV GL mounting in a seperate metall cabinet is required for:

– FM502-CMS
– FM502-CMS-XC
– TF501-CMS
– TF501-CMS-XC
– TF521-CMS
– TF521-CMS-XC
– SM560-S-FD-1
– CI521-MODTCP
– CI522-MODTCP
– CM589-PNIO

The connections between the switchgear cabinet, the mounting plates, the PE bar and the
shield bar must have a low impedance.

Ground the switchgear cabinet doors with short and highly flexible conductors.

Only use filament lamps (bulbs) or fluorescent tubes with interference suppression.

Use the mains socket which is located inside the switchgear cabinet.
Ä Chapter 1.6.3.5.2.1 “Switchgear cabinet assembly” on page 5238

Connections

Grounding

Illumination

For supplying
the PC

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5228

Reference potential
● Provide a uniform reference potential in the entire installation and ground all electrical

appliances if possible.
● Route your grounding conductors in a star configuration so that no ground loops can occur.

Equipotential bonding
The Installation of equipotential bondings are necessary if there are present or expected poten-
tial differences between parts of your application.

– The impedance of equipotential bonding must be equal or lower than 10 %
of the shield impedance of the shielded signal cables between the same
points.

– The conductor cross section of a equipotential bonding must be 16 mm² to
withstand the maximum possible compensating current.

– Equipotential bondings and shielded signal cables should be laid close to
each other.

– Equipotential bondings must be connected to PE with low impedance.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5229

Fig. 1044: AC500, equipotential bonding

1 Cabinet 1
2 Cabinet 2
3 Power supply for the CPU
4 Fuse for the CPU power
5 Power supply for the I/Os
6 Fuse for the I/O power
7 For fuses for the contacts of the relay outputs
8 0V rail
9 Grounding of the 0V rail
10 Cabinet grounding
11 Equipotential bonding between the cabinets min. 16 mm2

12 Cable shields grounding
13 Fieldbus connection (e.g. Ethernet)

1.6.3.4.5 Power consumption of an entire station
The power consumption of a complete station consists of the sum of all individual consump-
tions.
● Consumers over terminals L+ and M on the AC500 terminal base/AC500-eCo CPU:

– CPU itself
– I/O modules attached on the I/O bus
– Communication modules attached (AC500 terminal base)

● Consumers over the process supply voltage terminals ZP and UP of the AC500 terminal
units / the L+/M or UP/ZP terminals of the AC500-eCo I/O modules:
– Digital I/O modules
– Analog I/O modules

The two supply voltages can be provided by the same power supply unit. The CPU and the
I/O modules should, however, be fused separately. Of course also separate power supplies are
possible.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5230

Calculation of the total current consumption
In the example, the AC500 control system consists of the following devices:
● AC500 CPU with Ethernet interface
● 4 communication modules
● 7 I/O modules (digital and analog)
● As well as the required terminal bases and terminal units

Because of the high total current consumption of the digital I/O modules (from
UP = 24 V DC), the supply is divided up into several electric circuits fused
separately.

The maximum permitted total current over the supply terminals of the I/O ter-
minal units is 8 A.

The total current can be calculated as follows:
ITotal = ILOGIC + IUP

with the assumptions
ILOGIC = ICPU + II/O bus + IC1 + IC2 + IC3 + IC4 (CPU + communication modules + I/O bus)

II/O bus = Number of expansion modules × Current consumption through the I/O bus per module

and
IUP = IUP1 + ILOAD1 + IUP2 + ILOAD2 + IUP3 + ILOAD3 + IUP4 + ILOAD4 + IUP5 + ILOAD5 + IUP6 + ILOAD6 + IUP7
+ ILOAD7

Example

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5231

If one assumes that all outputs are switched on and are operated with their maximum permitted
load currents (under compliance with the maximum permitted currents at the supply terminals),
then the following values are the result for an example shown above:

 ICPU *) ICx *) II/O bus *) IUPx *) ILOADx *)

CPU / communication module part
CPU 0.110 A - - - -

C1 - 0.050 A - - -

C2 - 0.085 A - - -

C3 - 0.050 A - - -

C4 - 0.050 A - - -

I/O module part
Analog1 - - 0.002 A 0.150 A -

Analog2 - - 0.002 A 0.150 A 0.160 A

Analog3 - - 0.002 A 0.100 A 0.080 A

Analog4 - - 0.002 A 0.100 A 0.080 A

Digital1 - - 0.002 A 0.050 A 8.000 A

Digital2 - - 0.002 A 0.050 A 8.000 A

Digital3 - - 0.002 A 0.050 A 8.000 A

S columns 0.110 A 0.235 A 0.014 A 0.650 A 24.320 A

S ILOGIC ≈ 0.4 A S IUP ≈ 25 A

 ITotal ≈ 25.4 A

*) All values in this column are exemplary values

Dimensioning of the fuses
To be able to select the fuses for the station correctly, both the current consumption and the
inrush currents (melting integral for the series-connected fuse) must be taken into consideration.

Fuse for S of the
melting
integrals in
A²s

I Logic A IUPx A Recommended fuse
Type Value

F1 CPU logic 1.000 » 0.4 - Quick 10 A

F2 Module Dig-
ital1

0.005 - 8.050 Quick 10 A

F3 Module Dig-
ital2

0.008 - 8.050 Quick 10 A

F4 Module Dig-
ital3

0.007 - 8.050 Quick 10 A

F5 Modules
Analog1 +
Analog2 +
Analog3 +
Analog4

0.130 - 0.820 Quick 10 A

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5232

1.6.3.4.6 Decommissioning
1. Delete applications.
2. Delete applications from memory card, if available.
3. If available, remove memory card and battery from CPU.
4. Demount and dispose the hardware modules Ä Chapter 1.6.3.5.3 “Mounting

and demounting” on page 5241 Ä Chapter 1.6.3.6.3 “Mounting and demounting”
on page 5325 Ä Chapter 1.6.3.4.7 “Recycling” on page 5233.

If you can not access the data stored in the CPU, e.g., because the CPU is not functional
any more, then physically destroy the device.

ð This ensures that the credentials that are stored in the device, can not be misused.

1.6.3.4.7 Recycling

Disposal and recycling information
This symbol on the product (and on its packaging) is in accordance with the
European Union's Waste Electrical and Electronic Equipment (WEEE) Directive.

The symbol indicates that this product must be recycled/disposed of separately
from other household waste.

It is the end user’s responsibility to dispose of this product by taking it to a
designated WEEE collection facility for the proper collection and recycling of the
waste equipment.

The separate collection and recycling of waste equipment will help to conserve
natural resources and protect human health and the environment.

For more information about recycling, please contact your local environmental
office, an electrical/electronic waste disposal company or the store where you
purchased the product.

1.6.3.5 AC500-eCo
1.6.3.5.1 System data AC500-eCo
Environmental conditions

Table 596: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

24 V AC

 Voltage 24 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

100 V AC

 Voltage 100 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

230 VAC

 Voltage 230 V (-15 %, +10 %)

Secure decom-
missioning of a
functional CPU

Secure decom-
missioning of a
not functional
CPU

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5233

Parameter Value
Frequency 50/60 Hz (-6 %, +4 %)

100...240 V AC wide-range supply

 Voltage 100 V...240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply, according to EN 61131-2

 DC supply Interruption < 10 ms, time between 2 interruptions
> 1 s, PS2

 AC supply Interruption < 0.5 periods, time between 2 inter-
ruptions > 1 s

NOTICE!
Exceeding the maximum power supply voltage (> 30 V DC) for process or
supply voltages could lead to unrecoverable damage of the system. The system
might be destroyed.

Parameter Value
Temperature

 Operating 0 °C...+60 °C (horizontal mounting of modules)
0 °C...+40 °C (vertical mounting of modules and
output load reduced to 50 % per group)

 Storage -40 °C...+70 °C

 Transport -40 °C...+70 °C

Humidity Max. 95 %, without condensation

Air pressure

 Operating > 800 hPa / < 2000 m

 Storage > 660 hPa / < 3500 m

Creepage distances and clearances
The creepage distances and clearances meet the requirements of the overvoltage category II,
pollution degree 2.

Insulation test voltages, routine test

Parameter Value
200 V...240 V circuits against
other circuitry

2500 V 1.2/50 µs

100 V...127 V circuits against
other circuitry

1500 V 1.2/50 µs

100 V...240 V circuits against
other circuitry

2500 V 1.2/50 µs

According to EN
61131-2

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5234

Parameter Value
24 V circuits (supply, 24 V
inputs/outputs, analog inputs/
outputs), if they are galvani-
cally isolated against other cir-
cuitry

500 V 1.2/50 µs

COM interfaces, galvanically
isolated

500 V 1.2/50 µs

COM interfaces, electrically
not isolated

Not applicable Not applicable

FBP interface 500 V 1.2/50 µs

Ethernet 500 V 1.2/50 µs

ARCNET 500 V 1.2/50 µs

200 V... 240 V circuits against
other circuitry

1350 V AC 2 s

100 V circuits against other
circuitry

 820 V AC 2 s

100 V...240 V circuits against
other circuitry

1350 V AC 2 s

24 V circuits (supply, 24 V
inputs/outputs, analog inputs/
outputs), if they are galvani-
cally isolated against other cir-
cuitry

350 V AC 2 s

COM interfaces, galvanically
isolated

350 V AC 2 s

COM interfaces, electrically
not isolated

Not applicable Not applicable

FBP interface 350 V AC 2 s

Ethernet 350 V AC 2 s

ARCNET 350 V AC 2 s

Power supply units
For the supply of the modules, power supply units according to SELV or PELV specifications
must be used.

Safety Extra Low Voltage (SELV) and Protective Extra Low Voltage (PELV)
To ensure electrical safety of AC500/AC500-eCo extra low voltage circuits, 24
V DC supply, communication interfaces, I/O circuits, and all connected devices
must be powered from sources meeting requirements of SELV, PELV, class 2,
limited voltage or limited power according to applicable standards.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5235

WARNING!
Improper installation can lead to death by touching hazardous voltages!
To avoid personal injury, safe separation, double or reinforced insulation and
separation of the primary and secondary circuit must be observed and imple-
mented during installation.
– Only use power converters for safety extra-low voltages (SELV) with safe

galvanic separation of the primary and secondary circuit.
– Safe separation means that the primary circuit of mains transformers must

be separated from the secondary circuit by double or reinforced insulation.
The protective extra-low voltage (PELV) offers protection against electric
shock.

Electromagnetic compatibility

Electromagnetic Compatibility
Device suitable for:

 Industrial applications Yes

 Domestic applications No

Immunity against electrostatic discharge
(ESD):

According to IEC 61000-4-2, zone B, crite-
rion B

 Electrostatic voltage in case of air dis-
charge

8 kV

 Electrostatic voltage in case of contact dis-
charge

4 kV, in a closed switchgear cabinet 6 kV
1)

 ESD with communication connectors In order to prevent operating malfunctions,
it is recommended, that the operating
personnel discharge themselves prior to
touching communication connectors or
perform other suitable measures to reduce
effects of electrostatic discharges.

Immunity against the influence of radiated
(CW radiated):

According to IEC 61000-4-3, zone B, crite-
rion A

 Test field strength 10 V/m

Immunity against transient interference vol-
tages (burst):

According to IEC 61000-4-4, zone B, crite-
rion B

 Supply voltage units (DC) 2 kV

 Supply voltage units (AC) 2 kV

 Digital inputs/outputs (24 V DC / 24 VAC) 1 kV

 Digital inputs/outputs (100 V AC...240 V
AC)

2 kV

 Analog inputs/outputs 1 kV

 Serial RS-485 interfaces (COM) 1 kV

 Ethernet 1 kV

 I/O supply, DC-out 1 kV

Immunity against the influence of line-con-
ducted interferences (CW conducted):

According to IEC 61000-4-6, zone B, crite-
rion A

 Test voltage 10 V

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5236

Electromagnetic Compatibility
High energy surges According to IEC 61000-4-5, zone B, crite-

rion B

 Power supply AC 2 kV CM / 1 kV DM ²)

 Power supply DC 1 kV CM / 0.5 kV DM ²)

 DC I/O supply, add. DC-supply-out 1 kV CM / 0.5 kV DM ²)

 Communication lines, shielded 1 kV CM ²)

 AC I/O unshielded 3) 2 kV CM / 1 kV DM ²)

 I/O analog, I/O DC unshielded 3) 1 kV CM / 0.5 kV DM ²)

Radiation (radio disturbance) According to IEC 55011, group 1, class A

1) High requirement for shipping classes are achieved with additional specific measures (see
specific documentation).
²) CM = Common Mode, DM = Differential Mode
3) When DC I/O inputs are used with AC voltage, external filters limiting high energy surges to 1
kV CM / 0.5 DM are required to meet requirements according IEC 61131-2.

Mechanical data

Parameter Value
Mounting Horizontal

Degree of protection IP 20 (if all terminal screws are tightened)

Housing Classification V-2 according to UL 94

Vibration resistance acc. to EN 61131-2 all three axes (DIN rail mounting)
5 Hz...8.4 Hz, continuous 3.5 mm
8.4 Hz...150 Hz, continuous 1 g

Shock test All three axes
15 g, 11 ms, half-sinusoidal

Mounting of the modules:

DIN rail according to DIN EN 50022 35 mm, depth 7.5 mm or 15 mm

Mounting with screws Screws with a diameter of 4 mm

Fastening torque 1.2 Nm

Approvals and certifications
Information on approvals and certificates can be found in the corresponding chapter of the Main
catalog, PLC Automation.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5237

http://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch

1.6.3.5.2 Mechanical dimensions
Switchgear cabinet assembly

Information on EMC-conforming assembly and construction is provided within
the overall functions section Ä Chapter 1.6.3.4.4 “EMC-conforming assembly
and construction” on page 5226.

NOTICE!
PLC damage due to wrong enclosures
Due to their construction (degree of protection IP 20 according to EN 60529)
and their connection technology, the devices are suitable only for operation in
enclosed switchgear cabinets.

To protect PLCs against:
● unauthorized access,
● dusting and pollution,
● moisture and wetness and
● mechanical damage,
switchgear cabinet IP54 for common dry factory floor environment is suitable.

Maintain spacing from:
● enclosure walls
● wireways
● adjacent equipment
Allow a minimum of 20 mm clearance on all sides. This provides ventilation and galvanic
isolation.
It is recommended to mount the modules on an grounded mounting plate, or an grounded DIN
rail, independent of the mounting location.

PLC enclosure

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5238

Fig. 1045: Installation of AC500/S500 modules in a switchgear cabinet

1 Cable duct
2 Distance from cable duct ≥20 mm
3 Mounting plate, grounded

NOTICE!
 Horizontal mounting is highly recommended.
Vertical mounting is possible, however, derating consideration should be made
to avoid problems with poor air circulation and overheating (see Ä Chapter
1.6.3.6.1.1 “Environmental conditions” on page 5313).

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5239

When vertically mounted, always place an end-stop terminal block (e.g. type
BADL, P/N: 1SNA399903R0200) on the bottom and on the top of the modules
to properly secure the modules.

With high vibration applications and horizontal mounting, we also recommend
to place end-stop terminals at the right and left side of the device to properly
secure the modules, e.g. type BADL, P/N: 1SNA399903R0200.

Mechanical dimensions AC500-eCo

All mechanical dimensions are given in millimeters and inches. The value in
brackets is the inch-value.

Fig. 1046: Side, front and back view

Mechanical dimensions S500-eCo

All mechanical dimensions are given in millimeters and inches. The value in
brackets is the inch-value.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5240

Fig. 1047: Side, front and back view

1.6.3.5.3 Mounting and demounting
The control system is designed to be mounted to a well-grounded mounting surface such as a
metal panel. Additional grounding connections from the mounting tabs or DIN rail (if used), are
not required unless the mounting surface cannot be grounded.

During panel or DIN rail mounting of all devices, be sure that all debris (metal
chips, wire strands, etc.) is kept from falling into the controller. Debris that falls
into the controller could cause damage while the controller is energized.

All devices are grounded through the DIN rail to chassis ground. Use zinc
plated yellow-chromate stell DIN rail to assure proper grounding. The use of
other DIN rail materials (e.g. aluminium, plastic, etc.) that can corrode, oxidize,
or are poor conductors, can result in improper or intermittent grounding.

Mounting and demounting of the AC500-eCo CPUs

NOTICE!
Risk of function faults!
The processor module is grounded via DIN rail.
The DIN rail must be included into the earthing conception of the plant.

Mounting a pro-
cessor module
on a DIN rail

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5241

Mount the processor module at the top of the DIN rail, then snap it in below.

See Hardware description of PM55x-xP and PM56x-xP Ä Chapter 1.6.2.3.1.1
“PM55x-xP and PM56x-xP” on page 3804 for connection.

1. Remove I/O modules if connected.

Demounting a
processor
module
mounted on a
DIN rail

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5242

2. While pressing down processor module pull it away from DIN rail.

NOTICE!
Risk of function faults!
Missing electrical contact by isolating screws or washers!
Use metal screws on the metal plate.
The metal plate must be included into the earthing concept of the plant.
Do NOT use insulating washers!

One TA566 Wall Mounting Accessory Ä Chapter 1.6.2.9.3.2 “ TA566 - Wall
mounting accessory” on page 5205 is needed per processor module.

1. Snap in the TA566 at the back side of the processor module.

Mounting a pro-
cessor module
on a metal plate

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5243

2. Fasten the processor module with two screws (max. diameter: 4 mm) to the metal plate.

See Hardware description of PM55x-xP and PM56x-xP Ä Chapter 1.6.2.3.1.1
“PM55x-xP and PM56x-xP” on page 3804 for connection.

1. Remove I/O modules if connected.

Demounting a
processor
module
mounted on a
metal plate

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5244

2. Remove the 2 screws.

Mounting and demounting of S500-eCo I/O modules
S500-eCo I/O modules can be mounted either on a DIN rail or with screws on a metal plate.

NOTICE!
Risk of function faults!
The S500-eCo I/O modules are grounded via the DIN rail.
The DIN rail must be included into the earthing concept of the plant.
Use only metal screws.

Mounting I/O
modules on a
DIN rail

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5245

1. Mount I/O module at the top of the DIN rail, then snap it in below.

2. Attach I/O module by hand to an other module. The serial I/O bus is connected automati-
cally.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5246

1. Remove I/O module by hand if connected.

2. While pressing down I/O module pull it away from DIN rail.

NOTICE!
Risk of function faults!
Missing electrical contact by isolating screws or washers!
Use metal screws on the metal plate.
The metal plate must be included into the earthing concept of the plant.
Do NOT use insulating washers!

Demounting I/O
modules
mounted on a
DIN rail

Mounting I/O
modules on a
metal plate

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5247

One TA566 wall mounting accessory Ä Chapter 1.6.2.9.3.2 “ TA566 - Wall
mounting accessory” on page 5205 is needed per S500-eCo I/O module.

1. Snap in the TA566 at the back side of the I/O module.

2. Attach the I/O module by hand to an other module. The serial I/O bus is connected
automatically.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5248

3. Fasten the I/O module with two screws (max. diameter: 4 mm) to the metal plate.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5249

1. Remove the 2 screws.

2. Remove the I/O module from the connected module by hand.

Mounting/Demounting the accessories
Additional components such as batteries, cables, etc. are required for commissioning the PLC
system. Information on assembly, replacement or basic use of the orderable components can
be found in the description of the respective accessory.
Ä Chapter 1.6.3.6.5 “Handling of accessories” on page 5359

Hardware details can be found in the device specifications of the accessory.

Demounting I/O
modules
mounted on a
metal plate

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5250

Ä Chapter 1.6.2.9 “Accessories” on page 5095

1.6.3.5.4 Connection and wiring
For detailed information such as technical data of your mounted devices (AC500 product family)
refer to the hardware device specification of the appropriate device.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Power supply
Depending on the variant, the processor modules can be connected to the following supply
voltages:

L+ M F + M
24VDC OUT24VDC IN
LE L N FE L+ M

24VDC OUT100−240VAC IN

24 V DC 100 - 240 V AC

The connection is established via a removable 5-pin terminal block. As the terminal block is also
available as a spare part (inside TA570 Spare Part Set for AC500-eCo processor modules).
The 24 V DC variant contains 2 L+ and M terminals. The L+ terminal on the left side is the input
and the right side is the output. The M terminals are internally interconnected. The supply can
be easily looped through to the onboard digital inputs.

CAUTION!
Risk of damaging the processor module and the connected modules!
Voltages > 35 V DC (DC variants only) or > 288 V AC (AC variants only) might
damage the processor module and the connected modules.
Make sure that the supply voltage never exceeds 35 V DC / 288 V AC.

CAUTION!
Risk of damaging the processor module!
Excess currents at 24 V DC output (24 V DC processor module variant) will
damage the processor module.
Use an appropriate fuse Ä Chapter 1.6.2.3.1.1.8 “Technical data” on page 3814
within 24 V DC input connection.

Power supply

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5251

The 100-240 V AC variant contains an internal power supply with a wide-range input. It provides
a 24 V DC output at the terminals L+ and M which can be used to supply the onboard digital
inputs.

The voltage output at 100 V AC ... 240 V AC variants can provide 180 mA max.
The output is protected against overload by a self-resetting fuse (PTC).

Serial interface COM1
The serial interfaces COM1 and COM2 are designed according to the standard EIA RS-485.
Both interfaces can be operated in RS-485 mode.

Parameter Value
Standard of the serial interfaces RS-485

Interface connectors COM1: 9-pin D-sub connector (female)
COM2: 5-pole connector with screw-type con-
nection (optional)

Electrical isolation none (with TA562)
500 V DC (with TA569-RS-ISO)

Serial interface parameters Configurable by the software

Operating modes Programming or data exchange

Supported protocols Modbus or serial data exchange using special
software function blocks

Table 597: Pin assignment
Serial Interface Pin Signal Description
Serial Interface 1 FE Functional earth

2 SGND 0 V power supply, internally
connected to M terminal

3 RxD/TxD-P Receive/Transmit positive

4 Reserved Reserved, not connected

5 SGND 0 V power supply, internally
connected to M terminal

6 +3.3 V 3.3 V power supply

7 Reserved Reserved, not connected

8 RxD/TxD-N Receive/Transmit negative

9 Reserved Reserved, not connected

Shield Cable shield Functional earth

The serial non-isolated interface COM1 is connected to a 9-pole D-sub connector. It is configu-
rable for RS-485 and can be used for:

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5252

● online access with Automation Builder (via RS-485 programming cable e. g. TK504
Ä Chapter 1.6.2.9.1.12 “TK504 - COM2 USB programming cable” on page 5143),

● as Modbus RTU, client and server
● for ASCII serial protocols
● a CS31 bus (RS-485), as master only.

The serial RS-485 interface is not galvanically isolation.

If the RS-485 bus is used, each interconnected bus line (each bus segment) must be electrically
terminated. The following is necessary:
● 2 resistors of 120 Ω each at both line ends (to avoid signal reflections)
● In addition, a pull-up resistor at RxD/TxD-P and a pull-down resistor at RxD/TxD-N. These 2

resistors care for a defined high level on the bus, while there is no data exchange.

The pull-up, pull-down and termination resistors are not included inside the
processor module and must be connected externally.

It is useful to add both the pull-up and the pull-down resistors, which only are necessary once
on every bus line, at the bus master.
The following figure shows an RS-485 bus with the bus master at one line end.

1 Master at the bus line end, pull-up and pull-down activated, bus termination with 120 Ω
resistors

2 Slave within the bus line
3 Slave at the bus line end, bus termination with 120 Ω resistors
If the master is located within the bus line, it does not need a terminating resistor. The pull-up
and the pull-down resistors, however, are necessary:

1 Slave at the bus line end, bus termination with 120 Ω resistors
2 Master within the bus line, pull-up and pull-down activated
3 Slave within the bus line
4 Slave at the bus line end, bus termination with 120 Ω resistors

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5253

NOTICE!
Risk of EMC disturbances!
Unshielded cables may cause EMC disturbances.
Always use shielded cables and connect the shield at every device.

NOTICE!
Risk of malfunctions!
The pull-up/pull-down resistors must be used only one time within a bus line.
Use the pull-up/pull-down resistors only at 1 master.

The cable shields must be grounded. See CS31 bus Ä Chapter 1.6.3.5.4.4 “CS31 bus”
on page 5257.

Serial interface COM2
The serial interfaces COM1 and COM2 are designed according to the standard EIA RS-485.
Both interfaces can be operated in RS-485 mode.

Parameter Value
Standard of the serial interfaces RS-485

Interface connectors COM1: 9-pin D-sub connector (female)
COM2: 5-pole connector with screw-type con-
nection (optional)

Electrical isolation none (with TA562)
500 V DC (with TA569-RS-ISO)

Serial interface parameters Configurable by the software

Operating modes Programming or data exchange

Supported protocols Modbus or serial data exchange using special
software function blocks

The serial interface COM2 is connected via a 5-pin terminal block and can be used for
● online access
● free protocol communication
● Modbus RTU, client and server

The serial RS-485 interface is not galvanically isolated using TA562-RS or
TA562-RS-RTC.

Using TA569-RS-ISO the serial RS-485 interface has galvanic isolation.

It is not intended to use COM2 to establish a CS31 bus.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5254

If the RS-485 bus is used, each interconnected bus line (each bus segment) must be electrically
terminated. The following is necessary:
● 2 suitable resistors at both line ends (to avoid signal reflections)
● A pull-up resistor at RxD/TxD-P and a pull-down resistor at RxD/TxD-N. These 2 resistors

care for a defined high level on the bus, while there is no data exchange.

The pull-up and the pull-down resistors are included inside the processor mod-
ule's serial RS-485 adapter. The terminating resistor is not included inside the
processor module and must be connected externally.

It is useful to activate both the pull-up and the pull-down resistors, which are only necessary
once on every bus line, at the bus master. For this reason, these 2 resistors are already inte-
grated within the COM2 interface of the processor module. They can be activated by connecting
the terminals 1-2 and 3-4 of COM2.

For equipping AC500-eCo processor modules with a real-time clock and a
second serial RS-485 interface COM2, use TA562-RS-RTC serial RS-485 and
real-time clock adapter Ä Chapter 1.6.3.5.5.8 “TA562-RS-RTC - Serial RS-485
adapter with real-time clock” on page 5296.

Table 598: Pin assignment
Serial Interface Pin Description

1
2
3
4
5

1 Terminator P

2 TxD/RxD-P

3 TxD/RxD-N

4 Terminator N

5 Functional earth

NOTICE!
Risk of EMC disturbances!
Unshielded cables may cause EMC disturbances.
Always use shielded cables and connect the shield at every device.

NOTICE!
Risk of malfunctions!
The pull-up/pull-down resistors must be used only one time within a bus line.
Use the pull-up/pull-down resistors only at 1 master.

The ground potential of the interface COM2 is internally connected to the M
terminal of the CPU power supply connector (not for TA569-RS-ISO).

The cable shields must be grounded. See CS31 bus Ä Chapter 1.6.3.5.4.4 “CS31 bus”
on page 5257.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5255

COM2 as master of RS-485 communication system
When COM2 is configured as a master in serial communication application, internal pull-up/
pull-down resistors have to be activated to comply minimum 200 mV input voltage on A/B line
during idle state.

It is recommended to apply COM2 at the line end if RS-485 master is config-
ured.

When COM2 is applied to the bus line end as a master it needs a 180 Ω terminator and
pull-up/pull-downdown resistors wiring to comply with signal integrity and impedance matching.
Terminator wiring and pull-up/pull-down resistors activating can be as:

1 COM2 as master at the end of bus line, pull-up and pull-down resistors are activated, bus
termination with 180 Ω resistor

2 Slave within the bus line
3 Slave at the end of bus line, bus termination with 120 Ω resistor

AC500-eCo as master must always be located at the end of the bus line.

COM2 as slave of RS-485 communication system
When COM2 is configured as a slave in serial communication application, pull-up/pull-down
resistors must be inactivated. Terminator wiring complies with the node position.

It does not matter wherever the master is located when COM2 is configured as
slave in the line.

A 120 Ω 1/2 W resistor is a typical terminator to match the impedance of most of cable applied
when COM2 is located at the end of bus line.

COM2 as master
at the bus line
end

COM2 as slave
at the bus line
end

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5256

1 COM2 as slave at the end of bus line, bus termination with 120 Ω resistor, but the pull-up
and pull-down termination must be inactivated

2 Slave within the bus line
3 Slave at the end of bus line, bus termination with 120 Ω resistor

If COM2 is configured as a slave node within the bus line, it does not need a terminator. Pull-up
and pull-down resistors are not required by a slave node.

1 Slave at the end of bus line, bus termination with 120 Ω resistor
2 COM2 as slave within the bus line, pull-up and pull-down termination must be inactivated
3 Slave at the end of bus line, bus termination with 120 Ω resistor

CS31 bus
The AC500-eCo processor module can be used as a CS31 bus master. They cannot be
used as a CS31 bus slave. The connection is performed via the serial interface COM1 used
as a CS31 bus (see chapter Serial Interface COM1 Ä Chapter 1.6.2.3.1.1.3 “Connections”
on page 3806). Connection of the bus signals: pin 3 and pin 8.

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Recommendation 0.5 mm² corresponds to 0.8 mm

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω...150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length
must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Remarks Shielded cables with PVC core insulation and
a core diameter of 0.8 mm can be used up
to a length of ca. 50 m. In this case, the bus
terminating resistor is ca. 100 Ω.

COM2 as slave
located within
the bus line

Connection

Wiring

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5257

Shielded cables with PVC core insulation and a core diameter of 0.8 mm can be used up to a
length of ca. 50 m. In this case, the bus terminating resistor is ca. 100 W.

A CS31 bus always contains only one bus master (CPU or Communication Module) which
controls all actions on the bus. Up to 31 slaves can be connected to the bus, e. g. remote
modules or slave-configured CPUs. Besides the wiring instructions shown below, the wiring and
grounding instructions provided with the descriptions of the modules are valid additionally.

1

5

6

9

1

2

CS31
Slave

R
xD

/T
xD

−P
R

xD
/T

xD
−N

Sh
ie

ld

CS31
Slave

R
xD

/T
xD

−P
R

xD
/T

xD
−N

Sh
ie

ld

120 Ω

120 Ω

270 Ω
pull−up

270 Ω
pull−down

Fig. 1048: Bus topology for a CS31 bus at COM1 (Master is at the end of the bus line)

1 Master at the bus line end, pull-up and pull-down activated, bus termination with 120 Ω
resistors

2 Direct grounding with clip or steel plate

1

5

6

9
1

2

CS31
Slave

R
xD

/T
xD

−P
R

xD
/T

xD
−N

Sh
ie

ld

CS31
Slave

R
xD

/T
xD

−P
R

xD
/T

xD
−N

Sh
ie

ld
120 Ω

270 Ω
pull−up

270 Ω
pull−down120 Ω

Fig. 1049: Bus topology for a CS31 bus at COM1 (Master is within the bus line)

1 Master within the bus line, pull-up and pull-down activated
2 Direct grounding with clip or steel plate

NOTICE!
Risk of malfunctions!
Spur lines are not allowed within the CS31 bus.
Loop the bus line from module to module.

Wiring remarks

Bus topology

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5258

Fig. 1050: Correct

Fig. 1051: Wrong

In order to avoid disturbance, the cable shields must be grounded directly.

Multiple switchgear cabinets: If it can be guaranteed that no potential differences can occur
between the switchgear cabinets by means of current-carrying metal connections (grounding
bars, steel constructions etc.), the direct grounding is chosen.

Grounding

Case A

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5259

CS31

Sh
ie

ld
BU

S
2

BU
S

1Slave
CS31
Slave

COM1

1

5

6

9
120 Ω

270 Ω

270 Ω

2 43 3

1

CS31
Master

Fig. 1052: Direct grounding

1 Direct grounding with clip or steel plate
2 Ground of Cabinet 1
3 Current-carrying connection
4 Ground of Cabinet 2

Multiple switchgear cabinets: If potential differences can occur between the switchgear cabinets,
the capacitive grounding method is chose0n in order to avoid circulating currents on the cable
shields.

Case B

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5260

CS31

SH
IE

LD
BU

S
2

BU
S

1Slave

CS31−

SH
IE

LD
BU

S
2

BU
S

1Slave

120 Ω

CS31−

BU
S

1
BU

S
2

SH
IE

LDSlave

PE

PE

PE

COM1

1

5

6

9
120 Ω

270 Ω
pull−up

270 Ω
pull−

CS31
Master1

2
3

5
4

2

down

Fig. 1053: Earthing concept with several switchgear cabinets: direct grounding of cable shields
when cables enter the first switchgear cabinet (containing the master), and capacitive grounding
at the modules

1 Cabinet 1
2 Cabinet grounding
3 Direct grounding with clip or steel plate
4 Cabinet 2
5 Capacitive grounding with 0.1 µF X-type capacitor directly on the cabinet steel plate
Everywhere is valid: The total length of the grounding connections between the shield of the
Terminal Base and the grounding bar must be as short as possible (max. 25 cm). The conductor
cross section must be at least 2.5 mm².
VDE 0160 requires, that the shield must be grounded directly at least once per system.

Ethernet

Ethernet is also used for PROFINET, EtherCAT and Modbus TCP connection.

Ethernet interface
The Ethernet interface is carried out via a RJ45 jack. The pin assignment of the Ethernet
interface:

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5261

Interface Pin Description
1 Tx+ Transmit Data +

2 Tx- Transmit Data -

3 Rx+ Receive data +

4 NC Not connected

5 NC Not connected

6 Rx- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

The supported protocols and used Ethernet ports can be found in a separate chapter Ä Chapter
1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2 products” on page 5442.
Communication via Modbus TCP/IP is described in detail in a separate chapter Ä Chapter
1.6.4.1.8 “Communication with Modbus RTU” on page 5467.

Wiring
For the maximum possible cable lengths within an Ethernet network, various factors have to
be taken into account. Twisted pair cables (TP cables) are used as transmission medium for
10 Mbit/s Ethernet (10Base-T) as well as for 100 Mbit/s (Fast) Ethernet (100Base-TX). For a
transmission rate of 10 Mbit/s, cables of at least category 3 (IEA/TIA 568-A-5 Cat3) or class C
(according to European standards) are allowed. For fast Ethernet with a transmission rate of
100 Mbit/s, cables of category 5 (Cat5) or class D or higher have to be used. The maximum
length of a segment, which is the maximum distance between two network components, is
restricted to 100 m due to the electric properties of the cable.
Furthermore, the length restriction for one collision domain has to be observed. A collision
domain is the area within a network which can be affected by a possibly occurring collision
(i.e. the area the collision can propagate over). This, however, only applies if the components
operate in half-duplex mode since the CSMA/CD access method is only used in this mode. If
the components operate in full-duplex mode, no collisions can occur. Reliable operation of the
collision detection method is important, which means that it has to be able to detect possible
collisions even for the smallest possible frame size of 64 bytes (512 bits). But this is only
guaranteed if the first bit of the frame arrives at the most distant subscriber within the collision
domain before the last bit has left the transmitting station. Furthermore, the collision must
be able to propagate to both directions at the same time. Therefore, the maximum distance
between two ends must not be longer than the distance corresponding to the half signal propa-
gation time of 512 bits. Thus, the resulting maximum possible length of the collision domain is
2000 m for a transmission rate of 10 Mbit/s and 200 m for 100 Mbit/s. In addition, the bit delay
times caused by the passed network components also have to be considered.
The following table shows the specified properties of the respective cable types per 100 m.

Table 599: Specified cable properties:
Parameter 10Base-T [10 MHz] 100Base-TX [100 MHz]
Attenuation [dB / 100m] 10.7 23.2

NEXT [dB / 100m] 23 24

ACR [dB / 100m] N/A 4

Return loss [dB / 100m] 18 10

Wave impedance [Ohms] 100 100

Cable length
restrictions

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5262

Parameter 10Base-T [10 MHz] 100Base-TX [100 MHz]
Category 3 or higher 5

Class C or higher D or higher

The TP cable has eight wires arranged in four pairs of twisted wires. Different color codes
exist for the coding of the wires, the coding according to EIA/TIA 568, version 1, being the one
most commonly used. In this code, the individual pairs are coded with blue, orange, green and
brown color. One wire of a pair is unicolored and the corresponding second wire is striped,
the respective color alternating with white. For shielded cables, a distinction is made between
cables that have one single shield around all pairs of wires and cables that have an additional
individual shield for each pair of wires. The following table shows the different color coding
systems for TP cables:

Table 600: Color coding of TP cables:
Pairs EIA/TIA 568

Version 1
EIA/TIA 568
Version 2

DIN 47100 IEC 189.2

Pair 1 white/
blue

blue green red white brown white blue

Pair 2 white/
orange

orange black yellow green yellow white orange

Pair 3 white/
green

green blue orange grey pink white green

Pair 4 white/
brown

brown brown slate blue red white brown

Two general variants are distinguished for the pin assignment of the normally used RJ45
connectors: EIA/TIA 568 version A and version B. The wiring according to EIA/TIA 568 version
B is the one most commonly used.

T568A

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 3 Pair 4Pair 1

Pair 2

T568B

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 2 Pair 4Pair 1

Pair 3

Fig. 1054: Pin assignment of RJ45 sockets

Cable types
For networks with more than two subscribers, hubs or switches have to be used additionally for
distribution. These active devices already have the crossover functionality implemented which
allows a direct connection of the terminal devices using straight-through cables.

TP cable

Straight-through
cable

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5263

12345678 123456781
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Fig. 1055: Wiring of a straight-through cable

CAUTION!
Risk of communication faults!
When using inappropriate cables, malfunctions in communication may occur.
Only use network cables of the categories 5 (Cat 5, Cat 5e, Cat 6 or Cat 7) or
higher within PROFINET networks.

Modbus RTU connection details
The Modbus RTU protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
Available serial interfaces can work as Modbus interfaces simultaneously.
The Modbus client operating mode of an interface is set with the function block
COM_MOD_MAST.
Ä Chapter 1.5.4.22.1.1 “COM_MOD_MAST” on page 1698

The Modbus operating mode and the interface parameters are set in the Ä Chapter 1.6.5.2.11.4
“Setting COMx - Modbus” on page 6108.

Table 601: Description of the Modbus protocol
Parameter Value
Supported standard PM55x and PM56x: EIA RS-485

PM57x, PM58x and PM59x: EIA RS-232 /
RS-485

Number of connection points 1 client
Max. 1 server with RS-232 interface
Max. 31 servers with RS-485

Protocol Modbus

Operating mode Client/server

Address Server only

Data transmission control CRC16

Data transmission speed From 300 bits/s to 187,500 bits/s

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5264

Parameter Value
Encoding 1 start bit

8 data bits
1 parity bit, (optional) even, odd, mark or
space
1 or 2 stop bits

Max. cable length for RS-485 on
COM1 / COM2 for AC500 CPU

1.200 m at 19.200 baud

Max. cable length for RS-485 on
COM1 / COM2 for AC500-eCo CPU

 COM1:

 Non-isolated: Max. 50 m (with shielded cable)

 Isolated with TK506: Max. 500 m at 19.200 baud (with shielded
cable *)

 COM2:

 Non-isolated with TA562: Max. 50 m (with shielded cable)

 Isolated with TA569: Max. 500 m at 19.200 baud (with shielded
cable *)

*) 500 m cable type STP-120 Ω/AWG-20
If a processor module provides more than one serial interface, both interfaces (COM1/COM2)
can be operated simultaneously as Modbus interfaces and can operate as Modbus server as
well as Modbus client.

Point-to-point with RS-232 or bus topology with RS-485. Modbus is a master-slave protocol.
For further information on Modbus see chapter Ä Chapter 1.6.4.1.8 “Communication with
Modbus RTU” on page 5467.

1.6.3.5.5 Handling of accessories
This section only describes accessories that are frequently used for system assembly, connec-
tion and construction. A description of all additional accessories that can be used to supplement
AC500 system can be found in the Hardware PLC device description.

CR2032 - Battery for real-time clock

A standard lithium battery (type CR2032) is used to backup the real-time clock (RTC)
in the adapters TA561-RTC Ä Chapter 1.6.3.5.5.6 “TA561-RTC - Real-time clock adapter”
on page 5284 and TA562-RS-RTC Ä Chapter 1.6.3.5.5.8 “TA562-RS-RTC - Serial RS-485
adapter with real-time clock” on page 5296 during power failures.

Bus topology

Intended pur-
pose

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5265

The CPU monitors the discharge degree of the battery. An diagnoses message is output before
the battery condition becomes critical (about 2 weeks before). After the diagnosis message has
appeared, the battery should be replaced as soon as possible.

● The handling instructions of the battery manufacturer must be observed.
● The Material Safety Data Sheet (MSDS) of the battery manufacturer must be observed.
● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Recycle exhausted batteries meeting the environmental standards.

Transport of lithium batteries or equipment with installed lithium batteries:
● The transport and handling instructions of the battery producer must be observed.
● The transport regulations for transport of lithium batteries must be observed e.g. for trans-

port by road or air.
● The forwarder must be informed if batteries are contained in the shipment.

Assembling and connection of the battery is described in chapters of TA561-RTC Ä Chapter
1.6.3.5.5.6 “TA561-RTC - Real-time clock adapter” on page 5284 and TA562-RS-RTC
Ä Chapter 1.6.3.5.5.8 “TA562-RS-RTC - Serial RS-485 adapter with real-time clock”
on page 5296.

The battery lifetime is the time the battery can operate the RTC while the CPU is not powered.
The typical lifetime is 300 days (at 25 °C).
As long as the CPU is powered, the battery will only be discharged by its own leakage current.

The battery must meet die following technical data:

Parameter Value
Battery designation CR2032

Description Manganese dioxide button cell, primary cell,
not rechargeable

Nominal voltage 3 V DC

Capacity 230 mAh (measured with 5.6 kW load at
20 °C, discharging down to 2.0 V)

Typical lifetime (at 25 °C, CPU not powered) 300 days

Temperature range ³ 0 °C ...+70 °C

Diameter 20 mm

Height 3.2 mm

Handling
instruction

Transport

Connections

Battery lifetime

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5266

MC502 - Memory card
● Solid state flash memory storage

1 MC502 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5267

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.3.5.5.3 “MC503 - Memory
card adapter” on page 5272

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V2 and AC500-eCo V2

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Purpose

Dimensions

Insert the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5268

Fig. 1056: Insert memory card into PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Fig. 1057: Insert memory card into PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

AC500 V2 and AC500-eCo V2Remove the
memory card

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5269

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!
Remove the memory card only when the RUN LED is not blinking.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Fig. 1058: Remove memory card from PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5270

Fig. 1059: Remove memory card from PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5271

Part no. Description Product life cycle phase *)
1SAP 180 100 R0001 MC502, memory card Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC503 - Memory card adapter

The MC503 memory card adapter is used for expanding processor modules PM55x-xP or
PM56x-xP with a memory card slot.
A memory card MC502 or a micro memory card MC5102 with micro memory card adapter is not
included in the scope of delivery and must be ordered separately.
The memory card can be used for:
● saving process data,
● saving user programs,
● upgrading the firmware.

1. Make sure, that the power supply of the processor module is turned off.

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor

module before you open the option board slot cover.
– Make sure that the option board slot cover is closed before recon-

necting the processor module to the power supply.

2. Remove the option board slot cover of the processor module totally by pushing it to the left
side.

3. Plug the memory card adapter to the left expansion slot of the processor module. Make
sure that the 2 noses of the expansion module fit to the holes of the processor module
printed circuit board.

4. Remove the bar located in the middle of the option board slot cover for memory card slot.
5. Refit the option board slot cover.

Ordering data

Intended pur-
pose

Insert the
memory card
adapter

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5272

6. To insert the memory card, see MC502 Ä Chapter 1.6.3.5.5.2 “MC502 - Memory card”
on page 5267 or MC5102 Ä Chapter 1.6.3.5.5.4 “MC5102 - Micro memory card with micro
memory card adapter” on page 5273.

1. Make sure that the power supply of the processor module is turned off.

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor

module before you open the option board slot cover.
– Make sure that the option board slot cover is closed before recon-

necting the processor module to the power supply.

2. Remove the option board slot cover of the processor module totally by pushing it to the left
side.

3. Remove the memory card adapter out of the processor module by lifting it up with a
screwdriver.

4. Refit the option board slot cover. The option board slot cover is available as a spare part
(see TA570 spare part set for AC500-eCo V2 processor modules). Ä Chapter 1.6.3.5.5.12
“TA570 - Spare part set” on page 5309

Part no. Description Product life cycle phase *)
1TNE 968 901 R0100 MC503, memory card adapter

for PM55x-xP or PM56x-xP
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5102 - Micro memory card with micro memory card adapter
● Solid state flash memory storage

Remove the
memory card
adapter

Ordering data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5273

1 Micro memory card
2 TA5350-AD micro memory card adapter

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5274

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.3.5.5.3 “MC503 - Memory
card adapter” on page 5272

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.

The dimensions are in mm and in brackets in inch.

The dimensions are in mm and in brackets in inch.

Purpose

Dimensions

Micro memory
card

Micro memory
card adapter

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5275

1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Fig. 1060: Insert micro memory card into PM57x, PM58x and PM59x

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot

Insert the micro
memory card
AC500 V2 and
AC500-eCo V2

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5276

Fig. 1061: Insert micro memory card into PM55x-xP and PM56x-xP

1 Micro memory card
2 Micro memory card adapter
3 MC503 memory card adapter

NOTICE!
Removal of the micro memory card
Do not remove the micro memory card when it is working!
Remove the micro memory card with micro memory card adapter only when the
RUN LED is not blinking.
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

1. To remove the micro memory card adapter with the integrated micro memory card, push
on the micro memory card adapter until it moves forward.

2. By this, the micro memory card adapter is unlocked and can be removed.

Remove the
micro memory
card
AC500 V2 and
AC500-eCo V2

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5277

Fig. 1062: Remove micro memory card from PM57x, PM58x and PM59x

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot

Fig. 1063: Remove micro memory card from PM55x-xP and PM56x-xP

1 Micro memory card
2 Micro memory card adapter
3 MC503 memory card adapter

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5278

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the micro memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5141 - Memory card
● Solid state flash memory storage

Technical data

Ordering data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5279

1 MC5141 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.3.5.5.3 “MC503 - Memory
card adapter” on page 5272

Purpose

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5280

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V2 and AC500-eCo V2

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Fig. 1064: Insert memory card into PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Dimensions

Insert the
memory card

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5281

Fig. 1065: Insert memory card into PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

AC500 V2 and AC500-eCo V2

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!
Remove the memory card only when the RUN LED is not blinking.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Remove the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5282

Fig. 1066: Remove memory card from PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Fig. 1067: Remove memory card from PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5283

Parameter Value
Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0041 MC5141, memory card Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA561-RTC - Real-time clock adapter

The TA561-RTC real-time clock adapter is used for equipping AC500-eCo processor modules
with a real-time clock.
The real-time clock can be buffered via an optional standard lithium battery (CR2032) during
power supply failures (see lithium battery for real-time clock of AC500-eCo processor modules
Ä Chapter 1.6.3.5.5.1 “CR2032 - Battery for real-time clock” on page 5265).

Ordering data

Intended pur-
pose

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5284

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor module

before you open the option board slot cover.
– Make sure that the option board slot cover is closed before reconnecting the

processor module to the power supply.

The option board slot cover is available as a spare part (see TA570 spare part set for AC500-
eCo processor modules Ä Chapter 1.6.3.5.5.12 “TA570 - Spare part set” on page 5309).

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

1. Switch off power supply of the system and verify that the CPU is powerless.

ð LEDs (PWR, RUN, ERR) must be off.

Insertion and
replacement of
the adapter

Replacement of
the battery

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5285

2. Remove the option board slot cover.

ð Remove the option board slot cover of the CPU totally by pushing it to the outer side.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge,
which can cause internal damage and affect normal operation.
Observe the following rules when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe

packaging.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5286

3. Remove the option board from the CPU by lifting it up with a screwdriver.

ð
Remove memory card (if installed) / terminal block (COM2).

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5287

4. Remove the battery.

ð
ATTENTION!
Lithium batteries must not be recharged, not be disassembled and not
be disposed of in fire.

Exhausted batteries must be recycled to respect the environment.

Dispose of battery properly according to disposal procedures for
lithium batteries.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5288

5. Insert replacement battery.

ð
ATTENTION!
A standard battery CR2032 can be used for TA561-RTC and TA562-
RS-RTC.

Nominal voltage: 3 V DC.

Required capacity: 230 mAh.

Required temperature range for discharge: 0 °C...+70 °C.

After replacement of the battery, the real-time clock (RTC) date and
time must be set again by the user.

Don’t use a battery older than 3 years for replacement (e.g. battery
kept too long in stock).

Batteries must be stored in a dry place.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5289

6. Insert option board into the CPU.

ð Insert the adapter TA56x-RTC into the slot on the right of the CPU.

Make sure that the 2 noses of the extension module fit to the holes of
the CPU PCB.

See white circle in figure above.

7. Refit the option board slot cover of the CPU.

ð
Remember to re-insert a memory card first if it has been removed
previously.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5290

8. Only now the CPU can be connected to power.

Set the time of the real-time clock.

Parameter Value
RTC accuracy (at 25 °C) Typ. ±2 s / 24 h

Part no. Description Product life cycle phase *)
1SAP 181 400 R0001 TA561-RTC, real-time clock

adapter for PM55x-xP and
PM56x-xP

Active

1TNE 968 901 R3200 TA561-RTC, real-time clock
adapter for PM55x-xP and
PM56x-xP, lithium battery
included (available in China
only)

Limited

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA562-RS - Serial RS-485 adapter

The serial RS-485 adapter is used for equipping AC500-eCo processor modules with a second
serial interface COM2. The COM2 interface can be used for:
● online access
● free protocol communication
● Modbus RTU, client and server

CAUTION!
The serial RS-485 Interface is not galvanically isolated.

Technical data

Ordering data

Intended pur-
pose

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5291

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor module

before you open the option board slot cover.
– Make sure that the option board slot cover is closed before reconnecting the

processor module to the power supply.

The option board slot cover is available as a spare part (see TA570 spare part set for AC500-
eCo processor modules Ä Chapter 1.6.3.5.5.12 “TA570 - Spare part set” on page 5309).

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

1. Switch off power supply of the system and verify that the CPU is powerless.

ð LEDs (PWR, RUN, ERR) must be off.

Insertion/
Removal of the
adapter

Removal of the
option board

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5292

2. Remove the option board slot cover.

ð Remove the option board slot cover of the CPU totally by pushing it to the outer side.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge,
which can cause internal damage and affect normal operation.
Observe the following rules when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe

packaging.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5293

3. Remove the option board.

ð
Remove memory card (if installed) / terminal block (COM2).

Remove the option board from the CPU by lifting it up with a screwdriver.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5294

1. Insert option board into the CPU.

ð
Make sure that the 2 noses of the expansion module fit to the holes of
the CPU PCB.

See white circle in figure above.

2. Refit the option board slot cover of the CPU.

ð
Remember to re-insert a memory card first if it has been removed
previously.

Insertion of the
option board

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5295

Part no. Description Product life cycle phase *)
1TNE 968 901 R4300 TA562-RS, serial RS-485

adapter for PM55x/PM56x
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA562-RS-RTC - Serial RS-485 adapter with real-time clock

The TA562-RS-RTC serial RS-485 adapter with real-time clock is used for equipping AC500-
eCo processor modules with a real-time clock and a second serial RS-485 interface COM2.
The real-time clock can be buffered via an optional standard lithium battery (CR2032) during
power supply failures (see lithium battery for real-time clock of AC500-eCo processor modules
Ä Chapter 1.6.3.5.5.1 “CR2032 - Battery for real-time clock” on page 5265).

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor module

before you open the option board slot cover.
– Make sure that the option board slot cover is closed before reconnecting the

processor module to the power supply.

The option board slot cover is available as a spare part (see TA570 spare part set for AC500-
eCo processor modules Ä Chapter 1.6.3.5.5.12 “TA570 - Spare part set” on page 5309).

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

Ordering data

Intended pur-
pose

Insertion/
Removal of the
adapter

Replacement of
the battery

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5296

1. Switch off power supply of the system and verify that the CPU is powerless.

ð LEDs (PWR, RUN, ERR) must be off.

2. Remove the option board slot cover.

ð Remove the option board slot cover of the CPU totally by pushing it to the outer side.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge,
which can cause internal damage and affect normal operation.
Observe the following rules when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe

packaging.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5297

3. Remove the option board from the CPU by lifting it up with a screwdriver.

ð
Remove memory card (if installed) / terminal block (COM2).

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5298

4. Remove the battery.

ð
ATTENTION!
Lithium batteries must not be recharged, not be disassembled and not
be disposed of in fire.

Exhausted batteries must be recycled to respect the environment.

Dispose of battery properly according to disposal procedures for
lithium batteries.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5299

5. Insert replacement battery.

ð
ATTENTION!
A standard battery CR2032 can be used for TA561-RTC and TA562-
RS-RTC.

Nominal voltage: 3 V DC.

Required capacity: 230 mAh.

Required temperature range for discharge: 0 °C...+70 °C.

After replacement of the battery, the real-time clock (RTC) date and
time must be set again by the user.

Don’t use a battery older than 3 years for replacement (e.g. battery
kept too long in stock).

Batteries must be stored in a dry place.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5300

6. Insert option board into the CPU.

ð Insert the adapter TA56x-RTC into the slot on the right of the CPU.

Make sure that the 2 noses of the extension module fit to the holes of
the CPU PCB.

See white circle in figure above.

7. Refit the option board slot cover of the CPU.

ð
Remember to re-insert a memory card first if it has been removed
previously.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5301

8. Only now the CPU can be connected to power.

Set the time of the real-time clock.

Parameter Value
RTC accuracy (at 25 °C) Typ. ±2 s / 24 h

Part no. Description Product life cycle phase *)
1SAP 181 500 R0001 TA562-RS-RTC, serial

RS-485 adapter with real-
time clock for PM55x-xP and
PM56x-xP

Active

1TNE 968 901 R5210 TA562-RS-RTC, serial
RS-485 adapter with real-
time clock for PM55x-xP
and PM56x-xP, lithium battery
included (available in China
only)

Limited

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA563-TA565 - Terminal blocks

These terminal blocks must only be used with AC500-eCo I/O modules and
AC500-eCo processor modules.

The TA563-TA565 terminal blocks are used to connect process signals and process voltages
to AC500-eCo I/O modules and AC500-eCo processor modules (with -P extension inside their
type designator only). 3 different kind of terminal blocks are available:
● Screw terminals with cable insertion on the side
● Screw terminals with cable insertion on the front
● Spring terminals with cable insertion on the front
Of each kind, 2 sizes are available:
● Terminals with 9 pins
● Terminals with 11 pins.
There are 2 compatible variants of each kind and size.

Technical data

Ordering data

Intended pur-
pose

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5302

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

Table 602: Screw-type terminals (TA563/TA564)
Parameter Value
Type Front terminal or side terminal (depending on

model)

Conductor cross section

 Solid 0.5 mm2 to 2.5 mm2

 Flexible 0.5 mm2 to 2.5 mm2

Stripped conductor end

 TA563 8 mm

 TA564 10 mm

Width of the screwdriver 3.5 mm

Fastening torque 0.4 Nm - 0.5 Nm

Degree of protection IP 20 (if all terminal screws are tightened)

Conductor cross section flexible, with ferrule
with/without plastic sleeve

Min. 0.25 mm2

Max. 1.5 mm2

Table 603: Spring terminals (TA565)
Parameter Value
Type Front terminal

Conductor cross section

 Solid 0.5 mm2 to 2.5 mm2

 Flexible 0.5 mm2 to 2.5 mm2

Stripped conductor end 10 mm

Degree of protection IP 20

Conductor cross section flexible, with ferrule
with/without plastic sleeve

Min. 0.25 mm2

Max. 1.5 mm2

Part no. Description Product life cycle phase *)
1TNE 968 901 R3101 Terminal Block TA563-9, 9-

pole, screw front, cable side,
6 pieces per unit

Active

1TNE 968 901 R3102 Terminal Block TA563-11, 11-
pole, screw front, cable side, 6
pieces per unit

Active

Technical data

Ordering data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5303

Part no. Description Product life cycle phase *)
1TNE 968 901 R3103 Terminal Block TA564-9, 9-

pole, screw front, cable front,
6 pieces per unit

Active

1TNE 968 901 R3104 Terminal Block TA564-11, 11-
pole, screw front, cable front,
6 pieces per unit

Active

1TNE 968 901 R3105 Terminal Block TA565-9, 9-
pole, spring front, cable front,
6 pieces per unit

Active

1TNE 968 901 R3106 Terminal Block TA565-11, 11-
pole, spring front, cable front,
6 pieces per unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA566 - Wall mounting accessory

The TA566 wall mounting accessory is used for mounting S500-eCo I/O modules and AC500-
eCo processor modules without DIN rail.

The TA566 is snapped into the back side of the device's housing Ä Chapter 1.6.3.5.3.2
“Mounting and demounting of S500-eCo I/O modules” on page 5245.

Parameter Value
Weight 5 g

Dimensions 29 mm x 28 mm x 5 mm

Part no. Description Product life cycle phase *)
1TNE 968 901 R3107 TA566, wall mounting acces-

sory, 100 pieces
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Intended pur-
pose

Handling
instruction

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5304

TA569-RS-ISO - Serial RS-485 isolated adapter

The TA569-RS-ISO serial RS-485 isolated adapter is used for equipping AC500-eCo processor
modules with a second serial interface COM2. The COM2 interface can be used for:
● online access
● free protocol communication
● Modbus RTU, client and server
The serial interface is isolated.

WARNING!
Risk of electric shock!
With an opened option board slot cover, energized parts of the processor
module could be touched.
– Always turn off and disconnect the power supply for the processor module

before you open the option board slot cover.
– Make sure that the option board slot cover is closed before reconnecting the

processor module to the power supply.

The option board slot cover is available as a spare part (see TA570 spare part set for AC500-
eCo processor modules Ä Chapter 1.6.3.5.5.12 “TA570 - Spare part set” on page 5309).

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

Intended pur-
pose

Insertion/
Removal of the
adapter

Removal of the
option board

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5305

1. Switch off power supply of the system and verify that the CPU is powerless.

ð LEDs (PWR, RUN, ERR) must be off.

2. Remove the option board slot cover.

ð Remove the option board slot cover of the CPU totally by pushing it to the outer side.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge,
which can cause internal damage and affect normal operation.
Observe the following rules when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe

packaging.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5306

3. Remove the option board.

ð
Remove memory card (if installed) / terminal block (COM2).

Remove the option board from the CPU by lifting it up with a screwdriver.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5307

1. Insert option board into the CPU.

ð
Make sure that the 2 noses of the expansion module fit to the holes of
the CPU PCB.

See white circle in figure above.

2. Refit the option board slot cover of the CPU.

ð
Remember to re-insert a memory card first if it has been removed
previously.

Insertion of the
option board

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5308

Part no. Description Product life cycle phase *)
1SAP 186 400 R0001 TA569-RS-ISO, serial RS-485

isolated adapter for PM55x/
PM56x

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA570 - Spare part set

The TA570 spare part set is used to replace lost or damaged parts of AC500-eCo processor
modules. It contains the following parts:
● Option board slot cover
● Terminal block for power supply
● Terminal block for serial RS-485 adapter
Every spare is included 6x inside TA570.

Table 604: Option board slot cover
Parameter Value
Weight 5 g

Dimensions 40 mm x 40 mm x 3 mm

Table 605: Terminal block for power supply
Parameter Value
Type Screw clamp plug, wire connection from front

Usage For AC500-eCo processor modules

Conductor cross section

 Solid 0.2 mm²...2.5 mm²

 Flexible (with wire-end ferrule only) 0.2 mm²...2.5 mm²

Stripped conductor end 7 mm...8 mm

Fastening torque 0.5 Nm

Degree of protection IP20

Ordering data

Intended pur-
pose

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5309

Parameter Value
Dimensions 25.4 mm x 17.4 mm x 15.1 mm

Weight 5 g

Table 606: Terminal block for serial RS-485 adapter
Parameter Value
Type Screw clamp plug, wire connection from side

Usage for Ä Chapter 1.6.3.5.5.7 “TA562-RS - Serial
RS-485 adapter ” on page 5291

Ä Chapter 1.6.3.5.5.11 “TA569-RS-ISO - Serial
RS-485 isolated adapter” on page 5305

Ä Chapter 1.6.3.5.5.8 “TA562-RS-RTC -
Serial RS-485 adapter with real-time clock”
on page 5296

Conductor cross section

 Solid 0.14 mm²...1.5 mm²

 Flexible (with wire-end ferrule only) 0.14 mm²...1.5 mm²

Stripped conductor end 7 mm

Fastening torque 0.4 Nm

Degree of protection IP20

Dimensions 19.05 mm x 8.7 mm x 19.1 mm

Weight 5 g

Part no. Description Product life cycle phase *)
1TNE 968 901 R3203 TA570, spare part set

for AC500-eCo processor
modules, 3x6 pieces

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5310

CP-E - Economic range

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
● Wide-range input voltage
● Mounting on DIN rail
● High efficiency of up to 90 %
● Low power dissipation and low heating
● Wide ambient temperature range from -40 °C...+70 °C
● No-load-proof, overload-proof, continuous short-circuit-proof
● Power factor correction (depending on the type)
● Approved in accordance with all relevant international standards

Table 607: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR427030R0000 CP-E
24/0.75

100-240 V
AC or
120-370 V
DC

24 V DC,
0.75 A

- 22.5

1SVR427031R0000 CP-E
24/1.25

100-240 V
AC or
90-375 V DC

24 V DC,
1.25 A

- 40.5

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5311

Order No. Type Input Output Overload
capacity

Module
width [mm]

1SVR427032R0000 CP-E 24/2.5 100-240 V
AC or
90-375 V DC

24 V DC, 2.5
A

- 40.5

1SVR427034R0000 CP-E 24/5.0 115/230 V
AC auto
select or
210-370 V
DC

24 V DC, 5 A - 63.2

1SVR427035R0000 CP-E
24/10.0

115/230 V
AC auto
select or
210-370 V
DC

24 V DC, 10
A

- 83

1SVR427036R0000 CP-E
24/20.0

115-230 V
AC or
120-370 V
DC

24 V DC, 20
A

- 175

CP-C.1 - High performance range

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5312

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
The CP-C.1 power supplies are ABB’s high performance and most advanced range. With
excellent efficiency, high reliability and innovative functionality it is prepared for the most
demanding industrial applications. These power supplies have a 50 % integrated power reserve
and operate at an efficiency of up to 94 %. They are equipped with overheat protection and
active power factor correction. Combinded with a broad AC and DC input range and extensive
worldwide approvals the CP-C.1 power supplies are the preferred choice for professional DC
applications.
● Typical efficiency of up to 94 %
● Power reserve design delivers up to 150 % of the nominal output current
● Signaling outputs for DC OK and power reserve mode
● High power density leads to very compact and small devices
● No-load-proof, overload-proof, continuous short-circuit-proof
● Active power factor correction (PFC)

Table 608: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR360563R1001 CP-C.1
24/5.0

110-240 V
AC or
90-300 V DC

24 V DC, 5 A +50 % 40

1SVR360663R1001 CP-C.1
24/10.0

110-240 V
AC or
90-300 V DC

24 V DC, 10
A

+50 % 60

1SVR360763R1001 CP-C.1
24/20.0

110-240 V
AC or
90-300 V DC

24 V DC, 20
A

+30 % 82

1.6.3.6 AC500 (Standard)
1.6.3.6.1 System data AC500
Environmental conditions

Table 609: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

120 V AC

 Voltage 120 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

230 V AC

 Voltage 230 V AC (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

120 V AC...240 V AC wide-range supply

 Voltage 120 V...240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply, according to EN 61131-2

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5313

Parameter Value
 DC supply Interruption < 10 ms, time between 2 interrup-

tions > 1 s, PS2

AC supply Interruption < 0.5 periods, time between 2
interruptions > 1 s

NOTICE!
Exceeding the maximum power supply voltage for process or supply voltages
could lead to unrecoverable damage of the system. The system might be
destroyed.

NOTICE!
Improper voltage level or frequency range which cause damage of AC inputs:
– AC voltage above 264 V
– Frenquency below 47 Hz or above 62.4 Hz

NOTICE!
Improper connection leads cause overtemperature on terminals.
PLC modules may be destroyed by using wrong cable type, wire size and cable
temperature classification.

Parameter Value
Temperature

 Operating 0 °C...+60 °C: Horizontal mounting of modules.
0 °C...+40 °C: Vertical mounting of modules.
Output load reduced to 50 % per group.

 Storage -40 °C...+70 °C

 Transport -40 °C...+70 °C

Humidity Max. 95 %, without condensation

Air pressure

 Operating > 800 hPa / < 2000 m

 Storage > 660 hPa / < 3500 m

Ingress protection IP20

Creepage distances and clearances
The creepage distances and clearances meet the requirements of the overvoltage category II,
pollution degree 2.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5314

Insulation test voltages, routine test

Parameter Value
230 V circuits against other
circuitry

2500 V 1.2/50 µs

120 V circuits against other
circuitry

1500 V 1.2/50 µs

120 V...240 V circuits against
other circuitry

2500 V 1.2/50 µs

24 V circuits (supply, 24 V
inputs/outputs, analog inputs/
outputs), if they are galvani-
cally isolated against other cir-
cuitry

500 V 1.2/50 µs

COM interfaces, galvanically
isolated

500 V 1.2/50 µs

COM interfaces, electrically
not isolated

Not applicable Not applicable

FBP interface 500 V 1.2/50 µs

Ethernet 500 V 1.2/50 µs

ARCNET 500 V 1.2/50 µs

230 V circuits against other
circuitry

1350 V AC 2 s

120 V circuits against other
circuitry

 820 V AC 2 s

120 V...240 V circuits against
other circuitry

1350 V AC 2 s

24 V circuits (supply, 24 V
inputs/outputs, analog inputs/
outputs), if they are galvani-
cally isolated against other cir-
cuitry

350 V AC 2 s

COM interfaces, galvanically
isolated

350 V AC 2 s

COM interfaces, electrically
not isolated

Not applicable Not applicable

FBP interface 350 V AC 2 s

Ethernet 350 V AC 2 s

ARCNET 350 V AC 2 s

Power supply units
For the supply of the modules, power supply units according to SELV or PELV specifications
must be used.

According to EN
61131-2

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5315

Safety Extra Low Voltage (SELV) and Protective Extra Low Voltage (PELV)
To ensure electrical safety of AC500/AC500-eCo extra low voltage circuits, 24
V DC supply, communication interfaces, I/O circuits, and all connected devices
must be powered from sources meeting requirements of SELV, PELV, class 2,
limited voltage or limited power according to applicable standards.

WARNING!
Improper installation can lead to death by touching hazardous voltages!
To avoid personal injury, safe separation, double or reinforced insulation and
separation of the primary and secondary circuit must be observed and imple-
mented during installation.
– Only use power converters for safety extra-low voltages (SELV) with safe

galvanic separation of the primary and secondary circuit.
– Safe separation means that the primary circuit of mains transformers must

be separated from the secondary circuit by double or reinforced insulation.
The protective extra-low voltage (PELV) offers protection against electric
shock.

Electromagnetic compatibility
Table 610: Range of use
Parameter Value
Industrial applications Yes

Domestic applications No

Table 611: Immunity against electrostatic discharge (ESD), according to IEC 61000-4-2, zone B,
criterion B
Parameter Value
Electrostatic voltage in case of air discharge 8 kV

Electrostatic voltage in case of contact dis-
charge

4 kV, in a closed switchgear cabinet 6 kV 1)

ESD with communication connectors In order to prevent operating malfunctions, it
is recommended, that the operating personnel
discharge themselves prior to touching com-
munication connectors or perform other suit-
able measures to reduce effects of electro-
static discharges.

ESD with connectors of terminal bases The connectors between the Terminal Bases
and processor modules or Communication
Modules must not be touched during opera-
tion. The same is valid for the I/O bus with all
modules involved.

1) High requirement for shipping classes are achieved with additional specific measures (see
specific documentation).

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5316

Table 612: Immunity against the influence of radiated (CW radiated), according to IEC
61000-4-3, zone B, criterion A
Parameter Value
Test field strength 10 V/m

Table 613: Immunity against fast transient interference voltages (burst), according to IEC
61000-4-4, zone B, criterion B
Parameter Value
Supply voltage units (DC) 2 kV

Supply voltage units (AC) 2 kV

Digital inputs/outputs (24 V DC) 1 kV

Digital inputs/outputs (120 V AC...240 V AC) 2 kV

Analog inputs/outputs 1 kV

CS31 bus 1 kV

Serial RS-485 interfaces (COM) 1 kV

Serial RS-232 interfaces (COM, not for PM55x
and PM56x)

1 kV

ARCNET 1 kV

FBP 1 kV

Ethernet 1 kV

I/O supply (DC-out) 1 kV

Table 614: Immunity against the influence of line-conducted interferences (CW conducted),
according to IEC 61000-4-6, zone B, criterion A
Parameter Value
Test voltage 3V zone B, 10 V is also met.

High energy surges According to IEC 61000-4-5, zone B, criterion
B

 Power supply DC 1 kV CM / 0.5 kV DM ²)

 DC I/O supply 0.5 kV CM / 0.5 kV DM ²)

 Communication Lines, shielded 1 kV CM ²)

 AC I/O unshielded 3) 2 kV CM / 1 kV DM ²)

 I/O analog, I/O DC unshielded 3) 1 kV CM / 0.5 kV DM ²)

Radiation (radio disturbance) According to IEC 55011, group 1, class A

²) CM = Common Mode, DM = Differential Mode
3) When DC I/O inputs are used with AC voltage, external filters limiting high energy surges to 1
kV CM / 0.5 DM are required to meet requirements according IEC 61131-2.

Mechanical data

Parameter Value
Mounting Horizontal

Degree of protection IP 20

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5317

Parameter Value
Housing Classification V-2 according to UL 94

Vibration resistance acc. to EN 61131-2 all three axes
2 Hz...8.4 Hz, continuous 3.5 mm
8.4 Hz...150 Hz, continuous 1 g (higher values
on request)

Shock test All three axes
15 g, 11 ms, half-sinusoidal

Mounting of the modules:
DIN rail according to DIN EN 50022 35 mm, depth 7.5 mm or 15 mm

Mounting with screws Screws with a diameter of 4 mm

Fastening torque 1.2 Nm

Approvals and certifications
Information on approvals and certificates can be found in the corresponding chapter of the Main
catalog, PLC Automation.

1.6.3.6.2 Mechanical dimensions
Switchgear cabinet assembly

Information on EMC-conforming assembly and construction is provided within
the overall functions section Ä Chapter 1.6.3.4.4 “EMC-conforming assembly
and construction” on page 5226.

NOTICE!
PLC damage due to wrong enclosures
Due to their construction (degree of protection IP 20 according to EN 60529)
and their connection technology, the devices are suitable only for operation in
enclosed switchgear cabinets.

To protect PLCs against:
● unauthorized access,
● dusting and pollution,
● moisture and wetness and
● mechanical damage,
switchgear cabinet IP54 for common dry factory floor environment is suitable.

Maintain spacing from:
● enclosure walls
● wireways
● adjacent equipment
Allow a minimum of 20 mm clearance on all sides. This provides ventilation and galvanic
isolation.

PLC enclosure

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5318

http://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
http://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch

It is recommended to mount the modules on an grounded mounting plate, or an grounded DIN
rail, independent of the mounting location.

Fig. 1068: Installation of AC500/S500 modules in a switchgear cabinet

1 Cable duct
2 Distance from cable duct ≥20 mm
3 Mounting plate, grounded

NOTICE!
 Horizontal mounting is highly recommended.
Vertical mounting is possible, however, derating consideration should be made
to avoid problems with poor air circulation and overheating (see Ä Chapter
1.6.3.6.1.1 “Environmental conditions” on page 5313).

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5319

When vertically mounted, always place an end-stop terminal block (e.g. type
BADL, P/N: 1SNA399903R0200) on the bottom and on the top of the modules
to properly secure the modules.

With high vibration applications and horizontal mounting, we also recommend
to place end-stop terminals at the right and left side of the device to properly
secure the modules, e.g. type BADL, P/N: 1SNA399903R0200.

Mechanical dimensions AC500

Fig. 1069: Terminal bases, side view and front view

Dimensions: ter-
minal bases

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5320

Fig. 1070: Terminal bases with processor modules, side view and front view

Fig. 1071: Function module terminal bases, side view and front view

Dimensions:
function module
terminal bases

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5321

Fig. 1072: Function module terminal bases with function modules for CMS, side view and front view

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5322

Fig. 1073: Processor podule PM595, side view, top view, front view, back view

Mechanical dimensions S500

Fig. 1074: Terminal units, side view and front view

Dimensions:
PM595

Dimensions:
Terminal units

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5323

Fig. 1075: Terminal units and S500 modules, side view and front view

Fig. 1076: Terminal base (for comparison)

All dimensions are in mm (in.). Hole spacing tolerance: ±0.4 mm (0.016 in.)

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5324

Fig. 1077: Function module terminal bases and function modules for CMS, side view and front view

1.6.3.6.3 Mounting and demounting
The control system is designed to be mounted to a well-grounded mounting surface such as a
metal panel. Additional grounding connections from the mounting tabs or DIN rail (if used), are
not required unless the mounting surface cannot be grounded.

During panel or DIN rail mounting of all devices, be sure that all debris (metal
chips, wire strands, etc.) is kept from falling into the controller. Debris that falls
into the controller could cause damage while the controller is energized.

All devices are grounded through the DIN rail to chassis ground. Use zinc
plated yellow-chromate stell DIN rail to assure proper grounding. The use of
other DIN rail materials (e.g. aluminium, plastic, etc.) that can corrode, oxidize,
or are poor conductors, can result in improper or intermittent grounding.

Dimensions:
FM502-CMS

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5325

Mounting/Demounting terminal bases and function module terminal bases

1. Mount DIN rail 7.5 mm or 15 mm.
2. Mount the terminal base/function module terminal base:

ð The terminal base is put on the DIN rail above and then snapped-in below.

3. The demounting is carried out in a reversed order.

If the Terminal Base should be mounted with screws, wall mounting accessories TA526
Ä Chapter 1.6.3.6.5.5 “TA526 - Wall mounting accessory” on page 5378 must be inserted at
the rear side first. These plastic parts prevent bending of the terminal base while screwing on.
TB51x needs one TA526, TB52x and TB54x need two TA526.

Demounting on
DIN rail

Mounting with
screws

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5326

Fig. 1078: Terminal bases, Fastening with screws

Fig. 1079: Function module terminal bases, Fastening with screws

By wall mounting, the terminal base is grounded through the screws. It is neces-
sary that

– the screws have a conductive surface (e.g. steel zinc-plated or brass nickel-
plated)

– the mounting plate is grounded
– the screws have a good electrical contact to the mounting plate

The following procedure allows you to use the mounted modules as a template for drilling holes
in the panel. Due to module mounting hole tolerance, it is important to follow these procedures:
1. On a clean work surface, mount no more than 3 modules (e.g. one terminal base and two

terminal units).
2. Using the mounted modules as a template, carefully mark the center of all module-

mounting holes on the panel.
3. Return the mounted modules to the clean work surface, including any previously mounted

modules.
4. Drill and tap the mounting holes for the screws (M4 or #8 recommended).
5. Place the modules back on the panel and check for proper hole alignment.
6. Attach the modules to the panel using the mounting screws.

If mounting more modules, mount only the last one of this group and put
the others aside. This reduces remounting time during drilling and tapping
of the next group.

7. Repeat the steps for all remaining modules.

Practical tip

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5327

Mounting/Demounting the terminal unit

1. Mount DIN rail 7.5 mm or 15 mm.
2. Mount the terminal unit.

The terminal unit is snapped into the DIN rail in the same way as the Terminal Base.
Once secured to the DIN rail, slide the terminal unit to the left until it fully locks into place
creating a solid mechanical and connection.

When attaching the devices, make sure the bus connectors are securely
locked together to ensure proper connection. Max. 10 terminal units can
be attached.

3. Demounting: A screwdriver is inserted in the indicated place to separate the terminal units.

If the terminal unit should be mounted with screws, wall mounting accessories TA526
Ä Chapter 1.6.3.6.5.5 “TA526 - Wall mounting accessory” on page 5378 must be inserted at the
rear side first. These plastic parts prevent bending of the Terminal Base while screwing on.

Mounting on
DIN rail

Mounting with
screws

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5328

Fig. 1080: Fastening with screws

By wall mounting, the terminal unit is grounded through the screws. It is neces-
sary that

– the screws have a conductive surface (e.g. steel zinc-plated or brass nickel-
plated)

– the mounting plate is grounded
– the screws have a good electrical contact to the mounting plate

The following procedure allows you to use the mounted modules as a template for drilling holes
in the panel. Due to module mounting hole tolerance, it is important to follow these procedures:
1. On a clean work surface, mount no more than 3 modules (e.g. one terminal base and two

terminal units).
2. Using the mounted modules as a template, carefully mark the center of all module-

mounting holes on the panel.
3. Return the mounted modules to the clean work surface, including any previously mounted

modules.
4. Drill and tap the mounting holes for the screws (M4 or #8 recommended).
5. Place the modules back on the panel and check for proper hole alignment.
6. Attach the modules to the panel using the mounting screws.

If mounting more modules, mount only the last one of this group and put
the others aside. This reduces remounting time during drilling and tapping
of the next group.

7. Repeat the steps for all remaining modules.

Practical tip

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5329

Mounting/Demounting the processor module PM595

Put the processor module on the DIN rail above and then snapped-in below. The
demounting is carried out in a reversed order.

1. Pull down the processor module.
2. Remove it.

Mounting on
DIN rail

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5330

NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against accidental
physical contact.
– Unused slots for communication modules must be covered with dummy

communication modules to achieve IP20 rating Ä Chapter 1.6.3.6.5.7
“TA524 - Dummy communication module” on page 5383.

– I/O bus connectors must not be touched during operation.

NOTICE!
Only use TA543 accessory when the PLC is to be screw mounted. With DIN
rail mounting the PLC could not be removed from the rail without the risk of
damaging the housing.

NOTICE!
Use screw mounting accessory to avoid damage!
For screw mounting, the use of the TA543 screw mounting accessory
(1SAP182800R0001) is mandatory to prevent bending and damage to the
module.

A dimension drawing for the position of screw's holes can be found in mechan-
ical dimensions AC500 Ä Chapter 1.6.3.6.2.2 “Mechanical dimensions AC500”
on page 5320.

Mounting with
screws

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5331

1 3 parts of screw mounting accessory TA543
2 3 slots for screw mounting accessory TA543
3 5 holes for screw mounting

1. Insert 3 parts of screw mounting accessory TA543 into the slots on the backside of the
processor module PM595.

ð
NOTICE!
Use screw mounting accessory to avoid damage!
For screw mounting, the use of the TA543 screw mounting accessory
(1SAP182800R0001) is mandatory to prevent bending and damage to
the module.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5332

2. Fasten the processor module PM595 with 5 screws (M4, max 1.2 Nm) from the front side.

ð
By screw mounting, the processor module PM595 is grounded
through the screws. It is necessary that

– the screws have a conductive surface (e.g. steel zinc-plated or
brass nickel-plated)

– the mounting plate is grounded
– the screws have a good electrical contact to the mounting plate

Thread lock washer is highly recommended to prevent the screw from
loosening after long time use.

Mounting processor modules PM57x, PM58x, PM59x and PM56xx
1. After mounting the Terminal Base on the DIN rail, mount the processor module.

2. Press the processor module into the Terminal Base until it locks in place.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5333

3. The demounting is carried out in a reversed order. Press above and below, then remove
the processor module.

Mounting/Demounting the I/O modules
After mounting the terminal unit, mount the I/O modules.
1. Press the I/O module into the terminal unit until it locks in place.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5334

2. The demounting is carried out in a reversed order.
Press above and below, then remove the module.

Mounting/Demounting the communication modules
Communication modules are mounted on the left side of the processor module on the same
terminal base. The connection is established automatically when mounting the communication
module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

After mounting the terminal base, mount the communication modules.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5335

1. First insert the bottom nose of the communication module into the dedicated holes of the
terminal base. Then, rotate the communication module on the dedicated terminal base slot
until it is locked in place.

ð
NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against
accidental physical contact.
– Unused slots for communication modules must be covered

with dummy communication modules to achieve IP20 rating
Ä Chapter 1.6.3.6.5.7 “TA524 - Dummy communication module”
on page 5383.

– I/O bus connectors must not be touched during operation.

2. The demounting is carried out in a reversed order.
Press above and below, then rotate the communication module and remove it.

Mounting/Demounting the accessories
Additional components such as batteries, cables, etc. are required for commissioning the PLC
system. Information on assembly, replacement or basic use of the orderable components can
be found in the description of the respective accessory.
Ä Chapter 1.6.3.6.5 “Handling of accessories” on page 5359

Hardware details can be found in the device specifications of the accessory.
Ä Chapter 1.6.2.9 “Accessories” on page 5095

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5336

1.6.3.6.4 Connection and wiring
For detailed information such as technical data of your mounted devices (AC500 product family)
refer to the hardware device description of the appropriate device.

NOTICE!
Attention:
The devices should be installed by experts who are trained in wiring electronic
devices. In case of bad wiring, the following problems could occur:
– On the terminal base, the terminals L+ and M are doubled. If the power

supply is badly connected, a short circuit could happen and lead to a
destruction of the power supply or its fuse. If no suitable fuse exists, the
terminal base itself might be destroyed.

– The terminal bases and all electronic modules and terminal units are pro-
tected against reverse polarity.

– All necessary measures should be carried out to avoid damages to modules
and wiring. Notice the wiring plans and connection examples.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

NOTICE!
 Attention:
Due to possible loss of communcation, the communication cables should be
fixed with cable duct or bracket or clamp during application.

Power supply
As soon as the power supply of the processor module (CPU) is higher than the min-
imum Process and supply voltage (see Ä Chapter 1.6.3.6.1.1 “Environmental conditions”
on page 5313), the power supply detection is activated and the processor module is started.
Power supply of processor module and I/O modules should be powered on the same time,
otherwise the processor module will not switch to run after startup.
When during operation the power supply is going down lower than the minimum Process and
supply voltage (see Ä Chapter 1.6.3.6.1.1 “Environmental conditions” on page 5313) for more
than 10 ms, the processor module is switched to safety mode (display shows “AC500”). A
restart of the processor module only occurs by switching the power supply off and on again.
If an I/O module is disconnected during normal operation from power supply while processor
module is still powered, the processor module will continue its normal operation on all other
powered peripherals (I/O modules, communication modules and communication interfaces), but
freezes the input image. After recovery of I/O Module power supply it will continue normal
operation and inputs and outputs were updated.
Logic Controller Supply: AC500 logic controller power supply is provided through terminals L+ /
M.
Process Power Supply: S500 process power supply is provided through terminals UP / ZP.
Logic Controller Supply is galvanic isolated from Process Power Supply.
As system power supply for AC500/S500, the ABB CP power supply series can be used.

AC500 system
power supply

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5337

Power supply for processor modules
The supply voltage of 24 V DC is connected to a removable 5-pin terminal block. L+/M exist
twice. It is therefore possible to feed e.g. external sensors (up to 8 A max. with 1.5 mm2

conductor) via these terminals.

Pin Assignment Label Function Description

Terminal block
removed

Terminal block
inserted

L+ +24 V DC Positive pin of the
power supply voltage

L+ +24 V DC Positive pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

FE Functional earth

Terminals for power supply and the COM1 interface

Number of cores per ter-
minal

Conductor type Cross section

1 Solid 0.08 mm² to 1.5 mm²

1 Flexible 0.08 mm² to 1.5 mm²

1 with wire-end ferrule
(without plastic sleeve)

Flexible 0.25 mm² to 1.5 mm²

1 with wire-end ferrule (with
plastic sleeve)

Flexible 0.25 mm² to 0.5 mm²

1 (TWIN wire end ferrule) Flexible 0.5 mm²

Terminals at the terminal unit

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Pin assignment

Terminal type:
Spring terminal

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5338

Front terminal, conductor connection vertically with respect to the printed circuit board.

Parameter Value
Type Front terminal

Degree of protection IP 20

Stripped conductor end 9 mm, min. 8 mm

Fastening torque 0.6 Nm

Needed tool Slotted screwdriver

Dimensions Blade diameter 3.5 mm

Terminal units with product index < C0 e. g. 1SAP 212 200 R0001 B0

Number of cores per terminal Conductor type Cross section
1 Solid 0.08 mm² to 2.5 mm²

1 Flexible 0.08 mm² to 2.5 mm²

1 with wire-end ferrule Flexible 0.25 mm² to 1.5 mm²

2 Solid Not intended

2 Flexible Not intended

2 with TWIN wire end ferrule (length
10 mm) with plastic sleeve

Flexible 2 x 0.25 mm² or 2 x 0.5 mm² or
2 x 0.75 mm², with square cross-
section of the wire-end ferrule also
2 x 1.0 mm²

Terminal units with product index ³ C0 e. g. 1SAP 212 200 R0001 C0

Number of cores per terminal Conductor type Cross section
1 Solid 0.08 mm² to 2.5 mm²

1 Flexible 0.08 mm² to 2.5 mm²

1 with wire-end ferrule without
plastic sleeve

Flexible 0.08 mm² to 2.5 mm²

1 with wire-end ferrule with plastic
sleeve

Flexible 0.14 mm² to 1.5 mm²

2 Solid 0.08 mm² to 1.5 mm²

2 Flexible 0.08 mm² to 1.5 mm²

2 with TWIN wire end ferrule (length
10 mm) with plastic sleeve

Flexible 2 x 0.5 mm² to 2 x 1.0 mm²

2 with separate wire-end ferrule
without plastic sleeve

Flexible 0.08 mm² to 0.75 mm²

Front terminal, conductor connection vertically with respect to the printed circuit board.

Terminal type:
Screw-type ter-
minal

Terminal type:
Spring terminal

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5339

Parameter Value
Type Front terminal

Degree of protection IP 20

Stripped conductor end 9 mm, min. 8 mm

Needed tool Slotted screwdriver

Dimensions 2.5 x 0.4 to 3.5 x 0.5 mm, screwdriver must be at least 15 mm
free of insulation at the tip

Number of cores per terminal Conductor type Cross section
1 Solid 0.08 mm² to 2.5 mm²

1 Flexible 0.08 mm² to 2.5 mm²

1 with wire-end ferrule Flexible 0.25 mm² to 1.5 mm²

2 Solid Not intended

2 Flexible Not intended

2 with TWIN wire end ferrule (length
10 mm) with plastic sleeve

Flexible 2 x 0.25 mm² or 2 x 0.5 mm² or
2 x 0.75 mm², with square cross-
section of the wire-end ferrule also
2 x 1.0 mm²

Connection of wires at the spring terminals

1 2 3

b

a

conductor driver
screw-

b
Screwdriver

for
Opening forOpening

closed
Terminal

open
Terminal

a

inserted
Screwdriver

Screwdriver

Spring

Fig. 1081: Connect the wire to the spring terminal (steps 1 to 3)

Connection

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5340

5 6 74

Fig. 1082: Connect the wire to the spring terminal (steps 4 to 7)

1. Side view (open terminal drawn for illustration)
2. The top view shows the openings for wire and screwdriver
3. Insert screwdriver (2.5 x 0.4 to 3.5 x 0.5 mm) at an angle, screwdriver must be at least 15

mm free of insulation at the tip
4. While erecting the screwdriver, insert it until the stop (requires a little strength)
5. Screwdriver inserted - terminal open
6. Strip the wire for 7 mm (and put on wire-end ferrule)
7. Insert wire into the open terminal
8. Done

2 3

Screwdriver

1

Screwdriver

Fig. 1083: Disconnect wire from the spring terminal (steps 1 to 3)

Disconnection

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5341

4 5 6

Conductor
Screwdriver

Fig. 1084: Disconnect wire from the spring terminal (steps 4 to 6)

1. Terminal with wire connected
2. Insert screwdriver (2.5 x 0.4 to 3.5 x 0.5 mm) at an angle, screwdriver must be at least 15

mm free of insulation at the tip
3. While erecting the screwdriver, insert it until the stop (requires a little strength) - terminal is

now open
4. Remove wire from the open terminal
5. Done

Terminals for CANopen/DeviceNet communication modules

Fig. 1085: Combicon, 5-pole, female, removable plug with spring terminals

Fig. 1086: Combicon, 5-pole, female, removable plug with spring terminals

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5342

Number of cores
per terminal

Conductor type Cross section Stripped conductor
end

1 solid 0.2 mm² to 2.5 mm² 10 mm

1 flexible 0.2 mm² to 2.5 mm² 10 mm

1 with wire-end fer-
rule (without plastic
sleeve)

flexible 0.25 mm² to 2.5 mm² 10 mm

1 with wire-end fer-
rule (with plastic
sleeve)

flexible 0.25 mm² to 2.5 mm² 10 mm

Serial interface COM1 of the terminal bases
The serial interface COM1 is connected via a removable 9-pin terminal block. It is configurable
for RS-232 or RS-485 and can be used for:
● Online access (not valid for PM56xx),
● A free protocol,
● Modbus RTU, client and server,
● CS31 bus, as master only (not valid for PM56xx) Ä Chapter 1.6.3.6.4.8 “CS31 bus”

on page 5347.

 Pin Signal Interface Description

Terminal
block
removed

Terminal
block
inserted

1 Terminator P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit,
positive

3 RxD/TxD-N RS-485 Receive/Transmit,
negative

4 Terminator N RS-485 Terminator N

5 RTS RS-232 Request to send
(output)

6 TxD RS-232 Transmit data
(output)

7 SGND Signal Ground

8 RxD RS-232 Receive data
(input)

9 CTS RS-232 Clear to send
(input)

If the RS-485 bus is used, each interconnected bus line (each bus segment) must be electrically
terminated. The following is necessary:
● 2 resistors of 120 Ω each at both line ends (to avoid signal reflections)
● Pull-up resistor at RxD/TxD-P and a pull-down resistor at RxD/TxD-N. These 2 resistors

care for a defined high level on the bus, while there is no data exchange.
It is useful, to activate both the pull-up and the pull-down resistors, which only are necessary
once on every bus line, at the bus master. For this reason, these two resistors are already
integrated within the COM1 interface of the AC500 terminal bases. They can be activated by
connecting the terminals 1-2 and 3-4 of COM1.

Terminal type:
Spring terminal

RS-485 bus

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5343

The following drawing shows an RS-485 bus with the bus master at the line end.

1 Master at the bus line end, pull-up and pull-down activated, bus termination with 120 Ω
resistors

2 Slave within the bus line
3 Slave at the bus line end, bus termination with 120 Ω resistors
If the master is located within the bus line, it does not need a terminating resistor. The pull-up
and the pull-down resistors, however, must be activated (see the following drawing).

1 Slave at the bus line end, bus termination with 120 Ω resistors
2 Master within the bus line, pull-up and pull-down activated
3 Slave within the bus line
4 Slave at the bus line end, bus termination with 120 Ω resistors
The following photo shows a wiring example "master within the bus line", wired at the COM1
bus connector of the terminal base:

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5344

If the bus is operated with several masters, the pull-up and pull-down resistors
may only be activated at one master.

The grounding of the cable shields of the bus lines are described in the CS31 bus (PM57x,
PM58x and PM59x) Ä Chapter 1.6.3.6.4.8 “CS31 bus” on page 5347.

Serial interface COM2 of the terminal bases

The serial interface COM2 is not available at:

– Processor modules with type designator -2ETH (e. g. PM591-2ETH)
– Processor modules PM56xx

The serial interface COM2 is connected via a 9-pole D-sub connector. It is not intended to use
COM2 to establish a CS31 system bus. It is configurable for RS-232 or RS-485 and can be
used for
● online access
● a free protocol
● Modbus RTU, master and slave
If the RS-485 bus is used, each interconnected bus line (each bus segment) must be electrically
terminated. The following is necessary:
● 2 resistors of 120 Ω each at both line ends (to avoid signal reflections)
● a pull-up resistor at RxD/TxD-P and a pull-down resistor at RxD/TxD-N. These 2 resistors

care for a defined high level on the bus, while there is no data exchange.
It is useful, to activate both the pull-up and the pull-down resistors, which only are necessary
once on every bus line, at the bus master.

Serial
Interface

Pin Signal Interface Description

1 FE - Functional earth

2 TxD RS-232 Transmit data Output

3 RxD/TxD-P RS-485 Receive/Transmit Positive

4 RTS RS-232 Request to send Output

5 SGND Signal ground 0 V supply out

6 +5 V - 5 V supply out

7 RxD RS-232 Receive data Input

8 RxD/TxD-N RS-485 Receive/Transmit Negative

9 CTS RS-232 Clear to send Input

Shield FE - Functional earth

Pin assignment

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5345

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

The following drawing shows an RS-485 bus with the bus master at the line end.

1 Master at the bus line end, pull-up and pull-down activated, bus termination with 120 Ω
resistors

2 Slave within the bus line
3 Slave at the bus line end, bus termination with 120 Ω resistors
If the master is located within the bus line, it does not need a terminating resistor. The pull-up
and the pull-down resistors, however, are necessary:

1 Slave at the bus line end, bus termination with 120 Ω resistors
2 Master within the bus line, pull-up and pull-down activated
3 Slave within the bus line
4 Slave at the bus line end, bus termination with 120 Ω resistors

NOTICE!
If the bus is operated with several masters, the pull-up and pull-down resistors
may only be installed at one master.

The cable shields must be earthed. See CS31 system bus Ä Chapter 1.6.3.5.4.4 “CS31 bus”
on page 5257.

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5346

CS31 bus
Connection of the processor module to the CS31 bus

The PM56xx processor module does not support the CS31 bus.

The processor module can be used as a CS31 bus master. The connection is performed via the
serial interface COM1 used as a CS31 bus.

 Pin Signal Interface Description

Terminal
block
removed

Terminal
block
inserted

1 Terminator P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit,
positive

3 RxD/TxD-N RS-485 Receive/Transmit,
negative

4 Terminator N RS-485 Terminator N

5 RTS RS-232 Request to send
(output)

6 TxD RS-232 Transmit data
(output)

7 SGND Signal Ground Signal Ground

8 RxD RS-232 Receive data
(input)

9 CTS RS-232 Clear to send
(input)

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

With connecting the terminals 1-2 and 3-4, a pull-up and a pull-down resistor can be activated
(see chapter Serial Interface COM1 Ä Chapter 1.6.3.6.4.6 “Serial interface COM1 of the ter-
minal bases” on page 5343.

Wiring

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Recommendation 0.5 mm² corresponds to 0.8 mm

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

COM1 of the ter-
minal base

Pin assignment
(RS-485 /
RS-232)

Wiring

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5347

Bus line
Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω...150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length
must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Remarks Shielded cables with PVC core insulation and
a core diameter of 0.8 mm can be used up
to a length of ca. 50 m. In this case, the bus
terminating resistor is ca. 100 Ω.

Remarks:
Cables with PVC core insulation and a core diameter of 0.8 mm can be used up to a length of
ca. 250 m. In this case, the bus terminating resistor is ca. 100 W.

Cables with PE core insulation can be used up to a length of ca. 500 m.

Bus topology
A CS31 bus always contains only one bus master (CPU or communication module) which
controls all actions on the bus. Up to 31 slaves can be connected to the bus, e.g. remote
modules or slave-configured CPUs. Besides the wiring instructions shown below, the wiring and
grounding instructions provided with the descriptions of the modules are valid additionally.

Fig. 1087: Bus topology for a CS31 bus at COM1 (bus master at one end of the bus line)

1 CS31 bus master (e.g. PM581, master at the bus line end, pull-up and pull-down activated,
bus termination 120 Ω)

2 Direct earthing with clip on cabinet steel plate
3 CS31 bus
4 CS31 slave

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5348

Fig. 1088: Bus topology for a CS31 bus at COM1 (bus master within the bus line)

1 CS31 bus master (e.g. PM581, master at the bus line end, pull-up and pull-down activated,
bus termination 120 Ω)

2 Direct earthing with clip
3 CS31 bus
4 CS31 slave

NOTICE!
Risk of malfunctions!
Spur lines are not allowed within the CS31 bus.
Loop the bus line from module to module.

Fig. 1089: CS31 slave - Bus line: Correct

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5349

Fig. 1090: CS31 slave - Bus line: Wrong

Grounding
In order to avoid disturbance, the cable shields must be grounded directly.
Case a:
Multiple switchgear cabinets: If it can be guaranteed that no potential differences can occur
between the switchgear cabinets by means of current-carrying metal connections (grounding
bars, steel constructions etc.), the direct grounding is chosen.

Fig. 1091: Direct grounding

1 Cabinet
2 CS31 bus master (e.g. PM581)
3 Direct grounding of shields when entering the cabinet
4 CS31 bus system
5 CS31 slave
6 Current-carrying connection
Case b:

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5350

Multiple switchgear cabinets: If potential differences can occur between the switchgear cabinets,
the capacitive grounding method is chosen in order to avoid circulating currents on the cable
shields.

Fig. 1092: Earthing concept with several switchgear cabinets: direct grounding of cable shields
when cables enter the first switchgear cabinet (containing the master), and capacitive grounding
at the modules

1 Cabinet
2 CS31 bus master e.g. PM581
3 CS31 bus system
4 Direct grounding of shields when entering the cabinet
5 CS31 slave
6 Cabinet grounding
7 Grounding bar
8 Capacitive grounding 0.1 uF X-type capacitor directly on on the cabinet's steel plate
Everywhere is valid: The total length of the grounding connections between the shield of the
Terminal Base and the grounding bar must be as short as possible (max. 25 cm). The conductor
cross section must be at least 2.5 mm².

VDE 0160 requires, that the shield must be grounded directly at least once per
system.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5351

CANopen field bus
For CANopen, only bus cables with characteristics as recommended in ISO 11898 are to be
used. The requirements for the bus cables depend on the length of the bus segment. Regarding
this, the following recommendations are given by ISO 11898:

Length of seg-
ment [m]

Bus cable (shielded, twisted pair) Max. transmis-
sion rate [kbit/s]

 Conductor
cross section
[mm²]

Line resistance
[W/km]

Wave impe-
dance [W]

0...40 0.25...0.34 /
AWG23, AWG22

70 120 1000 at 40 m

40...300 0.34...0.60 /
AWG22, AWG20

< 60 120 < 500 at 100 m

300...600 0.50...0.60 /
AWG20

< 40 120 < 100 at 500 m

600...1000 0.75...0.80 /
AWG18

< 26 120 < 50 at 1000 m

NOTICE!
Risk of telegram and data errors!
The use of wrong cable type and quality could lead to limitations in cable length,
causing telegram and data errors.

NOTICE!
Risk of damaging the terminating resistor!
A bus-line short-circuit to the 24 V DC power supply can cause damage by
exceeding the power rating of the terminating resistor.

NOTICE!
Risk of telegram and data errors!
Miss- or unterminated data lines can cause reflections on the bus, leading to
telegram and data errors. For maximum cable length and transmission rate, the
bus must always be terminated on both ends with the characteristic impedance
of the cable type.

NOTICE!
Verification of termination (Make sure the power supply on all CAN nodes
is turned off)!
To verify the termination, the DC resistance between CAN_H and CAN_L can
be measured. The value should be between 50 W and 70 W.

Check for correct resistor values, short circuits and correct number of termi-
nating resistors, if the measurement is showing deviations.

Types of bus
cables

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5352

Ensure that the termination and FE connection will not be removed when
removing CAN modules from the bus.

Branches are not allowed in a CAN network. Stubs should be avoided or kept
as short as possible (< 0.3 m).

When connecting the cable take care to use one dedicated twisted pair for
the CAN signals (CAN_L and CAN_H) and another free wire for CAN_GND.
CAN_GND must be connected as reference, to avoid common mode problems
causing telegram errors.

Keep the CAN bus wiring away from electrical disturbance and close to earth
potential to minimize interference.

Fig. 1093: CAN bus, connection and wiring

1 Cabinet
2 Direct earthing of shields when entering the cabinet
3 CAN bus segment
4 Current-carrying connection

Ethernet connection details

Ethernet is also used for PROFINET, EtherCAT and Modbus TCP connection.

Installation hint

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5353

Ethernet interface

Interface Pin Signal Description

or

1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

6 RxD- Receive data -

7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

See supported protocols and used Ethernet ports: Ä Chapter 1.6.4.1.6.1.1 “Ethernet protocols
and ports for AC500 V2 products” on page 5442.
See communication via Modbus TCP/IP: Ä Chapter 1.6.4.1.9 “Communication with Modbus
TCP/IP” on page 5488.
See communication via Modbus RTU: Ä Chapter 1.6.4.1.8 “Communication with Modbus RTU”
on page 5467.

Wiring
For the maximum possible cable lengths within an Ethernet network, various factors have to
be taken into account. Twisted pair cables (TP cables) are used as transmission medium for
10 Mbit/s Ethernet (10Base-T) as well as for 100 Mbit/s (Fast) Ethernet (100Base-TX). For a
transmission rate of 10 Mbit/s, cables of at least category 3 (IEA/TIA 568-A-5 Cat3) or class C
(according to European standards) are allowed. For fast Ethernet with a transmission rate of
100 Mbit/s, cables of category 5 (Cat5) or class D or higher have to be used. The maximum
length of a segment, which is the maximum distance between two network components, is
restricted to 100 m due to the electric properties of the cable.
Furthermore, the length restriction for one collision domain has to be observed. A collision
domain is the area within a network which can be affected by a possibly occurring collision
(i.e. the area the collision can propagate over). This, however, only applies if the components
operate in half-duplex mode since the CSMA/CD access method is only used in this mode. If
the components operate in full-duplex mode, no collisions can occur. Reliable operation of the
collision detection method is important, which means that it has to be able to detect possible
collisions even for the smallest possible frame size of 64 bytes (512 bits). But this is only
guaranteed if the first bit of the frame arrives at the most distant subscriber within the collision
domain before the last bit has left the transmitting station. Furthermore, the collision must
be able to propagate to both directions at the same time. Therefore, the maximum distance
between two ends must not be longer than the distance corresponding to the half signal propa-
gation time of 512 bits. Thus, the resulting maximum possible length of the collision domain is
2000 m for a transmission rate of 10 Mbit/s and 200 m for 100 Mbit/s. In addition, the bit delay
times caused by the passed network components also have to be considered.
The following table shows the specified properties of the respective cable types per 100 m.

Table 615: Specified cable properties:
Parameter 10Base-T [10 MHz] 100Base-TX [100 MHz]
Attenuation [dB / 100m] 10.7 23.2

NEXT [dB / 100m] 23 24

ACR [dB / 100m] N/A 4

Pin assignment

Cable length
restrictions

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5354

Parameter 10Base-T [10 MHz] 100Base-TX [100 MHz]
Return loss [dB / 100m] 18 10

Wave impedance [Ohms] 100 100

Category 3 or higher 5

Class C or higher D or higher

The TP cable has eight wires arranged in four pairs of twisted wires. Different color codes
exist for the coding of the wires, the coding according to EIA/TIA 568, version 1, being the one
most commonly used. In this code, the individual pairs are coded with blue, orange, green and
brown color. One wire of a pair is unicolored and the corresponding second wire is striped,
the respective color alternating with white. For shielded cables, a distinction is made between
cables that have one single shield around all pairs of wires and cables that have an additional
individual shield for each pair of wires. The following table shows the different color coding
systems for TP cables:

Table 616: Color coding of TP cables:
Pairs EIA/TIA 568

Version 1
EIA/TIA 568
Version 2

DIN 47100 IEC 189.2

Pair 1 white/
blue

blue green red white brown white blue

Pair 2 white/
orange

orange black yellow green yellow white orange

Pair 3 white/
green

green blue orange grey pink white green

Pair 4 white/
brown

brown brown slate blue red white brown

Two general variants are distinguished for the pin assignment of the normally used RJ45
connectors: EIA/TIA 568 version A and version B. The wiring according to EIA/TIA 568 version
B is the one most commonly used.

T568A

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 3 Pair 4Pair 1

Pair 2

T568B

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 2 Pair 4Pair 1

Pair 3

Fig. 1094: Pin assignment of RJ45 sockets

Cable types

Particular use
Crossover cables are needed only for a direct Ethernet connection without
crossover functionality. In particular for AC500 modules in product life cycle
phase "Classic".

TP cable

Crossover cable

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5355

Crossover cables are for a direct Ethernet connection of two terminal devices as the simplest
variant of a network. From transmission lines of the first station to the reception lines of the
second station.

12345678 123456781
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Fig. 1095: Wiring of a crossover cable

For networks with more than two subscribers, hubs or switches have to be used additionally for
distribution. These active devices already have the crossover functionality implemented which
allows a direct connection of the terminal devices using straight-through cables.

12345678 123456781
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Fig. 1096: Wiring of a straight-through cable

CAUTION!
Risk of communication faults!
When using inappropriate cables, malfunctions in communication may occur.
Only use network cables of the categories 5 (Cat 5, Cat 5e, Cat 6 or Cat 7) or
higher within PROFINET networks.

PROFIBUS connection details
9-pin D-sub connector, male

Parameter Value
Fastening torque 0.4 Nm

Pin Signal Description
1 Shield Shielding, protective ground

2 not used -

3 RxD/TxD-P Reception / transmission line,
positive

4 CBTR-P Control signal for repeater,
positive (optional)

5 DGND Reference potential for data
lines and +5 V

6 VP +5 V, supply voltage for bus
terminating resistors

7 not used -

Straight-through
cable

Attachment plug
for the bus
cable

Assignment

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5356

Pin Signal Description
8 RxD/TxD-N Reception / transmission line,

negative

9 CNTR-N Control signal for repeater,
negative (optional)

Parameter Value
Type Twisted pair (shielded)

Characteristic impedance 135 Ω...165 Ω

Cable capacitance < 30 pF/m

Conductor diameter of the cores ≥ 0.64 mm

Conductor cross section of the cores ≥ 0.34 mm²

Cable resistance per core ≤ 55 Ω/km

Loop resistance (resistance of two cores) ≤ 110 Ω/km

The maximum possible cable length of a PROFIBUS subnet within a segment depends on the
tranmission rate (baud rate).

Transmission Rate Maximum Cable Length
9.6 / 19.2 / 93.75 kBaud 1200 m

187.5 kBaud 1000 m

500 kBaud 400 m

1.5 MBaud 200 m

3 MBaud to 12 MBaud 100 m

Branch lines are generally permissible for transmission rates of up to 1500 kbit/s. But in fact
they should be avoided for transmission rates higher than 500 kbit/s.

The line ends (of the bus segments) have to be terminated using bus terminating resistors
according to the drawing below. The bus terminating resistors are usually placed inside the bus
connector.

390 Ohms

220 Ohms

390 Ohms

VP (+5 V)

GND (0 V)

RxD/TxD-P

RxD/TxD-N

Data Line B

Data Line A

6

3

8

5

One bus segment can have up to 32 subscribers. Using repeaters a system can be expanded to
up to 126 subscribers. Repeaters are also required for longer transfer lines. Please note that a
repeater's load to the bus segment is the same as the load of a normal bus subscriber. The sum
of normal bus subscribers and repeaters in one bus segment must not exceed 32.

Bus cable

Cable lengths

Bus terminating
resistors

Repeaters

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5357

Station 32 Station 61

Bus segment 2:
max. 30 stations
+ 2 repeaters

R Repeater RR Repeater R

Station 1 Station 31

Bus segment 1:
max. 31 stations
+ 1 repeater

R

max. 200 m max. 200 m

Fig. 1097: Principle example for a PROFIBUS-DP system with repeaters (1500 kbit/s baud rate)

Modbus RTU connection details
The Modbus RTU protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
Available serial interfaces can work as Modbus interfaces simultaneously.
The Modbus client operating mode of an interface is set with the function block
COM_MOD_MAST.
Ä Chapter 1.5.4.22.1.1 “COM_MOD_MAST” on page 1698

The Modbus operating mode and the interface parameters are set in the Ä Chapter 1.6.5.2.11.4
“Setting COMx - Modbus” on page 6108.

Table 617: Description of the Modbus protocol
Parameter Value
Supported standard PM55x and PM56x: EIA RS-485

PM57x, PM58x and PM59x: EIA RS-232 /
RS-485

Number of connection points 1 client
Max. 1 server with RS-232 interface
Max. 31 servers with RS-485

Protocol Modbus

Operating mode Client/server

Address Server only

Data transmission control CRC16

Data transmission speed From 300 bits/s to 187,500 bits/s

Encoding 1 start bit
8 data bits
1 parity bit, (optional) even, odd, mark or
space
1 or 2 stop bits

Max. cable length for RS-485 on
COM1 / COM2 for AC500 CPU

1.200 m at 19.200 baud

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5358

Parameter Value
Max. cable length for RS-485 on
COM1 / COM2 for AC500-eCo CPU

 COM1:

 Non-isolated: Max. 50 m (with shielded cable)

 Isolated with TK506: Max. 500 m at 19.200 baud (with shielded
cable *)

 COM2:

 Non-isolated with TA562: Max. 50 m (with shielded cable)

 Isolated with TA569: Max. 500 m at 19.200 baud (with shielded
cable *)

*) 500 m cable type STP-120 Ω/AWG-20
If a processor module provides more than one serial interface, both interfaces (COM1/COM2)
can be operated simultaneously as Modbus interfaces and can operate as Modbus server as
well as Modbus client.

Point-to-point with RS-232 or bus topology with RS-485. Modbus is a master-slave protocol.
For further information on Modbus see chapter Ä Chapter 1.6.4.1.8 “Communication with
Modbus RTU” on page 5467.

1.6.3.6.5 Handling of accessories
This section only describes accessories that are frequently used for system assembly, connec-
tion and construction. A description of all additional accessories that can be used to supplement
AC500 system can be found in the Hardware PLC device description.

MC502 - Memory card
● Solid state flash memory storage

1 MC502 memory card

Bus topology

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5359

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.3.5.5.3 “MC503 - Memory
card adapter” on page 5272

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

Purpose

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5360

The dimensions are in mm and in brackets in inch.

AC500 V2 and AC500-eCo V2

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Fig. 1098: Insert memory card into PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Dimensions

Insert the
memory card

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5361

Fig. 1099: Insert memory card into PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

AC500 V2 and AC500-eCo V2

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!
Remove the memory card only when the RUN LED is not blinking.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Remove the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5362

Fig. 1100: Remove memory card from PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Fig. 1101: Remove memory card from PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5363

Parameter Value
Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0001 MC502, memory card Classic

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5102 - Micro memory card with micro memory card adapter
● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5364

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.3.5.5.3 “MC503 - Memory
card adapter” on page 5272

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.

Purpose

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5365

The dimensions are in mm and in brackets in inch.

The dimensions are in mm and in brackets in inch.

1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Dimensions

Micro memory
card

Micro memory
card adapter

Insert the micro
memory card
AC500 V2 and
AC500-eCo V2

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5366

Fig. 1102: Insert micro memory card into PM57x, PM58x and PM59x

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot

Fig. 1103: Insert micro memory card into PM55x-xP and PM56x-xP

1 Micro memory card
2 Micro memory card adapter
3 MC503 memory card adapter

Remove the
micro memory
card

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5367

NOTICE!
Removal of the micro memory card
Do not remove the micro memory card when it is working!
Remove the micro memory card with micro memory card adapter only when the
RUN LED is not blinking.
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

1. To remove the micro memory card adapter with the integrated micro memory card, push
on the micro memory card adapter until it moves forward.

2. By this, the micro memory card adapter is unlocked and can be removed.

Fig. 1104: Remove micro memory card from PM57x, PM58x and PM59x

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot

AC500 V2 and
AC500-eCo V2

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5368

Fig. 1105: Remove micro memory card from PM55x-xP and PM56x-xP

1 Micro memory card
2 Micro memory card adapter
3 MC503 memory card adapter

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the micro memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5369

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

MC5141 - Memory card
● Solid state flash memory storage

1 MC5141 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500-
eCo V2 3)

AC500 V3 AC500-XC
V3

AC500-
eCo V3

MC502 x x x x x -

MC5141 x x x x x -

MC5102 with TA5350-AD micro
memory card adapter

x 1) x 1) 2) x 1) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.
3) A memory card can only be inserted when a MC503 memory card adapter is installed in the
processor module.

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5370

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

AC500-eCo V2 processor modules must be equipped with an MC503 memory
card adapter if a memory card is used. Ä Chapter 1.6.3.5.5.3 “MC503 - Memory
card adapter” on page 5272

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.

The dimensions are in mm and in brackets in inch.

AC500 V2 and AC500-eCo V2

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Purpose

Dimensions

Insert the
memory card

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5371

Fig. 1106: Insert memory card into PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

Fig. 1107: Insert memory card into PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

AC500 V2 and AC500-eCo V2Remove the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5372

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working!
Remove the memory card only when the RUN LED is not blinking.
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Fig. 1108: Remove memory card from PM57x, PM58x and PM59x

1 Memory card
2 Memory card slot

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5373

Fig. 1109: Remove memory card from PM55x-xP and PM56x-xP

1 Memory card
2 MC503 memory card adapter

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at 40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at 40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Further information on using the memory card in AC500 PLCs is provided in the chapter
Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

Technical data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5374

Part no. Description Product life cycle phase *)
1SAP 180 100 R0041 MC5141, memory card Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA521 - Battery
● Manganese dioxide lithium battery, 3 V, 560 mAh
● Non-rechargeable

The TA521 battery is the only applicable battery for the AC500 processor modules Ä Chapter
1.6.2.3.2.1 “PM57x (-y), PM58x (-y) and PM59x (-y)” on page 3848. It cannot be recharged.

The processor modules are supplied without lithium battery. It must be ordered separately. The
TA521 lithium battery is used for data (SRAM) and RTC buffering while the processor module is
not powered.
See system technology - AC500 battery. Ä Chapter 1.6.4.1.4.2 “AC500 battery” on page 5419

The CPU monitors the discharge degree of the battery. A warning is issued before the battery
condition becomes critical (about 2 weeks before). Once the warning message appears, the
battery should be replaced as soon as possible.

● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Replace the battery with supply voltage ON in order not to risk data being lost.
● Recycle exhausted batteries meeting the environmental standards.

The battery lifetime is the time, the battery can store data while the processor module is not
powered. As long as the processor module is powered, the battery will only be discharged by its
own leakage current.

Ordering data

Purpose

Handling
instructions

Battery lifetime

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5375

To avoid a short battery discharge, the battery should always be inserted or
replaced while the process module is under power, then the battery is correctly
recognized and will not shortly discharged.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

WARNING!
Risk of fire or explosion!
Use of incorrect Battery may cause fire or explosion.

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front face of the processor module and cannot
be removed.

2. Remove the TA521 battery from its package and hold it by the small cable. Remove then
the small connector from the socket, do this best by lifting it out with a screwdriver.

3. Insert the battery connector into the small connector port of the compartment. The con-
nector is keyed to find the correct polarity (red = positive pole = above).

4. Insert first the cable and then the battery into the compartment, push it until it reaches the
bottom of the compartment.

5. Arrange the cable in order not to inhibit the door to close.
6. Pull-up the door and press until the locking mechanism snaps.

Insertion

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5376

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front view of the processor module and cannot
be removed.

2. Remove the old TA521 battery from the battery compartment by pulling it by the small
cable. Remove then the small connector from the socket, do this best by lifting it out with a
screwdriver.

3. Follow the previous instructions to insert a new battery.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

Replacement of
the battery

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5377

Parameter Value
Nominal voltage 3 V

Nominal capacity 560 mAh

Temperature range (index below C0) Operating: 0 °C...+60 °C
Storage: -20 °C...+60 °C
Transport: -20 °C...+60 °C

Temperature range (index C0 and above) Operating: -40 °C...+70 °C
Storage: -40 °C...+85 °C
Transport: -40 °C...+85 °C

Battery lifetime Typ. 3 years at 25 °C

Self-discharge 2 % per year at 25 °C
5 % per year at 40 °C
20 % per year at 60 °C

Protection against reverse polarity Yes, by mechanical coding of the plug.

Insulation The battery is completely insulated.

Connection Red = positive pole = above at plug, black =
negative pole,

Weight 7 g

Dimensions Diameter of the button cell: 24.5 mm
Thickness of the button cell: 5 mm

Part no. Description Product life cycle phase *)
1SAP 180 300 R0001 TA521, lithium battery Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA526 - Wall mounting accessory

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5378

If a terminal base TB5xx or a terminal unit TU5xx should be mounted with screws, the wall
mounting accessories TA526 must be inserted at the rear side first. This plastic parts prevent
bending of terminal bases and terminal units while screwing up.

Handling of the wall mounting accessory is described in detail in the section Mounting and
disassembling the terminal unit Ä “Mounting with screws” on page 5328 and Mounting/Disas-
sembling Terminal Bases and Function Module Terminal Bases Ä “Mounting with screws”
on page 5326.

Parameter Value
Weight 5 g

Dimensions 67 mm x 35 mm x 5,5 mm

Part no. Description Product life cycle phase *)
1SAP 180 800 R0001 TA526, wall mounting acces-

sory
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA541 - Battery
● Manganese dioxide lithium battery, 3 V
● Non-rechargeable

The TA541 lithium battery is the only applicable battery for PM595 Ä Chapter 1.6.2.3.2.2
“PM595-4ETH” on page 3863. It is used to save RAM content of the processor module
(PM595-4ETH-F only) and to back-up the real-time clock (all PM595 variants). It cannot be
recharged.
The processor modules are supplied without a lithium battery. It therefore must be ordered
separately. The lithium battery is used to save RAM contents of AC500 processor modules and
back-up the real-time clock. Although the processor modules can work without a battery, its use
is still recommended in order to avoid process data being lost.
The CPU monitors the discharge degree of the battery. A warning is output, before the battery
condition becomes critical (about 2 weeks before). After the warning message has appeared,
the battery should be replaced as soon as possible.

Purpose

Handling
instructions

Technical data

Ordering data

Purpose

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5379

● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Replace the battery with supply voltage ON in order not to risk data being lost.
● Recycle exhausted batteries meeting the environmental standards.

The battery lifetime is the time the battery can store data while the CPU is not powered. As long
as the CPU is powered, the battery will only be discharged by its own leakage current.

The TA541 lithium battery is the only applicable battery for processor modules
PM595.

1. Remove the front cover / display by pressing the marked areas with your fingers and pull it
to the front.

FE

L+
L+
M
M5

1
2
3
4

6
7
8
9

1
2
3
4
5

2. Remove the old battery from the battery compartment by pulling it by the small cable.
Remove then the small connector from the socket.

Handling
instructions

Battery lifetime

Insertion

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5380

3. Remove the battery from its package and hold it by the small cable.

4. Insert the battery connector into the connector port of the PCB. The connector is keyed to
find the correct polarity (red = positive pole = right side).

5. Insert the battery into the battery compartment on the left side as shown in the figure.

6. Re-assemble the front cover / display by pressing it straight from the front until it snaps in.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5381

For PM595-4ETH-F only: battery replacement should be done with the system
under power. Without battery and power supply there is no data buffering pos-
sible.

For PM595-4ETH-M-XC only: battery only back-ups the real-time clock.

1. Remove the front cover / display by pressing the marked areas and pull it to the front.
2. Remove the old battery from the battery compartment by pulling it by the small cable.

Remove then the small connector from the socket, do this best by lifting it out with a
screwdriver.
Follow the previous instructions to insert a new battery.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble a lithium battery. Attempts to charge
lithium batteries lead to overheating and possible explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid chance short circuiting and
therefore do not store batteries in metal containers and do not place them on
metallic surfaces. Escaping lithium is a health hazard.

Parameter Value
Nominal voltage 3 V

Nominal capacity 1800 mAh

Temperature range Operating: -40 °C...+70 °C
Storage: -40 °C...+85 °C
Transport: -40 °C...+85 °C

Battery lifetime Typ. 3 years at 25 °C

Self-discharge 1 % per year at 25 °C
5 % per year at 40 °C
20 % per year at 60 °C

Protection against reverse polarity Yes, by mechanical coding of the plug

Insulation The battery is completely insulated.

Connection Red = positive pole = above at plug
Black = negative pole

Weight 17 g

Dimensions Diameter of the battery: ca. 18 mm
Height of the battery: ca. 35 mm

Part no. Description Product life cycle phase *)
1SAP 182 700 R0001 TA541, lithium battery Active

Replacement of
the battery

Technical data

Ordering data

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5382

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA524 - Dummy communication module

1 Type
2 Label

TA524 is used to cover an unused communication module slot of a terminal base Ä Chapter
1.6.2.2.1 “TB51x-TB54x” on page 3786. It protects the terminal base from dust and inadvertent
touch.

TA524 is mounted in the same way as a common communication module Ä Chapter 1.6.3.6.3.6
“Mounting/Demounting the communication modules” on page 5335.

Parameter Value
Weight 50 g

Dimensions 135 mm x 28 mm x 62 mm

Purpose

Handling
instructions

Technical data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5383

Part no. Description Product life cycle phase *)
1SAP 180 600 R0001 TA524, dummy communica-

tion module
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA543 - Screw mounting accessory

The TA543 screw mounting accessory is used for mounting the processor module PM595
without DIN rail.

3 TA543 must be snapped on the backside of PM595 Ä Chapter 1.6.3.6.3.3 “Mounting/
Demounting the processor module PM595” on page 5330.

Ordering data

Intended pur-
pose

Handling
instruction

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5384

1 3 parts of screw mounting accessory TA543
2 3 slots for screw mounting accessory TA543
3 5 holes for screw mounting

Parameter Value
Weight 5 g

Dimensions 12 mm x 8.5 mm x 10 mm

Part no. Description Product life cycle phase *)
1SAP 182 800 R0001 TA543, screw mounting

accessory for PM595
Active

Technical data

Ordering data

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5385

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

CP-E - Economic range

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
● Wide-range input voltage
● Mounting on DIN rail
● High efficiency of up to 90 %
● Low power dissipation and low heating
● Wide ambient temperature range from -40 °C...+70 °C
● No-load-proof, overload-proof, continuous short-circuit-proof
● Power factor correction (depending on the type)
● Approved in accordance with all relevant international standards

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5386

Table 618: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR427030R0000 CP-E
24/0.75

100-240 V
AC or
120-370 V
DC

24 V DC,
0.75 A

- 22.5

1SVR427031R0000 CP-E
24/1.25

100-240 V
AC or
90-375 V DC

24 V DC,
1.25 A

- 40.5

1SVR427032R0000 CP-E 24/2.5 100-240 V
AC or
90-375 V DC

24 V DC, 2.5
A

- 40.5

1SVR427034R0000 CP-E 24/5.0 115/230 V
AC auto
select or
210-370 V
DC

24 V DC, 5 A - 63.2

1SVR427035R0000 CP-E
24/10.0

115/230 V
AC auto
select or
210-370 V
DC

24 V DC, 10
A

- 83

1SVR427036R0000 CP-E
24/20.0

115-230 V
AC or
120-370 V
DC

24 V DC, 20
A

- 175

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5387

CP-C.1 - High performance range

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
The CP-C.1 power supplies are ABB’s high performance and most advanced range. With
excellent efficiency, high reliability and innovative functionality it is prepared for the most
demanding industrial applications. These power supplies have a 50 % integrated power reserve
and operate at an efficiency of up to 94 %. They are equipped with overheat protection and
active power factor correction. Combinded with a broad AC and DC input range and extensive
worldwide approvals the CP-C.1 power supplies are the preferred choice for professional DC
applications.
● Typical efficiency of up to 94 %
● Power reserve design delivers up to 150 % of the nominal output current
● Signaling outputs for DC OK and power reserve mode
● High power density leads to very compact and small devices
● No-load-proof, overload-proof, continuous short-circuit-proof
● Active power factor correction (PFC)

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5388

Table 619: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR360563R1001 CP-C.1
24/5.0

110-240 V
AC or
90-300 V DC

24 V DC, 5 A +50 % 40

1SVR360663R1001 CP-C.1
24/10.0

110-240 V
AC or
90-300 V DC

24 V DC, 10
A

+50 % 60

1SVR360763R1001 CP-C.1
24/20.0

110-240 V
AC or
90-300 V DC

24 V DC, 20
A

+30 % 82

1.6.3.7 AC500-XC
1.6.3.7.1 System data AC500-XC

Assembly, construction and connection of devices of the variant AC500-XC
is identical to AC500 (standard) Ä Chapter 1.6.3.6 “AC500 (Standard)”
on page 5313. The following description provides information on general tech-
nical data of AC500-XC system.

Environmental conditions
Table 620: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

120 V AC...240 V AC wide-range supply

 Voltage 120...240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply

 DC supply Interruption < 10 ms, time between 2 interrup-
tions > 1 s, PS2

NOTICE!
Exceeding the maximum power supply voltage for process or supply voltages
could lead to unrecoverable damage of the system. The system might be
destroyed.

NOTICE!
For the supply of the modules, power supply units according to PELV or SELV
specifications must be used.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5389

The creepage distances and clearances meet the requirements of the over-
voltage category II, pollution degree 2.

Parameter Value
Temperature

 Operating -40 °C...+70 °C
-40 °C...-30 °C: Proper start-up of system;
technical data not guaranteed
-40 °C...0 °C: Due to the LCD technology, the
display might respond very slowly.
-40 °C...+40 °C: Vertical mounting of modules
possible, output load limited to 50 % per group
+60 °C...+70 °C with the following deratings:
● System is limited to max. 2 communication

modules per terminal base
● Applications certified for cULus up to +60

°C
● Digital inputs: maximum number of simul-

taneously switched on input channels
limited to 75 % per group (e.g. 8 channels
=> 6 channels)

● Digital outputs: output current maximum
value (all channels together) limited to 75
% per group (e.g. 8 A => 6 A)

● Analog outputs only if configured as
voltage output: maximum total output
current per group is limited to 75 %
(e.g. 40 mA => 30 mA)

● Analog outputs only if configured
as current output: maximum number
of simultaneously used output chan-
nels limited to 75 % per group
(e.g. 4 channels => 3 channels)

 Storage / Transport -40 °C...+85 °C

Humidity Operating / Storage: 100 % r. H. with conden-
sation

Air pressure Operating:
-1000 m....4000 m (1080 hPa...620 hPa)
> 2000 m (< 795 hPa):
● max. operating temperature must be

reduced by 10 K (e.g. 70 °C to 60°C)
● I/O module relay contacts must be oper-

ated with 24 V nominal only

Immunity to corrosive gases Operating: Yes, according to:
ISA S71.04.1985 Harsh group A, G3/GX
IEC 60721-3-3 3C2 / 3C3

Immunity to salt mist Operating: Yes, horizontal mounting only,
according to IEC 60068-2-52 severity level: 1

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5390

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC
devices. Ä Chapter 1.6.2.9.4.6 “TA535 - Protective caps for XC devices”
on page 5212

Table 621: Electromagnetic compatibility
Parameter Value
Device suitable for:

 Industrial applications Yes

 Domestic applications No

Radiated emission (radio disturbances) Yes, according to:
CISPR 16-2-3

Conducted emission (radio disturbances) Yes, according to:
CISPR 16-2-1, CISPR
16-1-2

Electrostatic discharge (ESD) Yes, according to:
IEC 61000-4-2, zone B,
criterion B

Fast transient interference voltages (burst) Yes, according to:
IEC 61000-4-4, zone B,
criterion B

High energy transient interference voltages (surge) Yes, according to:
IEC 61000-4-5, zone B,
criterion B

Influence of radiated disturbances Yes, according to:
IEC 61000-4-3, zone B,
criterion A

Influence of line-conducted interferences Yes, according to:
IEC 61000-4-6, zone B,
criterion A

Influence of power frequency magnetic fields Yes, according to:
IEC 61000-4-8, zone B,
criterion A

In order to prevent malfunctions, it is recommended, that the operating per-
sonnel discharge themselves prior to touching communication connectors or
perform other suitable measures to reduce effects of electrostatic discharges.

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5391

NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against accidental
physical contact.
– Unused slots for communication modules must be covered with dummy

communication modules to achieve IP20 rating Ä Chapter 1.6.3.6.5.7
“TA524 - Dummy communication module” on page 5383.

– I/O bus connectors must not be touched during operation.

Mechanical data

Parameter Value
Wiring method Spring terminals

Degree of protection IP 20

Vibration resistance Yes, according to:
IEC 61131-2
IEC 60068-2-6
IEC 60068-2-64

Shock resistance Yes, according to:
IEC 60068-2-27

Assembly position Horizontal
Vertical (no application in salt mist environ-
ment)

Assembly on DIN rail

DIN rail type According to IEC 60715
35 mm, depth 7.5 mm or 15 mm

Assembly with screws

Screw diameter 4 mm

Fastening torque 1.2 Nm

Environmental tests

Parameter Value
Storage IEC 60068-2-1 Test Ab: cold withstand test -40 °C / 16 h

IEC 60068-2-2 Test Bb: dry heat withstand test +85 °C / 16 h

Humidity IEC 60068-2-30 Test Db: Cyclic (12 h / 12 h) damp-heat test
55 °C, 93 % r. H. / 25 °C, 95 % r. H., 6 cycles
IEC 60068-2-78, stationary humidity test: 40 °C, 93 % r. H.,
240 h

Insulation Test IEC 61131-2

PLC Automation with V2 CPUs
PLC integration (hardware) > System assembly, construction and connection

2022/01/203ADR010582, 3, en_US5392

Parameter Value
Vibration resistance IEC 61131-2 / IEC 60068-26: 5 Hz...500 Hz, 2 g (with memory

card inserted)
IEC 60068-2-64: 5 Hz...500 Hz, 4 g rms

Shock resistance IEC 60068-2-27: all 3 axes 15 g, 11 ms, half-sinusoidal

Table 622: EMC immunity
Parameter Value
Electrostatic discharge (ESD) Electrostatic voltage in case of air discharge: 8 kV

Electrostatic voltage in case of contact discharge: 6 kV

Fast transient interference vol-
tages (burst)

Supply voltage units (DC): 4 kV
Digital inputs/outputs (24 V DC): 2 kV
Analog inputs/outputs: 2 kV
Communication lines shielded: 2 kV
I/O supply (DC-out): 2 kV

High energy transient interference
voltages (surge)

Supply voltage units (DC): 1 kV CM *) / 0.5 kV DM *)
Digital inputs/outputs (24 V DC): 1 kV CM *) / 0.5 kV DM *)
Digital inputs/outputs (AC): 4 kV
Analog inputs/outputs: 1 kV CM *) / 0.5 kV DM *)
Communication lines shielded: 1 kV CM)*
I/O supply (DC-out): 0,5 kV CM *) / 0.5 kV DM *)

Influence of radiated disturbances Test field strength: 10 V/m

Influence of line-conducted inter-
ferences

Test voltage: 10 V

Power frequency magnetic fields 30 A/m 50 Hz
30 A/m 60 Hz

*) CM = Common Mode, * DM = Differential Mode

1.6.3.8 AC500-S

The AC500-S safety user manual must be read and understood before using safety configura-
tion and programming tools of Automation Builder / PS501 Control Builder Plus. Only qualified
personnel shall be allowed to work with AC500-S safety PLCs.
In order to have always the latest version and due to a different lifecycle compared to
Automation Builder help, the AC500-S safety user manual is only available on our website.

The AC500-S safety PLC includes the following safety-relevant hardware components.
● SM560-S / SM560-S-FD-1 / SM560-S-FD-4
● DI581-S
● DX581-S
● AI581-S
● TU582-S

PLC Automation with V2 CPUs

PLC integration (hardware) > System assembly, construction and connection

2022/01/20 3ADR010582, 3, en_US 5393

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch

1.6.4 System technology for AC500 V2 products
This chapter provides advanced information on the system technology of AC500 control sys-
tems from a general perspective. It provides information to link the details from the hardware
descriptions (provided in the device specifications section) with detailed information on config-
uring/programming a corresponding library (provided in the individual library sections).
Configuration of a specific device with Automation Builder is described in the PLC configuration
section.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5394

1.6.4.1 System technology of CPU and overall system
1.6.4.1.1 Inputs, outputs and flags for AC500 V2 products

All operands supported by CODESYS are described in the CODESYS documentation
Ä Chapter 1.4.1.7 “Operands” on page 435.
In the following details on the "address" operands (%I for inputs, %Q for outputs, %M area and
%R area for variables with address) and the data backup and initialization.
All addressable operands can be accessed bitwise (X), bytewise (B), wordwise (W) and double-
wordwise (D) in Automation Builder. The Motorola byteorder is used for operand access.

The declaration of the operands in the addressable flag area is done as follows:
Symbol AT address : Type [:= initialization value]; (* comment *)
[.] optional
The inputs and outputs are declared using the PLC configuration.

Interfaces for inputs and outputs
The following input and output interfaces are available for the AC500 CPUs PM57x, PM58x and
PM59x:

No. Type Designation Number of Inputs and Outputs
1 I/O bus Interface for I/O modules Max. 10 modules with a maximum of 32

channels (IX, QX, IW, QW) per module

2 COM1 CS31 bus master Max. 31 modules with a maximum of 32
channels per module, address 0-61

3 COM2 Reserved RS-232 / RS-485

4 FBP FieldBusPlug - Slave Max. 8 modules with 16 IW + 16 QW + 16
IB + 16 QB with modular FBP, depending on
fieldbus

5 Onboard
I/Os

Reserved Max. 96 bytes Inputs and Outputs

6 Line 0 Internal communication
module

4 kB %I0.xx / %Q0.xx each

7 Line 1 Communication module 1 4 kB %I1.xx / %Q1.xx each

8 Line 2 Communication module 2 4 kB %I2.xx / %Q2.xx each

9 Line 3 Communication module 3 4 kB %I3.xx / %Q3.xx each

10 Line 4 Communication module 4 4 kB %I4.xx / %Q4.xx each

11 Line 5 Internal communication
module ETH3 of
PM595-4ETH

4 kB %I5.xx / %Q5.xx each

12 Line 6 Internal communication
module ETH4 of
PM595-4ETH

4 kB %I6.xx / %Q6.xx each

The following inputs and outputs interfaces are available for the AC500-eCo CPUs PM55x and
PM56x:

Declaration of
addressable
operands

PM57x, PM58x
and PM59x
(AC500)

PM55x and
PM56x (AC500-
eCo)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5395

No. Type Designation Number of Inputs and Outputs
1 I/O bus Interface for I/O modules Max. 10 I/O modules with a maximum of

32 channels (IX, QX, IW, QW) per module

2 COM1 CS31 bus master Max. 31 modules with a maximum of 32
channels per module, address 0-61

3 COM2 Reserved RS-485

4 Onboard I/O Onboard I/O Per module:
Option 1: 8DI+6DO
Option 2: 8DI+6DO+2AI+1AO

Address scheme for inputs and outputs
● The Communication Module I/Os are addressed as follows (two-stage process):

%I(Q)BCommunication ModuleNumber.ByteCommunication Module
● No Communication Module numbers are assigned to I/Os that are connected to the CPU.

These I/Os are configured with the PLC configuration in Automation Builder.
● I/Os connected to the basic unit are assigned to the following address areas:

I/O Bus: %IB0 .. %IB999 and %QB0 .. %QB999

COM1: %IB1000 .. %IB1999 and %QB1000 .. %QB1999

COM2 : %IB2000 .. %IB2999 and %QB2000 .. %QB2999

FBP slave: %IB3000 .. %IB3999 and %QB3000 .. %QB3999

Onboard I/O %IB4000 .. %IB4095 and %QB4000 .. %QB4095

● Addressing of the digital channels is done byte-oriented.
● Motorola byteorder is used to access the inputs and outputs.

Example for addressing in BOOL / BYTE / WORD / DWORD

Address Addr Addr + 1 Addr +2 Addr +3
16#xxxx x000 16#xxxx x001 16#xxxx x002 16#xxxx x003

BYTE %IB0 %IB1 %IB2 %IB3
BOOL 7 ... 0 7 ... 0 7 ... 0 7 ... 0

%IX0.7 ... %IX0.0 %IX1.7 ... %IX1.0 %IX2.7 ... %IX2.0 %IX3.7 ... %IX3.0

WORD %IW0 %IW1
15 ... 8 7 ... 0 15 ... 8 7 ... 0

DWORD %ID0
 31 ... 24 23 ... 16 15 ... 8 7 ... 0

Examples:

%IX0.0 := TRUE

 %IB0 := 1 := 16#01

 %IW0 := 256 := 16#0100 (Bit 8 = TRUE)

 %ID0 := 16777216 := 16#01000000 (Bit 24 = TRUE)

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5396

%IX3.0 := TRUE

 %IB3 := 1 := 16#01

 %IW1 := 1 := 16#0001

 %ID0 := 1 := 16#00000001

Addressing of inputs and outputs

No. Device Input /
Output

Interface Range Addresses

0 ... 5 CPU I/Os
and

Inputs (4 kB) CPU I/O Bus 0000..0999 %IB0 ... %IB4095

COM1 1000..1999 %IW0 ... %IW2047

COM2 2000..2999 %ID0 ... %ID1023

FBP 3000..3999 %IX0.0 ...
%IX4095.7

Onboard IO 4000..4095

Outputs (4
kB)

I/O Bus 0000..0999 %QB0 ...
%QB4095

COM1 1000..1999 %QW0 ...
%QW2047

COM2 2000..2999 %QD0 ...
%QD1023

FBP 3000..3999 %QX0.0 ...
%QX4095.7

Onboard IO 4000..4095

Internal
communi-
cation
module

Inputs (4 kB) Line 0 0.0000 ...
0.4095

%IB0.0 ...
%IB0.4095

%IW0.0 ...
%IW0.2047

%ID0.0 ...
%ID0.1023

%IX0.0.0 ...
%IX0.4095.7

Outputs (4
kB)

%QB0.0 ...
%QB0.4095

%QW0.0 ...
%QW0.2047

%QD0.0 ...
%QD0.1023

%QX0.0.0 ...
%QX0.4095.7

6 Commu-
nication
Module 1

Inputs (4kB) Line 1 1.0000 ...
1.4095

%IB1.0 ...
%IB1.4095

%IW1.0 ...
%IW1.2047

%ID1.0 ...
%ID1.1023

PM57x, PM58x
and PM59x
(AC500)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5397

No. Device Input /
Output

Interface Range Addresses

%IX1.0.0 ...%IX1.4
095.7

Outputs
(4kB)

%QB1.0 ...
%QB1.4095

%QW1.0 ...
%QW1.2047

%QD1.0 ...
%QD1.1023

%QX1.0.0 ...
%QX1.4095.7

...

12 Commu-
nication
Module 6

Inputs (4kB) Line 6 6.0000 ...
6.4095

%IB4.0 ...
%IB4.4095

%IW6.0 ...
%IW6.2047

%ID6.0 ...
%ID6.1023

%IX6.0.0 ...
%IX6.4095.7

Outputs
(4kB)

%QB6.0 ...
%QB6.4095

%QW6.0 ...
%QW6.2047

%QD6.0 ...
%QD6.1023

%QX6.0.0 ...
%QX6.4095.7

No. Device Input /
Output

Interface Range Addresses

0 ... 5 CPU I/Os Inputs (4kB) CPU I/O Bus 0000..0999 %IB0 ... %IB4095

COM1 1000..1999 %IW0 ...
%IW2047

COM2 2000..2999 %ID0 ... %ID1023

not used 3000..3999 %IX0.0 ...
%IX4095.7

Onboard
I/O

4000..4095

Outputs
(4kB)

I/O Bus 0000..0999 %QB0 ...
%QB4095

COM1 1000..1999 %QW0 ...
%QW2047

COM2 2000..2999 %QD0 ...
%QD1023

PM55x and
PM56x (AC500-
eCo)

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5398

No. Device Input /
Output

Interface Range Addresses

not used 3000..3999 %QX0.0 ...
%QX4095.7

Onboard
I/O

4000..4095

Processing of inputs and outputs in the multitasking system

CAUTION!
Multitasking
All configured inputs are updated in Image with the values of IO image at the
start of an IEC task. All configured outputs are updated in IO image with the
values of Image at the end of an IEC task (see following figure).
If, for example, task 1 has the higher priority and input %IX0.0 is used in task
1 and task 2, the value can change during the cycle of task 2 as it is updated
every time task 1 is started. This is not relevant for programs with only one task.

The following figure shows how the inputs and outputs are processed in the multitasking
system.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5399

1. After all I/O modules have been processed at the I/O bus, a corresponding interrupt is
generated in the processor. The inputs are copied to the input data image during the
Interrupt Service Routine (ISR). If the outputs were updated by a task, the outputs in the
output data image are copied.

2. After the CS31 driver has processed all I/O modules, a corresponding interrupt is gener-
ated in the processor. The inputs are copied to the input data image during the Interrupt
Service Routine (ISR). If the outputs were updated by a task, the outputs in the output
data image are copied.

3. After Onboard I/Os of AC500 PM55x and PM56x CPUs have been processed, a corre-
sponding interrupt is generated in the processor. The inputs are copied to the input data
image during the Interrupt Service Routine (ISR). If the outputs were updated by a task,
the outputs in the output data image are copied.

4. Once a Communication Module has received new data, a corresponding interrupt is gen-
erated in the processor. The inputs are copied from the DPR to the input data image of
the processor during the Interrupt Service Routine (ISR). If the outputs were updated by a
task, the outputs in the output data image are copied to the DPR.
Precondition for this is a valid Communication Module configuration.

When starting a task, all configured inputs are copied from the input data image to the image.

All tasks access the image, i.e., inputs are read from the image and outputs are written to the
image. In ONLINE mode, the inputs/outputs of the image are displayed.

At the end of the task processing, all configured outputs are copied from the image to the output
data image.

1. Outputs at the I/O Bus: With the next interrupt of the I/O bus driver, the outputs of the
output data image will be written.

2. Outputs at the CS31 bus: With the next interrupt of the CS31 processor, the outputs of the
output data image will be written.

3. Outputs of Onboard I/O of AC500 PM55x and PM56x CPUs: With the next interrupt of the
I/O Bus driver, the outputs of the output data image will be written.

4. Outputs of the Communication Module Line 0 to 6: With the next interrupt of the Commu-
nication Module, the outputs of the output data image will be written to the DPR.

In order to update the inputs/outputs not used in the task, all inputs/outputs of the image are
updated by a lower priority task (I/O update task). This task is only processed if no other user
task runs.

Addressable flag area (%M area)
The addressable flag area for the AC500 is divided into several segments with a size of 64 kB
per segment. A maximum of 8 segments can be addressed. The availability of the segments or
partial segments depends on the CPU. The size of the %M area can be found in the technical
data of the Ä Chapter 1.6.2.3 “Processor modules” on page 3803.

Generation of
the input data
image
Inputs at I/O bus

Inputs at CS31
bus

Inputs of
onboard I/O

Inputs of com-
munication
modules line 0
to 6

Starting a task

Processing a
task

Termination by a
task

Writing the out-
puts

I/O update task

Allocation

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5400

Seg-
ment

Operands Size,
cumula-
tive [kB]

PM55x/
PM56x

PM57x PM573 PM58x PM59x

0 %MB0.0...%MB0.655
35

64 2 kB 4 kB 128 kB + +

1 %MB1.0...%MB1.655
35

128 - - - + +

2 %MB2.0...%MB2.655
35

192 - - - - +

3 %MB3.0...%MB3.655
35

256 - - - - +

4 %MB4.0...%MB4.655
35

320 - - - - +

5 %MB5.0...%MB5.655
35

284 - - - - +

6 %MB6.0...%MB6.655
35

448 - - - - +

7 %MB7.0...%MB7.655
35

512 - - - - +

The %M area in PM55x and PM65x cannot be retained, even if declared
as VAR_RETAIN. Use %R area instead of %M area if retained variables are
needed.

The Modbus TCP and Modbus RTU protocols are implemented in the AC500. With the help of
the Modbus protocols, the segments 0 and 1 of the addressable flag area can be accessed. The
chapter Modbus Ä Chapter 1.6.4.1.8 “Communication with Modbus RTU” on page 5467 in this
documentation contains a detailed description of the Modbus protocols and the corresponding
addressing.

For the AC500 CPUs PM55x and PM56x, 2kB = %MB0.0 .. %MB0.2047 (i.e.,
not a complete segment) are available for the addressable flag area. Thus, not
all Modbus addresses can be accessed.

The operands in the %M area can be accessed bitwise, bytewise, wordwise and double-word-
wise.

Byte SINT / BYTE Byte SINT / BYTE Word INT / WORD Word INT /
WORD

Segment 0
%MB0.0 %MX0.0.0 ... %MX0.0.7 %MW0.0 %MD0.0

%MB0.1 %MX0.1.0 ... %MX0.1.7

%MB0.2 %MX0.2.0 ... %MX0.2.7 %MW0.1

%MB0.3 %MX0.3.0 ... %MX0.3.7

...

%MB0.65532 %MX0.65532.0 ...
%MX0.65532.7

%MW0.32766 %MD0.16383

Access to %M
area

Access to oper-
ands

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5401

Byte SINT / BYTE Byte SINT / BYTE Word INT / WORD Word INT /
WORD

%MB0.65533 %MX0.65533.0 ...
%MX0.65533.7

%MB0.65534 %MX0.65534.0 ...
%MX0.65534.7

%MW0.32767

%MB0.65535 %MX0.65535.0 ...
%MX0.65535.7

Segment 1
%MB1.0 %MX1.0.0 ... %MX1.0.7 %MW1.0 %MD1.0

%MB1.1 %MX1.1.0 ... %MX1.1.7

%MB1.2 %MX1.2.0 ... %MX1.2.7 %MW1.1

%MB1.3 %MX1.3.0 ... %MX1.3.7

...

%MB1.65532 %MX1.65532.0 ...
%MX1.65532.7

%MW1.32766 %MD1.16383

%MB1.65533 %MX1.65533.0 ...
%MX1.65533.7

%MB1.65534 %MX1.65534.0 ...
%MX1.65534.7

%MW1.32767

%MB1.65535 %MX1.65535.0 ...
%MX1.65535.7

Segment 2
%MB2.0 %MX2.0.0 ... %MX2.0.7 %MW2.0 %MD2.0

%MB2.1 %MX2.1.0 ... %MX2.1.7

%MB2.2 %MX2.2.0 ... %MX2.2.7 %MW2.1

%MB2.3 %MX2.3.0 ... %MX2.3.7

...

%MB2.65532 %MX2.65532.0 ...
%MX2.65532.7

%MW2.32766 %MD2.16383

%MB2.65533 %MX2.65533.0 ...
%MX2.65533.7

%MB2.65534 %MX2.65534.0 ...
%MX2.65534.7

%MW2.32767

%MB2.65535 %MX2.65535.0 ...
%MX2.65535.7

...

Segment 7
%MB7.0 %MX7.0.0 ... %MX7.0.7 %MW7.0 %MD7.0

%MB7.1 %MX7.1.0 ... %MX7.1.7

%MB7.2 %MX7.2.0 ... %MX7.2.7 %MW7.1

%MB7.3 %MX7.3.0 ... %MX7.3.7

...

%MB7.65532 %MX7.65532.0 ...
%MX7.65532.7

%MW7.32766 %MD7.16383

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5402

Byte SINT / BYTE Byte SINT / BYTE Word INT / WORD Word INT /
WORD

%MB7.65533 %MX7.65533.0 ...
%MX7.65533.7

%MB7.65534 %MX7.65534.0 ...
%MX7.65534.7

%MW7.32767

%MB7.65535 %MX7.65535.0 ...
%MX7.65535.7

Absolute addresses of operands
For particular blocks or in case of accessing operands via pointers, the absolute address of
an operand must be determined. To do this, Automation Builder provides the address operator
ADR Ä Chapter 1.4.1.6.7.1 “ADR” on page 421.
The following description describes only the peculiarities of bit operands.
The addresses provided by the address operator can be used as inputs for blocks that require
absolute addresses (such as xxx_MOD_MAST, COM_SND). If these blocks shall be applied to
internal variables, it must be guaranteed that the variables are set to successive addresses.
This is achieved by declaring ARRAYs and STRINGs.
The address operator ADR provides the address of an operand in one double word DWORD
(i.e., 32 bits). The address operator returns the address of the first byte of a variable (byte
address). For the user-definable variables, variables of the type BOOL are stored as byte.

For inputs, outputs and variables of the addressable flag area (%M area) or addressable
PERSISTENT area (%R area), operands of the type BOOL occupy one bit. The address of this
type of variables cannot be determined with the operator ADR.
When processing the statement: dwAddress := ADR(%MX0.0.0); the following error message
appears:
Error 4031:
PLC_PRG(xx): ADR is not allowed for bits! Use BITADR instead.
BITADR returns the bit offset within the area %I, %Q or %M as DWORD.
The following table shows the position of the operands within the memory (considering %MD0.0
and %MD0.1 as example). Here you get information about which addresses the operator ADR
returns and which offsets BITADR returns.

The addresses shown are example addresses and thus can have other values.

Position of operands within memory and values of operators ADR and BITADR:

Byte SINT /
BYTE

Word INT /
WORD

Double word
DINT /
DWORD

Bit (byte-ori-
ented) BOOL

ADR BITADR

%MB0.0 %MW0.0 %MD0.0 %MX0.0.0 16#08000000 8

%MX0.0.1 9

%MX0.0.2 10

%MX0.0.3 11

%MX0.0.4 12

ADR

BITADR

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5403

Byte SINT /
BYTE

Word INT /
WORD

Double word
DINT /
DWORD

Bit (byte-ori-
ented) BOOL

ADR BITADR

%MX0.0.5 13

%MX0.0.6 14

%MX0.0.7 15

%MB0.1 %MX0.1.0 16#08000001 0

%MX0.1.1 1

%MX0.1.2 2

%MX0.1.3 3

%MX0.1.4 4

%MX0.1.5 5

%MX0.1.6 6

%MX0.1.7 7

%MB0.2 %MW0.1 %MX0.2.0 16#08000002 24

%MX0.2.1 25

%MX0.2.2 26

%MX0.2.3 27

%MX0.2.4 28

%MX0.2.5 29

%MX0.2.6 30

%MX0.2.7 31

%MB0.3 %MX0.3.0 16#08000003 16

%MX0.3.1 17

%MX0.3.2 18

%MX0.3.3 19

%MX0.3.4 20

%MX0.3.5 21

%MX0.3.6 22

%MX0.3.7 23

%MB0.4 %MW0.2 %MD0.1 %MX0.4.0 16#08000004 40

... ...

%MX0.4.7 47

%MB0.5 %MX0.5.0 16#08000005 32

... ...

%MX0.5.7 39

%MB0.6 %MW0.3 %MX0.6.0 16#08000006 56

... ...

%MX0.6.7 63

%MB0.7 %MX0.7.0 16#08000007 48

... ...

%MX0.7.7 55

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5404

Addressable PERSISTENT area (%R area)
The addressable PERSISTENT area or %R area has the following peculiarities:
● Variables declared in the %R area are always located at the same position in the PLC's

operand memory, because they have addresses assigned (like the variables in the %M
area).

● Variables in the %R area are declared as follows:
VAR (caution: no RETAIN or PERSISTENT option),
 Symbol AT %RTypeSegment.Offset : TYPE; (* Comment *), or also
 Symbol AT %RTypeSegment.Offset : ARRAY[start..end] OF TYPE (*
Comment *)
END_VAR

where: Symbol symbolic name of the variable

 Type X=BOOL (Bit), B=BYTE, W=WORD, D=DWORD

 Segment 0..15 (availability depends on CPU type)

 Offset 0..65535 (availability depends on CPU type)

 TYPE BOOL, BYTE, WORD, DWORD or defined type (such as struc-
ture)

 start Index of the first ARRAY element

 end Index of the last ARRAY element

● For each segment in the %R area, an area can be set in the PLC configuration, which is
buffered in case the battery is installed and fully charged. In this case, the variables
behave like variables declared as VAR RETAIN PERSISTENT, i.e., they keep their values
even after
– Online changes (like all other variables),
– Power OFF/ON (like VAR RETAIN), and
– download (like VAR PERSISTENT).

● In contrast to the variables declared as VAR PERSISTENT, these variables have the great
advantage that no program code is required for dumping the variables during a download.

● The buffered part of the %R area can be written to the memory card and read from the card
(see Ä “Saving the buffered data of the %R area” on page 5406).

The addressable PERSISTENT area in the AC500 is divided into several segments with a size
of 64 kB per segment. A maximum of 8 segments can be addressed. The availability of the
segments or partial segments depends on the CPU:

 Operands eCo(-
ETH)
PM55x
PM56x

PM572 PM573-
ETH
PM582
PM583-
ETH

PM590-
ETH
PM591-
ETH/
2ETH
PM592-
ETH

PM595-
4ETH

%R retain
& PERI-
SISTENT

 1 kB 4 kB 128 kB 512 kB 1024 kB

Segment 0 %RB0.0...%RB0.65535 + + + + +

Segment 1 %RB1.0...%RB1.65535 + + +

Segment 2 %RB2.0...%RB2.65535 + +

Special features

Segmentation

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5405

 Operands eCo(-
ETH)
PM55x
PM56x

PM572 PM573-
ETH
PM582
PM583-
ETH

PM590-
ETH
PM591-
ETH/
2ETH
PM592-
ETH

PM595-
4ETH

%R retain
& PERI-
SISTENT

 1 kB 4 kB 128 kB 512 kB 1024 kB

Segment 3 %RB3.0...%RB3.65535 + +

Segment 4 %RB4.0...%RB4.65535 + +

Segment 5 %RB5.0...%RB5.65535 + +

Segment 6 %RB6.0...%RB6.65535 + +

Segment 7 %RB7.0...%RB7.65535 + +

Segment 8 %RB8.0...%RB8.65535 +

Segment 9 %RB9.0...%RB9.65535 +

Segment
10

%RB10.0...%RB10.655
35

 +

Segment
11

%RB11.0...%RB11.655
35

 +

Segment
12

%RB12.0...%RB12.655
35

 +

Segment
13

%RB13.0...%RB13.655
35

 +

Segment
14

%RB14.0...%RB14.655
35

 +

Segment
15

%RB15.0...%RB15.655
35

 +

The buffered part of the %R area can be saved on the memory card and read from the card.
This can be necessary, if, for example, the controller has to be replaced.

1. Copy the data from the %R area and write it to the CPU's RAM disk as file
2. Save the file to the memory card.

1. Load the file from the memory card to the CPU's RAM disk.
2. Copy the data from the RAM disk to the %R area.

CAUTION!
Data mismatch can occur!
The variables structure / layout has to be identical to the old one and
should not be changed!

Saving and reading the data can be done using function blocks in the user program or with
the PLC Browser contained in the Automation Builder. The function blocks are contained in the
Ä Chapter 1.5.4.19 “Internal system library” on page 1500.

Saving the buf-
fered data of the
%R area
Saving data

Reading data
from the
memory card

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5406

Function PLC Browser com-
mand

Function block

Copy from %R area to RAM disk persistent save PERSISTENT_SAVE

Save file to SD Card persistent export PERSISTENT_EXPORT

Read file from SD Card to RAM disk persistent import PERSISTENT_IMPORT

Copy data from RAM disk to %R area persistent restore PERSIS-
TENT_RESTORE

Delete buffered data of the PERSIS-
TENT area

persistent clear PERSISTENT_CLEAR

CAUTION!
Cycle consistency for data
If cycle consistency is required for the data, this has to be implemented in the
user program. That means, that the data may not be changed during copying
to/from the %R area from/to the RAM disk. If saving is done using the PLC
Browser, this can be easily carried out by stopping the user program.

CAUTION!
Cycle time for copying the PERSISTENT area
Copying the PERSISTENT area takes some milliseconds (see the following
table). Thus, an according cycle time has to be set in the task configuration.
Please note the remarks on the task configuration!

Action Time in ms
 CPU PM55x

CPU PM56x
CPU PM57x CPU PM58x CPU PM59x

Restoring 1 kB (1024 bytes)
PERSISTENT_CLEAR <1 <1 <1 <1

PERSISTENT_SAVE 2 2 2 2

PERSISTENT_EXPORT 900 1000 1000 500

PERSISTENT_IMPORT 100 500 1000 500

PERSIS-
TENT_RESTORE

3 2 <1 1

Restoring 4 kB (4096 bytes)
PERSISTENT_CLEAR not possible <1 <1 <1

PERSISTENT_SAVE not possible 2 3 2

PERSISTENT_EXPORT not possible 1000 1000 500

PERSISTENT_IMPORT not possible 500 1000 500

PERSIS-
TENT_RESTORE

not possible 3 3 2

Restoring 64 kB (65536 bytes)
PERSISTENT_CLEAR not possible not possible 8 2

PERSISTENT_SAVE not possible not possible 11 6

PERSISTENT_EXPORT not possible not possible 2500 1000

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5407

Action Time in ms
 CPU PM55x

CPU PM56x
CPU PM57x CPU PM58x CPU PM59x

PERSISTENT_IMPORT not possible not possible 2000 500

PERSIS-
TENT_RESTORE

not possible not possible 12 5

Restoring max. PERSISTENT area
 4 kB 128 kB 512 kB
PERSISTENT_CLEAR <1 <1 17 22

PERSISTENT_SAVE 2 2 22 35

PERSISTENT_EXPORT 900 1000 4000 8000

PERSISTENT_IMPORT 100 500 3000 4000

PERSIS-
TENT_RESTORE

3 3 22 31

The operands in the %R area can be accessed bitwise, bytewise, wordwise and double-word-
wise.

Byte SINT / BYTE Bit (byte-oriented) BOOL Word INT / WORD Double word
DINT / DWORD

Segment 0

%RB0.0 %RX0.0.0 ... %RX0.0.7 %RW0.0 %RD0.0

%RB0.1 %RX0.1.0 ... %RX0.1.7

%RB0.2 %RX0.2.0 ... %RX0.2.7 %RW0.1

%RB0.3 %RX0.3.0 ... %RX0.3.7

%RB0.65532 %RX0.65532.0...%RX0.655
32.7

%RW0.32766 %RD0.16383

%RB0.65533 %RX0.65533.0...%RX0.655
33.7

%RB0.65534 %RX0.65534.0...%RX0.655
34.7

%RW0.32767

%RB0.65535 %RX0.65535.0...%RX0.655
35.7

Segment 1
%RB1.0 %RX1.0.0...%RX1.0.7 %RW1.0 %RD1.0

%RB1.1 %RX1.1.0...%RX1.1.7

%RB1.2 %RX1.2.0...%RX1.2.7 %RW1.1

%RB1.3 %RX1.3.0...%RX1.3.7

%RB1.65532 %RX1.65532.0...%RX1.655
32.7

%RW1.32766 %RD1.16383

%RB1.65533 %RX1.65533.0...%RX1.655
33.7

Access to oper-
ands in the
addressable
PERSISTENT
area (%R Area):

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5408

Byte SINT / BYTE Bit (byte-oriented) BOOL Word INT / WORD Double word
DINT / DWORD

%RB1.65534 %RX1.65534.0...%RX1.655
34.7

%RW1.32767

%RB1.65535 %RX1.65535.0...%RX1.655
35.7

Segment 2

%RB2.0 %RX2.0.0...%RX2.0.7 %RW2.0 %RD2.0

%RB2.1 %RX2.1.0...%RX2.1.7

%RB2.2 %RX2.2.0...%RX2.2.7 %RW2.1

%RB2.3 %RX2.3.0...%RX2.3.7

%RB2.65532 %RX2.65532.0...%RX2.655
32.7

%RW2.32766 %RD2.16383

%RB2.65533 %RX2.65533.0...%RX2.655
33.7

%RB2.65534 %RX2.65534.0...%RX2.655
34.7

%RW2.32767

%RB2.65535 %RX2.65535.0...%RX2.655
35.7

Segment 7

%RB7.0 %RX7.0.0...%RX7.0.7 %RW7.0 %RD7.0

%RB7.1 %RX7.1.0...%RX7.1.7

%RB7.2 %RX7.2.0...%RX7.2.7 %RW7.1

%RB7.3 %RX7.3.0...%RX7.3.7

%RB7.65532 %RX7.65532.0...%RX7.655
32.7

%RW7.32766 %RD7.16383

%RB7.65533 %RX7.65533.0...%RX7.655
33.7

%RB7.65534 %RX7.65534.0...%RX7.655
34.7

%RW7.32767

%RB7.65535 %RX7.65535.0...%RX7.655
35.7

Segment 15

%RB15.0 %RX15.0.0...%RX15.0.7 %RW15.0 %RD15.0

%RB15.1 %RX15.1.0...%RX15.1.7

%RB15.2 %RX15.2.0...%RX15.2.7 %RW15.1

%RB15.3 %RX15.3.0...%RX15.3.7

%RB15.65532 %RX7.65532.0...%RX7.655
32. 7

%RW15.32766 %RD15.16383

%RB15.65533 %RX7.65533.0...%RX7.655
33. 7

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5409

Byte SINT / BYTE Bit (byte-oriented) BOOL Word INT / WORD Double word
DINT / DWORD

%RB15.65534 %RX7.65534.0...%RX7.655
34. 7

%RW15.32767

%RB15.65535 %RX7.65535.0...%RX7.655
35. 7

Only the first 4 kB in segment 0 are available for PM57x, i.e.,
%RB0.0..%RB0.4095 or %RW0.0..%RW0.2047 or %RD0.0..%RD0.1023. Only
the first 1 kB in segment 0 are available for PM55x and PM56x, i.e.,
%RB0.0..%RB0.1023 or %RW0.0..%RW0.511 or %RD0.0..%RD0.255.

As of PLC firmware version V2.1.3 and Control Builder Plus (CBP) 2.1.0 %M area (default)
or %R area can be used for access via Modbus TCP or Modbus RTU. The selection is a
parameter in the Modbus server settings.
With the help of the Modbus protocol, the segments 0 and 1 of the %R area can be accessed.
Using this feature it is easy to access buffered data via Modbus TCP Ä Chapter 1.6.4.1
“System technology of CPU and overall system” on page 5395 or Modbus RTU Ä Chapter
1.6.4.1 “System technology of CPU and overall system” on page 5395.

For the AC500 CPUs PM55x and PM56x, 1kB = %RB0.0 .. %RB0.1023 (i.e.,
not a complete segment) are available for the addressable flag area. Thus, not
all Modbus addresses can be accessed.

System start-up / Program processing
See Ä Chapter 1.6.4.1.2.1 “System start-up / Program processing” on page 5412.

Data backup and initialization
Initialization of variables, overview

The initialization of variables to 0 or to the initialization value is performed by switching power
ON, by a reset or after downloading the user program.
AC500 supports all in IEC 61131-5 defined types of buffered data:
● VAR RETAIN - keep their value during online change
● VAR PERSISTENT - keep their value during online change and download
● VAR RETAIN PERSISTENT - keep their value during online change, download and power

OFF/ON.
For this the variable are copied before and after download one by one. This copy process can
take a long time.
So it is recommended to use VAR RETAIN PERSISTENT only, if there is a small amount (less
100) of buffered variables.
In addition to the IEC 61131-2 buffered variable types AC500 provides the so called PERSIS-
TENT area (%R area). See detailed description Ä Chapter 1.6.4.1.1.6 “ Addressable PERSIS-
TENT area (%R area)” on page 5405.
The big advantage of the %R area is that there is no copy of variables necessary!
So its recommended to use the %R area for buffered variables.

Access to the
%R Area Using
the Modbus Pro-
tocol:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5410

If internal variables shall be buffered, these variables have to be marked as "VAR_RETAIN" or
"VAR_RETAIN PERSISTENT". This applies to both the internal variables and the variables of
the addressable flag area (%M area).

Variables of the addressable flag area (%M area) for AC500-eCo processor
modules cannot be buffered.

The order of the internal RETAIN variables is only kept when using the online
change command.

If the program is rebuilt, the order can change and, due to this, the buffered var-
iables do no match. See CODESYS Remanent variables Ä Chapter 1.4.1.3.9.7
“Remanent variables” on page 302.

Consider the description on the behavior of RETAIN variables on download.

The following table shows an overview of the initialization values of the individual variables:

For AC500-eCo processor modules, there is a 1 kB VAR_RETAIN area and an
1 kB %R area.

Independently of an inserted battery, the memory values are stored in flash
memory at power failures and are recovered when power returns.

For the %R area, the values can be configured in Automation Builder.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5411

Declaration of buffered variables and constants
To guarantee the correct initialization or backing up of variables according to the table shown
above, the following rules have to be observed when declaring variables.

The variables have to be declared as VAR_RETAIN PERSISTENT or VAR_GLOBAL RETAIN
PERSISTENT.

(* Declaration in the global variable lists *)
VAR_GLOBAL RETAIN PERSISTENT
 byVar : BYTE;
 wVar : WORD;
 rVar : REAL;
END_VAR

(* Declaration in the program *)
VAR RETAIN PERSISTENT
 byVar1 : BYTE;
END_VAR

Example

The variables have to be declared as VAR_RETAIN PERSISTENT or VAR_GLOBAL RETAIN
PERSISTENT.
See Ä Chapter 1.6.4.1.1.6 “ Addressable PERSISTENT area (%R area)” on page 5405

Constants are declared as VAR_GLOBAL CONSTANT or VAR_CONSTANT.

(* Declaration as global constants *)
VAR_GLOBAL CONSTANT
 byConst_1 : BYTE := 1;
END_VAR

(* Declaration in the program *)
VAR CONSTANT
 byConst_2 : BYTE := 2;
END_VAR

Example

1.6.4.1.2 System processing
System start-up / Program processing

AC500-eCo processor modules do not have an integrated display and key-
board. All functions related to keyboard and display are not applied for those
devices.

Retentive
internal varia-
bles

Buffered varia-
bles in %M area

Constants

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5412

Definitions: PLC system start-up

The AC500-eCo V3 does not use a battery for buffering the operand areas
specified below, hence the “cold start” mode does not exist in this product.

● A cold start is performed by switching power OFF/ON if no battery is connected.
● All RAM memory modules are checked and erased.
● If no user program is stored in the Flash EPROM, the default values (as set on delivery) are

applied to the interfaces.
● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

● A warm start is performed by switching power OFF/ON with a battery connected.
● All RAM memory modules are checked and erased except of the buffered operand areas

and the RETAIN variables .
● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

● RUN -> STOP means pressing the RUN function key on the PLC while the PLC is in run
mode (AC500 PLC display "run", AC500-eCo PLC "RUN LED" is ON).

● If a user program is loaded into RAM, execution is stopped.
● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP", AC500-eCo "RUN LED" changes

from ON to OFF.

● START -> STOP means stopping the execution of the user program in the PLC's RAM using
the menu item "Online/Stop" in the programming system.

● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP".

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (exception: RETAIN variables) are

set to their initialization values.
● Reset is performed using the menu item "Online/Reset" in the programming system or

pressing the function key RUN for ≥ 5 s in STOP mode.

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (also RETAIN variables) are set to

their initialization values.
● Reset (cold) is performed using the menu item "Online/Reset (cold)" in the programming

system.

● Resets the controller to its original state (deletion of Flash, SRAM (%M, area, %R area,
RETAIN, RETAIN PERSISTENT), Communication Module configurations and user pro-
gram!).

● Reset (original) is performed using the menu item "Online/Reset (original)" in the program-
ming system.

Cold start

Warm start

RUN -> STOP

START -> STOP

Reset

Reset (cold)

Reset (original)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5413

● STOP -> RUN means short pressing the RUN function key on the PLC while the PLC is
in STOP mode (AC500 PLC display "StoP", AC500-eCo "RUN LED" is ON). "RUN LED" is
OFF of the toggle switch of an AC500-eCo CPU.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo "RUN LED" changes
from OFF to ON.

● STOP -> START means continuing the execution of the user program in the PLC's RAM
using the menu item "Online/Start" in the programming system.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo PLC "RUN LED"
changes from OFF to ON.

● Download means loading the complete user program into the PLC's RAM. This process is
started by selecting the menu item "Online/Download" in the programming system or after
confirming a corresponding system message when switching to online mode (menu item
"Online/Login").

● Execution of the user program is stopped.
● In order to store the user program to the Flash memory, the menu item "Online/Create boot

project" must be called after downloading the program.
● Variables are set to their initialization values according to the initialization table.
● RETAIN variables can have wrong values as they can be allocated to other memory

addresses in the new project!
● A download is forced by the following:

– changed PLC configuration
– changed task configuration
– changed library management
– changed compile-specific settings (segment sizes)
– execution of the commands "Project/Clean all" and "Project/Rebuild All".

● After a project has changed, only these changes are compiled when pressing the key <F11>
or calling the menu item "Project/Build". The changed program parts are marked with a blue
arrow in the block list.

● The term Online Change means loading the changes made in the user program into the
PLC's RAM using the programming system (after confirming a corresponding system mes-
sage when switching to online mode, menu item "Online/Login").

● Execution of the user program is not stopped. After downloading the program changes,
the program is re-organized. During re-organization, no further online change command is
allowed. The storage of the user program to the Flash memory using the command "Online/
Create boot project" cannot be initiated until re-organization is completed.

● Online Change is not possible after:
– changes in the PLC configuration
– changes in the task configuration
– changes in the library management
– changed compile-specific settings (segment sizes)
– performing the commands "Project/Clean all" and "Project/Rebuild All".

STOP -> RUN

STOP -> START

Download

Online change

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5414

● Data buffering, i.e., maintaining data after power ON/OFF, is only possible, if a battery is
connected for AC500 CPU and the buffering will take place in FLASH with AC500-eCo V3
CPU. The following data can be buffered completely or in parts:
– Data in the addressable flag area (%M area)
– RETAIN variable
– PERSISTENT variable (number is limited, no structured variables)
– PERSISTENT area (%R area)

● In order to buffer particular data, the data must be excluded from the initialization process
(see Ä Chapter 1.6.4.1.1.8 “Data backup and initialization” on page 5410).

Start of the user program
The user program (UP) is started according to the following table. It is assumed that a valid user
program is stored to the Flash memory.
See Ä Chapter 1.6.6.1.4 “Storage device details” on page 6334.

Action No memory
card with UP
installed
Auto run = ON

No memory
card with UP
installed
Auto run = OFF

Memory card
with UP
installed
Auto run = ON

Memory card
with UP
installed
Auto run = OFF

Voltage ON
or Warm start
or Cold start

UP is loaded
from Flash into
RAM and started
from Flash.

No UP is loaded
from Flash.
When logging in,
the message "No
program avail-
able in the con-
troller ..." is dis-
played.

UP is loaded
from the memory
card into Flash
memory and
RAM and then
started from
RAM.

UP is loaded
from the memory
card to the Flash
memory. RAM
remains empty.
When logging in,
the message "No
program avail-
able in the con-
troller ..." is dis-
played.

STOP -> RUN UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

STOP -> START UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

Download 1) The UP currently
stored in the
CPU's RAM is
stopped. The
built UP is loaded
from the PC into
the PLC's RAM.

The built UP is
loaded from the
PC into the PLC's
RAM.

The UP currently
stored in the
CPU's RAM is
stopped. The
built UP is loaded
from the PC into
the PLC's RAM.

The built UP is
loaded from the
PC into the PLC's
RAM.

Online Change 2) Processing of the
UP currently
stored in the
CPU's RAM is
continued. The
changes made to
the UP are
loaded from the
PC into the PLC's
RAM. The UP is
reorganized and
processed.

The changes
made to the UP
are loaded from
the PC into the
PLC's RAM. The
UP is reorgan-
ized.

Processing of the
UP currently
stored in the
CPU's RAM is
continued. The
changes made to
the UP are
loaded from the
PC into the PLC's
RAM. The UP is
reorganized and
processed.

The changes
made to the UP
are loaded from
the PC into the
PLC's RAM. The
UP is reorgan-
ized.

Remarks:

Data buffering

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5415

1): After the download is completed, the program is not automatically stored to the Flash
memory. To perform this, create a boot project. If the UP is not stored to the Flash memory,
the UP is reloaded from the Flash memory after voltage OFF/ON. Start the program either by
pressing the RUN/STOP function key or using Automation Builder.

Processing times
The most important times for the use of the AC500 basic unit with or without connected remote
modules are:
● The reaction time is the time between a signal transition at the input terminal and the signal

response at the output terminal.
For binary signals, the reaction time is composed of the input delay, the cycle time of the
program execution and the bus transmission time if the system is expanded by remote
modules.

● The cycle time determines the time intervals after which the processor restarts the execution
of the user program.
The cycle time has to be specified by the user. It should be greater than the program
processing time of the user program plus the data transfer times and the related waiting
times.
The cycle time is also the time base for some time-controlled functions.

● The program processing time is the net time for processing the user program.

Statements PM55x-xP
PM56x-xP

PM57x PM58x PM59x

- Binary statements of the type:

!M /M &M =M
!NM /NM &NM
=NM
!M /M &M =SM
!NM /NM &NM
=RM
Processing time
for 1 instruction:

min. 0.08 µs min. 0.06 µs min. 0.05 µs min. 0.002 µs

- Word statements of the type:

!MW +MW -MW
=MW
!-MW -MW +MW
=-MW
!MW *MW :MW
=MW
!-MW *-MW :-MW
=-MW
Processing time
for 1 instruction:

min. 0.1 µs min. 0.09 µs min. 0.06 µs min. 0.004 µs

- Floating point:

Processing time
for 1 instruction:

min. 1.2 µs min. 0.70 µs min. 0.50 µs min. 0.004 µs

It is assumed that the processor always gets access in a moment with a worst-case condition.

Terms

Program pro-
cessing time

Set cycle time

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5416

The cycle time is stored in the task configuration and can be selected in steps of 1 ms. If the
selected cycle time is too short, the processor will not be able to completely process the tasks
assigned to it every cycle. This will result in a time delay.
If this lack of time becomes too large over several cycles, the processor aborts the program
execution and outputs an error (E2).
For some function blocks, such as the PID controller, the error-free execution depends on an
exact timing sequence. Make sure that there is a larger time reserve.
To check the correct cycle time, perform the following steps:
● Load the user program into the basic unit.
● Check the capacity utilization with "Online/PLC Browser/cpuload".
● Change the cycle time until the capacity utilization is below 80 %.
When setting the cycle time, consider the following values:
● Time for reading and copying the input signals from the I/O driver to the I/O image.
● Time for copying the input signals of the user task from the I/O image to the image memory.
● Program processing time.
● Time for copying the output signals of the user task from the image memory to the I/O

image.
● Time for copying the output signals from the I/O image to the I/O driver and applying the

I/Os to the I/O module.
● Receiving/sending interrupts from communication module telegrams within the cycle time.
● Receiving/sending interrupts from the serial interface within the cycle time.
● Task changes.
● Run time of the watchdog task.

Task configuration
The task model processes different kinds of tasks. Handling and configuration of the task
processing depending on its priority is described in detail in the CODESYS task configuration
section.
● Ä Chapter 1.4.1.4.8.1 “Overview” on page 390

For a new project a task with the following properties is created:
● Type = cyclic
● Priority = 10
● Cycle time = t # 10 ms
● Program call = PLC_PRG
● Watchdog = t # 100 ms
● Sensitivity = 5
We recommend to create a task according to your needs.

As of firmware
V2.4

Specify a task in your project according to your needs.
All 32 priorities can be selected for the user tasks, where 0 is the highest priority and 31 the
lowest. The default priority is 10.
Priorities lower than 10 are reserved for high-priority processes with a very short program
execution time. The priorities 10 to 31 are intended for "normal" user tasks or tasks with a long
program execution time.

Up to firmware
V2.4

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5417

NOTICE!
Using, for example, a priority lower than 10 for a task with a long program
execution time can cause device errors, e.g. the CS31 bus.

NOTICE!
System events belong to the group of online tasks. Floating point calculations
are not allowed in online tasks, for they are not rechecked via software like IEC
tasks.

Setting standard configuration
If the target setting configuration is changed, standard configuration can be restored:
1. Open CODESYS.
2. In the “Resources” tab, double-click “PLC Configuration”.
3. Select “Menu Extras è Standard Configuration”.

1.6.4.1.3 User Management
With the help of the integrated user management, user groups with different access rights
and authorizations can be defined. Configuration and handling of the user managment in
Automation Builder and a AC500 V2 is decribed in an application note.

1.6.4.1.4 Real-time clock and battery

The real-time clock is an optional function for AC500-eCo V3 Basic processor
modules (e.g. PM5012-x-ETH) and requires a TA5131-RTC. All other AC500-
eCo V3 processor modules have an integrated real-time clock.

The real-time clock operates as a PC clock. It saves date and time to a DWORD in DT format
(DATE AND TIME FORMAT), i.e., in seconds passed since the start time: 1 January 1970 at
00:00.
For AC500-eCo V3, Basic CPU with TA5131-RTC buffers the real-time clock for 7 days, and
Standard/Pro CPU buffers the integrated real-time clock for 20 days. When the CPU is not
powered over the buffering time, the real-time clock data will be cleared.
If a battery is connected and full, the real-time clock continues to run even if the control voltage
is switched off.
If no battery is inserted or the battery is empty, the real-time clocks starts with the value 0
(=1970-01-01, 00:00:00).
When switching on the control voltage, the system clock of the operating system is set to the
value of the real-time clock.

System events

Notes on real-
time clock

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5418

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010315&LanguageCode=en&DocumentPartId=&Action=Launch

Real-time clock
The PLC browser/PLC shell commands date and time are used to set the real-time clock.

The commands date <ENTER> or time <ENTER> display the current date and time of the
real-time clock.
The command: date yyyy-mm-dd<ENTER> (year-month-day) sets the date.

The command: time hh-mm-ss<ENTER> (hours-minutes-seconds) sets the time.

Example:
The real-time clock should be set to 22 February 2005, 16:50.
1. Enter the date:

date 2005-02-22<ENTER>
ð Display: date 2005-02-22 Clock set to 2005-02-22 08:01:07

The time remains unchanged.
2. Enter the time:

time 16:50<ENTER>
ð Display: time 16:50 Clock set to 2005-02-22 16:50:00

The following function blocks located in the folder "Realtime clock" of the system library
SysExt_AC500_Vxx.lib can be used to set and display the real-time clock (RTC) with help of the
user program:

Function block Function
Ä Chapter 1.5.4.16.1.2 “CLOCK”
on page 1341

Sets and displays the real-time clock with
values for year, month, day, hours, minutes
and seconds.
Also the day of week is indicated (Mo=1,
Tue=2, Wed=3, Thu=4, Fr=5, Sa=6, Su=0).
Note: The week of day cannot be set. It
is given by the real-time clock. The input
DAY_SET is ignored.

Ä Chapter 1.5.4.16.1.3 “CLOCK_DT”
on page 1345

Sets and displays the real-time clock in DT
format, for example DT#2005-02-17-17:15:00.

The function blocks CLOCK and CLOCK_DT are described in the documentation for the system
library SysExt_AC500_Vxx.lib.

AC500 battery
The AC500 battery buffers the following data in case of "control voltage off":
● Retentive variables in SRAM (VAR_RETAIN..END_VAR) Ä Chapter 1.6.4.1.1 “Inputs, out-

puts and flags for AC500 V2 products” on page 5395
● Persistent data in %R area
● Date and time of the real-time clock

Real-time clock
with PLC
browser

Real-time clock
with user pro-
gram

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5419

– For AC500-eCo processor modules the battery is not required for reten-
tive/persistent variables. These variables are stored in the flash memory
when the processor module is shutting down.

– For AC500 (Standard) processor module PM595-4ETH-M, no battery is
needed to buffer retentive/persistent variables as the MRAM will keep its
content during power-off. Only the real-time clock is buffered by the battery.

Further information:
● Ä Chapter 1.6.5.2.3.3 “Parameters of the processor module” on page 5839
● Ä Chapter 1.7.3 “Diagnosis messages” on page 6429

To prevent data loss when using the AC500 battery, the battery status should be
periodically monitored by the user or by the user program.

If no battery is inserted or if the battery is empty, a warning (E4) is generated and the LED
"ERR" lights up.
If no battery is required for the application (and thus no battery is inserted), a warning is
generated and the error LED lights up each time the controller is switched on. To avoid this
battery error indication, the parameter "Check Battery" is available under "CPU parameters"
in the PLC configuration. The default setting of this parameter is "On", i.e., battery check is per-
formed. If this parameter is set to "Off", the battery check is still performed and a corresponding
error message is still generated each time the control voltage is switched on, but the system
automatically quits this error and therefore the error LED does not light up (provided no further
error exists).

The battery status can be monitored either with the help of a user program on the PLC or in
Automation Builder.
In the PLC browser of Automation Builder the command "batt" can be used . Ä Chapter
1.6.5.4.3 “AC500-specific PLC browser commands” on page 6222 The following is output:

0 Battery empty

20 Remaining battery charge below 20 %

100 Battery charge OK

In the user program, the battery status can be checked with the function Ä Chapter
1.5.4.16.1.1 “BATT” on page 1340 which is available in the folder "Battery" of the system library
SysExt_AC500_Vxx.lib. The following is output:

0 Battery empty

20 Remaining battery charge below 20 %, battery
must be replaced

100 Battery charge OK

On the device, the battery status can be checked with the function keys of a processor module.
Ä Chapter 1.6.4.1.5 “LEDs, display and function keys on the front panel” on page 5422

Ä Chapter 1.6.4.1.5.4.4 “Reading out values” on page 5440

Battery status

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5420

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5421

1.6.4.1.5 LEDs, display and function keys on the front panel
Overview

The display of a processor module is equipped with a background-lighted 7-segment display.
This display consists of 6 digits for plain text or error codes.
● error numbers and information on the error
● current settings of the processor module
Further, the display can be used for simple configurations such as address modifications.

● A black square () denotes the state/working activity of the corresponding object on the
left/right side of the display. The black square flashes according to the device's activity, e.g.
during data exchange on ETH1, COM1, etc.

● A black triangle () points to the selected item/interface on the left/right side of the display
to be configured or read. Further, it acts as a cursor for the count up/count down function
keys.

A black triangle () at the BATT item indicates a missing or uncharged battery.

Display indica-
tors

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5422

The indicators point to the following items on the left side of the display:

No. On the left Side Description
1 <empty item> Cannot be used.

2 SYS (system) Refers to the system status.

3 BATT (battery) Refers to the battery status.

4 I/O bus Refers to I/O bus connection.

The indicators point to the following items on the right side of the display:

No. On the right side Description
5 <empty item> Cannot be used.

 ETH (Ethernet) Refers to Ethernet interface or can be left empty.

 ETH1 Refers to the first Ethernet interface or can be left empty.

 ARCNET Refers to ARCNET connection or can be left empty.

6 FBP (FieldBusPlug) Refers to FBP (FieldBusPlug) or can be left empty.

 ETH2 Refers to the second Ethernet interface or can be left
empty.

7 COM1 Refers to COM1 interface or can be left empty.

8 <empty item> Cannot be used.

 COM2 Refers to COM2 interface or can be left empty.

9 Function keys on front panel

The following table describes the different displays of processor modules:

Processor
module

Display variant Description

PM5xx Display of a processor module
with FBP support.

PM5xx-ETH Display of a processor module
with FBP and Ethernet sup-
port.

PM5xx-ARC Display of a processor module
with ARCNET support.

PM5xx-2ETH Display of a processor module
with support for 2 Ethernet
interfaces.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5423

All 127 FBP addresses can be set with Automation Builder. On the display only
up to 99 FBP addresses can be set.

NOTICE!
Setting the FBP slave address by LEDs, display and function keys
Though it is possible to set the FBP slave address by using the LEDs, display
and function keys, this is not recommended. Direct configuration on the device
replaces address configurations defined via Automation Builder.
If the FBP address (set by Automation Builder or on the device) is different
from the address assigned by the master device for the same station, the
station cannot be accessed. The complete fieldbus cannot work properly or is
completely down!
A modified address defined on the device is valid not until power OFF/ON of the
processor module!

AC500 processor module equipped with FBP is always a slave device on the bus. To act as a
master, the processor module should be equipped with a master communication module (e.g.
CM592-DP for PROFIBUS DP).

FieldBusPlug

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5424

Startup procedure of the PLC
The startup procedure depends on the selected PLC mode.

PLC Mode Display Startup Behavior
00 Boot project is loaded and PLC applica-

tion is set to "RUN".

01 No boot project is loaded.

02 Boot project is loaded and the PLC appli-
cation is set to "RUN" depending on CPU
parameter "autostart".

State Display Description
0 Display on system start (power on).

1 PLC is in boot mode (see Ä Further information
on page 5423).

2 PLC is in initialization mode (see Ä Further information
on page 5423).

3 PLC is in STOP mode (see Ä Further information
on page 5423).
Same as status Stop in Automation Builder.

4 PLC is in RUN mode (see Ä Further information
on page 5423).
Switch into RUN mode is only possible if a valid
boot project is available in the flash memory.

Description of LEDs
The LEDs below the display indicate the status of the processor module:

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5425

LED State Color LED = ON LED = OFF LED flashes
Power LED
(PWR)

Denotes the
power supply
state of the pro-
cessor module

Green Voltage is
present (24 V
DC)

Voltage is
missing

-

Run LED
(RUN)

Denotes the
activity state of
the processor
module

Green Processor
module is in
RUN mode

Processor
module is in
STOP mode

If the Run LED
(RUN) flashes fast
(4 Hz), the pro-
cessor module
is reading/writing
the memory card.
Together with a
flashing Error LED
(ERR), the pro-
cessor module is
writing the internal
Flash.
If the Run LED
flashes slowly (1
Hz), a firmware
update from the
memory card is
finished without
errors.

Error LED
(ERR)

Denotes an
error

Red An error has
occurred. After
pressing the
DIAG function
key, the error
type and the
error code will
be displayed.
The error codes
can be shown
by means of the
DIAG and OK
function keys.

No errors or
only warnings
have
occurred.

If the Error LED
flashes fast (4 Hz)
together with a
flashing Run LED,
the firmware is
updated and a
Flash is written.
If the Error LED
flashes slowly
(1 Hz) a firm-
ware update from
the memory card
is finished with
errors.

A running processor module is indicated with the state RUN on the display, a deactivated
processor module is indicated with the state STOP. In both cases the display's backlight is off.

Description of the function keys
Overview

The processor module can be operated manually using the function keys on the front panel:

Function Key Description Description
Run Toggles between RUN and STOP mode. Switching

into RUN mode is only possible if an error free
project has been created and downloaded with
Automation Builder.

Value Shows different state values of the processor
module.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5426

Function Key Description Description
Escape Quits the current menu, submenu or function without

saving.

OK / Acknowledgement Acknowledges the current value or selects a menu/
submenu. Changes that have been sent to the pro-
cessor module successfully are confirmed with donE
on the display.

Diagnostic Allows evaluation of error messages in detail.

Configuration Allows navigation through addresses and system
settings.

Count up Press the function key repeatedly in order to
increase the value each time by 1.
Keep the function key pressed in order to count up
fast.

Count down Press the function key repeatedly in order to
decrease the value each time by 1. Keep the function
key pressed in order to count down fast.

Backlight is switched on for about 20 seconds by pressing any function key.

Start and stop PLC

State Description Menu level 0 Result on pressing one of the function keys

0 Short click:
State 1 is
displayed.
Long click
(>5 sec):
State 2 is
displayed.

No action No action

1

PLC only in state RUN if a
correct project is in RAM of
PLC

State 0 is
displayed.
STOP -
same as
Online stop
in
Automation
Builder (halt,
no init of
variables)

2 RUN
LED=ON

Perform RESET same
as Online reset in
Automation Builder
(stop and init varia-
bles)
State 0 is displayed.

No RESET
State 0 is dis-
played.

Function key
RUN

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5427

Configuration
The following tables describe how to configure a processor module manually. Processor module
can be configured in RUN mode or STOP mode, hence this device state is called RUN/STOP
mode in the following. By pressing the CFG function key repeatedly, you simply navigate
through the statuses of the device.
However, to configure the processor module, use the OK, ESC and CFG function keys alter-
nately.
1. The processor module is in RUN/STOP mode. By pressing the CFG function key once,

the IP configuration for Ethernet connection is displayed (IPETH1).
2. By pressing the CFG function key again, address configuration for Ethernet connection is

displayed (Adr000).
3. By pressing the ESC function key, menu is aborted. You revert to the RUN/STOP mode.
4. By pressing the OK function key, submenu for Ethernet interface is opened. Either a static

IP address can be set or a DHCP address is defined automatically.

The following example describes how to set a static IP address for Ethernet interface with a
Processor Module with firmware Version ≥ 2.4.

Table 623: Function key CFG IPETH1 or IPETH2; DHCP not active
Sta
te

Description Result on pressing one of the function keys

1.1 State 4.2 is
displayed.

Return into RUN/
STOP mode.

State 1.2 is dis-
played.

1.2

IP Configuration (address,
subnet mask, gateway)

State 1.3 is
displayed.

Aborts the menu
unchanged. Return to
State 1.1

State 3.2 is dis-
played.

1.3

Reset to production data
(default settings)

State 1.4 is
displayed.

Aborts the menu
unchanged. Return to
State 1.1

Activate RESET to
default by pressing
OK twice.
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

1.4

Activate DHCP
Sets a DHCP address.

State 1.2 is
displayed.

Aborts the menu
unchanged. Return to
State 1.1

Activate DHCP to
default by pressing
OK twice
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

Configuration:
Version ≥ 2.4

Example: static
IP address

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5428

Table 624: Function key CFG IPETH1 or IPETH2; DHCP active
Sta
te

Description - Submenu 2 Result on pressing one of the function keys

2.1 State 4.2 is
displayed.

Aborts the menu
unchanged. Return to
State 0.

State 2.2 is dis-
played.

2.2

DHCP active

State 2.3 is
displayed.

Aborts the menu
unchanged. Return to
State 2.1.

--

2.3

IP Configuration (address,
subnet mask, gateway)

State 2.4 is
displayed.

Aborts the menu
unchanged. Return to
State 2.1.

State 3.2 is dis-
played.

2.4

Reset to production data
(default settings)

-- Aborts the menu
unchanged. Return to
State 2.1.

Activate RESET to
default by pressing
OK twice
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

Sta
te

Description - Submenu 3 Result on pressing one of the function keys

3.1

IP Configuration (address,
subnet mask, gateway)

State 2.4 is
displayed.

Aborts the menu
unchanged.
Return to State 1.1
(sub menu IPETH1 or
IPETH2)

State 3.2 is dis-
played.

3.2

IP address A1-A4

 Number is blinking if value
has changed and is not yet
sent to CPU

State 3.3 is
displayed.

Aborts the menu
unchanged.
Return to State 1.1
(sub menu IPETH1 or
IPETH2)

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Function key
CFG submenu
STATIC

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5429

Sta
te

Description - Submenu 3 Result on pressing one of the function keys

3.3

Subnet mask N1-N4

 Number is blinking if value
has changed and is not yet
sent to CPU

Press CFG
from n2 to
n4
State 3.4 is
displayed.

Aborts the menu
unchanged.
Return to State 1.1
(sub menu IPETH1 or
IPETH2)

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

3.4

Gateway G1-G4

 Number is blinking if value
has changed and is not yet
sent to CPU

Press CFG
from g2 to
g4
State 3.2 is
displayed
again.

Aborts the menu
unchanged.
Return to State 1.1
(sub menu IPETH1 or
IPETH2)
Aborts the menu
unchanged. Return to
State 1.

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Sta
te

Description - Submenu 4 Result on pressing one of the function keys

4.1 State 4.2 is
displayed.

Aborts the menu
unchanged.
Return to State 1

DHCP not active:
State 1.2 is dis-
played
DHCP active:
State 2.2 is dis-
played

Function key
CFG sub menu
ADR

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5430

Sta
te

Description - Submenu 4 Result on pressing one of the function keys

4.2

Change the values with the
Count up/Count down func-
tion keys starting with current
value.

 Number is blinking if value
has changed and is not yet
sent to CPU

Next inter-
face is dis-
played.

Aborts the menu
unchanged.
Return to State 4.1

Sends changed
values to CPU
and go to default
menue RUN/STOP
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Navigation through the display of a processor module as of version ³ 2.4 starts with the pro-
cessor module being in RUN/STOP mode (State 0). By pressing one of the three function keys
a certain action is triggered. The result of this action is described in the result columns of the
tables.

State Description - Main menu Result on pressing one of the function keys

0

The processor module is in
RUN/STOP mode.

State 1 is
displayed.

Remains in RUN/
STOP mode.

Remains in RUN/
STOP mode.

1

IP configuration for Ethernet
interface - if connected.

State 2 is
displayed.

Return into RUN/
STOP mode.

Opens the sub-
menu for IP con-
figuration.
Refer to State 1.1
in the following
table.

2

Address configuration for
Ethernet interface. Change
the values with the Count
up/Count down function
keys.

 Number is blinking if
value has changed and is
not yet sent to CPU

State 3 is
displayed.

Return into RUN/
STOP mode.

Your settings are
saved. State 2 is
displayed.

Navigation
through the dis-
play

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5431

State Description - Main menu Result on pressing one of the function keys

3

Address configuration for
FBP connection. Change the
values with the Count up/
Count down function keys.

State 4 is
displayed.

Return into RUN/
STOP mode.

Your settings are
saved. State 3 is
displayed.

4

Address configuration for
COM1 interface - if con-
nected. Change the values
with the Count up/Count
down function keys.

State 5 is
displayed.

Return into RUN/
STOP mode.

Your settings are
saved. State 4 is
displayed.

5

Address configuration for
COM2 interface - if con-
nected. Change the values
with the Count up/Count
down function keys.

State 6 is
displayed.

Return into RUN/
STOP mode.

Your settings are
saved. State 5 is
displayed.

6

Startup mode configuration
for the processor module.
Change the values with the
Count up/Count down func-
tion keys.

State 7 is
displayed.

Return into RUN/
STOP mode.

Your settings are
saved. State 1 is
displayed.

7

ID configuration for FlexConf
for the processor module.
Change the values with the
Count up/Count down func-
tion keys.

State 8 is
displayed.

Return into RUN/
STOP mode.

Your settings are
saved. State 1 is
displayed.

The following States are only displayed if CM597-ETH is plugged:

8

IP configuration for the Com-
munication Module in slot 1 -
if Ethernet interface is set.

State 9 is
displayed.

Aborts the menu
unchanged. Return to
State 7.

Opens the sub-
menu for slot 1
configuration.
Refer to State 8.1
in the following
table.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5432

State Description - Main menu Result on pressing one of the function keys

9

IP configuration for the Com-
munication Module in slot 1 -
if Ethernet interface is set.

State 10 is
displayed.

Aborts the menu
unchanged. Return to
State 7.

Opens the sub-
menu for slot 2
configuration.
Refer to State 8.1
in the following
table.

10

IP configuration for the Com-
munication Module in slot 1 -
if Ethernet interface is set.

State 11 is
displayed.

Aborts the menu
unchanged. Return to
State 7.

Opens the sub-
menu for slot 3
configuration.
Refer to State 8.1
in the following
table.

11

IP configuration for the Com-
munication Module in slot 1 -
if Ethernet interface is set.

State 8 is
displayed.

Aborts the menu
unchanged. Return to
State 7.

Opens the sub-
menu for slot 4
configuration.
Refer to State 8.1
in the following
table.

The following states are only displayed if CM597-ETH is plugged

Sta
te

Description - Submenu 1 Result on pressing one of the function keys

8.1

Submenu for slot 1 configura-
tion opens.
Sets a DHCP address.

State 8.2 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Opens the sub-
menu 2.
Refer to State
1.2.1 in the fol-
lowing table.

8.2

Configuration of a static IP
address.

Opens the
submenu 2.
Refer to
State 1.2.1
in the fol-
lowing table.

Aborts the menu
unchanged. Return to
State 1.

No functionality.

States for
CM597-ETH

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5433

Sta
te

Description - Submenu 2 Result on pressing one of the function keys

1.2.
1

Submenu opens. Configura-
tion of address A1-A4.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.2 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

No functionality.

1.2.
2

Configuration of subnet mask
N1-N4. Change the values
with the Count up/Count
down function keys.

State 1.2.3 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Your settings are
saved. State 1.1
is displayed.

1.2.
3

Configuration of gateway G1-
G4. Change the values with
the Count up/Count down
function keys.

State 1.2.1 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Your settings are
saved. State 1.1
is displayed.

The following States are only displayed if CM597-ETH is plugged:

8.1.
1

Submenu opens. Configura-
tion of address A1-A4.
Change the values with the
Count up/Count down func-
tion keys.

State 8.1.2 is
displayed.

Aborts the menu
unchanged. Return to
State 8.

No functionality.

8.1.
2

Configuration of subnet mask
N1-N4. Change the values
with the Count up/Count
down function keys.

State 8.1.3 is
displayed.

Aborts the menu
unchanged. Return to
State 8.

No functionality.

8.1.
3

Configuration of gateway G1-
G4. Change the values with
the Count up/Count down
function keys.

State 8.1.1 is
displayed.

Aborts the menu
unchanged. Return to
State 8.

No functionality.

The following tables describe navigation through the display of a Processor Module with pro-
cessor module Firmware Version < 2.4. Navigation starts with the processor module being in
RUN/STOP mode (State 0). By pressing one of the three function keys a certain action is
triggered. The result of this action is described in the result columns of the tables.

CFG Submenu 2
STATIC IP-set-
tings

Configurations:
Version < 2.4

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5434

State Description - Main menu Result on pressing one of the function keys

0

The processor module is in
RUN/STOP mode.

State 1 is
displayed.

Remains in RUN/
STOP mode.

Remains in RUN/
STOP mode.

1

IP-Set: IP configuration.

State 2 is
displayed.

Return to RUN/STOP
mode.

Opens the sub-
menu 1 for IP
configuration.
Refer to State 1.1
in the following
table.

2

Adr000: Address configura-
tion for Ethernet interface.
Change the values with the
Count up/Count down func-
tion keys.

State 3 is
displayed.

You revert to the RUN/
STOP mode.

Return to RUN/
STOP mode.

3

Address configuration for
FBP connection. Change the
values with the Count up/
Count down function keys.

State 4 is
displayed.

You revert to the RUN/
STOP mode.

Return to RUN/
STOP mode.

4

Adr000: Address configura-
tion for COM1 interface -
if connected. Change the
values with the Count up/
Count down function keys.

State 5 is
displayed.

You revert to the RUN/
STOP mode.

Return to RUN/
STOP mode.

5

Adr000: Address configura-
tion for COM2 interface -
if connected. Change the
values with the Count up/
Count down function keys.

State 6 is
displayed.

You revert to the RUN/
STOP mode.

Return to RUN/
STOP mode.

6

Startup mode configuration
for the processor module.
Change the values with the
Count up/Count down func-
tion keys.

State 7 is
displayed.

You revert to the RUN/
STOP mode.

Return to RUN/
STOP mode.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5435

State Description - Main menu Result on pressing one of the function keys

7

ID configuration for FlexConf
(multiple hardware configu-
rations) for the processor
module.

Return to
State 1.

You revert to the RUN/
STOP mode.

Return to RUN/
STOP mode.

Sta
te

Description - Submenu 1 Result on pressing one of the function keys

1.1

Configuration of slot 1 - 4.

No function-
ality.

Aborts the menu
unchanged. Return to
State 1.

State 1.2 is dis-
played.

1.2

Configuration of a static IP
address.

State 1.3 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Opens the sub-
menu 2.
Refer to State
1.2.1 in the fol-
lowing table.

1.3

Reset option is displayed.

State 1.4 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Reset to Produc-
tion data (reset).

1.4

Configuration of a DHCP
address.

State 1.2 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

Sta
te

Description - Submenu 2 Result on pressing one of the function keys

1.2.
1

Address configuration for A1.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.2 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

Function key
CFG submenue
1

CFG Submenu 2
STATIC IP-set-
tings

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5436

Sta
te

Description - Submenu 2 Result on pressing one of the function keys

1.2.
2

Address configuration for A2.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.3 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
3

Address configuration for A3.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.4 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
4

Address configuration for A4.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.5 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
5

Configuration of the subnet
mask for N1.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.6 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
6

Configuration of the subnet
mask for N2.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.7 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
7

Configuration of the subnet
mask for N3.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.8 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5437

Sta
te

Description - Submenu 2 Result on pressing one of the function keys

1.2.
8

Configuration of the subnet
mask for N4.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.9 is
displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
9

Gateway configuration for
G1.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.10
is displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
10

Gateway configuration for
G2.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.11
is displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
11

Gateway configuration for
G3.
Change the values with the
Count up/Count down func-
tion keys.

State 1.2.12
is displayed.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

1.2.
12

Gateway configuration for
G4.
Change the values with the
Count up/Count down func-
tion keys.

Return to
State 1.2.1.

Aborts the menu
unchanged. Return to
State 1.

Return to RUN/
STOP mode.

It is recommended to set FBP slave address by using Automation Builder software. Neverthless
it is possible, however not recommended, to set this address by LED display of the processor
module.

FBP slave
address

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5438

All 127 FBP addresses can be set with Automation Builder. On the display only
up to 99 FBP addresses can be set.

NOTICE!
Setting the FBP slave address by LEDs, display and function keys
Though it is possible to set the FBP slave address by using the LEDs, display
and function keys, this is not recommended. Direct configuration on the device
replaces address configurations defined via Automation Builder.
If the FBP address (set by Automation Builder or on the device) is different
from the address assigned by the master device for the same station, the
station cannot be accessed. The complete fieldbus cannot work properly or is
completely down!
A modified address defined on the device is valid not until power OFF/ON of the
processor module!

AC500 processor module equipped with FBP is always a slave device on the bus. To act as a
master, the processor module should be equipped with a master Communication Module.
The FBP must have a properly assigned slave module address. The AC500 CPU gives the FBP
an address at system power-up. The address can be set with the use of the LED display and
the softkeys on the front panel.
To configure the FBP address, please follow the procedure described below:

First select the item to be configured by
pressing the CFG key.
The CPU changes to configuration mode
and a small triangle is displayed on the LCD
on the first right up position of the display
beside the ETH inscription and the already
configured address is diplayed.

Press one time more the CFG key to select
the item FBP.
The FBP address is shown and a small tri-
angle is displayed on the LCD beside the
FBP inscription.

Press the arrow keys UP or DOWN to
increase or decrease the address.
The modified value blinks to indicate that it
differs from the previously stored one.

Once the desired address is reached, press
OK to accept and quit. Or press ESC to exit
the menu without saving the changes.
The CPU status is then displayed run or
Stop.

or

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5439

The modified address will only be valid after a Power OFF / Power ON.

A processor module equipped with a FieldBusPlug is always a slave device on the bus. To act
as a master, an AC500 CPU should be equipped with master Communication Modules.
The FieldBusPlug module has to be connected to the master device and the power supply has
to be provided. Please use the dedicated accessories to the FBP used for the desired Fieldbus.

Reading out values
Reading out values

The following settings of the processor module can be read out by pressing the function key
VAL repeatedly:
1. Displays time of the processor module (hh.mm.ss).
2. Displays date of the processor module (yy.mm.dd).
3. Displays state of battery (ub 100 = 100%, ub 020 = 20% or ub 000 = empty).
4. Displays version of display firmware (e.g. d 2.5 r (= display version 2.5 release).
5. Displays version of CPU firmware (e.g. C 2.3.3r (= CPU version 2.5 release).
6. Displays CPU type.
7. Displays default text (RUN/STOP).

Reading out diagnosis messages on the CPU
Table 625: Example: no diagnosis message in status list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed

- - - -

1 No action No action Return into RUN/STOP
mode.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5440

Table 626: Example: diagnosis messages in status list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed

- - - -

1

Number of diag-
nosis mes-
sages; here 4

 Go to first/
next diag-
nosis mes-
sage in
status list
(e.g., state
2)

Go to last/
previous
diagnosis
message in
status list

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

2

Diagnosis mes-
sage example:
Error battery
empty or
missing

Toggling
between state 2
and 3

Selects
displayed
diagnosis
message
and
shows
details
Ä Table 6
27 “Exam
ple: error
battery
empty or
missing”
on page 5441

Go to first/
next diag-
nosis mes-
sage in
status list

Go to last/
previous
diagnosis
message in
status list

Return into
RUN/STOP
mode.

Acknowl-
edge and
return into
RUN/STOP
mode.

3

Error ID
example
Toggling
between state 2
and 3

Table 627: Example: error battery empty or missing
State Display Result on pressing one of the function keys

0

E4 = error
severity 4
bAt = subdevice
battery
Toggling
between state 0
and 1

State 2 is
displayed

State 2 is
displayed

State 6 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5441

State Display Result on pressing one of the function keys

1

Error ID
example
Toggling
between state 0
and 1

2

Error number 8
Battery is
missing or
empty

 State 3 is
displayed

State 0 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Displays
state 0
Return to
diagnosis
status list

3

Detail 1
Subdevice 22:
battery

 State 4 is
displayed

State 2 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

4

Detail 2
Error type 0:
device

 State 5 is
displayed

State 3 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

5

Detail 3
Error type
number 0:
device itself

 State 6 is
displayed

State 4 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

6

Detail 4
Additional infor-
mation 0: none

 State 1 is
displayed

State 5 is
displayed

State 0 is
displayed
Return to
diagnosis
status list

State 0 is
displayed
Return to
diagnosis
status list

1.6.4.1.6 Onboard technologies
Ethernet
Ethernet protocols and ports for AC500 V2 products

Supported Ethernet Protocols in AC500 in CPU Firmware and Control Builder Plus until V2.3.x:Firmware and
control builder
plus until V2.3.x

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5442

Description CPU

up
 fr

om
 C

PU
 fi

rm
w

ar
e

re
vi

si
on

PM
55

x-
/ P

M
56

x-
ET

H

PM
57

2

PM
57

3-
ET

H

PM
58

2

PM
58

3-
/ P

M
59

0-
ET

H

PM
59

1-
ET

H

PM
59

2-
ET

H

Onboard Ethernet x x x x x V2.0.2

DHCP x x x x x V2.0.2

BOOTP V2.0.2

ABB netConfig x x x x x V2.0.2

Hilscher IPconfig V2.0.2

Online access with driver
3S TCP/IP on port 1201

x x x x x V2.0.2

Online access with driver
ABB TCP/IP Level 2 AC
on port 1200

x x x x x V2.0.2

Online access with driver
3S TCP/IP Level 2 Route
on port 1201

x x x x x V2.1.3

Modbus TCP Slave x x x x x V2.0.2

Modbus TCP
Master with POU
Ä Chapter 1.5.4.13.1.4
“ETH_MOD_MAST”
on page 1202

x x x x x V2.0.2

UDP with AC31 header x x x x x V2.0.2

UDP no AC31 header
(standard UDP)

x x x x x V2.0.2

TCP/IP out of user pro-
gram with library SysLib-
Sockets.lib

x x x x x V2.0.2

Web server on PLC with
web visualization and
JAVA applet

x x x x x V2.0.6

Web server on PLC with
support of JAVA script (no
applet)

x x x x x V2.1.3

SNTP (Simple Network
Time Protocol) client and
server

 x x x x V2.0.2

SMTP client (Simple Mail
Transfer Protocol) send
email out of user program
with POU Ä Chapter
1.5.4.13.1.8
“ETH_SMTP_EMAIL_SE
ND” on page 1215

x
1)

 x x x x V2.1.3

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5443

Description CPU

up
 fr

om
 C

PU
 fi

rm
w

ar
e

re
vi

si
on

PM
55

x-
/ P

M
56

x-
ET

H

PM
57

2

PM
57

3-
ET

H

PM
58

2

PM
58

3-
/ P

M
59

0-
ET

H

PM
59

1-
ET

H

PM
59

2-
ET

H

IEC60870-5-104 control
station

 2) x x x V2.0.2

IEC60870-5-104 substa-
tion

 x x x x V2.0.2

FTP server x x x x x V2.1.3

PING out of user
program with POU
Ä Chapter 1.5.4.13.1.2
“ETH_ICMP_PING”
on page 1197

x x x x x V2.1.3

DNS - supplies the
IP address of a host
by its name with POU
Ä Chapter 1.5.4.13.1.1
“ETH_DNS_RESOLVE”
on page 1194

x x x x x V2.1.3

Remarks:
1): SMTP is not available for PM5x5-xx-ETH modules.
2): Not recommended. The control station claims nearly all resources of the processor module.

Supported Ethernet Protocols in AC500 in CPU Firmware as of V2.4.x and Automation Builder

Description CPU

C
M up from CPU

firmware
revision

PM
55

4-
ET

H

PM
55

6-
ET

H

PM
56

x-
ET

H

PM
57

2

PM
57

3-
ET

H

PM
58

2

PM
58

3-
ET

H

PM
58

5-
ET

H
PM

59
0-

ET
H

PM
59

0-
A

R
C

PM
59

1-
ET

H
PM

59
1-

2E
TH

PM
59

2-
ET

H

PM
59

5-
4E

TH

C
M

59
7-

ET
H

Onboard Ethernet x x x x x x V2.0.2

Onboard Ethernet x V2.1.3

Onboard Ethernet x V2.3.1

Onboard Ethernet x x V2.4.0

Firmware as of
V2.4.x and
Automation
Builder

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5444

Description CPU

C
M up from CPU

firmware
revision

PM
55

4-
ET

H

PM
55

6-
ET

H

PM
56

x-
ET

H

PM
57

2

PM
57

3-
ET

H

PM
58

2

PM
58

3-
ET

H

PM
58

5-
ET

H
PM

59
0-

ET
H

PM
59

0-
A

R
C

PM
59

1-
ET

H
PM

59
1-

2E
TH

PM
59

2-
ET

H

PM
59

5-
4E

TH

C
M

59
7-

ET
H

Onboard Ethernet x V2.5.0

External Ethernet commu-
nication module CM597-
ETH

 x x x x x x x x x x x V2.4.0

Table 628: Ethernet protocols
Description CPU CM up from

CPU
firmware
revision

 PM55
x-/
PM56
x-
ETH

PM57
3-
ETH

PM5
83-
ETH

PM590-
ETH

PM591-
ETH

PM591-
2ETH

PM592-
ETH

PM595-
4ETH

CM597-
ETH

DHCP x x x x x x x x x V2.0.2

BOOTP x V2.0.2

ABB netConfig x x x x x x x x x V2.0.2

Hilscher IPconfig x V2.0.2

Online access with
driver 3S Tcp/Ip on
port 1201

x x x x x x x x x V2.0.2

Online access with
driver ABB Tcp/Ip
L2 AC on port
1200

x x x x x x x x x V2.0.2

Online access with
driver 3S Tcp/Ip
L2 Route on port
1201

x x x x x x x x x V2.1.3

Modbus TCP
Slave

x x x x x x x x x V2.0.2

Modbus TCP
Master with POU
Ä Chapter
1.5.4.13.1.4
“ETH_MOD_MAS
T” on page 1202

x x x x x x x x x V2.0.2

UDP with AC31
header

x x x x x x x x x V2.0.2

UDP no AC31
header (standard
UDP)

x x x x x x x x x V2.0.2

TCP/IP out of
user program
with library SysLib-
Sockets.lib

x x x x x x x x V2.0.2

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5445

Description CPU CM up from
CPU
firmware
revision

 PM55
x-/
PM56
x-
ETH

PM57
3-
ETH

PM5
83-
ETH

PM590-
ETH

PM591-
ETH

PM591-
2ETH

PM592-
ETH

PM595-
4ETH

CM597-
ETH

Web server
on PLC with
IEC 61131-3 web
visualization and
JAVA applet

x x x x x x x x V2.0.6

Web server on
PLC with support
of JAVA script (no
applet)

x x x x x x x x V2.1.3

SNTP (Simple Net-
work Time Pro-
tocol) client and
server

 x x x x x x x V2.0.2

SNTP (Simple Net-
work Time Pro-
tocol) client

x V2.4.0

SMTP client
(Simple Mail
Transfer Protocol)
send email out of
user program with
POU Ä Chapter
1.5.4.13.1.8
“ETH_SMTP_EMA
IL_SEND”
on page 1215

x x x x x x x x V2.1.3

IEC60870-5-104
control station

 x x x x x x V2.0.2

IEC60870-5-104
substation

 x x x x x x x V2.0.2

FTP server x x x x x x x x V2.1.3

PING out of user
program with POU
Ä Chapter
1.5.4.13.1.2
“ETH_ICMP_PING
” on page 1197

x x x x x x x x x V2.1.3

DNS - supplies the
IP address of a
host by its name
with POU
Ä Chapter
1.5.4.13.1.1
“ETH_DNS_RESO
LVE” on page 1194

x x x x x x x x V2.1.3

IEC60870-5-104
2nd connection

 x x x x x x x V2.4.0

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5446

Description CPU CM up from
CPU
firmware
revision

 PM55
x-/
PM56
x-
ETH

PM57
3-
ETH

PM5
83-
ETH

PM590-
ETH

PM591-
ETH

PM591-
2ETH

PM592-
ETH

PM595-
4ETH

CM597-
ETH

IEC60870-5-104
2nd port

 x x V2.4.0

Connection to
MySQL data base
with library
MySQL_AC500_V
22.lib

x x x x x x V2.2.0

Overview of protocols, sockets and ports

Protocol Port Sockets
DHCP 67 1 socket during startup

BOOTP 67

ABB netConfig 24567 1 permanent socket if configured in
Automation Builder

Hilscher IPconfig 25383 1 permanent socket if configured in
Automation Builder for CM597-ETH

Online access with driver 3S Tcp/Ip 1201 1 socket per connection + 1 listen

Online access with driver ABB Tcp/Ip
L2 AC

1200 1 socket per connection + 1 listen

Online access with driver 3S Tcp/Ip L2
Route

1201 1 socket per connection + 1 listen

Modbus TCP Server 502 1 socket per server connection,
number of server connections is
configurable in Automation Builder

Modbus TCP Master with
POU Ä Chapter 1.5.4.13.1.4
“ETH_MOD_MAST” on page 1202

random 1 socket per instance of
ETH_MOD_MAST

UDP with AC31 header 0 ... 65535 1 socket if enabled in Automation
Builder

UDP no AC31 header (standard UDP) 0 ... 65535 1 socket per connection

TCP/IP out of user program with library
SysLibSockets.lib

0 ... 65535 1 socket per connection

Web server on PLC with web visualiza-
tion and JAVA applet

80 2 system sockets + 2 per connection

Web server on PLC with support of
JAVA script (no applet)

80 2 system sockets + 2 per connection

SNTP (Simple Network Time Protocol) 123 1 permanent socket if configured in
Automation Builder

SMTP client (Simple Mail Transfer Pro-
tocol) send email out of user program
with POU Ä Chapter 1.5.4.13.1.8
“ETH_SMTP_EMAIL_SEND”
on page 1215

25 1 per connection if POU is enabled

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5447

Protocol Port Sockets
IEC60870-5-104 control station random 1 per connection

IEC60870-5-104 substation 2404 1 per connection

FTP server 21 1 per session, max. 4 allowed

PING out of user program with
POU Ä Chapter 1.5.4.13.1.2
“ETH_ICMP_PING” on page 1197

none 1 per POU if POU is enabled

DNS - supplies the IP address of a
host by its name with POU Ä Chapter
1.5.4.13.1.1 “ETH_DNS_RESOLVE”
on page 1194

53 1 per POU if POU is enabled

Numbers and usage of Ethernet sockets

Device Number of sockets Hereof system
sockets

Hereof user sockets

PM55x-ETH 16 3 13

PM56x-ETH 16 3 13

PM573-ETH 16 3 13

PM583-ETH 25 3 22

PM585-ETH 32 3 29

PM590-ETH 32 3 29

PM591-ETH 32 3 29

PM592-ETH 32 3 29

PM556-ETH 16 3 13

PM591-2ETH 64 4 60

PM595-4ETH-F 64 4 60

PM595-4ETH-M 64 4 60

CM597-ETH 18 3 15

3 sockets are required for Online Access:
● 1x driver 3S Tcp/Ip or 3S Tcp/Ip L2 Route on port 1201
● 1x driver ABB Tcp/Ip AC on port 1200
● 1x listen on port 1200/1201 if PLC has established online connection
Ä Chapter 1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2 products” on page 5442

Online access can be established from:
● CODESYS V2.3.9.x (Online -> Login)
● OPC Server
● Control Builder Plus up from V2.1.0/Automation Builder
● Panel CP600 series
Each established connection needs 1 socket.
In addition, 1 socket on port 1200 and 1 on port 1201 is listening.

Overview

Online access -
System sockets

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5448

● Startup PLC
=> 2 sockets:
1 socket on port 1200 and 1 on port 1201 listen

● Login from CODESYS V2.3.9.x via driver ABB Tcp/Ip L2 AC on port 1200
=> 3 sockets:
2 sockets on port 1200 (1x Online, 1x Listen) and 1 socket on port 1201 listen

● Additional login out of PS501 Control Builder Plus with the same driver:
3 sockets on port 1200 (2x Online, 1x Listen) and 1 socket on port 1201 listen
=> 4 sockets:

● Additional connect CP600 via driver 3S Tcp/Ip L2 Route => 5 sockets:
3 sockets on port 1200 (2x Online, 1x Listen) and
2 sockets on port 1201 (1x Panel, 1x Listen)

Example

Maximum numbers of sockets per protocol
Table 629: Maximum numbers of sockets per protocol up to firmware V2.3.x
No. Description CPU up from

CPU firm-
ware revi-
sion

 PM55x-
ETH

PM56x-
ETH

PM573-
ETH

PM583-
ETH

PM590-
ETH

PM591-
ETH

PM592-
ETH

8 Modbus TCP
Slave

12 12 12 12 12 12 12 V2.0.2

11 UDP no AC31
header

12 12 12 12 12 12 12 V2.0.2

13 Web server on
PLC with web
visualization and
JAVA applet

7 7 9 18 25 25 25 V2.0.6

14 Web server on
PLC with support
of JAVA script (no
applet)

7 7 9 18 25 25 25 V2.1.3

19 FTP server 2 2 2 2 4 4 4 V2.1.3

No. Des
crip-
tion

CPU CM up
from
CPU
firm-
ware
revi-
sion

 PM5
5x-
ETH

PM5
6x-
ETH

PM5
73-
ETH

PM5
83-
ETH

PM58
5-
ETH

PM5
90-
ETH

PM5
91-
ETH

PM5
91-2
ETH

PM5
92-
ETH

PM5
95-4
ETH

CM5
97-
ETH

8 Mod
bus
TCP
Slav
e

12 12 12 12 12 12 12 24 12 24 12 V2.0.
2

11 UDP
no
AC3
1
head
er

12 12 12 12 12 12 12 24 12 24 12 V2.0.
2

Maximum num-
bers of sockets
per protocol as
of firmware
V2.4.x

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5449

No. Des
crip-
tion

CPU CM up
from
CPU
firm-
ware
revi-
sion

 PM5
5x-
ETH

PM5
6x-
ETH

PM5
73-
ETH

PM5
83-
ETH

PM58
5-
ETH

PM5
90-
ETH

PM5
91-
ETH

PM5
91-2
ETH

PM5
92-
ETH

PM5
95-4
ETH

CM5
97-
ETH

13 Web
serv
er on
PLC
with
web
visu-
aliza-
tion
and
JAVA
appl
et

7 7 9 18 25 25 25 50 25 50 0 V2.0.
6

14 Web
serv
er on
PLC
with
sup-
port
of
JAVA
script
(no
appl
et)

7 7 9 18 25 25 25 50 25 50 0 V2.1.
3

19 FTP
serv
er

2 2 2 2 4 4 4 8 4 8 0 V2.1.
3

The total number of sockets used by following protocols (over all Interfaces)
must not exceed 32:

– UDP data exchange
– UDP no AC31 Header
– ABB netConfig
– Online with ABB TCP/IP Level 2AC (listen, connected, routing)
– SNTP (onboard only)
– SMTP (onboard only)
– Modbus Client
– Modbus TCP server

For CPUs with multiple Onboard Ethernet interface (e.g. PM591-2ETH,
PM595-4ETH) the maximum number of sockets per protocol is the sum for all
Ethernet interfaces.

Example: Max number of Modbus TCP server for PM591-2ETH is 24. If 1st

Ethernet interface ETH1 uses 11 Modbus server connections, the 2nd Ethernet
interface can use as maximum 13 Modbus server connections.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5450

The usage of the sockets can be shown in the PLC browser or by using the
command: coupler settings

Handling of Ethernet protocols in AC500 CPUs firmware as of V2.4.0

The usage of the sockets can be shown in the PLC browser or by using the
command: coupler settings

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5451

Onboard Ethernet handling in CPU firmware
Until firmware
V2.3.x

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5452

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5453

The Ethernet communication has direct impact on the IEC tasks jitter.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5454

As of firmware
V2.4.0 for
PM5xx-ETH

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5455

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5456

Minimal impact on task jitter of IEC tasks.

Ethernet throughput depends on CPU load of PM5xx-ETH.

As of firmware
V2.4.0 for
PM5xx-2ETH
and
PM5xx-4ETH

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5457

As of firmware
V2.5.0 for
PM5xx-ETH

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5458

SNTP client and server
All AC500 processor modules with onboard Ethernet support can be configured as Simple
Network Time Protocol (SNTP) servers and clients.
The SNTP protocol is specified in RFC 4330.

As of firmware
V2.5.0 for
PM5xx-2ETH
and
PM5xx-4ETH

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5459

https://tools.ietf.org/html/rfc4330

Since the packet format is the same between NTP and SNTP, an AC500 SNTP client can also
use any (full) NTP server to receive time information.

SNTP client
The AC500 can receive time information from NTP server(s) in the network and adjust its local
clock accordingly. The configuration of the SNTP protocol (see Ä Chapter 1.6.5.3.6.2.1 “SNTP
client configuration” on page 6183) allows to specify two IP addresses for Servers as well as the
interval of requests to the server.
When the main server cannot be reached for 5 consecutive times, an Error class 4 is raised and
the backup server will be used. If the backup server also cannot be reached for 5 consecutive
times, an Error class 3 is raised.
According to the RFC specification, the SNTP client will wait a random amount of time between
1 and 5 minutes before performing the first time request after starting up the user program (PLC
in RUN).
To avoid this behavior, the configuration option Wait for sync before RUN can be set, so that the
user program is not allowed to run before the time was synchronized at least once.
The PLC will try to sync for a configurable amount of time (Time to wait for sync) before either
allowing the user program to switch to RUN or raising an error class 4 and keeping the PLC is
STOP.
The clock in the AC500 is prone to drift just like any clock based on an oscillating quartz.
Any adjustments of the clock will be attempted by speeding up or slowing down the internal
clock.
But there may be situations where the difference becomes too large to adjust the clock this way
and the clock needs to be set to the new time without gradual adjustments. This is called a time
jump and may not be wanted in some applications. To mitigate this, another set of configuration
options exist: Allow time jumps and allowed threshold for time jumps”.
These parameters can be used to either completely disallow jumps or keep them in an accept-
able range. By default time jumps are allowed with a maximum of 60 seconds difference. Any
jumps higher than the configured threshold will not be allowed and raise an error class 4.

The first synchronization is always allowed to jump any value because the
default date in the PLC is 01.01.1970 00:00 and thus needs to jump several
years to reach current date.

SNTP server
The AC500 can function as an SNTP Server to other clients (such as other AC500 PLCs).
For PLCs with multiple Interfaces, the server can be configured to run on either one or both
interfaces (ETH1, ETH2).
The configuration of the SNTP protocol (see Ä Chapter 1.6.5.3.6.2.2 “SNTP server configura-
tion” on page 6185) allows to restrict the IP address range which will be served by this SNTP
server. By default, any request will be served with a reply. To restrict the requests to a specific
subnet, the CIDR notation is used.

● Restrict access to the SNTP server to the subnet from 192.168.0.1 to 192.168.0.254 by
CIDR notation 192.168.0.0/24.

● Restrict access to the SNTP server to the subnet from 10.0.0.0 to 10.255.255.255 by
notation 10.0.0.0/8

Example

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5460

The SNTP server will use the local clock to serve its time.

Sync the local clock to a more precise time source:

– Being SNTP client and receiving the time from a more reliable NTP server.
– By syncing the local clock to another time source like a GPS or DCF77

clock.

ARCNET
● ARCNET (Attached Resource Computer Network) is a system for data transmission in local

networks.
● The ARCNET protocol is based on the Token Passing principle.
● By passing an identifier (token) from station to station it is guaranteed, that only one station

can start a data transmission (transmission without collision).
● The order of sequence, in which the stations are accessed, is automatically adapted by the

existing conditions in the network, i.e. that the network is reconfigured automatically each
time a station is added to the network or switched off.

ARCNET bus topology
● The Linear ARCNET connects the individual stations directly to each other, i.e. without using

any distribution units.
● Each station is connected to the network by using a T connector.
● Both cable ends must be terminated by terminating resistors.
● A maximum of 8 stations can be connected to one Linear ARCNET.
● The maximum cable length of the network is 300 m.
● An additional segment can be connected at the end of the wired segment via an Active Hub

(active distribution unit), see next but one drawing.

Station 1 Station 2 Station 3

T-connector Terminating resistor 93 OhmsTotal length max. 300 m

Fig. 1110: Linear ARCNET

The networking
possibilities of
linear ARCNET

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5461

Active Hubs amplify the arriving signals. So they stabilize the network configuration and allow
especially for high distances. The Active Hub decouples the station connectors from each other.
Therefore, the entire network does not fail when one of the connections fails.
The maximum length of the network is 6 km.
A maximum of 255 stations can be used.

Active Hub

Station 1 Station 2

T-connector
Terminating resistor
93 OhmsTotal length max. 300 m

m
ax

. 6
00

 m

m
ax

. 6
00

 m

Station 4 Station 5Station 3

Total length max. 300 m

Active Hub

Station 7 Station 8Station 6

Total length max. 300 m

Station 10 Station 11Station 9

Fig. 1111: Linear ARCNET, expanded by active distribution units (Active Hubs)

Linear ARCNET,
expanded by
active distribu-
tion units
(Active hubs)

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5462

1.6.4.1.7 Hot swap
Preconditions for using hot swap

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor module PM585-ETH with firmware version as of V2.8.1.

Hot swap is not supported by AC500-eCo V3 CPU!

Hot swap

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5463

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5464

Device Min. required device index for I/O module as of
FW Version 3.0.14

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC561 B2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

Compatibility of hot swap

 Central I/O on V2 CPU
I/O module on TU5xx-H connected to I/O bus
master

AC5000 V2 CPU types:
PM585-ETH, PM59x-ETH, PM591-2ETH or
PM595-4ETH

Required version of I/O bus master Firmware as of V2.8.1

Fieldbus master when used as remote I/O with
AC500 V2

-

When used as remote I/O on third party
controller (PLC or DCS)

-

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5465

Hot swap behavior
The following table describes the behavior in case of I/O attached to the AC500 CPU with
firmware supporting hot swap on the I/O bus.

Hot Swap Behavior Central I/O on V2 CPU
Start-up behavior with missing or damaged
I/O module on hot swap terminal unit TU5xx-H

System and I/O modules attached to the
CPU are starting (except missing or damaged
module when mounted on hot swap terminal
unit).
As soon as the correct and operational I/O
module is plugged on the terminal unit, the
module is configured and ready to start.
Precondition:
● "Run On Config Fault" must be configured
● "Max Wait Run" = default (3000)

Start-up behavior with wrong I/O module type
on any terminal unit

System and I/O modules are not starting

Diagnosis of presence of hot swap terminal
unit

Diagnosis using PLC browser command
"io-bus desc" in Automation Builder V2.
The PLC browser then provides an overview
of the modules on the I/O bus including the
position of hot swap terminal units in the
I/O bus.

Diagnosis of hot swap capability of I/O module
mounted on hot swap terminal unit

I/O bus master generates
● Diagnosis in case that a not hot-swap-

pable I/O module is plugged on a hot
swap terminal unit

● Diagnosis in case that in a mixed configu-
ration with at least one hot swap terminal
unit an I/O module, that must not be used
in a hot swap configuration, is mounted on
any terminal unit of the configuration

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

I/O bus master generates diagnosis in AC500
format.
The diagnosis is available in the diagnosis
system.

Input state in process image of controller while
module is pulled or module is not operational

Input = ZERO

Diagnosis after plugging the I/O module on
the hot swap terminal unit

Diagnosis message "diagnosis gone" is
generated

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5466

1.6.4.1.8 Communication with Modbus RTU
Protocol description

The Modbus RTU protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
The Modbus operating mode of a serial interface is set in the PLC configuration. See Ä Chapter
1.6.5.2.11.4 “Setting COMx - Modbus” on page 6108

In this operating mode, the telegram traffic with the server(s) is handled via the function block
Ä Chapter 1.5.4.22.1.1 “COM_MOD_MAST” on page 1698.
This function block sends Modbus request telegrams to the server(s) via the set interface and
receives Modbus response telegrams from the server(s) via this interface.
The Modbus blocks transferred by the server contain the following information:
● Modbus address of the interrogated server (1 byte)
● Function code that defines the request of the client (1 byte)
● Data to be exchanged (n bytes)
● CRC16 control code (2 bytes)

In this operating mode, no function block is required for Modbus communication. Sending and
receiving Modbus telegrams is performed automatically.
The AC500 CPUs process the following Modbus operation codes:

Function code Description
DEC HEX
01 or 02 01 or 02 Read n bits

03 or 04 03 or 04 Read n words

05 05 Write one bit (encoded in one
word)

06 06 Write one word

07 07 Fast reading the status byte of
the CPU

15 0F Write n bits (encoded in one
byte)

16 10 Write n words

22 16 Mask write

23 17 Read/write multiple words in
one telegram

The following restrictions apply to the length of the data to be sent:

Function code Max. length
DEC HEX
01 or 02 01 or 02 2000 bits

03 or 04 03 or 04 125 words / 62 double words

05 05 1 bit

Modbus client

Modbus server

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5467

Function code Max. length
DEC HEX
06 06 1 word

07 07 8 bits

15 0F 1968 bits

16 10 123 words / 61 double words

22 16 Write: 1 word

23 17 Read: 125 words / 62 double
words
Write: 120 words / 60 double
words

Technical data
The Modbus operating mode and the interface parameters are set in the Ä Chapter 1.6.5.2.11.4
“Setting COMx - Modbus” on page 6108.

Table 630: Description of the Modbus protocol
Parameter Value
Supported standard PM55x and PM56x: EIA RS-485

PM57x, PM58x and PM59x: EIA RS-232 /
RS-485

Number of connection points 1 client
Max. 1 server with RS-232 interface
Max. 31 servers with RS-485

Protocol Modbus

Operating mode Client/server

Address Server only

Data transmission control CRC16

Data transmission speed From 300 bits/s to 187,500 bits/s

Encoding 1 start bit
8 data bits
1 parity bit, (optional) even, odd, mark or
space
1 or 2 stop bits

Max. cable length for RS-485 on
COM1 / COM2 for AC500 CPU

1.200 m at 19.200 baud

Max. cable length for RS-485 on
COM1 / COM2 for AC500-eCo CPU

 COM1:

 Non-isolated: Max. 50 m (with shielded cable)

 Isolated with TK506: Max. 500 m at 19.200 baud (with shielded
cable *)

 COM2:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5468

Parameter Value
 Non-isolated with TA562: Max. 50 m (with shielded cable)

 Isolated with TA569: Max. 500 m at 19.200 baud (with shielded
cable *)

*) 500 m cable type STP-120 Ω/AWG-20
If a processor module provides more than one serial interface, both interfaces (COM1/COM2)
can be operated simultaneously as Modbus interfaces and can operate as Modbus server as
well as Modbus client.

Modbus addresses for AC500 CPUs
Modbus address table

A range of 128 kB is allowed for the access via Modbus, i.e., the segments line 0 and line 1
of the addressable flag area (%M area) can be accessed. Thus, the complete address range
0000hex up to FFFFhex is available for Modbus.
The availability of the segments depends on the CPU. The size of the %M area can be found in
the technical data of the CPUs and in the target system settings.
Inputs and outputs cannot be directly accessed using Modbus.

The address assignment for bit accesses is done according to the following table:

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

Line 0

0000 0 %MB0.0 %MX0.0.0 %MW0.0 %MD0.0

0001 1 %MX0.0.1

0002 2 %MX0.0.2

0003 3 %MX0.0.3

0004 4 %MX0.0.4

0005 5 %MX0.0.5

0006 6 %MX0.0.6

0007 7 %MX0.0.7

0008 8 %MB0.1 %MX0.1.0

0009 9 %MX0.1.1

000A 10 %MX0.1.2

000B 11 %MX0.1.3

000C 12 %MX0.1.4

000D 13 %MX0.1.5

000E 14 %MX0.1.6

000F 15 %MX0.1.7

0010 16 %MB0.2 %MX0.2.0 %MW0.1

0011 17 %MX0.2.1

0012 18 %MX0.2.2

Address assign-
ment (bit
accesses)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5469

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0013 19 %MX0.2.3

0014 20 %MX0.2.4

0015 21 %MX0.2.5

0016 22 %MX0.2.6

0017 23 %MX0.2.7

0018 24 %MB0.3 %MX0.3.0

0019 25 %MX0.3.1

001A 26 %MX0.3.2

001B 27 %MX0.3.3

001C 28 %MX0.3.4

001D 29 %MX0.3.5

001E 30 %MX0.3.6

001F 31 %MX0.3.7

0020 32 %MB0.4 %MX0.4.0 %MW0.2 %MD0.1

0021 33 %MX0.4.1

0022 34 %MX0.4.2

...

0FFF 4095 %MB0.511 %MX0.511.7 %MW0.255 %MD0.127

1000 4096 %MB0.512 %MX0.512.0 %MW0.256 %MD0.128

...

7FFF 32767 %MB0.4095 %MX0.4095.7 %MW0.2047 %MD0.1023

8000 32768 %MB0.4096 %MX0.4096.0 %MW0.2048 %MD0.1024

...

FFFF 65535 %MB0.8191 %MX0.8191.7 %MW0.4095 %MD0.2047

Formula:
 Bit variable (BOOL) := %MX0.BYTE.BIT

where: DEC Decimal address

 BYTE DEC / 8

 BIT DEC mod 8 (Modulo division)

Calculation of
the bit variable
from the hexa-
decimal
address:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5470

● Address hexadecimal = 16#2002
DEC := 8194
BYTE := 8194 / 8 := 1024
BIT := 8194 mod 8 := 2
Bit variable: %MX0.1024.2

● Address hexadecimal = 16#3016
DEC := 12310
BYTE := 12310 / 8 := 1538,75 -> 1538
BIT := 12310 mod 8 := 6
Bit variable: %MX0.1538.6

● Address hexadecimal = 16#55AA
DEC := 21930
BYTE := 21930 / 8 := 2741,25 -> 2741
BIT := 21930 mod 8 := 2
Bit variable: %MX0.2741.2

Examples:

Calculation of the hexadecimal address from the bit variable:

● Bit variable := %MX0.515.4
DEC := 515 * 8 + 4 := 4124
Address hex := 16#101C

● Bit variable := %MX0.3.3
DEC := 3 * 8 + 3 := 27
Address hex := 16#001B

● Bit variable := %MX0.6666.2
DEC := 6666 * 8 + 2 := 53330
Address hex := 16#D052

Examples:

Peculiarities for accessing Modbus addresses
Peculiarities for bit access:
● As you can see in the address table, a WORD in the %M area is assigned to each Modbus

address 0000hex .. FFFFhex
● Bit addresses 0000hex .. FFFFhex are contained in the word range %MW0.0 ..

%MW0.4095

Areas protected from read/write access by Modbus client
As described in the PLC configuration, one write-protected and one read-protected area can be
defined for each segment line 0 and line 1. If you try to write to a write-protected area or to read
from a read-protected area, an exception response is generated.
Segment exceedance for line 0 and line 1:
A write- or read-protected area that lies in both segments, line 0 and line 1, cannot be accessed
with a write/read operation. In case of a segment exceedance, an exception response is gener-
ated.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5471

Read 10 words beginning at address := 7FFEhex
This includes the addresses: 7FFEhex...8007hex with the operands %MW0.32766...%MW1.7.
Because line 0 is exceeded in this case, an exception response is generated.
Due to this, two requests have to be generated here:
1. Read 2 words beginning at address := 7FFEhex.
2. Read 8 words beginning at address := 8000hex.

Example

Comparison between AC500 and AC31/S90 Modbus addresses
The following table shows the addresses for AC500 controllers and its predecessor AC31/S90:

Address
HEX

FCT
HEX

AC1131 operand FCT
HEX

AC500 operand

Bit accesses
0000 ... 0FFF 01, 02 %IX0.0 ...

%IX255.15
01, 02, 05, 07, 0F %MX0.0.0 ...

%MX0.511.7

0000 %IX0.0 %MX0.0.0

0001 %IX0.1 %MX0.0.1

0002 %IX0.2 %MX0.0.2

...

0010 %IX1.0 %MX0.2.0

...

0FFF %IX255.15 %MX0.511.7

1000 ... 1FFF 01, 02, 05, 0F %QX0.0 ...
%QX255.15

01, 02, 05, 07, 0F %MX0.512.0 ...
%MX0.1023.7

1000 %QX0.0 %MX0.512.0

1001 %QX0.1 %MX0.512.1

1002 %QX0.2 %MX0.512.2

...

1010 %QX1.0 %MX0.514.0

...

1FFF %QX255.15 %MX0.1023.7

2000 ... 2FFF 01, 02, 05, 07, 0F %MX0.0 ...
%MX255.15

01, 02, 05, 07, 0F %MX0.1024.0 ...
%MX0.1535.7

2000 %MX0.0 %MX0.1024.0

2001 %MX0.1 %MX0.1024.1

2002 %MX0.2 %MX0.1024.2

...

2010 %MX1.0 %MX0.1026.0

...

2FFF %MX255.15 %MX0.1535.7

3000 ... 3FFF 01, 02, 05, 07, 0F %MX5000.0 ...
%MX5255.15

01, 02, 05, 07, 0F %MX0.1536.0 ...
%MX0.2047.7

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5472

Address
HEX

FCT
HEX

AC1131 operand FCT
HEX

AC500 operand

Bit accesses
3000 %MX5000.0 %MX0.1536.0

3001 %MX5000.1 %MX0.1536.1

3002 %MX5000.2 %MX0.1536.2

...

3010 %MX5001.0 %MX0.1538.0

...

3FFF %MX5255.15 %MX0.2047.7

4000 ... FFFF No access 01, 02, 05, 07, 0F %MX0.2048.0 ...
%MX0.8191.7

Word accesses

0000 ... 0CFF 03, 04 %IW1000.0 ...
%IW1207.15

03, 04, 06, 10 %MW0.0 ...
%MW0.3327

0D00 ... 0FFF 03, 04 No access 03, 04, 06, 10 %MW0.3328 ...
%MW0.4095

1000 ... 1CFF 03, 04, 06, 10 %QW1000.0 ...
%QW1207.15

03, 04, 06, 10 %MW0.4096 ...
%MW0.7423

1D00 ... 1FFF No access 03, 04, 06, 10 %MW0.7424 ...
%MW0.8191

2000 ... 2FFF 03, 04, 06, 10 %MW1000.0 ...
%MW1255.15

03, 04, 06, 10 %MW0.8192 ...
%MW0.12287

3000 ... 359F 03, 04, 06, 10 %MW3000.0 ...
%MW3089.15

03, 04, 06, 10 %MW0.12288 ...
%MW0.13727

35A0 ... 3FFF No access 03, 04, 06, 10 %MW0.13728 ...
%MW0.16383

4000 ... 47FF %MW2000.0.0 ...
%MW2063.15.1
No access

03, 04, 06, 10 %MW0.16384 ...
%MW18431

4800 ... 4FFF No access 03, 04, 06, 10 %MW0.18432 ...
%MW0.20479

5000 ... 517F %MW4000.0.0 ...
%MW4023.15.1
No access

03, 04, 06, 10 %MW0.20480 ...
%MW0.21247

5180 ... FFFF No access 03, 04, 06, 10 %MW0.21248 ...
%MW1.32767

Double word accesses

0000 ... 3FFF No access 03, 04, 06, 10 %MD0.0 ...
%MD0.8191

4000 ... 47FF 03, 04, 06, 10 %MD2000.0 ...
%MD2063.15

03, 04, 06, 10 %MD0.8192 ...
%MD0.9215

4800 ... 4FFF No access 03, 04, 06, 10 %MD0.9216 ...
%MD0.10239

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5473

Address
HEX

FCT
HEX

AC1131 operand FCT
HEX

AC500 operand

Bit accesses
5000 ... 537F 03, 04, 06, 10 %MD4000.0 ...

%MD4023.15
03, 04, 06, 10 %MD0.1240 ...

%MD0.10815

5480 ... FFFF No access 03, 04, 06, 10 %MD0.10816 ...
%MD1.16383

Local data of the Modbus client
The address of the area from which data are to be read or to which data are to be written is
specified in the function block Ä Chapter 1.5.4.22.1.1 “COM_MOD_MAST” on page 1698 at
input "Data", via the ADR operator.

For the AC500, the following areas can be accessed using the ADR operator:
● Inputs area (%I area)
● Outputs area (%Q area)
● Area of non-buffered variables (VAR .. END_VAR or VAR_GLOBAL END_VAR)
● Addressable flag area (also protected areas for %M area)
● Area of buffered variables (VAR RETAIN .. END_VAR or VAR_GLOBAL RETAIN ..

END_VAR)

Modbus telegrams
The send and receive of telegrams shown in this section are not visible in the PLC. However,
the complete telegrams can be made visible using a serial data analyzer connected to the
connection line between server and client, if required.
The amount of user data depends on the capabilities of the server and the client.
For the following examples, it is assumed that one AC500 Modbus module is used as client
and another one is used as server. There may be different properties if modules of other
manufacturers are used.

FCT 1 or 2: Read n bits
Table 631: Client request
Server
address

Function
code

Server operand
address

Number of bits CRC

High Low High Low High Low

Table 632: Server response
Server
address

Function
code

Number of Bytes ...Data... CRC

High Low

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5474

Example
Table 633: Example:
Modbus interface of the client COM1

Client reads from Server 1

Data %MX0.1026.4 = FALSE
%MX0.1026.5 = TRUE
%MX0.1026.6 = FALSE

Source address at server %MX0.1026.4 : 2014HEX = 8212DEC

Target address at client abReadBool: ARRAY[0..2] OF BOOL

The values of the flags %MX0.1026.4..%MX0.1026.6 on the server are written to the ARRAY
abReadBool on the client.

Table 634: Modbus request of the client
Server
address

Function
code

Server operand
address

Number of bits CRC

High Low High Low High Low
01HEX 01HEX 20HEX 14HEX 00HEX 03HEX 37HEX CFHEX

Table 635: Modbus response of the server
Server
address

Function
code

Number of
bytes

Data CRC
High Low

01HEX 01HEX 01HEX 02HEX D0HEX 49HEX

Table 636: Parameterization of the COM_MOD_MAST function block inputs NB = Number of
bits
EN COM SLAVE FCT TIMEOUT ADDR NB DATA
FALSE ->
TRUE

1 1 1 Applica-
tion- spe-
cific

8212 3 ADR
(abRead-
Bool[0])

FCT 3 or 4: Read n words
Table 637: Client request
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low

Table 638: Server response
Server
address

Function
code

Number of Bytes Data CRC

High Low High Low

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5475

Example
Table 639: Example
Modbus interface of the client COM1

Client reads from Server 1

Data %MW0.8196 = 4;
%MW0.8197 = 5;
%MW0.8198 = 6

Source address at server %MW0.8196 : 2004HEX = 8196DEC

Target address at client awReadWord : ARRAY[0..2] OF WORD;

The values of the flag words %MW0.8196..%MW0.8198 on the server are written to the
ARRAY awReadWord on the client.

Table 640: Modbus request of the client
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low
01HEX 03HEX 20HEX 04HEX 00HEX 03HEX 4FHEX CAHEX

Table 641: Modbus response of the server
Server
address

Function
code

Number
of bytes

Data Data Data CRC
High /
Low

High /
Low

High /
Low

High Low

01HEX 03HEX 06HEX 00HEX /
04HEX

00HEX /
05HEX

00HEX /
06HEX

40HEX B6HEX

Table 642: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of words
DATA

FALSE
-> TRUE

1 1 3 Applica-
tion- spe-
cific

8196 3 ADR
(awRead-
Word[0])

FCT 3 or 4: Read n double words
The function code "read double word" is not defined in the Modbus RTU standard. This is why
the double word is composed of a low word and a high word (depending on the manufacturer)
Same tables as Ä Chapter 1.6.4.1.8.5.2 “FCT 3 or 4: Read n words” on page 5475.

Example
Table 643: Example:
Modbus interface of the client COM1

Client reads from Server 1

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5476

Data %MD0.8193 = 32DEC = 00000020HEX
%MD0.8194 = 80000DEC = 00013880HEX

Source address at server %MD0.8193: 4002HEX = 16386DEC

Target address at client adwReadDWord : ARRAY[0..1] OF DWORD

The values of the flag double words %MD0.8193..%MD0.8194 on the server are written to the
ARRAY adwReadDWord on the client.

Table 644: Modbus request of the client
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low
01HEX 03HEX 40HEX 02HEX 00HEX 04HEX F0HEX 09HEX

Table 645: Modbus response of the server
Server
address

Func-
tion
code

Number
of bytes

Data Data Data Data CRC
High /
Low

High /
Low

High /
Low

High /
Low

High Low

01HEX 03HEX 08HEX 00HEX /
00HEX

00HEX /
20HEX

00HEX /
01HEX

38HEX /
80HEX

57HEX B0HEX

Table 646: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of words
DATA

FALSE
-> TRUE

1 1 3 Applica-
tion- spe-
cific

16386 4 ADR
(adwRead
DWord[0])

FCT 5: Write 1 bit
For the function code "write 1 bit", the value of the bit to be written is encoded in one word.
BIT = TRUE -> Data word = FF 00 HEX
BIT = FALSE -> Data word = 00 00 HEX

Table 647: Client request
Function
code

Server operand address Number of words CRC

High Low High Low High Low

Table 648: Server response
Function
code

Server operand address Data CRC

High Low High Low High Low

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5477

Example
Table 649: Example:
Modbus interface of the client COM1

Client writes to Server 1

Data bBit := TRUE

Source address at client bBit : BOOL

Target address at server %MX0.1026.7 : 2017HEX = 8215DEC

The value of the BOOL variable bBit on the server is written to %MX0.1026.7 on the server.

Table 650: Modbus request of the client
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low
01HEX 05HEX 20HEX 17HEX FFHEX 00HEX 37HEX FEHEX

Table 651: Modbus response of the server (mirrored)
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low
01HEX 05HEX 20HEX 17HEX FFHEX 00HEX 37HEX FEHEX

Table 652: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of bits
DATA

FALSE
-> TRUE

1 1 5 Applica-
tion- spe-
cific

8215 1 ADR
(bBit)

FCT 6: Write 1 word
Table 653: Server request
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low

Table 654: Server response
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5478

Example
Table 655: Example:
Modbus interface of the client COM1

Client writes to Server 1

Data wData := 7

Source address at server wData : WORD

Target address at client %MW0.8199 : 2007HEX = 8199DEC

The value of the WORD variable bBit on the client is written to %MW0.8199 on the server.

Table 656: Modbus request of the client
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low
01HEX 06HEX 20HEX 07HEX 00HEX 07HEX 72HEX 09HEX

Table 657: Modbus response of the server (mirrored)
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low
01HEX 06HEX 20HEX 07HEX 00HEX 07HEX 72HEX 09HEX

Table 658: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of words
DATA

FALSE
-> TRUE

1 1 6 Applica-
tion- spe-
cific

8215 1 ADR
(wData)

FCT 7: Fast reading the status byte of the CPU

Server address Function code CRC

High Low

Example
Table 659: Example:
Modbus interface of the client COM1

Client writes to Server 1

Table 660: Modbus request of the client
Server
address

Function
code

CRC
High Low

01HEX 07HEX 41HEX E2HEX

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5479

Table 661: Modbus response of the server
Server
address

Function
code

Data byte CRC
High Low

01HEX 07HEX 00HEX xxHEX xxHEX

Table 662: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of bits
DATA

FALSE
-> TRUE

1 1 7 Applica-
tion- spe-
cific

0 0 ADR
(BoolVar)

FCT 15: Write n bits
Table 663: Client request
Server operand
address

Number of bits Number of
bytes

...Data... CRC

High Low High Low High Low

Table 664: Server response
Server
address

Function
code

Server operand
address

Number of bits CRC

High Low High Low High Low

Example
Table 665: Example:
Modbus interface of the client COM1

Client writes to Server 1

Data abWriteBool[0] := TRUE
abWriteBool[1] := FALSE
abWriteBool[2] := TRUE

Source address at client abWriteBool : ARRAY[0..2] OF BOOL

Target address at server %MX0.1026.1 : 2011HEX = 8209DEC

The values of the BOOL variables abWriteBool[0]..abWriteBool[2] on the client are written to
%MX0.1026.1..%MX0.1026.3 on the server.

Table 666: Modbus request of the client
Server
addres
s

Func-
tion
code

Server operand
address

Number of bits Numbe
r of
bytes

Data CRC

High Low High Low High Low
01HEX 0FHEX 20HEX 11HEX 00HEX 03HEX 01HEX 05HEX B4HEX 37HEX

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5480

Table 667: Modbus response of the server
Server
address

Function
code

Server operand
address

Number of bits CRC

High Low High Low High Low
01HEX 0FHEX 20HEX 11HEX 00HEX 03HEX 4EHEX 0FHEX

Table 668: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of bits
DATA

FALSE
-> TRUE

1 1 15 Applica-
tion- spe-
cific

8209 3 ADR
(abWrite-
Bool[0])

FCT 16: Write n words
Table 669: Client request
Server operand
address

Number of words Number of
bytes

...Data... CRC

High Low High Low High Low

Table 670: Server response
Function
code

Server operand address Number of words CRC

High Low High Low High Low

Example
Table 671: Example:
Modbus interface of the client COM1

Client writes to Server 1

Data awWriteWord[0] := 1
awWriteWord[1] := 2
awWriteWord[2] := 3

Source address at server awWriteWord : ARRAY[0..2] OF WORD

Target address at client %MW0.8193 : 2001HEX = 8193DEC

The values of the WORD variables awWriteWord[0]..awWriteWord[2] on the client are written
to %MW0.8193..%MW0.8195 on the server.

Table 672: Modbus request of the client
Server
address

Func-
tion
code

Server
operand
address

Number
of
words

Number
of bytes

Data Data Data CRC

High /
Low

High /
Low

High /
Low

High /
Low

High /
Low

High /
Low

01HEX 10HEX 20HEX /
01HEX

00HEX /
03HEX

06HEX 00HEX /
01HEX

00HEX /
02HEX

00HEX /
03HEX

C0HEX /
84HEX

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5481

Table 673: Modbus response of the server
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low
01HEX 10HEX 20HEX 01HEX 00HEX 03HEX DAHEX 08HEX

Table 674: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of words
DATA

FALSE
-> TRUE

1 1 16 Applica-
tion- spe-
cific

8193 3 ADR
(awWrite-
Word[0])

FCT 16: Write n double words
The function code "write double word" is not defined in the Modbus RTU standard. This is why
the double word is composed of a low word and a high word (depending on the manufacturer).

Table 675: Client request
Server operand
address

Number of words Number of
bytes

...Data... CRC

High Low High Low High Low

Table 676: Server response
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low

Example
Table 677: Example:
Modbus interface of the client COM1

Client writes to Server 1

Data adwWriteDWord[0] := 18DEC =
00000012HEX;
adwWriteDWord[1] := 65561DEC =
00010019HEX;

Source address at client adwWriteDWord : ARRAY[0..1] OF DWORD;

Target address at server %MD0.8192 : 4000HEX = 16384DEC

The values of the Double WORD variables adwWriteDWord[0].. adwWriteDWord[1] on the
client are written to %MD0.8192..%MD0.8193 on the server.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5482

Table 678: Modbus request of the client
Server
addres
s

Func-
tion
code

Server
operan
d
addres
s

Numbe
r of
words

Numbe
r of
bytes

Data Data Data Data CRC

High /
Low

High /
Low

High /
Low

High /
Low

High /
Low

High /
Low

High /
Low

01HEX 10HEX 40HEX
/
00HEX

00HEX
/
04HEX

08HEX 00HEX
/
00HEX

00HEX
/
12HEX

00HEX
/
01HEX

00HEX
/
19HEX

60HEX
/
B3HEX

Table 679: Modbus response of the server
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low
01HEX 10HEX 40HEX 00HEX 00HEX 04HEX DAHEX 0AHEX

Table 680: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of words
= 2 x
Number
of double
words

DATA

FALSE
-> TRUE

1 1 16 Applica-
tion- spe-
cific

16384 4 ADR
(adwWri-
teD-
Word[0])

FCT 22: Mask write register
Table 681: Client request
Server
address

Function
code

Server operand
address

AND Mask OR Mask CRC

High Low High Low High Low High Low

Table 682: Server response
Server
address

Function
code

Server operand
address

AND Mask OR Mask CRC

High Low High Low High Low High Low

Example
Table 683: Example
Modbus interface of the client COM1

Client writes to Server 1

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5483

Data sMask.wAND_Mask := 16#00F2
sMask.wOR_Mask := 16#0025

Source address at the client sMask : COM_MOD_FCT22_TYPE

Target address at server %MW0.8193 : 2001HEX = 8193DEC

The values of the WORD variables sMask.wAND_Mask and sMask.wAND_Mask on the client
are applied as masks on %MW0.8193..%MW0.8195 on the server.

Table 684: Modbus request of the client
Server
address

Function
code

Server operand
address

AND Mask OR Mask CRC

High / Low High / Low High / Low High / Low
01HEX 16HEX 20HEX / 01HEX 00HEX /

F2HEX
00HEX /
25HEX

Table 685: Modbus response of the server
Server
address

Function
code

Server
operand
address

AND Mask OR Mask CRC

High Low High Low High Low High Low
01HEX 16HEX 20HEX 01HE

X
00HE
X

F2HEX 00HE
X

25HE
X

DAHE
X

08HE
X

Table 686: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of words
DATA

FALSE ->
TRUE

1 1 22 Applica-
tionspe-
cific

8193 1 ADR
(sMask)

FCT 23: Read/Write n words
Table 687: Client request
Server
addre
ss

Func-
tion
code

Operand
addr. read

Number of
words
read

Operand
addr. write

Number of
words write

Numb
er of
bytes
write

...Dat
a...

CRC

High Lo
w

High Lo
w

High Low High Low Hig
h

Lo
w

Table 688: Server response
Server
address

Function
code

Number of bytes
read

...Data... CRC

High Low

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5484

Example
Table 689: Example
Modbus interface of the client COM1

Client writes to Server 1

Data sData : COM_MOD_FCT23_TYPE
sData.pByDataWrite := ADR(awWriteWord)
sData.pByDataRead := ADR(awReadWord)
sData.wDataAddressRead := 4193
sData.wNumDataUnitsRead := 5
awWriteWord[0] := 1
awWriteWord[1] := 2
awWriteWord[2] := 3

Source address at client awWriteWord : ARRAY[0..2] OF WORD

Target address at client awReadWord : ARRAY[0..4] OF WORD

Target address at server %MW0.8193 : 2001HEX = 8193DEC

Source address at server %MW0.4193 : 1001HEX = 4193DEC

The values of the WORD variables awWriteWord[0]..awWriteWord[2] on the client are
written to %MW0.8193..%MW0.8195 on the server, the values read from server’s .
%MW0.4193..%MW0.4195 are written to the client’s variables awReadWord[0]..awRead-
Word[4]

Table 690: Parameterization of the COM_MOD_MAST function block inputs
EN COM SLAVE FCT TIMEOUT ADDR Number

of words
DATA

FALSE ->
TRUE

1 1 17 Applica-
tionspe-
cific

8193 3 ADR
(sData)

Exception response by server
In operating mode Modbus client, the AC500 does only send requests, if the parameters at the
MOD_MAST inputs are logically correct.
Nevertheless, it can happen that a server cannot process the request of the client or that the
server cannot interpret the request due to transmission errors or in case it’s capabilities are
exceeded in any way. In those cases, the server returns an exception response to the client.
In order to identify this response as an exception response, the function code returned by the
server is a logical OR interconnection of the function code received from the client and the value
80HEX.

Table 691: Server response
Server address OR 80HEX Error code CRC

High Low

Possible error codes of the client

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5485

Code Description
01DEC ILLEGAL FUNCTION

The server does not support the function requested by the client

02DEC ILLEGAL DATA ADDRESS
Invalid operand address in the server or operand area exceeded

03DEC ILLEGAL DATA VALUE
At least one value is outside the permitted range of values

04DEC SERVER DEVICE FAILURE
An unrecoverable error occurred while the server was attempting to
perform the requested action

05DEC ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server has accepted the request and is processing it, but a
long duration of time will be required to do so. This response is
returned to prevent a timeout error from occurring in the client.
The client can next issue a Poll Program Complete message to
determine if processing is completed

06DEC SERVER DEVICE BUSY
Specialized use in conjunction with programming commands.
The server is engaged in processing a long–duration program com-
mand. The client should retransmit the message later when the
server is free.

07DEC NEGATIVE ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server cannot perform the programming functions. Client
should request diagnostic or error information from server.

08DEC MEMORY PARITY ERROR
Specialized use in conjunction with function codes 20 and 21 and
reference type 6, to indicate that the extended file area failed to
pass a consistency check. The server attempted to read record file,
but detected a parity error in the memory. The client can retry the
request, but service may be required on the server device.

10DEC GATEWAY PATH UNAVAILABLE
Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the request.
Usually means that the gateway is misconfigured or overloaded.

11DEC GATEWAY TARGET DEVICE FAILED TO RESPOND
Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means that
the device is not present on the network.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5486

Example
Table 692: Example:
Modbus request of the client:
 Function code: 01 Read n bits

 Server operand
address:

4000HEX =
16384DEC

Area for read access
disabled in server

Modbus response of the server:
 Function code: 81HEX

 Error code: 03

Function block COM_MOD_MAST
This function block is only required in the operating mode Modbus client. It handles the commu-
nication (transmission of telegrams to the servers and receipt of telegrams from the servers).
The function block can be used for the local serial interfaces of the controller. A separate
instance of the function block has to be used for each interface.
Ä Chapter 1.5.4.22.1.1 “COM_MOD_MAST” on page 1698 is contained in the library
Modbus_AC500_V1x.lib.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5487

1.6.4.1.9 Communication with Modbus TCP/IP
Protocol description

The Modbus TCP protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
Each Ethernet interface can work as Modbus client and server interface in parallel if required.
The Modbus operating mode of an Ethernet interface is set in Ä Chapter 1.6.5.3.3.1 “Modbus
on TCP/IP protocol” on page 6173.

In the operating mode client, the telegram traffic with the server(s) is handled via the function
block Ä Chapter 1.5.4.13.1.4 “ETH_MOD_MAST” on page 1202 or Ä Chapter 1.5.4.13.1.19
“ETHx_MOD_MAST” on page 1250. These function blocks send Modbus request telegrams to
the server(s) via the set interface and receive Modbus response telegrams from the server(s)
via this interface.
The Modbus function blocks transferred by the client contain the following information:
● Transaction identifier for synchronization between messages of server and client (2 byte)
● Protocol identifier (0 for Modbus/TCP) (2 byte)
● Length field (Number of bytes in frame) (2 byte)
● Unit identifier (1 byte)
● Function code that defines the request of the client (1 byte)
● Data to be exchanged (n bytes)

In this operating mode, no function block is required for Modbus communication. Sending and
receiving Modbus telegrams is performed automatically.
The AC500 CPUs process the following Modbus operation codes:

Function code Description
DEC HEX
01 or 02 01 or 02 Read n bits

03 or 04 03 or 04 Read n words

05 05 Write one bit (encoded in one
word)

06 06 Write one word

07 07 Fast reading the status byte of
the CPU

15 0F Write n bits (encoded in one
byte)

16 10 Write n words

22 16 Mask write

23 17 Read/write multiple words in
one telegram

The following restrictions apply to the length of the data to be sent:

Modbus client

Modbus server

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5488

Function code Max. length
DEC HEX
01 or 02 01 or 02 2000 bits

03 or 04 03 or 04 125 words / 62 double words

05 05 1 bit

06 06 1 word

07 07 8 bits

15 0F 1968 bits

16 10 123 words / 61 double words
1)

22 16 Write: 1 word

23 17 Read: 125 words / 62 double
words
Write: 120 words / 60 double
words

Technical data
Configuration of Modbus on TCP/IP is described in the chapter Ä Chapter 1.6.5.3.3.1 “Modbus
on TCP/IP protocol” on page 6173.

Modbus addresses for AC500 CPUs
Modbus address table

A range of 128 kB is allowed for the access via Modbus, i.e., the segments line 0 and line 1
of the addressable flag area (%M area) can be accessed. Thus, the complete address range
0000hex up to FFFFhex is available for Modbus.
The availability of the segments depends on the CPU. The size of the %M area can be found in
the technical data of the CPUs and in the target system settings.
Inputs and outputs cannot be directly accessed using Modbus.
The address assignment for word and double word accesses is done according to the following
table:

Table 693: Modbus addresses (word accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

Line 0

0000 0 %MB0.0 %MX0.0.0 ...
%MX0.0.7

%MW0.0 %MD0.0

%MB0.1 %MX0.1.0 ...
%MX0.1.7

0001 1 %MB0.2 %MX0.2.0 ...
%MX0.2.7

%MW0.1

%MB0.3 %MX0.3.0 ...
%MX0.3.7

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5489

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0002 2 %MB0.4 %MX0.4.0 ...
%MX0.4.7

%MW0.2 %MD0.1

%MB0.5 %MX0.5.0 ...
%MX0.5.7

0003 3 %MB0.6 %MX0.6.0 ...
%MX0.6.7

%MW0.3

%MB0.7 %MX0.7.0 ...
%MX0.7.7

...

7FFE 32766 %MB0.65532 %MX0.65532.
0 ...
%MX0.65532.
7

%MW0.32766 %MD0.16383

%MB0.65533 %MX0.65533.
0 ...
%MX0.65533.
7

7FFF 32767 %MB0.65534 %MX0.65534.
0 ...
%MX0.65534.
7

%MW0.32767

%MB0.65535 %MX0.65535.
0 ...
%MX0.65535.
7

Line 1

8000 32768 %MB1.0 %MX1.0.0 ...
%MX1.0.7

%MW1.0 %MD1.0

%MB1.1 %MX1.1.0 ...
%MX1.1.7

8001 32769 %MB1.2 %MX1.2.0 ...
%MX1.2.7

%MW1.1

%MB1.3 %MX1.3.0 ...
%MX1.3.7

8002 32770 %MB1.4 %MX1.4.0 ...
%MX1.4.7

%MW1.2 %MD1.1

%MB1.5 %MX1.5.0 ...
%MX1.5.7

8003 32771 %MB1.6 %MX1.6.0 ...
%MX1.6.7

%MW1.3

%MB1.7 %MX1.7.0 ...
%MX1.7.7

...

FFFE 65534 %MB1.65532 %MX1.65532.
0 ...
%MX1.65532.
7

%MW1.32766 %MD1.16383

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5490

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

%MB1.65533 %MX1.65533.
0 ...
%MX1.65533.
7

FFFF 65535 %MB1.65534 %MX1.65534.
0 ...
%MX1.65534.
7

%MW1.32767

%MB1.65535 %MX1.65535.
0 ...
%MX1.65535.
7

The address assignment for bit accesses is done according to the following table:

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

Line 0

0000 0 %MB0.0 %MX0.0.0 %MW0.0 %MD0.0

0001 1 %MX0.0.1

0002 2 %MX0.0.2

0003 3 %MX0.0.3

0004 4 %MX0.0.4

0005 5 %MX0.0.5

0006 6 %MX0.0.6

0007 7 %MX0.0.7

0008 8 %MB0.1 %MX0.1.0

0009 9 %MX0.1.1

000A 10 %MX0.1.2

000B 11 %MX0.1.3

000C 12 %MX0.1.4

000D 13 %MX0.1.5

000E 14 %MX0.1.6

000F 15 %MX0.1.7

0010 16 %MB0.2 %MX0.2.0 %MW0.1

0011 17 %MX0.2.1

0012 18 %MX0.2.2

0013 19 %MX0.2.3

0014 20 %MX0.2.4

0015 21 %MX0.2.5

0016 22 %MX0.2.6

Address assign-
ment (bit
accesses)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5491

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0017 23 %MX0.2.7

0018 24 %MB0.3 %MX0.3.0

0019 25 %MX0.3.1

001A 26 %MX0.3.2

001B 27 %MX0.3.3

001C 28 %MX0.3.4

001D 29 %MX0.3.5

001E 30 %MX0.3.6

001F 31 %MX0.3.7

0020 32 %MB0.4 %MX0.4.0 %MW0.2 %MD0.1

0021 33 %MX0.4.1

0022 34 %MX0.4.2

...

0FFF 4095 %MB0.511 %MX0.511.7 %MW0.255 %MD0.127

1000 4096 %MB0.512 %MX0.512.0 %MW0.256 %MD0.128

...

7FFF 32767 %MB0.4095 %MX0.4095.7 %MW0.2047 %MD0.1023

8000 32768 %MB0.4096 %MX0.4096.0 %MW0.2048 %MD0.1024

...

FFFF 65535 %MB0.8191 %MX0.8191.7 %MW0.4095 %MD0.2047

Formula:
 Bit variable (BOOL) := %MX0.BYTE.BIT

where: DEC Decimal address

 BYTE DEC / 8

 BIT DEC mod 8 (Modulo division)

Calculation of
the bit variable
from the hexa-
decimal
address:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5492

● Address hexadecimal = 16#2002
DEC := 8194
BYTE := 8194 / 8 := 1024
BIT := 8194 mod 8 := 2
Bit variable: %MX0.1024.2

● Address hexadecimal = 16#3016
DEC := 12310
BYTE := 12310 / 8 := 1538,75 -> 1538
BIT := 12310 mod 8 := 6
Bit variable: %MX0.1538.6

● Address hexadecimal = 16#55AA
DEC := 21930
BYTE := 21930 / 8 := 2741,25 -> 2741
BIT := 21930 mod 8 := 2
Bit variable: %MX0.2741.2

Examples:

Calculation of the hexadecimal address from the bit variable:

● Bit variable := %MX0.515.4
DEC := 515 * 8 + 4 := 4124
Address hex := 16#101C

● Bit variable := %MX0.3.3
DEC := 3 * 8 + 3 := 27
Address hex := 16#001B

● Bit variable := %MX0.6666.2
DEC := 6666 * 8 + 2 := 53330
Address hex := 16#D052

Examples:

Peculiarities for accessing Modbus addresses
Peculiarities for bit access:
● As you can see in the address table, a WORD in the %M area is assigned to each Modbus

address 0000hex .. FFFFhex
● Bit addresses 0000hex .. FFFFhex are contained in the word range %MW0.0 ..

%MW0.4095

Areas protected from read/write access by Modbus client
As described in the PLC configuration, one write-protected and one read-protected area can be
defined for each segment line 0 and line 1. If you try to write to a write-protected area or to read
from a read-protected area, an exception response is generated.
Segment exceedance for line 0 and line 1:
A write- or read-protected area that lies in both segments, line 0 and line 1, cannot be accessed
with a write/read operation. In case of a segment exceedance, an exception response is gener-
ated.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5493

Read 10 words beginning at address := 7FFEhex
This includes the addresses: 7FFEhex...8007hex with the operands %MW0.32766...%MW1.7.
Because line 0 is exceeded in this case, an exception response is generated.
Due to this, two requests have to be generated here:
1. Read 2 words beginning at address := 7FFEhex.
2. Read 8 words beginning at address := 8000hex.

Example

Comparison between AC500 and AC31/S90 Modbus addresses
The following table shows the addresses for AC500 controllers and its predecessor AC31/S90:

Address
HEX

FCT
HEX

AC1131 operand FCT
HEX

AC500 operand

Bit accesses
0000 ... 0FFF 01, 02 %IX0.0 ...

%IX255.15
01, 02, 05, 07, 0F %MX0.0.0 ...

%MX0.511.7

0000 %IX0.0 %MX0.0.0

0001 %IX0.1 %MX0.0.1

0002 %IX0.2 %MX0.0.2

...

0010 %IX1.0 %MX0.2.0

...

0FFF %IX255.15 %MX0.511.7

1000 ... 1FFF 01, 02, 05, 0F %QX0.0 ...
%QX255.15

01, 02, 05, 07, 0F %MX0.512.0 ...
%MX0.1023.7

1000 %QX0.0 %MX0.512.0

1001 %QX0.1 %MX0.512.1

1002 %QX0.2 %MX0.512.2

...

1010 %QX1.0 %MX0.514.0

...

1FFF %QX255.15 %MX0.1023.7

2000 ... 2FFF 01, 02, 05, 07, 0F %MX0.0 ...
%MX255.15

01, 02, 05, 07, 0F %MX0.1024.0 ...
%MX0.1535.7

2000 %MX0.0 %MX0.1024.0

2001 %MX0.1 %MX0.1024.1

2002 %MX0.2 %MX0.1024.2

...

2010 %MX1.0 %MX0.1026.0

...

2FFF %MX255.15 %MX0.1535.7

3000 ... 3FFF 01, 02, 05, 07, 0F %MX5000.0 ...
%MX5255.15

01, 02, 05, 07, 0F %MX0.1536.0 ...
%MX0.2047.7

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5494

Address
HEX

FCT
HEX

AC1131 operand FCT
HEX

AC500 operand

Bit accesses
3000 %MX5000.0 %MX0.1536.0

3001 %MX5000.1 %MX0.1536.1

3002 %MX5000.2 %MX0.1536.2

...

3010 %MX5001.0 %MX0.1538.0

...

3FFF %MX5255.15 %MX0.2047.7

4000 ... FFFF No access 01, 02, 05, 07, 0F %MX0.2048.0 ...
%MX0.8191.7

Word accesses

0000 ... 0CFF 03, 04 %IW1000.0 ...
%IW1207.15

03, 04, 06, 10 %MW0.0 ...
%MW0.3327

0D00 ... 0FFF 03, 04 No access 03, 04, 06, 10 %MW0.3328 ...
%MW0.4095

1000 ... 1CFF 03, 04, 06, 10 %QW1000.0 ...
%QW1207.15

03, 04, 06, 10 %MW0.4096 ...
%MW0.7423

1D00 ... 1FFF No access 03, 04, 06, 10 %MW0.7424 ...
%MW0.8191

2000 ... 2FFF 03, 04, 06, 10 %MW1000.0 ...
%MW1255.15

03, 04, 06, 10 %MW0.8192 ...
%MW0.12287

3000 ... 359F 03, 04, 06, 10 %MW3000.0 ...
%MW3089.15

03, 04, 06, 10 %MW0.12288 ...
%MW0.13727

35A0 ... 3FFF No access 03, 04, 06, 10 %MW0.13728 ...
%MW0.16383

4000 ... 47FF %MW2000.0.0 ...
%MW2063.15.1
No access

03, 04, 06, 10 %MW0.16384 ...
%MW18431

4800 ... 4FFF No access 03, 04, 06, 10 %MW0.18432 ...
%MW0.20479

5000 ... 517F %MW4000.0.0 ...
%MW4023.15.1
No access

03, 04, 06, 10 %MW0.20480 ...
%MW0.21247

5180 ... FFFF No access 03, 04, 06, 10 %MW0.21248 ...
%MW1.32767

Double word accesses

0000 ... 3FFF No access 03, 04, 06, 10 %MD0.0 ...
%MD0.8191

4000 ... 47FF 03, 04, 06, 10 %MD2000.0 ...
%MD2063.15

03, 04, 06, 10 %MD0.8192 ...
%MD0.9215

4800 ... 4FFF No access 03, 04, 06, 10 %MD0.9216 ...
%MD0.10239

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5495

Address
HEX

FCT
HEX

AC1131 operand FCT
HEX

AC500 operand

Bit accesses
5000 ... 537F 03, 04, 06, 10 %MD4000.0 ...

%MD4023.15
03, 04, 06, 10 %MD0.1240 ...

%MD0.10815

5480 ... FFFF No access 03, 04, 06, 10 %MD0.10816 ...
%MD1.16383

Local data of the Modbus client
The address of the area from which data are to be read or to which data are to be written
is specified in the function block Ä Chapter 1.5.4.13.1.4 “ETH_MOD_MAST” on page 1202
or Ä Chapter 1.5.4.13.1.19 “ETHx_MOD_MAST” on page 1250 at input "Data", via the ADR
operator.

For the AC500, the following areas can be accessed using the ADR operator:
● Inputs area (%I area)
● Outputs area (%Q area)
● Area of non-buffered variables (VAR .. END_VAR or VAR_GLOBAL END_VAR)
● Addressable flag area (also protected areas for %M area)
● Area of buffered variables (VAR RETAIN .. END_VAR or VAR_GLOBAL RETAIN ..

END_VAR)

Modbus telegrams
For a detailed description of the Modbus TCP telegrams and their elements please see the
corresponding specifications on public websites.

Exception response by server
In operating mode Modbus client, the AC500 does only send requests, if the parameters at
the MODMAST inputs are logically correct. Nevertheless, it can happen that a server cannot
process the request of the client or that the server cannot interpret the request due to transmis-
sion errors or in case it’s capabilities are exceeded in any way. In those cases, the server
returns an exception response to the client. In order to identify this response as an exception
response, the function code returned by the server is a logical OR interconnection of the
function code received from the client and the value 80HEX.

General telegram description
Table 694: Server response
Error code CRC

High Low

Possible error codes of the client

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5496

Code Description
01DEC ILLEGAL FUNCTION

The server does not support the function requested by the client

02DEC ILLEGAL DATA ADDRESS
Invalid operand address in the server or operand area exceeded

03DEC ILLEGAL DATA VALUE
At least one value is outside the permitted range of values

04DEC SERVER DEVICE FAILURE
An unrecoverable error occurred while the server was attempting
to perform the requested action

05DEC ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server has accepted the request and is processing it, but a
long duration of time will be required to do so. This response is
returned to prevent a timeout error from occurring in the client.
The client can next issue a Poll Program Complete message to
determine if processing is completed

06DEC SERVER DEVICE BUSY
Specialized use in conjunction with programming commands.
The server is engaged in processing a long–duration program
command. The client should retransmit the message later when
the server is free.

07DEC NEGATIVE ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server cannot perform the programming functions. Client
should request diagnostic or error information from server.

08DEC MEMORY PARITY ERROR
Specialized use in conjunction with function codes 20 and 21 and
reference type 6, to indicate that the extended file area failed to
pass a consistency check. The server attempted to read record
file, but detected a parity error in the memory. The client can retry
the request, but service may be required on the server device.

09DEC UNDEFINED
Actually not defined by Modbus specification but might be used by
particular servers.

10DEC GATEWAY PATH UNAVAILABLE
Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the request.
Usually means that the gateway is misconfigured or overloaded.

11DEC GATEWAY TARGET DEVICE FAILED TO RESPOND
Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means that
the device is not present on the network.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5497

Example
Table 695: Example:
Modbus request of the client:
 Function code: 01 Read n bits

 Server operand
address:

4000HEX =
16384DEC

Area for read access
disabled in server

Modbus response of the server:
 Function code: 81HEX

 Error code: 03

Function blocks ETH_MOD_MAST and ETHx_MOD_MAST
These function blocks are only required for the operating mode Modbus client. They handle
the communication (transmission of telegrams to the servers and receipt of telegrams from the
servers). The function blocks can be used for any Ethernet interface of the controller itself or it’s
communication modules.
Ä Chapter 1.5.4.13.1.4 “ETH_MOD_MAST” on page 1202 and Ä Chapter 1.5.4.13.1.19
“ETHx_MOD_MAST” on page 1250 are contained in the library Ethernet_AC500_V1x.lib.

1.6.4.1.10 Fast counters
Fast counters in AC500 devices

For AC500 devices the function "fast counter" is available in S500 I/O modules
as of firmware version V1.3.

For AC500-eCo devices the function "fast counter" is available in onboard I/Os
of PM55x and PM56x.

Integrated fast counters are only available for digital I/O modules.
The digital I/O modules on the I/O bus contain two fast counters each.
If the counter is used, it needs up to 2 digital inputs and one digital output.
If the fast counter is deactivated, the inputs and outputs reserved for the counter can be used
for other tasks.
See Ä Chapter 1.6.5.2.9.8 “Fast counter” on page 6063.
A fast counter is available in the following constellations:
● In digital I/O modules, connected to an AC500 processor module.
● In AC500-eCo V2 processor modules PM55x and PM56x with onboard I/Os.
● In CS31 and CANopen communication interface modules.
● In Modbus, PROFIBUS and PROFINET communication interface modules and in the con-

nected digital I/O modules.
● In digital I/O modules, connected to an EtherCAT communication interface module.

The following table shows the S500 modules which contain a fast counter and which of the
digital inputs and outputs are reserved for the counter.

Fast counter
integrated in
S500 modules

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5498

Module Assigned inputs 1) Assigned
output

Remarks

Channel A Channel B Channel C 2) or
(CF)

DA501 DC16 DC17 DC18 The counter func-
tion is not avail-
able if the
modules are
mounted on the
communication
interface
modules CI581-
CN or CI582-CN

DA502 DC16 DC17 DC18 - in mode 1
and mode 2
DO0 - in mode
101 and mode
102 3)

DC522 C8 C9 C10

DC523 C16 C17 C18

DC532 C24 C25 C26

DI524 I24 I25 No hardware
output available

DX522 I0 I1 The counter does
not activate any
relay output

DC551‑CS31 C16 C17 C18 The counter func-
tion is activated
by setting the
correct address
on the module 4)

CI501‑PNIO,
CI541‑DP,
CI581‑CN,
CI521‑MODTCP

DI0 DI1 DO0

CI502‑PNIO,
CI542‑DP,
CI582‑CN;
CI522‑MODTCP

DI8 DI9 DO8

CI590‑CS31‑HA C8 C9 C10 The counter func-
tion is activated
by setting the
correct address
on the module 4)

CI592‑CS31 DC8 DC9 DC10 The counter func-
tion is activated
by setting the
correct address
on the module 4)

1) The two hardware inputs (channels A and B) are also and always available within the normal
process image, irrespective of the operating mode of the counter.
2) The hardware output channel C is activated by the fast counter only in the operating modes 1
and 2.
3) Especially for module DA502: The counter operating mode 101 is the same as mode 1, but
the assigned output is DO0 instead of DC18. Also the counter operating mode 102 is the same
as mode 2, but the assigned output is DO0 instead of DC18.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5499

4) The counter function of the CS31 communucation interface module can only be activated if a
bus address greater than 70 is set on the module by means of the address rotary switches. In
this case, the effective bus address equals the set address minus 70, and the counter is ready
for operation. Example: A set bus address of 83 means that the effective bus address = (83
- 70) = 13 and that the integrated fast counter can be used. In this case the parameter “Fast
counter operating mode” may not be 0!

The counter function is performed within the communication interface module and, accordingly,
in the digital I/O module(s). It works independently of the user program and is therefore able
to respond quickly to external signals. A simultaneous counter operation of several digital I/O
modules is possible.
Each module counter can be configured for one out of 10 possible modes. The desired oper-
ating mode is selected in the PLC configuration using module parameters. After that, it is
activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
While integrating a module containing a fast counter in the PLC configuration, the necessary
operands are created and reserved immediately. Thus, a counter implementation carried out
later on does not cause an address shift.

● The pulses at the fast counters' inputs or the evaluated signals of the traces A and B in case
of incremental position sensors are counted.

● The maximum counting frequency of digital I/O modules, operated at an AC500-CPU or
CS31 communucation interface module, is 50 kHz. In certain operating modes, the max-
imum counting frequency is lower (see table Ä Chapter 1.6.5.2.9.8.1.2 “Operating modes”
on page 6066).

● The counting frequencies of the communication interface modules of PROFINET,
PROFIBUS and CANopen are max. 200 kHz (in modes 1 to 6), max. 50 kHz (in mode
7), max. 35 kHz (in mode 9), and max. 20 kHz (in mode 10).

● If the modules DA501, DC522, DC523, DC532, DC551-CS31, CI592-CS31 and CI590-
CS31-HA are used, each counting input must be circuited externally in series with a resistor
of 470 W / 1 W, in order to safely avoid influences from the deactivated module outputs to
the connected sensors.

● The positive signal edges are counted, if not noted differently.
● By setting the operating mode 0, the counting function is switched off. In this case, the

reserved inputs and outputs can be used for other tasks. Simultaneous use of these termi-
nals for the fast counter and other signals must be avoided.

● The fast counter's actual value is provided as a double word (32 bits).
● The fast counter can count upwards in all operating modes. It counts beginning at the start

value (set value) up to the end value (max. from 0 to 4,294,967,295 or hexadecimal from
00 00 00 00 to FF FF FF FF. After reaching 4,294,967,295, the counter jumps with the next
pulse to 0. When the counter reaches the programmed end value, the counter output is
stored permanently as CF = TRUE (end value reached). Only when the fast counter is set
again (set value), CF is reset to FALSE.

● Operating modes of the fast counter: Ä Chapter 1.6.5.2.9.8.1.2 “Operating modes”
on page 6066

● Configuration of the fast counter: Ä Chapter 1.6.5.2.9.8 “Fast counter” on page 6063
● Operation with the library Counter_AC500_V<>.lib: Ä Chapter 1.5.4.9 “Counter library”

on page 1037

Features inde-
pendent of the
fast counter
operating mode

Further informa-
tion

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5500

Fast counter in AC500-eCo (Onboard I/O in PM55x and PM56x)

For AC500 devices the function "fast counter" is available in S500 I/O modules
as of firmware version V1.3.

For AC500-eCo devices the function "fast counter" is available in onboard I/Os
of PM55x and PM56x.

In Processor Modules with onboard I/Os (AC500-eCo) fast counter functionality can be acti-
vated within the onboard I/O configuration. A Processor Module with onboard I/Os contains up
to 2 fast counters (channel 0 and 1) according to the operating mode .
The fast counter can work in normal counter mode and A/B track counter mode. The normal
counter detects the rising edge of the counter input. It will increase or decrease the count value
at every rising edge. The A/B track counter is used to count the signal from a motion sensor.
The counter can count with single phase, double phases or quad phases. In the following the
behavior of the A/B track counter is described.

The fast counter cannot be used together with interrupt inputs at the same time.

The configuration of the fast counter is described in the chapter Ä Chapter 1.6.5.2.9.8 “Fast
counter” on page 6063.

The counting modes of the fast counters is described in the chapter Ä Chapter 1.6.5.2.9.8 “Fast
counter” on page 6063.

The following function blocks can be used to operate the fast counter with help of user program:

Group: Ä Chapter 1.5.4.9 “Counter library” on page 1037

Ä Chapter 1.5.4.9.1.2 “CNT_IO”
on page 1043

Ä Chapter 1.5.4.9.1.3 “CNT_IO_EXT”
on page 1050

Fast counter of digital S500 I/O devices

Group: Ä Chapter 1.5.4.25 “Onboard IO library” on page 1733

Ä Chapter 1.5.4.25.1.1 “ONB_IO_CNT”
on page 1734

Handle fast counter on onboard I/Os

1.6.4.1.11 Special function blocks and programs
Function block COM_SET_PROT

Function block Ä Chapter 1.5.4.19.3.1 “COM_SET_PROT” on page 1578 from
SysInt_AC500_V10.lib can be used for different functions. In the following example COM2 is
switched between "Online access" and Modbus (master):
1. In the device tree, append the “COM2 - Multi” protocol to the “COM2” node ([Add object]).
2. Append the “COM2 - Online Access” protocol to the “COM2 - Multi” node (Protocol with

index 0).

Configuring the
fast counter

Counting modes
of the fast
counter

Operating the
fast counter
with the user
program

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5501

3. Append the “COM2 - Modbus” protocol to the “COM2 - Multi” node (Protocol with index 1).

4. Set the system events START and STOP in the task configuration:

5. Call of block COM_SET_PROT in system events:
-
FUNCTION callback_Start: DWORD
VAR_INPUT
 dwEvent : DINT;
 dwFilter: DINT;
 dwOwner : DINT;
END_VAR
COM_SET_PROT(EN := FALSE); (* for edge
creation *)
COM_SET_PROT(EN := TRUE, COM := 2, IDX := 1); (* switch to
Modbus *)

FUNCTION callback_Stop : BOOL
VAR_INPUT
 dwEvent : DINT;
 dwFilter: DINT;
 dwOwner : DINT;
END_VAR
COM_SET_PROT(EN := FALSE); (* for edge
creation *)
COM_SET_PROT(EN := TRUE, COM := 2, IDX := 0); (* switch to
Online access *)

Sending/Receiving data with SysLibCom protocol
The following example shows how data is sent/received with the protocol "SysLibCom".
-> Telegrams of 32 bytes length are to be received and sent.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5502

1. Declaration part of the program PROGRAM proSysLibCom_Test:
-
VAR

 strComSettings : COMSETTINGS; (* Structure of COM settings *)
 dwHandle : DWORD;
 byStep : BYTE; (* Step chain *)
 dwRead : DWORD; (* Number of characters received
*)
 dwWritten : DWORD; (* Number of characters sent *)
 bEnSend : BOOL; (* Enable sending *)
 byCom : BYTE := COM2; (* COM number *)
 dwBaudrate : DWORD := 19200; (* Baudrate *)
 wLenRec : WORD := 32; (* Number of characters to be
received *)
 wLenTele : WORD := 32; (* Telegram length, here 32
characters for example *)
 wLenSend : WORD := 32; (* Number of characters to be
sent, for example 32 characters *)
 dwTimeoutSend : DWORD := 0; (* Timeout in [ms] for sending *)
 dwTimeoutRec : DWORD := 0; (* Timeout in [ms] for receiving *)
 abyRecBuffer : ARRAY[0..271] OF BYTE; (* Receive buffer, 272 bytes min.!
*)
 abyTeleBuffer : ARRAY[0..543] OF BYTE; (* Telegram buffer, 2 x receive
buffer min. *)
 aby SendBuffer : ARRAY[0..271] OF BYTE; (* Send buffer, telegram length
max.! *)
 strDataRec : StrucReceiveData; (* Structure of receive telegram
*)
 strDataSend : StrucSendData (* Structure of send telegram *)

END_VAR

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5503

2. Code part of the program
-> Processing of a step chain containing the following steps:
-
CASE byStep OF

0: (* Step 0: Open the interface COMx -> SysComOpen -> get handle *)
 strComSettings.Port :=
byCom; (* COM_Number *)
 dwHandle :=
SysComOpen(strComSettings.Port); (* Open
COM interface -> get handle *)
 byStep := SEL(dwHandle <> INVALID_HANDLE, 250,
1); (* handle ok -> Step 1, otherwise error step
250 *)

1: (* Step 1: Transfer of COMx interface parameters *)
 strComSettings.dwBaudRate :=
dwBaudrate; (* Set baudrate *)
 (* Enter at this point the number of stop bits and parity, if necessary *)

 (* set COM settings -> if OK, run step 2, in case of an error step 250 *)
 byStep := SEL(SysComSetSettings(dwHandle, ADR(strComSettings)), 250, 2);

2: (* Step 2: Initialization completed successfully -> now receiving and/or
sending *)

 (* Receive data: read all data received since last run, but wLenRec max.! *)
 dwRead := SysComRead (dwHandle, ADR(abyRead),
 WORD_TO_DWORD(wLenRec),
dwTimeoutRec); (* READ DATA *)
 IF (dwRead > 0) THEN (* Number of characters received; in bytes *)
 (* here, ignore for example all characters until valid
telegram start detected *)

 (* Number of receiving cycles for the telegram *)
 dwNumReadPerTele[byCom] := dwNumReadPerTele[byCom] + 1;
 (* Copy data to buffer *)
 SysMemCpy (dwDest :=
ADR(abySumDataRead[dwSum]DataRead]),
 dwSrc := ADR(abyRead[0]),
 dwCount := dwRead);
 (* Sum of read data of a telegram *)
 dwSumDataRead := dwSumDataRead + dwRead;
 IF dwSumDataRead >= wLenTele
THEN (* Telegram complete ? *)
 dwRecCount := dwRecCount
+1; (* Number of telegrams received *)
 (* Copy received telegram to structure
strDataRec *)
 SysMemCpy(dwDest := ADR(strDataRec,
 dw Src :=
ADR(abySumDataRead[0]),
 dwCount := wLenTele);
 dwNumReadPerTele :=
0; (* init for following telegram *)
 dwSumDataRead := 0;

 (* here the evaluation of data starts !!!
*)

END_IF; (* Telegram
complete *)

END_IF;
 (* Data received *)

 (* Send data *)
 (* Enabling the sending of data can be done, for example, cyclical or by
program control *)
 IF bEnSend
THEN (*
Enable sending *)
 (* Copy data to be sent to send buffer *)
 SysMemCpy (dwDest := ADR(abyDataSend[0]),
 dwSrc := ADR(strDataSend),
 dwCount := wLenSend);

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5504

 (* Send data *)
 dwWritten := SysComWrite(dwHandle,
 ADR(abyDataSend[0]),

WORD_TO_DWORD(wLenSend),

dwTimeoutSend); SEND DATA !!! *)
 IF (dwWritten <> wLenSend THEN
 byStep :=
250; (* Error when sending *)
´
END_IF; (* dwWritten *)
 bEnSend :=
FALSE; (* Deactivate enable sending *)

END_IF; (* bEnSend *)

250: (* Step 250: Error step -> Close COMx and start with step 0 *)
 bResult :=
SysComClose(dwHandle); (* Close
COM interface *)
 dwHandle := 0;
 byStep := 0;

END_CASE;
 (* End of step chain *)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5505

1.6.4.2 System technology of the AC500 communication modules
1.6.4.2.1 Ethernet communication modules
Ethernet
Frame formats

One fundamental part of the Ethernet specification is the arrangement of the data transfer
format. When transferring data via Ethernet, the actual user data are preceded by a so-called
preamble (which is among other things used to synchronize the receiver stations) as well as
the hardware source and target address and a type length field. A checksum follows after the
user data. All information mentioned above together constitute an Ethernet frame. During the
development of the Ethernet, different types of frames arose.

Preamble
8 bytes

Target addr.
6 bytes

Source addr.
6 bytes

Length
2 bytes

User data
46 to 1500 bytes

CRC
4 bytes

Fig. 1112: Structure of an Ethernet 802.3 frame

It has to be observed that the transferred user data do not inevitably contain only useful infor-
mation. When transmitting data using a protocol above Ethernet (refer to 1.2.5), each protocol
layer passed prior to the actual transmission supplements the original user data by its specific
frame or header, so that the maximum number of actual user data is smaller, depending on the
used protocols.

Each Ethernet terminal device that has the MAC layer functions implemented (refer to 1.2.5
Ethernet and TCP/IP) has a world-wide unique hardware and MAC address. In this 6 bytes
address, the two most significant bits of the first byte have specific functions. The most signifi-
cant bit is also called the I/G bit (Individual/Group bit) and indicates whether it is an individual
world-wide unique address (unicast address, I/G bit = 0) or a group address (I/G bit = 1). The
second most significant bit is called the G/L bit and indicates whether it is a globally or a locally
administered MAC address. A GAA (Globally Administered Address, G/L bit = 0) is an address
which is fixed programmed by the device manufacturer and has to be unique all over the world.
An LAA (Locally Administered Address, G/L bit = 1) can be a MAC address which has been
changed afterwards for the use within a network. For this, it has to be observed that a MAC
address has to be unique within a network.
The first 3 bytes of a MAC address are the manufacturer-related address part. Using this value,
the manufacturer of an Ethernet chip can be determined. Each manufacturer of Ethernet com-
ponents has one or several pre-defined address ranges assigned he can use for his products.
3COM, for example, uses among others the MAC address range 02-60-8C-xx-xx-xx.
For Ethernet, the MAC address is represented in a canonical form. This representation starts
with the least significant bit (LSB) and ends with the most significant bit (MSB) of a byte. The
following figure shows a global unicast address of the manufacturer 3COM.
Canonical representation 02-60-8C-00-00-01
Binary representation 01000000-00000110-00110001-00000000-00000000-10000000

Bus access methods
Ethernet uses the CSMA/CD access method (Carrier Sense Multiple Access / Collision Detec-
tion). With this method, the station that wants to transmit data, first "listens" to the carrier
whether data are currently being transmitted by another station (carrier sense). If the carrier is
busy, the station later tries to access the carrier again. If the carrier is idle, the station starts the
transmission.
With this method, particularly in greater networks, it can happen that several stations try to
transmit at the same time (multiple access). As a result, they "listen" to the carrier, detect that
the carrier is free and correspondingly start the transmission. This can cause collisions between
the different data packets. This is why each station verifies whether a collision occurred during
transmission (collision detection). If this is the case, the station aborts the transmission and then
tries to send its data again after a wait time which is determined by a random generator.

MAC address

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5506

Collisions within an Ethernet network do not cause loss of data, but they reduce the available
bandwidth of the network. In practice, for a network with 30 stations on the bus, a net bandwidth
of approx. 40 % is assumed. This means that a bandwidth of only approx. 4 Mbit/s is available
in a network with a theoretical bandwidth of 10 Mbit/s, for instance. This has to be considered
when planning an Ethernet network. The number of collisions can be reduced to a minimum if
the network is carefully planned and if only suitable network components are used (refer to 1.4
Cabling and 1.5.4 Media converters).

Half duplex and full duplex
If communication is only possible in one direction (transmission or reception), this is called half
duplex mode. However, the separate transmit and receive lines of today's twisted pair cabling
for Ethernet networks also allow full duplex operation. In full duplex mode, the stations can
simultaneously exchange data in both directions independent from each other. Due to this, the
CSMA/CD method is not necessary in full duplex mode. Networks with more than two stations
working in full duplex mode can only be implemented using switches because these switches
establish peer-to-peer connections between the individual stations (refer to 1.4 Cabling).

Auto negotiation
Today, Ethernet uses transmission rates of 10, 100 or 1000 Mbit/s in half duplex or in full
duplex mode. However, not all devices support all possible settings. This particularly makes
the optimum network configuration more difficult for networks using twisted pair cables of the
same kind and components which can be used with 10 Mbit/s or 100 Mbit/s in half duplex or
in full duplex mode as desired. Imperfect configurations can lead to link errors or at least to
performance losses because the maximum possible transmission rate is not used.
Due to this, the auto negotiation functionality (in the past also called Nway) has been estab-
lished with the introduction of Fast Ethernet. With this functionality, the stations agree on the
highest possible transmission rate and, if possible, full duplex operation. Then, all subscribers
on the network configure themselves optimally.
However, problems could arise if one component in one segment is configured manually, i.e. if it
has been set to a fixed transmission rate and mode and the auto negotiation function has been
switched off. In this case, a device operating in auto negotiation mode informs the manually
configured device about its possible settings but does not receive any response.

Ethernet and TCP/IP
Like nearly all standards in the field of data transmission, Ethernet also follows the ISO/OSI
layer model. Based on this reference model, the principle course of a transmission is described.
Each of the 7 parts (layers) has a particular function and makes it available for the next higher
layer.
The Ethernet standard IEEE-802.3 defines the function of the two lowest layers. These layers
consist of the following components and the Logical Link Control (LLC) which is described in the
IEEE standard 802.2.
● Media Access Control Protocol (MAC)
● Physical Layer Signalling (PLS)
● Attachment Unit Interface (AUI)
● Medium Dependent Interface (MDI)
● Physical Medium Attachment (PMA)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5507

Since the ISO/OSI model did not yet exist when the development of TCP/IP protocols started,
these protocols are based on the DoD architecture. The DoD model cannot be clearly trans-
ferred to the ISO/OSI model. The following figure shows a comparison of Ethernet in the
ISO/OSI model and the TCP/IP protocols adapted to that model. This shall explain that Ethernet
does not necessarily mean TCP/IP (and vice versa). To be precise, TCP/IP is only based on
Ethernet and can also be used in other data networks (e.g. for satellite links). In return, TCP/IP
is not the only protocol used in Ethernet networks. Actually, TCP/IP is only one of numerous
protocols which are used side by side.

Application
Presentation

Session
Transport
Network

Data link

Physical1

2

3
4
5
6
7

ISO/OSI layers

MAC
PLS
AUI

PMA
MDI

Ethernet
IEEE 802.2 / 802.3

Higher protocols

LLC

DoD protocols

Network access

FTP, SMTP,
OpenModbus etc.

TCP

IP

Fig. 1113: Ethernet in the ISO/OSI model

Supported protocols
● Freely configurable IP address and network mask
● Configurable IP address of the standard gateway
● IP datagram size: 1500 bytes max.
● Route cache size: 32 entries
● Route timeout: 900 seconds
● Number of IP multicast groups: 64 for reception, unlimited for transmission

Amount of user data for TCP telegrams: 1460 bytes max.

Amount of user data for UDP telegrams: 1472 bytes max.

● Client and/or server mode (several times)
● Up to 8 simultaneous client or server connections
● Supported function codes: 1, 2, 3, 4, 5, 6, 7, 15, 16. As of FW 2.2: in addition 22, 23

IP - Internet pro-
tocol (RFC 791)

IP - Internet pro-
tocol (RFC 791)
TCP - Transmis-
sion control
protocol (RFC
793, RFC 896)
UDP - User data-
gram protocol
(RFC 768)
BOOTP - Boot-
strap protocol
(RFC 951, RFC
1542, RFC 2132)
DHCP - Dynamic
host configura-
tion protocol
(RFC 2131, RFC
2132)
OpenModbus

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5508

● Maximum amount of data per telegram: 100 coils (words) or 255 registers (bits)
● Configurable connection monitoring functions

● Devices can be identified and accessed via the network (even unconfigured devices)
● Unique identification and localization via rotary switch on the devices

● ARP Cache size: 64 entries
● ARP Timeout: 600 seconds

Sockets
● Number of sockets: 16
● Socket options can be set individually

Restrictions
● IP fragmentation is not supported
● TCP Urgent Data is not supported
● TCP port 0 is not supported
● TCP port 502 is reserved for OpenModbus
● TCP port 1200 is reserved for gateway access
● UDP port 67 is reserved for BOOTP and DHCP
● UDP port 25383 is reserved for NetIdent protocol
● UDP port 32768 is reserved for UDP blocks

Designing and planning a network
Introduction

To obtain optimum performance within a network, it is absolutely essential to plan the network
beforehand. This applies to both the initial installation as well as its expansion. Rashly installed
networks can not only cause poor network performance, they even can lead to a loss of
data since restrictions given by the standard are possibly not kept. At first glance, designing
a network causes additional costs, but it will later reduce maintenance expenditures during
operation.
The following sections shall explain some principle methods for determining a suitable network
structure and give some hints how to find out the network utilization and performance.

NetIdent

ARP - Address
resolution pro-
tocol (RFC 826)

ICMP - Internet
control mes-
sage protocol
(RFC 792)
IGMPv2 -
Internet group
management
protocol, ver-
sion 2 (RFC
2236)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5509

Concepts for structuring a network
To obtain optimum performance within a network, it is absolutely essential to plan the network
beforehand. This applies to both the initial installation as well as its expansion. Rashly installed
networks can not only cause poor network performance, they even can lead to a loss of
data since restrictions given by the standard are possibly not kept. At first glance, designing
a network causes additional costs, but it will later reduce maintenance expenditures during
operation.
The following sections shall explain some principle methods for determining a suitable network
structure and give some hints how to find out the network utilization and performance.

Regarding the network technology the following three general models are distinguished:
● Hierarchy model
● Redundant model
● Safe model
The selection of the suitable model as a basis for planning a network depends on the specific
requirements of the installation. Office networks are typically built up based on the hierarchy
model since the individual clients do not very often exchange data with each other but only
periodically contact the server. Installation-internal networks which do not have any connection
to the company network often only consist of automation devices and do not have a server. The
connected controllers transmit data in short intervals directly to each other. Furthermore, the
operational safety of installation-internal networks has a higher importance since data transmis-
sion malfunctions can result in incorrect behavior of the installation or even in production stops.
In such cases it is more suitable to choose the redundant model or a safe model.
In the end, all three models shown above are based on the use of switching hubs (switches).
Whereas in the past simple hubs were increasingly used to set up a network wherever permitted
by the requirements, today almost exclusively switches are used. Using switches, historic
Ethernet rules such as the length restrictions of a collision domain no longer have to be
observed. This considerably simplifies the network design. Even though the use of switches
could make us believe that networks can be expanded to infinite size, it has to be considered
that each switch involved in a data transfer causes a delay. Therefore, the IEEE-802.1d bridging
standard recommends to limit the number of switches to be passed between two terminal
devices to a maximum of seven switches.

The hierarchy model intends the subdivision of the network into several levels and a graduation
of the data rate between the individual levels. For this purpose, normally at least two grades are
used e.g. by connecting the server with a data rate of 100 Mbit/s to the network and the clients
with 10 Mbit/s. The advantage of this design is that the server has 10 times the bandwidth of the
clients available which enables the server to provide sufficient bandwidth and response time for
several clients. Despite the fact that 10 times the bandwidth does not mean that 10 clients can
simultaneously access the server, the data transmitted to or from the clients do only need one
tenth of the time. In total, this reduces the response time for each individual client.

Designing and
planning a net-
work

Models

Hierarchy model

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5510

100 Mbits/s

10 Mbits/s

2

22

3 3 3 3 3 3

1

Fig. 1114: Hierarchy model

1 Server

2 Switch

3 Client

When dimensioning the individual levels the utilization of the particular level has to be consid-
ered. Devices connected to each other via hubs can only be operated in half-duplex mode.
Consequently they have to share the commonly used network (shared media). If the utilization
of such a shared media is higher than 40 % over a longer period of time, a switch should be
used instead of a hub in order to subdivide the collision domain and thus remove load from it.
The utilization threshold within such a switched media is 80 %. If this value is exceeded, the
utilization should be reduced by selecting a smaller grouping.

The meshed Ethernet structure is a typical example for a redundant network model. To obtain
fault tolerance, several connections have to be established between switches or nodes. This
way, data exchange can be performed using another (redundant) connection if one connection
fails.

Redundant
model

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5511

Server

1

1

2

2

2

22 2

3

3

Fig. 1115: Redundant model

1 Server

2 Switch

3 Client

However, this meshed constellation leads to loops which would make well-ordered data
exchange impossible. The loops would cause the broadcast or multicast data packets to
endless stray in the network. In order to suppress such loops, the spanning tree mechanism
Ä Chapter 1.6.4.2.1.3.3 “Network components” on page 5518 is used which always activates
only one unique connection and deactivates all other possible connections. On the occurrence
of a fault (e.g. caused by an interruption of the network line) the redundant connection is
re-activated and then maintains communication between the switches. However, switching of
the connection is not without interruption. The time needed for switching depends on the size
and structure of the network.
The use of link aggregation which is often also called "trunking" likewise provides increased
transmission reliability. Link aggregation actually means the parallel connection of several data
lines. This way the bandwidths of the individual data lines are bundled in order to increase the
total bandwidth. Furthermore, the parallel connection establishes a redundant connection. If one
data line fails, the data can still be transmitted via the remaining lines even though only with
reduced bandwidth.

To obtain a certain grade of safety for the transmitted data against unauthorized access or to
optimize the network utilization, it is suitable to design so-called Virtual Bridged Local Area Net-
works (VLANs). In a VLAN the data flow is grouped. The simplest variant of a VLAN is obtained
by a port-related grouping which means that particular ports of a switch are assigned to a
VLAN and data exchange is then only performed within this VLAN. A VLAN can be considered
as a group of terminal stations which communicate like in a usual LAN although they can be
located in different physical segments. In the end, establishing VLANs leads to a limitation of
the broadcast domains. As a result, all subscribers of a VLAN only receive data packages which
have been sent by subscribers of the same VLAN. Independent of their physical location, all
subscribers of a VLAN are logically put together to one broadcast domain. The limitation of the
broadcast domains relieves load from the network and provides safety since only the members
of the VLAN are able to receive the data packets.

Safe models

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5512

VLAN2VLAN1

Fig. 1116: Safe models

In order to enable a terminal device connected to a switch to exchange data beyond the borders
of the VLAN, the port of the switch has to be assigned to several VLANs. Apart from the simple
variant of the port-based VLAN, it is also possible to establish VLANs by evaluating additional
information contained in the Ethernet frames.

In the description of the network models it has already been mentioned that the existing hubs
should be replaced by switches in order to subdivide the collision domain and thus remove
load, if the utilization of a shared media is higher than 40 % over a longer period of time. If
the utilization within such a switched media is permanently above 80 %, it is recommended to
further relieve load by performing smaller grouping.
However, a network should basically not be dimensioned for the burst utilization. During normal
operation usually many smaller data packets are transmitted rather than large data streams.
This means that the network load regarding the bandwidth is not as high. Nevertheless, if any
bottle-necks occur, the simplest method to eliminate them is to increase the data rate (e.g.
from 10 Mbit/s to 100 Mbit/s). In existing networks, however, this is not always possible without
problems since the cable infrastructure is possibly not suitable for the higher data rate and the
expenditure for a new cabling is possibly not defensible. The only solution in such cases is a
segmentation of the network which results in a reduction of the number of devices within the
network or collision domain and thus provides more bandwidth for the remaining devices.
A segmentation of a network can be obtained with routers, bridges or switches. However,
segmentation is only meaningful if the 80/20 rule is considered and observed. The 80/20 rule
says that 80 % of the data traffic have to take place within the segment and only 20 % of the
data traffic are forwarded to another segment. This is why a previous analysis of the network
traffic is required to enable meaningful grouping. In this analysis it has to be determined which
station is communicating with which other stations in the network and which amount of data is
flowing for this communication. For shared media the network should be divided in a way that
stations producing roughly the same load should be grouped in one collision domain, if it is
not possible to make a division based on the communication paths. This way it is guaranteed
that stations with lower data traffic are able to meet the typical requirements regarding short
response times. Stations with permanently high data traffic generally cause a drastic increase of
the response times.
Best performance increase can be obtained by using switches and connecting each single
station directly to the switches. This way each station has its own connection to a switch and
thus can use the full bandwidth of a port in full-duplex mode. This subdivision and the provision
of the dedicated connections is called micro-segmentation. For micro-segmentation the 80/20
rule does no longer apply. It has only to be guaranteed that a switch is able to provide sufficient
internal bandwidth.

Utilization and
performance

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5513

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

1

2

1

1

1

1

1

Fig. 1117: Direct connection of all stations to switches

1 AC500 Processor Module with Ethernet
2 Switch
In order to plan a network with optimum performance, we have to think about the question what
a network is able to achieve at all. Taking the standards as a basis it can be determined how
many data per time can be transmitted via a network theoretically. The smallest Ethernet frame
size is 64 bytes long and contains 46 bytes of user data, the maximum frame size is 1518 bytes
at 1500 bytes of user data, each plus 64 bits for the preamble and 96 bits for the inter-frame
gap. This results in a minimum length of 672 bits (64 x 8 + 64 + 96) and a maximum length
of 12304 bits (1518 x 8 + 64 + 96). The transmission of one bit takes 10 ns for fast Ethernet
(100 Mbit/s) and 100 ns for Ethernet (10 Mbit/s). Using these values we can calculate how
many data packets of the smallest and the maximum length can be transmitted per second
theoretically (see tables). The calculation of the corresponding amount of user data which can
be transmitted (without taking into account the additional overheads of the higher protocols)
now shows the considerably higher protocol overhead caused by the small data packets.

Table 696: Data rate at 10 Mbit/s:
10 Mbit/s Length

[bits]
Time/bit
[ns]

Time/frame
[ns]

Frames
[ns]

User data/
frame [1/s]

User data
[bytes/s]

min. frame 672 100 67 200 14 880 46 684 480

max. frame 12 304 100 1 230 400 813 1 500 1 219 500

Table 697: Data rate at 100 Mbit/s:
100 Mbit/s Length

[bits]
Time/bit
[ns]

Time/frame
[ns]

Frames
[ns]

User data/
frame [1/s]

User data
[bytes/s]

min. frame 672 10 6 720 148 800 46 6 844 800

max. frame 12 304 10 123 400 8 127 1 500 12 195 000

The corresponding net bandwidth can be calculated from the ratio of the amount of user
data per second to the available network bandwidth. The net bandwidth is independent of the
transmission rate and calculated in the following table taking a transmission rate of 100 Mbit/s
as an example.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5514

Table 698: Net bandwidth at 100 Mbit/s:
100 Mbit/s User data

[bits/s]
Network bandwidth
[bits/s]

Net bandwidth
[%]

min. frame 54 758 400 100 000 000 54.7

max. frame 97 524 000 100 000 000 97.5

These calculations point out that the percentage of the network performance is considerably
higher for the transmission of larger frames. The efficiency of the data transmission which
is independent of the transmission rate is shown in the following table using some selected
frame sizes as an example. However, the values given in the table only consider the protocol
overhead of the MAC and the network layer. The user data are reduced accordingly by the
additional overhead of the corresponding higher layers.

Table 699: Efficiency of data transmission:
User data
[bits]

Frame size
[bits]

Overhead
[%]

Efficiency
[%]

1500 1518 1.2 98.8

982 1000 1.8 98.2

494 512 3.6 96.4

46 64 39.1 60.9

A calculation of the typical transmitted frame sizes may be still possible for small closed net-
works inside an installation with only automation devices connected. But, for instance, if PCs
are additionally connected to the network (even if they are connected only temporarily) the
frame sizes can vary considerably. This makes it impossible to perform an exact calculation
of the bandwidth or to make a precise statement regarding the performance. However, the
following index values could be determined with the help of various studies about network
performance.
● For low utilization of 0 to 50 % of the available bandwidth, short response times can be

expected. The stations are able to send frames with a typical delay of smaller than 1 ms.
● For medium utilization between 50 and 80 %, the response times can possibly increase to

values between 10 and 100 ms.
● For high utilization over 80 %, high response time and wide distribution can be expected.

The sending of frames can possibly take up to 10 seconds.
This is why the following principles should be observed when designing an Ethernet network.
● Mixed operation of stations which have to transmit high data volumes and stations which

have to operate with short response times (real time) should be avoided. Due to the wide
distribution, short response times cannot be guaranteed within such combinations.

● As few as possible stations should be positioned inside of one collision domain. For this
purpose, collision domains should be subdivided using switching hubs.

In the description of the network models it has already been mentioned that the existing hubs
should be replaced by switches in order to subdivide the collision domain and thus remove
load, if the utilization of a shared media is higher than 40 % over a longer period of time. If
the utilization within such a switched media is permanently above 80 %, it is recommended to
further relieve load by performing smaller grouping.
However, a network should basically not be dimensioned for the burst utilization. During normal
operation usually many smaller data packets are transmitted rather than large data streams.
This means that the network load regarding the bandwidth is not as high. Nevertheless, if any
bottle-necks occur, the simplest method to eliminate them is to increase the data rate (e.g.
from 10 Mbit/s to 100 Mbit/s). In existing networks, however, this is not always possible without
problems since the cable infrastructure is possibly not suitable for the higher data rate and the
expenditure for a new cabling is possibly not defensible. The only solution in such cases is a
segmentation of the network which results in a reduction of the number of devices within the
network or collision domain and thus provides more bandwidth for the remaining devices.

Utilization and
performance

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5515

A segmentation of a network can be obtained with routers, bridges or switches. However,
segmentation is only meaningful if the 80/20 rule is considered and observed. The 80/20 rule
says that 80 % of the data traffic have to take place within the segment and only 20 % of the
data traffic are forwarded to another segment. This is why a previous analysis of the network
traffic is required to enable meaningful grouping. In this analysis it has to be determined which
station is communicating with which other stations in the network and which amount of data is
flowing for this communication. For shared media the network should be divided in a way that
stations producing roughly the same load should be grouped in one collision domain, if it is
not possible to make a division based on the communication paths. This way it is guaranteed
that stations with lower data traffic are able to meet the typical requirements regarding short
response times. Stations with permanently high data traffic generally cause a drastic increase of
the response times.
Best performance increase can be obtained by using switches and connecting each single
station directly to the switches. This way each station has its own connection to a switch and
thus can use the full bandwidth of a port in full-duplex mode. This subdivision and the provision
of the dedicated connections is called micro-segmentation. For micro-segmentation the 80/20
rule does no longer apply. It has only to be guaranteed that a switch is able to provide sufficient
internal bandwidth.

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

1

2

1

1

1

1

1

Fig. 1118: Direct connection of all stations to switches

1 AC500 Processor Module with Ethernet
2 Switch
In order to plan a network with optimum performance, we have to think about the question what
a network is able to achieve at all. Taking the standards as a basis it can be determined how
many data per time can be transmitted via a network theoretically. The smallest Ethernet frame
size is 64 bytes long and contains 46 bytes of user data, the maximum frame size is 1518 bytes
at 1500 bytes of user data, each plus 64 bits for the preamble and 96 bits for the inter-frame
gap. This results in a minimum length of 672 bits (64 x 8 + 64 + 96) and a maximum length
of 12304 bits (1518 x 8 + 64 + 96). The transmission of one bit takes 10 ns for fast Ethernet
(100 Mbit/s) and 100 ns for Ethernet (10 Mbit/s). Using these values we can calculate how
many data packets of the smallest and the maximum length can be transmitted per second
theoretically (see tables). The calculation of the corresponding amount of user data which can
be transmitted (without taking into account the additional overheads of the higher protocols)
now shows the considerably higher protocol overhead caused by the small data packets.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5516

Table 700: Data rate at 10 Mbit/s:
10 Mbit/s Length

[bits]
Time/bit
[ns]

Time/frame
[ns]

Frames
[ns]

User data/
frame [1/s]

User data
[bytes/s]

min. frame 672 100 67 200 14 880 46 684 480

max. frame 12 304 100 1 230 400 813 1 500 1 219 500

Table 701: Data rate at 100 Mbit/s:
100 Mbit/s Length

[bits]
Time/bit
[ns]

Time/frame
[ns]

Frames
[ns]

User data/
frame [1/s]

User data
[bytes/s]

min. frame 672 10 6 720 148 800 46 6 844 800

max. frame 12 304 10 123 400 8 127 1 500 12 195 000

The corresponding net bandwidth can be calculated from the ratio of the amount of user
data per second to the available network bandwidth. The net bandwidth is independent of the
transmission rate and calculated in the following table taking a transmission rate of 100 Mbit/s
as an example.

Table 702: Net bandwidth at 100 Mbit/s:
100 Mbit/s User data

[bits/s]
Network bandwidth
[bits/s]

Net bandwidth
[%]

min. frame 54 758 400 100 000 000 54.7

max. frame 97 524 000 100 000 000 97.5

These calculations point out that the percentage of the network performance is considerably
higher for the transmission of larger frames. The efficiency of the data transmission which
is independent of the transmission rate is shown in the following table using some selected
frame sizes as an example. However, the values given in the table only consider the protocol
overhead of the MAC and the network layer. The user data are reduced accordingly by the
additional overhead of the corresponding higher layers.

Table 703: Efficiency of data transmission:
User data
[bits]

Frame size
[bits]

Overhead
[%]

Efficiency
[%]

1500 1518 1.2 98.8

982 1000 1.8 98.2

494 512 3.6 96.4

46 64 39.1 60.9

A calculation of the typical transmitted frame sizes may be still possible for small closed net-
works inside an installation with only automation devices connected. But, for instance, if PCs
are additionally connected to the network (even if they are connected only temporarily) the
frame sizes can vary considerably. This makes it impossible to perform an exact calculation
of the bandwidth or to make a precise statement regarding the performance. However, the
following index values could be determined with the help of various studies about network
performance.
● For low utilization of 0 to 50 % of the available bandwidth, short response times can be

expected. The stations are able to send frames with a typical delay of smaller than 1 ms.
● For medium utilization between 50 and 80 %, the response times can possibly increase to

values between 10 and 100 ms.
● For high utilization over 80 %, high response time and wide distribution can be expected.

The sending of frames can possibly take up to 10 seconds.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5517

This is why the following principles should be observed when designing an Ethernet network.
● Mixed operation of stations which have to transmit high data volumes and stations which

have to operate with short response times (real time) should be avoided. Due to the wide
distribution, short response times cannot be guaranteed within such combinations.

● As few as possible stations should be positioned inside of one collision domain. For this
purpose, collision domains should be subdivided using switching hubs.

Network components
The topology of an Ethernet network is like a star or tree structure. Up to two stations can be
connected to each segment where active distribution devices like hubs or switches are also
considered as a station. The following figure shows an example of a simple Ethernet network.

Fig. 1119: Example of a simple network

1 PC
2 Hub/Switch
3 AC500 processor module with Ethernet
The following sections introduce the different types of components required for a network.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5518

Terminal devices
Terminal devices are devices that are able to send and receive data via Ethernet, e.g. control-
lers with an Ethernet Communication Module or PCs with an integrated network adapter. With
this, one of the essential functions of a network adapter is to transfer all data packets to
the PC itself instantly and without any loss. Occurring defiles or even errors can cause data
packets to be lost. Such losses of data have to be got under control by higher protocols (e.g.
TCP/IP) which results in considerable performance reductions. The direct implementation of
higher protocols on the network adapter can increase the performance and save the resources
of the host system (e.g. controller).

Repeaters and hubs
At the dawning of the Ethernet, the repeaters had only two network connections and were used
to connect two segments to each other in order to extend the segment length. Later, repeaters
with more than two network connections were available. Those star distributors are called hubs.
They are able to connect several segments. Apart from the number of network connections the
functionality of hubs and repeaters is identical. This is why we only use the term "hub" in the
following descriptions.
Hubs are operating on the lowest layer of the ISO/OSI model and are therefore independent
of the protocols used on Ethernet. The network connections of hubs are exclusively operated
in half duplex mode. Due to this, collision domains can freely propagate beyond the hubs. A
hub can only support one transmission rate for all connections. Therefore it is not possible
to connect segments with different transmission rates via a simple hub. For this purpose a
dual-speed hub has to be used. The fundamental functions of hubs are as follows:
● Restoration of the signal magnitude
● Regeneration of the signal timing
● Propagation of a detected collision
● Expansion of short fragments
● Creation of a new preamble
● Isolation of a faulty segment
When transmitted over the medium (e.g. a twisted pair cable) the data signal is attenuated.
The task of a hub is to amplify an incoming signal in order to make the full signal magnitude
available at the outputs again. Furthermore, a distortion of the binary signal's on-off ratio (jitter)
can occur during data transmission. When transmitted via a hub, the hub is able to restore
the correct on-off ratio of the signal which avoids propagation of the signal jitter beyond the
segment.
However, one of the most important tasks of a hub is to propagate occurring collisions within
the entire collision domain so that the collision can be detected by all connected stations. If
it detects a collision on one of its connections, the hub sends a so-called jam signal over all
connections. If a hub receives a data fragment which, by its principle, could only be created by
a collision, it first brings the fragment to a length of 96 bits and then forwards it via the ports.
This shall guarantee that the data fragment can be received by all stations independent of their
distance to the hub and removed from the network. The detected data fragments are removed
by the terminal devices by not forwarding them to the higher layers.
By means of the data packet preamble the beginning of a data packet is detected so that the
recipient can synchronize to the incoming data stream. However, during the data transmission it
can occur that the first bits of a preamble are lost. The task of the hub is to restore a possibly
incomplete preamble before forwarding it.
If collisions occur within one segment in large numbers in a short period of time or if e.g. a
short circuit on a data line causes failures, the hub switches off the faulty segment to avoid
interference to the entire collision domain.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5519

10 Mbit/s hubs
The 10Base-T connections of a 10 Mbit/s hub are implemented as MDI-X ports and therefore
already crossed internally. The advantage is that the terminal devices can be directly connected
using 1:1 twisted pair cables and no crossover cables are required. Some hubs additionally
have a so-called uplink port which can be used to connect another hub. In order to also enable
the use of a 1:1 cable for this port, it is implemented as a normal non-crossed MDI port. In many
cases this port can also be switched between MDI and MDI-X or is implemented as a double
port with two connections in parallel (1 x MDI, 1 x MDI-X). In this case, it has to be observed
that these parallel ports may only be used alternatively and not at the same time.
Hubs are normally equipped with several LEDs for status indication. So, for example a Link
LED indicates the correct connection between the terminal device and port at the hub. This way,
incorrect cabling can be quickly detected. Further LEDs indicate for example the data traffic
over a port or the collisions.
The maximum permitted number of 10 Mbit/s hubs within one collision domain is limited to
4. This restriction is due to two reasons. One reason is that the bit period time delay, which
is inevitably increased by each hub, must not exceed 576 bit periods. The second reason
is that the so-called interframe gap (IFG) must not be shorter than at least 47 bit periods.
The interframe gap describes the time interval between two data packets and shall allow the
receiving stations to recover from the incoming data stream. However, the regeneration of an
incomplete preamble performed by the hub reduces the time between the data packets due to
the completion of possibly missing bits.
One possibility to get round the restriction to four hubs is the use of stackable hubs. These hubs
are connected to each other via a special interface instead of using the uplink port and therefore
constitute one logic unit. As a result, they appear as one single big hub to the external.

PM581
-ETH

PM581
-ETH

Control

Stackable hubs,
internal connection

1:1 uplink,
MDI <-> MDI-X

1:1 uplink,
MDI <-> MDI-X

Simple hub

Simple hub

1:1 uplink,
MDI <-> MDI-X

1:1 cable

Simple hub

system
Control
system

Fig. 1120: Stackable hubs

100 Mbit/s hubs
The principle operation of 100 Mbit/s hubs is like the 10 Mbit/s hubs. However, the hubs for 100
Mbit/s Ethernet have to be additionally distinguished to class I and class II hubs.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5520

Class I hubs (or class I repeaters) are able to connect two segments with different transmission
media. For this purpose the complete data stream has to be decoded on the receiving side and
encoded again on the transmission side according to the transmission medium. This conversion
process leads to higher delay times. Due to this, only one class I hub is permitted within one
collision domain.
In contrast, class II hubs support only one transmission medium. No conversion of the data
stream is required. This leads to shorter delay times compared with class I hubs. This is why for
two segments with a maximum length of 100 m each, up to two class II hubs which are again
connected to each other via a 5 m long segment can be used within one collision domain.

PM581
-ETH

PM581
-ETH≤ 100 m ≤ 100 m≤ 5 m

3 3

4 4

Fig. 1121: Use of a class II hub

3 AC500 Processor Module with Ethernet
4 Class II hub

10/100 Mbit/s dual-speed hubs
In contrast to the simple hubs, dual-speed hubs are able to support two transmission rates
and thus enable to connect two Ethernet networks with different data rates to each other.
Dual-speed hubs are internally structured like two separate hubs or paths (one for each data
rate). By means of the auto negotiation function the transmission rate of the connected station
is determined and automatically switched to the corresponding path. Each internal path is a
separate hub. For the temporary storage of the data packets, the paths are connected to each
other via an internal switch. Dual-speed hubs likewise operate in half duplex mode. However,
the internal switch provides a clear separation of the 10 Mbit/s and the 100 Mbit/s side so that
unlike the simple hubs a collision domain cannot reach beyond the borders of the corresponding
side of the dual speed hub.

Bridges, switches and switching hubs
Basically the terms bridge, switch and switching hub designate the same. In the early beginning
of the Ethernet, the term bridge was formed by the fact that a bridge had only two network
connections. Later, so-called multiport bridges with several connections came up which were
also called switches or switching hubs. This is why we use the common term "switch" in the
following descriptions for all the components mentioned above.
The use of a switch is another variant of connecting network segments to each other. The
decisive difference between a hub and a switch is that a switch is operating on the second layer
of the ISO/OSI model, the MAC layer.
The following sections describe the functionality of such a layer 2 switch. For reasons of
completeness it has to be mentioned that switches operating on higher and therefore protocol-
specific layers also exist.
Using a switch, load separation between networks can be implemented which leads to an
increased performance due to the reduced load of the individual segments. In contrast to a hub,
a switch does not operate transparently (i.e. it doesn't forward all data packets via all ports) but
decides on the basis of the MAC target address whether and via which port an incoming data
packets has to be forwarded. The data packet is only forwarded if the target station is located
in another segment or if the target address of the data packet contains a multicast or broadcast
address.
As already mentioned, the decisive advantage of a switch is the logical separation of networks.
Therefore, a switch represents a border for a collision domain. Aside from the performance
improvement, the use of a switch allows a network to be extended beyond the usual borders.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5521

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

Hub

Installation part A Installation part B

Data traffic of both installation parts

employs the entire network

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

PM581
-ETH

Switch

Installation part A Installation part B

Data traffic of Data traffic of

installation part A installation part B

Fig. 1122: Use of hubs and switches

To enable crosswise traffic between the segments, a switch has to be able to temporarily
store the incoming data packets until they can be transmitted on the forwarding segment. The
decision about forwarding of data packets is done using address tables. These address tables
are generated by the switch itself during a self-learning process. During this process, the switch
remembers the source addresses (MAC addresses) of incoming data packets of a port. If it later
receives further data packets, the switch compares their target addresses with the entries in the
address tables of the ports and, in case of a match, forwards the respective package via the
corresponding port. Here, the following cases have to be distinguished:
● If the source station and the target station are located within the same segment, the data

packet is not forwarded.
● If the station of the target address is located in another segment than the source station, the

data packet is forwarded to the target segment.
● Data packets containing a multicast or a broadcast address as the target address are

forwarded via all ports.
● A data packet with a target address which is not contained in the address tables is for-

warded via all ports (Frame Flooding).
The latter case normally only occurs during the first time after starting a switch since the
address is usually entered after some time when exchanging a data packet.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5522

In order to limit the size of the address tables, addresses which are not used over a longer
period of time are additionally removed from the tables. This also avoids incorrect forwarding as
it would appear e.g. when a station is moved within the network.
To enable the building of a redundant network structure (as it is often found in more complex
networks) using switches, the so-called spanning tree method has been introduced. With this
method, the switches exchange configuration messages among themselves. This way the
optimum route for forwarding data packets is determined and the creation of endless loops
is avoided. The exchange of messages is performed cyclic. As a result a connection breakdown
is detected and forwarding is automatically changed to another route.

Fig. 1123: Redundant network structure using only switches

Using a switch instead of a hub increases the bandwidth of the individual segments and
therefore leads to an increased performance. Building a network consistently with switches
furthermore enables full duplex operation and thus simultaneous data traffic in both directions
since switches are able to establish dedicated peer-to-peer connections between the individual
ports. The use of the access method CSMA/CD is not required since collisions can no longer
occur. Depending on the network structure, this can further increase the performance drastically.
For full duplex connections furthermore no length restrictions of the collision domain have to be
observed.

Media converters
Media converters provide the possibility of connecting components to each other via different
media. The most frequently occurring case for this is the conversion between twisted pair (TP)
and fibre optic cabling.
When using media converters it has to be observed that a connected port operating in half
duplex mode is no collision domain border. This is often not considered when using optical
fibres to bridge a larger distance. The fibre optical port of a media converter furthermore does
not support the auto negotiation function. Due to this, if an Ethernet component is directly
connected to the fibre optic side of a media converter, the transmission mode has to be set
fixed according to the component connected on the twisted pair side. If a connection between
two twisted pair components is established using two media converters, it is absolutely required
that both twisted pair components are operating with the same transmission mode. If necessary,
manual setting has to be performed.

Routers
Routers connect networks with identical protocols or addressing mechanisms. The main task of
a router is to perform the routing for the transmission of data packets from the sender to the
recipient. Routers are able to effectively reduce the data traffic between individual networks by
using different algorithms. The dynamic routing leads to a load reduction for the entire network.
If the router has several alternative routes to the target station available, it will always choose
the optimum way depending on the current load on the network and the expected costs.
In contrast to the switches which forward the packets on the basis of layer 2 (e.g. Ethernet),
the routers operate on layer 3 (e.g. IP). While the switches forward the packets on the basis
of the MAC addresses, the routers evaluate the contained IP addresses. For this purpose,
when receiving a data packet a router first has to remove the outer telegram frame in order
to be able to interpret the addresses of the inner protocol and then it has to re-assemble the
data packet again before forwarding it. This results in higher latency periods (time of stay)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5523

of the data within the router itself. The investigation of a data packet necessary for routing
makes clear that a router has to be able to process all network protocols to be routed over
this router. Due to the increasing spread of heterogeneous networks, today often routers are
used which are able to support several network protocols (e.g. IP, IPX, DECnet, AppleTalk)
instead of special IP routers. Such routers which are able to process several network protocols
are called multi-protocol routers. Some routers additionally have a bridge functionality (bridge
routers, Brouters) which enables them to also forward the data packets of protocols a router
cannot interpret or which do not support the routing function (e.g. NetBios).

Gateways
A gateway is a computer which is able to couple completely different networks. Gateways are
operating on a layer above layer 3 of the ISO/OSI model. They are used to convert different
protocols to each other. For the connected subnetworks, a gateway is a directly addressable
computer (node) with the following tasks:
● Address and format transformation
● Conversions
● Flow control
● Necessary adaptations of transmission rates for the transition to the other subnetworks.
Gateways can furthermore be used to implement safety functions on the application layer (fire-
walls). For example, gateways are used for the coupling of PCs located in local area networks
(LAN) to public long distance communications (wide area networks, WAN).

Programming access via Ethernet
Programming via Ethernet on TCP/IP in Automation Builder is described in the configura-
tion chapter Ä Chapter 1.6.5.2.2.2.3 “Configuration of communication via Ethernet (TCP/IP)”
on page 5829.

Modbus on TCP/IP
Usage and configuration of Modbus on TCP/IP in Automation Builder is described in the config-
uration chapter Ä Chapter 1.6.5.3.3.1 “Modbus on TCP/IP protocol” on page 6173.

Fast data communication via UDP/IP
Usage and configuration of UDP/IP in Automation Builder is described in the configuration
chapter Ä Chapter 1.6.5.3.7.1 “Contents of the UDP protocol configuration” on page 6185.

1.6.4.2.2 PROFIBUS DP communication modules
Introduction

This chapter gives a description of the PROFIBUS functionality in the AC500 system . The
chapter contains of a general PROFIBUS overview, the specific handling in the AC500 system
and describes the available ABB AC500 devices for PROFIBUS.

General PROFIBUS Description Ä Chapter 1.6.4.2.2.2 “PROFIBUS overview” on page 5525Topics and sub-
topics:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5524

● Communication Modules CM582-DP PROFIBUS DP Slave and CM592-DP-PROFIBUS DP
Master (Ä Chapter 1.6.2.4.8 “PROFIBUS” on page 4075).

● Communication Interface Modules (S500) CI541-DP, CI542-DP (Ä Chapter 1.6.2.8.6
“PROFIBUS” on page 4930).

● Ä Chapter 1.6.5.2.6.2.1.2 “Configuration of a PROFIBUS DP master” on page 5883
● Ä Chapter 1.6.5.2.6.2.2.1 “Configuration of PROFIBUS DP slave” on page 5894
● Configuration of PROFIBUS-Devices

– Configuration of CI541-DP and CI542-DP
– Configuration of the Ä Chapter 1.6.5.2.6.2.1.4 “Configuration of the PROFIBUS DP

slaves connected via FBP” on page 5889
– GSD based device (see Ä Chapter 1.6.5.2.6.2.1.3 “Configuration of 3rd party

PROFIBUS DP slaves” on page 5887).
● Online Diagnosis

– CM592-DP PROFIBUS DP Communication Module Statistic Views
– Fieldbus Commissioning (see Ä Chapter 1.7.2.7.1 “Fieldbus commissioning”

on page 6392)

(see Ä Chapter 1.5.4.26.1 “Function blocks” on page 1750)
● DPM_CTRL
● DPM_READ_INPUT
● DPM_READ_OUTPUT
● DPM_SET_PRM
● DPM_SLV_DIAG
● DPM_STAT
● DPM_SYS_DIAG
● DPV1_MSAC1_READ
● DPV1_MSAC1_WRITE

PROFIBUS overview
PROFIBUS DP is intended for fast data exchange in the field area. Here, central control units
(e.g. PLC/PC) communicate with decentralized field devices like I/O, drives and valves via a
fast serial connection. The data exchange with the decentralized modules is mainly performed
cyclically.
The communication functions, required for data exchange, are defined by the PROFIBUS DP
basic functions in accordance to IEC 61158/61784.
For parameterization, diagnosis and alarm handling during the running cyclic data exchange
also non-cyclic communication functions are necessary for intelligent field devices.

The definition of PROFIBUS is based on the experience concerning data transmission collected
during long years.
One base is the ISO/OSI model (Open Systems Interconnection Reference Model). It is an open
layer model with 7 layers for the communication in information processing systems. The model
describes uniformed procedures and rules for the exchange of data.
Fieldbus systems normally use only three of the 7 layers:

AC500 devices

Configuration in
Automation
Builder

IEC library

PROFIBUS
basics

ISO/OSI model

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5525

ISO/OSI Transmitting
CPU

 Receiving
CPU

Layer 7 Application
layer

Application
layer

= Interface to
the applica-
tion program
(CPU) with
application
oriented com-
mands (read,
write)

...

Layer 2 Data-link layer Data-link layer = Access con-
trol (to the
line), telegram
(start,
length,..), data
security (e.g.
CRC=Cyclic
Redundancy
Code)

Layer 1 Physical layer Physical layer = Definition of
the medium
(Twinax,
optical
fiber, ..),
coding
("1"=-4V),
transmission
speed (trans-
mission rate)..

Transmission medium (physical)

As a result of the ISO/OSI layer model, each layer can be defined separately and (nearly)
independent of the other layers.
Indeed, it is possible and common to use conventional cables, but also optical fibers as physical
layer for the PROFIBUS DP or have a mixture of both in a single bus configuration.
For the application layer, there are also different versions possible, e.g. PROFIBUS DP-V0,
PROFIBUS DP-V1 but also others that are not regarded here.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5526

* The quantities of bytes/words are defined by the connected device.

Typical field bus
topologies

Overview of
transferred data

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5527

** Parameters are transferred during power-up.

PROFIBUS DP-V0 <---> PROFIBUS DP-V1
The transfer of commands and monitoring signals is the essential task of the field bus and the
connected units.
They control and inform mainly about the process, e.g. control digital/analog outputs or read
digital/analog inputs. They are the same for DP-V0 and DP-V1
Command and monitoring telegrams represent the cyclic data transfer.

The diagnosis telegram provides detailed information if there is any problem, particularly in the
process. A short circuit on a digital output is an example. Diagnosis data are automatically read
by the PROFIBUS DP master if it gets a general fault info within a monitoring telegram.

Parameters are necessary to adapt the device to the process.
E.g., for the Digital S500 I/O modules the parameter "Input Delay" can be configured to filter
contact switch bouncing
Parameters can also include service-oriented data such as "Operation hours".
The main difference between the PROFIBUS DP versions DP-V0 and DP-V1 is:

DP/V0
Master

Parameters
only as block

DP/V0
Slave

Commands
Monitorings

Configuration

Diagnosis

DP/V1
Master

Parameters
as single
or as block

DP/V1
Slave

Commands
Monitorings

Configuration

Diagnosis

DP-V0 only allows to write the complete parameter set in one block.
The bus master sends the parameter block to the slave during power-up of the slave/device.
Some control systems also allow to send the parameter block during normal operation.
DP-V1 offers reading and writing single parameters.
The possibility to read single parameters is an important advantage: E.g. to read single parame-
ters of a drive (configuration parameters). In AC500 the function block DPV1_MSCAC1_READ
can be used.

In all cases only the bus master can start the data exchange on the PROFIBUS
DP bus.

PROFIBUS DP master class 1, PROFIBUS DP master class 2

Commands and
monitoring sig-
nals

Diagnosis

Parameters

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5528

Fig. 1124: PROFIBUS DP master, class 1 and class 2

Features
● RS-485, potential separated.
● Twisted pair cable or optical fibre as a medium for the bus.
● Up to 32 stations (master and slave modules) without repeaters and up to 126 stations on

one bus with repeaters.
● Integrated repeater controller.

● Up to 244 bytes of input data and 244 bytes of output data per slave.
● Cyclic user data transfer between DP master and DP slave.
● Acyclic data transfer from master to master.
● Slave configuration check.
● Efficient diagnosis functions, 3 graduated diagnosis messaging levels.
● Synchronization of inputs and/or outputs via control commands.

● Message transfer with Hamming distance HD = 4.
● Errors during data transfer are detected by the CRC check and cause a repetition of the

telegram.
● Access protection for inputs and outputs of the slaves.

Transmission
technique

Communication

Protection func-
tions

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5529

● Incorrect parameter settings are avoided since bus stations with faulty parameters are not
included in the user data operation.

● A failure of a bus station is registered in the master and indicated via a common diagnosis.

IEC61158 / DIN EN series

PROFIBUS DP Process Fieldbus - Decentral Periphery

DPM1 DP master (class 1), normal bus master

DPM2 DP master (class 2), commissioning device

DPS DP slave, I/O module

GSD Modules master data

DPV1 Guideline for functional expansions of
PROFIBUS DP

PNO PROFIBUS Nutzer Organisation (PROFIBUS
user organization)

Designing and planning a network
The PROFIBUS Communication Module is connected to the bus via the 9-pole SUB-D socket.
For EMC suppression and protection against dangerous contact voltages, the shield of the bus
line has to be connected to protective earth outside the housing.

Single master system
The single master system is the simplest version of a PROFIBUS network. It consists of a class
1 DP master and one or more DP slaves. Up to 31 DP slaves can be connected to the bus
without using a repeater. If the number of bus segments is increased by means of repeaters,
up to 126 DP slaves can be handled. The line ends of the bus segments have to be terminated
using bus terminating resistors.
The DP master of class 1 is able to:
1. Parameterize DP slaves (e.g. timing supervision bus interchange). "bus interchange" means
e.g. data and control Exchange on the Profibus.
2. Configure DP slaves (e.g. type / number of channels).
3. Read input and output data of the DP slaves.
4. Write output data of the DP slaves.
5. Read diagnosis data of the DP slaves.
6. Send control commands to the DP slaves (e.g. freezing input signals).

Standardization:
PROFIBUS DP

Terms, defini-
tions and abbre-
viations
PROFIBUS DP

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5530

Fig. 1125: Single master system example

Multi master system
A PROFIBUS network containing several DP masters is called a multi-master system. Up to 32
stations (DP masters and DP slaves) can be operated on one bus segment. Using repeaters
the system can be expanded to up to 126 stations. In a multi-master system no data exchange
between the DP masters is performed. The entire system is divided into logical subsystems
inside of which one DP master communicates with the assigned DP slaves. Each DP slave can
be assigned to only one DP master. The master has unlimited access to its assigned slaves
while all other masters on the bus can only read the input and output data of these slaves.
All DP masters of class 1 (normal bus master, here: AC500) and class 2 (commissioning device,
typically a PC) can read the input and output data of all slaves.
Additionally the DP masters of class 1 and class 2 have the following access possibilities to their
assigned DP slaves. They are able to:
● Parameterize DP slaves (e.g. timing supervision, bus interchange).
● Configure DP slaves (e.g. type / number of channels).
● Write output data of the DP slaves.
● Read diagnosis data of the DP slaves.
● Send control commands to the DP slaves (e.g. freezing input signals).
A DP master of class 2 is additionally able to:
● Read and write configuration data of the class 1 DP masters.
● Read configuration data of the DP slaves.
● Read diagnosis data of the class 1 DP masters.
● Read out the diagnosis data of the DP slaves assigned to the respective DP master.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5531

Fig. 1126: Multi master system example

PROFIBUS implementation
System start-up behavior

The PROFIBUS DP protocol is automatically handled by the Communication Module and the
operating system of the controller. The Communication Module is only active on the bus if it
was correctly initialized before and if the user program is running. No connection elements are
required for the cyclic exchange of process data via PROFIBUS DP. Special PROFIBUS DP
functions can be realized using the function blocks of the corresponding PROFIBUS library.
Communication via PROFIBUS is established by the communication module when starting the
user program and starts with the initialization of the configured slaves. After its successful
initialization, the slave is added to the cyclic process data exchange. The "RDY" LED lights up
steadily after at least one slave was successfully taken into operation. If the user program is
stopped, the communication module shuts down the PROFIBUS system in a controlled manner.
The DP master operation mode is completely integrated to the operating system of the con-
troller. The transmit or receive data of the slaves can be directly accessed in the corresponding
operand areas. Access can be performed either via operands or symbolically. No function
blocks are required.
The function block library contains various blocks which can be used e.g. to poll status informa-
tion of the communication module or to execute specific acyclic PROFIBUS DP functions. If
necessary, these blocks can be inserted additionally.
For further information on the configuration of PROFIBUS master/ PROFIBUS slave devices,
see Ä Chapter 1.6.5.2.6.2 “PROFIBUS” on page 5883.

Initial Operation

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5532

Diagnosis
Error diagnosis

PROFIBUS DP communication errors are generally indicated by the red "ERR" LED of the
Communication Module. Malfunctions of the PROFIBUS driver or the Communication Module
itself are additionally indicated via the E error flags and the corresponding LEDs of the CPU.
Furthermore, the PROFIBUS library provides different function blocks that allow a detailed error
diagnosis. Amongst other things, the following information can be polled:
● The condition of the Communication Module itself
● A detailed PROFIBUS diagnosis of an individual slave or
● A system diagnosis overview.

Function blocks
The function blocks listed in the table below are contained in the PROFIBUS DP Library
Ä Chapter 1.5.4.26 “PROFIBUS DP library” on page 1750.

Group Function block Function
General

 PROFI_INFO Reading of Communication
Module information

Status / Diagnosis

 Ä Chapter 1.5.4.26.1.6
“DPM_STAT” on page 1775

Reading the Communication
Module status

 Ä Chapter 1.5.4.26.1.5
“DPM_SLV_DIAG”
on page 1765

Reading the detailed
PROFIBUS diagnosis of a
slave

 Ä Chapter 1.5.4.26.1.7
“DPM_SYS_DIAG”
on page 1781

Reading the system diagnosis

Parameter

 Ä Chapter 1.5.4.26.1.4
“ DPM_SET_PRM”
on page 1762

Sending user parameters to a
DP slave

Controller

 Ä Chapter 1.5.4.26.1.1
“DPM_CTRL” on page 1750

Sending control commands to
slaves

Acyclic reading

 Ä Chapter 1.5.4.26.1.2
“DPM_READ_INPUT”
on page 1756

Reading input data of slaves
which are not assigned to the
master

 Ä Chapter 1.5.4.26.1.3
“DPM_READ_OUTPUT”
on page 1759

Reading output data of slaves
which are not assigned to the
master

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5533

1.6.4.2.3 PROFINET communication modules
PROFINET overview

PROFINET is an open standard for the realization of Industrial Ethernet based automation
applications. Time-critical and non-time-critical applications could be realized inside the same
Network in parallel. Additionally, the network is further on usable for standard office TCP/IP
communication.
PROFINET is a cyclic communication. Only for parameterization, diagnosis and alarm-mes-
sages of intelligent field devices, acyclic messages will be used.

AC500 PROFINET RT is PROFINET IO based on PROFINETRT.

● IEC 61131-3: PLC Standardization
● IEC 61158: PROFINET Standardization
● IEC 11801: Wire and connection elements for Ethernet

To ensure that PROFINET devices particularly of different vendors can communicate with each
other without problems the PNO brought up a certification procedure. In this procedure the
conformance in hardware as well as in software matters are tested and documented by an
accredited test laboratory.

Fig. 1127: PROFINET logo

The certification of the AC500 PROFINET devices took place according to conformance class B
and was executed by the accredited laboratory.
Furthermore the AC500 PROFINET devices have CE declaration.

Table 704: PROFINET
CAT 5 Ethernet cable for 100 MHz data size

CAT 5e Ethernet cable for 100 MHz data size for Gig-
abit-Ethernet

CAT 6 Ethernet cable for 250 MHz data size

CAT 7 Ethernet cable for 600 MHz data size

CAT 8 Ethernet cable for 1 GBit data size

GSDML Device data sheet in XML

I/O controller Conform to a master in a PROFINET network

Standardization:
PROFINET

Device certifica-
tion

Terms, defini-
tions and abbre-
viations

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5534

I/O module Conform to a slave in a PROFINET network

I/O supervisor PC-based engineering tool for initial operating
or diagnosis

IRT Isochronous real time

NRT Non-Real-Time

PNO PROFIBUS Nutzerorganisation e. V.

PROFINET Process fieldbus network

PROFINET CBA PROFINET Component Based Automation for
complex assembly modules

PROFINET IO PROFINET for decentralized field bus
devices, motion control, etc.

RT Real-Time

VLAN-Tag Virtual Local Area Network Tag, advanced
telegram for Ethernet telegram priority

PROFINET designations
PROFINET contains 2 different solutions:
● PROFINET IO
● PROFINET CBA (Component Based Automation)
PROFINET IO is used for communication with decentral periphery like IOs, drives, etc.
PROFINET CBA is a communication solution for autonomously acting partial units of machines
or plants.
PROFINET IO and PROFINET CBA are using different kind of communications variations of
PROFINET:
● PROFINET NRT (non-real-time)
● PROFINET RT (real-time)
● PROFINET IRT (isochronous real time)

PROFINET CBA PROFINET IO

Component−
based

Communication
with NRT

Isochronous
Real−time

(IRT)
RT−

Communication

Component−
based

Communication
with RT

Fig. 1128: PROFINET CBA, PROFINET IO

PROFINET NRT is used by PROFINET CBA and PROFINET IO for the exchange of non-critical
data by using standard TCP/IP and UDP/IP transfer mechanism according to IEE 802.3.

PROFINET IO on RT is the real-time communication for time-critical process data between PLC
and decentral periphery like I/O-devices, drives etc.
To reach the real-time behavior, PROFINET RT does not use the addressing features and
control mechanisms of TCP and UDP. PROFINET RT is using a separate real-time channel for
transmission with a reduced overhead. If used for communication between different networks,
the "RT over UDP" mode is available.

PROFINET
CBA /
PROFINET IO

PROFINET NRT

PROFINET RT

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5535

PROFINET IO based on RT can be used in separate and existing networks. The PROFINET
communication runs in parallel to TCP/IP and TCP/UDP communication.

PROFINET IRT is used for extremely time-critical applications (e. g. motion control). It uses
hardware-aided real-time communication. To use PROFINET IRT, special hardware with cycle
synchronization is necessary.

Real-time behavior means that a process has to be executed in a predefined
time. The duration of this predefined time interval does not matter; it is only
necessary that the process is done during this time. Due to this predictability
of this process it is possible (with aid of additional synchronization methods) to
cause chronologically adapted processes.

PROFINET nomenclature
The I/O controller is the master in the PROFINET system. It coordinates the start of the bus
communication and the parameterization of the I/O modules. The I/O controller gets the process
data and the diagnostic alerts of the I/O modules and forwards them to the control system (for
example PLC).

The I/O modules are the decentralized field devices (for example Input/Output devices or drives)
in the PROFINET system.
The I/O modules get parameterized by the I/O controller (or I/O supervisor), and exchange
process data with the I/O controller and send upcoming diagnostic alerts to the I/O controller.

The I/O supervisor is the engineering tool to access the I/O modules temporarily for commis-
sioning. This functionality can also be integrated into the I/O controller.

Transfer mechanism of PROFINET
The PROFINET IO communication is not a typical master-slave-communication. In fact there is
a parameter in the controller that sets the communication basic cycle ("SendClockFactor"). For
each I/O module it is possible to set a reduction rate ("ReductionRatio"). Due to this reduction
rate the cycle time between I/O controller and each I/O module can be set separately in depend-
ence of the performance requests Ä Chapter 1.6.4.2.3.4 “System performance” on page 5547.
The I/O controller sends the output data to each planned I/O module (following the device
specific parameterized cycle time). Each I/O module sends its input data with the same cycle
time to the I/O controller.

PROFINET IO is building up on standard Ethernet and uses two different communication chan-
nels:
For non-time-critical processes PROFINET IO uses standard Ethernet communication over
UDP/IP (NRT communication). These non-time-critical processes are:
● "Start up" of the bus communication
● Allocation of the IP-addresses to the PROFINET IO devices (DHCP)
● Parameterization of the PROFINET IO devices
For time-critical data exchange PROFINET IO uses the RT communication channel. The time-
critical processes are:

PROFINET IRT

I/O controller

I/O module

I/O supervisor

Communication
channels

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5536

● Reading and writing of process data of the PROFINET IO devices
● Alarm messages of a certain PROFINET IO device
● Allocation of names and addresses to the PROFINET IO devices

Ethernet

PROFINET Application

IP

TCP/UDP

NRT−Data RT−Data

Checker

Fig. 1129: PROFINET NRT and RT

The PROFINET RT frames consist of MAC header, process data and a checksum. The frames
have the following structure:

Destination Address Source Address VLAN−Tag EtherType IP, ARP, etc. CRC

(8 Bytes) (6 Bytes) (4 Bytes) (2 Bytes)

Mac−Header Data Checksum
(14 − 16 Bytes () 46 − 1500 Bytes) (4 Bytes)

3D 04 1A 21 19 53 80 00 3A 21 19 53 81 00 02 37 00 20 20 3A88 92 04 8226 69 3A 31

Fig. 1130: PROFINET RT telegram

The individual parts of the frame have the following sense:
● Destination address: MAC address of the receiver
● Source address: MAC address of the sender
● VLAN-Tag: prioritizing of the data exchange
● EtherType: Identifier of the following data (PROFINET RT uses 0x8892)
● Data: process data
● Checksum: checksum of the transferred data
The PROFINET NRT frames also contain IP/UDP, RPC NDR. In this case the VLAN tag is not
used.

Frame structure

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5537

Prioritization of the data exchange with VLAN
For privileged forwarding of the PROFINET RT frames the real-time communication uses the
VLAN tag according to IEEE802.1Q. So it is possible to define 7 different priorities. With the
VLAN tag it is ensured that the PROFINET RT frames have the highest priority. Thereby "real-
time" communication is made possible if PROFINET RT is used together with other network
protocols (for example TCP/IP, basic network communication, internet).
The PROFINET RT communication is realizable with every commercial Ethernet controller that
supports VLAN.
The VLAN tag has the following structure:

(4 Bytes)

8100

Type Priority VLAN−ID0

Type
2 Bytes

Tag (optional)
2 Bytes

3 Bit 1 Bit 12 Bit

VLAN−Tag

81 00 02 37

Fig. 1131: Contents of the VLAN-tag

The individual parts have the following sense:
● Type: Identifies the following data as a VLAN information
● Priority: Defines the priority of the telegram
● VLAN_ID: ID of the associated VLAN group

CAUTION!
Risk of communication faults!
PROFINET IO does not work in networks if Ethernet components do not sup-
port VLAN.
Make sure that all Ethernet components support the VLAN-tag.

The MRP (Media Redundancy Protocol) is necessary for ring topology. It has to be integrated
in the I/O controller as well as in the I/O modules and ensures the communication at a bus
disconnect.
The I&M functions (Identification & Maintenance) are necessary for reading out the vendor and
system specific information of an I/O module. The contents of these functions are defined in a
specific PNO specification (Profile Guidelines Part 1: I&M fuctions, Rev. 1.1.1, order no. 3.502).

Additional
notices for the
conformance
classes

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5538

AC500 PROFINET RT is certified according to IEC 61158 and is conform to the
conformance class CC A.

Further information on PROFINET can be found on the website of the "PNO" following this link:
http://www.profibus.com.

General station description file
The device specific features of a PROFINET IO device are documented in an electronic data
sheet, the General Station Description File "GSDML". This XML-based GSD-file describes
uniquely and completely the characteristics of a device in a vendor-independent format. For the
CI50x-PNIO Devices these characteristics are:
● Description of the inputs and outputs of the I/O modules
● Parameters that are necessary for correct operation of the I/O modules
● Diagnostics and its meanings that can be delivered from an I/O module
● Description of the S500 expansion modules that can be used on the I/O bus
Due to the predefined file format the configuration of a PROFINET system is simplified. The
GSDML files are normally supported by the vendors.
The PROFIBUS user organization (PNO) provides the GSDML files of several PROFINET
devices in its product overview.
The address of the PNO is: http://www.profibus.com.

PROFINET conformance classes
PROFINET as an open standard that defines three conformance classes with raising function-
ality to provide multivendor interoperability and functionality compatibility.
Within a third party certification Ä Chapter 1.6.4.2.3.2 “PROFINET modules” on page 5540 is
it ensured that a device provides the functionality of a certain conformance class. The conform-
ance classes are divided in the categories CC A , CC B and CC C (see following figure).
The PROFINET certificate attests the norm compliance in a PROFINET network according to
IEC 61158.

- Switches with IEEE802-conformity with bus-, phase- and real-
time clock synchronization
- IRT communication
- TCP/IP/RT and IRT redundancy

CC C

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5539

http://www.profibus.com
http://www.profibus.com

- Switches with MRP support (conform with IEEE 802)
- Providing of data for device-to-device-communication
- Application of SNMP
- Comfortable device-replacement without usage of an
engineering tool
- Client-functionality with MRP redundancy

CC B

- Conduction-bound and wireless data
transfer
- Cyclic RT communication
- Acyclic TCP/IP communication
- Alarms/diagnosis
- Definition of transfer cycle
- Automatic address resolution
- Identification & maintenance functionality
- Basic mechanism for detection of adjacent
devices
- Prioritization of data transfer according to
IEEE standard
- Transfer media: 100 Base TX/FX

CC A

PROFINET conformance classes

PROFINET modules
Communication modules and communication interface modules

The Communication Module Ä Chapter 1.6.2.4.9.1 “CM579-PNIO - PROFINET IO RT con-
troller” on page 4084acts as I/O controller in a PROFINET network. It is connected to the
processor module via an internal communication bus.
The Communication Interface Modules CI50x-PNIO act as I/O modules for PROFINET network.
The difference of those devices can be found in their input and output characteristics Ä Chapter
1.6.2.8.7.1 “Comparison of the CI5xx-PNIO modules” on page 4993.
The communication modules Ä Chapter 1.6.2.4.9.2 “CM589-PNIO(-4) - PROFINET IO RT with
4 devices” on page 4089 enables an AC500 PLC to act as I/O module in a PROFINET network.

Device model of AC500 PROFINET IO devices
PROFINET standard defines modules and submodules to give structure to I/O modules data.
These items are used in hierarchical order wherein a module may include one or more sub-
modules. The input and output data of an I/O module are located inside these submodules.
The modules and submodules can be identified via ident-numbers (module ident-number and
submodule ident-number) and can be assigned to slots and subslots. Basically 32767 slot
indexes and also 32767 subslot indexes are available to design the device structure.
PROFINET standard defines the following submodule types which represent the Device Access
Point (DAP) to provide standard device functionality. In AC500 PROFINET IO devices the
protocol stack defines to assign these special submodules at module slot 0.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5540

Submodule type Assigned subslot
DIM 1

Interface 32768

Port 1 32769

Port 2 32770

Automation Builder configuration assigns DIM, interface, port 1 and port 2 to desired slot/sub-
slots. These modules are inserted automatically in hidden style so they are not visible to the
user. It is only required to assign manually the modules/submodules needed for providing I/O
data.
Module types provided by AC500 PROFINET IO devices support one single submodule only.
This single submodule is inserted automatically in hidden style so it is not visible to the user.
The available module types depend on the device type. See Ä Chapter 1.6.2.8.7.1 “Compar-
ison of the CI5xx-PNIO modules” on page 4993 for CI50x module types and see Ä Chapter
1.6.2.4.9.2 “CM589-PNIO(-4) - PROFINET IO RT with 4 devices” on page 4089 for CM589-
PNIO(-4) module types.
PROFINET standard defines the property API (Application Process Identifier) to define standar-
dized behavior to I/O modules. In AC500 PROFINET IO devices support API 0 only. Automation
Builder defines corresponding API setting automatically.

Allocation of the device name
There are 2 possibilities for the allocation of the device name of the modules CI50x-PNIO and
CM589-PNIO(-4):
● Allocation of the device name via DCP (Engineering Tool needed)
● Allocation of the device name via address switches (without Engineering Tool)
For the start-up of PROFINET, the address information "MAC address" and a unique "device
name" is sufficient. The allocation of the IP address is performed via the I/O controller automati-
cally during start-up of the bus communication.

CAUTION!
Malfunctions due to wrong device name settings!
Each device name can only be used once in a network to be explicit.
Make sure that each device has a unique device name.

A maximum of 256 PROFINET IO devices can be used within the same net-
work. The ABB CM579-PNIO PROFINET IO Controller can handle up to 128
PROFINET IO devices.

The allocation of the device name via DCP is standard for PROFINET networks. For this
possibility of allocation, it is absolutely necessary to set both address switches to "00".
A device name set via DCP will be also present after a restart of the device (is stored perma-
nently).

If the address switches are not set to "00", the device name via DCP is also
stored permanently. But after a restart, the stored device name is not used.

General infor-
mation

Allocation of the
device name via
DCP

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5541

The AC500 PROFINET IO RT Devices (CI50x-PNIO and CM589-PNIO(-4)) are equipped with
2 rotary switches to set an explicit name to the I/O modules before commissioning. No engi-
neering tool is needed.
The device gets its name (including the fixed part of the device name) directly from the setting of
the switches (01h...FFh). This name can be used directly within the device configuration.
This name is for example:
ci501-pn-xx / cm589-pn-xx
ci501-pn- / cm589-pn- is the fixed part of the device name and "xx" represents the position of
the rotary switch (0..255d or 0..FFh).

Designing and planning a network
With PROFINET IO it is also possible to include wireless parts using WLAN into the network.
The only restriction is that the wireless component must support VLAN.
The reaction time will increase if using WLAN, because the wireless/WLAN transfer rate is
slower than wired networking.

CAUTION!
Risk of communication faults!
Ethernet components without VLAN-tag-support will not work properly in
PROFINET IO networks. Make sure that all Ethernet-devices support the VLAN-
tag.

Because of PROFINET IO requirements on data throughput, switches with sup-
port of 100 MBit/s and full duplex are mandatory.

Allocation of the
device name via
address
switches

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5542

Topologies
Star

1 CM579
2 PM591
3 CI501
4 CI502
5 Switch

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5543

Tree

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5544

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5545

1 CM579
2 PM591
3 CI501
4 CI502
5 Switch

Bus (also called line)

1 CM579
2 PM591
3 CI501
4 CI502
A ring structure in AC500 PROFINET is only allowed with the usage of special 3rd party
switches supporting ring structure.
According to requirements, topologies can be combined and mixed.
An easy controller-device-system consists of a controller CM579-PNIO and a certain quantity of
CI50x-PNIO (if necessary expanded with S500 expansion modules). A typical constellation is
described in the part "PROFINET configuration example".

1 CM579
2 PM591
3 CI501
4 DC522
5 CI502

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5546

Parallel operation of different PROFINET IO systems in one network
With PROFINET IO it is possible to create multiple controller-device-systems in one network.
They are built from functional independent subsystems, each consisting of one controller and a
part of the I/O modules in the network. The used topologies and layout of the I/O modules do
not matter.

1 CM579
2 PM591
3 CI501
4 CI502
5 Switch

System performance
Bus communication

The PROFINET communication is realized using 100 MBit/s transfer rate. Real-time frames
contain in addition to the process data (36 ... 1440 bytes) also an overhead of 44 bytes (gap,
preamble and FCS included). The result is a frame length of 80 - 1484 bytes, that means a
frame time of 6.4 µs up to 116.4 µs.
The modules CI50x-PNIO are the I/O modules for PROFINET RT. The difference of those
devices can be found in their input and output characteristics Ä Chapter 1.6.2.8.7.1 “Compar-
ison of the CI5xx-PNIO modules” on page 4993.
● The PROFINET IO RT devices CI501-PNIO, CI502-PNIO and CI504-PNIO have a process

data length of 80 bytes up to 213 bytes, depending on the usage of I/O modules. That
results in a frame time of 6.4 µs up to 17.0 µs for 1 I/O module.

● The PROFINET IO RT device CI506-PNIO has a process data length of 80 bytes up to 1024
bytes, depending on the usage of I/O modules. That results in a frame time of 6.4 µs up to
81.7 µs for 1 I/O module.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5547

To get the best performance for the PROFINET RT channel a few factors have to be taken into
account. These parameters can be set in the configuration tool and define the frequency and
distribution of the RT frames.

SendClockFactor
The SendClockFactor multiplied with a basic time of 31.25 µs defines the cyclic basic clock rate
of the whole PROFINET system, i.e. the smallest cycle time for the exchange of process data.
The typical value for the SendClockFactor is 32, that means the basic bus cycle is 1 ms. For
100 MBit/s it is recommended that the SendClockFactor is between 5 and 128.

Table 705: Examples for the SendClockFactor:
SendClockFactor PROFINET basic cycle time Annotation
5 156 µs Fastest theoretical value for

the basic cycle time at 100
MBit/s

32 1 ms Fastest basic cycle time for
the PROFINET IO controllers

128 4 ms Slowest theoretical value for
the basic cycle time at 100
MBit/s

The possible values for SendClockFactor and ReductionRatio (the product of
both is the cycle time) of a CI506-PNIO device are dependent on the connected
CANopen Slaves (number of PDOs. The dependency is shown in the following
table.

For a CI506-PNIO for example:

PROFINET Cycle Time Maximum number of CANopen PDOs *)
1 ms 8

2 ms 32

4 ms 128

16 ms 244

*) Remarks:
● 50 % RxPDO, 50 % TxPDO
● 8 byte process data for each PDO
● CANopen cycle time min. 4 ms or about 80 % CAN bus load (e.g. 20 ms for 128 PDOs)

ReductionRatio
This value can be set individually for each I/O module and defines its ReductionRatio to the
basic cycle time of the PROFINET communication. That means if the basic cycle time is 1 ms
and the ReductionRatio is set to 32, the process data will be exchanged every 32 ms between
the I/O module and the communication module.
The ReductionRatio provides the user the possibility to adapt the network times of each slave
individually and optimally to the system restrictions. With this it is possible to decrease the bus
load for getting lower reaction times for more time critical data of other I/O modules.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5548

Table 706: Examples for the ReductionRatio:
PROFINET basic cycle time ReductionRatio of I/O

module
Update time of the process
data of an I/O module

1 ms 1 1 ms

1 ms 2 2 ms

1 ms 4 4 ms

Allowed values for the ReductionRatio are 1, 2, 4, 8, 16, 32, 128, 256 and 512.

For configuration of the ReductionRatio, attention should be paid to:
● the basic bus cycle time should not be overloaded, i.e. that not more RT frames can be

transferred than would fit in the fastest bus cycle time.
● a time reserve for non RT frames (NRT) should be hold out (typically about 30 % of the

projected basic bus cycle time)

Help on projecting
For getting an overview over the bus load, information is displayed in this section, with this
information it is easier to configure a PROFINET IO system optimally.
The PROFINET IO frame has a minimal length of 80 bytes (44 bytes overhead and 36 bytes
minimum user data). That means an extension of this frame size takes only place if the sum of
the process data (respectively divided in input and output data) is greater than 36 Byte.
In the following figure this is pointed up again: The first 2 examples (CI501-PNIO alone and
CI502-PNIO with 5 I/O modules DC532) will fit into the minimum frame size. In the third
example, only two I/O modules AX522 are used on a CI501-PNIO but that suffices to get above
the minimum frame size.

Fig. 1132: Effect of the process data length on the frame length

For better overview, the data length of the CRC, which follows the user data, is
included into the overhead.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5549

The following tables show the length of the process data of all available S500 PROFINET IO
devices and of all S500 modules. With these tables and the aid of the following formula, it is
possible to calculate the frame time for a modular I/O module (separately for input and output
data).

Module type Input data length [bytes] Output data length [bytes]
CD522 24 32

CI501-PNIO 9 5

CI502-PNIO 2 2

CI504-PNIO 0 ... 36 0 ... 36

CI506-PNIO 0 ... 36 0 ... 36

Table 707: Length of the process data of the S500 I/O modules:
Module type Input data length [bytes] Output data length [bytes]
DA501 12 8

DC522 2 2

DC523 3 3

DC532 4 2

DC561 2 2

DI524 4 0

DI561 1 0

DI562 2 0

DI571 1 0

DO561 0 1

DO571 0 1

DO572 0 1

DX522 1 1

DX531 1 1

DX561 1 1

DX571 1 1

AI523 32 0

AI531 32 1

AI561 8 0

AI562 4 0

AI563 8 0

AO523 0 32

AO561 0 4

AX521 8 8

AX522 16 16

AX561 8 4

tinput = Max(6.4 µs, (SUMinput + 44) * 0.08 µs) / ReductionRatio

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5550

toutput = Max(6.4 µs, (SUMoutput + 44) * 0.08 µs) / ReductionRatio

tsum = tinput + toutput

For CI506-PNIO the I/O data size of connected CANopen slaves must also be
considered.

With these values, an estimation of the expected bus load is possible. Afterwards, all frame
times of input and output must be added. The result is the average time the complete communi-
cation needs. In the following table this is done for an example application for getting a sense of
the expected times. The sum of the frame times of the different I/O modules is here 130.3 µs,
that means with a basic cycle time of 1 ms the bus load is only 13.26 % and that means there is
enough reserve for NRT data transfer for other network applications.

Devic
e

DAP EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 Send
Clock
Facto
r [ms]

Redu
ction
Ratio

Time
[µs]

1 CI501
-PNIO

DC53
2

AX52
1

 1 1 12.8

2 CI501
-PNIO

DC53
2

AX52
1

 1 2 6.4

3 CI501
-PNIO

DC53
2

AX52
1

 1 4 3.2

4 CI501
-PNIO

DC53
2

AX52
1

 1 8 1.6

5 CI501
-PNIO

DC53
2

DC53
2

DC53
2

DC53
2

 1 1 12.8

6 CI501
-PNIO

DC53
2

DC53
2

DC53
2

DC53
2

 1 2 6.4

7 CI501
-PNIO

DC53
2

DC53
2

DC53
2

DC53
2

 1 4 3.2

8 CI501
-PNIO

DC53
2

DC53
2

DC53
2

DC53
2

 1 8 1.6

9 CI501
-PNIO

DC53
2

DC53
2

DC53
2

DC53
2

AX52
2

AX52
2

AX52
2

1 1 17.8

10 CI501
-PNIO

DC53
2

DC53
2

DC53
2

DC53
2

AX52
2

AX52
2

AX52
2

1 2 8.9

11 CI501
-PNIO

DC53
2

DC53
2

DC53
2

DC53
2

AX52
2

AX52
2

AX52
2

1 4 4.4

12 CI501
-PNIO

DC53
2

DC53
2

DC53
2

DC53
2

AX52
2

AX52
2

AX52
2

1 8 2.2

13 CI501
-PNIO

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

1 1 26.1

14 CI501
-PNIO

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

1 2 13.0

15 CI501
-PNIO

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

1 4 6.6

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5551

Devic
e

DAP EXP1 EXP2 EXP3 EXP4 EXP5 EXP6 EXP7 Send
Clock
Facto
r [ms]

Redu
ction
Ratio

Time
[µs]

16 CI501
-PNIO

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

AX52
2

1 8 3.3

 TOTA
L

130.3

Configuration examples and their delivery time
The following examples give an estimated overview of the PROFINET communication usage
rate.

Example 1 (typical)
A typical entire module consists of a CI501-PNIO with one DC532 and one AX521. This constel-
lation contains 21 bytes input data and 15 bytes output data. The RT telegram is sent in both
directions with a time of 6.4 µs.
Bus cycle time = 1 ms
ReductionRatio (RR) = 1
RT transmission time = 1 ms -30 % = 700 µs
Number of I/O devices = 700 µs / (6.4 µs + 6.4 µs) = 55
You can operate with up to 55 I/O devices in one network and you still have enough reserves for
the non-real-time channel.
The reserve of the real-time and non-real-time channel is decreased by using more than 55 I/O
devices. (With 78 I/O devices, there are no reserves left.)

Example 2 (with 7 I/O modules)
An I/O module with a larger data range is a CI501-PNIO with seven AI523. This constellation
contains 233 bytes input data and 5 bytes output data. In input direction a RT telegram is sent
with about 24 µs.
Bus cycle time = 1 ms
ReductionRatio (RR) = 1
RT transmission time = 1 ms - 30 % = 700 µs
Number of I/O modules = 700 µs / (24 µs + 6.4 µs) = 24
You can operate with up to 24 I/O modules with the same configuration.
If more than 32 I/O modules are operating, the data exchange must be decreased by changing
the ReductionRatio.

Simultaneous operation of PROFINET and Ethernet TCP/IP in one network is possible. The
parallel usage of non-real-time protocols (office applications, TCP/IP) has no influence to the
real-time channel. On the other hand, a high usage rate of the real-time channel delays the
non-real-time communication.

Ethernet TCP/IP

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5552

The simultaneous operation of PROFINET and EtherCAT in one network is not possible.

The PROFINET Communication Module has no programming interface to the AC500 PLC.
The PROFINET network is usable for programming purposes by connecting a CM597-ETH
Communication Module or a PM5x1 Ethernet port to the PROFINET network.

Delivery time of CI501-PNIO and CI502-PNIO
The PROFINET Communication Module CM579-PNIO supports a communication with up to
128 I/O modules. The aimed delivery times raise by a greater upgrade of the system.
The following tables show the different delivery times in dependence of a CM579-PNIO Com-
munication Module and the number of CI50x-PNIO modules.

The basic PROFINET cycle is 1 ms (SendClockFactor = 32). The I/O modules
ReductionRatio value is 1 and the process update cycle is 1 ms.

Quantity of CI50x-PNIO Terminal-to-terminal
response time of digital IO
[ms]

Comment

2 7.1 The information regards the
"Worst Case"16 7.1

32 13.1

Terminal-to-terminal response time of digital I/O depending on the quantity of I/O modules in
the PROFINET network

Quantity of CI50x-PNIO Terminal-to-terminal
response time of analog I/O
[ms]

Comment

2 14.0 The information regards the
"Worst Case"16 14.0

32 18.0

Terminal-to-terminal response time of analog I/O depending on the quantity of I/O modules in
the PROFINET network

PROFINET implementation
System start-up behavior

The PROFINET protocol is handled automatically by the PROFINET Communication Module
and the PLC operation system. When the Communication Module is initialized in the proper way
and the user application is running, the Communication Module and the bus become active.
No function blocks are needed for the cyclic process data exchange. The access to the send
and receive data to the according operands range can be performed in the direct way. The
access takes place either via operands or symbolic variables. Special PROFINET functions are
realised by function blocks of the PROFINET Library.

Simultaneous
usage of
PROFINET and
EtherCAT
Simultaneous
programming
via network

Initial operation

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5553

After switching on the power supply of the PLC the user application is loaded and the Communi-
cation Module is configured. Then the IP addresses of the IO devices will be assigned by means
of DCP. For the identification of the IO devices the Profinet IO device name is used. Which
has to be previously assigned using the DCP protocol. For ABB devices additionally the default
name and the rotary switch can be used for name assignment.

When the user application changes into the run mode, the configured I/O modules are initial-
ized. At this time, the I/O modules get their configuration (and the configuration of possibly
connected I/O modules) by the I/O controller.
Then the configured devices are compared with the available I/O modules and I/O modules
of the real assembly. If the result of the compare is conformed, the I/O modules get their
configuration. Otherwise the available devices get their configuration and the failure is displayed
with the error LEDs of the communication interface module. The error can also be displayed by
using the diagnosis function blocks.
The Communication Module and the I/O modules change into the cyclic process data exchange
when the configuration transfer is completed.
If the configuration is not successful or the cyclic process data exchange between I/O controller
and I/O module is broken (e. g. removing of the plug), both participant
● close their communication
● change their status into the initial condition
● try to build up a new connection.
This procedure has no influence on devices where the configuration was successful.
Because of that a replacement of a faulty I/O module can be done without restarting the PLC.
But you have to consider that the new device must have the same position of the switches for
setting the device identifier like the replaced one and switch off the power supply of the device
you want to replace.

Diagnosis
In addition to the user data transportation PROFINET RT provides a wide range of commis-
sioning and diagnostic functions. The upcoming diagnosis events from the I/O modules are
centralized in the I/O controller and can be displayed using several function blocks. Due to
this the localization of errors is made very simple Ä Chapter 1.6.4.2.3.6.4 “Diagnosis views”
on page 5556.

PROFINET function block library
The function block library PROFINET_AC500_V13.lib contains different function blocks to get
I/O controller and connected I/O modules information about the status of communication and
error states. These function blocks can be embedded additionally, especially for the initial
operation.
A detailed function block description can be found in the PROFINET library.

The status messages of the PROFINET bus are requested by the function blocks PNIO_STATE
and PNIO_SYS_DIAG, which give following information:

Function block name Function
Ä Chapter 1.5.4.27.1.9 “PNIO_STATE”
on page 1826

Common information about the PROFINET
bus state

Ä Chapter 1.5.4.27.1.10 “PNIO_SYS_DIAG”
on page 1829

Detailed information about the PROFINET bus
state

IP assignment

Initialization

PROFINET
status and diag-
nosis via func-
tion blocks

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5554

Error and status messages describing I/O devices are queried by PNIO_DEV_ALARM.

Function block name Function
Ä Chapter 1.5.4.27.1.1 “PNIO_DEV_ALARM”
on page 1794

Representation of diagnosis messages from
connected I/O modules

Identification and maintenance functions
PROFINET standard defines "Identification & Maintenance" data (I&M) to have access to device
specific information like serial number, order number etc. This I&M data is described as I&M0
and I&M1 – I&M5 data. I&M0 and I&M1 – I&M4 data should be provided by all types of I/O
modules; I&M5 is optional.
Access to this data should be provided via PROFINET acyclic read/write services at specific
slot/subslot indexes.
The following shows how to access I&M data in AC500:

 Read / Write Accessible at Slot / Subslot Supported by
I&M0 Read only Any configured slot/subslot CI50x + CM589-PNIO +

CM589-PNIO-4

I&M1-4 Read Any configured slot/subslot
Responds with data stored at DAP
submodule interface
Serves as representative for all con-
figured slots/subslots

CM589-PNIO + CM589-
PNIO-4

I&M1-4 Write DAP submodule Interface
Representative for all configured
slots/subslots

CM589-PNIO + CM589-
PNIO-4

I&M5 Not sup-
ported

- -

I&M data provides the following details:

I&M0 VendorID (WORD)
OrderID (STRING:20)
SerialNr (STRING:16)
HW-Revision (WORD)
SW-Revision (1 CHAR plus 3 x BYTE, e. g.
V.1.2.3)
RevisionCounter (WORD)
ProfileID (WORD)
IM_ProfileSpecType (WORD)
IM_Version (2 x BYTE)
IM_supported (WORD)

I&M1 Tag function (STRING:32)
Tag location (STRING:22)

I&M2 Installation date (STRING:16)

PROFINET IO
device error
diagnosis via
function blocks

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5555

I&M3 Descriptor (STRING:54)

I&M4 Signature (STRING:54)

AC500 PROFINET function block Library provides function block PNIO_IM0 to read I&M 0 data
for a certain I/O module.
See for detailed function block description Ä Chapter 1.5.4.27.1.6 “PNIO_IM0” on page 1813.

The I/O modules CI501-PNIO and CI502-PNIO support I&M0 function.

The structure and the meaning of these information is specified in the PNO "Profile Guidelines
Part 1: Identification & Maintenance Functions" (version 1.1.1, order number 3.502).

Online diagnosis
The online diagnosis is only available by using special function blocks.

Diagnosis views
PROFINET IO devices provide diagnosis views which consist of the following parts:
● Basic diagnosis views which are common for all netX based communication modules:

– Common status block view
– Firmware info view

● Protocol specific views which provide specific PROFINET IO information for the PROFINET
IO device protocol.
– Protocol stack diagnosis
– Ethernet statistics

Protocol stack diagnosis view
The Protocol stack diagnosis shows PROFINET IO device protocol stack related diagnosis
information.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5556

Parameter Description
Protocol stack state Current state of the protocol stack. This value

is bit coded and is able to carry several state
information in combination.
Following details may be combined to a value:
● Device Information set
● PROFINET stack started
● At least one API present
● Module 0 plugged
● Module 0 and sub-module 1 plugged
● Network communication allowed
● Network communication enabled
● Configuration locked
● Fatal error occurred
● PROFINET diagnosis exists
● PROFINET maintenance required
● PROFINET maintenance demanded
● FiberOptic maintenance demanded port 0
● FiberOptic maintenance required port 0
● FiberOptic maintenance demanded port 1
● FiberOptic maintenance required port 1

Last result Last error code that has occurred in past.

Link state Current state of the communication link.
Values:
● No information available
● Physical link works correctly
● Low speed of physical link
● No physical link present

Config state Current state of configuration of the protocol
stack. Values:
● Not configured
● Configured with DBM Files
● Error during configuration with DBM Files
● Configured by application
● Configuration by application is running
● Error during configuration by application
● Configured with warm-start parameters
● Configuration with warm-start parameters

is running
● Error during configuration with warm-start

parameters

Communication state Current state of communication of the protocol
stack. Values:
● Unknown
● Offline
● Stop
● Idle
● Operate

Communication error Currently active error code. If the cause of an
error is resolved the value is set 0 (OK) and
can be checked in the entry Last result.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5557

Firmware info view

Parameter Description
System channel version Version number of the system channel imple-

mentation

System channel firmware name Firmware name of the system channel imple-
mentation

System channel firmware build date Build date of the system channel implementa-
tion

Protocol channel version Version number of the protocol channel imple-
mentation

Protocol channel firmware name Firmware name of the protocol channel imple-
mentation

Protocol channel firmware build date Build date of the protocol channel implemen-
tation

Ethernet statistics view

For analyzing this view, basic Ethernet knowledge is required.

Ethernet statistics provides information about transmit and receive traffic. The load and the
quality of communication can be observed. Problems due to too much network load or internal
resource problems will be shown here in terms of error counters.

Parameter Description
Frames transmitted successfully Number of frames transmitted successfully

Frames with single collision Number of frames with single collision
detected

Frames with multiple collisions Number of frames with multiple collisions
detected

Late collisions Number of frames with collision detected later
than 512 bit times

Link down during transmission Number of frames transmitted while link state
went down

UTX FIFO underflow Number of UTX FIFO underflows occurred
while transmitting frames

Fatal transmission errors Number of TPU error codes detected while
transmitting frames

Frames received successfully Number of frames received successfully

Sequence check errors Number of frames received with valid length
but not passing the FCS check

Alignment errors Number of frames received with not valid
length and not passing the FCS check

Frame too long errors Number of frames received with maximum
permitted frame size exceeded

Valid frames with length between 42 and 63
bytes

Number of frames received with length
between 42 to 63 bytes and valid checksum

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5558

Parameter Description
Collision fragments Number of frames received with length smaller

than 64 bytes and invalid checksum

Dropped frames due to low resources Number of frames received while no
resources available to handle the frames

Dropped frames due to URX FIFO overflow Number of UTX FIFO overflows occurred
while receiving frames

Fatal receive errors Number of RPU error codes detected while
receiving frames

1.6.4.2.4 EtherCAT communication module
EtherCAT overview
Features

EtherCAT is an open standard for the realization of Industrial Ethernet based automation appli-
cations and is highly suitable for time critical applications. Its protocol minimizes overhead and
increases the share of user data. Further, it provides mechanism to synchronize inputs and
outputs. For general information on EtherCAT see https://www.ethercat.org.
EtherCAT is a cyclic communication. Only for parameterization, diagnosis and alarms-mes-
sages of intelligent field devices, non-cyclic messages will be used.

● IEC 61131-3: PLC Standardization
● IEC 61158: EtherCAT Standardization
● IEC 11801: Wire and connection elements for Ethernet

EtherCAT is registered trademark and patented technology, licensed by
Beckhoff Automation GmbH, Germany

CAT 5 Ethernet cable for 100 MHz data size

CAT 5e Ethernet cable for 100 MHz data size for Gig-
abit-Ethernet

CAT 6 Ethernet cable for 250 MHz data size

CAT 7 Ethernet cable for 600 MHz data size

CAT 8 Ethernet cable for 1 GBit data size

CoE CAN over EtherCAT

DC Distributed Clock

DDF Device Description File in XML format

ETG EtherCAT Technology Group

EtherCAT Ethernet for Control Automation Technology

FMMU Fieldbus Memory Management Unit

NRT Non Real-Time

Standardization:
EtherCAT

Terms, defini-
tions, abbrevia-
tions
EtherCAT

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5559

https://www.ethercat.org/en/technology.html

RT Real-Time

WKC Working Counter

Transfer mechanism EtherCAT
Seen from Ethernet view, a EtherCAT bus is a single Ethernet participant. This participant
receives and sends Ethernet telegrams. Inside this Ethernet participant there are many
EtherCAT slaves, which process data on the fly.
The telegrams are only delayed for a few micro seconds by each slave. Each telegram is
processed by all the slaves until it arrives at the last slaves in the line. The processed telegram
is sent back from the last slave to the first slave (see figure), which relays it back to the master.

Fig. 1133: EtherCAT telegram routing

The telegrams are processed on the fly. During forwarding the telegram to the next device, the
slaves interpret the EtherCAT commands and read its input data. Output data for the master or
for another slave is also inserted in the telegram.
The processing of telegrams is carried out by the hardware. Thus, the processing speed of an
eventually connected micro processor does not influence the processing.
Several EtherCAT Process Data Units (PDU) can be embedded in one EtherCAT telegram.
Each of them can address one or more slaves.
An EtherCAT PDU consists of
● Header
● Data Area
● "Working Counter".
The Working Counter is incremented by each slave which is addressed by this PDU and which
has successfully carried out the command embedded in the header of the PDU. The master-
communication-module compares the received Working Counter with the expected value (No. of
slaves).
There are two types of EtherCAT telegrams: with and without UDP/IP. Telegrams without
UDP/IP can only be used in an Ethernet subnet. Telegrams with UDP/IP allow IP routing and
perform communication over router.
AC500 EtherCAT does not support UDP/IP at present.

Telegram pro-
cessing

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5560

Fig. 1134: Telegram structure

The individual parts of the frame have the following meaning:

Pre (Preamble) For synchronization with the signal frequency

DA (Destination Address) MAC address of the receiver

SA (Source Address) MAC address of the sender

EtherType Identifier of the following data (EtherCAT tele-
gram uses 0x88A4)

IP HDR Optional IP header

UDP HDR Optional UDP header

Frame HDR Contains protocol type and frame length

Type 12 PDU EtherCAT Process Data Unit

Type 12 Header contains among others:
- CMD: command
- IDX: index
- Address
- Length of the data

Data Process data

WKC Working Counter

FCS Frame Checksum

The overhead is reduced through two mechanisms:
● All slaves in an EtherCAT subnet can be addressed with a single telegram
● A telegram can consist of several EtherCAT Process Data Units which contain different

commands and data. Each command can perform read/write operations on several slaves.

Addressing modes
Different addressing modes are supported for the slaves. Each telegram contains the segment
addressing and a device addressing or a logical addressing.

Telegram struc-
ture

Reduction of
overhead

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5561

Fig. 1135: Addressing modes

The following figure shows how different addressing modes are integrated in the telegram
structure:

Fig. 1136: The different addressing modes in the telegram structure

Device addressing
In this addressing mode a single slave is addressed with the associated PDU. This addressing
mode is usually used for transferring parameters.
There are two sorts of device addressing: position addressing and node addressing.

With this mode, the slaves are identified using their position in the communication network.
Normally position addressing is used during start-up. After communication with the slaves is
established, the master can give the slave a new node ID according to the projected value.

Position
addressing

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5562

After receiving the node ID from the master, the slaves can be addressed by using the node
addressing mode.
This ensures that, even if the segment topology is changed or devices are added or removed,
the slave devices can still be addressed via the same configured address.

Logical addressing
With logical addressing, slaves are not addressed individually. Instead, a section of the seg-
ment-wide logical address space (data) is allocated to each salve. Any number of slaves may
use separate, the same or overlapping sections.
The Fieldbus Memory Management Units (FMMU) on the slaves handle the assignment of slave
local memory address to logical addresses. With this it is possible to address several slaves
with a single PDU.

Fig. 1137: Examples of a simple logical address mapping

Distributed clock
Precisely synchronization between the slaves is always required if distributed slaves are used
to carry out actions at the same time. One of those applications for example is the control of
several servo axes, which shall carry out coordinated movements.
Another application is the AC500 camswitch functionality. In this application it is important to
calculate the angle velocity and the position of the main axis precisely.
EtherCAT uses synchronization according to IEEE 1588. This method provides synchronization
which is very resistant to communication disturbances.
This synchronization mechanism eliminates:
● different start-up times
● delay times between the slave with the master clock and all other slaves
● drift of the local clocks.

CANopen over EtherCAT (CoE)
The CANopen protocol is preferably used for transferring configuration parameters to the
slaves. It can also used for the transmission of process data. Instead of a standard CANopen
protocol, which can only transfer 9 bytes of user data, CoE can transfer a maximum of 1478
bytes. Therefor, the CoE protocol can be used to transfer process data with variable length.

Node
addressing

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5563

Device description file (DDF)
The features of an EtherCAT slave are described in an electronic data sheet, the Device
Description File (DDF). This XML-based document gives the characteristics of the device unam-
biguously and completely with a vendor-independence format.
The characteristics of the CI51x-ETHCAT devices are:
● Description of each input/output group of the device
● Parameters, which are required for the correct functionality of the device
The configuration of an EtherCAT system is highly simplified with the DDF, which is normally
provided by the vendor.

Device names and allocation of addresses
The Communication Module Ä Chapter 1.6.2.4.6 “EtherCAT” on page 4066 acts as a master
device in an EtherCAT master-slave arrangement. It is connected to the Processor Module via
an internal communication bus.
The Communication Interface Modules Ä Chapter 1.6.2.8.4 “EtherCAT” on page 4814 act
as slave devices in an EtherCAT master-slave arrangement. The slave devices are identified
through their position in the bus segment. Address switches are not used. Thus it is possible to
give the devices a specific name with a configuration tool before system activation.
The default settings of the EtherCAT slaves need not to be changed before operation.

Risk of communication faults!
The device names are used to generate global variables for the PLC program.
Each device names can only be used once within a network.

Make sure that all device names are unique.

Designing and planning a network
AC500 EtherCAT supports only the bus (line) structure.

System performance
The EtherCAT communication is realised using 100Mbit. There is one telegram for all EtherCAT
slaves in a segment, so overhead is substantially reduced.
The terminal-to-terminal response time depends on the size of the total process image of all
slaves and the CPU load of PLC.

Bus communi-
cation

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5564

The terminal-to-terminal response time for digital I/Os of CI51x-ETHCAT is 2 bus cycles (e.g. 2
ms with bus cycle time set to 1 ms) with the CPU PM591, EtherCAT distributed clock activated
and synchronized task type (triggered by external event). The terminal-to-terminal response
time for analog I/Os is about 13 ms for bus cycle time of 1 ms.

50 % CI511-ETHCAT and 50 % CI512-ETHCAT means e. g. that in case of 16
devices, 8 CI511-ETHCAT and 8 CI512-ETHCAT are involved.

Distributed control cams with EtherCAT
The devices CI511-ETHCAT and CI512-ETHCAT can be used as distributed electrical cams
with communication over EtherCAT.
The encoder, which has to be the first slave of the line structure, generates the reference axis.
Each device has up to 8 (CI511-ETHCAT) respectively 16 (CI512-ETHCAT) digital outputs
and up to 32 cams. The cams can be mapped to the digital outputs according to the user
specifications.
The devices can also process dynamic cams with compensation time for each cam.

Terminal-to-ter-
minal response
time of the
CI511-ETHCAT/
CI512-ETHCAT

Concept

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5565

The 32 cams of each device can be assigned to any digital outputs, so several switching actions
for each digital output and each turn are possible. Each cam consists of one switch-on and one
switch-off-action. If a digital output is not assigned to a cam, it can be used as a standard output
and controlled by the PLC.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5566

The PLC can further more set any digital output at any time to overwrite the cam state. It can
also clear the enable bit of the cams. In this case, the digital output will follow the value in the
process image.
This conception allows a flexible utilization of the available digital outputs as cam output or
standard digital outputs.
The mapping between the cams and the digital outputs is a part of the configuration and can not
be changed online.

The cam in the CI51x-ETHCAT uses the positions with time stamp, which comes from the
encoder with each telegram, to calculate its switching time. It uses the internal synchronized
clock to eliminate
● dead times,
● jitter of EtherCAT telegrams,
● cycle time of the encoder.
The accuracy of the CI51x-ETHCAT cams implementation depends only on the number of the
projected cams (parameter NumOfUsedCam) of each device.

Fig. 1138: Cam accuracy (worst case)

In order to reduce the data amount of the process data image, some parameters for the cams,
e. g. FirstOnPosition, LastOnPosition and Compensation, are transferred to the EtherCAT slave
using the multiplexing method. Parameters of only one cam out of 32 cams are embedded in
each EtherCAT telegram. The multiplexing mechanism is handled completely by the function
blocks. The user program is released from this task.
The enable-bits of the cams are treated differently: They are transferred to the slaves with each
EtherCAT telegram, so the cam can be enabled or disabled very quickly.

To facilitate the cam switch functionality, an encoder must be used. The encoder gives the
time stamped position of the referent axis to the CI51x-ETHCAT. The encoder must be the first
EtherCAT slave in the line structure.
ABB hardware-components work properly with the 18 bit encoder GBMMS or GBMMW of
Baumer-IVO. Different bit resolutions of the encoder can be used, but a high resolution will
reduce jitter of the cams. The specified data in Cam Accuracy is applied for encoder with 18 bits
resolution.
Further details of the IVO encoder can be found at http://www.ivo.de.

ABB Components use Ethernet cables with RJ45 connectors, but the encoder uses a M12 con-
nector. A suitable connection between the ETHCAT Communication Module (CM5xy-ETHCAT)
and encoder respectively between encoder and ETHCAT Communication Interface Modules
(CI5xy-ETHCAT) is required. The following connector can be used:

Cam accuracy

Particular fea-
tures

Encoder

Encoder wiring

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5567

http://www.ivo.de

Table 708: Connection of EM 12 S OCTOPUS:
Name Ethernet cable EM 12 S OCTOPUS

TxD+ White/green Yellow pin 1

TxD- Green Orange pin 3

RxD+ White/orange White pin 2

RxD- Orange Blue pin 4

In addition to the standard EtherCAT_AC500 library, there are two function blocks in the
MC_EtherCAT_AC500 library: Ä Chapter 1.5.4.5.1.1 “MC_CamSwitch_DC” on page 853 and
Ä Chapter 1.5.4.5.1.2 “PS_DigitalPLS” on page 857.
The two function blocks allow a simply control of the cams.
Detail information about configuration and programming application with cam can be found in
"EtherCAT configuration examples".

EtherCAT implementation
System start-up behavior

The EtherCAT protocol is handled by the EtherCAT Communication Module and the PLC oper-
ating system automatically. When the Communication Module is initiated in the proper way and
the user application is running, the Communication Module and the bus become active.
No function blocks are necessary for exchanging process data via EtherCAT. Furthermore, it is
possible to access the send data and the receive data in the according operands range directly.
The access takes place with either operand or symbolic variables. Special EtherCAT functions
can be realized by using the function blocks of the EtherCAT library.
To include an AC500 EtherCAT Communication Module in the PLC system, create an EtherCAT
configuration and write it into the Communication Module. A detailed documentation can be
found in the document "Example: EtherCAT Configuration".

When the user application changes into the run mode, the communication module tries to
establish communication with the configured slaves.
The communication module will not change into run mode if:
● the number of the configured slaves is not equal to the number of connected slaves.
● the type of the configured slaves is not equal to the type of connected slaves.
In this case, the LED STA2 ETHCAT (master communication module) switches on.
After communication to the slaves is established, the distributed clocks will be synchronized.
This process can last up to 1 minute. During the synchronizing process, the LED S-ERR
(slave) switches on. After a successful synchronization of the distributed clocks, the LED S-ERR
switches off and the LED PWR, STA1 ETHCAT and STA2 ETHCAT of the slave are on.
For details see the device description of Ä Chapter 1.6.2.4.6.1 “CM579-ETHCAT - EtherCAT
master” on page 4066, Ä Chapter 1.6.2.8.4.1 “CI511-ETHCAT” on page 4814 and Ä Chapter
1.6.2.8.4.2 “CI512-ETHCAT” on page 4846.

If a communication interface module will be disconnected from the EtherCAT
network during operation, it will not continue with the communication after re-
connecting. A restart of the whole system must be performed.

Software com-
ponents

Initial operation

System start-up

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5568

EtherCAT sync
The EtherCAT master CM579-ETHCAT supports 2 modes for synchronized operation. These
modes can be used for synchronization between PLC task and IO image.
The master has the same functionality as in unsynchronized mode, but with every new bus
cycle it additionally creates an interrupt. With this interrupt the PLC task will be triggered.

The functionality described here has the following system requirements.

PLC Firmware version 2.1.3

CM579-ETHCAT Firmware version 2.4.11

Control Builder Plus
Automation Builder

2.1.0
1.0

In this mode, the interrupt for task synchronization is generated at the end of the current bus
cycle. If the PLC is triggered by this interrupt, it reads the input values at first. Then it starts the
corresponding task. And at the end of the task, it writes the output values back to EtherCAT
master. If the PLC task is not finished within a bus cycle a diagnosis message will be created.

The difference between sync mode 1 and sync mode 2 is the instant of time when the interrupt
is generated. In sync mode 2 it will be generated at the beginning of a bus cycle. The PLC task
uses therefore the input values of previous bus cycle. If the PLC task is not finished within a bus
cycle a diagnosis message will be created.

Overview

System require-
ments

Sync mode 1

Sync mode 2

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5569

2 error counters are available for diagnosis purposes. It can be read and evaluated within a
PLC program using function block Ä Chapter 1.5.4.14.1.7 “ECAT_SYNC” on page 1315 from
EtherCAT Library. More detailed information can be found in the corresponding documentation
of this library Ä Chapter 1.5.4.14 “EtherCAT library” on page 1295.

Diagnosis
In addition to the user data transportation, EtherCAT provides a wide range of diagnostic
functions, which can be useful for system activating. The upcoming diagnostic events from the
EtherCAT slaves are centralized in the master and can be displayed by using several function
blocks. Localization of failures is greatly simplified with this function.

The function block library EtherCAT_AC500_V13.lib (since firmware version 1.3.0) Ä Chapter
1.5.4.14 “EtherCAT library” on page 1295 contains different function blocks to get information
about the status of communication and error states of the EtherCAT Communication Module
and connected EtherCAT slaves. These function blocks can be embedded additionally, espe-
cially for the initial operation.

The EtherCAT status messages can be requested by the following function blocks:

Function block name Function
Ä Chapter 1.5.4.14.1.6 “ECAT_STATE”
on page 1311

Common information about the status of the
EtherCAT bus

Ä Chapter 1.5.4.14.1.1 “ECAT_BUS_DIAG”
on page 1296

Information about the status of all bus partici-
pants

Ä Chapter 1.5.4.14.1.4
“ECAT_GET_DCLK_DEVI” on page 1305

Information about the distributed clock of
every slave

Status function blocks in the library EtherCAT_AC500_V13.lib

A detailed function block description is in the document The EtherCAT Library.

Diagnosis

EtherCAT func-
tion block
library

EtherCAT status
and diagnosis
via function
blocks

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5570

Status and error messages, which describe the slave state, are requested via the
ECAT_SLV_DIAG function block:

Function block name Function
Ä Chapter 1.5.4.14.1.5 “ECAT_SLV_DIAG”
on page 1308

Representation of diagnosis messages of con-
nected slaves

Slave diagnosis function blocks in the library EtherCAT_AC500_V13.lib

Hardware and firmware revision can be queried using the Ä Chapter 1.5.4.15.1.6
“ECAT_SOE_READ” on page 1333 function block with index (idx) 2006h and subindex (subidx)
1:
● HW-Revision (WORD) is stored in the first 2 bytes,
● SW-Revision (1 CHAR plus 3 x BYTE, e. g. V.1.2.3)

The online diagnosis in Automation Builder software is only available by using special function
blocks Ä “EtherCAT slave diagnosis via function blocks” on page 5571.

1.6.4.2.5 CANopen communication modules
CANopen overview
Features

CANopen is a standardized layer 7 protocol used for decentralized industrial automation sys-
tems based on the Controller Area Network (CAN) and the CAN Application Layer (CAL).
CANopen is based on a communication profile containing the determination of basic commu-
nication mechanisms and their descriptions, such as the mechanisms used for exchanging
process data in real-time or for sending alarm telegrams. This common communication profile
is the basis for the various CANopen device profiles. The device profiles describe the specific
functionality and/or the parameters of a device class. Such device profiles are available for
the most important device classes used in industrial automation, such as digital and analog
I/O modules, sensors, drives, control units, regulators, programmable controllers or encoders.
Further device profiles are projected.
The central element of the CANopen standard is the device functionality description in an object
directory (OD). The object directory is divided into one general area containing information
about the device (e.g. device identification, manufacturer's name, etc.) as well as communi-
cation parameters, and the device-specific area describing the particular functionality of the
device. These properties of a CANopen module are documented in the form of a standardized
"electronic data sheet" (EDS file).
A CANopen network can consist of a maximum of 128 modules, one NMT master and up to
127 NMT slaves. In contrast to the typical master-slave systems (e.g. PROFIBUS systems), the
meanings of the terms master and slave are different for CANopen. In operational mode, all
modules are independently able to send messages via the bus. Moreover, the master is able to
change the operating mode of the slaves. The CANopen master is normally implemented by a
PLC or a PC. The bus addresses of the CANopen slaves can be set in the range between 1 and
127. The device address results in a number of identifiers occupied by this module.
CANopen supports transmission rates of 10 kbit/s, 20 kbit/s, 50 kbit/s, 125 kbit/s, 250 kbit/s,
500 kbit/s, 800 kbit/s and 1 Mbit/s. Each CANopen device has at least to support a transmission
rate of 20 kbit/s. Other transmission rates are optional.

BOSCH CAN specification - version 2.0, part A and part B
ISO 11898
CiA DS 201 V1.1 - CAN Application Layer

EtherCAT slave
diagnosis via
function blocks

Device revision

Online diag-
nosis

Fundamental
properties and
fields of applica-
tion

Standardization:
CANopen

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5571

CiA DS 301 V3.0 - CAL based Communication Profile for Industrial Systems
CiA DS 301 V4.02 - CANopen Application Layer and Communication Profile
CiA DS 401 V2.1 - CANopen Device Profile Generic I/O modules
CiA DS 402 V2.0 - CANopen Device Profile Driver and Motion Control
CiA DS 406 V3.0 - CANopen Device Profile Encoder

CAL CAN Application Layer

CAN Controller Area Network

CiA CAN in Automation e.V.

DLC Data Length Code

EDS Electronic Data Sheet

ISO International Standardization Organization

NMT Network Management

OD Object Directory

PDO Process Data Object

RTR Remote Transmission Request

SDO Service Data Object

● Operating mode CANopen-Master
● Process image with a maximum of 57344 I/O points
● Supports min. boot-up, emergency messages and life guarding
● Supported PDO modes: Event-controlled, synchronous, cyclic and remote PDO transmis-

sion
● Integrated device profiles: CiA DS-401, CiA DS-402 and CiA DS-406
CAN (additional functionality, not necessary for pure CANopen operation)
● Support of 11 bit identifiers according to CAN 2.0 A and 29 bit identifiers according to

CAN 2.0 B
● Transmission and reception of any CAN telegrams via function blocks in the user program

● ISO 11898, potential separated
● Transfer rates of 20 kbit/s, 125 kbit/s, 250 kbit/s, 500 kbit/s and 1 Mbit/s
● Bus length up to 1000 m at 20 kbit/s and up to 40 m at 1 Mbit/s
● One bus can have up to 128 subscribers (master + 127 slaves)
● 5-pin COMBICON connector for bus

● Message-oriented bus access, CSMA/CA
● Predefined master-slave connections
● 8 bytes of non-fragmented user data, for fragmentation any size is possible
● Synchronization of inputs and/or outputs via synchronous PDOs

● Message transfer with Hamming distance HD = 6
● CAN fault recognition mechanisms via 15 bit CRC, frame check, acknowledge, bit moni-

toring and bit stuffing

Terms, defini-
tions and abbre-
viations
CANopen

CANopen

Transmission
technique

Communication

Protection func-
tions

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5572

● Incorrect parameter settings are avoided because bus subscribers with faulty parameters
are not included in the user data operation.

● Adjustable behavior on subscriber failure. System continues normal operation and the error
is indicated at the master or the entire system is stopped.

● Response monitoring of the subscribers (node guarding)

Communication mechanisms
CANopen distinguishes two basic mechanisms for data transmission: The fast exchange of
short process data via Process Data Objects (PDOs) and the access to entries of the Object
Directory using Service Data Objects (SDOs). Service Data Objects are primarily used to
transmit parameters during device configuration. The transmission of Process Data Objects
is normally performed event oriented, cyclic or on request as broadcast objects.

Service Data Objects (SDOs) are used to modify Object Directory entries as well as for
status requests. Transmission of SDOs is performed as a confirmed data transfer with two
CAN objects in the form of a peer-to-peer connection between two network nodes. The corre-
sponding Object Directory entry is addressed by specifying the index and the sub-index of
the entry. It is possible to transmit messages of unlimited length. If necessary, the data are
segmented into several CAN messages.

For the transmission of process data, the Process Data Object (PDO) mechanism is available.
A PDO is transmitted unconfirmed because, in the end, the CAN link layer ensures the error-
free transmission. According to the CAN specification, a maximum of 8 data bytes can be
transmitted within one PDO. In conjunction with a synchronization message, the transmission
as well as the take over of PDOs can be synchronized over the entire network (synchronous
PDOs). The assignment of application objects to a PDO can be set using a structural descrip-
tion (PDO mapping) that is stored in the object directory. Thus, an adaptation according to the
requirements of the individual applications is possible. The transmission of process data can be
performed by various methods.

The PDO transmission is controlled by an internal event, e.g. by a changing level of a digital
input or by an expiring device-internal timer.

In this case, another bus subscriber is requesting the process data by sending a remote trans-
mission request (RTR) message.

In case of synchronous transmission, synchronization telegrams are sent by a bus subscriber.
These telegrams are received by a PDO producer which in turn transmits the process data.

Network management
Within a CANopen network, only one NMT master exists (NMT = Network management). All
other modules are NMT slaves. The NMT master completely controls all modules and is able to
change their states. The following states are distinguished:

After switching-on, a node is first in the initialization state. During this phase, the device applica-
tion and the device communication are initialized. Furthermore, a so-called boot-up message
is transmitted by the node to signalize its basic readiness for operation. After this phase is
finished, the node automatically changes to the pre-operational state.

Service data
objects

Process data
objects

Event

Request

Synchronous

Initialization

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5573

In this state, communication with the node is possible via Service Data Objects (SDOs). The
node is not able to perform PDO communication and does not send any emergency messages.

In this state, SDO and PDO communication is possible. The access to the Object Directory via
the SDO protocol depends on the device implementation and may be restricted

In the stopped state, a node is completely disconnected from the network. Neither SDO commu-
nication nor PDO communication is possible. A state change of the node can only be initiated
by a corresponding network command (e.g. Start Node).

Node guarding and heartbeat
Testing the functionality of a CAN node is particularly required if the node does not continuously
send messages (cyclic PDOs). Two mechanisms can alternatively be used to monitor the
CANopen nodes. When the node guarding protocol is used, the NMT master sends messages
to the available CANopen slaves which have to respond to these messages within a certain time
period. Therefore, the NMT master is able to detect if a node fails. Furthermore, the heartbeat
protocol can be used with CANopen. In this case, each node automatically sends a periodic
message. This message can be monitored by each other subscriber in the network.

Object directory
The object directory describes the entire functionality of a CANopen device. It is organized as
a table. The object directory does not only contain the standardized data types and objects
of the CANopen communication profile and the device profiles. If necessary, it also contains
manufacturer-specific objects and data types. The entries are addressed by means of a 16 bit
index (table row, 65536 entries max.) and an 8 bit sub-index (table column, 256 entries max.).
Thus, objects belonging together can be easily grouped. The following table shows the structure
of this CANopen object directory:

Index Object
dec hex
0 0000 not used

1...31 0001...001F Static data types

32...63 0020...003F Complex data types

64...95 0040...005F Manufacturer-specific data
types

96...607 0060...025F Device profile specific data
types

608...1023 0260...03FF Reserved

1024...4095 0400...0FFF Reserved

4096...8191 1000...1FFF Communication profile
(DS-301)

8192...24575 2000...5FFF Manufacturer-specific param-
eters

24576...40959 6000...9FFF Parameters of the standar-
dized device profiles

40960...45055 A000...AFFF Standardized network variable
area

Pre-operational

Operational

Stopped

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5574

Index Object
dec hex
45056…49151 B000…BFFF Standardized system variable

area

49152...65535 CA000...FFFF Reserved

Several data types are defined for the objects themselves. If required, other structures (e.g.
ARRAY, STRUCT) can be created from these standard types.

Identifiers
CANopen always uses identifiers with a length of 11 bits (standard frames). The number of
available and allowed identifiers given by this is divided into several ranges by the pre-defined
connection set. This structure is designed in a way that a maximum of 128 modules (1 NMT
master and up to 127 slaves) can exist in a CANopen network. The list of identifiers is com-
posed of some fix identifiers (e.g. network management identifier 0) and various functional
groups where each existing node, that supports the corresponding function, is assigned to one
unique identifier (e.g. Receive PDO 1 of node 3 = 512 + node number = 515). Using the
pre-defined connection set therefore avoids double assignment of identifiers.

Identifier Function Calculation
0 Network management (NMT) -

1...127 not used -

128 Synchronization (SYNC) -

129...255 Emergency message 128 + node ID

256 Timestamp message -

257...384 not used -

385...511 Transmit PDO 1 384 + node ID

512 not used -

513...639 Receive PDO 1 512 + node ID

640 not used -

641...767 Transmit PDO 2 640 + node ID

768 not used -

769...895 Receive PDO 2 768 + node ID

896 not used -

897...1023 Transmit PDO 3 896 + node ID

1024 not used -

1025...1151 Receive PDO 3 1024 + node ID

1152 not used -

1153...1279 Transmit PDO 4 1152 + node ID

1280 not used -

1281...1407 Receive PDO 4 1280 + node ID

1408 not used -

1409...1535 Transmit SDO 1408 + node ID

1536 not used -

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5575

Identifier Function Calculation
1537...1663 Receive SDO 1536 + node ID

1664...1792 not used -

1793...1919 NMT error (node guarding,
heartbeat, boot-up)

1792 + node ID

1920...2014 not used -

2015...2031 NMT, LMT, DBT -

PDO mapping
As already explained, all 8 data bytes of a CAN message are available for the transmission
of process data. As there is no additional protocol information, the data format has to be
agreed between the sending (producer) and the receiving party (consumer). This is done by the
so-called PDO mapping.
If a fixed mapping is used, the process data are arranged in a pre-defined order within the
PDO message. This arrangement is predetermined by the device manufacturer and cannot be
changed. If variable mapping is used, the process data can be arranged as desired within the
PDO message. For this purpose, the address, consisting of index and sub-index, as well as the
size (number of bytes) of an object directory entry are entered into the mapping object.

EDS files
The characteristic properties of a CANopen module are documented in the form of an electronic
data sheet (EDS file, electronic data sheet). The file completely and clearly describes the char-
acteristics (objects) of a module type in a standardized and manufacturer independent format.
Programs for configuring a CANopen network use the module type descriptions available in the
EDS files. This strongly simplifies the configuration of a CANopen system. Usually the EDS files
are provided by the device manufacturer.

Master-Slave-Arrangement
The communication module CM598-CN is a master device in a CANopen master-slave arrange-
ment. It is connected to the processor module via an internal communication bus. A detailed
device description of the device can be found in the device description for Ä Chapter 1.6.2.4.5.2
“CM598-CN - CANopen master” on page 4060

The communication interface modules CI581-CN / CI582-CN are I/O slave devices in a
CANopen master-slave arrangement.
A detailed description of the devices can be found in the device descriptions of Ä Chapter
1.6.2.8.2.2 “CI581-CN” on page 4685 and Ä Chapter 1.6.2.8.2.3 “CI582-CN” on page 4723.

The communication module CM588-CN is a slave device in a CANopen master-slave arrange-
ment. It is connected to the processor module via an internal communication bus. The CM588-
CN allows communicating of multiple processor modules within a CANopen network.
A detailed description of the device can be found in the device description of Ä Chapter
1.6.2.4.5.1 “CM588-CN - CANopen slave” on page 4053.

CANopen
master CM598-
CN

CANopen slaves
CI581-CN /
CI582-CN

CANopen slave
CM588-CN

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5576

Designing and planning a network
The CANopen communication module is connected to the bus using the 5-pin COMBICON
connector. For EMC suppression and protection against dangerous contact voltages, the shield
of the bus cable has to be connected to protective earth outside the housing. The line ends of
the bus cable have to be terminated using bus terminating resistors.
Within a CANopen network, the controller with the CANopen communication module is the NMT
master. No other NMT master is allowed in this network. The NMT master completely controls
all modules and their operational states. Up to 127 NMT slaves can be connected to an NMT
master.
The CANopen master is able to:
● Change operational states of the slaves
● Parameterize the slaves (e.g. communication connections, time supervision, bus traffic)
● Configure slaves (e.g. type, number and channel operating mode)
● Read input data of the slaves
● Write output data of the slaves
● Read diagnosis data of the slaves
● Monitor the availability of the slaves
● Transmit control commands to synchronize the inputs or outputs of the slaves
● Read and write slave objects even during running operation
The CANopen communication module is as well able to:
● Transmit and receive CAN telegrams according to CAN 2.0 A (11 bit identifier) and CAN 2.0

B (29 bit identifier). This additional functionality is not required for pure CANopen operation.

CANopen implementation
System start-up behavior

The CANopen protocol is handled by the CANopen communication module and the PLC oper-
ating system automatically.
When the communication module is initiated in the proper way and the user application is
running, the communication module and the bus become active.
No function blocks are necessary for exchanging process data via CANopen. Special CAN
functions can be realized by using the function blocks of the CANopen library.
The communication module starts communication via CANopen after the user application is
started and then attempts to initialize the configured slaves. After a successful initialization, the
communication module and the slaves exchange the process data.
The behavior of the communication module when the user application is stopped can be
configured with the CPU parameter Behavior of outputs in Stop. See description of the CPU
parameters for details.

Synchronization of an application task with the I/O update
CANopen implements the synchronization (SYNC) protocol which is used to synchronize the
I/O update of the CANopen slaves. It can also be used to synchronize the I/O update with the
execution of an application task.
When the Sync message is sent the communication module generates an interrupt. This will
trigger the execution of an associated application task.
The described functionality is supported as of the following firmware versions of PLC and
communication module:
For CM598-CN
● PLC version: V2.5.3
● Communication module version: V2.0.0.2

Initial Operation

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5577

The figure below gives a schematic overview of the synchronization between I/O update and
execution of an application task:

The CAN_SYNC_TIME is the time between 2 messages of the synchronization protocol. This
time has to be chosen long enough to update the I/Os and execute the application task within
this time.
The execution time required by the application task can be checked online in the CODESYS
task configuration.

The tasks which are triggered with the CANsync interrupt have to be a higher
priority than tasks which are running cyclically.

If other communication modules are attached to the same CPU, the
MIN_UPDATE_TIME of those communication modules must be larger than the
MIN_UPDATE_TIME of the CANsync communication module.

The online overview of the task configuration will display implausible values of
the CANsync task. This will not influence the functionality.

● Parameter CANopen Sync mode has to be set to the value Sync Bus and Task.

● Checkbox Enable Sync Producing has to be enabled in the CANopen configuration.

Synchronization
settings

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5578

● At least one PDO should have a transmission mode of type cyclic - synchronous (1-240).

● An application task has to be defined and linked with the associated external event.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5579

Event Communication module slot Description
Int_Coupler0_ InputAny 0 Application task will be trig-

gered by I/O update of the
communication module at slot
1 - 6.

Ext Coupler <slot> InputAny 1 ... 6 Application task will be trig-
gered by I/O update of the
communication module at slot
1 - 6.

Special SDOs for CI581-CN / CI582-CN
Block wise single parameterization (Object 2700hex to 270Ahex)

In this mode the objects 2700hex to 270Ahex are used.
Only sub object 0 is used, the parameter index is transferred inside the data content.
Object 2700hex is for single parameters of CI581-CN / CI582-CN itself.
Objects 2701hex to 270Ahex are used for connected expansion modules in ascending order.
This mode only works if fragmented SDO transfer is available.
The transferred data must have the following structure:

The length of the SDO is dependent on the number of transferred single parameters (CNT = the
number of parameters to be request) - (up to 5 parameters can be transferred with one SDO).

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5580

Very important:
The CAN uses Big Endian.

This means:

If CNT or PARA_VALUE is 2, you must assign a value: 16#02000000 to them.

The length in bytes is calculated as follows:
Length (bytes) = 4bytes + (number of single parameters * 8bytes).
So the minimum length is 12 bytes and the maximum length is 44 bytes.
If the length or any other data inside the SDO isn´t correct, the CI device will reject the SDO with
abort code 0800 0000hex.
For the used parameter indexes see Parameter Indexes of CI581-CN Ä Chapter
1.6.4.2.5.4.3.1.1 “Parameter indexes of CI581-CN” on page 5581 and Parameter Indexes of
CI582-CN Ä Chapter 1.6.4.2.5.4.3.1.2 “Parameter indexes of CI582-CN” on page 5582.

Parameter indexes of CI581-CN

Parameter Parameter index Parameter length
Error LED Failsafe 4 1

Check supply 27 1

Analogue data format 28 1

Input Delay 29 1

Short circuit detection 31 1

Behavior binary outputs at communica-
tion fault

32 1

Substitute value binary outputs 33 1

Overvoltage monitoring 34 1

Behavior analogue outputs at communi-
cation fault

35 1

Configuration AI0 36 1

Check AI0 37 1

Configuration AI1 38 1

Check AI1 39 1

Configuration AI2 40 1

Check AI2 41 1

Configuration AI3 42 1

Check AI3 43 1

Configuration AO0 44 1

Check AO3 45 1

Substitute Value AO0 46 2

Configuration AO1 47 1

Check AO1 48 1

Substitute Value AO1 49 2

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5581

Parameter indexes of CI582-CN

Parameter Parameter index Parameter length
Error LED Failsafe 4 1

Check supply 27 1

Input Delay 28 1

Short circuit detection 30 1

Behavior binary outputs at communica-
tion fault

31 1

Substitute value binary outputs 32 2

Voltage Feedback monitoring 33 1

Overvoltage monitoring 34 1

Block wise read of single parameterization (Object 2710hex to 271Ahex)
For reading of single parameters a special sequence is needed:
● Writing of SDO to the corresponding object with data structure defined in Parameter Indexes

of CI581-CN.
– This writing requests the parameter indexes that should be read.

● Reading of SDO of the corresponding object to get the read parameters.
– The delivered data uses the same structure as defined in Parameter Indexes of CI582-

CN.
– If the reading of the data isn´t finished the device will reject the read service with abort

code 08000021hex
– If no writing has been send before reading the device will reject the read service with

abort code 08000000hex

Eeprom download (Object 3100hex)
This functionality is only used during production. All requests to this object will be rejected.

Factory test mode (Object 5010hex)
This functionality is only used during production. All requests to this object will be rejected.

CI581-CN / CI582-CN in DS401 mode
Activation of DS401 mode in CI581-CN / CI582-CN

The DS401 mode inside the CI581-CN / CI582-CN can be activated using the hexadecimal
address switches.
The DS401 mode is activated if the addresses switch position is greater than 80hex.
The node ID in the CANopen network is then calculated as follows:
Node ID = address switch 80hex.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5582

PDO mapping in DS401 mode
The PDOs 1...4 are mapped as described in the DS401 specification. For additional PDOs (up
to 20 PDOs per direction possible) there is no fixed mapping.

RxPDO mapping in DS401 mode
As defined by DS401 the first RxPDO only contains binary outputs. The first bytes contain the
onboard binary outputs of the CI581-CN / CI582- CN devices. If binary I/O expansion modules
are connected to the CI581-CN / CI582-CN these output data will also be put into RPDO1.
The second RxPDO contains only analog outputs (as defined by DS401). In case of CI581-CN
the first two analog outputs are the onboard AOs. If analog I/O expansion modules are con-
nected to the CI581-CN / CI582-CN these output data will also be put into RPDO2.
RxPDO 3 and RxPDO 4 are reserved for additional analog outputs (as defined by DS401) of
connected analog I/O expansion modules.
For RxPDO 5&20 there is no fixed mapping. This mapping is user defined.
For details see following charts:

RxPDO 1

CI581 DO0 (1 byte, 8 channels) I/O bus binary expansion DO1..DO7
(7 bytes, 56 channels)
(only if attached to CI581-CN)

RxPDO 2

CI581 AO0 (2 bytes, 1
channel)

CI581 AO1 (2 bytes, 1
channel)

I/O bus analog expansion
AO2, AO3
(4 bytes, 2 channels)
(only if attached to CI581-CN)

RxPDO 3

I/O bus analog expansion AO4..AO7 (8 bytes, 4 channels)
(only if attached to CI581-CN)

RxPDO 4

I/O bus analog expansion AO8&AO11 (8 bytes, 4 channels)
(only if attached to CI581-CN)

RxPDO 1

CI582 DO0 (1 byte, 8 chan-
nels)

CI582 DO1 (1 byte, 8 chan-
nels)

I/O bus binary expansion
DO2..DO7
(6 bytes, 48 channels)
(only if attached to CI582-CN)

RxPDO mapping
in DS401 mode
for CI581-CN

RxPDO mapping
in DS401 mode
for CI582-CN

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5583

RxPDO 2

I/O bus analog expansion AO0..AO3 (8 bytes, 4 channels)
(only if attached to CI582-CN)

RxPDO 3

I/O bus analog expansion AO4..AO7 (8 bytes, 4 channels)
(only if attached to CI582-CN)

RxPDO 4

I/O bus analog expansion AO8..AO11 (8 bytes, 4 channels)
(only if attached to CI582-CN)

TxPDO mapping in DS401 mode
As defined by DS401 the first TxPDO only contains binary inputs. The first bytes contain the
onboard binary inputs of the CI581-CN / CI582-CN devices. If binary I/O expansion modules are
connected to the CI581-CN / CI582-CN these input data will also be put into TPDO1.
The second TxPDO contains only analog inputs (as defined by DS401). In case of CI581-CN
the first four analog inputs are the onboard AIs. If analog I/O expansion modules are connected
to the CI581-CN / CI582-CN these inputs data will also be put into TPDO2.
TxPDO 3 and TxPDO 4 are reserved for additional analog inputs (as defined by DS401) of
connected analog I/O expansion modules.
For TxPDO 5...20 there is no fixed mapping. This mapping is user defined.
For details see following charts:

TxPDO 1

CI581 DI0 (1 byte, 8 channels) I/O bus binary expansion DI1..DI7
(7 bytes, 56 channels)
(only if attached to CI581-CN)

TxPDO 2

CI581 AI0
(2 bytes, 1 channel)

CI581 AI1
(2 bytes, 1 channel)

CI581 AI2
(2 bytes, 1 channel)

CI581 AI3
(2 bytes, 1 channel)

TxPDO 3

I/O bus analog expansion AI4..AI7 (8 bytes, 4 channels)
(only if attached to CI581-CN)

TxPDO 4

I/O bus analog expansion AI8..AI11 (8 bytes, 4 channels)
(only if attached to CI581-CN)

TxPDO mapping
in DS401 mode
for CI581-CN

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5584

TxPDO 1

CI582 DI0 (1 byte, 8 chan-
nels)

CI582 DI1 (1 byte, 8 chan-
nels)

I/O bus binary expansion
DI2..DI7
(6 bytes, 48 channels)
(only if attached to CI582-CN)

TxPDO 2

I/O bus analog expansion AI0..AI3 (8 bytes, 4 channels)
(only if attached to CI582-CN)

TxPDO 3

I/O bus analog expansion AI4..AI7 (8 bytes, 4 channels)
(only if attached to CI582-CN)

TxPDO 4

I/O bus analog expansion AI8..AI11 (8 bytes, 4 channels)
(only if attached to CI582-CN)

Parameterization of CI581-CN / CI582-CN in DS401 mode
In DS401 mode the CI581-CN / CI582-CN are parameterized during startup with 0 parameters
that means all parameter values are set to 0. For description of parameters see the corre-
sponding device description.
The parameters can be changed during run time using the single parameterization feature.
The two different single parameterization modes are described below.
In single parameterization the parameters are addressed by a parameter index which can be
found in the tables below.

Block wise single parameterization (Object 2700hex to 270Ahex)
See Block Wise Single Parameterization (Object 2700hex to 270Ahex) for detail.

Single parameterization without fragmented SDOs (Object 2720hex to Object 272Ahex)
For systems without the capability to use fragmented SDOs there is a second method of single
parameterization. This method only uses non-fragmented SODs.
The objects 2720hex to 272Ahex are used for this mode. The sub object here is the parameter
index. The length is the parameter length. Object 2720hex is for single parameters of CI581-
CN / CI582-CN itself. Objects 2721hex to 272Ahex are used for connected expansion modules
in ascending order.
For the used parameter indexes see Parameter Indexes of CI581-CN and Parameter Indexes of
CI582-CN.

TxPDO mapping
in DS401 mode
for CI582-CN

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5585

Limitations for CI581-CN / CI582-CN in DS401 mode
● Fast counter functionality is not available in DS401 mode (except CD522).
● Single Parameterization of I/O modules is only supported for I/O modules as of firmware

version 3.x.
● The following restrictions apply for connected I/O modules.

DA501
● The DA501 module only reports analog IOs even though it has also binary inputs / outputs.
● It uses the following IO data structure:

Inputs:
– Digital Inputs (channel 0..15) (16bits, 2 bytes)
– Analog Input 0 (2 bytes)
– Analog Input 1 (2 bytes)
– Analog Input 2 (2 bytes)
– Analog Input 3 (2 bytes)
– Binary Inputs (channel 16..23) / reserved (16bits, 2 bytes)

bits 0..7 binary inputs
bits 8..15 reserved
Outputs:

– Analog Output 0 (2 bytes)
– Analog Output 1 (2 bytes)
– Reserved (2 bytes)
– Binary Outputs (channel 0..7) / reserved (16bits, 2 bytes)

bits 0..7 binary outputs
bits 8..15 reserved

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5586

CD522
● The CD522 module only reports analog IOs even though it has also binary inputs / outputs.
● It uses the following IO data structure:

Inputs
– State S0/S1 % pulse (2 bytes)
– State byte / inputs counter 0 (2 bytes)
– TOUCH counter 0 value high word (2 bytes)
– TOUCH counter 0 value low word (2 bytes)
– 32-bit counter 0 high word (2 bytes)
– 32-bit counter 0 low word (2 bytes)
– 32-bit counter 1 high word (2 bytes)
– 32-bit counter 1 low word (2 bytes)
– Reserved (2 bytes)
– State byte / inputs counter 1 (2 bytes)
– TOUCH counter 1 value high word (2 bytes)
– TOUCH counter 1 value low word (2 bytes)
Outputs
– PWM frequency 0 high-word (2 bytes)
– PWM duty/cycle/pulse 0 low word (2 bytes)
– PWM control byte C0 / reserved (2 bytes)
– Reserved (2 bytes)
– PWM frequency 1 high-word (2 bytes)
– PWM duty/cycle/pulse 1 low word (2 bytes)
– PWM control byte C1 / outputs (2 bytes)
– Reserved (2 bytes)
– Counter 0 settings high word (2 bytes)
– Counter 0 settings low word (2 bytes)
– Counter 0 control byte / counter (2 bytes)
– Reserved (2 bytes)
– Counter 1 settings high word (2 bytes)
– Counter 1 settings low word (2 bytes)
– Counter 1 control byte / counter (2 bytes)
– Reserved (2 bytes)

● The IO data of the CD522 have to be mapped continuously in ascending order (without
gaps or other IO data inbetween) beginning with a new PDO.
For an example see the following figure:
– AnalogueInput16Bit_5 to AnalogueInput16Bit_16 are the inputs of the CD522.
– AnalogueOutput16Bit_3 to AnalogueOutput16Bit_18 are the outputs of the CD522.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5587

Triggering of event tasks with CAN-IDs
For CM598-CAN module the execution of a PLC application task can be triggered automatically
by a certain event, i.e. by incoming CAN 2.0 A or CAN 2.0 B frames. For this, the PLC
application task is to be configured as external event task.

Prerequisites
– PLC firmware version 2.5.3 and Automation Builder as of version 1.2.2.
– For CAN 2.0. A and CAN 2.0 B a seperate PLC application task is required.
– Triggering of event tasks is only supported for the communication module

CM598-CAN.

Every incoming CAN frame on a CM598-CAN module processes an event in the AC500 PLC. If
the parameter "Trigger PLC Task" is set to TRUE, the CAN protocol task checks via the receive
buffer configuration and the corresponding CAN-ID of the CAN frame whether a CAN frame is to
be executed or not. Only those CAN-IDs that are configured in the protocol configuration will be
processed. All other CAN frames will be rejected. If a CAN frame is to be processed, the CAN
frame data is copied to the receive buffer and an event on the IEC event task is triggered.

The IEC event task will be executed for one cycle.

The IEC event task will be triggered continuously until all associated receive
buffers have been emptied. Hence, ensure that the buffers are emptied by the
task, otherwise the task will run into a loop.

The following figure shows the sequence CAN frames processing when the triggering of event
task is used.

CAN frame pro-
cessing

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5588

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5589

– One event task can be assigned to each of the protocols CAN 2.0 A and
CAN 2.0 B.

– One common event for all of the selected CAN-IDs of one protocol. It must
be evaluated which CAN-IDs have been received.

– It is possible that CAN frames are lost when necessary system resources
are in use or when the CAN frames could not be processed in time due
to high system load. So, the PLC application must monitor the task which
consumes the events of the CAN protocol with a watchdog mechanism or
something similar.

– During the execution of the PLC application task no further events are sent
when new CAN frames are received before the task is finished. It is even
possible to read newly received CAN frames in the current cycle of the PLC
application task.

– The order of CAN frame reception could not be determined in the PLC
application task.

– The task which should be triggered by the protocols CAN2A and CAN2B is
a normal PLC application task and will be scheduled according its priority.
So it is possible that events could not be processed on time due to the task
is blocked by other tasks in the system.

– The setting of the parameter “behavior on receive buffer overflow” has an
influence on the processing of CAN frames and the corresponding events.
The documentation of the respective value has to be considered.

– CAN frames and events may be lost, if the receive buffer is full. Take care
that the receive buffers are emtied in time and the PLC load and CAN bus
load are not too high.

Event task con-
figuration

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5590

Event Communica-
tion module
slot

Description

Int_Cou-
pler0_CAN2A_Event

0 PLC event task will be triggered when a CAN
frame with a specified CAN ID was received by
the CAN2A protocol running at communication
module slot 0.

Int_Cou-
pler0_CAN2B_Event

0 PLC event task will be triggered when a CAN
frame with a specified CAN ID was received by
the CAN2B protocol running at communication
module slot 0.

Ext_Cou-
pler<slot>_CAN2A_Event

1 ... 6 PLC event task will be triggered when a CAN
frame with a specified CAN ID was received by
the CAN2A protocol running at communication
module slot 1 - 6.

Ext_Cou-
pler<slot>_CAN2B_Event

1 ... 6 PLC event task will be triggered when a CAN
frame with a specified CAN ID was received by
the CAN2B protocol running at communication
module slot 1 - 6.

Diagnosis
CANopen communication errors are indicated by the Communication Module LEDs. Malfunc-
tions of the CANopen driver or the Communication Module itself are indicated by the corre-
sponding error class in the PLC. Furthermore, the CANopen library provides different func-
tion blocks which allow detailed error diagnosis (refer to CANopen library Ä Chapter 1.5.4.7
“CANopen library” on page 912).

Error messages
Error messages/emergency messages are used to signalize device errors. An emergency mes-
sage contains a code that clearly identifies the error (specified in the communication profile
DS-301 and in the individual device profiles DS-40x). The following table shows some of the
available error codes. Emergency messages are automatically sent by all CANopen modules.

Error code (hex) Description / error cause
00xx Error on reset or no error

10xx General error

20xx Current error

21xx - Error on device input side

22xx - Error inside the device

23xx - Error on device output side

30xx Voltage error

31xx - Supply voltage error

32xx - Error inside the device

33xx - Error on device output side

40xx Temperature error

41xx - Ambient temperature

42xx - Temperature inside the device

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5591

Error code (hex) Description / error cause
50xx Hardware error in the device

60xx Software error in the device

61xx - Device-internal software

62xx - Application software

63xx - Data

70xx Error in additional modules

80xx Monitoring

81xx Communication

90xx External error

F0xx Error of additional functions

FFxx Device-specific errors

Function blocks

Group: CAN 2.0A
Ä Chapter 1.5.4.7.1.1 “CAN2A_INFO”
on page 913

Reading information about CAN 2.0A commu-
nication

Ä Chapter 1.5.4.7.1.2 “CAN2A_REC”
on page 916

Reading CAN 2.0A telegrams (with 11 bit
identifier) from a receive buffer

Ä Chapter 1.5.4.7.1.3 “CAN2A_SEND”
on page 919

Transmitting CAN 2.0A telegrams (with 11 bit
identifier)

Group: CANopen master / NMT controller
Ä Chapter 1.5.4.7.1.7 “CANOM_NMT”
on page 931

Controlling NMT node states via network man-
agement

Group: CANopen master / Status / Diagnosis
Ä Chapter 1.5.4.7.1.8
“CANOM_NODE_DIAG” on page 933

Polling diagnosis data from a slave

Ä Chapter 1.5.4.7.1.10 “CANOM_RES_ERR”
on page 941

Resetting the Communication Module's error
indications

Ä Chapter 1.5.4.7.1.14 “CANOM_STATE ”
on page 952

Reading the CANopen Communication
Module status

Ä Chapter 1.5.4.7.1.15 “CANOM_SYS_DIAG”
on page 957

Displaying status surveys of all slaves

Group: SDO parameters
Ä Chapter 1.5.4.7.1.11
“CANOM_SDO_READ” on page 944

Reading the value of a slave object

Ä Chapter 1.5.4.7.1.12
“CANOM_SDO_WRITE” on page 947

Writing the value of a slave object

CANopen_AC50
0_V25.lib or
CANopen_AC50
0_V11.lib

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5592

1.6.4.2.6 Serial communication module
CM574-RS - Serial communication module for AC500
Overview

The capabilities of the communication module correspond to a processor module. Further
information on the processor module can be found in the corresponding device description
Ä Chapter 1.6.2.3.2.1 “PM57x (-y), PM58x (-y) and PM59x (-y)” on page 3848.
The communication module can be plugged into any slot for external communication modules
on a AC500 terminal base. Up to four CM574-RS modules can be used in one AC500 system.
Programming can be done either directly via a serial cable between PC and serial interface of
the communication module, or routed via the AC500 CPU using the serial interface or Ethernet
or ARCNET.
Operation Modes
● CM574 is an additional CPU and program code to handle the serial interfaces run in

CM574.
Communication with the main PLC can be done in two ways:
– Cyclic data exchange via Inputs/outputs Ä Chapter 1.6.4.2.6.2.6.2 “Cyclic data

exchange CM574-RS/CS31 bus <-> AC500 CPU” on page 5597

– Acyclic data exchange via messages with FB’s from the user program Ä Chapter
1.6.4.2.6.3.1 “Function blocks for acyclic data exchange CM574-RS/AC500 CPU”
on page 5607

● CM574 work in shared mode. That mean module is a Interface extension (2 additional Serial
Interfaces) and all the needed codes and configurations are running in the main PLC.

Option 1 reduces CPU Load in the main PLC, but communication between CM574 and main
PLC must be done manually and especially for Modbus the use of the %M Area has to be
considered.
Option 2 is easy to program and configure. Only configuration for shared mode must be down-
load to the CM574. Configuration and code for the serial interfaces will be handled in the main
PLC. Load for main PLC is higher.

User program size and operands of the CM574-RS
The following table shows the values set for program memory and operands in the CM574
target systems:

Parameter Value
User program (code), see note 1 256 kB

Number of POUs 1024 kB

Number of tasks 3

Floating point processor, see note 2 no

Global and local variables: VAR or VAR
GLOBAL

128 kB

Addressable flag area: VAR AT %Mx.y 128 kB

Persistent area: VAR AT %Rx.y 0 kB

Inputs %I, see note 4 4 kB

Outputs %Q, see note 4 4 kB

FLASH for user data 2 x 64 kB = 128 kB

The user program is composed of:

Values

Note 1

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5593

- The compiled code of all POUs called in the program
- The initialization code for the variables
The configuration data are not included in the user program size.

All AC500 processor modules can perform floating point operations. For processor modules
without floating point processor (like the CM574-RS), these operations are performed by an
emulation library and are therefore slower. Emulation is faster for LREAL variables than for
REAL variables. Thus, the use of LREAL variables is recommended.

The information shown in the message box exclusively contains the retain data of the RETAIN
area, and not the variables of the addressable flag area %Mx.y. that are declared as VAR
RETAIN.
The communication module CM574-RS is not equipped with a battery. For this reason, ALL
operands are initialized once the control voltage is switched on.
In the communication module, data can be stored fail-safe in the flash memory using the
blocks Ä Chapter 1.5.4.19.2.18 “FLASH_WRITE” on page 1547 and Ä Chapter 1.5.4.19.2.17
“FLASH_READ” on page 1544.

For the inputs and the outputs, the same rules apply as for the AC500-CPUs.
The following input and output assignment applies for the CM574-RS:

CPU communica-
tion:

%IB0 .. %IB999 and %QB0 .. %QB999

Of this: Channel
1:

%IB0 %IB499 and %QB0 .. %QB499

Channel 2: %IB500 .. %IB999 and %QB500 .. %QB999
COM1: %IB1000 .. %IB1999 and %QB1000 .. %QB1999
COM2 : %IB2000 .. %IB2999 and %QB2000 .. %QB2999

Additional information can be found in the documentation "System Technology of the CPUs" in
AC500 inputs, outputs and flags.

Connection and transmission media
The pin assignment of the serial interfaces COM1 and COM2 correspond to those on the
terminal base for the processor modules PM57x, PM58x and PM59x Ä Chapter 1.6.2.2.1
“TB51x-TB54x” on page 3786.
Information about connection options for the serial interfaces can be found in the system
assembly chapter Ä Chapter 1.6.3.6.4 “Connection and wiring” on page 5337 .

The programming cable for direct online communication between PC and CM574-COMx has
the same pin assignment as the programming cable Ä Chapter 1.6.2.9.2.10 “TK502 - Program-
ming cable” on page 5188 for the serial interface COM1 of PM57x, PM58x and PM59x.

Protocols of the serial interfaces of the CM574-RS
Protocol 'COMx - Online access'

This protocol can only be used, if CM574 is configured as a PLC. If configured as communica-
tion module within a PLC project, this protocol is not available.

Remark 2

Remark 3

Remark 4

Possibilities of
connection

Connection
cables

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5594

See protocol description for the serial interfaces COM1 and COM2 Ä Chapter 1.6.5.2.11.2
“Setting COMx - Online access” on page 6099.
If the transmisson rate of the interface is changed to another value, a corresponding gateway
channel must be created. Example: COM1 is to be operated with 115200 baud and the protocol
'Online access'.
1. Configuration of COM1 -> Setting the transmission rate to 115200 baud.
2. Selection of the gateway channel -> e.g. COM4_19200 with transmission rate 19200

baud.
3. Login and download of user defined project (if required, create boot project).
4. Logout -> Interface is changed to 115200 baud.
5. Selection of the gateway channel -> e.g. COM4_115kB with transmission rate 115200

baud.
6. Login -> with 115200 baud.

Protocol 'COMx - ASCII'
See protocol description for the serial interfaces COM1 and COM2 Ä Chapter 1.6.5.2.11.3
“Setting COMx - ASCII” on page 6100.

Protocol 'COMx - Modbus'
See protocol description for the serial interfaces COM1 and COM2 Ä Chapter 1.6.5.2.11.4
“Setting COMx - Modbus” on page 6108.
The address assignment as well as a detailed description of all implemented Modbus functions
can be found in the chapter of Communication with Modbus RTU .
In the CM574-RS, 128 kB data are available in the addressable flag range %M. This way, the
entire Modbus address range 0000hex .. FFFFhex can be covered.

Protocol 'COMx - SysLibCom'
This protocol can only be used, if CM574 is configured as a PLC. If configured as Communica-
tion Module within a PLC project, this protocol is not available.
See protocol description for the serial interfaces COM1 and COM2 Ä Chapter 1.6.5.2.11.6
“Setting COMx - SysLibCom” on page 6110.

Protocol 'COMx - Multi'
This protocol can only be used, if CM574 is configured as a PLC. If configured as Communica-
tion Module within a PLC project, this protocol is not available.
See protocol description for the serial interfaces COM1 and COM2 Ä Chapter 1.6.5.2.11.7
“Setting COMx - Multi” on page 6114.

Protocol 'COM1 - CS31 Bus'
See protocol description for the serial interfaces COM1 and COM2 Ä Chapter 1.6.5.2.11.5
“Setting COMx - CS31” on page 6110.
There are several options for processing the inputs and outputs of the CS31 bus modules:

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5595

● Direct processing in the user-defined program of the CM574-RS
● Transfer to the AC500 CPU via cyclic data exchange
Transfer to the AC500 CPU via acyclic data exchange is not recommended.

Planning example for CM574-RS/CS31 bus
Planning the cyclic data exchange of the inputs and outputs of the CS31 bus modules on the
CM574-RS with a processor module is illustrated in the following example configuration:
● PM582 with CM574-RS in slot 1
● CM574-RS: COM1 CS31 bus, COM2 online access
● CS31 cluster 1: DC551 with HW address switch = 70, i.e. address 0 and fast counter

enabled
● CS31 cluster 2: DC551 with HW address switch = 1 and S500 extensions 1xAX522 +

1xDC532

Accordingly, PLC configuration in the CM574-RS project is as follows:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5596

If you open the last module (here: DC532), you can see that the highest input byte is %IB1037,
and the highest output byte is %QB1041.
Thus, the configuration on the CS31 bus has
38 bytes for inputs and 42 bytes for outputs.

Cyclic data exchange CM574-RS/CS31 bus <-> AC500 CPU
In case of cyclic data exchange, the inputs and outputs of the modules on the CS31 bus are
transferred by means of I/O modules via the DPRAM.
Cyclic data exchange is described in detail in Function blocks for acyclic data exchange
CM574-RS/AC500 CPU Ä Chapter 1.6.4.2.6.3 “Acyclic data exchange CM574/AC500 CPU”
on page 5607.

Transfer of the inputs
For the transfer to the CPU, the inputs of the CS31 modules are outputs of the CM574-RS in the
CPU communication. For this reason, the input modules in the CM574-RS include IEC outputs
(%Q).
The following table shows how the inputs of the CS31 modules are transferred and where the
respective operands are located in the CPU:

Inputs
CS31
bus

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

%IB %IW %ID %QB %QW %QD %IB %IW %ID
DC551
_0
Input
0-7

1000 500 250 0 0 0 1.0 1.0 1.0

Not
used

1001 1 1.1

DC551
_0
Input
8-15

1002 501 2 1 1.2 1.1

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5597

Inputs
CS31
bus

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

%IB %IW %ID %QB %QW %QD %IB %IW %ID
DC551
_0
Input
16-23

1003 3 1.3

 Module 4 Byte Input Module 4 Byte Input

DC551
_0
Actual
value 1
(HH)

1004 502 251 4 2 1 1.4 1.2 1.1

DC551
_0
Actual
value 1
(H)

1005 5 1.5

DC551
_0
Actual
value 1
(L)

1006 503 6 3 1.6 1.3

DC551
_0
Actual
value 1
(LL)

1007 7 1.7

DC551
_0
Actual
value 2
(HH)

1008 504 252 8 4 2 1.8 1.4 1.2

DC551
_0
Actual
value 2
(H)

1009 9 1.9

DC551
_0
Actual
value 2
(L)

1010 505 10 5 1.10 1.5

DC551
_0
Actual
value 2
(LL)

1011 11 1.11

 2 x Module 1 DWORD
Input

2 x Module 1 DWORD
Input

DC551
_0
Status
byte 1

1012 506 253 12 6 3 1.12 1.6 1.3

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5598

Inputs
CS31
bus

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

%IB %IW %ID %QB %QW %QD %IB %IW %ID
DC551
_0
Status
byte 2

1013 13 1.13

 2 x 1 Byte Input 2 x 1 Byte Input

DC551
_1
Input
0-7

1014 507 14 7 3 1.14 1.7 1.3

DC551
_1
Input
8-15

1015 15 1.15

DC551
_1
Input
16-23

1016 508 254 16 8 4 1.16 1.8 1.4

Not
used

1017 17 1.17

DC551
_1_AX5
22
Anal.
input 0
(H)

1018 509 18 9 1.18 1.9

DC551
_1_AX5
22
Anal.
input 0
(L)

1019 19 1.19

DC551
_1_AX5
22
Anal.
input 1
(H)

1020 510 255 20 10 5 1.20 1.10 1.5

DC551
_1_AX5
22
Anal.
input 1
(L)

1021 21 1.21

DC551
_1_AX5
22
Anal.
input 2
(H)

1022 511 22 11 1.22 1.11

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5599

Inputs
CS31
bus

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

%IB %IW %ID %QB %QW %QD %IB %IW %ID
DC551
_1_AX5
22
Anal.
input 2
(L)

1023 23 1.23

DC551
_1_AX5
22
Anal.
input 3
(H)

1024 512 256 24 12 6 1.24 1.12 1.6

DC551
_1_AX5
22
Anal.
input 3
(L)

1025 25 1.25

DC551
_1_AX5
22
Anal.
input 4
(H)

1026 513 26 13 1.26 1.13

DC551
_1_AX5
22
Anal.
input 4
(L)

1027 27 1.27

DC551
_1_AX5
22
Anal.
input 5
(H)

1028 514 257 28 14 7 1.28 1.14 1.7

DC551
_1_AX5
22
Anal.
input 5
(L)

1029 29 1.29

DC551
_1_AX5
22
Anal.
input 6
(H)

1030 515 30 15 1.30 1.15

DC551
_1_AX5
22
Anal.
input 6
(L)

1031 31 1.31

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5600

Inputs
CS31
bus

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

%IB %IW %ID %QB %QW %QD %IB %IW %ID
DC551
_1_AX5
22
Anal.
input 7
(H)

1032 516 258 32 16 8 1.32 1.16 1.8

DC551
_1_AX5
22
Anal.
input 7
(L)

1033 33 1.33

DC551
_1_DC
532
Input
0-7

1034 517 34 17 1.34 1.17

DC551
_1_DC
532
Input
8-15

1035 35 1.35

DC551
_1_DC
532
Input
16-23

1036 518 259 36 18 9 1.36 1.18 1.9

DC551
_1_DC
532
Input
24-31

1037 37 1.37

 3 x 4 Word Input 3 x 4 Word Input

Not
used

1038 519 38 19 9 1.38 1.19

1.9

Not
used

1039 39 1.39

Transfer of the outputs
For the transfer to the CPU, the outputs of the CS31 modules are inputs of the CM574-RS in the
CPU communication. For this reason, the output modules in the CM574-RS include IEC outputs
(%Q).

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5601

Table 709: Transferring the outputs of the CS31 modules:
CS31
bus
out-
puts

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

QIB %QW %QD %IB %IW %ID %QB %QW QID
DC551
_0 Out-
puts
8-15

1000 500 250 0 0 0 1.0 1.0 1.0

DC551
_0 Out-
puts
16-23

1001 1 1.1

Not
used

1002 501 2 1 1.2 1.1

Not
used

1003 3 1.3

 Module 4 Byte Output Module 4 Byte Output

DC551
_0 Start
value 1
(HH)

1004 502 251 4 2 1 1.4 1.2 1.1

DC551
_0 Start
value 1
(H)

1005 5 1.5

DC551
_0 Start
value 1
(L)

1006 503 6 3 1.6 1.3

DC551
_0 Start
value 1
(LL)

1007 7 1.7

DC551
_0 End
value 1
(HH)

1008 504 252 8 4 2 1.8 1.4 1.2

DC551
_0 End
value 1
(H)

1009 9 1.9

DC551
_0 End
value 1
(L)

1010 505 10 5 1.10 1.5

DC551
_0 End
value 1
(LL)

1011 11 1.11

DC551
_0 Start
value 2
(HH)

1012 506 253 12 6 3 1.12 1.6 1.3

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5602

CS31
bus
out-
puts

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

QIB %QW %QD %IB %IW %ID %QB %QW QID
DC551
_0 Start
value 2
(H)

1013 13 1.13

DC551
_0 Start
value 2
(L)

1014 507 14 7 1.14 1.7

DC551
_0 Start
value 2
(LL)

1015 15 1.15

DC551
_0 End
value 2
(HH)

1016 508 254 16 8 4 1.16 1.8 1.4

DC551
_0 End
value 2
(H)

1017 17 1.17

DC551
_0 End
value 2
(L)

1018 509 18 9 1.18 1.9

DC551
_0 End
value 2
(LL)

1019 19 1.19

 Module 4 DWORD Output Module 4 DWORD Output

DC551
_0 Con-
trol byte
1

1020 510 255 20 10 5 1.20 1.10 1.5

DC551
_0 Con-
trol byte
2

1021 21 1.21

DC551
_1 Out-
puts
8-15

1022 511 22 11 1.22 1.11

DC551
_1 Out-
puts
16-23

1023 23 1.23

 Module 4 Byte Output Module 4 Byte Output

DC551
_1_AX5
22
Anal.
output
0 (H)

1024 512 256 24 12 6 1.24 1.12 1.6

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5603

CS31
bus
out-
puts

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

QIB %QW %QD %IB %IW %ID %QB %QW QID
DC551
_1_AX5
22
Anal.
output
0 (L)

1025 25 1.25

DC551
_1_AX5
22
Anal.
output
1 (H)

1026 513 26 13 1.26 1.13

DC551
_1_AX5
22
Anal.
output
1 (L)

1027 27 1.27

DC551
_1_AX5
22
Anal.
output
2 (H)

1028 514 257 28 14 7 1.28 1.14 1.7

DC551
_1_AX5
22
Anal.
output
2 (L)

1029 29 1.29

DC551
_1_AX5
22
Anal.
output
3 (H)

1030 515 30 15 1.30 1.15

DC551
_1_AX5
22
Anal.
output
3 (L)

1031 31 1.31

DC551
_1_AX5
22
Anal.
output
4 (H)

1032 516 258 32 16 8 1.32 1.16 1.8

DC551
_1_AX5
22
Anal.
output
4 (L)

1033 33 1.33

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5604

CS31
bus
out-
puts

CM574 - COM1
CS31 bus

CM574 - DPR AC500 CPU

QIB %QW %QD %IB %IW %ID %QB %QW QID
DC551
_1_AX5
22
Anal.
output
5 (H)

1034 517 34 17 1.34 1.17

DC551
_1_AX5
22
Anal.
output
5 (L)

1035 35 1.35

DC551
_1_AX5
22
Anal.
output
6 (H)

1036 518 259 36 18 9 1.36 1.18 1.9

DC551
_1_AX5
22
Anal.
output
6 (L)

1037 37 1.37

DC551
_1_AX5
22
Anal.
output
7 (H)

1038 519 38 19 1.38 1.19

DC551
_1_AX5
22
Anal.
output
7 (L)

1039 39 1.39

 2 x Module 4 Word Output 2 x Module 4 Word Output

DC551
_1_DC
532
Output
16-23

1040 520 260 40 20 10 1.40 1.20 1.10

DC551
_1_DC
532
Output
24-31

1041 41 1.41

 Module 1 Word Output Module 1 Word Output

Not
used

1042 521 260 42 21 10 1.42 1.21 1.10

Not
used

1043 43 1.43

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5605

In the CPU, the input modules include IEC inputs (%I) and the output modules include IEC
outputs (%Q). Consequently, from the CPUs point of view, the inputs of the CS31 module are
read as IEC input, and the outputs of the CS31 module are written as output.
The easiest method to transfer the inputs in the PLC program of the CM574-RS is the
Ä Chapter 1.5.4.20.1.2 “DPRAM_IO_COPY” on page 1629 function.
For this purpose, symbolic names are assigned to each first byte on the CS31 bus and in the
CPU communication area. For automatic length calculation, the last input byte is required.
In the example, these are:
First_Input_CS31 for %IB1000,
Last_Input_CS31 for %IB1037 and
First_Input_DPR for %QB0
The PLC program (FBD) then includes the instruction:

The transfer of the outputs from the CPU to the CS31 bus is performed analogously. The
following symbolic names are entered into the PLC configuration:
First_Output_DPR for %IB0,
First_Output_CS31 for %QB1000 and
Last_Output_CS31 for %QB1041
The PLC program (FBD) then includes the instruction:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5606

The entire PLC program on the CM574-RS consists of these two networks or function calls.

It is necessary to use the function block DPRAM_IO_COPY. If SysMemCpy is
used instead, data consistency of the I/Os is not guaranteed.

Acyclic data exchange CM574/AC500 CPU
Function blocks for acyclic data exchange CM574-RS/AC500 CPU

Unlike the cyclic data exchange via input/output signals, the acyclic data exchange has to be
programmed in the user program.
The acyclic data exchange is used mainly for transmitting commands for own protocols. For
example, the entire data exchange between the AC500 CPU and a CM574-RCOM occurs via
these blocks.
The following blocks are available:

Description CM574-RS AC500 CPU
Library SysIntExt_AC500_V13.lib SysInt_AC500_V10.lib

Transmission from the CM574
to the AC500 CPU or recep-
tion in the AC500 CPU from
the Communication Module

Ä Chapter 1.5.4.20.1.5
“DPRAM_PM5XX_SEND”
on page 1635

Ä Chapter 1.5.4.19.2.15
“DPRAM_CM5XX_SEND”
on page 1540

Reception in the CM574 from
the AC500 CPU or transmis-
sion from the AC500 CPU to
the Communication Module

Ä Chapter 1.5.4.20.1.4
“DPRAM_PM5XX_REC”
on page 1633

Ä Chapter 1.5.4.19.2.14
“DPRAM_CM5XX_REC”
on page 1537

Programming example for acyclic data exchange
In the program example it is assumed that a maximum of 100 bytes is exchanged between
CPU and Communication Module. The CM574-RS Communication Module is plugged into slot 1
(SLOT=1).
In principle, the program is the same in the AC500 CPU and the CM574-RS. The respective
block names are to be used in the variable declaration for the CPU and the CM574.
In the example, the transmit and receive data are simply assigned to global byte ARRAYs:

VAR_GLOBAL
 abyRecDa-

taCM574_1_1
:
ARRAY[0..cdwMaxRe
c] OF BYTE;

(* Data from DPRAM
*)

 abySendDa-
taCM574_1_1

: ARRAY[0..cdwMax-
Send] OF BYTE;

(* Data to DPRAM *)

END_VAR
VAR_GLOBAL CONSTANT
 cdwMaxRec : DWORD := 99; (* +1 byte receive *)
 cdwMaxSend : DWORD := 99; (* +1 byte send *)
END_VAR

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5607

The program for receiving and transmitting the data looks as follows:

PROGRAM proComm_CPU_CM574
VAR
 bNewRecData : BOOL; (* new data received

*)
 fbRecCM574_1 :

DPRAM_CM5XX_RE
C;

(* CPU: receive data
from first CM574 *)

 :
DPRAM_PM5XX_RE
C;

(* CM574: receive
data from CPU *)

 bRecErr : BOOL; (* receive error *)
 wRecErno : WORD; (* receive error

number *)
 bNewSend : BOOL; (* new data from pro-

gram *)
 bNewSendData : BOOL; (* new data available

to send *)
 bSendDone : BOOL; (* data successfully

sent *)
 fbSendCM574_1 :

DPRAM_CM5XX_SE
ND;

(* CPU: send data to
first CM574 *)

 :
DPRAM_PM5XX_SE
ND;

(* CM574: send data
to CPU *)

 bSendErr : BOOL; (* send error *)
 wSendErno : WORD; (* send error number

*)
END_VAR
VAR CONSTANT
 cbySlotCM574_1 : BYTE := 1; (* SLOT number of

first CM574 *)
 cbyChan-

nelCM574_1_1
: BYTE := 1; (* Channel 1 of first

CM574 *)
 cbyChan-

nelCM574_1_2
: BYTE := 2; (* Channel 2 of first

CM574 *)
END_VAR

Part 1: Reception of data

(* receive data from CM574 --> DONE=TRUE -> new data available *)
bNewRecData := FALSE; (* reset new receive

data *)
fbRecCM574_1(EN := TRUE, SLOT := cbySlotCM574_1, CH := cbyChannelCM574_1_1,
 DATA := ADR(abyRecDataCM574_1_1));
IF fbRecCM574_1.DONE THEN (* new receive *)

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5608

 IF NOT fbRecCM574_1.ERR THEN (* with error ? *)
 bRecErr := FALSE; (* receive OK *)
 bNewRecData :=

TRUE;
(* new data received
*)

 ELSE
 bRecErr := TRUE; (* save receive error *)
 wRecErno :=

fbRecCM574_1.ERN
O;

(* save receive error
number *)

 END_IF; (* ERR *)
END_IF; (* Rec DONE *)

 Part 2: Processing of data

IF bNewRecData THEN (* new data received *)
 (* process data *)
 bNewSendData := TRUE; (* send new data if possible *)
END_IF; (* bNewRecData *)

Part 3: Transmission of data

bSendDone := FALSE; (* reset send
done *)

IF fbSendCM574_1.EN OR bNewSendData THEN (* send activ or
new cycle ? *)

 fbSendCM574_1(EN := TRUE, SLOT := cbySlotCM574_1, CH := cby-
ChannelCM574_1_1,

 DATA := ADR(abySendDa-
taCM574_1_1),

 DATA_LEN := cdwMaxSend + 1); (* run send POU
*)

 IF fbSendCM574_1.DONE THEN (* last send is
now ready *)

 IF fbSendCM574_1.ERR THEN (* error in last
SEND *)

 bSendErr :=
TRUE;

(* save send
error *)

 wSendErno :=
fbSendCM574_1.
ERNO;

(* save error
number *)

 ELSE
 bSendErr :=

FALSE;
(* no error in last
transmission *)

 bSendDone :=
TRUE;

(* data success-
fully transmitted
*)

 END_IF; (* ERR *)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5609

 fbSendCM574_1 (EN := FALSE); (* call with
EN:=FALSE for
new edge *)

 END_IF; (* DONE *)
END_IF; (* EN *)

Special functions of the CM574-RS
The library "SysInt_AC500_V10.lib" located in the directory "Data storage/Flash" contains the
following blocks which are used to store data in the Flash memory:

Block Function
Ä Chapter 1.5.4.19.2.16 “FLASH_DEL”
on page 1542

Deletes a data segment in the Flash memory

Ä Chapter 1.5.4.19.2.17 “FLASH_READ”
on page 1544

Reads a data segment from the Flash memory

Ä Chapter 1.5.4.19.2.18 “FLASH_WRITE”
on page 1547

Writes a data segment to the Flash memory

The blocks and their functionality are the same as for the AC500 CPU. These blocks are
described in the library documentation of the Internal System Library Ä Chapter 1.5.4.19.2.18
“FLASH_WRITE” on page 1547.

The library "SysIntExt_AC500_V10.lib" contains the function block LED_SET for controlling
the LEDs of the CM574-RS. See description of the function block Ä Chapter 1.5.4.20.1.6
“LED_SET” on page 1638 for further information.

If the Error LED is to be activated from the user program, the parameter "Error
LED" has to be set to "Off" Ä Chapter 1.6.5.2.6.3.2 “Configuration of CM574-
RS” on page 5903.

The library "SysIntExt_AC500_V10.lib" contains the function block CPU_OWN_ADR for reading
the address switch of the CM574-RS. See description of the function block Ä Chapter
1.5.4.20.1.1 “CPU_OWN_ADR” on page 1627 for further information.
The address set with the rotary switches is output at the ADDR output.

Programming access to the CM574-RS
Programming via the serial interface of the CM574-RS

Programming via the serial interface is performed with the same drivers and settings as pro-
gramming via the serial interface COM1 or COM2 of the AC500 CPU Ä Chapter 1.6.5.2.6.3.2
“Configuration of CM574-RS” on page 5903.
The pin assignment of the programming cable is the same as for COM1 of the AC500 CPU.

Programming the CM574-RS via the AC500 CPU (Routing)
For programming via the CPU, the following programming interfaces are available:

Function blocks
for data storage
in flash memory

LEDs control of
the CM574-RS

Reading the
address switch
of the CM574-
RS

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5610

● Serial driver "ABB RS232 Route AC"
● Ethernet driver (TCP/IP) "ABB Tcp/Ip Level2 AC"
● ARCNET driver "ABB ARCNET AC"
Setting up a gateway channel is described in the section Ä Chapter 1.6.5.4.2 “Programming
and testing” on page 6198.
This chapter only describes the settings for the routing to the CM574-RS.

Programming via CPU with serial driver "ABB RS232 Route AC"
The following figure shows the setting of a gateway channel for COM5 of the PC with routing to
the CM574-RS plugged into slot 1 (line 1).

The following settings have to be specified:

Port Serial interface (COMx) of the PC, in the
example: COM5

Transmission rate Transmission rate of COMx of the AC500
CPU

Routing levels 1

Communication Module (Level 1) Line 1

Address (Level 1) 0,0,0,0,0

Motorola byteorder Yes

Programming via CPU with Ethernet Driver "ABB Tcp/Ip Level2 AC"
The following figure shows the setting of a gateway channel for connection via the AC500 CPU
with the IP address 192.168.3.10 with routing to the CM574-RS plugged into slot 2 (line 2).

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5611

The following settings have to be specified:

Address - IP address of the AC500 CPU, in the
example: 192.168.3.10

Routing levels - 1

Communication Module (Level 1) - Line 2

Address (Level 1) - 0,0,0,0,0

Motorola byteorder - Yes

Programming via CPU with ARCNET Driver "ABB ARCNET AC"
The following figure shows the setting of a gateway channel for connection via the AC500 CPU
with the ARCNET address (node) 2 with routing to the CM574-RS plugged into slot 1 (line 1).

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5612

The following settings have to be specified:

Target node ARCNET address of the AC500 CPU, in the
example: 2

Routing levels 1

Communication Module (Level 1) Line 1

Address (Level 1) 0,0,0,0,0

Motorola byteorder Yes

1.6.4.2.7 RCOM/RCOM+ communication module
CM574-RCOM - RCOM/RCOM+ communication module
Overview

The RCOM/RCOM+ communication module CM574-RCOM requires a processor module with
firmware version V1.3.0 or above.
The capabilities of the communication module correspond to a processor module. Further
information on the processor modules can be found in the corresponding device description
Ä Chapter 1.6.2.3.2.1 “PM57x (-y), PM58x (-y) and PM59x (-y)” on page 3848.
CM574-RCOM can be plugged into any slot for communication modules on a terminal base
TB511, TB521 or TB541. Further information on the terminal bases can be found in the cor-
responding device description Ä Chapter 1.6.2.2.1 “TB51x-TB54x” on page 3786. Up to 4
CM574-RCOM can be used in one AC500 system.
The communication module provides 2 serial interfaces which are designed according to the
standards EIA RS-232 and EIA RS-485. The pin assignment of the interfaces corresponds to
the pin assignment of COM1 at processor module PM57x, PM58x and PM59x.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5613

Features
● The CM574-RCOM communication module can be configured as RCOM master or RCOM

slave.
● Up to 254 RCOM slaves are possible in a network (max. 8 slaves when using Master-

Piece 200 and max. 30 slaves when using dial-up operation).
● Available RCOM services are cold start, warm start, normalization, clock synchronization,

writing and reading data, event polling.
● The RCOM interface for connecting the modem corresponds to EIA RS-232. Operation

according to EIA RS-485 is also possible.
● An additional RS-232 interface (CONSOLE) is available for commissioning (for displaying

communication history, planning phone numbers, etc.).
● Software clock (can be used by the PLC program).

After initialization, the CM574-RCOM runs until it is reinitialized. The abortion of a running
program can cause the interruption of RCOM connection elements. If a connection element
does not respond within 2 seconds, the CM574-RCOM displays the message "command not
reset by CPU" or "no CPU reaction".
If the communication module is configured as RCOM slave, the corresponding error message
("application part not ready", RCOM error number 4020h) is sent to the RCOM master.
If the communication module is configured as RCOM master, the interrupted job is repeated
until the processor module resets the job. This is done at the latest with the next initialization
performed by the RCOM_INIT connection element.

Since the CM574-RCOM monitors the reaction of the CPU module in case of incoming and
triggered services, it is not possible to run the RCOM connection elements in single step or
single cycle mode. Thus, you should always run the communication part of the processor
module program in "real time".

The communication module is controlled by the processor module by means of commands.
The commands from the master station and the responses of the communication module are
exchanged via the dual port RAM (DPRAM) of the AC500 processor module.
The user controls the communication module exclusively by means of the supplied connection
elements of the RCOM library RCOM_AC500_V13.lib. The library contains connection elements
for all system and data transmission services. This permits the user to define the required com-
munication sequence very simply Ä Chapter 1.5.4.30 “RCOM/RCOM+ library” on page 1903.

The communication between the processor module and the Communication Module CM574-
RCOM is performed via function blocks of the RCOM library RCOM_AC500_V13.lib Ä Chapter
1.5.4.30 “RCOM/RCOM+ library” on page 1903.

All important parameters (transmission rate, timeout times etc.) for the communication module
are defined in the PLC configuration of the processor module's PLC program. Further informa-
tion can be found in the description of configuration of the communication module Ä Chapter
1.6.5.2.6.4.1 “Module parameters” on page 5907.
The parameters for the individual services (e.g. slave address, data set number etc.) are preset
directly on the connection element for this service.

A terminal can be connected to the CM574-RCOM in order to simplify commissioning. The com-
munication module then issues messages concerning incoming commands from the processor
module, received or transmitted RCOM telegrams and any occurring errors.
This function can be deactivated after commissioning. The communication processor then con-
tinues operation without a terminal.

RUN/STOP
behavior

Single step and
single cycle

Communication
module control

Function blocks
for RCOM/
RCOM+

Parameters

Commissioning

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5614

When installing Automation Builder software, the example projects for RCOM dedicated line and
RCOM dial-up line are installed.

RCOM/RCOM+ protocol
RCOM is a transmission protocol which is particularly suitable for data transmission over long
distances (RCOM = Remote COMmunication).
The protocol is based on a simple V.24 interface and thus permits the use of standard data
teletransmission devices (e.g. modems).

The main fields of application for RCOM are as follows:
● Networking AC500 systems to AC31 systems
● AC500 stations and AC31 stations
● Networking of AC500 stations
You can use either dedicated lines (e.g. existing cable paths or leased lines) or telephone lines
with dial-up modems for communication.

There are the following differences between RCOM and RCOM+ concerning data transmission:
● The "BREAK" character of RCOM is replaced by a transmission break of configurable length

for RCOM+
● The 8 bit "exclusive-or check sum" (XOR) of RCOM is replaced by a 16 bit CRC16

checksum for RCOM+

Switching between RCOM and RCOM+ is performed by selecting the corresponding operation
mode in the PLC configuration Ä Chapter 1.6.5.2.6.4.1 “Module parameters” on page 5907.

RCOM networks
A RCOM network consists of 2 or more users, e.g. control computers or substations etc. One
user is always configured as RCOM master. All other users are RCOM slaves.
The users are connected by means of a transmission medium. In case of RCOM, this may be
a direct line (point-to-point connection), a dedicated line with multi-drop modem (these permit
coupling of several users to one line) or a dial-up connection over the public telephone network.
Each subscriber in the network has an address assigned that can be used to address (call) this
specific device. This address is a number between 1 and 254 for slaves, or 0 for the master.
The figure below shows an RCOM network with multi-drop modems:

Program exam-
ples for RCOM
communication

Differences
between RCOM
and RCOM+

Switching
between RCOM
and RCOM+

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5615

With each job, the master transfers the specific address of the addressed slave and only this
slave will respond to the job.

There is a simple convention for controlling data communication on the line: One user in the
network is the master. Only the master can send jobs to other users, the slaves. The slaves
respond to a job telegram with a telegram that indicates whether the job has been understood
and whether it has been possible to execute it.
This always results in the sequence job telegram (response telegram) on the data line.

A complete address has to be specified in order to address a data set on a specific slave. This
address consists of the following parts:
● Number of the slave (NODE). Up to 254 slaves may exist in an RCOM network. Number 0 is

used by the master.
● Number of the data set (ID).
● Number of data words of the data set to be transmitted (LEN). Data sets do not always have

to be transmitted completely. However, a minimum of two data words have to be transmitted
and the number of data words has to be even-numbered. Transmission always starts with
the first data word.

The figure below shows an example of a RCOM system and the addressing path:

Master-slave
structure

Addressing in
the RCOM net-
work

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5616

Slave number FF hex (255) can be used to transmit specific services to all slaves simultane-
ously. Such a service is not answered by any of the slaves and is thus repeated several times
by the master as a safety measure.
Broadcast is permitted only for jobs where no user data are transmitted (system services).

Job types
There are several types of jobs that can be divided into two groups:
● System services for RCOM network management, e.g. for connection set-up, clear down

and reinitializing the network etc.
● Services for data transmission. After the RCOM network has been started successfully, the

master triggers these jobs in order to transmit user data.

The following services are provided for RCOM network management:
● Cold start: The addressed slave is reset, i.e. all protocol control characters are set to the

initial state. In addition, the event queue is deleted. After a cold start, data sets cannot be
transmitted again until normalization is completed.

● Warm start: During a warm start, the event queue is deleted. A warm start can be performed
after a transmission error in order to resynchronize master and slave. After a warm start,
data sets cannot be transmitted again until normalization is completed.

● Normalization (normalize user part): Normalization enables the transmission of data sets
after a cold start or a warm start. This job has to be used to enable communication.

● Set clock (clock synchronization): The CM574-RCOM provides a clock that generates time
stamps for events. This clock can be set by the master.

● All system services can be started in the master using corresponding connection elements.
In the slave, the system services are handled automatically by the CM574-RCOM, i.e.
nothing needs to be configured for the system services in the RCOM slaves.

Broadcast

System services

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5617

All system services can be started in the master using corresponding connection elements. In
the slave, the system services are handled automatically by the CM574-RCOM, i.e. nothing
needs to be configured for the system services in the RCOM slaves.

Terms
Do not confuse the RCOM services cold start / warm start and the corre-
sponding PLC commands referring to the hardware state. In this section, the
terms "cold start" and "warm start" always refer to the RCOM system services
and therefore only affect the protocol state.

Data transmission
All user data in the RCOM network are transmitted in so-called data sets (DSs for short).
They consist of a maximum of sixteen 16 bit data words (eight 32-bit double words in case of
MasterPiece).
A maximum of one data set can be transferred in each job telegram. For transmission of large
amounts of data should, several jobs have to be started.
For identification, each data set has a number ("ID") assigned, which is also transferred in the
telegram.
In the PLC program, data sets can be stored in word arrays. The address of the start word must
be set at input "DATA" by using the ADR operator.
For transmission, the data set number "ID", the first of 16 words (start word at "DATA") and the
number of data words to be transferred ("LEN") has to be specified at the connection element
used for transmitting the data set.
Three options for transmission of data sets are available:
● Write data sets to slave
● Read data sets from slave
● Event polling

The master can write a data set to the slave by reading the user data and sending them to
the slave by means of a telegram. The data are stored at the specified address of the function
block, e.g. in a word array. The slave confirms the reception of data in the response telegram.

The master reads a data set from the slave by first sending a job telegram to the slave. The
slave receives this telegram, reads the data from the address specified by input "DATA" and
returns the data in the response telegram. The data of the response telegram are stored at the
address specified at input "DATA" of the corresponding function block.

In many applications it is required that the slave transfer data to the master, e.g. if an important
event is contained in the process.
Normally, the slave is not allowed to start communication itself (master-slave structure). This
means, the slave has to wait until the master reads the required data set.
The RCOM protocol provides a simple mechanism to solve this problem: Event polling.
If the slave wants to transmit data to the master, it can initiate the transmission as follows:
● The slave transfers the data set to a queue (event queue) on the CM574-RCOM Communi-

cation Module.
● The master cyclically polls all slaves consecutively to search for events in the queues. If an

event is available, the addressed slave sends the data set in the response. If not, it sends
the response Event queue empty.

This way, the slave can signal events to the master very easily. If no events occurred, no user
data are exchanged. In this case, transmission is completed very quickly.

Data sets

Write data set

Read data set

Event polling

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5618

Since there is no correlation in time between triggering of the event (insertion in the queue)
and event polling (read-out of the queue by the master), a time stamp is stored in the data set
providing information regarding the time when the event occurred. Therefore, a data set can
only contain a maximum of 14 data words and the last two words contain the time stamp.
The CM574-RCOM can store a maximum of 20 events in the queue. Further events are rejected
with an error message.
The figure below shows the event-driven transmission.

The slave detects an event and transfers the data set to its event queue (1.). The RCOM master
polls the slave (2.) and receives the corresponding data set contained in the slaves response
telegram (3.).

Planning
To simplify the use of the communication module, connection elements are provided for all
required services.
● RCOM_INIT block for initializing the communication module.
● Connection elements for the system services

– cold start service (RCOM_COLDST)
– warm start service (RCOM_WARMST)
– normalization (RCOM_NORMAL)
– event polling (RCOM_POLL)
– telephone dialing (RCOM_DIAL)
– telephone hang-up (RCOM_HANGUP)

● Connection elements RCOM_TRANSMIT (transmit data set) and RCOM_REC (receive data
set) for writing data sets. These connection elements are also used for event-driven trans-
mission. For event polling, the RCOM_POLL connection element has to be used in the
master to trigger polling of the slave.

● The RCOM master uses the RCOM_READ connection element for reading data sets.
The addressed slave provides the data to be read in the RCOM_READ_SLV connection
element.

The figure below shows the application of the connection elements RCOM_INIT,
RCOM_COLDST and RCOM_NORMAL. These connection elements have to be used for initial-
izing the communication processors and for starting the RCOM protocol.
Each RCOM user is initialized by the RCOM_INIT connection element, i.e. the transmission
parameters, the network address and the timeout times etc. are defined.
The RCOM master then has to perform an RCOM cold start service (RCOM_COLDST) and
data transmission has to be enabled by normalization (RCOM_NORMAL). In the example, cold
start and normalization are implemented by broadcast telegrams (NODE = 255) so that all
slaves are addressed simultaneously.
The RCOM network is ready for data transfer after the procedure above has been performed.

Initialization,
cold start and
normalization

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5619

In the application shown above, the connection elements for initialization and for the RCOM
services cold start and normalization are displayed in simplified form.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5620

The figure below shows an example of transmission of data sets. It illustrates the relationship
between connection elements and the significance of address and data set number ("ID").

In the application shown above, the connection elements for data transmission are shown in
simplified form.
The following transmissions can be performed in the example:
● Data set 1 is transmitted from the master to slave 1.
● Data set 22 is read by slave 2.

Data transmis-
sion

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5621

● Data set 19 is sent from slave 3 to the master (event-driven). The master must first poll
slave 3 (connection element RCOM_POLL).

● Data set 78 is sent from the master to slave 4.
The figure above does not show the logic for enabling of the connection elements.

For each connection element in the master, a corresponding partner is available
in the slave. These two connection elements have the same data set number
("ID").

The data applied to the inputs and outputs of the connection element are not
the actual user data but only parameters referencing the storage location of the
user data instead.

All data sets in the slave are addressed by zero ("NODE") because jobs can be
initiated only by the master.

A specific sequence of system services has to be observed for starting an RCOM network. This
sequence ensures the correct initialization of the RCOM protocol.
All system services are triggered by the master using the corresponding connection elements.
Nothing needs to be planned in the slaves for the system services. The CM574-RCOM config-
ured as slave handles all system services independently.

Terms
Do not confuse the RCOM services cold start / warm start and the corre-
sponding PLC commands referring to the hardware state. In this section, the
terms "cold start" and "warm start" always refer to the RCOM system services
and therefore only affect the protocol state.

A cold start service has to be performed after the initialization of the RCOM master. The
cold start can be transmitted either by broadcast to all slaves simultaneously or to each slave
individually.
A cold start requires reinitialization of the entire protocol mechanism and clearing of the event
queue contents. For this, a special cold start event is triggered in the addressed RCOM slaves.
This event is required when operating ABB MasterPiece systems. In case of pure Advant
Controller networks, the event is only indicated when polling.
After a cold start, always normalization has to be performed. Otherwise it is not possible to
transmit data sets.

By executing a warm start service, it is possible to clear the event queue of a slave (or all
slaves). A warm start can be used to resume communication after transmission errors. This
permits master and slave to resynchronize.
After a warm start, always normalization has to be performed. Otherwise it is not possible to
transmit data sets.

A slave has to be normalized after a cold start or a warm start. Normalization enables the
transmission of data sets and events. If a slave is not normalized, it cannot trigger events. The
RCOM_TRANSMIT connection element then displays a corresponding error message.
If a master polls a non-normalized slave, the RCOM_POLL connection element signals a corre-
sponding error.

When the CM574-RCOM is switched on, its software clock is set to 0:00 hours. You can use the
RCOM_CLOCK connection element to set the clock of the RCOM master and the clocks of all
slaves to the same time. This is important for evaluating time stamps in the case of event-driven
data transmission.

Cold start

Warm start

Normalization

Set clock

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5622

Clock setting should always be performed after a cold start and should be repeated cyclically
(e.g. every 24 h), if necessary.
The CM574-RCOM contains a software clock for generating time stamps. You can also use
this software clock in the PLC program of your CPU module. The time information is made
available at the outputs NEW_TIME, HOUR_ACT, MIN_ACT and SEC_ACT of the RCOM_INIT
connection element and is updated there approximately every 5 seconds.
The RCOM time starts with 00:00.00 when the Communication Module is set to the RUN state.
The connection element RCOM_CLOCK sets the RCOM clock of the master and sends a set
clock telegram to all slaves ("NODE" must be set to 255 for this purpose).
Proceed as follows to set the RCOM time: Read the actual time from the real-time clock and
start the RCOM_CLOCK connection element in the RCOM master with this time (NODE = 255
in order to address all slaves). The new time is then transferred to the RCOM clock in the
master and in all slaves and output NT is set to "1" for approx. 5 seconds. If individual slaves
also use real-time clocks, you can use the edge of NEW_TIME to set these clocks. The master
and all slaves use the same time then.
You should use the RCOM_CLOCK connection element even if the RCOM master does not
have a real-time clock (e.g. with time 00:00.00 hours). All time stamps in events are then
calculated relative to this arbitrary RCOM time.
When planning, you should first precisely analyze the required communication relationships in
order to avoid subsequent modifications.
You should consider the following questions:
● How many slaves are necessary? Determine the slave numbers ("NODE").
● How many data words have to be transmitted for each slave? Define the subdivision of the

data into data sets. Determine flag ranges for each data set.
● How do the individual data sets have to be transmitted? Cyclically? At the request of

the PLC program? Event-driven? Define the communication sequences. Do not forget the
required system services (e.g. cold start and normalization). Chapter Planning examples
shows how such sequences can be implemented.

● How must the PLC program of the CPU module respond to transmission errors? The
example program shows a possible solution.

The following rules have to be observed during planning for the CM574-RCOM:
● "ID" (data set identifier) can have values between 1 and 255.
● Only an even number of data words can be transmitted in a data set.
● Connection elements must not be skipped once they have been started. This would disturb

the logic sequence between the connection element and the CM574-RCOM and cause the
connection element to block.

● The connection elements must not be started before the RCOM_INIT connection element
has been executed successfully (initialization of the Communication Module). This would
cause the connection elements to block.

● Data transmission with RCOM_READ jobs takes approximately twice as long as event-
driven transmission. Consequently, you should prefer event-driven transmission in case of
time-critical transmissions.

● Max. 14 words are permitted per data set for event-driven transmission. The time stamp is
included in two data words, directly after the user data. The master must know the number
of words transmitted, if it wishes to evaluate the time stamp (plan a fixed length).

In case of full duplex mode, the RTS line of the Communication Module is set to "1" after
initialization.
Prior to the transmission of characters, the Communication Module expects a valid CTS line.
The modem may set CTS to zero during transmission in order to stop data flow.
Full duplex should be used for transmission links that provide a separate channel for each
transmission direction, e.g. modem-zero cables, telephone connections or modem LS-01 of
Messrs. Hedin-Tex.

Important plan-
ning rules

Full duplex

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5623

The figure below shows full-duplex data communication on a CM574-RCOM used as RCOM
slave.

1. The CM574-RCOM sets RTS to "1" during initialization. The modem responds with CTS =
1.

2. The CPU starts the job on the CM574-RCOM. The Communication Module waits for TLS.
3. The Communication Module checks CTS and starts transmission of the job telegram.
4. The telegram is finished. The Communication Module waits for CDly.
5. The slave recognizes the job and processes the telegram. TLS is expected before the

response is transmitted.
6. The slave starts transmission of the response telegram.
7. After the telegram has been transmitted, the slave waits for CDly. This terminates trans-

mission.

TLS is always expected before transmission of a telegram. CDly is expected
after the transmission of a telegram. For error-free communication, TLS has to
be greater than CDly of the remote station .

Delays can increase the transmission reliability and can be planned before and after the tele-
gram in full duplex mode and in half duplex mode.
Parameter TLS ("line stab. time") indicates the time expected before the transmission of a
telegram and after the activation of the modem carrier with CTS = "1" (in case of half duplex
only).
Parameter CDLY ("carrier delay") indicates the delay after the telegram.
The following condition has to be observed for full duplex and half duplex mode in order to
guarantee reliable transmission: Own TLS > CDLY of the remote station.
The two delay times are entered as a number of characters (duration of transmission of a char-
acter at the given transmission rate) so that longer delays result in case of lower transmission
rates.
Since the internal clock runs with a clock rate of 10 ms, only multiples of 10 ms are practical.
Examples:

Delay times

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5624

● Transmission rate = 9600 baud -> 1 character = approx. 1 ms, practical time values: 10, 20,
30 etc.

● Transmission rate = 4800 baud -> 1 character = approx. 2 ms, practical time values: 5, 10,
15 etc.

Recommended values for TLS and CDLY at 1200 baud:
● with half duplex: TLS = 3 characters, CDLY = 2 characters
● with telephone connections: TLS = 2 characters, CDLY = 2 characters
● with full duplex (multidrop or point-to-point): TLS = 2 characters, CDLY = 0 characters.
Please note that these values depend on the modem used and should be determined experi-
mentally, in particular in case of half-duplex links.

The CM574-RCOM communication processor is able to handle communication via the public
switched telephone network. For this purpose, it can control Hayes-compatible modems (con-
trolled by AT commands).
The figure below shows an example pin assignment between a modem (RS232C interface) and
the RCOM interface of the CM574-RCOM:

The figure below shows an example pin assignment between a modem (RS232C interface) and
the RCOM interface of the CM574-RCOM:
● Use only Hayes-compatible modems. Deactivate any MNP options possibly
● Deactivate any MNP options possibly available on the modem. In case of MNP transmis-

sion, the correlation in time between telegrams is lost and transmission is disturbed.
● For transmission, a physical connection is necessary that allows the transmission of breaks

and binary characters without loosing coherence in time (duration of the break signal, inter-
vals of the characters). For most modems, these operating mode is called "direct mode".

● In the PLC program of the CPU module, connection has to be established (RCOM_DIAL
connection element) prior to the transmission of RCOM services, and has to be terminated
again afterwards (RCOM_HANGUP).

During commissioning, you should first attempt to address the modem with the operator
command "MOD" (refer to chapter "Operator"). If you enter the command OPERATOR>MOD
ATI4<CR>, you should see a table of the most important modem parameters. If this is not the
case, modem configuration is probably incorrect (transmission rate, parity, etc.).

Observe the following sequence in the PLC program of the RCOM master for data transmission:
● Set modem parameter type to "Hayes compatible dial modem" in the PLC configuration.
● Initialize the CM574-RCOM using the RCOM_INIT connection element.
● Call the remote station: RCOM_DIAL. If RCOM_DIAL is completed and no error is signaled:
● Perform a cold start or warm start at the remote station, if required. Cold start and warm

start delete the event queue of the called slave. Do not use broadcast telegrams with these
services. Address the slave explicitly instead.

● Then perform normalization. This service always has to be performed in order to initialize
the protocol mechanism for data transmission. Do not use broadcast telegrams with these
services. Address the slave explicitly instead.

Using dial-up
modems

Communication
sequence on the
RCOM master

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5625

● Only if normalization does not signal an error, you may write and read data
sets (RCOM_TRANSMIT and RCOM_READ) and poll the slave (RCOM_POLL and
RCOM_REC).

● Then you have to terminate the connection (RCOM_HANGUP).
In case of transmission errors (which may occur particularly during normalization) you should
terminate the connection using RCOM_HANGUP and start a new dialing attempt.

No special connection elements need to be planned in the PLC program for regular data
transmission (master calls and starts services) in case of RCOM slaves.
The slave "picks up" the telephone when it rings and then expects telegrams from the master. If
no further telegrams arrive after the waiting time has expired (RCOM_HANGUP time), the slave
"hangs up" automatically.

The slave can call the master, if it wants to transmit events to the master.
For this purpose, a DIAL connection element needs to be started in the slave. Communication is
performed as follows:
● The slave calls the master using RCOM_DIAL.
● The master answers the telephone.
● After a short waiting time, the master starts to normalize all slaves configured in the tele-

phone directory. Since only one slave can be the caller, only the calling slave will answer
correctly.

● The master now automatically polls the recognized slave until it signals that the event queue
is empty or until the number of polls defined by parameter "Maximum polls" set in the
PLC configuration is reached. The received data sets are transferred to the RCOM_REC
connection elements in the master.

● The master then "hangs up".
● The slave also "hangs up" after a waiting time ("Hang-up time").

The master automatically attempts to poll all slaves when it is called.
No RCOM_POLL connection element is required for this purpose. The
RCOM_POLL connection element is only required, if the master calls the slave.

No RCOM_HANGUP connection element needs to be planned in the slave,
since the slave does not know when transmission is completed. The slave
"hangs up" automatically after expiry of the "hang-up time" (refer to section
"Timeouts").

The master and the slave strictly monitor whether RCOM telegrams are actually transmitted
over the established connection ("telephone off hook").
If no telegrams were received by the slave or if no services were started in the master after
expiry of the "hang-up time", the telephone connection is terminated again.
This prevents "wrong callers" who have dialed the wrong number for instance from blocking the
telephone permanently.
Since the RCOM slave is not able to completely monitor the status of the modem (control only
with RCOM_DIAL), you should select a short "hang-up time" for the slave, e.g. 10 seconds.
On the master, the timeout should never respond since the modem can be monitored com-
pletely by the PLC program of the CPU module (RCOM_DIAL and RCOM_HANGUP). Conse-
quently, you can select a long "hang-up time", e.g. 30 seconds.
Correct settings for the modem are very important for error-free communication.
Certain parameters can be stored in a non-volatile memory in the modem. All other parameters
can be stored on the CM574-RCOM in the Init string of the modem setup. They are then
transferred to the modem when the CM574-RCOM is initialized.
To enable the CM574-RCOM to control the modem correctly, the following parameters always
have to be configured:

Communication
sequence on
RCOM slaves

Event transmis-
sion: DIAL in
slave

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5626

● Commands are echoed by the modem
● Acknowledgements from the modem on
● Acknowledgements in plain text
● Break does not clear down connection
● MNP options off
● Data compression off (direct mode)
● Dialing with DTR off
● RTS/CTS handshake between modem and CM574-RCOM
● Automatic call acceptance off
● Escape character: &;;+’

In "direct mode" the Logem LGH 9600H1 (in the following called LGH) cannot react on the
sequence "+++". Consequently, switching from online to command mode for hang-up is not
possible.
Therefore, the CM574-RCOM provides an operating mode enabling hang-up by means of the
DTR signal (S1/108) of the modem. If the DTR signal is switched from active to passive, the
modem hangs-up immediately and switches to the command mode.
Call acceptance and establishment of requested connections is only possible while the DTR
signal is active.
Because the CM574-RCOM is not able to make an independent DTR signal available, the RTS
signal is used (operating mode "RTS as DTR"). So the cable for connecting the Logem LGH
9600H1 to the CM574-RCOM is as follows:

The following parameters have to be set permanently for the Logem LGH 9600H1, e.g. via a
terminal directly connected to the Logem LGH 9600H1:

After entering the parameter "ATF2", ensure that the Logem LGH 9600H1 and the terminal are
permanently set to 1200 Baud.
Save the parameters in the non-volatile memory of the Logem LGH 9600H1 by entering
"AT&W"
The DIL switches at the Logem LGH 9600H1 have to be set in a way that the basic setting "0" is
set in the software mode (all switches S5.1 to S5.5 at the front panel of the unit to "OFF").

Special features

Settings at the
Logem LGH
9600H1

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5627

Error codes

CAUTION!
For compatibility reasons, the error codes at output ERNO of the RCOM func-
tion blocks are not RCOM specific. To obtain the RCOM error code, 8000 hex
has to be subtracted from the original value.

Various errors displayed by numbers can occur when using the RCOM Communication Module.
The error number is indicated at output ERNO of the corresponding connection elements.
The errors can be divided into two groups: recoverable errors and fatal errors.
The recoverable errors include all errors which occur during transmission of telegrams (char-
acter losses, parity errors etc.). In some cases, the Communication Module attempts retrans-
mission in case of transmission errors. The number of attempts can be specified via the
parameter "Retransmissions" in the PLC configuration. Further information can be found in
section Basic configuration of CM574-RCOM Ä Chapter 1.6.5.2.6.4.1 “Module parameters”
on page 5907.
In case of recoverable errors, the "RUN" LED flashes cyclic. The LED turns into normal opera-
tion mode ("ON") as soon as the error has been fixed.

If fatal errors occur, the Communication Module terminates communication with the AC500 CPU
and the RCOM partners. Fatal erros are indicated by the "ERR" LED.
A reset is required in order to reactivate the Communication Module, e.g. by switching it off and
on again.

The following table contains all possible error codes (hexadecimal and decimal), the error cause
and the type of error (fatal or recoverable error).

Error code Cause
(hex) (dec)
0000 0 No error

0001 1 CPU does not respond (possible cause: missing connection ele-
ment or CPU stopped)

1001 4097 Event queue full

2001 8193 Initialization error: Incorrect address (parameter NODE)

2002 8194 Initialization error: Incorrect address (parameter NODE)

2005 8197 Initialization error: Incorrect parity

2006 8198 Initialization error: Incorrect duplex mode

2007 8199 Initialization error: Incorrect line stab. Time (TLS)

2008 8200 Initialization error: Incorrect carrier delay

2009 8201 Initialization error: Incorrect character timeout

2010 8208 Initialization error: Incorrect turnaround time

2011 8209 Initialization error: Incorrect retransmissions

2012 8210 Initialization error: Incorrect number of preambles

2015 8213 Initialization error: Incorrect type of modem

2018 8216 Initialization error: Incorrect debug level

3001 12289 No CTS during transmission

Fatal errors

Table of error
codes

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5628

Error code Cause
(hex) (dec)
3002 12290 Timeout, no response telegram

3003 12291 Telegram error (incorrect length code)

3004 12292 Telegram error (incorrect checksum)

3005 12293 Incorrect slave responding

3006 12294 Telegram error (incorrect response code)

4001 16385 Service not known

4002 16386 Incorrect length entry (input LEN)

4003 16387 Incorrect length entry (input LEN)

4004 16388 Incorrect network number (currently unused)

4005 16389 Incorrect data set number (input ID)

4006 16390 Response telegram does not match service

4007 16391 Slave not normalized

4008 16392 Event queue blocked (not normalized)

4010 16400 Invalid time (connection element RCOM_CLOCK)

4020 16416 Slave responds: “application part not ready” (e.g. EN = FALSE)

4030 16432 Slave responds: “application part not ready” (e.g. EN = FALSE)

5000 20480 Communication Module not initialized (after reset)
Remark: Requires restart of the AC500 PLC (abort and restart of
the program

6001 24577 Telephone directory or setup data not found

6002 24578 Incorrect entry in telephone directory or setup data

6003 24579 No telephone modem planned

6004 24580 Modem not yet online (service started without RCOM_DIAL)

6005 24581 Modem already online (repeated RCOM_DIAL without
RCOM_HANGUP)

FFFF -1 Internal error (fatal)

Operator terminal
The second serial interface "CONSOLE" of the CM574-RCOM serves as a monitoring and
debugging interface. The user can enter commands to get information about the protocol
parameters or check modem connections and monitor the current RCOM messages.
The pin assignment to connect the interface to the COM-Port of a PC is shown below:

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5629

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5630

It is recommended to provide several PCs for checking the data traffic via
the console interfaces of the Communication Modules. Terminal programs are
required (PCPLUS or Hyper Terminal; settings: 19200 Baud/s, 8 data bits, 1
stop bit, parity none).

A Communication Module can execute commands, if an according command is entered fol-
lowing the "OPERATOR>". E.g. "HELP" lists all available commands.
OPERATOR> help
available commands:

 help....................this text

 time....................show RCOM's system time

 event...................show event-queue

 rcom....................show RCOM parameters

 rcsw....................show RCOM status word

 show setup..............show setup-file

 show phone..............show telephone directory

 hangup..................hangup phone

 dial <slave>............dial a slave

 mod <command>...........send a command to modem

 debug <level>...........show/set debug level
The following operator commands can be entered on the console:

Displays a help text on the available commands.

Displays the current RCOM system time.

Displays a table containing the events currently listed in the event queue. The table lists an
event number, the event type (40: event with data set, 41: cold start event), data set number
and length and the time when the event occurred.

Displays a table containing the current RCOM parameters. IMPORTANT: All times are specified
in milliseconds. Some of the times are increased slightly by the Communication Module.

Operator com-
mands

HELP

TIME

EVENT

RCOM

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5631

Displays the RCOM status word (RCSW).

Displays the setup data. Refer to section "Setups for dial-up modems".

Displays the telephone directory. Refer to section "Setups for dial-up modems".

Hangs up the telephone (only if a dial-up modem is connected).

Dials the telephone number stored in entry "n" in the telephone directory (only if a dial-up
modem is connected).

Sends "string" to the modem (only if a dial-up modem is connected). The responses of the
modem are displayed. Example: "MOD AT14 <ENTER>" -> the modem responds with a table of
the most important parameters.

Sets the debug level to "n". This remains valid until the next initialization by the PLC. If you do
not enter "n", the current debug level is displayed.
● In the first level, a message containing the most important parameters is output for each

telegram received or transmitted by a slave and for each service started by the PLC.
● In the second level, the Communication Module outputs a message with each important

action (including internal operations), e.g. to display received data words and transmitted
telegrams, status changes in the RCSW (RCOM status word), status changes in the event
queue, etc. The second debug level will probably be of interest in a few cases only. For
testing (debugging) the PLC program, the first level is sufficient.

After initialization, the debug level can be set to "1" by entering the command
OPERATOR> debug 1
(corresponding to level 2). Deactivate the messages with
OPERATOR> debug 0
After commissioning, you should deactivate the messages for normal operation of the Commu-
nication Module.

All operator messages have the following appearance:
typ-I-identification text
typ-W- identification text
typ-E- identification text
typ-F- identification text
Where:

RCSW

SHOW SETUP

SHOW PHONE

HANGUP

DIAL n

MOD string

DEBUG<n>

Operator mes-
sages

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5632

● Type: Three letters indicating the origin of the message, i.e. "MST" for services performed
by a master, "TEL" for telegrams received by a slave, "RPL" for responses transmitted by a
slave, etc.

● I/W/E/F provides information on the type of message:
– 'I':Information used to trace the sequence (debug levels 1 and 2).
– 'W': Warning. Occurs, if e.g. telegrams arrive for which no connection element is

planned. Warnings do not disturb the sequence in the Communication Module but do
indicate a planning error.

– 'E': An error message of the Communication Module, i.e. if an addressed slave does not
respond. Errors disturb the Communication Module when processing the current service
but can often be remedied by repeating the service. The "RUN" LED flashes cyclically in
case of such an error. If it was possible to fix the error, the LED stops flashing and lights
up continuously.

– 'F': Fatal error, remedy not possible. Communication via RCOM to the PLC is aborted by
the Communication Module and only operator entries are possible then. The "ERR" LED
indicates that a fatal error has occurred.

● "identification": Abbreviation of the error message.
● "text": Actual message in plain text.
The following tables list the messages possibly output at the operator interface and their signifi-
cance.
Certain messages contain designations for services that are specified in the following table.

Abbreviated Name of service Triggered in the
master with CON-
NECTION ELEMENT

Handled in the slave
with CONNECTION
ELEMENT

Norm comm part Normalize communic-
taion part

*1) *3)

Quer comm part Status query commu-
nication part

*1) *3)

Cold start Cold start RCOM_COLDST *3)

Warm start 1 Block all blocks RCOM_WARMST *3)

Warm start 2 Block unique blocks *1) *3)

Set clock Set clock RCOM_CLOCK *3)

Norm user part Normalize user part *1) *3)

Norm all blocks Normalize all blocks RCOM_NORMAL *3)

Norm sep blocks Normalize separate
blocks

*1) *3)

Write dataset Write dataset RCOM_TRANSMIT RCOM_REC

Write cntrl Write data to control
register

*1) *3)

Read dataset Read dataset RCOM_READ RCOM_READ_SLV

Event request Event request RCOM_POLL *3)

Repeat read Repeat read com-
mand

*2) *3)

Repeat write Repeat write com-
mand

*2) *3)

Dial Dial up slave RCOM_DIAL *3)

Hangup Hang up phone RCOM_HANGUP *3)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5633

*1) not used as master on CM574-RCOM
*2) performed automatically in case of transmission errors
*3) handled automatically in the CM574-RCOM
In the following table, the first column specifies the actual message of the Communication
Module. The second column shows a description, the third column specifies the significance of
the message, and the fourth column shows remarks indicating the cause of the error.

Message Description Significance Remark
-EPL-E-CPUTO Service timeout, no

CPU reaction
An occurring event
was not fetched by the
CPU. RCOM_REC
connection element
missing

*1)

-EPL-I-EVENT Event - ds: .., len: .., .. Event arrived

-EPL-I- CPUACC Service accepted by
CPU

Service accepted by
CPU

-EPL-I-SYSMES System message System event
occurred (is ignored)

-EPL-W-CPUREJ Service rejected by
CPU

Event rejected by
CPU (EN in case
of RCOM_REC =
FALSE)

-ERR-F-FATAL Fatal error, communi-
cation canceled

Fatal error occurred,
communication termi-
nated

-EVT-I-BLOCK Blocking event queue Blocking event queue

-EVT-I-CLEAR Clearing event queue Clearing event queue

-EVT-I-DEBLK Deblocking event
queue

Enable event queue

-EVT-I-GET Event queue empty Event queue is empty

-EVT-I-GET Getting event Fetching event from
queue

-EVT-I-PUT Putting event Inserting event in
queue

-EVT-W-PUT Event-queue full Event queue is full

-INI-E-COMGRP Error reading com
group, code

Error reading special
flags for communica-
tion processors

*2)

-INI-E-EXTINI External init error, ... Error during initializa-
tion

*2)

-INI-E-GRESI Error resetting CPU
communication, ...

It was not possible
to reset system bus
communication

*2)

-INI-E-MOD Error initializing tele-
phone modem, ...

It was not possible to
initialize the telephone
modem

*3)

-INI-E-OCCUP Error occupying
CPU, ...

It was not possible to
assign the PLC

*2)

-INI-E-OPER Error initializing oper-
ator, ...

It was not possible to
initialize the commis-
sioning interface

*3)

Remarks:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5634

Message Description Significance Remark
-INI-E-PARAM Error in parameter, ... Error in parameter *1)

-INI-E-RCOM Error during RCOM-
init, ...

It was not possible
to initialize the RCOM
mechanism

-INI-E-RCOM Error initializing
RCOM-channel, ...

It was not possible
to initialize the RCOM
interface

*3)

-INI-E-READ Error reading parame-
ters, ...

It was not possible
to read the RCOM
parameters

*2)

-INI-E-RS Error reading RUN/
STOP, ...

It was not possible to
read the RUN/STOP
switch

*2)

-INI-E-RSINI Error initializing PLC
communication, ...

It was not possible
to initialize the system
bus communication

*2)

-INI-I-CHECK Checking RCOM-
parameters

Checking RCOM
parameters

-INI-I-COMGRP Waiting for valid com
group

Waiting for valid
communication area
(in special flag for
communication pro-
cessors)

-INI-I-EXTINI External init done External initialization
completed

-INI-I-EXTINI Waiting for external
init

Waiting for external
initialization

-INI-I-GRES Resetting CPU com-
munication

Resetting system bus
communication

-INI-I-RUN Waiting for RUN-
switch

Waiting for RUN/
STOP switch = RUN

-KPM-I-EXIT Exit main loop, reason
code ...

Quitting RCOM com-
munication; cause ...

*4)

-KPM-I-GOODM Good morning!! It is midnight

-KPM-I-LCNT Lifecount ... Cycle counter set to ...

-MOD-E-DIAL Cannot connect It was not possible to
establish the dial-up
connection

*5)

-MOD-E-DIAL Modem already con-
nected

Modem is already on
line

*5)

-MOD-E-DIAL No modem available
(modem type = 0)

No modem planned *1)

-MOD-E-ENTRY Bad entry in phone file Entry error in tele-
phone directory

*5)

-MOD-E-HANGUP Cannot hang up It was not possible to
hang up

*3)

-MOD-E-INIT Error during modem
init

Error during modem
initialization

*3)

-MOD-E-NOFILE No valid files on
EEPROM

No valid setup/tel-
ephone files on
EEPROM

*5)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5635

Message Description Significance Remark
-MOD-E-RING No modem available

(modem type = 0)
No modem planned *1)

-MOD-I-ANS Answer ... Modem response: ...

-MOD-I-ANSCMP Compare ... - ... Comparing modem
response with ...

-MOD-I-ANSCMP -MOD-I-ANSCMP Strings are identical

-MOD-I-DIAL Connected It was possible to set
up connection (dial)

-MOD-I-DIAL Dialing node ... Dialing station ...

-MOD-I-DIAL Ring (...) Dialing station ...

-MOD-I-HANGUP Hangup phone Hanging up

MOD-I-INIT Answer ... Modem response:...

-MOD-I-INIT Init modem (...) Initializing modem

-MOD-I-RING Connected It was possible to set
up connection (going
off hook)

-MOD-I-RING Ring received Telephone ringing

-MOD-W-DIAL Retry ... Retry dialing

-MOD-W-RING Cannot connect It was not possible
to set up connection
(going off hook)

*5)

-MST-E-ADDR Error reading reply
(data), ...

It was not possible to
read the header from
the response

*6)

-MST-E-LCODE Illegal length-code in
reply

Incorrect length code
in response

*6)

-MST-E-POSTA Error reading
reply (checksum/post-
ambles),...

It was not pos-
sible to read the
checksum/trailer from
the response

*6)

-MST-E-PREA Error reading reply
(preambles), ...

It was not possible
to read the preamble
(leader) from the
response

*6)

-MST-E-RES Command not reset
by CPU

Command not
acknowledged by
CPU

*7)

-MST-E-SEND Error sending tele-
gram, ...

It was not possible to
transmit the job

*3)

-MST-E-SUM Checksum error in
reply

Checksum error in
response

*6)

-MST-I-POLL Checking slave %3d Checking whether
slave ... has dialed

-MST-I-POLL Polled slave %3d,
result ...

It was possible to poll
the slave ...; result ...

-MST-I-RESULT ..., result ... Service ... terminated;
result ...

-MST-I-SERV ... Service ... started

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5636

Message Description Significance Remark
-MST-W-NOSRV No services within

hang up time
No service within the
hang up time, now
hanging up

*1)

-MST-W-RETRY Retry ... Retrying job telegram *6)

-OPR-E-CMD Unknown command ... Unknown operator
command

-OPR-E-OCCUP Error occupying
CPU, ...

It was not possible to
assign the CPU

*2)

-OPR-E-RELEA Error releasing
CPU, ...

It was not possible to
release the CPU

*2)

-OPR-I-INIT Operator init done Initialization commis-
sioning interface ter-
minated

-PLC-E-GETEND Error reading line area
from PLC, ...

Error in system bus
communication

*2)

-PLC-E-GETEND Error reading rx area
from PLC, ...

Error in system bus
communication

-PLC-E-GETEND Error reading tx area
from PLC, ...

Error in system bus
communication

-PLC-E-GETREQ Error reading com
group from PLC, ...

Error in system bus
communication

-PLC-E-GETREQ Error reading line area
from PLC, ...

Error in system bus
communication

-PLC-E-GETREQ Error reading rx area
from PLC, ...

Error in system bus
communication

-PLC-E-GETREQ Error reading tx area
from PLC, ...

Error in system bus
communication

-PLC-E-SETEND Error writing control
block to PLC, ...

Error in system bus
communication

-PLC-E-SETEND Error writing rx area to
PLC, ...

Error in system bus
communication

-PLC-E-SETEND Error writing tx area to
PLC, ...

Error in system bus
communication

-PLC-E-SETREQ Error writing control
block to PLC, ...

Error in system bus
communication

-PLC-E-SETREQ Error writing rx area to
PLC, ...

Error in system bus
communication

-PLC-E-SETREQ Error writing tx area to
PLC, ...

Error in system bus
communication

-PLC-W-GETEND Timeout while reading
com group from PLC,
abort: ...

Timeout during
system bus communi-
cation, error during
abort: ...

*2)

-PLC-W-GETEND Timeout while reading
line area from PLC,
abort: ...

Timeout during
system bus communi-
cation, error during
abort: ...

-PLC-W-GETEND Timeout while reading
rx area from PLC,
abort: ...

Timeout during
system bus communi-
cation, error during
abort: ...

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5637

Message Description Significance Remark
-PLC-W-GETEND Timeout while reading

tx area from PLC,
abort: ...

Timeout during
system bus communi-
cation, error during
abort: ...

-PLC-W-SETEND Timeout while writing
control block to PLC,
abort: ...

Timeout during
system bus communi-
cation, error during
abort: ...

-PLC-W-SETEND Timeout while writing
rx area to PLC,
abort: ...

Timeout during
system bus communi-
cation, error during
abort: ...

-PLC-W-SETEND Timeout while writing
tx area to PLC,
abort: ...

Timeout during
system bus communi-
cation, error during
abort: ...

-RCS-I-SET RCSW Set to ... RCOM status word
set to ...

-RDS-E-CPUTO Service timeout, no
CPU reaction

PLC not responding
to read job
(RCOM_READ_SLV
connection element
missing)

-RDS-I-CPUACC Service accepted by
CPU

Service read data set
accepted by CPU

-RDS-W-CPUREJ Service rejected by
CPU, ...

Service read data
set rejected by
CPU (EN with
RCOM_READ_SLV =
FALSE)

-RPL-E-REPLY Internal error: ... Internal error when
setting up response

*7)

-RPL-E-REPLY Reply error: ... Error in response tele-
gram

*5),*6)

-RPL-I-LEN ... data bytes in reply ... data bytes in
response

-RPL-I-REPLY ... Response: ...

-RPL-I-REPLY ..., result ... Error ... in response *6)

-SCL-I-TIME Date: %ld, time %ld New RCOM time ...
arrived

-SLV-E-ADDR Error reading telegram
(address), ...

It was not possible to
read the address from
the job

*6)

-SLV-E-BREAK Error checking for
break

It was not possible to
check BREAK

*3)

-SLV-E-DATA Error reading telegram
(data), ...

It was not possible to
read data from the job

*6)

-SLV-E-HEADR Error reading telegram
(header), ...

It was not possible to
read the header from
the job

*6)

-SLV-E-LCODE Illegal length-code in
telegram

Incorrect length code
in job

*6)

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5638

Message Description Significance Remark
-SLV-E-POSTA Error reading tele-

gram (checksum/post-
ambles), ...

Incorrect checksum/
trailer in job

*6)

-SLV-E-PREA Error reading telegram
(preambles), ...

It was not possible
to read the preamble
(leader) from the job

*6)

-SLV-E-RES Command not reset
by CPU

Command was not
cancelled by CPU

*7)

-SLV-E-SEND Error sending reply, ... It was not possible to
send response

*3)

-SLV-E-SUM Checksum error Checksum error *6)

-SLV-I-ADR Not my address (...) Job not for me but for
slave ...

-SLV-I-NOREP No reply sent (broad-
cast request)

No response trans-
mitted (broadcast job)

-SLV-I-RESULT ..., result ... Service terminated;
result ...

-SLV-I-SERV ... Service detected

-SLV-W-MODE Event queue blocked Event queue
barred (normalization
missing)

*1)

-SLV-W-MODE Slave mode program Data transmission
barred (normalization
missing)

*1)

-SLV-W-NOSRV No services within
hang-up time

No jobs arrived within
the hang-up time, no
hanging up

-TEL-E-SERV Internal error: ... Internal error *8)

-TEL-I-LEN ... data bytes in
request

... data bytes in job

-TEL-I-SERV ... Service ... detected

-TEL-I-SERV ... Ds: ..., Len: ... Service ... detected;
data set ...; length ...

-WDS-E-CPUTO Service timeout, no
CPU reaction

PLC not responding
to write job
(RCOM_REC connec-
tion element missing)

-WDS-I-CPUACC Service accepted by
CPU

Service Write data set
accepted by CPU

-WDS-W-CPUREJ Service rejected by
CPU, ...

Service Write data set
rejected by CPU (EN
with RCOM_REC =
FALSE)

*1) A planning error has probably occurred. Check whether all required connection elements are
present and whether the correct parameters have been assigned to them.
*2) Error during system bus communication. Leads to fatal errors, if not remedied automatically.
May be triggered by PS501, e.g. when transmitting programs.
*3) There is probably a fault in the cable. Check the wiring of RTS and CTS.
*4) The following causes are possible:

Remarks

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5639

● Reinitialization was performed by the CPU module (RCOM_INIT connection element
started)

● RUN/STOP switch was set to STOP
● A fatal error occurred
*5) There is probably an error in modem control. Check the module "dial-up modem" in your
PLC configuration and its sub modules for errors concerning the setup or the phone book.
*6) A transmission error occurred. Check all RCOM parameters and timeout times in the PLC
configuration.
*7) This occurs if the CPU is set to STOP.
*8) Internal error. Attempt to reset the unit and reinitialize it.

Planning examples
Example 1: Direct connection

This example shows how to realize data transmission between two RCOM Communication
Modules using a direct serial connection in operation mode RCOM+. The transmission speed of
the connection in the example is set to 9600 Baud/s (odd parity).
The set up of the AC500 PLCs will be described as well as the projecting of the master and
slave devices.
The corresponding projects can be found in the examples folder:
● RCOM Master: AC500_RCOM_DIRECT_MASTER_PM5xx_Vyy.pro
● RCOM Slave: AC500_RCOM_DIRECT_SLAVE_PM5xx_Vyy.pro

The basic hardware setup consists of two AC500 PLCs, each using
● 1 processor module
● 1 terminal base with at least one communication module slot
● 1 communication module CM574-RCOM.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5640

To connect the communication modules, a serial cable with the following pin assignment is
required (cross cable):

In addition to that, a cable is recommended that connects the CONSOLE port to a PC with a
terminal emulation software to view protocol information or error messages.

Master-Slave-Arrangement
To configure the CM574-RCOM as a master device, the parameter "Operation mode" must be
set to "RCOM+ Master". The address or node number must be set to 0 while "Parity" is set to
"Odd". All other parameters can remain default.

Configuring the
master

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5641

If the CONSOLE port is used (recommended), the parameter "Debug level" of module "CON-
SOLE" should be set to "Level 2" to obtain detailed information and error messages of the
protocol.

To configure the CM574-RCOM as a slave device the parameter "Operation mode" must be
set to "RCOM+ Slave". The parameter address must be set to a value greater than 0. In the
example select 1 for the slave. "Parity" is set to "Odd". All other parameter can remain default.
If the CONSOLE port is used (recommended) the parameter "Debug level" of module "CON-
SOLE" should be set to "Level 2" to obtain detailed information and error messages of the
protocol.

Implementation of the user program
The example shows how to write a dataset with word length 2 to the slave and how to read a
dataset from the slave with word length 14.

The first step is the implementation of an instance of the function block RCOM_INIT that is used
to initialize the RCOM communication module at the specified slot (1 in this case).

The function block must be called cyclically to ensure proper functionality of the RCOM commu-
nication module. The outputs DONE and ERR must be checked to retrieve the current state of
initialization. Once the output DONE is TRUE and ERR is FALSE, the communication module is
initialized and ready for further operation.
After a successful initialization the slave must go through the RCOM specific initialization
sequence that consists of a cold start, a warm start and a normalization. These operations will
ensure that the slave is ready to process incoming transmission requests of the master. Input
NODE of all function blocks used is set to 1 to address the directly connected slave device.

Configuring the
slave

Implementation
of the master

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5642

Once the normalization step has finished successfully, the calls of the data transmission func-
tion blocks can be started. In the example, the first step of data transmission is the execution
of a write request to transfer a data set of word length 2 to the connected slave. The function
block RCOM_TRANSMIT is used to realize this operation. The data that is written to the slave
is located in the word array arwDataOut[0..1]. The input DATA of the function block is set to the
array’s address using the ADR operator. The input ID is set to 2 what specifies the data set
number which must equal a corresponding data set on the slave side. The length of the data set
is set to value 2 at input LEN.
After this step a read request will be started by using the function block RCOM_READ. The
requested data set is specified at input ID (3 in this case). A corresponding data set is projected
in the slave project described later. The received data is written to word array arwDataIn[0..13].
Input DATA must be set to the address of the array via the ADR operator. The length in words is
specified at input LEN.

In case of an error during data transmission, the slave must be normalized to reset its state and
to maintain its ability to process incoming request telegrams of the master.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5643

As shown in the master implementation, the slave also requires the creation and call of an
instance of the function block RCOM_INIT.

The 2 requests that are sent by the master require a corresponding implementation of the
function blocks RCOM_READ_SLV and RCOM_REC which react to the read or write request
telegrams of the master.
An instance of function block RCOM_READ_SLV with input ID set to 3 reacts to the read
request projected in the master. The data that is read from the master is located in word array
arwDataOut[0..13]. Its address is set at input DATA of the function block.
An instance of function block RCOM_REC with input ID set to 2 reacts to the incoming write
request projected in the master. The data contained in the master’s telegram is copied to word
array arwDataIn[0..1]. Its address is set at input DATA of the function block.

Example 2: Dial-Up connection
This example shows how to realize data transmission between two RCOM Communication
Modules using a modem based dial-up connection in operation mode RCOM+. The transmis-
sion speed of the connection in the example is set to 9600 Baud/s (no parity).
The corresponding projects can be found in the examples folder:
● RCOM Master: AC500_RCOM_DIAL_UP_MASTER_PM5xx_Vyy.pro
● RCOM Slave: AC500_RCOM_DIAL_UP_SLAVE_PM5xx_Vyy.pro

The basic hardware setup consists of two AC500 PLCs, each using
● 1 processor module
● 1 terminal base with at least 1 communication module slot
● 1 communication module CM574-RCOM

Implementation
of the slave

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5644

The connection between a modem and a CM574-RCOM communication module requires a
cable with the following pin assignment:

In addition to that a cable is recommended that connects the CONSOLE port to a PC with a
terminal emulation software to view protocol information or error messages.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5645

Master-Slave-Arrangement
To configure the CM574-RCOM as a master device the parameter "Operation mode" must be
set to "RCOM Master". The address or node number must be set to 0 while "Parity" should
be "None". Ensure that "Hayes compatible dial modem" is selected as "Type of modem". The
"Character timeout" should be set to 50 ms. The value for the "Turnaround time" should be
increased to 6000 ms.
If the CONSOLE port is used (recommended) the parameter "Debug level" of module "CON-
SOLE" should be set to "Level 2" to obtain detailed information and error messages of the
protocol.

To configure the CM574-RCOM as a slave device the parameter "Operation mode" must be set
to "RCOM Slave". The parameter address must be set to a value greater than 0. In the example
select 1 for the slave. "Parity" should be "None". Ensure that "Hayes compatible dial modem" is
selected as "Type of modem". The "Character timeout" should be set to 50 ms. The value for
the "Turnaround time" should be increased to 6000 ms.
If the CONSOLE port is used (recommended) the parameter "Debug level" of module "CON-
SOLE" should be set to "Level 2" to obtain detailed information and error messages of the
protocol.

The example uses ABB H&IT HSM-ECO remote modems that provide the ability to use both
operation modes, RCOM and RCOM+.

For both projects the telephone numbers of the RCOM devices must be configured. To use a
dial-up modem, a corresponding module has to be appended to the RCOM/RCOM+ module in
the PLC configuration as described in the PLC configuration steps of the CM574-RCOM.

For consistency reasons, the phone book of the master as well as the phone
book of the slave(s) must be equal.

To add a new entry to the phone book, append a telephone number to the modem. The tab
"Module parameters" provides the possibility to set up the corresponding dial prefix identifier
and the corresponding telephone number of the node that should be configured.

Implementation of the User program
The example shows how to write a dataset with word length 2 to the slave and how to read a
dataset from the slave with word length 14. In addition to that event polling is used to transfer a
dataset from the slave to the master.

The first step is the implementation of an instance of function block RCOM_INIT that is used
to initialize the RCOM communication module at the specified slot (1 in this case). To process
incoming events of the slave a RCOM_REC function block is projected and called every cycle
as soon as the initialization of the local Communication Module has been finished.

Configuring the
master

Configuring the
slave

Configuring the
modem

Setting up the
phone book

Implementation
of the master

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5646

The function block must be called cyclically to ensure proper functionality of the RCOM commu-
nication module. The outputs DONE and ERR must be checked to get the initialization state.
Once output DONE is TRUE and ERR is FALSE the communication module is initialized and
ready for further operation.
After a successful initialization the variable bTrigger must be manually set to start the dialing
process represented by function block RCOM_DIAL. Otherwise the master waits for incoming
calls of the slave to show how the automatic polling process is executed.

In case of a finished dialing process triggered by the master, the RCOM initialization function
blocks for cold start, warm start and normalization are started in the next steps to initialize the
slave and prepare it for further request telegrams that are used for data transmission.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5647

Once the normalization step has finished successfully the data transmission can be executed.
In the example the first step of data transmission is the call of a write request to transfer a
data set of word length 2 to the connected slave. The function block RCOM_TRANSMIT is
used to realize this operation. The data that is written to the slave is located in the word array
arwDataOut[0..1]. The input DATA of the function block is set to the array’s address using the
ADR operator. The input ID is set to 2 what specifies the data set number which must equal a
corresponding data set on the slave side. The length of the data set is set to value 2 at input
LEN.
After this step a read request will be started by using the function block RCOM_READ. The
requested data set is specified at input ID (3 in this case). A corresponding data set is projected
in the slave project that is also described in this documentation. The received data is written to
word array arwDataIn[0..13]. Input DATA must be set to the address of the array via the ADR
operator. The length in words is specified at input LEN.
The next step triggers an event poll (RCOM_POLL) on the slave to check for new events that
will be read from the slave’s event queue and processed by local RCOM_REC function blocks.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5648

In case of an error the, master hangs up the phone (function block RCOM_HANGUP) and waits
for incoming calls or a new dialing process that is started manually.

As shown in the master implementation the slave also requires the creation and call of an
instance of the function block RCOM_INIT.
The two requests that will be sent by the master require corresponding implementation of the
function blocks RCOM_READ_SLV and RCOM_REC which will react to incoming read or write
request telegrams of the master:
● An instance of function block RCOM_READ_SLV with input ID set to 3 reacts to the read

request projected in the master. The data that will be read from the master is located in word
array arwDataOut[0..13]. Its address is set at input DATA of the function block.

● An instance of function block RCOM_REC with input ID set to 2 reacts to the incoming write
request projected in the master. The data contained in the master’s telegram will be copied
to word array arwDataIn[0..1]. Its address is set at input DATA of the function block.

Both function blocks are called cyclically to ensure proper reaction to the incoming telegrams. In
case of data reception or the completion of a read request the output NEW of the corresponding
function block is set to TRUE (until next call of the function block).

Implementation
of the slave

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5649

The variable bPutEvent can be set to TRUE to add an event that contains data for the master
to the slave’s event queue with the function block RCOM_TRANSMIT. After the function block is
done the program dials the master to trigger an event poll in case of a successful connection to
the master.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5650

1.6.4.3 System technology of the communication interface modules
1.6.4.3.1 Modbus communication interface module
Overview

The Modbus TCP communication interface module CI52x-MODTCP is used as decentralized
I/O module in Modbus TCP networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit.

I/O channels properties:
● 4 analog inputs (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply from the process supply voltage UP

Supply of the electronic circuitry of the
I/O expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the last BYTE of the IP (00h to FFh)

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via software)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

I/O channels properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)

CI521-MODTCP

CI522-MODTCP

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5651

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply from the process supply voltage UP

Supply of the electronic circuitry of the
I/O expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the last BYTE of the IP (00h to FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via software)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels.
The configuration of the inputs/outputs is performed by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Modbus TCP registers
Register layout for CI52x-MODTCP

The registers can be divided in 4 sections:
● Information data section 0x0000 to 0x0D50 (for acyclic use)
● I/O data and diagnosis section 0x0FFA to 0x2B00 (for cyclic use)
● Parameter data section 0x3000 to 0x3B00 (for acyclic use)
● Special functionality section 0x5A00 to 0x6A00 (for acyclic use)

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5652

Information data section (Acyclic data)
The information data section can be used to read out common and module specific information.
This section is read only.

Register
(hex)

Description Readable by
Modbus
function code

Writeable by
Modbus
function code

0 Device and FW information CI 3 x

50 Production data CI 3 x

100 Device and FW information 1. EXP 3 x

125 Device and FW information 1. Hot swap
terminal unit

3 *) x

150 Production data 1. EXP 3 x

175 Production data 1. Hot swap terminal unit 3 *) x

... ... x

A00 Device and FW information 10. EXP 3 x

A25 Device and FW information 10. Hot swap
terminal unit

3 *) x

A50 Production data 10. EXP 3 x

A75 Production data 10. Hot swap terminal
unit

3 *) x

D00 Common device information 3 x

*) supported from CI52x firmware version V3.2.0 (device index F0)
This section can be divided again in two sections:
● The module specific section (containing information for each module CI52x-MODTCP and

expansion modules and hot swap terminal units)
● The common device information block

Module specific information registers
For each module (CI52x device, expansion modules and hot swap terminal units) the following
data can be read out:
● Device and FW information

This section consists of 20 WORDs per module and contains information on each module
using the following structure:

Data DATA TYPE Description
Module ID WORD The module ID of the requested module

Module name ARRAY [1..10] OF BYTE The module name of the requested module

Version 1st processor ARRAY [1..4] OF BYTE The version of the 1st processor of the
requested module

Version 2nd processor ARRAY [1..4] OF BYTE The version of the 2nd processor of the
requested module

Version 3rd processor ARRAY [1..4] OF BYTE The version of the 3rd processor of the
requested module

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5653

Data DATA TYPE Description

Version 4th processor ARRAY [1..4] OF BYTE The version of the 4th processor of the
requested module

Hardware version 1) ARRAY [1..4] OF BYTE The hardware version of the 4 processors

Reserved ARRAY [1..8] OF BYTE
ARRAY [1..4] OF BYTE
2)

Reserved

Number input data WORD Number of input data of the requested
module in BYTES

Number output data WORD Number of output data of the requested
module in BYTES

1) supported from CI52x firmware version V3.2.0 (device index F0)
2) from CI52x firmware version V3.2.0 (device index F0) “Reserved” is ARRAY [1..4] OF BYTE
● Production / Traceability data:

This section consists of 25 WORDs per module and contains the traceability data for each
module using following structure:
– Article number: Byte 01..15
– Index: Byte 16..17
– Name: Byte 18..29
– Production date: Byte 30..33
– Key number: Byte 34..38
– Site: Byte 39..40
– Year: Byte 41..42
– Serial number: Byte 41..50 (The serial number implies the year)

● Production / Traceability data from CI5x2 firmware version V3.2.0 (device index F0):
This section consists of 26 WORDs per module and contains the traceability data for each
module using following structure:
– Article number: Byte 01..15
– Index: Byte 16..17
– Name: Byte 18..31
– Production date: Byte 32..35
– Key number: Byte 36..40
– Site: Byte 41..42
– Year: Byte 43..44
– Serial number: Byte 42..52 (The serial number implies the year)

Common device information registers
This section consists of 80 WORDs (90 WORDs from CI52x firmware version V3.2.0 (device
index F0)) and contains cluster wide information (CI52x device and connected expansion
modules using the following structure:

Common device
information
block

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5654

Data DATA TYPE Description
Device state BYTE The actual state of the device:

0: STATE_PREOP (device booting)
1: STATE_OPERATION (device in operational,
no bus supervision active)
2: STATE_ERROR (device detected a bus
error, bus supervision active)
3: STATE_IP_ERROR (the device has a IP
address error)
4: STATE_CYCLIC_OPERATION (device in
operational, bus supervision active)

Parameter state BYTE The actual parameter state of the device:
0: PARA_STATE_NO_PARA (the device has
no parameters)
1: PARA_STATE_PARA_ACTIVE
(parameterization process running)
2: PARA_STATE_PARA_DONE (the uses valid
parameters)
3: PARA_STATE_ERROR (The device has
invalid

Module ID CI device WORD Module ID of the CI52x device itself

Module ID 1st expansion WORD Module ID of the 1st connected expansion
module

Module ID 2nd expansion WORD Module ID of the 2nd connected expansion
module

...

Module ID 10th expansion WORD Module ID of the 10th connected expansion
module

Expansion bus error count DWORD Global telegram error count over all expansion
modules

Good count onboard I/O DWORD Telegram good count onboard I/Os

Good count 1st expansion DWORD Telegram good count 1st expansion module

Good count 2nd expansion DWORD Telegram good count 2nd expansion module

...

Good count 10th expansion DWORD Telegram good count 10th expansion module

Error count onboard I/O DWORD Telegram error count onboard I/Os

Error count 1st expansion DWORD Telegram error count 1st expansion module

Error count 2nd expansion DWORD Telegram error count 2nd expansion module

...

Error count 10th expansion DWORD Telegram error count 10th expansion module

Input address onboard I/O WORD Modbus TCP register address for inputs of the
onboard I/Os

Input address 1st expansion WORD Modbus TCP register address for inputs of the
1st expansion module

Input address 2nd expansion WORD Modbus TCP register address for inputs of the
2nd expansion module

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5655

Data DATA TYPE Description
...

Input address 10th expansion WORD Modbus TCP register address for inputs of the
10th expansion module

Output address onboard I/O WORD Modbus TCP register address for outputs of
the onboard I/Os

Output address 1st

expansion
WORD Modbus TCP register address for outputs of

the 1st expansion module

Output address 2nd

expansion
WORD Modbus TCP register address for outputs of

the 2nd expansion module

...

Output address 10th

expansion
WORD Modbus TCP register address for outputs of

the 10th expansion module

Module ID 1st hot swap
terminal unit *)

WORD Module ID of the 1st connected hot swap
terminal unit *)

Module ID 2nd hot swap
terminal unit *)

WORD Module ID of the 2nd connected hot swap
terminal unit *)

...

Module ID 10th hot swap
terminal unit *)

WORD Module ID of the 10th connected hot swap
terminal unit *)

*) supported from CI52x firmware version V3.2.0 (device index F0)

I/O / Process data and diagnosis section (Cyclic data)
Table 710: The cyclic data section for CI52x-MODTCP

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

FCE *) Module state 3,4, 23 x

FFA Diagnosis 3,4, 23 x

1000 Inputs CI 3, 4, 23 x

1100 Inputs 1.EXP 3, 4, 23 x

... ... x

1A00 Inputs 10.EXP 3, 4, 23 x

2000 Outputs CI 3, 23 6, 16, 23

2100 Outputs 1.EXP 3, 23 6, 16, 23

... ...

2A00 Outputs 10.EXP 3, 23 6, 16, 23

2B00 Dummy output 3, 23 6, 16, 23

*) supported from CI52x firmware version V3.2.0 (device index F0)
This section can be divided again in three sections:
● Module state (containing the state of connected expansion modules and hot swap terminal

units)
● Diagnosis data (containing diagnosis data in AC500 specific format)
● Process data (containing I/O data)

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5656

Module state
The module state section consists of 44 WORDs and contains the module state of connected
expansion modules and hot swap terminal units using the following structure:

Data DATA TYPE Description
Module ID WORD Module ID of the CI52x

Expected module ID WORD Expected (configured) module ID of the CI52x

Module state BYTE The current module state of the CI52x:
0: NO_MOD (no module detected)
1: MOD_INIT (module detected, module is in
initialization phase)
2: MOD_RUN (module detected and running or in
failsafe state, input data are valid)
3: WRONG_MOD (wrong module detected, module ID
doesn’t match expected module ID)
4: MOD_REMOVED (module removed or defective on
hot swap terminal unit, no communication to module
possible)
5: MOD_ERROR (module defective on hot swap
terminal unit, no communication to module possible)
6: MOD_LOST (lost communication to module on not
hot swap capable terminal unit)
7: UNKNOWN (module detected but not configured)

Diagnosis flag BYTE Diagnosis flag for the CI52x:
0: NO_DIAG (no diagnosis evailable from CI52x I/O
cards)
1: DIAG_AVAILABLE (diagnosis available for CI52x I/O
cards)

Terminal unit state BYTE Terminal unit state for the CI52x:
0: NO_HOTSWAP_TU (not hot swap terminal unit
detected)
1: HOTSWAP_TU_RUNNING (hot swap terminal unit
detected and working)
2: HOTSWAP_TU_ERROR (hot swap terminal unit
detected, but communication errors for hot swap
terminal unit detected)

Parameter state BYTE Parameter state of the CI52x:
0: NO_PARA (module is in initialization phase and not
ready for parameterization)
1: WAIT_PARA (module awaits parameterization)
2: PARA_RUN (parameterization running)
3: LEN_ERR (length of parameters not correct)
4: ID_ERR (module ID inside parameters not correct)
5: PARA_DONE (parameterization finished without
errors)

Module ID WORD Module ID of the 1st connected expansion module

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5657

Data DATA TYPE Description
Expected module ID WORD Expected (configured) module ID of the 1st connected

expansion module

Module state BYTE The current module state of the 1st connected
expansion module

Diagnosis flag BYTE Diagnosis flag for the 1st connected expansion module
0: NO_DIAG (no diagnosis evailable for expansion
module)
1: DIAG_AVAILABLE (diagnosis available for expansion
module)

Terminal unit state BYTE Terminal unit state for the 1st connected expansion
module

Parameter state BYTE Parameter state of the 1st connected expansion module

...

Module ID WORD Module ID of the 10th connected expansion module

Expected module ID WORD Expected (configured) module ID of the 10th connected
expansion module

Module state BYTE The current module state of the 10th connected
expansion module

Diagnosis flag BYTE Diagnosis flag for the 10th connected expansion module

Terminal unit state BYTE Terminal unit state for the 10th connected expansion
module

Parameter state BYTE Parameter state of the 10th connected expansion
module

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5658

Diagnosis data
The diagnosis data section contains one diagnosis message with the following structure
(according to AC500 diagnosis):

Byte
Number

Description Possible Values

1 Diagnosis Byte,
slot number

31 = CI52x-MODTCP (e. g. error at integrated 8 DI / 8 DO)

1 = 1st connected S500 I/O Module

...

10 = 10th connected S500 I/O Module

2 Diagnosis Byte,
module number

According to the I/O bus specification passed on by
modules to the fieldbus master

3 Diagnosis Byte,
channel

According to the I/O bus specification passed on by
modules to the fieldbus master

4 Diagnosis Byte,
error code

According to the I/O bus specification Bit 7 and Bit 6, coded
error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to Bit 5, coded error description

5 Diagnosis Byte,
flags

According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

6 Reserved 0

If a diagnosis message is read out, the next one will be automatically filled in.
If no more diagnosis messages are available the buffer will be reset to zero.
This ensures that each diagnosis message can be delivered to the Modbus TCP client/slave
and no diagnosis will be lost.

I/O data
The I/O data section can use two different formats according to the module parameter “I/O
Mapping Structure” (see Ä Chapter 1.6.2 “Device specifications” on page 3785 for details).
● Fixed I/O mapping

In case of fixed I/O mapping each module has a predefined register range for each Inputs
and Outputs.

● Dynamic I/O mapping
In case of dynamic I/O mapping the mapping is build according to the actual configuration.

The dummy output at the end of the I/O data section can be used to retrigger the bus supervi-
sion and has no effect on the HW outputs.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5659

In case of fixed I/O mapping the following predefined register table is used:

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

1000 Inputs CI 3, 4, 23 x

1100 Inputs 1.EXP 3, 4, 23 x

... ... x

1A00 Inputs 10.EXP 3, 4, 23 x

2000 Outputs CI 3, 23 6, 16, 23

2100 Outputs 1.EXP 3, 23 6, 16, 23

... ...

2A00 Outputs 10.EXP 3, 23 6, 16, 23

2B00 Dummy output 3, 23 6, 16, 23

If a certain expansion module has no inputs or outputs the corresponding registers remain
empty.

In case of dynamic mapping only the start addresses of inputs and outputs are predefined:

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

1000 Inputs CI 3, 4, 23 x

... ... x

2000 Outputs CI 3, 23 6, 16, 23

... ...

2B00 Dummy output 3, 23 6, 16, 23

The register addresses of the connected expansion modules are calculated dynamically based
on the number of inputs and outputs of the previous modules (each module starts directly on the
next register after the previous module).
The register addresses of each module can be read out via the common device register (see
Ä Chapter 1.6.4.3.1.2.2.2 “Common device information registers” on page 5654).

Fixed I/O
mapping

Dynamic I/O
mapping

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5660

The difference between fixed I/O mapping and dynamic I/O mapping is shown in the following
table.
For this comparison a cluster with CI522, AX522, DC532, AX521, DC523, DC532, AO523,
AI523, DI524, AX522 and DC523 is used.

Fixed Mapping Dynamic Mapping
Register

(hex)
Description Type Data Register

(hex)
Description Type Data

1000 Inputs CI 8 DC, 8 DI,
FC

4 BYTE + 4
WORD

 1000 Inputs CI 8 DC, 8 DI,
FC

4 BYTE + 4
WORD

1100 Inputs AX522 8 AI 8 WORD 1006 Inputs AX522 8 AI 8 WORD

1200 Inputs DC532 16 DI, 16
DC

4 BYTE 100E Inputs DC532 16 DI, 16
DC

4 BYTE

1300 Inputs AX521 4 AI 4 WORD 1010 Inputs AX521 4 AI 4 WORD

1400 Inputs DC523 24 DC 3 BYTE 1014 Inputs DC523 24 DC 3 BYTE

1500 Inputs DC532 16 DI, 16
DC

4 BYTE 1016 Inputs DC532 16 DI, 16
DC

4 BYTE

1600 Inputs AO523 --- --- --- Inputs AO523 --- ---

1700 Inputs AI523 16AI 16 WORD 1018 Inputs AI523 16AI 16 WORD

1800 Inputs DI524 32 DI 4 BYTE 1028 Inputs DI524 32 DI 4 BYTE

1900 Inputs AX522 8 AI 8 WORD 102A Inputs AX522 8 AI 8 WORD

1A00 Inputs DC523 24 DC 3 BYTE 1032 Inputs DC523 24 DC 3 BYTE

2000 Outputs CI 8 DC, 8DO,
FC

4 BYTE + 8
WORD

2000 Outputs CI 8 DC, 8DO,
FC

4 BYTE + 8
WORD

2100 Outputs
AX522

8 AO 8 WORD 200A Outputs
AX522

8 AO 8 WORD

2200 Outputs
DC532

16 DC 2 BYTE 2012 Outputs
DC532

16 DC 2 BYTE

2300 Outputs
AX521

4 AO 4 WORD 2013 Outputs
AX521

4 AO 4 WORD

2400 Outputs
DC523

24 DC 3 BYTE 2017 Outputs
DC523

24 DC 3 BYTE

2500 Outputs
DC532

16 DC 2 BYTE 2019 Outputs
DC532

16 DC 2 BYTE

2600 Outputs
AO523

16 AO 16 WORD 201A Outputs
AO523

16 AO 16 WORD

2700 Outputs AI523 --- --- --- Outputs AI523 --- ---

2800 Outputs DI524 --- --- --- Outputs DI524 --- ---

2900 Outputs
AX522

8 AO 8 WORD 202A Outputs
AX522

8 AO 8 WORD

2A00 Outputs
DC523

24 DC 3 BYTE 2032 Outputs
DC523

24 DC 3 BYTE

Comparative
example

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5661

Table 711: I/O data (Inputs 19 BYTEs)
Signal DATA TYPE Description

AI0 WORD Input value of the 1st analog input

AI1 WORD Input value of the 2nd analog input

AI2 WORD Input value of the 3rd analog input

AI3 WORD Input value of the 4th analog input

DI BYTE Input value of the DI channels

Fast counter actual value
counter 1

DWORD Ä Chapter 1.6.4.1.10.1 “Fast
counters in AC500 devices”
on page 5498Fast counter actual value

counter 2
DWORD

Fast counter state counter 1 BYTE

Fast counter state counter 2 BYTE

Table 712: I/O data (Outputs 23 BYTEs)
Signal DATA TYPE Description
AO0 WORD Output value of the 1st analog output

AO1 WORD Output value of the 2nd analog
output

DO BYTE Output value of the DO channels

Fast counter start value
counter 1

DWORD Ä Chapter 1.6.4.1.10.1 “Fast
counters in AC500 devices”
on page 5498Fast counter end value

counter 1
DWORD

Fast counter start value
counter 2

DWORD

Fast counter end value
counter 2

DWORD

Fast counter control counter 1 BYTE

Fast counter control counter 2 BYTE

Table 713: I/O data (Inputs 12 BYTEs)
Signal DATA TYPE Description

DC BYTE Input value of the DC channels

DI BYTE Input value of the DI channels

Fast counter actual value
counter 1

DWORD Ä Chapter 1.6.4.1.10.1 “Fast
counters in AC500 devices”
on page 5498Fast counter actual value

counter 2
DWORD

Fast counter state counter 1 BYTE

Fast counter state counter 2 BYTE

Process data
structure CI521-
MODTCP

Process Data
Structure CI522-
MODTCP

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5662

Table 714: I/O data (Outputs 20 BYTEs)
Signal DATA TYPE Description

DC BYTE Output value of the DC channels

DO BYTE Output value of the DO channels

Fast counter start value
counter 1

DWORD Ä Chapter 1.6.4.1.10.1 “Fast
counters in AC500 devices”
on page 5498Fast counter end value

counter 1
DWORD

Fast counter start value
counter 2

DWORD

Fast counter end value
counter 2

DWORD

Fast counter control counter 1 BYTE

Fast counter control counter 2 BYTE

Parameter data (Acyclic data)

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

3000 Parameters CI 3 6, 16

3080 Stored parameters CI 3 x

3100 Parameters 1. EXP 3 6, 16

3180 Stored parameters 10. EXP 3 x

...

3A00 Parameters 10. EXP 3 6, 16

3A80 Stored parameters 10. EXP 3 x

3B00 controlword/statusword 3 6, 16

For each connected module the following parameter data are defined (the parameters are
represented as ARRAY OF BYTE):
● Actual used parameter for each module

In these sections the actual parameters are stored. This section is also used to write
parameters to the module (For a description on how to parameterize see Ä Chapter
1.6.4.3.1.3.2 “Parameterization” on page 5670).

● Stored parameters for each module
If the module has stored nonvolatile parameters these can be read out using the
corresponding registers.

The controlword/statusword is used to trigger a parameterization process. The single bits have
the following meaning:

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5663

The direction of the first 8 bits is client to server (master to slave).
The direction of the second 8 bits is server to client (slave to master). A description of the bits
can be found in chapter behavior Ä Chapter 1.6.4.3.1.3.2 “Parameterization” on page 5670.
The parameter register sections (actual and stored parameters) have the structure as explained
in the of the corresponding module Ä Chapter 1.6.2 “Device specifications” on page 3785.

Short description of the CI521-MODTCP parameters

Parameter Single
parameter

index

Description Additional Info

0 Module ID (high Byte) Fixed, must be 16#1C

1 Module ID (low Byte) Fixed, must be 16#E8

2 Ignore Module Reserved, must be 0

3 Length of following parameter
block

Fixed, must be 16#3F

4 0 Error LED / Failsafe See Ä Chapter 1.6.2 “Device
specifications” on page 3785

5 1 Master IP Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)6 Master IP Byte 1

7 Master IP Byte 2

8 Master IP Byte 3

9 2 Master IP 1 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)10 Master IP 1 Byte 1

11 Master IP 1 Byte 2

12 Master IP 1 Byte 3

13 3 Master IP 2 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)14 Master IP 2 Byte 1

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5664

Parameter Single
parameter

index

Description Additional Info

15 Master IP 2 Byte 2

16 Master IP 2 Byte 3

17 4 Master IP 3 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)18 Master IP 3 Byte 1

19 Master IP 3 Byte 2

20 Master IP 3 Byte 3

21 5 Master IP 4 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)22 Master IP 4 Byte 1

23 Master IP 4 Byte 2

24 Master IP 4 Byte 3

25 6 Master IP 5 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)26 Master IP 5 Byte 1

27 Master IP 5 Byte 2

28 Master IP 5 Byte 3

29 7 Master IP 6 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)30 Master IP 6 Byte 1

31 Master IP 6 Byte 2

32 Master IP 6 Byte 3

33 8 Master IP 7 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)34 Master IP 7 Byte 1

36 Master IP 7 Byte 2

36 Master IP 7 Byte 3

37 9 Timeout Timeout for bus supervision
in 10ms steps
if set to 0 no bus supervision
is active

38 10 (read only) I/O Mapping Structure See Ä Chapter 1.6.2 “Device
specifications” on page 3785

39 11 Reserved Reserved, must be 0

40 12 Reserved Reserved, must be 0

41 13 Reserved Reserved, must be 0

42 14 Check supply See Ä Chapter 1.6.2 “Device
specifications” on page 3785

43 15 Analog data format Reserved, must be 0

44 16 Input delay See Ä Chapter 1.6.2 “Device
specifications” on page 378546 17 Fast counter

46 18 Short circuit detection

47 19 Behavior binary outputs at com.
fault

48 20 Substitute value binary outputs

49 21 Overvoltage monitoring

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5665

Parameter Single
parameter

index

Description Additional Info

50 22 Behavior analog outputs

51 23 Channel Config AI0

52 24 Check Channel AI0

53 25 Channel Config AI1

54 26 Check Channel AI1

55 27 Channel Config AI2

56 28 Check Channel AI2

57 29 Channel Config AI3

58 30 Check Channel AI3

59 31 Channel Config AO0

60 32 Check Channel AO0

61 33 Substitute value AO0 (high Byte)

62 Substitute value AO0 (low Byte)

63 34 Channel Config AO1

64 35 Check Channel AO1

65 36 Substitute value AO1 (high Byte)

66 Substitute value AO1 (low Byte)

Short description of the CI522-MODTCP parameters

Parameter Single
parameter

index

Description Additional Info

0 Module ID (high Byte) Fixed, must be 16#1C

1 Module ID (low Byte) Fixed, must be 16#ED

2 Ignore Module Reserved, must be 0

3 Length of following parameter
block

Fixed, must be 16#2F

4 0 Error LED / Failsafe See Ä Chapter 1.6.2 “Device
specifications” on page 3785

5 1 Master IP Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)6 Master IP Byte 1

7 Master IP Byte 2

8 Master IP Byte 3

9 2 Master IP 1 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)10 Master IP 1 Byte 1

11 Master IP 1 Byte 2

12 Master IP 1 Byte 3

13 3 Master IP 2 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)14 Master IP 2 Byte 1

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5666

Parameter Single
parameter

index

Description Additional Info

15 Master IP 2 Byte 2

16 Master IP 2 Byte 3

17 4 Master IP 3 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)18 Master IP 3 Byte 1

19 Master IP 3 Byte 2

20 Master IP 3 Byte 3

21 5 Master IP 4 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)22 Master IP 4 Byte 1

23 Master IP 4 Byte 2

24 Master IP 4 Byte 3

25 6 Master IP 5 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)26 Master IP 5 Byte 1

27 Master IP 5 Byte 2

28 Master IP 5 Byte 3

29 7 Master IP 6 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)30 Master IP 6 Byte 1

31 Master IP 6 Byte 2

32 Master IP 6 Byte 3

33 8 Master IP 7 Byte 0 IP Address for write restric-
tions (Ä “Configurable write
restriction” on page 5672)34 Master IP 7 Byte 1

36 Master IP 7 Byte 2

36 Master IP 7 Byte 3

37 2 Timeout Timeout for bus supervision
in 10ms steps
if set to 0 no bus supervision
is active

38 3 (read only) I/O Mapping Structure See Ä Chapter 1.6.2 “Device
specifications” on page 3785

39 4 Reserved Reserved, must be 0

40 5 Reserved

41 6 Reserved

42 7 Check supply See Ä Chapter 1.6.2 “Device
specifications” on page 378543 8 Input delay

44 9 Fast counter See Ä Chapter 1.6.2 “Device
specifications” on page 378546 10 Short circuit detection

46 11 Behavior binary outputs at com.
fault

47 12 Substitute value binary outputs
(high byte)

48 Substitute value binary outputs
(low byte)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5667

Parameter Single
parameter

index

Description Additional Info

49 13 Voltage feedback monitoring

50 14 Overvoltage monitoring

Parameters of connected expansion modules
The parameters of the connected expansion modules are represented as byte array (the param-
eters valid for “CPU” in the Ä Chapter 1.6.2 “Device specifications” on page 3785 of the
corresponding module are used):

Parameter Description Additional Info
0 Module ID (high byte) Fixed, see Ä Chapter 1.6.2 “Device speci-

fications” on page 3785 of corresponding
module (the module ID of FBP is used)

1 Module ID (low byte) Fixed, see of corresponding module
(the module ID of FBP is used)
Ä Chapter 1.6.2 “Device specifications”
on page 3785

2 Ignore module Reserved must be 0

3 Length of following parameter block Fixed, see Ä Chapter 1.6.2 “Device speci-
fications” on page 3785 of corresponding
module

4... The rest of the parameter are
described in the corresponding
module

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5668

Special functionality
This section contains special services like firmware update or single parameterization.

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

4000 Firmware download 3 16

4100 Firmware download state 3 x

5000 Write single parameterization of CI x 16

5100 Write single parameterization of 1.
EXP

x 16

...

5A00 Write single parameterization of 10.
EXP

x 16

6000 Read single parameterization of CI 3 16

6100 Read single parameterization of 1.
EXP

3 16

...

6A00 Read single parameterization of 10.
EXP

3 16

Behavior
IP address assignment

The delivery IP address of the CI52x-MODTCP is 192.168.0.xx (xx is the hardware address
switch position of the device.
The devices support BOOTP, DHCP and fixed IP address setting (these can be set individual or
together). If BOOTP and DHCP are enabled the following priority takes place:
● If DHCP configuration fails, the device will fall back to BOOTP.
● In case of a BOOTP failure, the fixed IP address will be used.

A new IP address (or changing of BOOTP and DHCP) can be set in two different ways:
● With the address switches of the corresponding module
● With the Ä Chapter 1.6.5.2.2.2.2 “Configuration of the IP settings with the IP configuration

tool” on page 5816

Using the address switches
With the address switches only the last byte of the IP address can be changed.
The IP address can only be set via the address switches in case of factory default or in case of
the last byte of the IP address is set to zero with the Ä Chapter 1.6.5.2.2.2.2 “Configuration of
the IP settings with the IP configuration tool” on page 5816. The not allowed IP addresses are
mapped as followed:
● Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other

stored settings (by IP Configuration Tool).
This is a backup so the module can always get a valid IP address and can be configured by
the IP Configuration Tool.

● Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5669

Using the IP configuration tool
With the Ä Chapter 1.6.5.2.2.2.2 “Configuration of the IP settings with the IP configuration tool”
on page 5816 a network scan can be executed, and the found devices can be assigned with
new settings, e.g. enable BOOTP or DHCP and set a new fixed IP. If the last byte of the IP
address of the CI52x-MODTCP devices is set to 0 with the IP Configuration Tool the address
switch position is used instead (see Ä Chapter 1.6.4.3.1.3.1.1 “Using the address switches”
on page 5669).

Parameterization
The parameterization is done via the corresponding registers explained in the Modbus TCP
registers Ä Chapter 1.6.4.3.1.2.4 “Parameter data (Acyclic data)” on page 5663.
In addition to that the parameters can be directly transferred via Automation Builder (see
documentation of Automation Builder for that).
There are two different parameter sections with different behavior.
Actual used parameters
After startup this section contains the following data:
● Default parameters (only module id and parameter length set all others zero) if no valid

stored parameters are available (no or invalid parameters stored).
● Actual used / stored parameters if valid parameters are stored nonvolatile.
These parameters can be read out and changed by reading or writing of the corresponding reg-
isters, but will not be used automatically after writing them, the use of new written parameters
has to be triggered by writing the parameter control word with the corresponding bits set (see
below).
Stored parameters
This section always contains a copy of the nonvolatile stored parameters, if no parameters are
stored nonvolatile this sections will be 0.
Controlword/statusword parameter
This parameter can be used to trigger and save new parameters.
The direction of the first 8 bit is client to server (master to slave). The direction of the second 8
bits is server to client (slave to master).

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5670

Bit Description
0 Use parameters / start

parameterization
If this bit is set the CI Device starts the parameterization
with the parameters in the actual parameters registers.

1 Store parameters volatile If this bit is set the CI device will use the parameters
temporarily, which means after a bus error detection and
reconnection the parameters will be used again.
This bit should always be set.
This bit is only evaluated when bit 0 is set.

2 Store parameters
nonvolatile

If this bit is set the CI device will store the parameters
nonvolatile, which means after a power cycle the stored
parameter data will be used again.
This bit is only evaluated when bit 0 is set.

3 Reserved -

4 Delete nonvolatile stored
parameters

If this bit is set the CI device will delete its nonvolatile
stored parameters.
This bit is only evaluated when bit 0 is set.

5 Ignore parameter error
for nonvolatile parameter
storage

If this bit is set a parameter error during nonvola-
tile storage of parameters will be ignored, and the
parameters will be stored.
This bit can only be set in combination with bit 0 and
bit 2.

6 Reserved -

7 Reserved -

8 New diagnosis available The device will set this bit if new diagnosis data are
available in the diagnosis data section.

9 New parameters available The device will set this bit if new parameters are
available in the actual parameter data section and these
were not activated by setting bit 0 in the control word.

10...15 Reserved -

Cyclic I/O data exchange
The I/O data can be exchanged cyclic by the master by reading, writing the corresponding
registers.
I/O data exchange is only possible after successful parameterization of the device.
For writing of outputs bus failure detection can be activated by setting the corresponding
parameter. This bus failure detection is described in the following chapter.

If the parameter ““timeout”” in the module parameters of the CI52x-MODTCP is set, the module
will supervise the Modbus TCP "write telegrams".
After the first "write telegram" the bus will be supervised. If no new "write telegram" arrives at
the CI52x-MODTCP within the configured time, the module will detect a bus failure and switch
off its outputs or switch them to the configured failsafe state (see module parameter CI521
Ä Chapter 1.6.2.8.5.1.7 “Parameterization” on page 4884 and CI522 Ä Chapter 1.6.2.8.5.2.7
“Parameterization” on page 4914 for details).

Bus failure
detection

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5671

With the module parameters “Master IP”- “Master IP 7” it is possible to set write restrictions on
the CI52x-MODTCP device.
If none of the parameters is set, all masters / clients in the network have read and write rights on
the CI52x-MODTCP device and its connected expansion modules.
If at least one parameter is set only the configured masters / clients have write rights on the
CI52x-MODTCP device.
All other masters / clients still have read access to the CI52x-MODTCP device.

Diagnosis behavior
Each diagnosis message signals if this error is coming or going , so it is possible to create a list
in the master of actual pending diagnosis.
Diagnosis messages will be transferred again after a bus failure detection and reconnection.
Diagnosis messages can be read out with function code 3,4,23. Function codes 3 and 4 can
always read out diagnosis messages, function code 23 can only read out after successful
parameterization of the device. See also table Ä Chapter 1.6.4.3.1.2.3.2 “Diagnosis data”
on page 5659.

Single parameterization
The single parameterization services can be used to read or write parameters during run time of
device without the need of triggering a new parameterization process.
For indexes used for single parameterization services see parameter lists in section Modbus
TCP registers of this document.
The read and write parameterization services are explained below, for each module
(CI52x-MODTCP and connected expansion modules) a different section for read and write is
defined see chapter Modbus TCP registers in this document). Both services are using the
following data structure:

The length of the read / write service depends on the count of parameters that should be
transferred (length = 4+ count*8).

The read single parameterization works in two steps:
● Writing of a request list containing the indexes that should be read using the structure

explained above.
Only CNT and PARA_IDX has to be set.
Up to 5 parameters can be requested with one telegram.
The length of the write service depends on the count of parameters that should be
transferred (length = 4+ count*8).

● Reading of the parameters list with the same length then the previous write request.
If the internal reading process inside the CI52x-MODTCP device is done the data will be
read out.
If the internal reading process inside the CI52x-MODTCP device is not yet finished the read
service will be rejected with Modbus TCP exception code 6 (device busy).

Configurable
write restriction

Reading of
single parame-
ters

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5672

For writing of single parameters only one step is necessary, the parameters are transferred with
one write request using the structure described above.
The length of the write service depends on the count of parameters that should be transferred
(length = 4+ count*8).
In case of write of single parameters the following values have to be set:
● CNT: number of parameters to be set
● And for each parameter:

Parameter index
Parameter length
New parameter value

Written single parameters are not stored volatile and not stored nonvolatile. That means after a
bus reconnection or power cycle the written parameters will be discarded.

Commissioning example
Set IP Address:
● The setting of the IP address is the first step to integrate the CI52x-MODTCP devices into a

running system.
● The setting of the IP address of the CI52x-MODTCP devices is described in the chapter
Ä Chapter 1.6.4.3.1.3.1 “IP address assignment” on page 5669 in this document.

Set Parameters (optional read parameters):
● The second step in configuring the CI52x-MODTCP devices is to set the module and

channel parameters.
● A read of parameters is optional but can be used the get the module IDs and the parameter

length.
● The reading and or writing of parameters is described in chapter Ä Chapter 1.6.4.3.1.3.2

“Parameterization” on page 5670.
Set Control Word:
● After setting the parameter data these have to be activated by writing the control word.
● The meaning and usage of the control word is described in chapter Ä Chapter 1.6.4.3.1.3.2

“Parameterization” on page 5670.
Exchange data:
● After setting and activating the parameters the CI52x-MODTCP device is ready for data

exchange.
● The registers for data exchange are described in chapter Ä Chapter 1.6.4.3.1.2.3 “I/O /

Process data and diagnosis section (Cyclic data)” on page 5656.

Hot swap
With hot swap for AC500 and S500 it is possible to exchange expansion modules (with same
type) during run time.

Preconditions for using hot swap
Information about preconditions for using hot swap see Ä “Hot swap” on page 5463.

Writing of single
parameters

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5673

Compatibility of hot swap

 Modbus remote I/O
I/O module on TU5xx-H connected to I/O bus
master

CI521-MODTCP or CI522-MODTCP

Required version of I/O bus master Module index as of F0
Firmware as of V3.2.3

Fieldbus master when used as remote I/O with
AC500 V2

Any AC500 V2 CPU as of PM57x with on-
board Ethernet or CM597-ETH with MODTCP

When used as remote I/O on third party con-
troller (PLC or DCS)

No limitation known

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5674

Hot swap behavior
The following table describes the behavior in case of I/O attached to communication interface
module for Modbus TCP, CI521-MODTCP or CI522-MODTCP.

Hot Swap Behavior Modbus TCP remote I/O
Start-up behavior with missing or damaged
I/O module on hot swap terminal unit TU5xx-H

Remote I/O station is not starting
As of device index F4 and Automation Builder
Version 2.4.1 it is possible to configure the
startup in case of missing modules on hot
swap terminal units. If configured, the remote
I/O station is starting up with missing or dam-
aged I/O module, if the module is plugged
later or replaced it will be automatically par-
ameterized and I/O data will be exchanged.
As the Automation Builder checks that all
modules are available during configuration
process, it is necessary that all I/O modules
are available and in working order during
configuration via Automation Builder. As the
parameters are stored nonvolatile inside the
CI52x devices later one the parameters have
effect for power cycle or reconnection opera-
tions.

Start-up behavior with wrong I/O module type
on any terminal unit

Remote I/O station is not starting

Diagnosis of presence of
hot swap terminal unit

Information is available in Modbus registers
of the communication interface module which
can be accessed by the application program
As of device index F4 and Automation Builder
Version 2.4.1 it is possible to configure a list of
required hot swap terminal units. If a required
hot swap terminal unit is missing (normal one
plugged) this will not prevent a normal oper-
ation but a diagnosis message will be gener-
ated for the corresponding slot.

Diagnosis of hot swap capability of I/O module
mounted on hot swap terminal unit

Information can be obtained by reading
Modbus registers in the communication inter-
face module. Those Modbus registers contain:
● Diagnosis in case that a not hot-swap-

pable I/O module is plugged on a hot
swap terminal unit

● Diagnosis In case that in a mixed configu-
ration with at least one hot swap terminal
unit an I/O module, that must not be used
in a hot swap configuration, is mounted on
any terminal unit of the configuration

● Production data and version index of the
modules

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

Diagnosis is available in Modbus registers in
the communication interface module

Input state in process image of controller while
module is pulled or module is not operational

Input = ZERO

Diagnosis after plugging the I/O module on
the hot swap terminal unit

Diagnose "diagnosis gone" is available in
Modbus registers in the communication
interface module

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5675

System behavior
If an expansion module is removed or defective during run time, the input data of this module
will be set to “0” and the module state will be set to the corresponding value (see Ä Chapter
1.6.4.3.1.2.3 “I/O / Process data and diagnosis section (Cyclic data)” on page 5656). A diag-
nosis message will be created in that case (see hardware description of Ä Chapter 1.6.2.8.5.1
“CI521-MODTCP” on page 4864 / Ä Chapter 1.6.2.8.5.2 “CI522-MODTCP” on page 4904 for
diagnosis messages).
In case a module is replaced, the new module will automatically be parameterized with the last
parameters of the removed module (if single parameters were written to the previously removed
module, this parameters will be ignored).
During pulling or plugging of a certain module, all other module will continue to operate with one
limitation: The reaction time of modules connected to the right of the affected module will be
bigger in that case (up to 50 ms).
If the bus failure detection is active for CI52x and failsafe is configured (see Ä Chapter
1.6.4.3.1.3.3 “Cyclic I/O data exchange” on page 5671) the following behavior applies if a
module is removed and replugged during failsafe condition:
● Last value configured for output:

– After a bus failure is detected, failsafe will be activated and the output will remain at its
last value.

– If the module is removed and plugged again, the output will remain off, and not be kept
its last value, as the last value of the new module is “0” in that case.

● Substitute value configured for output:
– After a bus failure is detected, failsafe will be activated and the output will be according

to the configured substitute value.
– If the module is removed and plugged again now, the output will be set according to the

configured substitute value again.
● Substitute value for x seconds configured for output:

– After a bus failure is detected, failsafe will be activated and the output will be according
to the configured substitute value for the configured time.

– If the module is removed and plugged again now, the output will be set according to the
configured substitute value again, and the configured time starts again.

Mandatory rules for hot swapping
Mandatory rules for hot swapping:
● Between two pull and / or plug operations of I/O modules a pause of at least 1 second must

be observed.
– That means if a module is pulled or plugged there has to be at least a break of 1 second

before the next module is pulled or plugged.
● At boot up of CI52x all configured expansion modules have to be physically available.

– Start up with missing modules is not supported.
● In the application program it is possible to detect if a hot swap terminal unit is mounted

in a specific position on the I/O bus. The information is available in the common device
information registers. These can be accessed when the version of the communication inter-
face module supports hot swap.
– This has to be checked by application:

Best way for checking if a hot swap terminal unit is available or not, is reading out
the common device information registers (see Ä Chapter 1.6.4.3.1.2.2 “Information data
section (Acyclic data)” on page 5653). If the CI52x rejects this read out the CI52x
doesn’t support hot swap at all.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5676

1.6.4.3.2 PROFIBUS communication interface module
Hot swap

With hot swap for AC500 and S500 it is possible to exchange expansion modules (with same
type) during run time.

Preconditions for using hot swap
Information about preconditions for using hot swap see Ä “Hot swap” on page 5463.

Compatibility of hot swap

 PROFIBUS remote I/O
I/O module on TU5xx-H connected to I/O bus
master

CI541-DP or CI542-DP

Required version of I/O bus master Module index as of F0
Firmware as of V3.2.12

Fieldbus master when used as remote I/O with
AC500 V2

Any AC500 V2 CPU as of PM57x with
CM592-DP

When used as remote I/O on third party con-
troller (PLC or DCS)

No limitation known

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5677

Hot swap behavior
The following table describes the behavior in case of I/O attached to communication interface
module for PROFIBUS, CI541-DP or CI542-DP.

Hot Swap Behavior PROFIBUS remote I/O with
AC500 V2 CPU and CM592-
DP as master

PROFIBUS remote I/O with
third party controller (GSD
used for configuration)

Start-up behavior with missing
or damaged I/O module
on hot swap terminal unit
TU5xx-H
a

Remote I/O station is not
starting

Remote I/O station is not
starting
As of device index F1 and
Automation Builder Version
2.5.0 it is possible to con-
figure the startup in case
of missing modules on hot
swap terminal units. If config-
ured, the remote I/O station
is starting up with missing or
damaged I/O module, if the
module is plugged later or
replaced it will be automati-
cally parameterized and I/O
data will be exchanged.

Start-up behavior with wrong
I/O module type on any
terminal unit

Remote I/O station is not
starting

Remote I/O station is not
starting

Diagnosis of presence of hot
swap terminal unit

Information is available via
acyclic services

Information is available via
acyclic services
As of device index F1 and
Automation Builder Version
2.5.0 it is possible to configure
a list of required hot swap ter-
minal units. If a required hot
swap terminal unit is missing
(normal one plugged) this will
not prevent a normal opera-
tion but a diagnosis message
will be generated for the cor-
responding slot.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5678

Hot Swap Behavior PROFIBUS remote I/O with
AC500 V2 CPU and CM592-
DP as master

PROFIBUS remote I/O with
third party controller (GSD
used for configuration)

Diagnosis of hot swap capa-
bility of I/O module mounted
on hot swap terminal unit

Diagnosis is transmitted as
vendor specific diagnosis
and can be accessed
with the function block
Ä Chapter 1.5.4.26.1.5
“DPM_SLV_DIAG”
on page 1765:
● Diagnosis in case that

a not hot-swappable I/O
module is plugged on a
hot swap terminal unit

● Diagnosis in case that
in a mixed configuration
with at least one hot
swap terminal unit an I/O
module, that must not
be used in a hot swap
configuration, is mounted
on any terminal unit of the
configuration

Production data and version
index of the modules is acces-
sible via acyclic services

Diagnosis is transmitted as
vendor specific diagnosis:
● Diagnosis in case that

a not hot-swappable I/O
module is plugged on a
hot swap terminal unit

● Diagnosis in case that
in a mixed configuration
with at least one hot
swap terminal unit an I/O
module, that must not
be used in a hot swap
configuration, is mounted
on any terminal unit of the
configuration

Production data and version
index of the modules is acces-
sible via acyclic services

Diagnosis while hot swap
module is pulled or module
(mounted on hot swap
terminal unit) has stopped
working

Diagnosis is transmitted as
vendor specific diagnosis
"diagnosis gone" and can be
accessed with the function
block Ä Chapter 1.5.4.26.1.5
“DPM_SLV_DIAG”
on page 1765

Diagnosis is transmitted as
vendor specific diagnosis.

Input state in process image
of controller while module is
pulled or module is not opera-
tional

Input = ZERO Input = ZERO

Diagnosis after plugging of the
I/O module on the hot swap
terminal unit

Diagnosis is transmitted as
vendor specific diagnosis
"diagnosis gone" and can be
accessed with the function
block Ä Chapter 1.5.4.26.1.5
“DPM_SLV_DIAG”
on page 1765

Diagnosis is transmitted as
vendor specific diagnosis
"diagnosis gone"

System behavior
If an expansion module is removed or defective during run time, the input data of this module
will be set to “0” and the module state will be set to the corresponding value. A diagnosis mes-
sage will be created in that case (see hardware description of Ä Chapter 1.6.2.8.6.1 “CI541-DP”
on page 4930 / Ä Chapter 1.6.2.8.6.2 “CI542-DP” on page 4969 for diagnosis messages).
In case a module is replaced, the new module will automatically be parameterized with the last
parameters of the removed module (if single parameters were written to the previously removed
module, this parameters will be ignored).
During pulling or plugging of a certain module, all other modules will continue to operate with
one limitation: The reaction time of modules connected to the right of the affected module will be
bigger in that case (up to 50 ms).

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5679

If the bus failure detection is active for CI54x and failsafe is configured the following behavior
applies if a module is removed and replugged during failsafe condition:
● Last value configured for output:

– After a bus failure is detected, failsafe will be activated and the output will remain at its
last value.

– If the module is removed and plugged again, the output will remain off, and not be kept
its last value, as the last value of the new module is “0” in that case.

● Substitute value configured for output:
– After a bus failure is detected, failsafe will be activated and the output will be according

to the configured substitute value.
– If the module is removed and plugged again now, the output will be set according to the

configured substitute value again.
● Substitute value for x seconds configured for output:

– After a bus failure is detected, failsafe will be activated and the output will be according
to the configured substitute value for the configured time.

– If the module is removed and plugged again now, the output will be set according to the
configured substitute value again, and the configured time starts again.

Mandatory rules for hot swapping
Mandatory rules for hot swapping:
● Between two pull and / or plug operations of I/O modules a pause of at least 1 second must

be observed.
– That means if a module is pulled or plugged there has to be at least a break of 1 second

before the next module is pulled or plugged.
● At boot up of CI54x all configured expansion modules have to be physically available.

– Start up with missing modules is not supported.
● In the application program it is possible to detect if a hot swap terminal unit is mounted in

a specific position on the I/O bus. The information is available via acyclic read requests.
These can be accessed when the version of the communication interface module supports
hot swap.
– This has to be checked by application:

Best way for checking if a hot swap terminal unit is available or not, is reading out the
module info. If the CI54x rejects this read out the CI54x doesn’t support hot swap at all.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5680

1.6.4.3.3 PROFINET communication interface module
Hot swap

With hot swap for AC500 and S500 it is possible to exchange expansion modules (with same
type) during run time.

Preconditions for using hot swap
Information about preconditions for using hot swap see Ä “Hot swap” on page 5463.

Compatibility of hot swap

 PROFINET remote I/O
I/O module on TU5xx-H connected to I/O bus
master

CI501-PNIO or CI502-PNIO

Required version of I/O bus master Module index as of F0
Firmware as of V3.2.10

Fieldbus master when used as remote I/O with
AC500 V2

Any AC500 V2 CPU as of PM57x with
CM579-PNIO

When used as remote I/O on third party con-
troller (PLC or DCS)

Note: alarms must be acknowledged by
fieldbus master.
GSDML as of version
GSDML-V2.3-ABB-S500-CI501-
PNIO-20180822.xml or
GSDML-V2.3-ABB-S500-CI502-
PNIO-20180822.xml
needed for full scope of vendor specific
diagnosis.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5681

Hot swap behavior
The following table describes the behavior in case of I/O attached to communication interface
module for PROFINET, CI501-PNIO or CI502-PNIO.

Hot Swap Behavior PROFINET remote I/O with
AC500 V2 CPU and CM579-
PNIO as master

PROFINET remote I/O
with third party controller
(GSDML used for configura-
tion)

Start-up behavior with missing
or damaged I/O module
on hot swap terminal unit
TU5xx-H

Remote I/O station is not
starting

Remote I/O station is not
starting
As of device index F1 and
Automation Builder Version
2.4.1 it is possible to con-
figure the startup in case
of missing modules on hot
swap terminal units. If config-
ured, the remote I/O station
is starting up with missing or
damaged I/O module, if the
module is plugged later or
replaced it will be automati-
cally parameterized and I/O
data will be exchanged.

Start-up behavior with wrong
I/O module type on any
terminal unit

Remote I/O station is not
starting

Remote I/O station is not
starting

Diagnosis of presence of hot
swap terminal unit

Information is available either:
● via acyclic services

or
● as cyclic state information

in the process image
Requires Automation
Builder version as of 2.2.

Information is available either:
● via acyclic services

or
● as cyclic state information

in the process image
As of device index F1 and
Automation Builder Version
2.4.1 it is possible to configure
a list of required hot swap ter-
minal units. If a required hot
swap terminal unit is missing
(normal one plugged) this will
not prevent a normal opera-
tion but a diagnosis message
will be generated for the cor-
responding slot.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5682

Hot Swap Behavior PROFINET remote I/O with
AC500 V2 CPU and CM579-
PNIO as master

PROFINET remote I/O
with third party controller
(GSDML used for configura-
tion)

Diagnosis of hot swap capa-
bility of I/O module mounted
on hot swap terminal unit

Diagnosis is transmitted
as alarm and can be
accessed with the function
block Ä Chapter 1.5.4.27.1.1
“PNIO_DEV_ALARM”
on page 1794:
● Diagnosis in case that

a not hot-swappable I/O
module is plugged on a
hot swap terminal unit

● Diagnosis in case that
in a mixed configuration
with at least one hot
swap terminal unit an I/O
module, that must not
be used in a hot swap
configuration, is mounted
on any terminal unit of the
configuration

Production data and version
index of the modules is acces-
sible via acyclic services

Diagnosis is transmitted as
vendor specific PROFINET
channel diagnosis:
● Diagnosis in case that

a not hot-swappable I/O
module is plugged on a
hot swap terminal unit

● Diagnosis in case that
in a mixed configuration
with at least one hot
swap terminal unit an I/O
module, that must not
be used in a hot swap
configuration, is mounted
on any terminal unit of the
configuration

Production data and version
index of the modules is acces-
sible via acyclic services

Diagnosis while hot swap
module is pulled or module
(mounted on hot swap
terminal unit) has stopped
working

Diagnosis is transmitted
as alarm and can be
accessed with the function
block Ä Chapter 1.5.4.27.1.1
“PNIO_DEV_ALARM”
on page 1794. PROFINET
standard "pull alarm" is gen-
erated and must be acknowl-
edged with the function
block Ä Chapter 1.5.4.27.1.1
“PNIO_DEV_ALARM”
on page 1794

PROFINET channel diagnosis
is generated together with
standard "pull alarm" which
must be acknowledged

Input state in process image
of controller while module is
pulled or module is not opera-
tional

Input = ZERO Input = ZERO
In addition a standard
PROFINET state information
is transmitted saying "inputs
not valid"

Diagnosis after plugging of the
I/O module on the hot swap
terminal unit

PROFINET standard "plug
alarm" is generated and
must be acknowledged
with the function block
Ä Chapter 1.5.4.27.1.1
“PNIO_DEV_ALARM”
on page 1794

PROFINET channel diagnosis
is generated together with
standard "plug alarm" which
must be acknowledged

System behavior
If an expansion module is removed or defective during run time, the input data of this module
will be set to “0” and the module state will be set to the corresponding value. A diagnosis
message will be created in that case (see hardware description of Ä Chapter 1.6.2.8.7.2
“CI501-PNIO” on page 4995 / Ä Chapter 1.6.2.8.7.3 “CI502-PNIO” on page 5035 for diagnosis
messages).

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5683

In case a module is replaced, the new module will automatically be parameterized with the last
parameters of the removed module (if single parameters were written to the previously removed
module, this parameters will be ignored).
During pulling or plugging of a certain module, all other module will continue to operate with one
limitation: The reaction time of modules connected to the right of the affected module will be
bigger in that case (up to 50 ms).
If the bus failure detection is active for CI50x and failsafe is configured the following behavior
applies if a module is removed and replugged during failsafe condition:
● Last value configured for output:

– After a bus failure is detected, failsafe will be activated and the output will remain at its
last value.

– If the module is removed and plugged again, the output will remain off, and not be kept
its last value, as the last value of the new module is “0” in that case.

● Substitute value configured for output:
– After a bus failure is detected, failsafe will be activated and the output will be according

to the configured substitute value.
– If the module is removed and plugged again now, the output will be set according to the

configured substitute value again.
● Substitute value for x seconds configured for output:

– After a bus failure is detected, failsafe will be activated and the output will be according
to the configured substitute value for the configured time.

– If the module is removed and plugged again now, the output will be set according to the
configured substitute value again, and the configured time starts again.

Mandatory rules for hot swapping
Mandatory rules for hot swapping:
● Between two pull and / or plug operations of I/O modules a pause of at least 1 second must

be observed.
– That means if a module is pulled or plugged there has to be at least a break of 1 second

before the next module is pulled or plugged.
● At boot up of CI50x all configured expansion modules have to be physically available.

– Start up with missing modules is not supported.
● In the application program it is possible to detect if a hot swap terminal unit is mounted

in a specific position on the I/O bus. The information is available in the process data area
or can be read out via acyclic read. These can be accessed when the version of the
communication interface module supports hot swap.
– This has to be checked by application:

Best way for checking if a hot swap terminal unit is available or not, is checking the
corresponding information inside the process image.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5684

1.6.4.4 System technology of the AC500 function modules
1.6.4.4.1 DC541-CM interrupt and counter module
Cycle time modification

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

 Access to the channels configured as normal inputs and outputs is performed
using the function block Ä Chapter 1.5.4.11.1.1.8 “DC541_IO” on page 1139.

The module's cycle time is set automatically depending on its channel configuration. The fol-
lowing values are possible for the cycle time:

Data type Default value Range Unit
WORD - - µs

CYCLE (cycle time) output displays the cycle time of the device. The cycle time is set during the
device configuration and can have the following values depending on the channel configuration:

Parameter Description Value
IO device 50 µs

Counting device 1-2 functions 50 µs

 3-4 functions 100 µs

 5-8 functions 200 µs

"Functions"

 PWM Pulse-width modulator

 FREQ Time and frequency measurement

 FREQ_OUT Frequency output

 32BIT_CNT 32-bit counter

 FWD_CNT 32-bit count up counter

 LIMIT Limit value monitoring for the 32-bit counter

The used cycle time can be read at output CYCLE of the block Ä Chapter 1.5.4.11.1.1.6
“DC541_GET_CFG” on page 1132.
The following table shows an overview of all possible combinations.

CYCLE

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5685

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Mode 1: Interrupt function; mutually exclusive with mode 2 (counting functions).

Interrupt Dig.
input

1 1 1 1 4 8 Each
channel
can be
config-
ured
individu-
ally as
interrupt
input or
output.

Interrupt
inp.

1 1 1 1 4 8

Dig.
output

1 1 1 1 4 8

Mode 2: Counting functions and multifunctional I/Os; mutually exclusive with mode 1 (interrupt
functions).

Multi-
function
I/Os,
PWM,
coun-
ters,
time and
fre-
quency
meas-
uring

Dig.
input

1 1 1 1 4 8 Normal
input

Dig.
output

1 1 1 1 4 8 Normal
output

PWM,
resolu-
tion 10
kHz

1 1 1 1 4 8 Outputs
a pulsed
signal
with an
adjust-
able on-
off ratio.

Fre-
quency
output,
resolu-
tion
2.5 kHz

1 1 1 1 4 8 Outputs
an
adjust-
able fre-
quency
(endless
output or
output of
a speci-
fied
number
of
pulses).

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5686

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Up/down
counter,
50 kHz

1 1 OK
*1)

OK
*1)

OK
*1)

2 *1)
a) Both
channels
(0 and 1)
config-
ured as
50 kHz
counter
=>
Chan-
nels 2 to
7 can be
config-
ured as
digital
I/Os.
b) Only
one
channel
(0 or 1)
config-
ured as
50 kHz
counter
 =>
Second
channel
can be
config-
ured as
counter
< 50 kHz
or for
time/
fre-
quency
meas-
urement
with a
max.
resolu-
tion of
200 µs.
The
remainin
g chan-
nels (2
to 7) can
be con-
figured
as digital
I/Os.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5687

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Up/down
counter,
5 kHz

1 1 1 1 OK
*2)

4 *2)
a) Four
channels
(0 to 3)
config-
ured as
5 kHz
counter
=>
Chan-
nels 4 to
7 can be
config-
ured as
digital
I/Os.
b) Only a
portion
of the 4
channels
(0 to 3)
config-
ured as
5 kHz
counter
=> The
other
ones (of
channels
0 to 3)
can be
config-
ured as
desired:
as 2.5
kHz
counter
or for
time/
fre-
quency
meas-
urement
with a
max.
resolu-
tion of
200 µs
or as
digital
I/Os.
The
remainin

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5688

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)
g chan-
nels (4
to 7) can
be con-
figured
as digital
I/Os.

Up/down
counter,
2.5 kHz

1 1 1 1 4 8

Time/
fre-
quency
meas-
urement,
resolu-
tion
50 µs

1 OK
*3)

OK
*3)

OK
*3)

OK
*3)

1 *3)
Channel
0 config-
ured for
a max.
resolu-
tion of
50 µs =>
Chan-
nels 1 to
7 can be
config-
ured as
digital
I/Os.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5689

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Time/
fre-
quency
meas-
urement,
resolu-
tion
100 µs

1 1 OK
*4)

OK
*4)

OK
*4)

2 *4)
a) Two
channels
(0 and 1)
config-
ured for
a max.
resolu-
tion of
2x100 µs
=>
Chan-
nels 2 to
7 can be
config-
ured as
digital
I/Os.
b) Only
one
channel
(0 or 1)
config-
ured for
a max.
resolu-
tion of
50 µs =>
Second
channel
(0 or 1)
can be
config-
ured as
counter
< 50 kHz
or for
time/
fre-
quency
meas-
urement
with a
max.
resolu-
tion of
200 µs.
The
remainin
g chan-
nels (2

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5690

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)
to 7) can
be con-
figured
as digital
I/Os.

Time/
fre-
quency
meas-
urement,
resolu-
tion
200 µs

1 1 1 1 4 8 Times,
frequen-
cies and
rota-
tional
speeds
are
meas-
ured with
a max.
resolu-
tion of
200 µs.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5691

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

High-
speed
counter

Up/down
32-bit
counter,
50 kHz
max.

Channels 0 to 3: Track A, track B, zero
track, touch trigger

OK
*6)

1 For con-
nection
of an
incre-
mental
trans-
mitter.
For sig-
nals up
to 50
kHz.
This fre-
quency
corre-
sponds
to a
motor
with a
rota-
tional
speed of
3000
rpm. The
counter
always
uses the
first 4
channels
(0 to 3).
*6) The
remainin
g chan-
nels (4
to 7) can
be con-
figured
as limit
values,
as 5 kHz
coun-
ters, for
time/
fre-
quency
meas-
urement
with a
resolu-
tion of
200 µs
or as
digital
I/Os.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5692

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Axis of
rotation
(endless
counting
)

1 OK
*7)

1 "End-
less" for-
ward
counting.
An over-
flow
occurs
corre-
sponding
to the
32-bit
value.
*7) The
remainin
g chan-
nels can
be con-
figured
as limit
values,
as 5 kHz
coun-
ters, for
time/
fre-
quency
meas-
urement
with a
resolu-
tion of
200 µs
or as
digital
I/Os.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5693

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

32-bit
counter
incl. sign

1 OK
*8)

1 *8) The
remainin
g chan-
nels can
be con-
figured
as limit
values,
as 5 kHz
coun-
ters, for
time/
fre-
quency
meas-
urement
with a
resolu-
tion of
200 µs
or as
digital
I/Os.

Limit
values
for 32-bit
counter

OK *9) 1 1 Various
counting
values of
the 32-
bit
counter
can be
dis-
played
directly
via these
outputs.
*9) In
this
case, the
channels
0 to 3
are used
as 32-bit
coun-
ters.

Usage as interrupt I/O module
Creating an interrupt task for the interrupt inputs

If one or more channels of DC541-CM are configured as interrupt inputs, a corresponding
interrupt task has to be created to enable the processing of the interrupt(s).

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5694

For this purpose, a new task has to be added in the task configuration of Automation Builder:
● Enter the task name
● Set the task type to "triggered by external event"
● Specify the event that triggers the task
For each Communication Module slot, two types of interrupt tasks are available in the Event list
box:
● Ext_Communication ModuleX_InputAny:

The task is triggered by any interrupt from Communication Module slot X with the priority
specified in the Priority field (0...31).

● Ext_Communication ModuleX_InpuAny_high_prio:
The task is triggered by any interrupt from Communication Module slot X with highest
priority, i.e. with a priority higher than the max. adjustable "0" and higher than the priority
of the communication task. In this case, the priority (0...31) specified in the Priority field is
without any significance.

If the interrupt task is started with highest priority, the program execution time
must not be longer than approx. 400 µs. Otherwise online access is no longer
possible.

In the example below, the task is named HIGHInterrupt_1, meaning that it is a high-priority
interrupt from Communication Module slot 1. The task type is "external event triggered" and the
event to trigger the task is "Ext_Communication Module1_InputAny_high_priority".

Like for all other tasks, a program call has to be assigned to the task.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5695

In the example, the program DC541_Interrupt_Ext1() shall be started with any interrupt from
Communication Module slot 1.

The task configuration for an AC500 equipped with two DC541-CM modules inserted in the
Communication Module slots 1 and 2 and containing one cyclically running "background pro-
gram" PLC_PRG could for example look as follows. Here, an interrupt from slot 1 should start
the program DC541_Interrupt_Ext1 with high priority, an interrupt from slot 2 should start the
program DC541_Interrupt_Ext2 with priority 2:

Structure of the interrupt program
The following blocks contained in the library DC541_AC500_V11.lib are available for the inter-
rupt program:
● Ä Chapter 1.5.4.11.1.1.7 “DC541_INT_IN” on page 1136 Determination of the interrupt

initiating source
● Ä Chapter 1.5.4.11.1.1.8 “DC541_IO” on page 1139 Reading and writing of channels

C0...C7

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5696

It is possible to start one interrupt task per Communication Module slot. This task can be
started by any channel (C0...C7) configured as interrupt input. Therefore, it is necessary for the
interrupt program to differentiate which channel(s) triggered the interrupt in order to enable the
processing of the corresponding actions.
The information whether a channel (C0...C7) has triggered an interrupt since the last call
of the block is provided by the outputs IN0...IN7 of the block Ä Chapter 1.5.4.11.1.1.7
“DC541_INT_IN” on page 1136. This is why this block always has to be called at the beginning
of the interrupt program, if more than one channel is configured as interrupt input.
The access to the channels configured as inputs or outputs is done using the block DC541_IO.
Therefore, it makes sense to call this block at the beginning of the interrupt program in order to
read the inputs and at the end of the interrupt program in order to write the outputs.

--Configuration example: DC541-CM used as interrupt I/O device
The example control system shall have the following configuration:
● Terminal base TB521 (two Communication Module slots)
● DC541-CM in Communication Module slot 1 (first slot on the left of the CPU)
● PM591-ETH
● I/O module DC532 on the I/O Bus

The channels are connected as follows:
DC532 / C16 -------------- DC541 / C0
DC532 / C17 -------------- DC541 / C1
DC532 / C18 -------------- DC541 / C2
DC532 / C19 -------------- DC541 / C3
DC532 / C20 -------------- DC541 / C4
DC532 / C21 -------------- DC541 / C5

- DC541-CM in slot 1, operating mode "IO mode"

- Configuration: Channels C0...C4 Interrupt input

 Channel C5 Input

 Channels C6...C7 Outputs

● Specification of the Ethernet communication module as internal communication module (if
available)

● DC532 on the I/O bus

● Task 1: Cyclic program / Prio = 10 / Interval = t#10ms / PLC_PRG
● Task 2: HIGHInterrupt_1 / DC541_Interrupt_Ext1()

The interrupt program should fulfill the following functionality:
● Counting of all interrupts
● Counting of the interrupts per input
● Calculation of the interrupt frequency in [Int/s]
● Reporting of the number of interrupts per input
● Input C4: Resetting the counters
● Input C5: Input

Hardware con-
figuration

Wiring

PLC configura-
tion

Task configura-
tion

DC541_Inter-
rupt_Ext1()

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5697

● Output C6: Status of input C5
● Output C7: Toggle output
The declaration part of the program looks as follows:

PROGRAM DC541_Interrupt_Ext1

VAR

 dwIntCount : DWORD; (* count all interrupts
*)

 dwIntCountOld : DWORD; (* start value for next
measure *)

 tActual : TIME; (* systemtick in ms *)

 tStart : TIME; (* start value of sys-
temtick for next calcu-
lation *)

 dwUsedTime : DWORD; (* time for 1000 inter-
rupts in ms *)

 dwFrequenz : DWORD; (* interrupt frequency
in [Int / sec] *)

 DC541_IntSource : DC541_INT_IN; (* instance FB: read
interrupt source *)

 DC541_Ios : DC541_IO; (* instance FB: read/
write inputs/outputs *)

 dwCount_InX :
ARRAY[0..cbyDC541_
IntInp] OF DWORD;

(* count interrupts of
In0..In3 *)

 dwCount_InXOld :
ARRAY[0..cbyDC541_
IntInp] OF DWORD;

(* start value for next
1000 interrupts *)

 dwIntHisto :
ARRAY[0..cbyDC541_
IntInp,
0..cbyDC541_MaxHist
] OF DWORD;

(* histo data C0...C3
*)

 wIndex : WORD; (* index for histo data
*)

 byInd : BYTE; (* loop index *)

END_VAR

VAR CONSTANT

 cbyDC541_SLOT : BYTE := 1; (* SLOT number of
DC541 *)

 cbyDC541_MaxHist : BYTE := 9; (* max number of
histo entries *)

 cbyDC541_IntInp : BYTE := 4; (* number of interrupt
inputs -1 *)

END_VAR

The instruction part looks as follows:
At the beginning, the interrupts are counted in dwIntCount. After each 1000 interrupts, a calcu-
lation of the frequency is performed and the counting values for the interrupts per input are
stored.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5698

dwIntCount := dwIntCount + 1; (* count all interrupts *)

IF dwIntCount - dwIntCountOld >= 1000 THEN (* after 1000 interrupts -> cal-
culate frequency *)

 dwIntCountOld := dwIntCount; (* save dwIntCount for next
call *)

 tActual := TIME();

 dwUsedTime :=
TIME_TO_DWORD(tActual -
tStart);

(* duration in ms for 1000
interrupts *)

 dwFrequenz := 1000000 /
dwUsedTime;

(* [Interrupt / sec] 1000 Int *
1000 ms/sec *)

 tStart := tActual; (* for next measure *)

 dwIntHisto[0,wIndex] :=
dwCount_InX[0] -
dwCount_InXOld[0];

(* IN0 interrupts of last 1000 *)

 dwCount_InXOld[0] :=dwCoun
t_InX[0];

(* start value for next measure
*)

 dwIntHisto[1,wIndex] :=
dwCount_InX[1] -
dwCount_InXOld[1];

(* IN1 interrupts of last 1000 *)

 dwCount_InXOld[1] :=dwCoun
t_InX[1];

(* start value for next measure
*)

 dwIntHisto[2,wIndex] :=
dwCount_InX[2] -
dwCount_InXOld[2];

(* IN2 interrupts of last 1000 *)

 dwCount_InXOld[2] :=dwCoun
t_InX[2];

(* start value for next measure
*)

 dwIntHisto[3,wIndex] :=
dwCount_InX[3] -
dwCount_InXOld[3];

(* IN3 interrupts of last 1000 *)

 dwCount_InXOld[3] :=dwCoun
t_InX[3];

(* start value for next measure
*)

 wIndex := wIndex + 1; (* increase index *)

 IF wIndex >
cbyDC541_MaxHist THEN
wIndex := 0; END_IF;

(* reset index, if >1000 *)

END_IF; (* 1000 Interrupts *)

After this, the block DC541_INT_IN is called to identify the interrupt source and then the
interrupt counters of the channels are updated depending on the outputs of this block.
(* Read interrupt source --> if output = TRUE --> interrupt since last call *)
DC541_IntSource(EN := TRUE, SLOT := cbyDC541_SLOT);
(* count the interrupts for each interrupt input C0..C3 *)
dwCount_InX[0] := dwCount_InX[0] + BOOL_TO_DWORD(DC541_IntSource.IN0);
dwCount_InX[1] := dwCount_InX[1] + BOOL_TO_DWORD(DC541_IntSource.IN1);
dwCount_InX[2] := dwCount_InX[2] + BOOL_TO_DWORD(DC541_IntSource.IN2);
dwCount_InX[3] := dwCount_InX[3] + BOOL_TO_DWORD(DC541_IntSource.IN3);
dwCount_InX[4] := dwCount_InX[4] + BOOL_TO_DWORD(DC541_IntSource.IN4);
In case of an interrupt on channel 4, the counters are reset.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5699

IF DC541_IntSource.IN4 THEN (* Input channel C4 = TRUE *)

 dwIntCount := dwIntCoun-
tOld := 0;

(* reset count all interrupts *)

 FOR byInd := 0 TO
cbyDC541_IntInp-1 DO

(* reset channel interrupt
counters C0..C3 *)

 dwCount_InX[byInd] := dwCount_InXOld[byInd] := 0;

 END_FOR; (* byInd *)

 wIndex := 0; (* start historical data from 0 *)

END_IF; (* C4 = TRUE *)

At the end, the static inputs and outputs are processed, i.e.:
● reading the inputs,
● execution of actions
● writing the outputs.

(* Read inputs of DC541 *)

DC541_IOs(EN := TRUE,
SLOT := cbyDC541_SLOT);

DC541_IOs.OUT6 :=
DC541_IOs.IN5;

(* C6 := state of input channel
C5 *)

DC541_IOs.OUT7 := NOT
DC541_IOs.OUT7;

(* toggle channel C7 *)

(* Write outputs to DC541*)

DC541_IOs(EN := TRUE,
SLOT := cbyDC541_SLOT);

Purpose of the cyclic program PLC_PRG:
The cyclic program PLC_PRG contains the following functions:
● Cycles counter dwC := dwC + 1;
● Reading the configuration of the DC541 Calling of block DC541_GET_CFG
● Reading the status of the DC541 Calling of block DC541_STATE - Reading/writing the static

channels of the DC541 Calling of block DC541_IO
● Simulation of the interrupts for the DC541 Calling of block Simu_Pulse
The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation Ä Chapter 1.5.4.11
“DC541 library” on page 1103.
The block Simu_Pulse is used to generate an adjustable number of pulses. Its representation in
the Function Block Diagram (FBD) is as follows:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5700

The meanings of the block's inputs and outputs are as follows:

Instance fbSimuPulse Instance name

bEn Input/Output BOOL Enabling of the pulse
output

bAutoReset Input/Output BOOL Automatic reset of the
pulse counter after
the specified number
of pulses have been
output and after expi-
ration of tResetTime

bReset Input/Output BOOL Reset of the pulse
counter

tResetTime Input/Output TIME Time until the reset
is initiated after the
specified number of
pulses is reached, if
bAutoReset = TRUE

dwPulse Input/Output DWORD Number of pulses to
be output:
=0: Endless mode
(pulse output con-
tinues until bEn =
FALSE or bReset =
TRUE
> 0: Cyclic mode
(output of the speci-
fied number of pulses)

bDone Output BOOL Completion message
after tResetTime has
expired or bReset =
TRUE for 1 cycle

bToggle_0 Output BOOL Provides a FALSE-
>TRUE edge with
each 2nd call (i.e. the
output is toggled with
each call)

bToggle_1 Output BOOL Provides a FALSE-
>TRUE edge with
each 4th call

bToggle_2 Output BOOL Provides a FALSE-
>TRUE edge with
each 8th call

bToggle_3 Output BOOL Provides a FALSE-
>TRUE edge with
each 16th call

dwActPulse Output DWORD Displays the number
of pulses output
(corresponds to the
number of edges at
bToggle_0)

tActTime Output TIME Displays the elapsed
time while tResetTime
is running

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5701

In the example, bEn: = bAutoReset: = TRUE. 10000 pulses are output (dwSetPulse). After the
specified number of pulses has been reached, a wait time of 10 seconds is applied and then
counting is started from the beginning.
The example has a visualization implemented which can be used to operate the program. After
10000 pulses, the visualization looks as follows:
9375 interrupts are generated:
5000 x C0 + 2500 x C1 + 1250 x C2 + 625 x C3 = 9375

Act Pulse Triggers the
following
interrupts:Value IN 3

8
IN 2
4

IN 1
2

IN 0
1

0 0 0 0 0 none

1 0 0 0 1 IN 0 -> in
every 2. cycle
(10000 : 2 =
5000)

2 0 0 1 0 IN 1 -> in
every 4. cycle
(10000 : 4 =
2500)

3 0 0 1 1 IN 0

4 0 1 0 0 IN 2 -> in
every 8. cycle
(10000 : 8 =
1250)

5 0 1 0 1 IN 0

6 0 1 1 0 IN 1

7 0 1 1 1 IN 0

8 1 0 0 0 IN 3 -> in
every 16.
cycle (10000 :
16 = 625)

9 1 0 0 1 IN 0

10 1 0 1 0 IN 1

11 1 0 1 1 IN 0

12 1 1 0 0 IN 2

13 1 1 0 1 IN 0

14 1 1 1 0 IN 1

15 1 1 1 1 IN 0

16 0 0 0 0 none

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5702

Usage as counter module
32-Bit up/down counter of module DC541-CM

The 32-bit bidirectional counter functionality is provided by the function block Ä Chapter
1.5.4.11.1.1.1 “DC541_32BIT_CNT” on page 1103.

The 32-bit counter is a count up/count down counter with a directional discriminator. The
counter can be used in two counting modes:
● EN_UD = FALSE: Encoder mode

Connection of an incremental transmitter (track A / track B, offset by 90°)
It is possible to count signals up to approx. 60 kHz. This corresponds to a motor with
a rotational speed of 3.600 rpm and a transmitter with 1.000 pulses per rotation. Pulse
multiplication (x2 or x4) is not used.

● EN_UD = TRUE: Up / down mode
Up-/down counter
It is possible to count signals up to approx. 60 kHz. Count-up for signals on channel C1,
count-down for signals on channel C0.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5703

The counter always uses the channels C0...C3 of the DC541:
● C0: Track A of the incremental transmitter.
● C1: Track B of the incremental transmitter.
● C2 and C3: Reference cam or touch trigger.
The counter can be used in two operating modes:
● Infinite counter (endless mode)
● Limiting counter (limit mode)

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

32-Bit forward counter of module DC541-CM
The 32-bit forward counter functionality is provided by the block Ä Chapter 1.5.4.11.1.1.5
“DC541_FWD_CNT” on page 1127.

The function block DC541_FWD_CNT provides a 32-bit count up counter which is able to count
a maximum frequency of 50 kHz at the inputs C0 and C1 or 5 kHz at the inputs C2-C7. In the
DC541, the counter is implemented as a 16 bit counter. The actual counter value ACT_CNT is
bulit inside the function block by adding the counter differences that occur within the individual
cycles. In order not to loose any counting pulses, the function block has to be called cyclically.
● Channel 0-1: 50 kHz max. -> 32767 / 50 = 655 ms
● Channel 2-7: 5 kHz max. -> 32767 / 5 = 6550 ms
Using the counter e.g. in a 100 ms task will prevent any loss of counting pulses.
Operating modes
● Infinite counter (endless mode)
● Limiting counter (limit mode)
The operating mode is selected at input EN_LIM.
If EN_LIM = FALSE, the counter operates as an infinite counter (endless mode). An overflow
occurs corresponding to the 32-bit value at 16#FFFFFFFF = 4 294 967 295. In this mode, any
exceeding of the limit value LIM_MAX or falling below the limit value LIM_MIN is displayed at
the outputs MAX_LIM or MIN_LIM.
If EN_LIM = TRUE (limit mode), the counting range is between the limit values LIM_MIN and
LIM_MAX. In case of an overflow, i.e. if LIM_MAX is reached, the counter restarts again at
LIM_MIN.
The upper limit value LIM_MAX has to be higher than the lower limit value LIM_MIN. If LIM_MIN
is higher than LIM_MAX, an error is displayed.
The device DC541 must be configured as counting device (counter mode).
The function block has an integrated visualization which can be used to control all function block
functions in parallel to the user program, if input EN_VISU = TRUE.

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5704

Configuration example: 32-Bit forward counter
All of the 8 channels of the DC541-CM can be used as count up counter. In the configuration
example, all 8 channels of the DC541-CM are configured as 32-bit forward counter (count-up).
The channels C0...C3 operate as infinite counters (endless mode), the channels C4...C7 as limit
counters (limit mode).
The 32-bit count up counter configured as infinite counter (endless mode) corresponds to mode
1 (1 count up counter) of the high-speed counter of the digital input/output modules. In the
configuration example, the counting pulses for the first forward counter are therefore applied in
parallel to input C0 of the DC541-CM and counting input C24 of the DC532.

The example control system shall have the following configuration:
● Terminal base TB521 (two communication module slots)
● DC541-CM in Communication Module slot 1 (first slot on the left of the CPU)
● PM591-ETH CPU with internal Ethernet Communication Module
● I/O module DC532 on the I/O bus

The channels are connected as follows:
● DC532 / C16 -------------- DC541 / C0
● DC532 / C17 -------------- DC541 / C1
● DC532 / C18 -------------- DC541 / C2
● DC532 / C19 -------------- DC541 / C3
● DC532 / C20 -------------- DC541 / C4
● DC532 / C21 -------------- DC541 / C5
● DC532 / C22 -------------- DC541 / C6
● DC532 / C23 -------------- DC541 / C7
● DC532 / C16 -------------- DC532 / C24

● DC541-CM in slot 1, operating mode "Counter mode"
● Configuration: - Channel C0..C7 Forward counter
● Specification of the Ethernet communication module as internal communication module (if

available)
● DC532 on the I/O bus / parameter "Fast counter" = 1-1 count up counter

● Task 1: Cyclic program / Prio = 10 / Interval = t#100ms / PLC_PRG
● Task 2: Simulation / Prio = 15 / Interval = t#5ms / Simulation_Task
The cyclic program PLC_PRG contains the following functions:
● Reading the cycle of PLC_PRG Calling of block TASK_INFO;
● Reading the configuration of the DC541 Calling of block DC541_GET_CFG
● Reading the status of the DC541 Calling of block DC541_STATE
● Reading/writing the static channels of the DC541 Calling of block DC541_IO
● Calling of the sequence control for the counters Calling of program proForwardCounter
The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation Ä Chapter 1.5.4.11
“DC541 library” on page 1103.
The block TASK_INFO is contained in the library SysInt_AC500_V1.0 and described in detail in
the corresponding documentation Ä Chapter 1.5.4.19 “Internal system library” on page 1500.
The actual execution of the 32-bit forward counter functionality is implemented in the program
proForwardCounter.
Purpose of the program proForwardCounter:
The program proForwardCounter executes the following step chain:

Hardware con-
figuration

Wiring

PLC configura-
tion

Task configura-
tion

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5705

Counte
r block

DC541_FWD_CNT CNT_IO CNT_I
O

Step |
Chann
el

C0 C1 C2 C3 C4 C5 C6 C7 1

0 |
Action

Init: SET = 0, endless counter,
limit values MIN = 300 / MAX = 1300

Init: SET = 0, limit counter,
limit values MIN = 300 / MAX = 1300

Init

| Value 0 0 0 0 0 0 0 0 0

1 |
Action

Reset of SET input

| Value 0 0 0 0 300 300 300 300 0

2 |
Action

Start of pulse output - 2000 pulses

| Value 0 0 0 0 300 300 300 300 0

3 |
Action

Wait until pulse output is completed

| Value 2000 1000 500 250 1299 1300 800 550 2000

4 |
Action

Selection last step: byStep = 249

| Value 2000 1000 500 250 1299 1300 800 550 2000

200 |
Action

Manual operation

| Value xxx xxx xxx xxx xxx xxx xxx xxx xxx

249 |
Action

Wait time 5 seconds, then restart from step 0

| Value 2000 1000 500 250 1299 1300 800 550 2000

The block Simu_Pulse is used to generate an adjustable number of pulses. Its representation in
the Function Block Diagram (FBD) is as follows:

Instance fbSimuPulse Instance name
Ben Input/Output BOOL Enabling of the pulse

output

bReset Input/Output BOOL TRUE = Reset of the
pulse counter, bDone
= TRUE

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5706

Instance fbSimuPulse Instance name
bAutoReset Input/Output BOOL TRUE and cyclic

mode - The time
tResetTime is started
when the number
of pulses set with
dwPulse is reached.
After this time, the
pulse output is
restarted again.

tResetTime Input/Output TIME Wait time until restart,
if bAutoReset = TRUE

dwPulse Input/Output DWORD Number of pulses to
be output:
= 0: Endless mode
(pulse output con-
tinues until bEn =
FALSE or bReset =
TRUE)
> 0: Cyclic mode
(output of the speci-
fied number of pulses)

Bdone Output BOOL Completion message
after the number
of pulses specified
at dwPulse or after
bReset if dwPulse = 0

bToggle_0 Output BOOL Output: Edge with
each clock cycle

bToggle_1 Output BOOL Output: Edge with
each 2. clock cycle

bToggle_2 Output BOOL Output: Edge with
each 4. clock cycle

bToggle_3 Output BOOL Output: Edge with
each 8. clock cycle

dwActNumPulse Output DWORD Number of pulses
output

tActTime Output TIME Elapsed time in [ms]
while tResetTime is
running

In the example, the block Simu_Pulse is called in a 5 ms task. The pulse output is enabled
or stopped via input bEn. If input dwPulse = 0, the output of pulses is performed continuously.
If dwPulse > 0, only the specified number of pulses is output. When the specified number of
pulses is reached, output bDone is set to TRUE.
In the example, the block is called with dwPulse = 2000. The wait time function is not used.
The example program has a visualization implemented that displays all states:

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5707

Clicking on the button <Enable visu control> (bEnVisuControl = TRUE) causes the program to
jump from the current step to step 200 (manual operation). Then, the operation of the blocks is
done via the corresponding buttons/switches of the individual blocks. When manual operation is
switched off again (bEnVisuControl = FALSE), the program jumps to step 249 and restarts from
step 0 after the wait time.

Usage for pulse width modulation
Automation Builder configuration

1. In the device tree, add a new object to the “DC541-CM” node and select “DC541 IO
mode” from the list.

2. Double-click the added object and configure the I/O channels:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5708

● Input
● Output
● Interrupt input
In the module parameters, you can specify the channels C0...C7 as inputs, outputs or interrupt
inputs.

Calling the function blocks
The pulse width modulation functionality of the DC541 is provided by the block Ä Chapter
1.5.4.11.1.1.10 “DC541_PWM” on page 1146.

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

The function block DC541_PWM outputs a pulsed signal with an adjustable on-off ratio. The on
and off times are adjusted as 8 bit numbers.
The minimum switching time is specified at input CYCLE, i.e. if an output has been switched to
FALSE or TRUE by the PWM, this output remains in this state for at least this time (CYCLE µs).
The minimum time specified at input CYCLE must not be smaller than the cycle time of the
device DC541. Depending on its configuration, the cycle time of the DC541 can be 50, 100
or 200 µs. The cycle time can be polled using the function block Ä Chapter 1.5.4.11.1.1.6
“DC541_GET_CFG” on page 1132 (output CYCLE).

Configuration example: Pulse width modulation (PWM)
In the configuration example, channel 0 of the DC541 is configured for pulse width modulation
(PWM). The output signal is measured using the function Time and frequency measurement
Ä Chapter 1.6.4.4.1.5 “Usage for time and frequency measurement” on page 5712 of the
DC541-CM.
The following on-off ratio shall be used:

PULSE PAUSE CYCLE Result (x = number of
cycles of the DC541)

Cycle time of DC541 = 100 µs

1 2 2000 20 x TRUE / 40 x
FALSE / 20 x TRUE /
40 x FALSE / …
i.e. 2000 µs = TRUE
and 4000 µs = FALSE

The example control system shall have the following configuration:
● Terminal base TB521 (two communication module slots)
● DC541 in communication module slot 1 (first slot on the left of the CPU)
● PM591-ETH
● I/O module DC532 on the I/O bus

The channels are connected as follows:
DC541 / C0 -------------- DC541 / C1

Hardware con-
figuration:

Wiring:

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5709

- DC541-CM in slot 1, operating mode "counter mode"

- Configuration: - Channel C0 PWM

 C1 FREQ

 C2...C7 Input

- Specification of the Ethernet communication module as internal communication module (if
available)

● Task 1: Cyclic program / Prio = 10 / Interval = t#1ms / PLC_PRG
Purpose of the cyclic program PLC_PRG:
The cyclic program PLC_PRG contains the following functions:
● Reading the cycle of PLC_PRG Calling of block TASK_INFO;
● Reading the configuration of the DC541 Calling of block DC541_GET_CFG
● Reading the status of the DC541 Calling of block DC541_STATE
● Reading/writing the static channels of the DC541 Calling of block DC541_IO
● Calling of the sequence control for PWM and FREQ Calling of program proPWM_FREQ
The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation Ä Chapter 1.5.4.11
“DC541 library” on page 1103.
The block TASK_INFO is contained in the library SysInt_AC500_V1.0 Ä Chapter 1.5.4.19
“Internal system library” on page 1500 and described in detail in the corresponding documenta-
tion.
Calling the pulse width modulation functionality as well as measurement and acquisition of
measured values are performed in the program proPWM_FREQ. The program proPWM_FREQ
contains the calls for the function blocks Ä Chapter 1.5.4.11.1.1.10 “DC541_PWM”
on page 1146 and Ä Chapter 1.5.4.11.1.1.2 “DC541_FREQ” on page 1111 as well as the
acquisition of the measured values. The function block DC541_FREQ is configured in a way
that it measures the time between each edge change.
The example program has a visualization implemented that displays all states:

PLC configura-
tion:

Task configura-
tion:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5710

Input EN_VISU of the function block DC541_FREQ is TRUE. Therefore, the inputs of the
block can be modified using the buttons <Enable>, <En 0>, <En 1> and <En Freq> in the
visualization.
The measured values are 2000, 4000 or 6000 µs depending on which edges were considered
for measurement.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5711

Usage for time and frequency measurement
Automation Builder configuration

1. In the device tree, add a new object to the “DC541-CM” node and select “DC541 IO
mode” from the list.

2. Double-click the added object and configure the I/O channels:

● Input
● Output
● Interrupt input
In the module parameters, you can specify the channels C0...C7 as inputs, outputs or interrupt
inputs.

Calling the function blocks
The time and frequency measurement functionality of the DC541-CM is provided by the block
Ä Chapter 1.5.4.11.1.1.2 “DC541_FREQ” on page 1111.

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

The function block DC541_FREQ is used to measure times, frequencies and rotational speeds
with a resolution of 100 µs.
It is able to measure frequencies from 0 to 2000 Hz (2 kHz). In order to obtain a precise meas-
urement of frequencies > 50 Hz, a correspondingly high accuracy setting has to be chosen. It is
recommended to use an accuracy of PREC = 1000, i.e. 0.001.
This function block has to be called cyclically, one time per second at least.
The inputs EN_0, EN_1 and EN_FREQ are used to determine the edges to be measured. If
input EN_FREQ = TRUE, the frequency and the rotational speed are calculated in addition to
the time measurement.

Configuration example: Frequency output
In the configuration example, channel 0 of the DC541-CM is configured for frequency output
Ä Chapter 1.6.4.4.1.6 “Usage for frequency output” on page 5715. The output signal is meas-
ured using the function "Time and frequency measurement" of the DC541-CM.
Hardware configuration:
The example control system shall have the following configuration:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5712

● Terminal base TB521 (two communication module slots)
● DC541-CM in Communication Module slot 1 (first slot on the left of the CPU)
● PM591-ETH CPU with internal Ethernet communication module
● I/O module DC532 on the I/O bus
Wiring:
The channels are connected as follows:
DC541 / C0 -------------- DC541 / C1
PLC configuration:

DC541-CM in slot 1, operating mode "counter mode"
Configuration Channel C0 Frequency output
 C1 Frequency measure-

ment

 C2...C7 Input

Specification of the Ethernet communication module as internal communication module (if
available)

Task configuration:
● Task 1: Cyclic program / Prio = 10 / Interval = t#5ms / PLC_PRG
Purpose of the cyclic program PLC_PRG:
The cyclic program PLC_PRG contains the following functions:
● Reading the cycle of PLC_PRG Calling of block TASK_INFO;
● Reading the configuration of the DC541 Calling of block DC541_GET_CFG
● Reading the status of the DC541 Calling of block DC541_STATE
● Reading/writing the static channels of the DC541 Calling of block DC541_IO
● Calling of the sequence control for frequency output and measurement Calling of program

proFrequency
●
The blocks Ä Chapter 1.5.4.11.1.1.6 “DC541_GET_CFG” on page 1132, Ä Chapter
1.5.4.11.1.1.11 “DC541_STATE” on page 1151 and Ä Chapter 1.5.4.11.1.1.8 “DC541_IO”
on page 1139 are contained in the library DC541_AC500_V11.lib and described in detail in
the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.
The block Ä Chapter 1.5.4.19.3.22 “TASK_INFO read number of completed task cycles”
on page 1620 is contained in the library SysInt_AC500_V1.0 Ä Chapter 1.5.4.19 “Internal
system library” on page 1500 and described in detail in the corresponding documentation.
The calling of the frequency output functionality as well as the measurement and acquisition
of measured values are performed in the program proFrequency. The program proFrequency
contains the calls for the function blocks Ä Chapter 1.5.4.11.1.1.4 “DC541_FREQ_OUT”
on page 1123 and Ä Chapter 1.5.4.11.1.1.2 “DC541_FREQ” on page 1111 as well as the
acquisition of the measured values.

The example program has a visualization implemented that displays all states:
Input EN_VISU of the function blocks DC541_FREQ_OUT and DC541_FREQ is TRUE. There-
fore, the block inputs can be controlled using the buttons in the visualization.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5713

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5714

Usage for frequency output
Automation Builder configuration

1. In the device tree, add a new object to the “DC541-CM” node and select “DC541 IO
mode” from the list.

2. Double-click the added object and configure the I/O channels:

● Input
● Output
● Interrupt input
In the module parameters, you can specify the channels C0...C7 as inputs, outputs or interrupt
inputs.

Calling the function blocks
The frequency output functionality of the DC541 is provided by the block Ä Chapter
1.5.4.11.1.1.4 “DC541_FREQ_OUT” on page 1123.

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

The function block DC541_FREQ_OUT is used to output pulses with a fixed frequency on one
channel of the device DC541. It is able to output pulses with a frequency between 0.2 and 2.5
kHz. The pulse jitter depends on the cycle time of the DC541. The pulse length is always a
multiple of the cycle time of the DC541.
In case of a presetting of PULSE = 0, the output of pulses is infinite. The pulse output is started
with a positive edge at input START. The output is aborted if START = FALSE. A positive edge
at input STOP interrupts the pulse output. The output is continued if STOP = FALSE.
If input PULSE > 0, the function block outputs the number of pulses specified at input PULSE
with the frequency specified at input FREQ on the channel specified at input CH. After the
function block has output the number of pulses specified at PULSE, the output RDY becomes
TRUE.
The device DC541 must be configured as counting device (counter mode). Channel CH must be
configured for frequency output.
The function block has an integrated visualization which can be used to control all function block
functions in parallel to the user program, if input EN_VISU = TRUE.

For frequency output, the same configuration example is used as for the time and fre-
quency measurement Ä Chapter 1.6.4.4.1.5 “Usage for time and frequency measurement”
on page 5712.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5715

Application examples
Application examples of the DC541-CM Interrupt and Counter Module can be found in the PLC
Download Center.

1.6.4.4.2 CD522 encoder and PWM module
Functionality of the CD522 module

The encoder and PWM module CD522 can be used at the following devices:
● Communication interface modules (e. g. CI501-PNIO, CI541-DP)
● Processor modules
Features:
● 2 independent counting functions with up to 12 configurable modes (including incremental

position encoder and frequency input up to 300 kHz)
● 2 independent PWM (pulse-width modulator) or pulse outputs with push-pull driver
● Dedicated inputs/outputs for specific counting functions (e.g. touch, set, reset)
● All unused inputs/outputs can be used with the specifications of standard inputs/outputs

range
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.
Depending on the configuration used, some inputs and outputs are dedicated to specific
counting functions (touch, set, reset…). All unused inputs and outputs can be used with the
specification of standard inputs/outputs range.

There are special function blocks available to manage and control the function of the CD522
Module. These function blocks are contained in the Ä Chapter 1.5.4.8 “CD522 library”
on page 972 which is available with a runtime system of version V1.0.2 or above. The library is
automatically included into the project when adding a CD522 Module to the Automation Builder
project. Details on the hardware is provided in the device descriptions Ä Chapter 1.6.2.7.2.1
“CD522 - Encoder, counter and PWM module” on page 4635.

The specific functionality is processed within CD522. It works independently of the user program
and therefore it is able to response quickly to external signals. A simultaneous counting opera-
tion of several expansion modules is possible.
Each module counter can be configured for 1 mode out of 12 possible ones. The desired
operating mode is selected in the PLC configuration using module parameters. After that, it is
activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
While integrating a module containing counters in the PLC configuration, the necessary oper-
ands are created and reserved immediately. Thus, a counter implementation carried out later
does not cause an address shift.

Operating modes
Inputs and outputs, which are not used by the counters, are available for other tasks. In the
following table, A means Input Channel A, B means Input Channel B and Z means Output
Channel Z.

Special features

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5716

http://www.abb.com/abblibrary/downloadcenter/?CategoryID=9AAC177443&View=Result&DocumentKind=Technical+Description&QueryText=Application+Examples+PLC+programming&SortBy=Score
http://www.abb.com/abblibrary/downloadcenter/?CategoryID=9AAC177443&View=Result&DocumentKind=Technical+Description&QueryText=Application+Examples+PLC+programming&SortBy=Score

Operating Mode Function Used inputs Description
0 No counter None This operating mode

is selected, if the inte-
grated fast counter is
not needed.

1 Up/Down counter (A) A = Counting input One Up/Down
(dynamic changes)
counter with set and
reset input, end value
reached indicator,
touch/catch value and
overflow flag.

2 Up/Down with release
input (B)

A = Counting input
B = Enable input

One count up counter
with enable input
via terminal, counting
is valid when input
B is true. Dynamic
Up/Down count pos-
sibility, end value
reached indicator,
Touch/catch value and
Overflow flag

3 Up/Down counters
(A,B)

A = Counting input 0
B = Counting input 1

2 counters with sep-
arate Up/Down and
reset input

4 Up/Down (A, B on
falling edges)

A = Counting input 0
B = Counting input 1

2 counters (counting
on falling edge of
input B) with separate
Up/Down and reset
input

5 Up/Down dynamic set
(B) / rising edge

A = Counting input
B = Dynamic set input

One Up/Down counter
with set and reset
input, end value
reached indicator,
touch/catch value and
overflow flag. Addi-
tional function to
mode 1 is the
dynamic set input (B)
on rising edge of
physical input.

6 Up/Down dynamic set
(B) / falling edge

A = Counting input
B = Dynamic set input

One Up/Down counter
with set and reset
input, end value
reached indicator,
touch/catch value and
overflow flag. Addi-
tional function to
mode 1 is the
dynamic set input (B)
on falling edge of
physical input.

7 Reserved None ---

8 Up/Down with release
(B), 0 cross detection

A = Counting input
B = Enable input

One 16 bit counter
(in range of -32768
to 32767) with zero
cross over detection,
counting valid when
input B is true

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5717

Operating Mode Function Used inputs Description
9 Reserved None ---

10 Reserved None ---

11 Incremental encoder A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for encoder x1 count,
touch/catch value,
RPI function, reset
and set

12 Incremental encoder
X2

A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for position sensor
x2 count, touch/catch
value, RPI function,
reset and set

13 Incremental encoder
X4

A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for position sensor
x4 count, touch/catch
value, RPI function,
reset and set

14 SSI, absolute encoder A = Data signal
B = Clock signal

Absolute positioning
sensor using SSI
interface

15 Time frequency meter Z = Input signal Time measurement of
Z signal, rising edge,
falling edge, rotation
per minute and fre-
quency calculation

CD522 used as encoder device
Incremental encoder

The function block Ä Chapter 1.5.4.8.1.1 “CD522_32BIT_ENCODER” on page 972 can be
used to control an encoder device for relative positioning with the CD522 Module.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function encoder of module CD522, different operating modes
are available. The function block CD522_32BIT_ENCODER should be used with one of these
operating modes:

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5718

Operating Mode 11 "Incremental encoder"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x1 count, with possibility of touch/catch value, RPI
function, set and reset actions.

Operating Mode 12 "Incremental encoder X2"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x2 count, with possibility of touch/catch value, RPI
function, set and reset actions.

Operating Mode 13 "Incremental encoder X4"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x4 count, with possibility of touch/catch value, RPI
function, set and reset actions.

Absolute SSI encoder
The function block Ä Chapter 1.5.4.8.1.5 “CD522_SSI_CNT” on page 1006 can be used to
control SSI absolute encoder function.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_SSI_CNT should be used with one of these operating
modes:

Operating Mode 14 "SSI, absolute encoder"

Should be specified in PLC Configuration; parameter mode counter in order to use absolute
encoder with SSI interface.

CD522 used as counter device
32-Bit bidirectional counter

The function block Ä Chapter 1.5.4.8.1.2 “CD522_32BIT_CNT” on page 982 can be used to
control one 32-bit bidirectional counter function.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_32BIT_CNT should be used with one of these oper-
ating modes:

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5719

Operating Mode 1 "Up/Down counter (A)"

Should be specified in PLC Configuration, parameter "mode counter" in order to use one
up/down 32-bit counter on input A (dynamic changes) with set and reset input operation, end
value reached indicator, touch/catch value and overflow flag.

Operating Mode 2 "Up/Down counter with release input (B)"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
up/down 32-bit counter with enable input. Counting is valid when input B is TRUE. Dynamic
up/down count possibility, with set and reset input operation, end value reached indicator,
touch/catch value and overflow flag.

Operating Mode 5 "Up/Down dynamic set (B)/rising edge"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one up/
down 32-bit counter with set and reset input, end value reached indicator, touch/catch value
and overflow flag. Additional function to mode 1 is the dynamic set input (B) on rising edge of
physical.

Operating Mode 6 "Up/Down dynamic set (B)/falling edge"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one up/
down 32-bit counter with set and reset input, end value reached indicator, touch/catch value
and overflow flag. Additional function to mode 1 is the dynamic set input (B) on falling edge of
physical.

The module CD522 provides 2 Up/Down 32-bit counter functions. A signal used for pulse count
is identified by A0 for counter 0 and A1 for counter 1. Another signal used for enable or dynamic
set is identified by B0 for counter 0 and B1 for counter 1.

16-Bit bidirectional counter
The function block Ä Chapter 1.5.4.8.1.3 “CD522_16BIT_CNT” on page 991 can be used to
control one 16-bit bidirectional counter function.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_16BIT_CNT should be used with one of these oper-
ating modes:

Operating Mode 8 "Up/Down with release (B), 0 cross detec-
tion"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
up/down 16 bit counter (in range of -32768 to 32767) with enable input and zero crossover
detection (CF). Counting is valid when input B is TRUE. With set and reset input operation and
touch/catch value.

The module CD522 provides 2 Up/Down 16 bit counter functions. A signal used for pulse count
is identified by A0 for counter 0 and A1 for counter 1. Another signal used for enable or dynamic
set is identified by B0 for counter 0 and B1 for counter 1.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5720

Two 16-bit bidirectional counter
The function block Ä Chapter 1.5.4.8.1.4 “CD522_16BIT_2CNT” on page 998 can be used to
control two 16-bit bidirectional counter functions.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_16BIT_2CNT should be used with one of these oper-
ating modes:

Operating Mode 3 "Up/Down counters (A,B)"

Should be specified in PLC Configuration, parameter "mode counter" in order to use 2 Up/
Down 16 bit counter (on rising edge count) functions, with separate up/down, reset operation
and overflow flag.

Operating Mode 4 "Up/Down (A, B on falling edges)"

Should be specified in PLC Configuration, parameter mode counter in order to use two Up/
Down 16 bit counter functions (with A on rising edge count and B on falling edge count), With
separate up/down, reset operation and overflow flag.

The module CD522 provides 4 Up/Down 16 bit counter functions. A signal used for pulse count
is identified by A0 and B0 for counter A and A1 and B1 for counter B.

CD522 used as PWM output device
To use CD522 as PWM output device, function block Ä Chapter 1.5.4.8.1.6
“CD522_PWM_OUT” on page 1013 is required.

The module CD522 can be used to control one output pulsing signal (Max= 100 KHz) with an
adjustable duty cycle (ON/OFF ratio, max=100%). The PWM operating mode is configured in
Automation Builder.

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added in I/O bus configuration.
The module CD522 provides two independent outputs which can be used in PWM mode (O0
and O1). Both have the same specification and can work separately.
The function block CD522_PWM_OUT should be used to control with input EN_PWM, configure
the frequency with input FREQ and the input duty cycle DUTY_CYCLE of PWM outputs (pulse-
width modulator).

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5721

CD522 used as pulse output device
To use CD522 as pulse output device, function block Ä Chapter 1.5.4.8.1.7
“CD522_PULSE_OUT” on page 1016 is required.

The module CD522 can be used to control one output pulses signals with a fixed duty cycle
(ON/OFF ratio 50 %) and number of pulses sent with a fixed frequency (can be modified) .The
PULSE operating mode is configured in PLC Configuration using module parameters:

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed by using input and output oper-
ands. These necessary operands are created and reserved automatically, when one CD522
module is added into the I/O bus configuration.
The module CD522 provides two independents outputs used in PULSE mode (O0 and O1).
Both have the same specification and can work separately.
The function block CD522_PULSE_OUT should be used to control the pulse output, with input
EN_FREQ, configure the frequency with input FREQ and the number of pulses with input NUM.
The number of pulses sent can be displayed in percentage (from 0 % to 100%).
On the fast outputs O0 or O1, the brightness of yellow LED depends on the number of pulse
emitted (from 0 and 100%), When the value 100% is obtained, the yellow LED status is off.

CD522 used as frequency output device
To use CD522 as frequency output device, function block Ä Chapter 1.5.4.8.1.8
“CD522_FREQ_OUT” on page 1020 is required.

The module CD522 can be used to control one output pulses signals with an fixed duty cycle
(ON/OFF ratio 50 %).The PWM operating mode is configured in PLC Configuration using
module parameters:

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added in I/O bus configuration.
The module CD522 provides two independent outputs which can be used in PWM mode (O0
and O1). Both have the same specification and can work separately.
The function block CD522_FREQ_OUT should be used to control with input EN_FREQ and
configure the frequency with input FREQ of frequency outputs (1 kHz to 100 kHz).

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5722

CD522 used as time frequency meter
To use CD522 to measure times, frequency and rotation speeds on channel Z0 or Z1, function
block Ä Chapter 1.5.4.8.1.9 “CD522_FREQ_SCAN” on page 1024 is required.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_FREQ_SCAN should be used with one of these
operating modes:

Operating Mode 15 "Time frequency meter (Z)"
Should be specified in PLC Configuration with the parameter mode counter.

The module CD522 provides 2 channels (Z0 and Z1) which can be used to measure times,
frequencies and rotational speeds with a resolution of 1 µs. Both have the same specification
and can work separately.
The function block CD522_FREQ_SCAN should be used to control with input EN_CNT, con-
figure the capture on falling edge with input EN_0 or rising edge with input EN_1 of signal,
and the specification of the mode of the measurement (time, frequency and Rpm) with input
EN_FREQ.
The table shows values measured according to configuration input parameters and this example
of timing.

NOTICE!
Risk of malfunctions!
Never use the time measurement (bit EN_FREQ=FALSE) mode if the CD522 is
connected to a CS31 communication interface module, e. g. CI592.

Depending on the input parameters of function block, the result of time measurement can be
measured in time in µs, frequency in Hz or speed of rotation in rotation per minute.

1.6.4.4.3 FM502-CMS function module
Condition monitoring

Components of the condition monitoring system:
● Hardware

– Function module FM502-CMS for condition monitoring, protection or as precise I/O
module Ä Chapter 1.6.2.7.2.2 “FM502-CMS - Analog measurements” on page 4658.

– Function module terminal base TF5x1-CMS Ä Chapter 1.6.2.2.2 “TF501-CMS and
TF521-CMS - Function module terminal bases ” on page 3796

– Processor module PM592-ETH Ä Chapter 1.6.2.3.2.1 “PM57x (-y), PM58x (-y) and
PM59x (-y)” on page 3848

● Configuration of FM502-CMS Ä Chapter 1.6.4.4.3.2 “FM502-CMS function module”
on page 5724.

● FM502-CMS library: The FM502-CMS library contains function blocks to manage and con-
trol the function of the Function Module FM502-CMS. The FM502-CMS library consists of
the WAV-File library and the CMS-IO library. Once a Function Module has been added to
the configuration, the libraries are automatically included with the next compilation of the
project. Ä Chapter 1.5.8 “FM502-CMS library” on page 2519.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5723

Condition Monitoring (CM) is a broad term, which can be understood in different ways. For the
FM502-CMS, CM means the acquisition and analysis of high-frequency data. CM does usually
not occur in real-time. The data is analysed afterwards. If, however, online CM is controller
integrated, real-time reaction, e.g. protection, is possible within the same device and using the
same sensors. This feature is supported by AC500 and FM502.
The focus is often merely on mechanical CM. This is due to the fact that the movement or
rotations of large masses which are connected to a motor (e.g. electric machine) via a shaft
pose the greatest danger. Machines in operation inevitably generate measurable vibration, both
free or forced, even in the normal operating states and in absence of any damage.
Yet, in electrical CM, electrical high-frequency quantities like currents, voltages or partial dis-
charges can be measured by suitable sensors and can be analyzed in order to detect electrical
failure patterns, e.g. inside electrical machines or equipment (transformers). Some electrically
measurable failure patters can be induced by mechanical issues e.g. vibration.
Effective fault detection will only be possible if the data patterns indicating an arising defect can
be singled out among the data collected.
Monitoring e.g. the vibration characteristics of a machine in operation gives an understanding of
the "'health" condition of the machine and its development over time and load. This information
can be used to detect arising problems at an early stage. Operating a machine until it breaks
down might be acceptable if the machine were a "'disposable" one and the lifetime was very
high and known for sure. But many failures can be considered statistical outliers and occur very
early and spontaneously.
However, most machines are not "disposable" due to their cost. Therefore, regular monitoring
of a machine’s condition can reveal potential problems. Subsequently, counter measures can
be taken at an early stage in order to minimize damage and associated cost. If monitoring is
permanent and controller integrated, even spontaneous failures can be detected in real-time, in
order to prevent substantial damage to a larger part of the equipment and its environment.
Use cases of FM502-CMS
● Condition monitoring: Longer data-stream analyses
● Protection: Fast reaction to e.g. direct or RMS values based on limits
● Fast and precise analog measurements as with any other AC500 I/O module, but even

more precise and faster
● Data logging: Fast, efficient data storage
Condition Monitoring typically means acquisition of longer data streams, also called “time
series” or “signals”. These can be analyzed after measurement in the time domain (e.g. enve-
lope, statistical analysis) or frequency domain (e.g. spectrum analysis).

The Function Module FM502-CMS works independently of the user program and therefore it is
able to response quickly to external signals and fast acquisition of the analog channel values.
The analog channels can be configured in different modes. It is also possible to change individ-
ually the sample and acquiring settings for each channel. The counter can be configured in
different modes. After that, it is activated during the initialization phase (power-on, cold start,
warm start).
The data exchange to and from the user program is performed using input and output operands.
While integrating a module containing counters in the PLC configuration, the necessary oper-
ands are created and reserved immediately. For the fast data acquisition the values are stored
inside the module in a file and transferred via file transfer to the PLC after the measurement
sequence is finished.

FM502-CMS function module
The hardware structure is automatically generated in configuration.
You can change the type of the TF5x1-CMS in the hardware configuration of the processor
module:

Introduction to
condition moni-
toring

Preconditions

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5724

Only one FM502-CMS can be connected to a processor module.

FM502-CMS cannot be used as an I/O on a remote communication interface.

Configuration of FM502-CMS

Fig. 1139: Change the behavior on the internal bus.

Parameter Default
value

Value Description

Run on config
fault

No No In case of a configuration error, the user program
is not starting.

Yes The user program runs independent of a faulty I/O
bus configuration

Max wait run 3000 [ms] - Maximum wait time for valid inputs
(Do not change this parameter)

Min update time 10 [ms] - Cycle time for data exchange to IEC program
The “Min update time” defines the time how often
the I/O image will updated for the IEC program. If
the IEC task is faster, the I/O image is not updated
on every cycle.

Watchdog 400 [ms] - Watchdog time
(Do not change this parameter)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5725

Parameterization
The FM502-CMS does not store configuration data itself. The digital inputs and outputs can
have specific functions depending on the selected configuration mode. All not otherwise config-
ured inputs and outputs can be used with the specification of standard input/output range.
To change the parameterization you can choose the default parameterization in Automation
Builder or the parameterization during run time in CODESYS.
The functionality of the module is directly influenced by the parameterization.

For non-standard applications, it is necessary to adapt the parameters to your system configu-
ration. After every startup of the device the default parameter set will be downloaded to the
module.
The parameterization is divided in the following sections:
● Parameter for encoder/counter functionality
● Parameter for analog channel functionality
● Parameter for digital I/O configuration

In CODESYS for the parameterization you can use function blocks of FM502-CMS
library Ä Chapter 1.5.8.2.1.9 “CMS_IO_CFG_WRITE” on page 2552Ä Chapter 1.5.8.2.1.8
“CMS_IO_CFG_READ” on page 2550.

Parameter set
Table 715: Encoder/Counter
No. Name Value Internal

value
Internal
type

Defaul
t

Min. Max.

145 Mode Ä “Operation
modes”
on page 5728

0-15 BYTE 0 0 15

146 Frequency limit No filter 0 BYTE 0 0 4

50 Hz 1

500 Hz 2

5 kHz 3

20 kHz 4

147 Input level 0 - 24 V DC 0 BYTE 0 0 3

0 - 5 V DC 1

Differential 2

1 Vss sinus 3

148 SSI frequency 200 kHz 2 BYTE 2 2

500 kHz 3

1 MHz 4

149 SSI resolution 8 Bit 0 BYTE 1 0 3

16 Bit 1

24 Bit 2

32 Bit 3

150 SSI code type Binary input 0 BYTE 0 0 0

151 SSI polling time x x BYTE 10 ms 0 255

Parameteriza-
tion -
Automation
Builder

Parameteriza-
tion - CODESYS

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5726

Table 716: Analog channels
No. Name Value Internal

value
Internal
type

Defaul
t

Min. Max.

1 Available
Channel

Disabled 0 BYTE 0 0 1

Enabled 1

2 Analog Mode IEPE 0 BYTE 0 0 1

+/- 10 V 1

3 Synchronized
encoder file

Disabled 0 BYTE 0 0 1

Enabled 1

4 DC Filter Disabled 0 BYTE 0 0 1

Enabled 1

5 Sample rate 50 kHz 0 BYTE 0 0 9

25 kHz 1

12,50 kHz 2

6,25 kHz 3

3,13 kHz 4

1,56 kHz 5

0,78 kHz 6

0,39 kHz 7

0,20 kHz 8

0,10 kHz 9

(Reserved) 10...15

6 Start condition Immediate 0 BYTE 0 0 4

Delayed 1

Binary Input 2

Zero Input 3

Encoder Value 4

7 Start condition
value
(dependend on
Start condition)

x x DWORD 0 0 42949
67296

I1 0 - 0 0 3

I2 1

C3 2

C4 3

8 Edge type Rising edge 0 BYTE 0 0 1

Falling edge 1

9 Record length
value (samples)

x x DWORD 5000 1 42949
67296

Table 717: I/O configuration: Inputs
No. Name Value Internal

value
Internal
type

Defaul
t

Min. Max.

152 Input delay 0.1 ms 0 BYTE 0 0 3

1 ms 1

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5727

No. Name Value Internal
value

Internal
type

Defaul
t

Min. Max.

8 ms 2

32 ms 3

153-15
6

DI0/DI1/DC2/D
C3 use

Digital input 0 BYTE - 0 5

Touch 1

Reset 2

Reset 2nd Bit
Counter

3

Set 4

RPI 5

Table 718: I/O configuration: Outputs
No. Name Value Internal

value
Internal
type

Defaul
t

Min. Max.

157 Behavior on
STOP

Off 0 BYTE 0 0 2

Last value 1

Substitute
value

2

158 Substitute
value 10 s

x x WORD 0 0 3

159/16
0

DC2/DC3 use Digital output 0 BYTE 0 0 3

Analog
Channel failure

1

Module failure 2

End value 3

Inputs and outputs which are not used by the counters are available for other tasks.
Table legend: A = input channel A, B = input channel B, Z = output channel Z.

Opera-
tion
Mode

Function Used inputs Description Function block

0-1 No counter None This operating mode is
selected, if the integrated
high-speed counter is not
needed.

-

1-1 Up/down
counter (A)

A = Counting
input

1 bidirectional 32-bit
counter on input A
(dynamic changes) with
set and reset input
operation, end value
reached indicator, touch/
catch value and overflow
flag.

CMS_IO_32BIT_CN
T

Operation
modes

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5728

Opera-
tion
Mode

Function Used inputs Description Function block

2-1 Up/down with
release input
(B)

A = Counting
input
B = Enable
input

1 bidirectional 32-bit
counter with enable input.
Counting is valid when
input B is TRUE. Dynamic
up/down count possibility,
with set and reset input
operation, end value
reached indicator, touch/
catch value and overflow
flag.

CMS_IO_32BIT_CN
T

3-2 Up/down coun-
ters (A,B)

A = Counting
input 0
B = Counting
input 1

2 bidirectional 16-bit
counter (on rising edge
count) functions, with sep-
arate up/down, reset oper-
ation and overflow flag.

CMS_IO_16BIT_2C
NT

4-2 Up/down (A, B
on falling
edges)

A = Counting
input 0
B = Counting
input 1

2 bidirectional 16-bit
counter functions (with A
on rising edge count and
B on falling edge count),
With separate up/down,
reset operation and over-
flow flag.

CMS_IO_16BIT_2C
NT

5-1 Up/down
dynamic set
(B) / rising
edge

A = Counting
input
B = Dynamic
set input

1 bidirectional 32-bit
counter with set and
reset input, end value
reached indicator, touch/
catch value and overflow
flag. Additional function to
mode 1 is the dynamic set
input (B) on rising edge
sets START_VALUE.

CMS_IO_32BIT_CN
T

6-1 Up/down
dynamic set
(B) / falling
edge

A = Counting
input
B = Dynamic
set input

1 bidirectional 32-bit
counter with set and
reset input, end value
reached indicator, touch/
catch value and overflow
flag. Additional function to
mode 1 is the dynamic set
input (B) on falling edge
sets START_VALUE.

CMS_IO_32BIT_CN
T

7-1 Reserved None - -

8-1 Up/down with
release (B), 0
cross detection

A = Counting
input
B = Enable
input

1 bidirectional 16-bit
counter (in range of
-32768 to 32767) with
enable input and zero
crossover detection (CF).
Counting is valid when
input B is TRUE. With set
and reset input operation
and touch/catch value.

CMS_IO_16BIT_CN
T

9-1 Reserved None - -

10-1 Reserved None - -

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5729

Opera-
tion
Mode

Function Used inputs Description Function block

11-1 Incremental
encoder

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
encoder x1 count, touch/
catch value, RPI function,
reset and set
Function block counts
rising edges at input A.

CMS_IO_32BIT_EN
CODER

12-1 Incremental
encoder X2

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
position sensor x2 count,
with possibility of touch/
catch value, RPI function,
set and reset actions.
Function block counts
rising and falling edges at
input A.

CMS_IO_32BIT_EN
CODER

13-1 Incremental
encoder X4

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
position sensor x4 count,
with possibility of touch/
catch value, RPI function,
set and reset actions.
Function block counts
rising and falling edges at
input A and B.

CMS_IO_32BIT_EN
CODER

14-1 SSI, absolute
encoder

A = Data signal
B = Clock
signal

Absolute positioning
sensor using SSI interface

CMS_IO_SSI_CNT

15-1 Time frequency
meter

Z = Input signal Time measurement of Z
signal, rising edge, falling
edge, rotation per minute
and frequency calculation

CMS_IO_FREQ_SC
AN

Process image (I/O data)
The cyclic data can be accessed to the addresses or variables defined in Automation Builder I/O
Mapping tab.

FM502-CMS analog measurement
Possibilities to use the analog input signal values:
● The values of the configured analog channels in CODESYS can be used by referencing the

I/O mapping variables. The refresh time for the cyclic data exchange of the analog input
data is according to the minimum update time in the configuration.

● For detailed data analysis you can record the analog input data into WAV files and store
them. In these files, every input data sample is stored.

Both possibilities can be used simultaneously.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5730

The DC filter needs 10 seconds to tune in after system power up. During that
time the AI values can be accessed by the user program, but the readings are
out of tolerance limit.

Configuration for analog measurements
Configure at least one analog channel for data acquisition.

The measurement file size depends on the record length value and number of available chan-
nels. The maximum capacity of one measurement file is limited by the internal memory. The
recording time for each channel is calculated by: recording time = record length value/sample
rate.
The total recording time is determined by the earliest measurement start trigger of a channel to
the measurement end of the last channel in the configuration.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5731

Make sure to configure the right analog mode for each channel. Take care that
the sample rate is in relation to the maximum measured frequency.

Start conditions for each individual channel:
● Instantly: Starts measurement instantly after setting input EN to TRUE.
● Delayed: Measurement will start when input EN was set to TRUE and the start condition

value [samples] is over.
● Digital input: Starts the measurement when input EN and the digital input was set to TRUE.
● Zero input: Starts the measurement when input EN was set to TRUE and the input Z+ gets

a rising edge.
● Encoder value: Starts the measurement when input EN was set to TRUE and the start

condition value is satisfied.
The start criteria of all analog channels in one measurement have to be in a 20 hour time
window. Otherwise, the measurement is invalid and will be aborted.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5732

The process image (I/O data) of the function module can be mapped for analog measurements.

Measurement files
The measurement data will be stored in the WAV file format. One WAV file will be created for
each active channel.

Table 719: RIFF header
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 0 (0x00) bfChunkID "RIFX"

DWORD Little 4 4 (0x04) dwChunkSize Data length -
8

BYTE[4] Big 4 8 (0x08) bfRiffType "WAVE"

Table 720: Format chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 12 (0x0C) bfChunkID "fmt"

DWORD Little 4 16 (0x10) dwChunkSize Data length -
8

INT Little 2 18 (0x12) wFormatTag 0x0001
(PCM)

INT Little 2 20 (0x14) wChannels 0x0001 (1 ch.)

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5733

Data type Endian Length File offset Identifier Value
DWORD Little 4 24 (0x18) dwSamples-

PerSec
100 Hz -
50.000 kHz

DWORD Little 4 28 (0x1C) dwBytes-
PerSec

Sample rate *
block align

WORD Little 2 32 (0x1E) wBlockAlign 4 byte

WORD Little 2 34 (0x20) wBitsPer-
Sample

32 bit

Table 721: Data chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 36 (0x24) bfChunkID "data"

DWORD Little 4 40 (0x28) dwChunkSize Data length -
8

BYTE[] Big Undefined 44 (0x2C) bfData Measurement
data

Table 722: Label chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 44+sz(bfData) bfChunkID “labl”

DWORD Little 4 48+sz(bfData) dwChunkSize Data length -8

DINT Little 4 52+sz(bfData) dwIdentifier Identifier

BYTE[256] Little 255 56+sz(bfData) bfText „Label Text“

The WAV files will be stored in an uncompressed ZIP file at the destination path of
CMS_IO_MEASMNT_CTRL. The file names for of the WAV files are given by the FM502-CMS
and are directly corresponding to the analog channel and encoder configuration of the FM502-
CMS.

With no encoder, the files are named: CH00_nEN.wav, CH01_nEN.wav, ... CH15_nEN.wav
and stored in a ZIP file.

Example

Programming
In CODESYS, the data of the configured analog channels can be seen and used with the I/O
mapping variables.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5734

Use the function block CMS_IO_MEASMNT_CTRL to start a measurement.

The name of the measurement ZIP file has to be in 8.3 file format. Example:
abcdefgh.zip

After the measurement is finished, the ZIP file is transferred from the FM502-CMS to the
PM592-ETH via communication module bus. The progress of the data transfer can be seen
at the output PROGRESS in percent. After a successful measurement and data transfer, the
output DONE will change to TRUE.

FM502-CMS used as counter device

Fig. 1140: Input configuration.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5735

32-bit bidirectional counter
The function block CMS_IO_32BIT_CNT can be used to control one 32-bit bidirectional counter
function Ä Chapter 1.5.8.2.1.3 “CMS_IO_32BIT_CNT 32-bit counter” on page 2534. A signal
used for pulse count is identified by A+. Another signal used for enable or dynamic set is
identified by B+.
Possible operation modes: 1-1, 2-1, 5-1, 6-1 Ä Table on page 5728

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
double word (CNT_TOUCH). The touch/catch operation could be settled on rising or falling
edge depending on parameter EDGE_TOUCH.

Fig. 1141: Procedure and associated counting value with signal A

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the actual
counter value and to display this value at output CNT_TOUCH.

A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the
START_VALUE value and to display this value at output ACT.

Touch/Catch
operation

SET operation

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5736

A rising edge at input DI0, DI1, DC2 or DC3 causes the block to reset the value at output ACT.

The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648 and any exceeding or falling below of this value (depending to
up and down use) OFL will set to TRUE.

16-bit bidirectional counter
The function block CMS_IO_16BIT_CNT can be used to control one 16 bit bidirectional counter
function Ä Chapter 1.5.8.2.1.2 “CMS_IO_16BIT_CNT” on page 2530. A signal, used for pulse
count, is identified by A+.
Possible operation modes: 8-1 Ä Table on page 5728

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
double word (CNT_TOUCH). The touch/catch operation could be settled on rising or falling
edge depending on parameter EDGE_TOUCH.

RESET opera-
tion

Overflow opera-
tion

Touch/Catch
operation

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5737

Fig. 1142: Procedure and associated counting value with signal A

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the actual
counter value and to display this value at output CNT_TOUCH.

A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the
START_VALUE value and to display this value at output ACT.

A rising edge at input DI0, DI1, DC2 or DC3 causes the block to reset the value at output ACT.

Two 16 bit up/down counters
The function block CMS_IO_16BIT_2CNT can be used to control two independent 16 bit bidir-
ectional counter functions Ä Chapter 1.5.8.2.1.1 “CMS_IO_16BIT_2CNT” on page 2526. A
signal, used for pulse count, is identified by A+ and B+.
Possible operation modes: 3-2, 4-2 Ä Table on page 5728

SET operation

RESET opera-
tion

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5738

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
double word (CNT_TOUCH). The touch/catch operation could be settled on rising or falling
edge depending on parameter EDGE_TOUCH.

Fig. 1143: Procedure and associated counting value with signal A

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the actual
counter value and to display this value at output CNT_TOUCH.

A rising edge at input DI0, DI1, DC2 or DC3 which is configured as RESET causes the function
block to reset the value at output ACT1. A rising edge at input DI0, DI1, DC2 or DC3 which
is configured as Reset 2nd Bit counter causes the function block to reset the value at output
ACT2.

The counter operates as an infinite counter. It is set to TRUE, when an overflow occurs, i.e. the
counter value ACT1 or ACT2 goes up to value 16#FFFF= -1. Any exceeding or falling below of
this value (depending to up use and down use) will set OFL1 = TRUE or OFL2 = TRUE.

Touch/Catch
operation

RESET opera-
tion

Overflow opera-
tion

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5739

FM502-CMS used as encoder device

Fig. 1144: Input configuration.

Incremental encoder
The function block CMS_IO_32BIT_ENCODER can be used to control an encoder device
for relative positioning with 3 signals Ä Chapter 1.5.8.2.1.4 “CMS_IO_32BIT_ENCODER”
on page 2538. 2 signals are used for rotation discrimination and pulse count, identified by A+
and B+. The third one is used in multi-turn encoder to count the number of rotation (mechanical
zero), identified by Z+.
The rotation is identified with a shift angle (90°) between A and B signal. In the Function
Module, the clockwise rotation is identified with A signal in advance to B.
Possible operation modes: 11-1, 12-1, 13-1 Ä Table on page 5728

Fig. 1145: Clockwise rotation in the Function Module: A signal ahead from B signal

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5740

Fig. 1146: Counter-clockwise rotation in the Function Module: A signal late from B signal

Depending on choosen operation mode, the counting procedure will be x1, x2 or x4 count. Basi-
cally the x1 counting mode is used (operation mode 11-1). The encoder module discriminates
the rotating way and count one pulse for each rising edge of the A signal.
With clockwise rotation, function block CMS_II_32BIT_ENCODER counts downwards. With
counter-clockwise rotation, function block counts upwards.
In order to increase resolution, the x2 counting mode can be specified (operation mode 12-1).
The encoder module counts one pulse on each rising and falling edge of A signal.
The resolution could be multiplied by 4, using the x4 counting mode (operation mode 13-1). The
encoder module counts a pulse on both rising and falling edge of A signal and B signal.

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
double word (CNT_TOUCH). The touch/catch operation could be settled on rising or falling
edge depending on parameter EDGE_TOUCH.

Touch/Catch
operation

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5741

Fig. 1147: Procedure and associated counting value with signal A

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the actual
counter value and to display this value at output CNT_TOUCH.

The RPI (Reference Point Initialization) is used to synchronize the counter value with the
mechanical zero reference based on signal Z.
RPI procedure is enabled with control bit (EN_RPI). If this control bit is set, the module checks
for the Z signal. When the signal appears, the set value is copied in the current counter value
and RDY_RPI is set (see figure below).

RPI procedure

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5742

Fig. 1148: RPI operation

A rising edge at the digital inputs DI0, DI1, DC2 or DC3 activates the counter value capture and
the counter reset during the capture.
Only one function may be enabled at one time, either the RPI (reference point indicator) or
TOUCH (touch trigger measurement) function. If both functions are enabled simultaneously or
if the execution of one function is not yet completed when enabling the other function, the RPI
function will have a higher priority than the TOUCH function.

A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the
START_VALUE value and to display this value at output ACT.

A rising edge at input DI0, DI1, DC2 or DC3 causes the block to reset the value at output ACT.

The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648 and any exceeding or falling below of this value (depending to
up and down use) OFL will set to TRUE.

SET operation

RESET opera-
tion

Overflow opera-
tion

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5743

Absolute SSI encoder
The function block CMS_IO_SSI_CNT can be used to control SSI absolute encoder function
Ä Chapter 1.5.8.2.1.6 “CMS_IO_SSI_ENC” on page 2545. There is an interface for absolute
angle and linear encoders (displacement measurement systems).
It allows the transmission of absolute position information through a serial data transfer.
The transmission is based on synchronous serial communication. The device sends a clock
signal to the encoder and synchronously, the encoder returns the positioning data from the most
significant to the less significant bit.
The synchronization for a new data stream is based on time without clock pulse. This quiet time
depends on the encoder.
Possible operation modes: 14-1 Ä Table on page 5728

Fig. 1149: Chronogram with data organization with the clock pulse

For the resolution of the encoder device see technical data from manufacturer. The resolution
can be set in configuration under “SSI parameters è SSI resolution”.

Resolution

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5744

Fig. 1150: SSI parameters

The trace B of the FM502-CMS is switched as output signal (differential). On the rising edge of
the signal, the sensor shifts a new value, starting from the most significant bit.
The clock frequency can be specified under “SSI parameters è SSI frequency”.

CAUTION!
Risk of malfunctions!
The clock frequency is only an approximately value.
Do not use the clock frequency for any other purposes, e.g. time measure-
ments.

The complete read sequence is launched regularly by the Function Module. The interval
between each sequence can be configured under “SSI parameters è SSI polling time”.

Touch operation is valid with SSI sensor. The goal of touch operation is to synchronize sensors
with the same hardware signal. In the SSI mode the management is different depending on the
reading procedure is running or not.
If the reading procedure has already started while the touch signal becomes active, the reading
procedure finishes normally and the last read value is stored in the touch register.
If the reading procedure has not started, the encoder is in the interval between 2 measure-
ments. The reading procedure is started one time more and the result of the last reading is
stored in the touch register.

SSI polling time
definition

SSI and touch/
catch operation

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5745

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the current
counter value CNT32 (ACT) and to display this value at output CNT_TOUCH.

The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648 and any exceeding or falling below of this value (depending to
up and down use) OFL will set to TRUE.

Overflow opera-
tion

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5746

FM502-CMS used as time frequency meter
The function block CMS_IO_FREQ_SCAN is used to measure times, frequency and rotation
speeds on channel Z+ of the Function Module Ä Chapter 1.5.8.2.1.5 “CMS_IO_FREQ_SCAN”
on page 2542.
Possible operation modes: 15-1 Ä Table on page 5728

The Function Module provides one channel (Z+) which can be used to measure times, frequen-
cies and rotational speeds with a resolution of 1 µs.

Fig. 1151: Example of timing

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5747

Table 723: Values measured according to configuration input parameters and example
EN_0 EN_1 EN_FRE

Q
Type 1 2 3 4

FALSE FALSE TRUE No measurement 0 0 0 0

FALSE TRUE TRUE Between 2 falling
edges

 500 450

TRUE FALSE TRUE Between 2 rising
edges

 350

TRUE TRUE TRUE Between any 2
edges

300 200 150 300

FALSE FALSE FALSE No measurement 0 0 0 0

FALSE TRUE FALSE Between the rising
edge and the
subsequent falling
edge

300 150

TRUE FALSE FALSE Between the falling
edge and the sub-
sequent rising edge

 200 300

TRUE TRUE FALSE Between any
2 edges (start
between edge 0
and 1) *)

 200 300

TRUE TRUE FALSE Between any
2 edges (start
between edge 1
and 2) *)

 150

*) The timing measurement is a single shot process. The function block manages renewal of
the measurement as soon as the enable input is valid. Because of timing required to exchange
management bits on the bus, it is not possible to provide the time measurement between two
adjacent edges. Therefore, the time measured depends on when the measurement is started.
Depending on the input parameters of the function block, the result of the measurement can be
read as time in µs, frequency in Hz or speed of rotation in rotation per minute.

FM502-CMS used with synchronized counter/encoder files
Refer to the operation modes and used function blocks Ä Table on page 5728.

Configuration
Configure at least an encoder mode and one analog channel which should be recorded.

ð When encoder mode is set, on the analog channels tab the check box Synchronized
encoder file is selected.

The encoder track will only be recorded when the correct encoder function block
is used and enabled.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5748

Measurement files
The measurement data will be stored in the WAV file format. One WAV file will be created for
each active channel.

Table 724: RIFF header
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 0 (0x00) bfChunkID "RIFX"

DWORD Little 4 4 (0x04) dwChunkSize Data length -
8

BYTE[4] Big 4 8 (0x08) bfRiffType "WAVE"

Table 725: Format chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 12 (0x0C) bfChunkID "fmt"

DWORD Little 4 16 (0x10) dwChunkSize Data length -
8

INT Little 2 18 (0x12) wFormatTag 0x0001
(PCM)

INT Little 2 20 (0x14) wChannels 0x0001 (1 ch.)

DWORD Little 4 24 (0x18) dwSamples-
PerSec

100 Hz -
50.000 kHz

DWORD Little 4 28 (0x1C) dwBytes-
PerSec

Sample rate *
block align

WORD Little 2 32 (0x1E) wBlockAlign 4 byte

WORD Little 2 34 (0x20) wBitsPer-
Sample

32 bit

Table 726: Data chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 36 (0x24) bfChunkID "data"

DWORD Little 4 40 (0x28) dwChunkSize Data length -
8

BYTE[] Big Undefined 44 (0x2C) bfData Measurement
data

Table 727: Label chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 44+sz(bfData) bfChunkID “labl”

DWORD Little 4 48+sz(bfData) dwChunkSize Data length -8

DINT Little 4 52+sz(bfData) dwIdentifier Identifier

BYTE[256] Little 255 56+sz(bfData) bfText „Label Text“

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5749

The WAV files will be stored in an uncompressed ZIP file at the destination path of
CMS_IO_MEASMNT_CTRL. The name of the WAV files is given by the Function Module and
is corresponds directly with the analog channel and encoder configuration. For every encoder
synchronized shannel with different sample rate, there will be a new encoder track which will be
used for synchronization.

Encoder is configured as:
Channel 0: Sample rate 50 kHz, synchronized encoder file
Channel 1: Sample rate 12,5 kHz, synchronized encoder file
Channel 2: Sample rate 6,25 kHz, synchronized encoder file
Result: The ZIP file contains the WAV files: CH00_ENA.wav, CH01_ENB.wav,
CH02_ENC.wav, Enc_A.wav, Enc_B.wav, Enc_C.wav

Example

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5750

Encoder is configured as:
Channel 0: Sample rate 50 kHz, synchronized encoder file
Channel 1: Sample rate 50 kHz, synchronized encoder file
Channel 2: Sample rate 6,25 kHz, synchronized encoder file
Result: The ZIP file contains the WAV files: CH00_ENA.wav, CH01_ENA.wav,
CH02_ENB.wav, Enc_A.wav, Enc_B.wav

Example

The encoder/counter value at the output of the function block will reset when
configuration data of the Function Module will be written in CODESYS.

1.6.4.4.4 FM562 module
Information on configuration in Automation Builder: Ä Chapter 1.6.5.2.8.4 “FM562 module”
on page 6056

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5751

Functionality of the FM562 Module
Basic features of the PTO module FM562

Digital inputs 4 inputs (2 inputs per axis)
● Input 0, Input 2: Enable input used for limit switches

and enable signal (3 signals in 1 chain)

1 C0..1

2 I0

3 I1

4 O0

5 P0+

6 P0-

7 P1+

8 P1-

9 SGND

24V DC

Axis enable Left Limit switch Right Limit switch

● Input 1, Input 3: Stop/Registration input used as inter-
rupt input

● Stop: emergency stop and give the actual position infor-
mation, the deceleration value can be set via the func-
tion block which is provided by the library.

● Registration: give the actual position information,
number can be viewed via the function block which
is provided by the library, the registration input can be
used for homing.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5752

PTO outputs PTO output mode can be configured by parameters.
● 2-axis control in 1 module
● PTO output type: RS-422 differential output
● PTO frequency: 0..250 kHz
● Configurable PTO output mode: Pulse + Direction / CW

+ CCW
● CW/CCW (clockwise/counterclockwise): pulse string is

set out on 1 of the 2 differential channels according to
motor rotation direction. The output channel is defined
by a function block.

Pulse+ / Pulse- (CW/CCW)

● Pulse/direction: 1 differential channel for pulse string
and 1 differential channel to set direction of movement

Pulse + Direction (Pulse / Direction)
PTO Output 0 (Pulse)

PTO Output 1 (Direction)

Power supply for encoders ● Input voltage range: 18..31.2 V DC
● Reverse polarity protection: withstand 10 s
● Surge voltage: 35 V for 0.5 s
● Allowed interruptions of power supply :interruption < 10

ms, time between 2 interruptions > 1 s
● Isolation: 1.2/50 µs Impulse peak 500 V

LED displays ● 1 green LED for PWR (I/O Bus power)
● 1 red LED for ERR
● 1 yellow indicator for each digital input/output channel
● 1 yellow LED indicator for each pulse output channel

The function blocks used with FM562
The following function blocks are used for realizing positioning and speed control with PTO
FM562.

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5753

The function blocks mentioned below are part of PS552-MC-E Libraries. These
libraries are not part of Automation Builder and must be ordered separately.

Classification Name Description
PTO
Function blocks

PTO_FM562_ACCESS This function block is used to adapt
specific PLCopen blocks to FM562
module and also adds other special-
ized function for FM562.

PLCopen
Function blocks

MC_Power This function block controls the power
stage (on or off).

MC_Stop This function block aborts any
ongoing function block execution.

MC_Reset This function block resets the current
axis position to 0.

MC_MoveAbsolute This function block commands a con-
trolled motion to a specified absolute
position

MC_MoveRelative This function block commands a con-
trolled motion of a specified distance
relative to the actual position at the
time of the execution.

MCA_MoveVelocityContin-
uous

This function block commands a
never ending controlled motion at
a specified velocity and changes
velocity on fly.

When the command for a movement is given, the function block transmits the parameters in
several I/O bus cycles. Then the movement is started. The maximum reaction time can be
calculated with the following formula:
Max. reaction time = 3 x (T + 3.32 ms)
T = Application program cycle time in ms (set in the configuration)

● Application program cycle time = 1ms.
Max. reaction time = 3 x (1 ms + 3.32 ms) = 13 ms

● Application program cycle time = 10 ms.
Max. reaction time = 3 x (10 ms + 3.32 ms) = 40 ms

Example:

Special features
FM562 provides a square wave output for a specified number of pulses and a specified cycle
time. It can be programmed to produce either 1 train of pulses or a pulse profile consisting of
multiple trains of pulses. For example, a pulse profile can be used to control a stepper motor
through a simple ramp up, run, and ramp down sequence or more complicated sequences. The
control positioning is achieved according to an open loop mode, meaning without the need for
feedback information on the real position. The position loop is integrated in the servo-drive.

Latency of func-
tion block
PTO_FM562_AC
CESS

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5754

Parameter configuration

No. Operation Object Function Description
1 Input 0 No Function No Function

Axis enable/Limit
switch

When the input is
high (24 V), axis can
output pulses; when
the input is low (0
V), axis cannot output
pulses.

2 Input 1 No Function No Function

Stop Stop the pulse output
when the signal is
high

Registration Triggered by the rising
edge of the signal, the
actual position infor-
mation can be viewed
via the function block
which is provided by
the library, the regis-
tration input can be
used for homing.

3 Output CW/CCW Pulse string is set
out on 1 of the 2
differential channels
according to motor
rotation direction

Pulse/Direction 1 differential channel
for pulse string and 1
differential channel to
set direction of move-
ment

PLC Automation with V2 CPUs

PLC integration (hardware) > System technology for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5755

1.6.4.5 System technology for AC31 adapter I/O modules
1.6.4.5.1 KP9x devices
Interrupt handler for KP9x devices

In case a KP9X coupler requires handling of incoming interrupts, an interrupt handler has to be
configured.
For this purpose, a new task has to be added in the task configuration of the Automation
Builder. Enter the task name, set the task type to "external event triggered" and specify the
event that triggers the task.
For each I/O bus slot, two types of interrupt tasks are available in the "Event" list box:
● Ext_CouplerX_InputAny:

The task is triggered by any interrupt from I/O bus module slot X with the priority specified in
the Priority field (0...31).

● Ext_CouplerX_InpuAny_high_prio:
The task is triggered by any interrupt from I/O bus module slot X with highest priority,
i.e. with a priority higher than the max. adjustable "0" and higher than the priority of the
communication task. In this case, the priority (0...31) specified in the Priority field is without
any significance.

NOTICE!
If the interrupt task is started with high priority (Ext_Cou-
plerX_InpuAny_high_prio), the program execution time must not be longer than
approx. 400 µs. Otherwise online access is no longer possible.

In the example below, the task is named KPInterruptHdlr_2, meaning that it is an interrupt from
I/O bus located at slot 2 (where AC31 I/O bus is located for AC31 adapter systems). The task
type is "external event triggered" and the event to trigger the task is "Ext_Coupler2_InputAny".

Like for all other tasks, a program call has to be assigned to the task.

PLC Automation with V2 CPUs
PLC integration (hardware) > System technology for AC500 V2 products

2022/01/203ADR010582, 3, en_US5756

In the example, the program KpInterruptHdlr() shall be started with any interrupt from Communi-
cation Module slot 1.

1.6.5 Configuration in Automation Builder for AC500 V2 products
1.6.5.1 General settings

This chapter describes the device configuration of AC500 product family with Automation
Builder. Basic information on Automation Builder handling can be found in the Ä Chapter 1.2
“Getting started” on page 12.

1.6.5.1.1 Project handling
● A project contains the objects which are necessary to create a controller program ("applica-

tion"):
– Pure POUs, for example programs, function blocks, functions, and GVLs.
– Objects that are also required to be able to run the application on a PLC. For example,

task configuration, Library Manager, symbol configuration, device configuration, visuali-
zations, and external files.

● In a project, you can program multiple applications and connect multiple controller devices.
● CODESYS manages device-specific and application-specific POUs in the “Devices” view

("device tree") and project-wide POUs in the “POUs” view.
● For the creation of projects, there are templates that already contain certain objects.
● Basic configurations and information for the project are defined in the “Project Settings” and

“Project Information”. For example:
– Compiler settings
– User management
– Author
– Data about the project file
There are settings for the version compatibility of the project in the configuration dialogs in
the “Project Environment”.

What is a
project?

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5757

● You save a project as a file in the file system. As an option, you can pack it together with
project-relevant files and information into a project archive. It is also possible to save files in
a source code management system such as SVN.

● Each project contains the information about the CODESYS version with which it was cre-
ated. When you open it in another version, CODESYS will notify you about possible or
necessary updates regarding file format, library versions, etc.

● You can compare, import/export projects, and create documentation for them.
● You can protect a project from being changed, or even completely protect it from being read.

By using user management, you can selectively control the access to the project and even
to individual objects in the project.

Creating a new project
1. Select “File è New Project”.

If the used Automation Builder version is not the latest version, an information is dis-
played.
● Select “Change to newest installed version” to create a project with the latest installed

version of Automation Builder.
● Select “Continue to work with version: XXX” to create a project in the current software

version.
2. Select “AC500 project”, enter a project name and specify the storage location for the new

project.
With “Empty project” a project without a PLC is created.

3. Select the device type for the new project and click [Add device].

ð A new project is created and can be configured.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5758

Opening an existing project

NOTICE!
Risk of damaging Automation Builder projects!
Projects created with Automation Builder are incompatible with CODESYS
V2.3.9.x. Do not open projects with CODESYS V2.3.9.x as this can cause
corrupted Automation Builder projects.

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

1. Select “File è Open Project”.

ð The “Open Project” dialog appears.

2. Select a previously saved project from the file system.

ð Automation Builder switches to the version of the project and opens the project.

Exporting and importing a project
Configuration of a complete PLC or of single devices can be reused within the same project by
copy-and-paste the desired nodes in the device tree.
In order to reuse a PLC configuration cross-over projects, the project configuration can be
exported and imported afterwards into another project.

An exported project configuration can only be imported to a project with the
same Automation Builder version. If the versions are not the same, the import
fails with an error message.

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

From the menu, select “Project è Export è Project”. Select the objects to be exported. The
configuration of the selected items will be added to an export file (*.export).

Opening a
project

Project export

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5759

“One file per subtree”: If this option is activated, all objects belonging to the same subtree will
be exported into the same export file, otherwise a separate file will be created for each particular
object.

For importing a project a basic and an advanced function is available.
Basic project import: Users with a basic or a standard Automation Builder license can perform
a basic project import. Command: “Project è Import è Project”.

A previously exported project configuration is imported into the current project.
With this, the current project configuration is overwritten.

In order to supplement the current project with the project configuration of
a previously exported project, use the compare function. Command: “Project
è Compare”.

Ä Chapter 1.6.5.1.1.6 “Comparing projects” on page 5765

Advanced project import: Users with a premium Automation Builder license can perform
an advanced project import. Command: “Project è Import è Project with compare”. This
command allows to compare two projects, to check on differences and to adapt single parts of
the project configuration easily.

Basic project import
1. From the menu, select “Project è Import è Project”.

A previously exported project configuration is imported into the current
project. With this, the current project configuration is overwritten.

In order to supplement the current project with the project configuration
of a previously exported project, use the compare function. Command:
“Project è Compare”.

Ä Chapter 1.6.5.1.1.6 “Comparing projects” on page 5765

Project import

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5760

2. Select the export file from the file system and click [Open] to import the project configura-
tion.

An exported project configuration can only be imported to a project with the
same Automation Builder version. If the versions are not the same, the import
fails with an error message.

Advanced project import
Perform an advanced project import in order to compare two projects, to check on differences
and to adapt single parts of a previously exported project configuration easily.
1. From the menu, select “Project è Import è Project with compare”.
2. Select the export file from the file system and click [Open] to import the project configura-

tion.

ð The project import is started.

3. Once the project file is imported, a compare view is displayed. The left pane represents
the current project, the right pane represents the imported project.

ð Differences between the current project and the imported project are highlighted in red
color.

ð Additional modules in the current project that are not available in the imported project
are highlighted in green color.

ð Additional modules in the the imported project or deleted modules in the current
project are highlighted in blue color.

ð A summary of all differences within the projects is given in the “Comparison statistics”
under the device tree.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5761

4. Every highlighted item of both projects can be handled individually and can either be
transferred to the current project or skipped.
● [Accept Block]: All items of the selected node are transferred to the current project

with one click. Use this function for example to copy all nodes of a PLC configuration
from the imported project to the current project (select “I/O_Bus” node).

● [Accept Single]: Only a single item from a node is transferred to the current project.
Use this function for example to copy certain I/O modules from the imported project to
the current project.

ð All accepted items are highlighted in the current project in yellow color.

ð To undo a selection, again, click [Accept Block] or [Accept Single].

ð To accept all changes on the current project, close the “Project Comparison -
Differences” tab and confirm the prompted dialog.

5. If in the import project the PLC contains an AC500-S safety module, a security check is
performed which requires user authentication:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5762

6. After a successful user authentication the AC500-S safety modules are added to the
compare view and can be imported to the current project.

Upgrading/ updating a project to a new Automation Builder version or profile
When upgrading or updating Automation Builder a previously configured project can be con-
verted in order to be used in a new Automation Builder version or with a new Automation Builder
profile.

Definition:

Automation Builder upgrade: changing over to a major Automation Builder ver-
sion (e.g. from version 2.3.1 to version 2.4.1).

Automation Builder update: changing over to a minor Automation Builder ver-
sion (e.g. from version 2.4.0 to version 2.4.1).

Further, a project that has been configured for an AC500 V2 PLC can be converted to a project
for an AC500 V3 PLC.
Ä Chapter 1.6.5.6 “Converting an AC500 V2 project to an AC500 V3 project” on page 6330

Project archive

Create a project archive before updating Automation Builder. Project archives
contain all project data, including data that is not stored with a *.project file, e.g.
device description files for third party devices.

Ä Chapter 1.6.5.1.1.7.1 “Creation of an archive ” on page 5768

RobotStudio station
RobotStudio integration has been discontinued as of Automation Builder 2.1.0. It is recom-
mended to externally store the link to the RobotStudio station and to remove the RobotStudio
station object prior to the upgrade.
Automation Builder profile
To use the Automation Builder profile of an older project, the old profile must have been
installed. The installation of older Automation Builder profiles can be activated in the device
dialog during the upgrade process.

Before the
upgrade/update

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5763

1. With opening a project Automation Builder automatically detects the project version. In
case of an outdated project version a dialog is prompted.

ð If the update is confirmed, the project is automatically updated to the latest Automation
Builder version.
Automation Builder updates the complete project (complete device tree) to the latest
version. Success messages, warnings and errors are described in the section “All
messages”.

ð If the update is declined, the project is closed unchanged.

In order to initiate a project update or upgrade later on, select “Project è Update
Project”.

ð
To keep an older project, it must be opened with the same Control
Builder Plus/ Automation Builder version the project has been created.
For this, the appropriate Control Builder Plus/ Automation Builder profil
must be selected.

In this mode, new Automation Builder features cannot be used.

It is not possible to downgrade a project to an earlier Automation
Builder version.

Automation Builder performs an integrity check for the PLC configura-
tion before generating the configuration.

2. When upgrading Automation Builder, new available AC500 V2 system libraries are
installed automatically. In difference to AC500 V3 libraries the AC500 V2 libraries are
not versioned. Hence, after an Automation Builder update login to a PLC might only be
possible after a rebuild and with an online change. This might be required although the
application has not been changed and the previous version profile is still in use.
To avoid this, add the AC500 V2 libraries to the Automation Builder project. The procedure
on how to add a AC500 V2 (system) library to a project is described exemplarily.

3. During the project upgrade, an option for migration of third party devices can be selected.
If this option was not selected during the upgrade procedure, migration can be initiated
manually after an Automation Builder upgrade in order to migrate all third party devices to
the project.
Ä Chapter 1.6.5.1.10 “Migration of third party devices” on page 5807

Upgrading/
Updating a
project

AC500 V2 libra-
ries

Migrate third
party devices

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5764

4. Exception, for the CANopen device CM598-CN:

Usually, when upgrading Automation Builder or an existing project, new
AC500 V2 system libraries are installed automatically and older library
versions are removed.

As an exception, for the CANopen device CM598-CN both library versions
are available in the Library Manager due to compatibility reasons. How-
ever, coexistence of a new library version and an older library version
is not possible. In order to avoid compile errors remove the older library
version.

5. After the Automation Builder upgrade login to the PLC from Automation Builder: right-click
“Application è App” and select “Login [PLC_AC500_V2]”.

ð The firmware on the devices is upgraded.

Depending on the currently installed firmware versions, a login from
CODESYS V2.3 might be impossible prior to the firmware update.

To update all devices of a PLC project, right-click the PLC node and select “Update objects”.
In the dialog enable “update subtree” option to update all sub-objects. Otherwise only the
processor module object is updated.
To update a specific device only, the command “Update objects” can be executed individually at
the specific node.

I/O mapping export and import
To exchange information on I/O mapping only, data can be exported as .csv file. This allows
maintenance of I/O data outside Automation Builder, e.g. in MS Excel.
Right-click the “Processor Module” node or “I/O_Bus” node in the device tree and select “Export
-> IO mapping”. To export the I/O Mapping for the complete project, e.g. with more than one
configured processor modules, I/O data of the complete project can be exported “Project ->
Export -> I/O mapping”.

A previously exported .csv file can be imported to the project: “Project -> Import -> I/O
mapping”.

Comparing projects
You can compare the currently open project with another project – a reference project. The
differences in contents, properties, or access rights are detected and shown in a comparison
view.
Clicking “Project è Compare” opens the “Project Compare” dialog for you to configure and
run the comparison. Then the result is shown in the comparison view “Project Compare -
Differences” where the objects are aligned in a tree structure. Objects that indicate differences
from the respective reference object are identified by colors and symbols. This is how you
detect whether or not the contents, properties, or access rights are different.

Login

Updating PLC
devices

Export I/O map-
ping

Import I/O map-
ping

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5765

For differences in the contents, you can also open the detailed compare view “Project Compare
- <object name> Differences” in order to zoom into the object. In the detailed compare view,
the contents of the object and reference object are displayed or their source code aligned. The
detected differences are marked. Previously opened views are not closed. In this way, you can
have any number of comparison views open and read them, in addition to the project compare
view.
You can accept the detected differences from the reference project into the current project.
This is possible only from the reference project into the open project. To do this, you activate
differences (for example in the code) that should be accepted in the current project with the
commands , , or in the active comparison view for accepting. These positions are high-
lighted in yellow. Make sure that any other open compare views are inactive (write-protected,
read-only). therefore, you can activate differences to be accepted in exactly one comparison
view only. When exiting the active compare view, if you confirm that the differences that are
activated for acceptance are actually accepted into the current project, then the current project
is modified.
In order to exit the project comparison completely, close the project compare view.

Creating a comparison view
Requirement: You have made changes in your current project and wish, for example, to com-
pare it with the last-saved version. In the meantime, for example, you have added further POUs,
removed a POU, changed single lines of code or the object properties in function blocks.
1. Select the command “Project è Compare”.

ð The “Project Comparison” dialog box opens.

2. Enter the path to the reference project, for example the path to the last-saved version of
your current project.

3. Leave the activation of the comparison option “Ignore Spaces” as it is.
4. Click on “OK”.

ð The comparison view opens. Title: “ Project Comparison – Differences”. The Device
trees of the current project and the reference project are displayed alongside each
other and the changed objects are marked in color.

5. Select an object marked in blue in the tree of the reference project (right). The current
project no longer contains this object.

Click on “Accept Single”

ð The object is added to the tree of the current project (left). The line has a yellow
background. appears in the middle column.

6. Select an object marked in green in the tree of the current project (left). The reference
project does not contain this object.

Click on “Accept Single”

ð The object is removed again from the tree of the current project (left). The line has a
yellow background. appears in the middle column.

7. If changes are detected in the content of an object that is contained in both the current
project and the reference project, this is indicated by red lettering. You can then switch to
the detailed comparison view for the object by double-clicking on the object.

8. Close the comparison view and answer the query whether the changes made are to be
saved with “Yes”.

ð The changes become effective in the project.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5766

Opening the detailed compare view
Requirement: For example, a user modified the code in a POU of the current project. You have
performed the project comparison by clicking “Project è Compare”. The project compare view
shows this POU highlighted in red in the aligned in the project tree.
1. Double-click the line of the aligned POU versions.

ð The compare view switches to the detailed compare view of the POU. The modified
code lines are highlighted in gray and written in red.

2. Click .

ð Code lines with changes (red) are extended by two lines: an line with insert (left,
green) and a line with delete (right, blue).

3. Click again.

ð The code line is marked again as modified.

4. Move the mouse pointer to the code line marked as modified and click “Accept Single”.

ð The code line from the reference project is activated for acceptance into the current
project.

5. Click .

ð The project compare view opens for the entire project. It is write-protected (read-only)
to prevent you from activating differences for acceptance. The link highlighted in
yellow above the tree view also indicates this.

6. Click the link: “Project compare view is read only because there are uncommitted changes
in another view. Click here to switch to the modified view.”

ð The detailed compare view opens again. The unconfirmed changes are highlighted in
yellow.

7. Click in the tab of the view and confirm that the changes should be saved.

ð The detail project view is closed and the POU is overwritten. Now it corresponds to
the POU of the reference project. The project view is active again so that you can
continue working with project compare.

If you do not click the link, but click instead to close the editor of the project
compare view, then you will also confirm the acceptance of changes into the
current project. The detail changes are accepted and then the project compare
is closed completely.

See also
● Ä Chapter 1.4.1.1.4 “Comparing projects” on page 146
● Ä Chapter 1.6.5.1.1.6.1 “Creating a comparison view” on page 5766

Project archive
Automation Builder supports the creation and the import of project archive files. Archive
files contain all relevant project data including the PLC configuration, the project files of the
CODESYS and all device descriptions. This allows exchanging Automation Builder projects
without taking care of the target environment.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5767

Creation of an archive
The following steps describe the creation archive file from an Automation Builder project:

1. Select “File è Project Archive è Save/Send Archive”.
2. Select the information which should be included in the archive file from the list box.

Section/Control Parameter Description
Information
selection list box

Options Not supported

Referenced
devices

The referenced devices can be selected by expanding
the "Referenced devices" item of the list box. It is
strongly recommended to include all devices in the
project archive to maintain consistency.

Additional files - Not supported

Comment - Opening a control window which allows the input of a
comment to the project archive.

Save - Opening a dialog window to determine the path and the
file name of the project archive and storing it to the file
system.

Send - Not supported

Cancel - Canceling the operation and closing the dialog window.

With [Comment] additional information can be added to the project archive, for example to
add a brief description or some information concerning the project.

3. Proceed with [Save...].

It is strongly recommended to keep the default settings.

Section “Options” of the list box is not support. Do not enable this option.

Extraction of an archive

The currently loaded project will be closed automatically when extracting
the selected project archive. It is recommended to open a new instance of
Automation Builder before starting the extraction process.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5768

The following steps describe the extraction of an archive file and the import to Automation
Builder.
1. Select “File è Project Archive è Extract Archive”.
2. Select the desired project file and click [Open].

Section/
Control

Parameter Description

Locations Extract into the
same folder where
the archive is
located

The project archive will be extracted to the same path
where the archive is located.

 Extract into the fol-
lowing folder

Path to which the project archive should be extracted.

 Button ... Opening a folder selection dialog which allows
selecting the desired path.

Contents Items Select the items which should be extracted.

 Comment Displaying comments included inside the Project
archive file.

 Extract Triggering the extraction process. Automation Builder
extracts the archive and creates a project from out
the archive. After creating the project Automation
Builder checks the version of the project. If the
project version and the activated Automation Builder
version is not identical the workflow is the same as
described in "Opening an Existing Project".

 Cancel Closing the Extract Project Archive dialog and can-
celing the extraction process.

1.6.5.1.2 User and access rights management
User and access rights

The 'User Management' provide functions for defining user accounts and configure the access
rights within a project. The rights to access project objects via specified actions are assigned
only to user groups, not to a single user account. So each user must be member of a group.

User management
Before setting up users and user groups, notice the following: The configuration of users and
groups is done in the Project Settings dialog Ä Chapter 1.6.5.1.2.3 “Project Settings - Users
and groups” on page 5772.
● Automatically there is always a group "Everyone" and by default primarily each defined user

or other groups are members of this group. Thus each user account at least automatically is
provided with defined default settings. Group "Everyone" cannot be deleted, just renamed,
and no members can be removed from this group.

● Also automatically there is always a group "Owner" containing one user "Owner". Users can
be added to or removed from this group, but at least one user must remain. This group also
cannot be deleted and always has all access rights. Thus it is not possible to make a project
unusable by denying the respective rights to all groups. Both group and user "owner" might
be renamed.

● When starting the programming system resp. a project, primarily no user is logged on the
project. But then the user optionally might log on via a defined user account with user name
and password in order to have a special set of access rights.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5769

Notice that each project has its own user management!
So, for example to get a special set of access rights for a library included in a
project, the user must separately log on to this library. Also users and groups,
set up in different projects, are not identical even if they have identical names.

CAUTION!
The user passwords are stored irreversibly!
If a password gets lost, the respective user account gets unusable. If the
"Owner"-password gets lost, the entire project might get unusable!

Access right management
User management in a project is only useful in combination with the access right management.
Notice the following:
● In a new project basically all rights are not yet defined explicitly but set to a default value.

This default value usually is: "granted".
● In the further run of working on the project each right can be explicitly granted or denied

resp. set back to default. The access right management of a project is done in the Permis-
sions dialog Ä “Permissions” on page 5771.

● Access rights on objects get "inherited". If an object has a "father" object (example: if an
action is assigned to a program object, that is inserted in the structure tree below the
program, then the program is the "father" of the action object) , the current rights of the
father automatically will become the default settings of the child. Father-child relations of
objects concerning the access rights usually correspond with the relations shown in the
POUs or Devices tree and are indicated in the Permissions dialog by the syntax "<father
object>.<child object>".

Action ACT is assigned to POU object PLC_PRG. So in the POUs window ACT is shown in
the objects tree indented below PLC_PRG. In the Permissions dialog ACT is represented by
"PLC_PRG.ACT" indicating that PLC_PRG is the "father" of ACT. If the "modify" right would be
denied explicitly for PLC_PRG and a certain user group, the default value of the "modify" right
for ACT automatically also would be "denied".

Example

User management commands
The 'User Management UI' plug-in provides commands for command category 'User Manage-
ment'.
These are used for:
● Configuration of access rights on the project objects
● Logging on or off to/from the project via a defined user account in order to get the access

rights which are associated to this account
The configuration of user accounts and groups is done in the Project Settings subdialog User
Management Ä Chapter 1.6.5.1.2.3 “Project Settings - Users and groups” on page 5772.
By default the following commands are part of submenu 'User Management' in the 'Project'
menu: Logon, Logoff, Permissions.

Symbol:
This command opens the Logon dialog for logging on to a project or library via a defined user
account.

Logon

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5770

Logging on with a certain user account means to log on with those object access rights which
are granted to the group which the user belongs to. The configuration of user accounts and
groups is done in the Project Settings subdialog User Management.
To log on select the project or an included library from the selection list in the Project/Library
field. Enter User name and Password of a valid user account, noticing that each project or
library has an own user and access rights management. Log on with OK.
If already another user is logged on the project, this one will be logged out automatically by the
new log-on action.
When you are logged on to a project or library and try to perform an action for which you
have no right, automatically a Logon dialog will be opened, giving the possibility to log on with
another user account provided with the appropriate rights.
The status bar always displays which user currently is logged on the project.

Symbol:
This command logs off the currently logged on user. If no user had been logged on to the
currently opened project or to a referenced library an appropriate message will appear when
trying to log off.
If the user currently is logged on to more than one project or referenced library (not necessarily
with the same user account) a Logoff dialog will appear when trying to log off.
From the Project/Library selection list choose those project/library for which you want to log off.
The name of the Current user is displayed just for information.
The status bar always displays which user currently is logged on the project.

This command opens the Permissions dialog, where the rights to work on objects or to perform
commands in the current project can be configured.

Any changes made in this dialog will be applied immediately.

Logoff

Permissions

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5771

The Actions window displays all possible rights, that is all actions which might be performed on
any object of the current project.
The tree is structured in the following way:
● Top-level see the names of some categories, which have been set up just for the

purpose of optical structuring the rights management.
They are grouping concerning the execution of Commands, the configuration of User
accounts and Groups, the creation of Object Types, the viewing, editing, removing and
handling of child objects of Project Objects.

● Below each category node there are nodes for the particular actions which might be
performed on the command, user account, group, object type or project object. These nodes
also only have optical function. Possible Actions:
– execute (execution of a menu command)
– create (creating a new object in the current project)
– add or remove children (adding or removing of "child" objects to an existing object)
– modify (editing an object in an editor)
– remove (deleting or cutting an object)
– view (viewing an object in an editor)

Below each action node find the possible targets, that is project objects, of the respective
action.
The Permissions window provides a list of all currently available user groups (except the
"Owner" group) and a toolbar for configuring rights to a group.
Select the group and configure it´s permissions.
Left to each group name one of the following icons indicates the currently assigned permission
concerning the target which is currently selected in the Actions window:
● : The action(s) for the target(s) currently selected in the Actions window are granted

for the selected group.
● : The action(s) for the target(s) currently selected in the Actions window are denied for

the selected group.
● : The right to perform the action(s) which are currently selected for the selected target(s)

 in the Actions window, has not been granted explicitly, but is granted by default, for
example because the corresponding right has been granted to the "father" object. (Example:
The group has got the right for object "myplc", thus it by default it also has got it for object
"myplc.pb_1".) Basically this is the default setting for all rights which not explicitly have
been configured.

● : The right to perform the action(s) which are currently selected for the selected target(s)
 in the Actions window, has not been denied explicitly, but is denied by default, for example

in case because the corresponding right has been assigned to the "father" object.
If currently multiple actions are selected in the Actions window, which do not have unique
settings referring to the currently selected group, no icon will be displayed.

To configure the rights for a group select the desired action(s) and target in the Actions
window and the desired group in the Permissions window. Then use the appropriate button in
the toolbar of the Permissions window:

: Explicit granting.

: Explicit denying.

: The currently granted right for the action(s) currently selected in the Actions window will
be deleted, that is set back to the default.

Project Settings - Users and groups
The Project Settings dialog in category 'Users and Groups' provides three subdialogs for the
user management for the current project: Users, Groups, Settings. For a general description on
users and access rights management see help page Ä Chapter 1.6.5.1.2.1 “User and access
rights” on page 5769.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5772

Users dialog
The currently registered users are listed in a tree structure. The ownerships of each user is
displayed and each user is a member of a group by default Ä Chapter 1.6.5.1.2.1 “User and
access rights” on page 5769.

1. Click “Add” to open the “Add User” dialog.
2. Define the user credentials and click OK to set up the new user. If there are incorrect

entries (no login name, password mismatch, user already existing) you will get an appro-
priate error message.

Click “Edit” to open the “Edit User” dialog. The entry fields are the same as in the “Add User”
dialog. The password fields however - for security reasons - will show 32 * characters. After
having modified the desired entries close the dialog with OK to get applied the new settings.

Enable the entries to be removed in the Users list and click “Remove”. Note that you will get no
further inquiry! An error message appears if you try to delete all users from a group. At least one
entry must remain.

Groups dialog
The currently available groups are displayed in a tree structure. A member also might be a
group.
1. Click “Add” to open the “Add Group” dialog.
2. Define a name for the new group and enable all entries (single users or groups) which

should be members of the new group.
3. Click OK to set up the new group. If there are incorrect entries (no name defined, group

already existing, in Members having selected a group which would cause a "group cycle",
you will get an appropriate error message.

Click “Edit” to open the “Edit User” dialog. The entry fields are the same as in the 'Add Group'
dialog (see above). After having modified the desired entries close the dialog with OK to get
applied the new settings.

Enable the entries to be removed in the groups tree and click “Remove”. Note that you will
get no further inquiry! The members of the deleted groups will remain unmodified. An error
message appears if you try to delete the groups "Everyone" and/or "Owner".

Settings dialog
The following basic options and settings concerning the user accounts can be made:
● Maximum number of authentication trials: If activated, the user account will be set invalid

after the specified number of trials to log in with a wrong password. If not activated, the
number of erroneous trials is unlimited. Default: option activated, number of trials: 3; permis-
sible values: 1-10.

● Automatically log out after time of inactivity: If activated, the user account will be logged
out automatically after the specified number of minutes of inactivity (no user actions via
mouse or keyboard registered in the programming system). Default: option activated, time:
10 minutes; permissible time values: 1-180 minutes.

Define a new
user account

Modify a user
account

Remove user
accounts

Add a group

Modify a group

Remove groups

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5773

1.6.5.1.3 Flexible AC500 configuration
As of Automation Builder version 1.1 feature for flexible AC500 configuration is introduced. This
feature enables you to use only one Automation Builder project for multiple different hardware
configurations. Especially for product lines with many hardware variants, flexible configuration is
a cost and time saving way for AC500 configuration.

Flexible configuration is not supported for CM574-RS/RCOM and SM560
devices.

An Automation Builder project consists of CODESYS V3 hardware configuration and CODESYS
V2 IEC application. Usually, from hardware configuration a *.ccf file is created and downloaded
with IEC application to the PLC. Whenever an application is loaded to the PLC firmware, this
*.ccf file is evaluated by I/O drivers.
By default, for configuration Config.ccf with FlexConfID 0 is created. When flexible configuration
is enabled, Automation Builder creates one individual *.ccf file for each variant of hardware
configuration: Cfg1.ccf with FlexConfID 1, Cfg2.ccf with FlexConfID2 etc. IEC application loads
all available *.ccf files to the PLC, however, only one *.ccf file can be analyzed by PLC firmware
at a time. The user decides which *.ccf file to be used by activation of the desired file. The active
configuration is represented by the FlexConfID.

Maximum number of manageable *.ccf files is limited to 255. FlexConfID 0 is
occupied by the default configuration Config.ccf. Cfg0.ccf is not allowed.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5774

Application configuration and hardware configuration are separated but linked
via I/O Mapping. Hence, flexible configuration is only operable in combination
with an I/O bus. In order to use several hardware configurations with one appli-
cation configuration I/O Mapping must be identical.

It is currently not possible to have alternative configurations of safety devices
in a project with flexible configuration. However, if configuration of the safety
devices is equal in all alternative configurations, flexible configuration is oper-
able.

Software configuration
Depending on the use case and on your requirements on the hardware configuration of your
variants, perform a standard or a advanced configuration.
● Standard Configuration: Use this configuration if the hardware configuration of your variants

is close to the hardware configuration of your primary PLC and contains the same I/O
modules in the same order. The parameterization for the hardware variants can vary. I/O
modules that are unnecessary for one of your hardware variants can be deactivated easily
with the Ignore Module parameter later on. However, the preset module order from the
primary configuration must not be changed, as a I/O module can only be ignored but not
replaced by another type Ä Chapter 1.6.5.1.3.1.1 “Standard configuration” on page 5776.

● Advanced Configuration: Use this configuration if the order of the I/O modules must be
changed, or if the variants require different I/O modules, or if your variants require different
addresses for already preset channels. Note: Advanced Configuration requires additional
manual actions: a) modifications in CODESYS for I/O Mapping b) file transfer to the file
system Ä Chapter 1.6.5.1.3.1.2 “Advanced configuration” on page 5778.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5775

Standard configuration
1. Create an Automation Builder project with a PLC device. This PLC contains your primary

hardware configuration (in the example: TargetPLC). Flexible configuration is only oper-
able in combination with a I/O module. We recommend you, to add all S500 I/O modules
that are required for the primary PLC or for a PLC of one of your hardware variants.
Configure all PLCs in your primary hardware configuration.

ð Naming concept in the example:

IOBus_Base_1: This I/O module is at first position of the PLC. It is valid for the primary
configuration and for all variants.
IOBus_Base_2: This I/O module is at second position of the PLC. It is valid for the
primary configuration and for all variants.
IOBus_Var_1_3: This I/O module is at third position of the PLC. It is only valid for the
first hardware variant (Variant1_Cfg).
IOBus_Var_2_3: This I/O module is at third position of the PLC. It is only valid for the
second hardware variant (Variant2_Cfg).

2. In the I/O Mapping tab, define the Mapping for the IEC addresses. The variables of the I/O
modules can be changed or even deactivated by enabling the parameter Ignore Module.

IEC addresses must not be changed in the configuration for the var-
iants. If this is required, perform a advanced configuration Ä Chapter
1.6.5.1.3.1.2 “Advanced configuration” on page 5778.

3. Copy and paste your complete primary PLC configuration to your project (right-click on
PLC_AC500). With this, variants of your hardware configuration are created.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5776

4. Rename the copied PLC configurations. In the example: Variant1_Cfg ... Variant3_Cfg.

5. In order to manage all available *.ccf files, export the PLC hardware configuration to any
folder in the file system: “Export è Export PLC Hardware configuration”.

6. Repeat this step for each PLC variant to export all *.ccf files to one folder.
7. Right-click “TargetApplication è Manage additional files for PLC” to load all *.ccf files to

the PLC.
8. In the dialog open the “HW Configuration” tab. With “Add” select the *.ccf files from the

folder previously defined. Ensure that the files to be added follow the syntax Cfg<Flex-
ConfID>.ccf with a continuous FlexConfID number.

9. Close the dialog, compile the project and create a boot project to finish configura-
tion. Then, activate the desired hardware configuration that shall be used Ä Chapter
1.6.5.1.3.2 “ Activating another hardware variant (Configuration file) ” on page 5780.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5777

Advanced configuration
In a standard configuration the global variables for I/O Mapping are set automatically. As this
is not possible for hardware variants with complex channel/address settings, global variables
must be defined in CODESYS to map the channels in the applications. Advanced configuration
allows to operate independent hardware configurations.
1. Create a Automation Builder project with a PLC device. This PLC contains your primary

hardware configuration (in the example: TargetPLC).
2. Create as many PLC hardware variants as required.

The main program that includes the hardware configuration of all your
variants is defined in the TargetApplication object of your TargetPLC (not
in the application objects of your variants (NotUsed_x)).

3. Double-click “TargetApplication” to define I/O Mapping for the IEC addresses in
CODESYS. Due to a different module configuration this cannot be done in the “I/O
Mapping” tab of Automation Builder.

4. Under “Resources” define a global variable that can be used to identify the active hard-
ware variant (in the example G_byActiveHWVariant).

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5778

5. For a better readability we recommend you to create I/O Mapping objects for your variants
which lists the address mapping for the inputs and outputs of a I/O module.

6. Under “POUs” create a new program (in the example IOMultiplex) which describes the
addresses for inputs and outputs to be used for each hardware variant.

7. Under “POUs ” create a new program (in the example IdentifyHWVariant).

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5779

8. Under “POUs” create a new program (in the example PLC_PRG) which refers to the previ-
ously defined program (IOMultiplex) and your global variable (G_byActiveHWVariant).

9. Under “POUs” create a new program (in the example MainProgram).

10. Save and close your CODESYS configuration. Proceed with exporting the PLC configura-
tion as described under Step: Exporting the PLC.

Activating another hardware variant (Configuration file)
Only one hardware configuration (*.ccf file) can be loaded and analyzed by AC500 firmware at a
time. Flexible configuration allows you to switch between hardware variants by using one of the
following methods:
● Function block in the IEC application. See Flexible Configuration Library.
● AC500 display (CFG button until FL 000 is displayed). See Display and Operating Elements

on the Front Panel of a processor module.
Note: At the moment this configuration method is not supported for PM595-4ETH.

● A PLC browser command. Possible commands:
– fcidget: Shows the current values of the settings for flexible configuration. Possible

values: Active FlexConfID, Configured FlexConfID, Number of configuration files.
– fcidset <flexconfid>: Changes the value of the FlexConfID in the confdata file.

Activation becomes valid only after PLC reboot - independent from the used
method. Information on active configuration is stored in the confdata file in
the PLC's flash memory. The online functions of Automation Builder are only
supported for the configuration loaded to the PLC.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5780

1.6.5.1.4 I/O mapping list
Automation Builder contains an I/O mapping list feature for creating mapping variables with
better usability support compared to the tree structured view. Details on the tree structured view
is provided in the CODESYS Development System.

Functionalities of the I/O mapping list:
● Displays I/O mappings for current node and all valid subsequent child nodes.
● Displays channel information with additional columns.
● Supports keyboard functions such as cut, copy, paste, delete, and select all within the editor

and within Excel spreadsheet (for bulk editing).
● Contains a toolbar for various actions, e.g. filtering, undo/redo and clear mappings.
● Supports single click edit and easy navigation using arrow keys.
● Improvised error handling:

– Allows to enter invalid mapping variables. This provides flexibility in bulk editing. Only
when saving the project, the errors - according to IEC 61131 standard - are displayed.

– In the message window, the error log is visible. The user can track the errors to their
corresponding channel in the editor.

● Allows multi-selection of rows and columns. (Random selection is not allowed.)

Configuring I/O mapping list
Automation Builder supports tree and list based editors for creating I/O mapping variables.
1. From the Tools menu, select Options.
2. Under Automation Builder, select the Editors tab.
3. Choose your desired mapping dialog and click OK.

● Choose tree based to display the I/O mapping in tree structure.
● Choose list based to display the I/O mapping as list with the functionalities of the

ToolBar.
● Choose both to display both the tree structure (I/O Mapping tab) and the list view (I/O

mapping list tab).

The I/O mapping list displays the channel information in offline and online mode. In online
mode, all columns are read-only. In offline mode, some columns are editable.

Available
channel infor-
mation

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5781

The order of the devices in I/O mapping list is synchronized with the order in the device tree.
The channels of a device are ordered by the device description file. If channels have a section,
the channel information is represented in a specific format.
Example: Fast counter: Actual value 1. These channels are listed at last position of a device.

Editing I/O mapping list
1. In the device tree, double-click IO_Bus to configure entire I/O mapping list of different I/O

devices.
2. Enter the variables and descriptions to map the I/O devices.

Do not start variable names with a number or a special character. When
saving the project, this generates an error. Example: 12input3, @input4.

3. Click Save Project to save the I/O mapping changes.

Toolbar
Especially in case of long I/O mapping lists, it might be helpful to filter the I/O mappings. For
this, click the “Filter” icon to display all available criteria for filter options.

When reducing the width of the editor, some filters might be hidden.

● Undo: Cancels the last change.
● Redo: Repeats the last change.
● Clear mappings: Deletes all variables and descriptions.

1.6.5.1.5 Setting standard configuration
If the target setting configuration is changed, standard configuration can be restored:
1. Open CODESYS Development System.
2. In the “Resources” tab, double-click “PLC Configuration”.
3. Select “Menu Extras è Standard Configuration”.

1.6.5.1.6 Later change-over of a target system
Changing the processor module type

In a project, you can change the target system by changing the type of processor module or
terminal base type. If possible, the device configuration of fieldbusses and interfaces is kept and
switched over to the device configuration of the new module.
Target change options:
● between platforms: from V2 platform to V3 platform (and vice versa)
● between module types: from AC500 (standard) to AC500-eCo (and vice versa)
● a combination of changed platform and changed module type

Filtering

Undo, redo and
clear

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5782

Target change from a V2 processor module to another V2 processor module
Target change options:

● AC500 V2 processor module Ü AC500 V2 processor module
● AC500 V2 processor module Ü AC500-eCo V2 processor module
● AC500-eCo V2 processor module Ü AC500 V2 processor module
● AC500-eCo V2 processor module Ü AC500-eCo V2 processor module

1. Close CODESYS.
2. Double-click the PLC_AC500_V2 <...> node and open the “PM5<...> Hardware” tab.
3. Select the desired V2 processor module from the “PM5xx Type” drop-down list.

4. Ensure the correct “Terminal Base Type” is selected and click [Change PM / TB type].

ð The new V2 processor module is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

Target change to PM595
Target change options:

● AC500 V2 processor module Ü PM595
● AC500-eCo V2 processor module Ü PM595

1. Close CODESYS.
2. Double-click the PLC_AC500_V2 <...> node.
3. Open the “PM5<...> Hardware” tab and select 'PM595-4ETH' from the “PM5xx Type”

drop-down list.

Procedure:

Procedure:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5783

4. With the Arithmetic type item, processing of Structured Text can be modified.
● “Mixed REAL/LREAL arithmetic” (default value):

Calculation of LREAL variables is extended to the extended co-domain of 64 bit. In
general, we recommend to keep the default setting as this setting provides enough
accuracy for code calculation.

● With “Only REAL arithmetic” the LREAL variables are processed as REAL variables
(co-domain of 32 bit).

5. Click [Change PM / TB type].

ð The PM595 is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

Target change from a V2 processor module to a V3 processor module
Target change options:

● AC500 V2 processor module Ü AC500 V3 processor module
● AC500 V2 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V2 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V2 processor module Ü AC500 V3 processor module

1. Close CODESYS.
2. Double-click the PLC_AC500_V2 <...> node and open the “PM5<...> Hardware” tab.
3. Enable “Change to AC500 V3 PLC” and select the desired V3 processor module from the

“PM5xx Type” drop-down list.

4. Click [Create V3 PLC].

ð The new V3 processor module is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

In case of a target change from AC500-eCo V2 to AC500-eCo V3, the I/O bus
and Ethernet configuration is kept.

Procedure:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5784

Customer libraries
CODESYS for AC500 V2 products contains different types of libraries:
● Standard CODESYS libraries
● Specific AC500 libraries
● Customer libraries
In general, the Standard CODESYS libraries and the AC500 libraries are automatically con-
verted during a target change from AC500 V2 to AC500 V3. Those libraries that cannot be
converted (e. g. because there is no matching in V3) are created automatically in the V3 Library
Manager and must be manually deleted by the user after the target change.
The customer libraries have to be converted manually using the Library Converter integrated
into the Automation Builder installation:
1. In Automation Builder click “File è Open project”.
2. Select the CODESYS library for AC500 V2 products which has to be converted.
3. After conversion of the library, open the view POUs in the device navigator and double-

click “Project Information”.
4. To have the library automatically available in the V3 project, enter “Company”, “Title” and

“Version” in the specific fields of the dialog.
Then, open the “Properties” tab. For the target change the new “Key” "CoDeSysV2Library"
has to be added. Under “value”, enter the name of the CODESYS library and click the
“Add” button.

Click “File è Save project” and install into the library repository.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5785

1.6.5.1.7 Firmware identification and update

Without direct access to the internet, a firmware update with the memory card is
also possible. Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339

General information
● Firmware for AC500 CPUs and communication modules is provided with Automation Builder
● Firmware versions specific for profile (Automation Builder major.minor version)
● Firmware download from Automation Builder in addition to other mechanisms possible
● Firmware can be stored to an Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

This is done using a standard PC card reader with memory card interface.
● Firmware image from the Internet: The firmware- and bootcode files can be downloaded

from the following ABB website: www.abb.com/plc. Use the according AC500 update
description.

After pressing “Update Firmware” the following dialog will be shown. It displays the firmware that
can be updated. If the CPU firmware version is lower than 2.5.0.0 the CPU firmware must be
updated before any Communication Module firmware can be updated.

If multiple firmware types of a device can be updated, all firmware types must be updated in one
step, thus selection in column update is possible on device level. Currently multiple firmware
types exist only for CPUs.
After pressing “OK” the firmware files are downloaded to the RAM disk of the CPU and the
update is triggered. Firmware update is only possible when:
● PLC is in “Stop”.
● The RAM disk has enough free space for the largest firmware file to download plus about

one kByte for control files.
● The gateway settings in the CODESYS V2.3 project are correct.
The PLC must be rebooted after the firmware update has been completed. This could be done
i.e. by power cycle or with PLC browser command “reboot”.
When updating the CPU firmware from a version below 2.5.0.0 to 2.5.x.x or higher the end of
the firmware update can’t be detected automatically. The user must observe the PLC to check
that firmware update has been completed before rebooting the PLC. See the documentation for
the CPU type on how completion of update is indicated.

Version information
Information on the firmware versions of the processor modules or communication modules, is
provided on the “Version information” tab.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5786

http://www.abb.com/plc

Remarks:
● The “Version information” tab displays the version identified on the device and the version

provided with Automation Builder.
● The firmware on the devices must match to the Automation Builder version. Upgrade or

downgrade to version supplied with Automation Builder is recommended (especially for
CPUs) to ensure correct functionality.

● The firmware type can be changed to the type required by the hardware configuration for
devices that support changing the firmware type. E.g., the onboard field bus communication
modules of PM595 that may be used as PROFINET, Ethernet or EtherCAT communication
module.

Firmware version on device matches version supplied with
Automation Builder.

Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Only for communication modules if CPU firmware must be updated
first. This happens when CPU firmware has version below 2.5.0.0.
Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Identified device is different from configured device, thus no firmware
update is possible. Happens only for Communication Modules.

No icon Firmware of device is not updateable or no newer firmware than the
initial version is available.

The [Update Firmware] button to download the new firmware is only enabled if
there is updateable firmware.

Updating the firmware of AC500 devices from the memory card
There are two options to update a device’s firmware from a file stored on a memory card:
● Update automatically during system start.
● Trigger the update via a PLC Browser command.
The following table shows the update possibilities per device:

State icons

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5787

Device / File From
memory
card during
System
start

From memory card with PLC-
Browser command

Comment

CPU Bootcode no yes -> sdboot x
with x = according version; e.g sdboot
2_3_1

CPU Firmware yes yes -> sdfirm x
with x = according version; e.g sdfirm
2_3_1

CPU Display yes yes -> sddisplay x
with x = according version; e.g sddis-
play 2_3

only for PM57x,
PM58x, PM59x

Communication
Module Firmware

yes yes -> sdcoupler x
with x = [1|2|3|4] = external Communi-
cation Module [1|2|3|4]
(also CM574-RS)

OnboardIO Firm-
ware

yes yes -> sdonboardio x
x = according version; e.g sdonboardio
1_1_6

only for PM55x,
PM56x

RTC Firmware yes yes -> sdrtcbat x
x = according version; e.g sdrtcbat
1_1_7

only for TA561-
RTC or TA562-RS-
RTC as option of
PM55x or PM56x

Please be aware, that during the update triggered with a PLC Browser Com-
mand the file SDCARD.INI on the memory card is evaluated too. For additional
details see Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339:

– Memory Card File System on the general memory card structure.
– The Command File SDCARD.INI for details on the SDCARD.ini file and its

keys.
– File content as of version V2.x for a detailed description of the behavior of

the update keys.

NOTICE!
No POWER OFF during flash process!
During the flash process it is not allowed to switch the power off; otherwise, the
CPU could be damaged and unavailable anymore.
During the display update it is powered off and on automatically!

Update from memory card during system start
To update the firmware of the AC500 CPU via memory card without control by PLC-Browser
commands, proceed as follows:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5788

1. Download and extract the update files on your memory card or prepare the memory card,
see Ä Chapter 1.6.6.2.4 “Storing/Loading the Firmware to the memory card for AC500 V2
products” on page 6354.

2. Insert prepared memory card into the CPU. The file SDCARD.INI on the memory card
contains settings that automatically perform the update (details see Ä Chapter 1.6.6.2.2.2
“Command file SDCARD.INI for AC500 V2 Products” on page 6342).

3. Switch power on.
The individual steps are indicated as follows:

Process Indication Remark
Reading the firmware RUN LED flashes fast If you remove the memory card

during reading, the previously
stored firmware version is kept.

Flashing the firm-
ware

RUN LED and ERR LED
flash fast

Warning: If the control voltage is
switched off during flashing, the
firmware will be corrupted!

Firmware update
completed success-
fully

RUN LED flashes slow
(app. 1Hz)

Incorrect firmware
update

ERR LED flash slow
(app. 1Hz)

ð Updates operation starts (green LED blinking = reading from SD card / red and green
LEDs blinking fast = flash process).

4. Reboot the CPU to load the updated firmware.

A specific firmware version can be loaded. This is done by setting the parameter CPUPM5x1=2
or 3 and creating an according key for the CPU. The firmware has to be copied to the according
directory. See chapter The Command File Ä Chapter 1.6.6.2.2.2 “Command file SDCARD.INI
for AC500 V2 Products” on page 6342 .

If the file SDCARD.INI contains the parameter setting FunctionOfCard=3 (firm-
ware update / load user program), first the firmware and then the user program
are read from the memory card and then stored in the according Flash memory.

Update from memory card with PLC browser commands (Online mode)
To start a firmware update from the PLC browser, it is necessary to be logged in into the CPU
with your PC.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5789

1. Open the PLC browser from the Resources tab (see above).
2. Insert the memory card with the correctly set SDCARD.INI file (see Ä Chapter 1.6.6.2.2.2

“Command file SDCARD.INI for AC500 V2 Products” on page 6342) and corresponding
firmware files on it into the PLC (see Ä Chapter 1.6.6.2.4 “Storing/Loading the Firmware
to the memory card for AC500 V2 products” on page 6354).

3. Write the requested command into the PLC browser.
4. The corresponding command is now activated, for example sdfirm 2_5_1 command.
5. If the firmware update was successful, DONE is shown in the PLC Browser.
6. Remove the memory card and restart the CPU to load the new firmware.

NOTICE!
The memory card has to be removed before restart!
To get information about the firmware version of the CPU enter the command
rtsinfo into the PLC-Browser.
Only for AC500-eCo PM5x4 modules with firmware version < 2.x: First the CPU
firmware has to be updated from V1.3.x to V2.0.x. After doing the update the
CPU has to be restarted.
Then any module can be updated as described in this chapter!

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5790

Update via FTP
With AC500 Firmware above V2.1 it is possible to update a CPU via the FTP server.

Only PLCs with onboard Ethernet (i.e. AC500 CPU with Ethernet) and firmware
version 2.1.0 or higher support the FTP server!

1. To update your CPU via FTP, you first must configure and activate the FTP server with the
set checkbox "Allow Firmware update".
Details: Ä Chapter 1.6.5.3.8.3 “Configuration of FTP server (>= CBP 2.4) ” on page 6191.

2. Connect to your CPU's system RAM disk (i.e. memory location "ramdisk").
Details: Ä Chapter 1.6.5.3.8.4 “Connection to a PLC running a FTP server” on page 6192.

3. Switch your CPU to STOP.
4. Copy the according .gza file to the system RAM disk (= memory location ramdisk):

Product Name of Firmware File
PM55x-ETH, PM56x-
ETH

Pm55xE.gza

PM57x-ETH, PM58x-
ETH

Pm58xN.gza

PM59x, PM59x-ETH Pm59xRD.gza

PM595-x-4ETH Pm595.gza

ð The CPU will automatically update its firmware with the downloaded file, flashing the
RUN and ERR LEDs.
As of V2.5 copy file SDCARD.INI to the system RAM disk. As of V2.5 all firmware
updates are triggered by the command file SDCARD.INI. This is independent from
the way of the firmware update (memory card, FTP, write file to plc, …). In addition
a result file of the firmware update is generated (SDCARD.RDY, identical path as
SDCARD.INI). The evaluation of this file shows the results of the updates.

5. Wait until all LEDs ceased toggling.
6. Power cycle your PLC and the new firmware will be loaded.

Potential problems:
● If you cannot connect to your CPU, check if the FTP server is configured and running

correctly.
● If you cannot download the file, increase your configured "Sessions". Some FTP clients

require more than one FTP connection for their operations, because logins and downloads
are handled in separate sessions.

● If you downloaded the .gza file into the RAM disk, but the CPU does not start to update (i.e.
the LEDs do not toggle):
– Check, if the option Allow firmware update is set for the FTP server.
– Check, if the CPU is in STOP state; in RUN state no firmware update is allowed.
– Check, if you copied the correct firmware file.
– Check, if you copied the file into the correct memory location (correct is ramdisk -

incorrect is "sramdisk", "userdisk", "flashdisk", "sdcard").

Update steps

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5791

Update PM595 firmware
Firmware update of the CPU

To update the firmware of the PM595 CPU proceed as follows:
1. Login on the CPU using Automation Builder.
2. Choose “Version Information” Menu.
3. Click “Update” at the bottom of the Menu

ð Run and ERR LED are blinking.

4. Wait until the blinking stops.
5. Reboot the CPU.
6. Update the internal communication module to actual PROFINET Firmware.

Firmware update of internal communication module for PROFINET

ABB recommends that users carry out the firmware update via Automation
Builder. Ä Chapter 1.6.5.1.7.2 “Version information” on page 5786

To update the internal communication module to actual PROFINET Firmware proceed as fol-
lows:
1. Unzip the file „Update_PNIO.zip“ on memory card.
2. Insert the memory card into the PM595 CPU.
3. Switch Power Off/On:

ð Run LED blinks

Run and Rdy LEDs on the left side of the PM595 (left column) for 1st. Internal
communication module blink
RUN LED blinks
Run and Rdy LED on the left side of the PM595 (right column) for 2nd. Internal
communication module blink
RUN LED blinks slowly

The procedure should require 3 – 5 minutes

4. Remove the memory card.
5. Switch Power Off/On.
6. Login in Automation Builder:

Navigate to Version Informations.

ð Firmware V 2.8.1.2 or newer for Internal communication module must be displayed.

7. Update Internal communication module on EtherCAT Firmware

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5792

Firmware update internal communication module of PM595 for EtherCAT

ABB recommends that users carry out the firmware update via Automation
Builder. Ä Chapter 1.6.5.1.7.2 “Version information” on page 5786

To update the internal communication module to actual EtherCAT Firmware proceed as follows:
1. Unzip the file „Update_ETHCAT.zip“ on memory card.
2. Insert the memory card into the PM595 CPU.
3. Switch Power Off/On.

ð Run LED blinks o Run and Rdy LEDs on the left side of the PM595 (left column) for
1st. Internal communication module blink
RUN LED blinks
Run and Rdy LED on the left side of the PM595 (right column) for 2nd. Internal
communication module blink
RUN LED blinks slowly

The procedure should require 3 – 5 minutes.

4. Remove the memory card.
5. Switch Power Off/On.
6. Login in Automation Builder:

Navigate to Version Informations.

ð Firmware V 4.2.23 (2) or newer for Internal communication module must be displayed.

Update CI52x-Modbus firmware
Requirement: A firmware update file is available, e.g. AC500_CI52x_Firmware_V3.2.8.bin.

The CI52x Modbus firmware update is only available in the Automation Builder
IP Configuration Tool.

Installation of the IP configuration tool
1. In Automation Builder click “Tools è Installation Manager” to start the Installation Man-

ager.
2. Close any other running instances of Automation Builder. Then, click “Modify” in the

Installation Manager.
3. Select the option “IP Configuration Tool” from the list and start the installation of the IP

Configuration Tool.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5793

Firmware update procedure
1. In the IP Configuration Tool click “Scan” to initialize a device scan.
2. From the list select the CI52x-MODTCP device(s) which shall be updated and click “FW

Update”.
3. Select the firmware update file (e.g. AC500_CI52x_Firmware_V3.2.8.bin) to initialize a

signature check and start the update procedure.
4. After the update, click “Scan” again to retrieve the firmware version of the device.

Troubleshooting
After the IP Configuration Tool has been installed, the firmware update of the CI devices can
be initialized. If the CI firmware update fails, check the troubleshooting hints and follow the
instructions.
General hints
● Close all unused applications on the update PC and do not open Automation Builder or any

other applications during the firmware update.
● Stop the communication between AC500 PLC and the CI52x devices and disconnect the

Ethernet connection of the update PC and the CI Modbus device(s).
● Do not close the IP Configuration Tool during a firmware update and do not switch off a CI

Modbus device during the firmware update.

During a firmware update the operation of the device(s) is stopped. After the
update, all outputs are set to zero.

Erroneous firmware update

Error Solution
Error 1: Package Timeout
Due to a primitive firmware update protocol
a fast and stable network connection is
required. Otherwise the update packages
cannot be transferred within the requested
time and a timeout occurs.

Locate the PC on which the update is per-
formed as near as possible to the stationed CI
Modbus devices. Avoid network switches.

Error 2: Unable to read device status
After the firmware update the IP Configura-
tion Tool reads out the status of the updated
device in order to check if the update was
successful.

Rescan and repeat the update. If this doesn't
work, power cycle the device and retry the
update.

Error 3: IP is not unique
If more than one device hold the same IP
address, a firmware update is not possible as
the update command is IP based.

Correct the IP address, rescan and repeat the
update. If this doesn't work, power cycle the
device and retry the update.

Error 4: Internal Error
An internal error on the CI52x Modbus device
occurred during the firmware update.

Rescan and repeat the update. If this doesn't
work, power cycle the device and retry the
update.

Error 5: Cannot connect to device
The TCP communication is not sufficient for a
connection. Increase the connection quality.

See Error 1: Package Timeout.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5794

Signature check failed
After the selection of the firmware file (*.bin) a signature check is performed. If either the firm-
ware file or the signature file is corrupt, the signature check fails. In the event of an erroneous
signature check, perform the following steps:
● Ensure the signature file is stored in the same directory as the firmware file.
● Check the file names. The name of the signature file must be the same as the firmware file

+ attached ".sig”.

Name of the firmware file: c:\AC500\AC500_CI52x_Firmware_V3.2.8.bin
Correct name of the signature file: c:\AC500\AC500_CI52x_Firmware_V3.2.8.bin.sig
Wrong name of the signature file: c:\AC500\AC500_CI52x_Firmware_V3.2.8.sig

File names

Indeterminate device firmware version
If the firmware version of the device cannot be determined, an error occurs. In this case, check
that the device and the update PC are located in the same subnet and ping the device. If the
ping is successful you can use the IP Configuration Tool to retrieve the device firmware version.

PC Device Result
192.168.14.71 /
255.255.255.0

192.168.14.10 /
255.255.255.0

OK

192.168.10.71 /
255.255.255.0

192.168.14.10 /
255.255.255.0

ERROR

192.168.10.71 / 255.255.0.0 192.168.14.10 / 255.255.0.0 OK

1.6.5.1.8 MultiOnlineChange tool
Introduction

The MultiOnlineChange tool/plugin for Automation Builder enables firmware update, download
and online change of the same project to several PLCs.
Technically, the tool creates and executes a CODESYS 2.3 command file (*.cmd file) and
several batch files, and deletes both types after an operation is finished.
The *.cmd file selects the configured gateway, loads the *.ri file for the PLC and performs the
selected task (firmware update, online change, online access or multi download).
The batch files copy the *.ri file for each PLC to a specified directory.

Preconditions
● An Automation Builder project has been created and tested.
● A V2.3 CODESYS project in the master PLC has been created.
● 1 download has been issued to create all the files needed for the MultiOnlineChange tool.

The MultiOnlineChange tool may not work with the autoload option enabled in
CODESYS V2.3.

Please check your current autoload option in CODESYS V2.3 in “ Project
è Options è Load&Save” disable the option "Auto load".

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5795

The MultiOnlineChange tool relies on CODESYS V2.3 runtime system.

As a consequence it will not work with AC500 V3 products.

Usage of the MultiOnlineChange tool
Overview

● Defining of PLCs with IP address and a folder where the *.ri file shall be stored for each
PLC.
The PLC on position one of the “PLC” tab list must be the master PLC. This is indicated by
an orange frame. Ä “ “PLCs” tab” on page 5798

● Loading the given firmware file first to the PLC, and reboot it afterwards to start with the new
firmware. Ä ““Settings” tab” on page 5796

● Performing “Multi Download” to download the project to all PLCs. Ä Chapter 1.6.5.1.8.4
“Performing a multi download” on page 5799

● Changing the project in the master PLC. It is recommended to use the MultiOnlineChange
tool to start CODESYS. Ä Chapter 1.6.5.1.8.6 “Editing the master PLC” on page 5802

● Performing “Online Change” for all PLCs. Ä Chapter 1.6.5.1.8.7 “MultiOnlineChange”
on page 5802

● Showing the results of the download/online changes. Ä Chapter 1.6.5.1.8.5 “Verifying the
download/online change success” on page 5800

Step-by-step guide

General options

“Settings” tab

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5796

● In the “Project” text box, you can enter the project, which shall be distributed to all PLCs.
This can either be done via opening a project file from the harddisk (in MOC stand-alone
tool, see figure above) or via selection of the project, if the MOC was started from within
Automation Builder.

● The field “Path to CODESYS” shows the path, where the file CODESYS.exe is available.
This path is read from the registry. If the path cannot be retrieved from the registry, the tool
will immediately exit after start-up.

● The field “Default Path for *.ri files” is an optional field. It is recommended that you define a
folder here.

Due to compatibility reasons do not change the proposed path for Vista/Win-
dows 7.

● If “Ignore PLC if IP address is not available” check box is enabled, then all functions will
ignore any PLC, which does not reply to a ping command (the IP state of the PLC is shown
by different background colours). In normal operation, this check box should be enabled.
Otherwise the tool will try to access the defined IP in any case.

● If “Start PLC program after Multi Download” check box is enabled, the program is started on
each PLC after a multidownload.

● If “Create boot project” check box is enabled, a boot project is created.
If required, change the default setting for the Max. timout for results.

● The field “Gateway Driver” allows the selection of one of the following two options:
– ABB TCP/IP Level 2 AC
– TCP/IP

● If “Execute commands with CODESYS GUI” check box is enabled, CODESYS V2.3 UI will
open up while the commands are executed. If the check box is disabled, all commands will
be handled in background.
“ Execute commands with CODESYS GUI” check box is only visible in the Stand-Alone tool.

● “Update Firmware first” check box shall be enabled, if the user wants to update the PLC
firmware before sending any configuration to the PLC. The tool supports the update of up to
5 firmware files per PLC:

● The user has to enter the name of each firmware file in the text box Selected firmware file
1-5.

● The user has to select the type of any given firmware file (e.g. firmware, boot code or
display) within the related box File type.

● The timeout to download one file and to reboot the PLC after all files have been downloaded
may be extended in the box Activation delay(s).

● Save: After the definition of PLCs and settings is finished, all data can be saved in an XML
file.

● Load: Load a previously saved XML file.
● Online Change: Perform a plausibility check and start online change.
● Multi Download: Perform a plausibility check and start multi download.
The status bar below the buttons shows information about the status of operations.

Buttons and
status bar

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5797

The first row of the table defines the master PLC, which will be used for changing/testing the
project before a download or online change is performed to the other PLCs listed in the table.
In the columns of the table, the following data is entered:
● Column IP address: Enter the IP address of the PLC.
● Column Directory: Define the directory, in which the *.ri file will be stored. Each PLC must

have its own directory. If you type a directory which does not exist yet, it will be created later
during multi download.

If you have defined a default folder for *.ri files on the “Settings” tab, this column
will be completed automatically by entering an IP address. In this case, the
defined folder is the default folder and a subfolder with IP of the PLC (dots in
the IP address are replaced by "-").

Due to compatibility reasons do not change the proposed path for Vista/Win-
dows 7.

● Column Comment: The entered text has no influence on the operation of the MultiOnline-
Change tool, but will be stored in the data XML file.

● Column Go online: By pressing this button CODESYS is started. You can log in to the PLC
defined in this row.

● Column Show results will be explained in Ä Chapter 1.6.5.1.8.5 “Verifying the down-
load/online change success” on page 5800.

Each IP address and each directory must be unique. Do not define the same IP or directory
twice. If you do so, you will get an error message when you try to perform an action.
The context menu of the table can be opened by right-click and contains the following functions:
● Add single PLC line: Adds 1 row to enter a new PLC.
● Delete selected PLC lines: Deleted selected rows.

“PLCs” tab

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5798

● Add IP range: A range of IP addresses is added by defining the start IP address, the end IP
address and the increment. E.g. if you select start IP 192.168.3.1 and end IP 192.168.3.10
and increment 3, the following IP addresses will be created:
– 192.168.3.1
– 192.168.3.4
– 192.168.3.7
– 192.168.3.10

● Clear Data: Deletes all entries in the table.
● Check IPs: Performs a check, using the ping command to see, if the defined PLCs are

available. After the check, the IP addresses of all available PLCs are shown with green
background, unavailable PLCs with a red background. White background means state
unknown.

Performing a multi download
After you made settings and entered PLCs you want to download the project to, you can start a
multi download by clicking the button Multi Download.

Important!

A multi download should be the first action you perform (after the configuration)
when you start using the MultiOnlineChange tool. The multi download builds
necessary infrastructure by performing the following tasks:

– It creates all directories defined in the PLC table (this is the first and only
time when folder are created).

– It copies the *.ri files to the folders.

Without folder and the corresponding *.ri files in them, online access and online change are not
possible. In fact, an online change will be executed even if folders or files are not available, but
any PLCs without a defined folder or *.ri file will be skipped.
An error message will be shown if there are:
● Rows without IP address
● Rows without a defined directory
● Duplicate IPs or directories
During the multi download, no other operation is possible and the tool can no longer be oper-
ated until the operation is finished.

Multi download (as well as online change) might take a long time, depending
on the number of PLCs. Each PLC requires approximately 15 seconds (without
firmware update), i.e. 100 PLCs would require about half an hour. Therefore the
timeout parameter in the tabpage Settings has to be adapted according to the
project dimension.

Important!

If you change the IP addresses of a PLC or the folder where the corresponding
*.ri file is stored, a multi download should be performed again to rebuild the
infrastructure (folders etc.).

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5799

Verifying the download/online change success
The verification is done via upload of a *.log file from each PLC where all operations are logging
their success or failure. For diagnostic purposes these *.log files are not deleted afterwards.
They are stored in the installation directory of the Automation Builder.
After starting the download/online change the PLC tab is active and will indicate the success or
failure of the operation at the end by using different colored lines:
Example view after a run:

● GREEN: All successfully done.
● ORANGE: The download was done, but there were diagnostic errors, e.g. configuration

faults or run time errors.
If the button “Show Results” is pressed the contents of the selected PLC log file is dis-
played:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5800

● RED colored line: Perhaps the PLC is offline, the IP address is wrong or the project has a
wrong target (so download will be rejected immediately). In these special cases there is no
detail information available because a log file could not be uploaded.
If the button “Show Results” is pressed the following window is displayed:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5801

● "MultiDownloadDiag.msg" is the log file for multi download operation.
● "LoadFirmwareDiag.msg" is the name of the log file of the firmware update operation.
● "OnlineChangeDiag.msg" is the name of the log for the online change operation.

Editing the master PLC
After downloading the project to all PLCs, you can change the project. To do so, click the "Go
Online" button of the first row in the PLC table. CODESYS will start with the defined project and
log in.
You can now log off, change the project, compile, log in, perform an online change etc. as usual.
When you have finished, close CODESYS.

The tool cannot be operated during master edit.

MultiOnlineChange
If you made no breaking changes to your project (and thus only altered the program in the
master PLC with online change "“ no clean, rebuild, etc …), you can now perform an online
change on all connected PLCs.
To do so, click the button “Online Change”. During the operation, the MultiOnlineChange tool is
deactivated.

Online access
You can log in to any PLC by clicking the button “Go Online” in the table row of the PLC. You
can log in in more than 1 PLC, as long as you do not log-in to the master PLC. If you do so, the
tool operation is deactivated again (see Ä Chapter 1.6.5.1.8.5 “Verifying the download/online
change success” on page 5800). If the corresponding *.ri file is not available, online access
cannot be performed and an error message is shown.

Important!

Do not edit any PLC except the master PLC!

Limitations in V2.x

Do not use fixed IP data!

In the IP settings parameter dialog of an Ethernet Communication Module there
is an option to use the given IP data. If this option is used in the master project
the MultiOnlineChange tool is not capable of loading the project to other PLCs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5802

Modify wait time of MultiDownload/Online change
Depending on the network infrastructure the MultiOnlineChange (MOC) might run into errors
due to timeouts. The user will not be informed about these timeouts directly, but each timeout
might result in errors.

“Logfile cannot be read” (red line in PLC list even though the download/change was suc-
cessful).
“Online Change not possible” (PLC changes state from “run” to “stop” during Online Change,
because the wait time for loading the project was not sufficient).

Examples:

To avoid these timeouts and the resulting errors the user can extend the wait times of
the MultiOnlineChange plug-in/tool. These times can be adapted in the template XML file
“CmdTemplate.xml” by increasing the values in the delay lines. The file has the following
content:
<CmdTemplates>
...
<DownloadPLC>
 device instance "MyDriver"
 device parameter "Address" @@@ipAddress
 device parameter "Port" @@@port
 device parameter "Motorola byteorder" Yes
 onerror continue
 delay 1000
 query off no
 online login
 delay 5000
 online logout
 waitevent ONL_LOGGEDOUT
 query off no
 online login

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5803

 delay 3000
 online filewrite @@@iniFileForLogging
 waitevent ONL_FILEWRITTEN
 online filewrite @@@uniqueIdent
 waitevent ONL_FILEWRITTEN
 online logout
 waitevent ONL_LOGGEDOUT
 query off ok
 online login
 waitevent ONL_PROGRAMLOADED
 waitevent ONL_FILEWRITTEN
 delay 3000
 @@@bootproject online bootproject;
 waitevent ONL_FILEWRITTEN
 delay 10000
 online logout
 waitevent ONL_LOGGEDOUT
 query off no
 online login
 delay 15000 @@@enable online run
 delay 20000 online fileread @@@uploadLogFile
 waitevent ONL_FILEREAD
 delay 5000 online logout
 file save
 delay 1000
 system "@@@handleRiBatch"
 delay 2000
</DownloadPLC>
...
<OnlineChangePLC>
 project loadcompileinfo "@@@plcDirectory\@@@projectName.ri"
 device instance "MyDriver"
 device parameter "Address" @@@ipAddress
 device parameter "Port" @@@port
 device parameter "Motorola byteorder" Yes
 delay 10000 onerror continue
 query off no
 online login
 delay 10000 online filewrite @@@iniFileForLogging
 waitevent ONL_FILEWRITTEN
 online filewrite @@@uniqueIdent
 waitevent ONL_FILEWRITTEN
 online logout
 waitevent ONL_LOGGEDOUT
 query off ok
 delay 1000
 online login
 waitevent ONL_PROGRAMLOADED
 delay 3000
 @@@bootproject online bootproject
 waitevent ONL_FILEWRITTEN
 delay 10000
 online logout
 waitevent ONL_LOGGEDOUT
 query off no
 online login
 delay 15000
 online fileread @@@uploadLogFile
 waitevent ONL_FILEREAD
 delay 3000 online logout
 file save

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5804

 delay 1000
 system "@@@handleRiBatch"
 delay 2000
</OnlineChangePLC>
</CmdTemplates>
Each delay defines a wait time in milliseconds, which can be adapted by the user. As an
example some of the delays are emphasized above:
● The three emphasized delay times in tag <DownloadPLC> can be increased to ensure that

the MOC waits long enough for the log-file to be accessible after reboot before reading it.
● The four emphasized delay times in tag <OnlineChangePLC> can be increased to ensure

that MOC waits long enough for loading the project, logging in to PLC and reading the
log-file.

1.6.5.1.9 Embedding of AC500 V2 libraries
With new Automation Builder releases often new AC500 V2 system libraries are being installed.
In difference to AC500 V3 libraries, the AC500 V2 libraries are not versioned. An update of the
Automation Builder might lead to the situation that a login to the PLC is only possible after a
rebuild and with an online change – although the application has not been changed and the
user is working with a previous version profile.

To avoid this situation, the AC500 V2 libraries can be embedded into the Automation Builder
project.

The feature “Embedding of AC500 V2 libraries” is available as of Automation
Builder 2.1.1.

1. Right-click on the “App” node of your “PLC_AC500_V2 <...>” project and click “Add
object”.

2. Select “Library Manager” in the appearing window and click [Add object].

ð “Library_Manager” appears below your “App” node

3. Double-click on the “Library_Manager” object in the device tree.

ð The Library manager editor appears.

4. Click the [Add] button and embed your user defined libraries.

Situation

Avoidance

Embed user
defined libraries

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5805

Success or failure of the embedding will be displayed in the message window below.
In case of success the libraries are automatically added to the corresponding CoDeSys V2.3
project

1. Select your libraries to remove (one or more libraries can be removed) in the library
manager editor and click the [Remove selected] button.

ð A confirmation prompt appears.

Remove user
defined libraries

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5806

2. Click [Yes]

ð Information messages are displayed in the message window and the selected libraries
are removed from the CoDeSys V2 project.

● Click [Embed / Update all] in the Library Manager editor.

Via the [Embed / Update all] button all the system libraries are embedded into
the Automation Builder project.

The system libraries are not added into the CoDeSys V2 project.

The CoDeSys V2 project will use automatically (for the referenced system libra-
ries) these embedded system libraries instead of the system libraries of the
latest Automation Builder installation.

● Click [Remove all] in the Library Manager editor.

Via the [Remove all] button the system libraries will be removed from the
Automation Builder project.

The system libraries won’t be removed from the CoDeSys V2 project.

The CoDeSys V2 project will use automatically (for the referenced system libra-
ries) the system libraries of the newest Automation Builder installation.

1.6.5.1.10 Migration of third party devices
After an update of Automation Builder the device repository contains only ABB devices. The
third party devices which were installed into previous versions of Automation Builder are not
automatically installed in the newest version profile. This has to be triggered by the user.

Embed system
libraries

Remove system
libraries

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5807

The feature “Migrate third party devices” is available as of Automation Builder
2.1.1.

1. Click “Tools” in the main menu of Automation Builder.
2. Click “Migrate third party devices” in the drop-down list.

ð The window Version profile selection appears.

3. Select a version profile in the drop-down list containing previous Automation Builder /
Control Builder Plus profiles. The active profile does not appear in the list.

ð After selection of a previous version profile, all the third party devices which have been
installed inside this version profile are listed.

It is not possible to select or deselect some third party devices. Importing will affect all
the third party devices which are listed in the list view.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5808

4. Select [Import].

ð During the migration the message window displays success or failure of device migra-
tion.

In case of failure during the migration the affected third party device
description has to be installed manually via main menu “Tools
è Device Repository è Install”.

In the status bar, the third party device which is on Migrating: <...> is displayed on the
left side.
The import operation can be cancelled by clicking the “Click here to CANCEL this
operation” link on the right side of the status bar. This becomes effective when the
migration of the just migrating third party device is finished.

5. To close the dialog select the [Close] button of the Version profile selection.

1.6.5.1.11 Advanced IO device handling
Automation Builder provides the Advanced IO Device Handling feature for configuring identical
IO device types at multiple instances.
This feature is supported by the following commands that works with IO devices only.
● Generate DUT
● Map to Existing DUT
● Release DUT mapping
These commands work on individual nodes and on CI (communication interface) level nodes.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5809

Generating DUT
Each device generates two DUTs. One for the input and one for the output. Some devices
contain only input or output type. In such cases, the device generates only one DUT of the
relevant type.
● Right-click on the desired IO device and select “Generate DUT” to generate a DUT for an IO

device.
The following example shows how to generate DUTs at CI level node.
● In the device tree, right-click on a master node such as PNIO_Controller and select

“Generate DUT” to create DUTs for the child nodes.
● The DUTs of child nodes are generated in “Application è App
è IO_Device_Generated_Items” folder.

● Generated DUT considers channels with BYTE datatype as members. If channels with
BYTE datatype are not present in the given hierarchy, it adds the members with another
higher datatype.

● Channels with BOOL datatype are not considered.

Mapping to existing DUT
This command is enabled for the IO device when the IO device is not mapped and when DUTs
of matching size (calculated based on device channel list) are available in “Application è App
è IO_Device_Generated_Items” folder.
1. Right-click on an IO device and select “Map to Existing DUT”.

ð Enter Instance Name dialog is displayed.

2. Enter the instance name which satisfies IEC naming validations and unique name in
global scope.

3. Click “OK” to create a global variable associated with the mappings in DI (PRG).
If you want to view mapped instances, double-click “DI (PRG)”.

With the 'Map to Existing DUT' command:
● Any device can be mapped only to one input DUT and one output DUT. If you have already

mapped an input DUT, only the output DUT is shown in the options list and vice-versa.
● Mapping is also supported at CI level nodes. To create global variables for CI level nodes,

the address of the first child is considered.

Releasing DUT mapping
This command is enabled on an IO device only when an IO device is mapped either to input,
output or both DUTs. You can use this command to release (or revert) mappings and to delete
global variables created during 'Map to Existing DUT'.
Right-click on an IO device and select “Release DUT Mapping”. The mapped DUT instance is
deleted.

Using DUT variables in CODESYS application
1. In the Automation Builder project, double-click “Application” to launch CODESYS applica-

tion.

ð CODESYS application is launched. CODESYS application contains mapped DUT
instances.

2. Double-click “PLC_PRG” to create DUT variables.
3. Add DUT variables based on mapped DUTs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5810

For further information on mapping DUTs, see section Ä Chapter 1.6.5.1.11.2 “Mapping to
existing DUT” on page 5810.
For example, in the PLC_PRG, add analog I/O and digital I/O. If you insert a dot at a position
where an identifier should be inserted, then a selection list is open, offering all the input and
output variables which are found in the project.
After adding DUT variables, rebuild the program in CODESYS application using “Project
è Rebuild”.

Support for CI level node
The user can create DUTs for the entire hierarchy of CI level node (for example, IO_BUS), by
right-clicking on the desired CI level node and by selecting “Generate DUT”. Further, all the
DUTs are generated in “Application è App è IO_Device_Generated_Items” folder.
● The command generates DUT for the node itself and also for all child nodes.
● The DUT generated for the CI level node contains generated DUTs for the child nodes as

their members.
● For every execution, the command checks, if any new child node is added and generates

DUT.
If you delete child nodes in CI level node (for example, IO_BUS), the DUTs generated for
these child nodes are not deleted automatically. You should delete the DUTs manually in the
“Application è App è IO_Device_Generated_Items” folder if desired.

Configuration check
Configuration check for size is enabled to ensure that all devices are mapped with DUTs of the
correct size. In case of any changes in the mapped DUT, configuration check verifies the size of
the DUT. If it fails, an error message is displayed in Automation Builder messages window and
does not allow to launch the application. This check can be performed in “Create configuration
data”.

1.6.5.2 PLC devices and components
1.6.5.2.1 Device repository

The Device Repository of Automation Builder manages the pool of devices that can be used in
the PLC configuration.
You install or uninstall devices in the “Device Repository” dialog box. The system installs a
device by reading the device description files, which define the device properties for configura-
bility, programmability, and possible connections to other devices.
You can use the devices provided in the device repository by adding them to the device tree of
your project.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5811

1. Click “Tools è Device Repository”.

ð The “Device Repository” dialog box opens.

[Edit Locations]: Changes the default repository location. The devices can be man-
aged at different locations.
[Install] / [Uninstall]: Installs or uninstalls devices.
[Renew device repository]: Updates the device list, e.g. after uninstallation of a device.
[Details]: Provides technical details on the selected device.

2. Select the install location. “System Repository” is set by default.

The device repository cannot be changed manually, e.g. by copying or deleting
files. Use always the Device Repository dialog to add or remove devices.

Dialog device
repository

Installing
devices

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5812

1. Click [Install] and select the appropriate file format.

ð The “Install Device Description” dialog box opens.

2. Select the file path of the device description.
3. Select the file type filter of the required device description.

ð All device descriptions of the selected file type are listed.

4. Select the required device description and click “Open”.

ð Automation Builder adds the device description to the matching category of your
device repository.
If errors occur during installation (for example, missing files that are referenced by the
device description), then Automation Builder displays them in the lower part of the
device repository dialog box.

During the installation the device description files and all additional files refer-
enced by that description will be copied to an internal location. Altering the
original files will have no further effects to an internal location.

The changes take only effect after reinstalling the corresponding device(s).
The version number shown in the information section of the device should be
verified.

Select the device you want to remove and click [Uninstall].
The device is removed from the list.

Uninstalled devices which are used in existing projects are indicated by the
symbol . The device will not be configured properly.

Uninstalling
devices

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5813

1.6.5.2.2 PLC start-up
Connection of devices

All installed devices that are available in Automation Builder are listed in the Ä Chapter
1.6.5.2.1 “Device repository” on page 5811.

Configuring devices
Modify your Automation Builder project by adding device objects. Preset items can be replaced
in the same way.
1. In the device tree, right-click an item node. Select “Add object”.

2. Select the desired object and click [Add object].
3. Double-click the new object in the device tree to configure the device settings. Depending

on the selected item different configuration tabs are available.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5814

Symbolic names for variables, inputs and outputs

The IEC naming rules are not checked during input in Automation Builder.

Devices with I/Os provide an I/O Mapping tab in their configuration editor where the available
I/O channels can directly be mapped to a global variable.
The corresponding variable declarations are automatically created in a global variables object in
a subfolder of the Global Variables section in the CODESYS project.
All available I/O channels can easily be assigned to a variable.

The variable is automatically added to the Global Variables in the CODESYS project after recre-
ating the configuration data Ä Chapter 1.6.5.4.1.1 “Creating configuration data” on page 6196.

AC500 uses Motorola Byte Order (Big Endian).

The numbers in column Channel correspond to the channel numbers only and
not to the bit position inside the WORD variable.

Only entries with a data type set in column "Type" can be mapped. These
entries can be expanded to show the available I/O channels.

If the project has been imported from a previous Automation Builder version,
all variables should be checked to avoid inconsistencies concerning the I/O
mapping.

The variable is automatically added to the global variables in the CODESYS project after
(re)creating the configuration data:

An additional GVL (Global Variables List) can be created and transferred to
CODESYS V2.3. Editing of lists created in CODESYS V2.3 is not possible.

Update of AC500 devices
Perform a firmware update to update AC500 V2 devices. Ä Chapter 1.6.5.1.7 “Firmware identifi-
cation and update” on page 5786

Input and output
mapping

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5815

Comparing objects
To compare similar objects within a project (such as the project configuration) select both
objects. Right-click and select Compare Objects to see the differences.

IP settings
Configuration of the IP settings with the LED display

The IP settings for the PLC can be set directly on the processor module via keypad and LED
display.
See Ä Chapter 1.6.4.1.5.4.3 “Configuration” on page 5428.

Configuration of the IP settings with the IP configuration tool
The IP address for AC500 devices can be set or changed in Automation Builder using
● the IP configuration tool which is described in the following.
● the 'Communication Settings'. Ä Chapter 1.6.5.2.2.2.3 “Configuration of communication via

Ethernet (TCP/IP)” on page 5829

As an alternative the IP address can be changed at the hardware device itself. Ä Chapter
1.6.4.1.5.4 “Description of the function keys” on page 5426

The IP configuration tool can be used
● to set or change the IP address of devices.
Ä Chapter 1.6.5.2.2.2.2.2.2 “Changing the IP address” on page 5821

● to scan the network for available hardware devices.
Ä Chapter 1.6.5.2.2.2.2.2.1 “Network scan” on page 5819

The IP configu-
ration tool:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5816

● to update the firmware of devices.
This functionality is only supported if the IP configuration tool is used stand-alone.
Ä Chapter 1.6.5.2.2.2.2.2.3 “Firmware update” on page 5822

● to activate certain functionality on hardware devices.
This feature is only available on AC500 V3 devices.
Ä Chapter 1.6.5.2.2.2.2.2.4 “Blink functionality” on page 5826

The IP configuration tool is part of Automation Builder and can be called via “Tools è IP-
Configuration”.
Further the IP configuration tool can be used stand-alone without an Automation Builder appli-
cation running. The stand-alone variant requires a separate installation via the Installation
Manager Ä Chapter 1.6.5.2.2.2.2.1 “Stand-alone installation” on page 5817.
After the installation, the IP configuration tool is started via .exe file / desktop icon.

Some functionality is only supported if the IP configuration tool is used stand-
alone, e.g. for firmware updates for communication interface devices.

Stand-alone installation

The IP configuration tool is part of Automation Builder and can be called via
“Tools è IP-Configuration”. A separate installation is only required if the IP
configuration tool shall be used stand-alone.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5817

1. Open the Installation Manager in Automation Builder: “Tools è Installation Manager”.
2. Close all other instances of Automation Builder as only one instance of the program can

be executed at a time.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5818

3. Click “Modify” and select the “IP Configuration Tool” from the structure tree.

4. Click “Continue” to start the installation.

ð After a successful installation the IP configuration tool is available as stand-alone tool
(.exe).

ð To start the IP configuration tool, click the new created desktop icon.

Using the tool functions
Network scan

With a network scan all devices that have been found in the network by the scan process are
listed, i.e. ABB devices such as AC500 processor modules, AC500 communication interface
modules or ABB Drives.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5819

1. Start the IP configuration tool in Automation Builder (“Tools è IP-Configuration”) or start it
stand-alone (.exe).

2. The “IP-Configuration” dialog opens. Define the device type for the network scan by
selecting the desired option under “Scan Protocol”:
● “ABB Net config protocol”:

Use this option for AC500 devices such as processor modules, CI5xx-Modbus devices
or ABB Drives. The device(s) to be scanned must be connected to the PC via a direct
Ethernet connection.

● “Profinet Dynamic Configuration Protocol (DCP)”:
Use this option for PROFINET communication interface modules. The device(s) to
be scanned must be connected to the PC via a direct Ethernet connection (not via
CM579).
For the scan, a NPcap driver needs to be installed separately.
Ä Step 4 on page 5824

● “EtherCAT”:
Use this option for EtherCAT communication interface modules. The Ethernet cable
must be connected directly to the first EtherCAT slave device of the EtherCAT
fieldbus. Ensure that no EtherCAT master device is available on the bus when a scan
is performed.
“Emergency” option: Enable this option to check on failures in the EtherCAT assembly
during the scan process, i.e. a frame loss or interchanged ports. Errors are displayed.
For the scan, a NPcap driver needs to be installed separately.
Ä Step 4 on page 5824

3. Click [Scan] to start the scan process.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5820

4. All devices that have been found in the network are listed including hardware and connec-
tion details. The following details can be changed under “IP settings”:

ð ● “IP Address”:
Current IP address of the device.

● “Conf. IP Address”:
Configured IP address of the device. A changed IP address will update this
column.

● “FW Version”:
Current installed firmware version of the device. This field is visible not until a first
network scan. If this field is still empty after a network scan, check on connection
errors.
Ä Chapter 1.6.5.2.2.2.2.3.1 “Trouble-shooting for firmware update” on page 5827

The IP address of some devices, e.g. EtherCAT devices cannot be
changed.

Changing the IP address
1. In order to change the IP address of devices perform a network scan.

Ä Chapter 1.6.5.2.2.2.2.2.1 “Network scan” on page 5819

2. Select a device from the list and select the appropriate protocol under “Scan protocol”.
“DHCP” or “BOOTP” option: If required, DHCP or BOOTP can be used to receive the IP
address for the device from the server.
“IP address”, “subnet mask”, “Std. gateway”: Use these fields to change the IP address
settings including the settings for the subnet mask and the standard gateway. Ensure that
the combination of connection settings is correct.
Ä “Check subnet configuration” on page 5827

Note for CI52x-Modbus devices
Consider the behavior of CI52x-Modbus devices if the last number of the
IP address is set to "0".

Ä “Check last number of IP address” on page 5828

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5821

3. Change the settings for the IP configuration and click [Send settings] to transmit the data
to the device.

ð
Note for PROFINET devices
The device name of PROFINET devices can be edited. If changing the
name, ensure the following rules apply:

– Labels must be separated by "."
– Total length: 1 to 240
– Label length: 1 to 63
– Labels can consist of characters [a-z] and numbers [0-9]
– Labels are not allowed to start with "-"
– Labels are not allowed to end with "-"

4. In order to keep all IP changes after a power cycle, the settings can be stored perma-
nently. Confirm the prompted message during the scan process.

Firmware update
The firmware of AC500 communication interface modules can be updated with the IP configura-
tion tool.
For this, the IP configuration tool must be used as stand-alone variant.
Ä Chapter 1.6.5.2.2.2.2.1 “Stand-alone installation” on page 5817

It is not possible to perform a firmware update out of Automation Builder.

– For PROFINET communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.3.3.

– For EtherCAT communication interface modules a firmware update is only
supported for devices with firmware version ³ 2.1.4.

– For Modbus communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.2.13.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5822

Before the firmware update
● Ensure a fast and stable network connection
● Close all unused applications on the executing PC
● Stop the communication between AC500 PLC and the communication interface module that

shall be updated
During the firmware update
● Do not close the IP configuration tool
● Do not open Automation Builder software or any other application
● Do not switch-off the communication interface module that shall be updated
● Do not disconnect the Ethernet connection of a communication interface module or the

executing PC

The firmware update will stop the operation of the affected device(s). Hence,
the device(s) will become unresponsive for 1 - 2 minutes.

1. Start the IP configuration tool stand-alone (.exe).
2. Perform a network scan.

Ä Chapter 1.6.5.2.2.2.2.2.1 “Network scan” on page 5819

3. Select the devices that shall be updated from the list and click [Scan] to trigger the scan
process.
A multiple selection of several devices is possible via control key, however, ensure to
select only devices of the same protocol at a time. Otherwise the firmware update fails.

Requirements:

Procedure:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5823

4. This step is only required for devices that require an installed NPcap driver. In this case an
appropriate message including a download link is prompted in the IP-Configuration dialog:

ð Click on the displayed link https://nmap.org/download.html and download the latest
version of the npcap-X.X.exe file.

ð After the download, execute the file as administrator and restart the scan process.

ð The devices that have been scanned are listed.

5. Click [Update Firmware] to start the firmware update for the selected devices.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5824

https://nmap.org/download.html

6. For CI50x, CI51x and CI52x devices a signature check is started. Select the appropriate
firmware update file (*.bin) for the device(s). Example: C:\AC500\AC500_CI52x_Firm-
ware_V3.2.8.bin.
After a successful signature check the firmware update file (*.bin) and the respective
signature file (*.bin.sig) are transferred to the device. This can last up to 3 minutes.
If the signature check fails, check the availability of the *.bin file and the *bin.sig file.
Ä “Signature check” on page 5828

7. A status check followed by a device reboot followed by a second status check is per-
formed automatically.

After the firmware update all outputs of the updated devices are set to '0'.

8. After a successful firmware update the update status or the new firmware version is
displayed in the “FW Version” field.
If this field is empty, there possibly is a connection error between the device and the
executing PC.
Ä “Error: Can’t connect to device” on page 5829

Exception: For EtherCAT devices an empty “FW Version” field does not indicate a connec-
tion error.

ð If the firmware update fails
● check the requirements for the update procedure.
Ä “Requirements:” on page 5823

● check the hints for trouble-shooting.
Ä Chapter 1.6.5.2.2.2.2.3.1 “Trouble-shooting for firmware update” on page 5827

● perform a network scan and repeat the update. If the error still persists power
cycle the device and try the update again.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5825

Blink functionality
This function activates flashing of the backlight of an AC500 LED display.
1. From the menu, select “Tools è IP-Configuration”.
2. Click [Scan] to trigger the scan process for devices in the network.

ð A progress bar shows the progress. The IP settings of a selected device is displayed
below the list and can be edited.

3. Adjust your desired time and click [Blink] to activate flashing.

Trouble-shooting for IP configuration tool
On a standard Windows 7 installation without third party firewall or security tools installed the IP
configuration tool should work properly.
The Automation Builder setup installs rules or exceptions for the built-in Windows firewall to
allow IPConfig to receive the responses for the IPConfig scan.
To check the Windows firewall is set correctly check the firewall settings.

On the network that is used for communication with the PLC, set “Incoming connections” to
"Block all connections to programs that are not on the list of allowed programs".

Firewall excep-
tions:

Windows 7/
Windows 10:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5826

If a third party firewall is used these exceptions must be configured manually.

Either exceptions for applications can be entered: Automation Builder and IP
configuration tool must be added as application.

Or the protocol and the port number must be given (for IPConfig: UDP protocol
and port number 24576).

Trouble-shooting for firmware update
Ensure that all requirements have been considered before and during the update procedure.
Ä “Requirements:” on page 5823

This hint is only valid for Modbus devices and PROFINET devices.
If the “FW Version” field is empty after the network scan or if the firmware version has not been
updated after the update procedure, there possibly is a connection error between the device
and the executing PC.
Ping the device from the executing PC. If no connection can be established, check whether the
device and the PC are in the same subnet.

Check the
requirements

Check subnet
configuration

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5827

PC Device Result
192.168.14.71 / 255.255.255.0 192.168.14.10 / 255.255.255.0 OK

192.168.10.71 / 255.255.255.0 192.168.14.10 / 255.255.255.0 ERROR

192.168.10.71 / 255.255.0.0 192.168.14.10 / 255.255.0.0 OK

Example

Click [Scan] again to restart the network scan. If the connection is successful a newer firmware
version is displayed in the “FW Version” column.

This hint is only valid for CI52x-Modbus devices.
Check the last number of the IP address. If it is set to "0", the IP address setting for this last
number will be used from the rotary switches on the hardware device.
Example:

Automation Builder AC500 communication interface module
(rotary switch)

IP address:
192.168.14.0

IP address:
6

As a result, in the field “IP Address” the last number is set to "6":

During the firmware update of CI50x, CI51x and CI52x devices a signature check is started.
The update procedure expects a firmware update file (*.bin) and a signature file (*.bin.sig) in the
same directory. Without a signature file the signature check will fail.
Example:
Firmware update file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin
Signature file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin.sig

Check last
number of IP
address

Signature check

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5828

A timeout error may occure due to an instable network.
Solution: Keep the executing PC as near as possible to the devices that shall be updated. Avoid
network switches.

A read error may occure due to errors in the firmware update protocol.
After the firmware update the IP configuration tool reads out the status of the updated device in
order to check if the update was successful.

If an IP address is obtained by more than one device an error occures. A firmware update is not
possible.

Internal device error during the firmware update.
Solution:
Step 1: Scan again and repeat the firmware update.
Step 2: If this does not work, power cycle the device, scan again and repeat the firmware
update.

The TCP communication is not sufficient. Increase the connection quality.
Solution: Keep the executing PC as near as possible to the devices that shall be updated. Avoid
network switches.

Configuration of communication via Ethernet (TCP/IP)
Programming via Ethernet is only possible on a PC with Ethernet board and installed network.
Programming can be done via the internal and external Ethernet communication module.
Programming via internal (onboard) Ethernet communication module:

Programming via external Ethernet communication module (in the example communication
module 1 in slot 1):

Error: Package
timeout

Error: Unable to
read device
status

Error: IP is not
unique

Error: Error
State

Error: Can’t
connect to
device

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5829

Enter a known PLC IP address
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Enter your PLC IP Address and click [OK].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5830

Enter PLC IP address by scanning devices
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Click [...].

ð Dialog box Communication Settings <...> appears.

3. Click [Scan], select your desired PLC and click [OK].

ð Entry is transferred to the dialog box Communication Settings <...>.

Click [OK].

4. Click to log in the “PLC_AC500_V2” project.

Enter PLC IP address by [Advanced Settings...]
If a remote gateway instead of a local one has to be used it can be configured in the [Advanced
Settings...].

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5831

1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the
context menu.

ð Dialog box Communication Settings <...> appears.

2. Enable checkbox Use advanced settings and click [Advanced Settings].

ð Dialog box Communication Parameters appears.

3. Select your channel, enter your PLC IP address and click [OK].

ð Entry is transferred to the dialog box Communication Settings <...>.

Click [OK].
4. Click to log in the “PLC_AC500_V2” project.

Ethernet driver "TCP/IP"
Programming AC500 controllers with internal and/or external Ethernet communication module
via Ethernet can be done by using the driver "TCP/IP". This driver provides the following
functions:
● Online operation of the PLC with the Control Builder
● OPC connection with OPC server, as of version V1.3
● Parallel operation of Control Builder and OPC server
● Parallel operation of Control Builder instances with several PLCs
To define a new gateway channel for the Ethernet interface, select "Online/Communication
Parameters" and press the button "New" in the "Communication Parameters" window. In the
appearing window, enter a name for the channel (for example ETH 169.254.145.200) and select
the driver "TCP/IP" from the device list.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5832

The following communication parameters can be set for the Ethernet driver "TCP/IP":

Parameter Possible values Description
Address 0.0.0.0 IP address or hostname of the

PLC

Port 1201 Port 1201

Motorola byteorder Yes (Yes/No) Motorola or Intel byteorder
(=Yes for AC500)

Ethernet driver "ABB TCP/IP Level 2 AC"
As of version V1.2, the driver "ABB TCP/IP Level 2 AC" is available for programming AC500
controllers with internal and/or external Ethernet communication module via Ethernet. This
driver provides the following functions:
● Online operation of the PLC with the Control Builder
● OPC connection with OPC server, as of version V1.3
● Parallel operation of Control Builder and OPC server

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5833

● Parallel operation of Control Builder instances with several PLCs
● Online operation of PLCs connected via ARCNET. One PLC equipped with Ethernet com-

munication module and one PLC with ARCNET communication module (Routing Ethernet
-> ARCNET), as of version V2.x

To define a new gateway channel for the Ethernet interface, select "Online/Communication
Parameters" and press the button "New" in the "Communication Parameters" window. In the
appearing window, enter a name for the channel (for example ETH 169.254.145.200) and select
the driver "ABB Tcp/Ip Level 2 AC" from the device list.

The following communication parameters can be set for the Ethernet driver "ABB TCP/IP Level
2 AC":

Parameter Possible values Description
Address 0.0.0.0 IP address or hostname of the

PLC

Port 1200 Port 1200

Timeout (ms) >= 2000 Timeout [ms] for response

Routing levels 0...2 Routing levels (0 = none)

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5834

Parameter Possible values Description
Communication Module (Level
1)

0, line 0...line 4 Communication module for
level 1

Channel (Level 1) 0...19 Channel on communication
module level 1

Address (Level 1) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target communica-
tion module level 1

Communication Module (Level
2)

0, line 0...line 4 Communication module for
level 2

Channel (Level 2) 0...19 Channel on Communication
Module level 2

Address (Level 2) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target communica-
tion module level 2

Block size 1430 (128...1430) Bytes per telegram (unallowed
227..245)

Motorola byteorder Yes (Yes/No) Motorola or Intel byteorder
(=Yes for AC500)

If you want to use the Ethernet driver to directly access the PLC, set all routing parameters
(parameter Routing levels and following parameters listed in the table above) to 0.
The "Address" parameter sets the IP address or hostname of the PLC. To be able to use
hostnames, the names have to be added to the file "Hosts". Under Win2000, this file is located
in the directory "WINNT\System32\drivers\etc".

If you have changed the "Hosts" file accordingly, you can enter the symbolic name for
the "Address" parameter instead of the IP address. In the following figure, the IP address
"169.254.34.38" is replaced by the hostname "SPS_2".

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5835

Ethernet ARCNET routing

Routing is available as of PLC firmware version V1.3.

For controllers with Ethernet and ARCNET communication module, the PLCs connected via
ARCNET can be programmed using the PLC Ethernet interface.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5836

For each PLC connected via ARCNET, one gateway channel has to be defined. To do this,
select "Online/Communication Parameters" and press the button "New" in the "Communication
Parameters" window. In the appearing window, enter a name for the channel (for example
TcpIp: PLC1:169.29.44.48 -> ARC_2) and select the driver "ABB Tcp/Ip Level 2 AC" from the
device list.
For example, set the communication parameters as follows for the configuration shown above:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5837

Parameter Possible values Description
Address 10.49.88.205 IP address of PLC 1

Port 1200 Port 1200

Timeout (ms) 2000 Timeout [ms] for response

Routing levels 1 Single-level routing

Communication Module (Level
1)

Line 0 Communication module for
level 1 (internal: ARCNET)

Channel (Level 1) 0 Channel on Communication
module level 1

Address (Level 1) 2, 0, 0, 0, 0 ARCNET node of the target
PLC (Node 2)

Communication Module (Level
2)

0 No level 2

Channel (Level 2) 0

Address (Level 2) 0, 0, 0, 0, 0

Block size 480 Bytes per block: 128...1430

Motorola byteorder Yes

For the parameter "Communication Module (Level 1)", enter the slot where the ARCNET com-
munication module "Line 0" is inserted (the ARCNET Communication Module is always the
internal communication module).
The ARCNET communication module has only one communication channel. Thus, the
"Channel" value must always be 0.
For the ARCNET communication module, 1 byte is required for the subscriber address (node).
The address (Node=2) of the target PLC is entered to the first byte of the address byte.
The default value for the block size is 1430. If routing on ARCNET is required (and "large
ARCNET packages" are enabled for the target PLC), the block size can be increased to 480
bytes. Values in the range of 227 .. 245 are not allowed.

1.6.5.2.3 Processor modules
Configure a processor module in the device tree

To configure your PLC in the Automation Builder:
1. Add a processor module to your project. Ä Chapter 1.6.5.1.1.1 “Creating a new project ”

on page 5758

2. Double-click the PLC node in the device tree.

ð This will open a new window with tabs for the device configuration:

● “PMxxx Parameters” Ä Chapter 1.6.5.2.3.3 “Parameters of the processor module”
on page 5839

● “PM5xx Hardware” Ä Chapter 1.6.5.2.3.4 “Changing the processor module type”
on page 5844

● “I/O mapping list” Ä Chapter 1.6.5.1.4 “I/O mapping list” on page 5781
● “Information” General information about the device (name, vendor, version etc.)

3. Select the “PMxxx Parameters” tab to configure the parameters for the processor module.
Ä Chapter 1.6.5.2.3.3 “Parameters of the processor module” on page 5839

4. Select the “I/O mapping list” tab to create mapping variables with better usability support
compared to the tree structured view. Ä Chapter 1.6.5.1.4 “I/O mapping list” on page 5781

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5838

Processor modules with onboard interfaces: PM5xy-ETH, PM5xy-2ETH, PM5xy-ARC
● PM5xy-ETH: Processor module with network interface Ethernet RJ45 (onboard Ethernet).
● PM5xy-2ETH: Processor module with 2 network interfaces Ethernet RJ45 (onboard

Ethernet).
● PM5xy-ARC: Processor module with network interface ARCNET BNC (onboard ARCNET)
Processor modules with the extension "-ETH" or "-ARC" provide an onboard interface for direct
communication via Ethernet or ARCNET without using an additional communication module.
Ethernet for example can be used by using either a processor module with onboard Ethernet
(e.g. PM591-ETH) or a communication module which supports Ethernet (e.g. CM597-ETH).
Details on the configuration of processor modules with onboard Ethernet is provided in the
configuration description for devices with onboard Ethernet. Ä Chapter 1.6.5.2.4.1.1 “Parame-
terization of PM5xy-ETH” on page 5860

Details on the configuration of processor modules with onboard ARCNET is provided in the
configuration description for devices with onboard ARCNET. Ä Chapter 1.6.2.3.2.1 “PM57x (-y),
PM58x (-y) and PM59x (-y)” on page 3848

Parameters of the processor module
Add the desired processor module to the device tree, then double-click the “Processor Module”
node. In the editor window open the “PMxxx Parameters” tab and check whether the default
configuration is to be changed.

For Processor Modules with onboard Ethernet see the Ethernet parameters
and IP Settings Ä Chapter 1.6.5.2.4.1.1 “Parameterization of PM5xy-ETH”
on page 5860.

For Processor Modules with onboard ARCNET see the ARCNET parameters
Ä Chapter 1.6.5.2.3.6 “Parameters of PM5x1-ARCNET (onboard ARCNET)”
on page 5846

The following parameters are available:

Parameter Default Value Description
Auto run
Ä Chapter
1.6.5.2.3.3.1
“Remark 1: Set-
ting the parame-
ters auto run and
MOD using the
display/keypad”
on page 5841

On On If the Flash memory contains a valid
project, the project will be loaded into
the RAM memory and executed when
switching on the CPU.

Off If the Flash memory contains a valid
project, this project will be loaded into
the RAM memory but not executed when
switching on the CPU.

Error LED
Ä Chapter
1.6.5.2.3.3.2
“Remark 2:
Error LED”
on page 5842

On On The error LED lights up for errors of all
classes, no failsafe function activated.

Off by E4 Warnings (E4) are not indicated by the
error LED, no failsafe function activated.

Off by E3 Warnings (E4) and minor errors (E3) are
not indicated by the error LED, no failsafe
function activated.

On + Failsafe The error LED lights up for errors of all
classes and the failsafe function of the I/O
Bus is activated.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5839

Parameter Default Value Description
Off by E4 +
Failsafe

Warnings (E4) are not indicated by the
error LED, (no error Display with "diag-
nostic" button on the LCD possible), the
failsafe function of the I/O Bus is activated.

Off by E3 +
Failsafe

Warnings (E4) and minor errors (E3) are
not indicated by the error LED. The fail-
safe function of the I/O bus is activated.

Check battery On On The presence of the battery and the bat-
tery status are checked. If no battery is
available or the battery is empty, a warning
(E4) is generated and the ERR LED lights
up.

Off The presence of the battery is not
checked. No warning (E4) is generated.
The LCD display "Batt" (triangle) can not
be acknowledged! This also applies if a
battery is installed but empty.

Behavior of out-
puts in stop
Ä Chapter
1.6.5.2.3.3.3
“Remark 3:
Behavior of out-
puts in stop”
on page 5842

Off in hard-
ware and
online

Off in hard-
ware and
online

In case of STOP, all outputs at the hard-
ware and in the online display are set to
FALSE or 0.

Off in hard-
ware and
actual state
online

In case of STOP, all outputs at the hard-
ware are set to FALSE or 0. The online
display indicates the status from the last
cycle of the user program.

Actual state in
hardware and
online

The status of the last cycle of the user pro-
gram is kept for the outputs at the hard-
ware and in the online display.

Stop on error
class

E2 E2 In case of a fatal or severe error (E1-E2),
the user program is stopped.

E3 In case of a fatal, severe or minor error
(E1-E3), the user program is stopped.

E4 In case of a fatal, severe or minor error
(E1-E3) or a warning (E4) the user pro-
gram is stopped.

Warmstart
Ä Chapter
1.6.5.2.3.3.4
“Remark 4:
Warmstart”
on page 5842

Off Off In case of a fatal error (E2), no warmstart
is performed.

On after E2
error

In case of a fatal error (E2), a warmstart is
performed automatically.

On after short
voltage dip

A warmstart is performed after a short
voltage dip.

On after E2 or
short voltage
dip

In case of a fatal error (E2) or after a
short voltage dip, a warmstart is performed
automatically.

Reaction on
floating point
exceptions
Ä Chapter
1.6.5.2.3.3.5
“Remark 5: Reac-
tion on floating
point exceptions”
on page 5843

E2 failure E2 failure Only for PM59X: If a floating point excep-
tion occurs, an E2 error (Err=38) is trig-
gered. The CPU goes to STOP.

No failure Only for PM59X: If a floating point excep-
tion occurs, no E2 error is triggered.
Using the block FPU_EXINFO in the user
program allows to react on a possibly
occurred exception.

Flexible configura-
tion

None None No flexible configuration is used.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5840

Parameter Default Value Description
Ä Chapter
1.6.5.1.3 “Flex-
ible AC500
configuration ”
on page 5774

Flash FlexConf.ini is loaded from Flash.

User Program FlexConf.ini is loaded by user program.

FTP file FlexConf.ini is loaded from FTP.

Flexible configura-
tion timeout
Ä Chapter
1.6.5.1.3 “Flex-
ible AC500
configuration ”
on page 5774

1000 0...65535 FlexConf.ini timeout in seconds [s].

Free wheeling
pause

10 0...255 Free wheeling pause in milliseconds [ms].
*)

Task compatibility
mode

File Handling
priorized

Ethernet Han-
dling priorized

Task compatibility mode.

Balanced Han-
dling of
Ethernet and
file operations

File Handling
priorized

Start PERSIS-
TENT %R0x
Ä Chapter
1.6.5.2.3.3.6
“Remark 6: Start
PERSISTENT
%Rsegment.x and
end PERSISTENT
%Rsegment.x”
on page 5844

 Start offset for buffered area in PERSIS-
TENT area %R0x

End PERSISTENT
%R0x

 End offset for buffered area in PERSIS-
TENT area %R0x

...

Start PERSIS-
TENT %R7.x

 Start offset for buffered area in PERSIS-
TENT area %R7.x

End PERSISTENT
%R7.x

 End offset for buffered area in PERSIS-
TENT area %R7.x

*) Setting this parameter to '0' causes the CPU to work with the default setting 10 ms.

Remark 1: Setting the parameters auto run and MOD using the display/keypad
Loading and running the user program also depends on the setting for the parameter MOD
using the display/keypad (in AC500 CPUs PM57x, PM58x and PM59x). The display/keypad
setting always has the higher priority.
The following applies:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5841

MOD 00: User program will be loaded and run according to the setting for the
CPU parameter "Auto run" (default setting).

MOD 01: User program will not be loaded/will not run.

MOD 02: User program will be loaded and run independent of the setting for
the CPU parameter "Auto run".

Keeping the RUN key pressed when booting the PLC automatically activates MOD 01, i.e. the
user program is not loaded/does not run. Thus, it is possible to boot the PLC in Stop status.
This may be required if, for example, both serial interfaces are set to Modbus and therefore no
access with the Control Builder software is possible via the serial interface.

On CPUs PM55x and PM56x, a RUN/STOP switch is designed for the MOD
function.

If the RUN/STOP switch is set to STOP mode before the CPU module is powered on, the
program in the CPU will not run after the CPU is powered on. The program can only be
executed when the switch is set to RUN mode and the program is downloaded on the CPU
again.
If the serial interface COM1 or COM2 is set to communication mode in a running program (e.g.
Modbus communication), it can be changed back to other mode (e.g. online access to Control
Builder software) only by setting the switch to STOP mode.

Remark 2: Error LED
In addition to setting the behavior of the CPU's error LED ERR, this parameter is used to set the
failsafe behavior of the I/O Bus.

Remark 3: Behavior of outputs in stop
The setting of the parameter Behavior of outputs in stop directly influences the failsafe function
of the outputs of the S500 I/O Devices.

Remark 4: Warmstart
The parameter “warmstart” allows to set the behavior of the CPU in case of
● severe errors (class E2) and
● short voltage dips (only variants with 24 V DC supply)
If the default setting is used, the CPU changes to STOP mode if a severe error occurs. The
CPU is switched off for voltage dips >10 ms. The display shows AC500.
The new settings allow performing a warmstart of the CPU after a severe error or after short
voltage dips or in case of both events.

The parameter “warmstart” after E2 error takes effect not before the configura-
tion data of the project has been evaluated. If an E2 error occurs prior to this,
it will be recorded into the diagnosis system, but no restart will be performed.
The intention of this parameter is to raise the availability of the PLC during RUN
mode (RUN) when non-systematic E2 errors occur.

The following figure shows the behavior of the CPU for different control voltage signals.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5842

Short voltage dips, i.e., the control voltage falls below a value lower than "Powerfail OFF" (<11 V
DC) for less than 10 ms, are bridged by the PLC, i.e., the CPU remains on.
If the control voltage is switched off, the CPU remains on for > 10 ms.
If the control voltage is lower than 11 V DC (but > 6 V DC) for longer than 10 ms and then goes
back to the normal value, the behavior of the CPU depends on the setting for the parameter
“Warmstart”. If the parameter is set to "Off", the CPU remains in power fail mode, i.e. it does not
restart. A restart of the CPU can only be done by switching the control voltage OFF/ON. If the
parameter is set to "On after short voltage dip" or "On after E2 or short voltage dip", the CPU is
restarted when the control voltage is greater than 17 V DC for 5 seconds. However, if the control
voltage falls once more below 11 V DC within these 5 seconds, the time is restarted. Thus, the
control voltage must have a value > 17 V DC for 5 seconds.

Remark 5: Reaction on floating point exceptions
Behavior of PM59x regarding floating point exceptions can be set. In standard case, any floating
point exception triggers an E2 error: class=E2, err=38, d1=9, d2=31, d3=31.
The CPU switches to STOP.
CPUs without floating point processor PM57x and PM58x do not trigger a floating point excep-
tion.
If the parameter Reaction on floating point exceptions is set to No failure, no error is triggered in
case of a floating point exception. The CPU remains in RUN mode.
By means of the function block Ä Chapter 1.5.4.19.2.19 “FPU_EXCEPTION_INFO”
on page 1551 (contained in SysInt_AC500_V10.LIB) it can be determined whether a floating
point exception occurred during calculation. Depending on the result, either the calculation can
be continued with default values or the machine can be shut down.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5843

Remark 6: Start PERSISTENT %Rsegment.x and end PERSISTENT %Rsegment.x
The parameters "Start PERSISTENT %Rsegment.x" and "End PERSISTENT %Rsegment.x"
are used to buffer this area. In the particular segment, "Start PERSISTENT %Rsegment.x"
specifies the start byte and "End PERSISTENT %Rsegment.x" the end byte of the area to be
buffered.

Changing the processor module type
In a project, you can change the target system by changing the type of processor module or
terminal base type. If possible, the device configuration of fieldbusses and interfaces is kept and
switched over to the device configuration of the new module.
Target change options:
● between platforms: from V2 platform to V3 platform (and vice versa)
● between module types: from AC500 (standard) to AC500-eCo (and vice versa)
● a combination of changed platform and changed module type

Target change from a V2 processor module to another V2 processor module
Target change options:

● AC500 V2 processor module Ü AC500 V2 processor module
● AC500 V2 processor module Ü AC500-eCo V2 processor module
● AC500-eCo V2 processor module Ü AC500 V2 processor module
● AC500-eCo V2 processor module Ü AC500-eCo V2 processor module

1. Close CODESYS.
2. Double-click the PLC_AC500_V2 <...> node and open the “PM5<...> Hardware” tab.
3. Select the desired V2 processor module from the “PM5xx Type” drop-down list.

4. Ensure the correct “Terminal Base Type” is selected and click [Change PM / TB type].

ð The new V2 processor module is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

Target change to PM595
Target change options:

● AC500 V2 processor module Ü PM595
● AC500-eCo V2 processor module Ü PM595

1. Close CODESYS.
2. Double-click the PLC_AC500_V2 <...> node.

Procedure:

Procedure:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5844

3. Open the “PM5<...> Hardware” tab and select 'PM595-4ETH' from the “PM5xx Type”
drop-down list.

4. With the Arithmetic type item, processing of Structured Text can be modified.
● “Mixed REAL/LREAL arithmetic” (default value):

Calculation of LREAL variables is extended to the extended co-domain of 64 bit. In
general, we recommend to keep the default setting as this setting provides enough
accuracy for code calculation.

● With “Only REAL arithmetic” the LREAL variables are processed as REAL variables
(co-domain of 32 bit).

5. Click [Change PM / TB type].

ð The PM595 is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

Target change from a V2 processor module to a V3 processor module
Target change options:

● AC500 V2 processor module Ü AC500 V3 processor module
● AC500 V2 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V2 processor module Ü AC500-eCo V3 processor module
● AC500-eCo V2 processor module Ü AC500 V3 processor module

1. Close CODESYS.
2. Double-click the PLC_AC500_V2 <...> node and open the “PM5<...> Hardware” tab.

Procedure:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5845

3. Enable “Change to AC500 V3 PLC” and select the desired V3 processor module from the
“PM5xx Type” drop-down list.

4. Click [Create V3 PLC].

ð The new V3 processor module is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

In case of a target change from AC500-eCo V2 to AC500-eCo V3, the I/O bus
and Ethernet configuration is kept.

PM5xy-ETH onboard Ethernet
Onboard Ethernet is provided for device types with -ETH extension, e.g. PM5xy-ETH. Further
information is provided in the Onboard Ethernet Configuration section Ä Chapter 1.6.5.2.4.1.1
“Parameterization of PM5xy-ETH” on page 5860.

Parameters of PM5x1-ARCNET (onboard ARCNET)
Add a processor module with onboard ARCNET (e.g. PM590-ARC) to the device tree. Double-
click the node “PM5x1_ARC_Internal_ARCNET” to open the parameter settings for onboard
ARCNET. Check whether the default configuration is to be changed.
The following parameters are available:

Parameter Default value Value Description
Run config fault No No In case of a con-

figuration error, the
user program is not
started.

Yes The user program is
started independent
of a faulty configura-
tion of the internal
ARCNET Communi-
cation Module.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5846

Parameter Default value Value Description
Address
see remark
1 Ä Chapter
1.6.5.2.3.6.1 “Remark
1: Setting behavior of
the ARCNET node ID”
on page 5848

0 0...255 Address (node ID) of
the ARCNET Commu-
nication Module

Tranmission rate
see remark
2 Ä Chapter
1.6.5.2.3.6.2 “Remark
2: Tranmission rate
of the ARCNET com-
munication module”
on page 5848

2.5 MB/s 2.5 MB/s Transmission set for
the ARCNET Commu-
nication Module1.25 MB/s

625 kB/s

312.5 kB/s

Extended timeout
ET1/ET2

Very small net Very small net (=0) ARCNET timeout set-
ting. The following
applies:
Bit 0 configures ET2
of the Communication
Module
Bit 1 configures ET1
of the Communication
Module

Value ET1 ET2
Meaning

 0 0 0 Max. net-
work expansion 2 km
 1 1 0
 2 0 1
 3 1 1 for large
networks

Small net (=1)

Big net (=2)

Very big net (=3)

Long packets Enable Enable Enable long data
packets (512 bytes)

Disable Incoming long data
packets are received
and dismissed. The
SEND block indicates
an error in case of
long data packets.

Evaluate DIN on
receipt
see remark
3 Ä Chapter
1.6.5.2.3.6.3 “Remark
3: Check of DIN
identifier on receipt”
on page 5848

Enable Enable Enable check of DIN
identifier on receipt

Disable Disable check of DIN
identifier on receipt

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5847

Remark 1: Setting behavior of the ARCNET node ID

Configured ARCNET Node ID
In Project In Display Effect

1 0 [default] 0 [default] Configuration error:
Class=3 Comp=9
Dev=10 Mod=3 Ch=0
Err=26

2 0 [default] !=0 No error

3 !=0 && != display set-
ting

!=0 Configuration error:
Class=3 Comp=9
Dev=10 Mod=3 Ch=0
Err=26

4 !=0 && == display set-
ting

!=0 No error

5 !=0 0 No error, but display
shows "Addr 0"

Remark 2: Tranmission rate of the ARCNET communication module

If the transmission rate set for the ARCNET Communication Module differs
from the default value (2.5 MB/s), programming via ARCNET using the SoHard-
ARCNET PC boards is no longer possible. The same transmission rate has to
be set for all subscribers of the ARCNET network. The ARCNET PC boards are
firmly set to 2.5 MB/s.

Remark 3: Check of DIN identifier on receipt
If the parameter "Evaluate DIN on receipt" is enabled (default setting), the following DIN identi-
fiers are reserved:

DIN identifier Protocol
Hex Dec
4F 79 "Online access" - Program-

ming/OPC with IEC 61131-3
programming / AC1131

5F 95 5F_ARCNET (Ethernet func-
tions for ARCNET)

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5848

DIN identifier Protocol
Hex Dec
6F 111 PC331 programming (not

used for AC1131/IEC 61131-3
programming)

7F 127 Default DIN identifier for
data exchange with function
blocks:
ARC_REC, ARC_SEND,
ARC_STO, ARC_INFO
All DIN identifiers except the
reserved identifiers can be
used for data exchange.

If the parameter "Evaluate DIN on receipt" is disabled, programming and/or
OPC via ARCNET is not possible!

The protocols "ARCNET data exchange" and "5F_ARC" can be appended.
Right-click “PM5x1_ARC_Internal_ARCNET” node and select [Add object].
The following parameters can be set for the "ARCNET data exchange" protocol:

Parameter Default value Value Description
Size of receive buffer 8192 512...65535 Receive buffer size in

bytes. The minimum
size is equal to the
maximum size of an
UDP telegram.

Size of transmit buffer
high prio

4096 0...65535 Size of transmit buffer
(in bytes) for tele-
grams with high pri-
ority.

Size of transmit buffer
low prio

4096 0...65535 Size of transmit buffer
(in bytes) for tele-
grams with low pri-
ority.

Size of timeout buffer 2048 0...65535 Size of buffer (in
bytes) for timeout data
packets.

Number of header
data

10 0...1464 Number of header
data to be copied to
the timeout buffer for
timeout packages (in
bytes).

Receive broadcast Disable Disable Reception of broad-
cast telegrams disa-
bled (data packets to
all stations).

"ARCNET data
exchange" and
"5F_ARC"

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5849

Parameter Default value Value Description
Enable Reception of broad-

cast telegrams ena-
bled (data packets to
all stations).

Behavior on receive
buffer overflow

Overwrite Overwrite Behavior on overflow
of the receive buffer.
The oldest data
packets stored in the
receive buffer are
overwritten with the
new incoming data
packets.

Reject Behavior on overflow
of the receive buffer.
New incoming data
are dismissed.

The following parameters can be set for the "5F_ARC" protocol:

Parameter Default value Value Description
Disable write to
%MB0.x from

0 0...65535 Disable write access
for segment 0 starting
at %MB0.x

Disable write to
%MB0.x to

0 0...65535 Disable write access
for segment 0 up to
%MB0.x

Disable read %MB0.x
from

0 0...65535 Disable read access
for segment 0 starting
at %MB0.x

Disable read %MB0.x
to

0 0...65535 Disable read access
for segment 0 up to
%MB0.x

Disable write to
%MB1.x from

0 0...65535 Disable write access
for segment 1 starting
at %MB1.x

Disable write to
%MB1.x to

0 0...65535 Disable write access
for segment 1 up to
%MB1.x

Disable read %MB1.x
from

0 0...65535 Disable read access
for segment 1 starting
at %MB1.x

Disable read %MB1.x
to

0 0...65535 Disable read access
for segment 1 up to
%MB1.x

PM595-4ETH fieldbus communication
Configuration in Automation Builder

PM595-4ETH communication is provided either via a Communication Module (“Extension_Bus”)
or onboard via “Fieldbus_on_Ethernet” -> node “ETH3” and “ETH4”.
In Automation Builder nodes ETH3 and ETH4 support 3 fieldbusses:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5850

● EtherCAT
● Ethernet
● PROFINET
If one of them is selected the respective device will be added. This device can be extended with
several communication devices. Those are identical to the Communication Modules, which can
be added via “Extension_Bus”.

The configuration parameters are the same as for any other bus device.

Update firmware for fieldbusses on ETH3/4
After the fieldbus device has been added to the device tree, the user has to update the firmware
of ETH3 or ETH4 in order to support the fieldbus in the PLC firmware.
The user can trigger the firmware update of ETH3/4 in the online view of the PLC (see
Ä Chapter 1.6.5.1.7 “Firmware identification and update” on page 5786).

Update Automation Builder 1.1 projects to Automation Builder 1.2
In Automation Builder 1.1 the ETH3/4 field bus can be configured as "<Empty>" or “PROFINET”.
On project update from Automation Builder Version 1.1 to Version 1.2 the Automation Builder
automatically copies any existing PROFINET configuration below ETH3/4 to the new structure
in Automation Builder 1.2.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5851

AC500-eCo onboard I/Os
Parameterization of the onboard I/Os for PM55x-xP

The inputs and outputs channels can be provided as WORD, BYTE and BOOL.
Double-click on “OBIO (Onboard IO: 8DI+6DO)” to open the 6DI+6DO configuration in the editor
window.

The 8DI+6DO Onboard I/Os support the following channel functions:

Onboard I/O Type Channel Function Max. Number Channel Name
Digital Onboard I/O Digital Input 8 Channel 0..7

Fast counter 2 Channel 0, 1

Interrupt input 4 Channel 0..3

Digital output 6 Channel 0..5

PWM output 2 Channel 2..3

The following channel parameters for onboard I/Os can be configured:

Onboard I/O
Type

Parameter Channel
Name

Default Value Value Description

Digital inputs Input X, input
delay

Channel 0..7 8 ms 0.1 ms Configures
0.1 ms input
delay

1 ms Configures 1
ms input
delay

8 ms Configures 8
ms input
delay

32 ms Configures 32
ms input
delay

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5852

Onboard I/O
Type

Parameter Channel
Name

Default Value Value Description

Input X,
channel con-
figuration

Channel 0..7 Input Input Configures
the channel
as normal dig-
ital input

Channel 0..3 Interrupt on
rising edge

Triggers inter-
rupt task
when
detecting the
rising edge on
the input
channel

Interrupt on
falling edge

Triggers inter-
rupt task
when
detecting the
falling edge
on the input
channel

Channel 0 Fast Counter Configures
the channel
as fast
counter

Fast Counter
Ä Chapter
1.6.5.2.3.8.4
“Fast counters
in the onboard
I/Os”
on page 5856

Channel 0, 1 No counter 0 No counter

1 1 count up
counter

2 1 count up
counter with
release input

3 2 UpDown
counters

4 2 UpDown
counters (2nd
on falling
edge)

5 1 UpDown
counter
dynamic set/
rising edge

6 1 UpDown
counter
dynamic set/
falling edge

7 1 UpDown
counter direc-
tional discrimi-
nator

8 Reserved

9 1 UpDown
directional
discriminator
x2

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5853

Onboard I/O
Type

Parameter Channel
Name

Default Value Value Description

10 1 UpDown
directional
discriminator
x4

Digital outputs Output X,
channel con-
figuration

Channel 2, 3 Output Output Configures
the channel
as normal dig-
ital output

PWM Configures
the channel
as PWM
output

Output X,
PWM opera-
tion mode
Ä Chapter
1.6.5.2.3.8.6
“Configuration
of PWM out-
puts”
on page 5858

Millisec Millisec Configures
ms as PMW
time base

Microsec Configures µs
as PMW time
base

Parameterization of the onboard I/O for PM56x-xP
The 2 analog onboard inputs can be configured as 2 digital onboard inputs, so the maximal
digital inputs number is 8. The input and output channels can be provided as WORD, BYTE and
BOOL.
Double-click on “I/O (onboard IOs)” to open the DI+6DO+2AI+1AO configuration in the editor
window:

The 6DI+6DO+2AI+1AO onboard I/Os support the following channel functions:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5854

Onboard I/O Type Channel Function Max. Number Channel Name
Digital onboard I/O Digital Input 8 Digital input channel

0..5
Analog input channel
AI0..AI1 *

Fast counter 2 Input channel 0, 1

Interrupt input 4 Input channel 0..3

Digital output 5 Output channel 0..5

PWM output 2 Output channel 2..3

Analog onboard I/O Analog input 2 Input channel AI0..AI1
*

Analog output 1 Output channel AO0

* These 2 analog inputs can be configured as 2 digital inputs
Processor module PM56x-xP has a maximum of 8 digital onboard inputs and 6 digital onboard
outputs. The channel parameters for onboard digital I/Os can be found in table onboard I/Os for
PM554 Ä Table on page 5852. Analog input channels AI0&AI1 on PM564 are for digital input
channels 5&7 on PM554.

Table 728: PM564: Channel parameters for onboard analog I/Os
Onboard I/O
Type

Parameter Channel
Name

Default Value Value Description

Analog inputs Input delay
digital input

Channel
AI0&A1

8 ms 0.1 ms Configure 0.1
ms input
delay

1 ms Configure 1
ms input
delay

8 ms Configure 8
ms input
delay

32 ms Configure 32
ms input
delay

Channel con-
figuration

Digital input Digital input Configure the
channel as
normal digital
input

Analog input
0..10 V

Configure the
channel as
0..10 V
analog input

Analog out-
puts

Channel con-
figuration

Channel AO0 Analog output
0..10 V

Analog output
0..10 V

Configure the
channel as
0..10 V
analog output

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5855

Onboard I/O
Type

Parameter Channel
Name

Default Value Value Description

Analog output
0..20mA

Configure the
channel as
0..20 mA
analog output

Analog output
4..20 mA

Configure the
channel as
4..20 mA
analog output

Default value of channel AI0&AI1 is digital input. The user has to change the
configuration parameter to enable the analog input function.

Mapping of the I/O channels
Double-click on IO (Onboard IOs) to open the editor window.
->The tab xDI+yDO I/O Mapping shows the current settings of the I/O mapping.
See Symbolic Names for Variables, Inputs and Outputs for further details on mapping
Ä Chapter 1.6.5.2.2.1.2 “Symbolic names for variables, inputs and outputs” on page 5815.

Fast counters in the onboard I/Os
General details on fast counters see Ä Chapter 1.6.4.1.10 “Fast counters” on page 5498.
Details on the configuration see Ä Chapter 1.6.5.2.9.8.2 “Configuration for onboard I/Os”
on page 6070.

Configuration of interrupt inputs
The processor module PM55x-xP and PM56x-xP provide 4 onboard interrupt inputs. For using
the interrupt functionality, the channels I0…I3 have to be configured accordingly.
In the channel parameters of onboard I/O / digital inputs, the channels I0...I3 can be specified
as interrupt inputs. 2 interrupt values can be chosen for each channel:
● Interrupt on rising edge
● Interrupt on falling edge
The interrupt mode can be selected in parameter Input X, fast counter of the parameters list:

Creating an interrupt task
If one or more channels of the onboard I/Os are configured as interrupt inputs, a corresponding
interrupt task has to be created to enable the processing of the interrupt(s).
For this purpose, a new task has to be added in the task configuration:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5856

● Enter the task name
● Set the task type to triggered by external event
● Specify the event that triggers the task
2 types of interrupt tasks are available in the Event list box:
● InputAny

The task is triggered by any interrupt with the priority specified in the Priority field (0...31).
● InpuAny_high_prio

The task is triggered by any interrupt with highest priority, i. e. with a priority higher than the
max. adjustable "0" and higher than the priority of the communication task. In this case, the
priority (0...31) specified in the Priority field has no significance.

If the interrupt task is started with highest priority, the program execution time
must not be longer than approx. 400 µs. Otherwise online access is no longer
possible.

In the example, the task is named PM554_Interrupt. It is configured as a high-priority inter-
rupt. The task type is triggered by external event and the event to trigger the task is Inpu-
tAny_high_priority.

Like for all other tasks, a program call has to be assigned to the task.

In the example, the program PM554_Interrupt_1() shall be started with any interrupt from
onboard I/Os.

Structure of the interrupt program
The following block contained in the library OnBoardIO_AC500_V13.lib is available for the
interrupt program:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5857

● ONB_IO_INT_IN: Determination of the interrupt initiating source
It is possible to start one interrupt task. This task can be started by any channel (I0...I3)
configured as interrupt input. Therefore, it is necessary for the interrupt program to differentiate
which channel(s) triggered the interrupt in order to enable the processing of the corresponding
actions.
The information whether a channel (I0...I3) has triggered an interrupt since the last call of the
block is provided by the outputs IN0...IN3 of the block ONB_IO_INT_IN. This is why this block
always has to be called at the beginning of the interrupt program, if more than one channel is
configured as interrupt input.

The interrupt program will be called every time if a pulse edge is detected.
But if pulse edges are occurring simultaneously on several inputs which are
configured as interrupt inputs, the interrupt program can be called once.

Configuration of PWM outputs
The processor module PM55x-xP and PM564-xP provide up to 2 PWM output channels with a
maximum frequency of 20 KHz. The parameter of PWM output channel of Onboard I/O must be
configured before it can be used. User should take these steps to configure the PWM output
function.

The 2 outputs can be controlled in 2 different configuration modes:
● Frequency mode
● Cycle time mode

Relay-type outputs of Onboard I/Os cannot be used for PWM functionality.

The mode can be configured with the parameter Output X, PWM operation mode in the parame-
ters list:

In frequency mode, by setting the FREQ and DUTY_CYCLE input variables of PWM channel,
the Onboard I/O can generate 125 Hz to 20 kHz frequency with 0..100 % duty cycle waveform
in output channels 2 and 3.
In the cycle time mode, by setting the CYCLE_TIME and CYCLE_DUTY input variables of PWM
channel, the Onboard I/O can generate 125 Hz to 20 kHz frequency with 0..100 % duty cycle
waveform in output channels 2 and 3.
The PWM can be controlled via the corresponding mapped parameters in tab xDI+yDO I/O
Mapping of the editor window. See Symbolic Names for Variables, Inputs and Outputs for further
details on mapping Ä Chapter 1.6.5.2.2.1.2 “Symbolic names for variables, inputs and outputs”
on page 5815.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5858

Table 729: Channel description:
Channel Direction Width
State byte PWM X Input BYTE

Control byte PWM X Output BYTE

PWM X, frequency / cycle
time

Output DWORD

PWM X, duty cycle / duty time Output DWORD

Operating the PWM output with user program
The following methods can be used to configure PWM outputs:
● Configuration variables
● Function blocks

The following function blocks of the library OnBoardIO_AC500_V13.lib can be used to operate
the PWM outputs with help of user program.

Using a configu-
ration variable

Using function
blocks

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5859

Group: PWM_OBIO
ONB_IO_PWM_FREQ Generate PWM Signal with Frequency and Duty Cycle on

Onboard I/O

ONB_IO_PWM_TIME Generate PWM Signal with Cycle Time and Duty Cycle on
Onboard I/O

1.6.5.2.4 Onboard Ethernet configuration
PM5xy-ETH - Onboard Ethernet

Processor modules with 2 onboard Ethernet interfaces:

– Configure only 1 interface as default gateway.
– In case of 2 configured interfaces only the latter will be executed.

Parameterization of PM5xy-ETH
Double-click the “Ethernet” node to open the onboard Ethernet configuration in the editor
window:

Processor modules with 2 onboard Ethernet interfaces:

– Configure only 1 interface as default gateway.
– In case of 2 configured interfaces only the latter will be executed.

The following parameters are available:

Parameter Default value Value Description
Run on config fault No No In case of a con-

figuration error, the
user program is not
started.

Yes The user program is
started independent
of a faulty configura-
tion of the Onboard
Ethernet Module.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5860

Parameter Default value Value Description
Delete config on
Reset origin

Yes Yes The Ethernet configu-
ration is deleted after
Reset origin.

No The Ethernet con-
figuration (e.g. IP
address) is still avail-
able after Reset
origin.

Configuration of the IP settings
In the Automation Builder project, double-click the Ethernet node to open the “IP settings”:

Processor modules with 2 onboard Ethernet interfaces:

– Configure only 1 interface as default gateway.
– In case of 2 configured interfaces only the latter will be executed.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5861

Table 730: Parameters:
Parameter Default Value Description Parameter 1)

Ä Further infor-
mation
on page 5861)

Force IP settings Disabled Disabled The IP settings
from this editor
are not used.

Use IP data

Enabled The IP settings
from this editor
are used. After
download of the
user application
and subsequent
logoff, the new IP
settings are used
temporarily until
power off the
device. For a per-
manent usage of
the IP settings,
create a boot
project.

DHCP Disabled Disabled The DHCP client
services are disa-
bled. A static IP
address must be
used.

IP mode (+
DHCP)

Enabled The DHCP client
services are ena-
bled. The IP
address of the
device will be set
by a DHCP
server in the net-
work.

IP address 0.0.0.0 Valid IP address IP address of the
device.

IP address

Subnetmask 255.255.255.0 Valid subnet
mask

Subnet mask for
the device.

Netmask

Default gateway 0.0.0.0 Valid gateway
address

Default gateway
address for the
device.

Gateway

Link mode Auto negotiation Auto negotiation The link mode
will be detected
automatically.

Link mode

10 Mbit Half-
Duplex

The link mode is
statically set to
10 Mbit half-
duplex.

10 Mbit Full-
Duplex

The link mode is
statically set to
10 Mbit full-
duplex.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5862

Parameter Default Value Description Parameter 1)
Ä Further infor-
mation
on page 5862)

100 Mbit Half-
Duplex

The link mode is
statically set to
100 Mbit half-
duplex.

100 Mbit Full-
Duplex

The link mode is
statically set to
100 Mbit full-
duplex.

ABBNetConfig
protocol active

Enabled Enabled Remote configu-
ration: ABB Net-
Config protocol is
enabled.

Disabled Remote configu-
ration: ABB Net-
Config protocol is
disabled.

Remarks:
1): Generic Device Configuration View Parameters
For a list of all available parameters, open the “IP Settings Parameters”. This tab is only visible
after enabling parameter 'Show generic device configuration views' under “Tools è Options”:

Configuration of the IP settings with the IP configuration tool
The IP address for AC500 devices can be set or changed in Automation Builder using
● the IP configuration tool which is described in the following.
● the 'Communication Settings'. Ä Chapter 1.6.5.2.2.2.3 “Configuration of communication via

Ethernet (TCP/IP)” on page 5829

As an alternative the IP address can be changed at the hardware device itself. Ä Chapter
1.6.4.1.5.4 “Description of the function keys” on page 5426

The IP configuration tool can be used
● to set or change the IP address of devices.
Ä Chapter 1.6.5.2.4.1.3.2.2 “Changing the IP address” on page 5868

● to scan the network for available hardware devices.
Ä Chapter 1.6.5.2.4.1.3.2.1 “Network scan” on page 5866

The IP configu-
ration tool:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5863

● to update the firmware of devices.
This functionality is only supported if the IP configuration tool is used stand-alone.
Ä Chapter 1.6.5.2.4.1.3.2.3 “Firmware update” on page 5869

● to activate certain functionality on hardware devices.
This feature is only available on AC500 V3 devices.
Ä Chapter 1.6.5.2.4.1.3.2.4 “Blink functionality” on page 5873

The IP configuration tool is part of Automation Builder and can be called via “Tools è IP-
Configuration”.
Further the IP configuration tool can be used stand-alone without an Automation Builder appli-
cation running. The stand-alone variant requires a separate installation via the Installation
Manager Ä Chapter 1.6.5.2.4.1.3.1 “Stand-alone installation” on page 5864.
After the installation, the IP configuration tool is started via .exe file / desktop icon.

Some functionality is only supported if the IP configuration tool is used stand-
alone, e.g. for firmware updates for communication interface devices.

Stand-alone installation

The IP configuration tool is part of Automation Builder and can be called via
“Tools è IP-Configuration”. A separate installation is only required if the IP
configuration tool shall be used stand-alone.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5864

1. Open the Installation Manager in Automation Builder: “Tools è Installation Manager”.
2. Close all other instances of Automation Builder as only one instance of the program can

be executed at a time.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5865

3. Click “Modify” and select the “IP Configuration Tool” from the structure tree.

4. Click “Continue” to start the installation.

ð After a successful installation the IP configuration tool is available as stand-alone tool
(.exe).

ð To start the IP configuration tool, click the new created desktop icon.

Using the tool functions
Network scan

With a network scan all devices that have been found in the network by the scan process are
listed, i.e. ABB devices such as AC500 processor modules, AC500 communication interface
modules or ABB Drives.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5866

1. Start the IP configuration tool in Automation Builder (“Tools è IP-Configuration”) or start it
stand-alone (.exe).

2. The “IP-Configuration” dialog opens. Define the device type for the network scan by
selecting the desired option under “Scan Protocol”:
● “ABB Net config protocol”:

Use this option for AC500 devices such as processor modules, CI5xx-Modbus devices
or ABB Drives. The device(s) to be scanned must be connected to the PC via a direct
Ethernet connection.

● “Profinet Dynamic Configuration Protocol (DCP)”:
Use this option for PROFINET communication interface modules. The device(s) to
be scanned must be connected to the PC via a direct Ethernet connection (not via
CM579).
For the scan, a NPcap driver needs to be installed separately.
Ä Step 4 on page 5871

● “EtherCAT”:
Use this option for EtherCAT communication interface modules. The Ethernet cable
must be connected directly to the first EtherCAT slave device of the EtherCAT
fieldbus. Ensure that no EtherCAT master device is available on the bus when a scan
is performed.
“Emergency” option: Enable this option to check on failures in the EtherCAT assembly
during the scan process, i.e. a frame loss or interchanged ports. Errors are displayed.
For the scan, a NPcap driver needs to be installed separately.
Ä Step 4 on page 5871

3. Click [Scan] to start the scan process.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5867

4. All devices that have been found in the network are listed including hardware and connec-
tion details. The following details can be changed under “IP settings”:

ð ● “IP Address”:
Current IP address of the device.

● “Conf. IP Address”:
Configured IP address of the device. A changed IP address will update this
column.

● “FW Version”:
Current installed firmware version of the device. This field is visible not until a first
network scan. If this field is still empty after a network scan, check on connection
errors.
Ä Chapter 1.6.5.2.4.1.3.3.1 “Trouble-shooting for firmware update” on page 5874

The IP address of some devices, e.g. EtherCAT devices cannot be
changed.

Changing the IP address
1. In order to change the IP address of devices perform a network scan.

Ä Chapter 1.6.5.2.4.1.3.2.1 “Network scan” on page 5866

2. Select a device from the list and select the appropriate protocol under “Scan protocol”.
“DHCP” or “BOOTP” option: If required, DHCP or BOOTP can be used to receive the IP
address for the device from the server.
“IP address”, “subnet mask”, “Std. gateway”: Use these fields to change the IP address
settings including the settings for the subnet mask and the standard gateway. Ensure that
the combination of connection settings is correct.
Ä “Check subnet configuration” on page 5874

Note for CI52x-Modbus devices
Consider the behavior of CI52x-Modbus devices if the last number of the
IP address is set to "0".

Ä “Check last number of IP address” on page 5875

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5868

3. Change the settings for the IP configuration and click [Send settings] to transmit the data
to the device.

ð
Note for PROFINET devices
The device name of PROFINET devices can be edited. If changing the
name, ensure the following rules apply:

– Labels must be separated by "."
– Total length: 1 to 240
– Label length: 1 to 63
– Labels can consist of characters [a-z] and numbers [0-9]
– Labels are not allowed to start with "-"
– Labels are not allowed to end with "-"

4. In order to keep all IP changes after a power cycle, the settings can be stored perma-
nently. Confirm the prompted message during the scan process.

Firmware update
The firmware of AC500 communication interface modules can be updated with the IP configura-
tion tool.
For this, the IP configuration tool must be used as stand-alone variant.
Ä Chapter 1.6.5.2.4.1.3.1 “Stand-alone installation” on page 5864

It is not possible to perform a firmware update out of Automation Builder.

– For PROFINET communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.3.3.

– For EtherCAT communication interface modules a firmware update is only
supported for devices with firmware version ³ 2.1.4.

– For Modbus communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.2.13.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5869

Before the firmware update
● Ensure a fast and stable network connection
● Close all unused applications on the executing PC
● Stop the communication between AC500 PLC and the communication interface module that

shall be updated
During the firmware update
● Do not close the IP configuration tool
● Do not open Automation Builder software or any other application
● Do not switch-off the communication interface module that shall be updated
● Do not disconnect the Ethernet connection of a communication interface module or the

executing PC

The firmware update will stop the operation of the affected device(s). Hence,
the device(s) will become unresponsive for 1 - 2 minutes.

1. Start the IP configuration tool stand-alone (.exe).
2. Perform a network scan.

Ä Chapter 1.6.5.2.4.1.3.2.1 “Network scan” on page 5866

3. Select the devices that shall be updated from the list and click [Scan] to trigger the scan
process.
A multiple selection of several devices is possible via control key, however, ensure to
select only devices of the same protocol at a time. Otherwise the firmware update fails.

Requirements:

Procedure:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5870

4. This step is only required for devices that require an installed NPcap driver. In this case an
appropriate message including a download link is prompted in the IP-Configuration dialog:

ð Click on the displayed link https://nmap.org/download.html and download the latest
version of the npcap-X.X.exe file.

ð After the download, execute the file as administrator and restart the scan process.

ð The devices that have been scanned are listed.

5. Click [Update Firmware] to start the firmware update for the selected devices.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5871

https://nmap.org/download.html

6. For CI50x, CI51x and CI52x devices a signature check is started. Select the appropriate
firmware update file (*.bin) for the device(s). Example: C:\AC500\AC500_CI52x_Firm-
ware_V3.2.8.bin.
After a successful signature check the firmware update file (*.bin) and the respective
signature file (*.bin.sig) are transferred to the device. This can last up to 3 minutes.
If the signature check fails, check the availability of the *.bin file and the *bin.sig file.
Ä “Signature check” on page 5875

7. A status check followed by a device reboot followed by a second status check is per-
formed automatically.

After the firmware update all outputs of the updated devices are set to '0'.

8. After a successful firmware update the update status or the new firmware version is
displayed in the “FW Version” field.
If this field is empty, there possibly is a connection error between the device and the
executing PC.
Ä “Error: Can’t connect to device” on page 5876

Exception: For EtherCAT devices an empty “FW Version” field does not indicate a connec-
tion error.

ð If the firmware update fails
● check the requirements for the update procedure.
Ä “Requirements:” on page 5870

● check the hints for trouble-shooting.
Ä Chapter 1.6.5.2.4.1.3.3.1 “Trouble-shooting for firmware update” on page 5874

● perform a network scan and repeat the update. If the error still persists power
cycle the device and try the update again.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5872

Blink functionality
This function activates flashing of the backlight of an AC500 LED display.
1. From the menu, select “Tools è IP-Configuration”.
2. Click [Scan] to trigger the scan process for devices in the network.

ð A progress bar shows the progress. The IP settings of a selected device is displayed
below the list and can be edited.

3. Adjust your desired time and click [Blink] to activate flashing.

Trouble-shooting for IP configuration tool
On a standard Windows 7 installation without third party firewall or security tools installed the IP
configuration tool should work properly.
The Automation Builder setup installs rules or exceptions for the built-in Windows firewall to
allow IPConfig to receive the responses for the IPConfig scan.
To check the Windows firewall is set correctly check the firewall settings.

On the network that is used for communication with the PLC, set “Incoming connections” to
"Block all connections to programs that are not on the list of allowed programs".

Firewall excep-
tions:

Windows 7/
Windows 10:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5873

If a third party firewall is used these exceptions must be configured manually.

Either exceptions for applications can be entered: Automation Builder and IP
configuration tool must be added as application.

Or the protocol and the port number must be given (for IPConfig: UDP protocol
and port number 24576).

Trouble-shooting for firmware update
Ensure that all requirements have been considered before and during the update procedure.
Ä “Requirements:” on page 5870

This hint is only valid for Modbus devices and PROFINET devices.
If the “FW Version” field is empty after the network scan or if the firmware version has not been
updated after the update procedure, there possibly is a connection error between the device
and the executing PC.
Ping the device from the executing PC. If no connection can be established, check whether the
device and the PC are in the same subnet.

Check the
requirements

Check subnet
configuration

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5874

PC Device Result
192.168.14.71 / 255.255.255.0 192.168.14.10 / 255.255.255.0 OK

192.168.10.71 / 255.255.255.0 192.168.14.10 / 255.255.255.0 ERROR

192.168.10.71 / 255.255.0.0 192.168.14.10 / 255.255.0.0 OK

Example

Click [Scan] again to restart the network scan. If the connection is successful a newer firmware
version is displayed in the “FW Version” column.

This hint is only valid for CI52x-Modbus devices.
Check the last number of the IP address. If it is set to "0", the IP address setting for this last
number will be used from the rotary switches on the hardware device.
Example:

Automation Builder AC500 communication interface module
(rotary switch)

IP address:
192.168.14.0

IP address:
6

As a result, in the field “IP Address” the last number is set to "6":

During the firmware update of CI50x, CI51x and CI52x devices a signature check is started.
The update procedure expects a firmware update file (*.bin) and a signature file (*.bin.sig) in the
same directory. Without a signature file the signature check will fail.
Example:
Firmware update file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin
Signature file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin.sig

Check last
number of IP
address

Signature check

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5875

A timeout error may occure due to an instable network.
Solution: Keep the executing PC as near as possible to the devices that shall be updated. Avoid
network switches.

A read error may occure due to errors in the firmware update protocol.
After the firmware update the IP configuration tool reads out the status of the updated device in
order to check if the update was successful.

If an IP address is obtained by more than one device an error occures. A firmware update is not
possible.

Internal device error during the firmware update.
Solution:
Step 1: Scan again and repeat the firmware update.
Step 2: If this does not work, power cycle the device, scan again and repeat the firmware
update.

The TCP communication is not sufficient. Increase the connection quality.
Solution: Keep the executing PC as near as possible to the devices that shall be updated. Avoid
network switches.

CM5xy-ETH - External Ethernet communication module
See the description of the IP settings for Ethernet Communication Modules Ä Chapter
1.6.5.2.6.5.2 “Configuration of the external communication module CM597-ETH (IP data)”
on page 5911

Ethernet protocols
In the device tree, right-click the “Protocols” node under “Ethernet” and select [Add object].

Error: Package
timeout

Error: Unable to
read device
status

Error: IP is not
unique

Error: Error
State

Error: Can’t
connect to
device

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5876

From the editor window select the desired protocol. Details on the available protocols are
provided in the section Ä Chapter 1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2
products” on page 5442.

1.6.5.2.5 Onboard ARCNET configuration
Parameters of PM5x1-ARCNET (onboard ARCNET)

Add a processor module with onboard ARCNET (e.g. PM590-ARC) to the device tree. Double-
click the node “PM5x1_ARC_Internal_ARCNET” to open the parameter settings for onboard
ARCNET. Check whether the default configuration is to be changed.
The following parameters are available:

Parameter Default value Value Description
Run config fault No No In case of a con-

figuration error, the
user program is not
started.

Yes The user program is
started independent
of a faulty configura-
tion of the internal
ARCNET Communi-
cation Module.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5877

Parameter Default value Value Description
Address
see remark
1 Ä Chapter
1.6.5.2.5.1.1 “Remark
1: Setting behavior of
the ARCNET node ID”
on page 5879

0 0...255 Address (node ID) of
the ARCNET Commu-
nication Module

Tranmission rate
see remark
2 Ä Chapter
1.6.5.2.5.1.2 “Remark
2: Tranmission rate
of the ARCNET com-
munication module”
on page 5879

2.5 MB/s 2.5 MB/s Transmission set for
the ARCNET Commu-
nication Module1.25 MB/s

625 kB/s

312.5 kB/s

Extended timeout
ET1/ET2

Very small net Very small net (=0) ARCNET timeout set-
ting. The following
applies:
Bit 0 configures ET2
of the Communication
Module
Bit 1 configures ET1
of the Communication
Module

Value ET1 ET2
Meaning

 0 0 0 Max. net-
work expansion 2 km
 1 1 0
 2 0 1
 3 1 1 for large
networks

Small net (=1)

Big net (=2)

Very big net (=3)

Long packets Enable Enable Enable long data
packets (512 bytes)

Disable Incoming long data
packets are received
and dismissed. The
SEND block indicates
an error in case of
long data packets.

Evaluate DIN on
receipt
see remark
3 Ä Chapter
1.6.5.2.5.1.3 “Remark
3: Check of DIN
identifier on receipt”
on page 5879

Enable Enable Enable check of DIN
identifier on receipt

Disable Disable check of DIN
identifier on receipt

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5878

Remark 1: Setting behavior of the ARCNET node ID

Configured ARCNET Node ID
In Project In Display Effect

1 0 [default] 0 [default] Configuration error:
Class=3 Comp=9
Dev=10 Mod=3 Ch=0
Err=26

2 0 [default] !=0 No error

3 !=0 && != display set-
ting

!=0 Configuration error:
Class=3 Comp=9
Dev=10 Mod=3 Ch=0
Err=26

4 !=0 && == display set-
ting

!=0 No error

5 !=0 0 No error, but display
shows "Addr 0"

Remark 2: Tranmission rate of the ARCNET communication module

If the transmission rate set for the ARCNET Communication Module differs
from the default value (2.5 MB/s), programming via ARCNET using the SoHard-
ARCNET PC boards is no longer possible. The same transmission rate has to
be set for all subscribers of the ARCNET network. The ARCNET PC boards are
firmly set to 2.5 MB/s.

Remark 3: Check of DIN identifier on receipt
If the parameter "Evaluate DIN on receipt" is enabled (default setting), the following DIN identi-
fiers are reserved:

DIN identifier Protocol
Hex Dec
4F 79 "Online access" - Program-

ming/OPC with IEC 61131-3
programming / AC1131

5F 95 5F_ARCNET (Ethernet func-
tions for ARCNET)

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5879

DIN identifier Protocol
Hex Dec
6F 111 PC331 programming (not

used for AC1131/IEC 61131-3
programming)

7F 127 Default DIN identifier for
data exchange with function
blocks:
ARC_REC, ARC_SEND,
ARC_STO, ARC_INFO
All DIN identifiers except the
reserved identifiers can be
used for data exchange.

If the parameter "Evaluate DIN on receipt" is disabled, programming and/or
OPC via ARCNET is not possible!

The protocols "ARCNET data exchange" and "5F_ARC" can be appended.
Right-click “PM5x1_ARC_Internal_ARCNET” node and select [Add object].
The following parameters can be set for the "ARCNET data exchange" protocol:

Parameter Default value Value Description
Size of receive buffer 8192 512...65535 Receive buffer size in

bytes. The minimum
size is equal to the
maximum size of an
UDP telegram.

Size of transmit buffer
high prio

4096 0...65535 Size of transmit buffer
(in bytes) for tele-
grams with high pri-
ority.

Size of transmit buffer
low prio

4096 0...65535 Size of transmit buffer
(in bytes) for tele-
grams with low pri-
ority.

Size of timeout buffer 2048 0...65535 Size of buffer (in
bytes) for timeout data
packets.

Number of header
data

10 0...1464 Number of header
data to be copied to
the timeout buffer for
timeout packages (in
bytes).

Receive broadcast Disable Disable Reception of broad-
cast telegrams disa-
bled (data packets to
all stations).

"ARCNET data
exchange" and
"5F_ARC"

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5880

Parameter Default value Value Description
Enable Reception of broad-

cast telegrams ena-
bled (data packets to
all stations).

Behavior on receive
buffer overflow

Overwrite Overwrite Behavior on overflow
of the receive buffer.
The oldest data
packets stored in the
receive buffer are
overwritten with the
new incoming data
packets.

Reject Behavior on overflow
of the receive buffer.
New incoming data
are dismissed.

The following parameters can be set for the "5F_ARC" protocol:

Parameter Default value Value Description
Disable write to
%MB0.x from

0 0...65535 Disable write access
for segment 0 starting
at %MB0.x

Disable write to
%MB0.x to

0 0...65535 Disable write access
for segment 0 up to
%MB0.x

Disable read %MB0.x
from

0 0...65535 Disable read access
for segment 0 starting
at %MB0.x

Disable read %MB0.x
to

0 0...65535 Disable read access
for segment 0 up to
%MB0.x

Disable write to
%MB1.x from

0 0...65535 Disable write access
for segment 1 starting
at %MB1.x

Disable write to
%MB1.x to

0 0...65535 Disable write access
for segment 1 up to
%MB1.x

Disable read %MB1.x
from

0 0...65535 Disable read access
for segment 1 starting
at %MB1.x

Disable read %MB1.x
to

0 0...65535 Disable read access
for segment 1 up to
%MB1.x

1.6.5.2.6 Communication modules
Communication modules (CM5xx)

For a processor module with communication module devices, the communication modules must
be specified in Automation Builder in the same order as they are installed in the AC500 PLC
system:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5881

● Slot 0 corresponds to the Internal communication module (installed in the processor mod-
ule's housing)

● Slot 1 is the communication module installed in the first slot on the left of the processor
module

● Slot 2 is the communication module installed in the second slot on the left of the processor
module

● Slot 3 is the communication module installed in the third slot on the left of the processor
module

● Slot 4 is the communication module installed in the fourth slot on the left of the processor
module

The allocation of inputs/outputs for the communication modules is done slot-oriented and inde-
pendent of the communication module type.
To append a communication module, add the communication module to the “Extension_Bus”
node.
1. Right-click the desired “Slot” and select “Add object”.

2. Select the communication module from the list and click [Replace object].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5882

3. In the device tree, double-click the communication module node and configure the param-
eters according to the selected communication module.

PROFIBUS
The configuration of PROFIBUS Field Bus has to be done in the following steps:
● Parameterization of the Communication Modules (master and slave) Ä Chapter

1.6.5.2.6.2.1.1 “Parameterization of the CM582-DP/CM592-DP communication module”
on page 5883.

● Configuration of the PROFIBUS DP master Ä Chapter 1.6.5.2.6.2.1.2 “Configuration of a
PROFIBUS DP master” on page 5883.

● Configuration of the PROFIBUS DP slave Ä Chapter 1.6.5.2.6.2.2.1 “Configuration of
PROFIBUS DP slave” on page 5894
– Configuration of I/O Data Objects Ä Chapter 1.6.5.2.6.2.2.1.1 “Configuration of I/O data

objects” on page 5895
– Mapping of the PROFIBUS slave I/Os Ä Chapter 1.6.5.2.6.2.2.1.2 “Mapping of the I/Os”

on page 5896
● Optional:

– Configuration of the PROFIBUS DP slaves (3rd party devices) Ä Chapter
1.6.5.2.6.2.1.3 “Configuration of 3rd party PROFIBUS DP slaves” on page 5887.

– Changing the target Ä Chapter 1.6.5.2.6.2.1.5 “Changing the target of a device”
on page 5893.

CM592-DP- PROFIBUS DP master communication module
Parameterization of the CM582-DP/CM592-DP communication module

To append a Communication Module, add the Communication Module to the “Extension_Bus”
node.
● Right-click the desired slot and select “Add object”.
● Select the Communication Module from the list and click [Replace object].

● Double-click the new node to open the CM582/CM592 - PROFIBUS DP (Interface) configu-
ration in the editor window.

The following parameters are available:

Parameter Default
value

Value Description

Run on config fault No No In case of a configuration error,
the user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the PROFIBUS Communica-
tion Module.

Min update time 10 0...20000 Minimum update time of inputs
and outputs in [ms].

Configuration of a PROFIBUS DP master
Double-click on “Profibus_Master_x (Profibus_Master)” to open the “Profibus_Master” configu-
ration in the editor window:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5883

Click on tab “General” if not already opend.

Most of the parameters are calculated automatically. Click [Edit parameter values] to change
the parameters manually. Once edited, click [Set optimal values] to calculate the optimal values.
[Set default values] can be used to revert all parameters to the default values.

All times for the PROFIBUS parameters are given in bit time [tBit]. The bit time
is the result of the reciprocal of the transmission rate:

tBit = 1 / transmission rate in [bit/s]

The conversion from milliseconds into a bit time is shown in following formula:

tBit = Time in [ms] * transmission rate in [bit/s]

The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1)

Identification
Station address 1 0...125 The individual device address of

the master device on the bus.
DpParameter
-> Station
address

Highest station
address

126 0...126 The highest bus address up to
which a master searches for
another master at the bus in
order to pass on the token.
This station address must on
no account be smaller than the
master station address.

DpParameter
-> Highest
station
address

Mode

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5884

Parameter Default Value Description Parameter
(Remark 1)

Auto-Clear mode Enabled Disabled The master operation mode will
stay in the mode 'Operate' and
the communication to all avail-
able slaves is kept up.

AutoClear-
Supported

Enabled The masters operation mode will
change from 'Operate' to 'Clear'
and it shuts down the communi-
cation to all assigned slaves, if
at least 1 slave is not responding
within the data control time.

Bus parameters
Transmission
rate
see Ä Chapter
1.6.2.4.8.2.2
“Connections”
on page 4080

1500 9.6
19.2
45.45
93.75
187.5
500
1500
3000
6000
12000

Data transfer speed in [kBits/s].
The baud rate must be set to the
same value for all devices on the
bus. The result of changing the
baud rate is that all other param-
eters must be recalculated.

DpParameter
-> Transmis-
sion rate

Slot time 300 37.. 65535 Monitoring time of the sender
(requester) of a telegram for the
acknowledgement of the recip-
ient (responder). After expiration,
a retry occurs in accordance with
the value of maximum telegram
retries.

DpParameter
-> TSL

Min. TSDR 11 1...65535 Shortest time period that must
elapsed before a remote recip-
ient (responder) may send an
acknowledgement of a received
query telegram. The shortest
time period between reception of
the last bit of a telegram to the
sending of the first bit of a fol-
lowing telegram.

DpParameter
-> Min. TSDR

Max. TSDR 150 1...65535 Longest time period that
must elapse before a sender
(requestor) may send a further
query telegram. Greatest time
period between reception of the
last bit of a telegram to the
sending of the first bit of a fol-
lowing telegram.
The sender (requestor, master)
must wait at least for this time
period after the sending of an
unacknowledged telegram (e.g.
broadcast only) before a new
telegram is sent.

DpParameter
-> Max. TSDR

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5885

Parameter Default Value Description Parameter
(Remark 1)

Quiet time 0 0...127 Time delay that occurs for mod-
ulators (modulator-trip time) and
repeaters (repeater-switch time)
for the change over from sending
to receiving.

DpParameter
-> TQUI

Setup time 1 0...255 Minimum period reaction time
between the receipt of an
acknowledgement to the sending
of a new query telegram (reac-
tion) by the sender (requestor).

DpParameter
-> TSET

Target rotation
time

11894 1.. 2
-1
(=1677721
5)

Pre-set nominal token cycle time
within the sender authorization
(token). The available time for
the master to send data tele-
grams to the slaves depends on
the difference between the nom-
inal and the actual token cycle
time.
The Target rotation time (TTR)
is shown in Bit times [tBit] like
the other bus parameters. Below
the displayed bit time, the Target
rotation time is also displayed in
[ms].
The default value depends on the
number of slaves attached to the
master and their module configu-
ration.

DpParameter
-> TTR

GAP update
factor

10 0...255 Factor for determining after how
many token cycles an added
participant is accepted into the
token ring. After expiry of the
time period G*TTR, the station
searches to see whether a fur-
ther participant wishes to be
accepted into the logical ring.

DpParameter
-> GAP
update factor

Max. retry limit 1 1...15 Maximum number of repeats in
order to reach a station.

DpParameter
-> max. retry
limit

Bus monitoring
Data control time 120 1..224-1 Defines the time in [ms]

within the Data_Transfer_List is
updated at least once. After the
expiration of this period, the
master (class 1) reports its oper-
ating condition automatically via
the Global_Control command.
The default value depends on the
transmission rate.

DpParameter
-> Data con-
trol time

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5886

Parameter Default Value Description Parameter
(Remark 1)

Min. slave
interval

2000 1...65535 Defines the minimum time period
between two slave list cycles in
[µs]. The maximum value the
active stations require is always
given.
The default value depends on the
slave types.

DpParameter
-> min. slave
interval

Poll timeout 10 Sets the maximum period of
time in [ms] during which the
response has to be received.

DpParameter
-> Poll timeout

Calculated timing
Tid1 (read-only) 37 37 Tid1 starts after the initiator has

received an acknowledgement,
answer or a token telegram.
Tid1 = max (T QUI + 2 * T SET + 2
+ TSYN , min T SDR)

T SYN : This is the minimum time
that must be available to each
device as a rest condition before
it is allowed to accept the start of
a query and it is determined at 33
bit times.

-

Tid2 (read-only) 150 150 Tid2 starts after the initiator has
send a telegram which is not
acknowledged..
Tid2 = max (TQUI + 2 * T SET + 2 +
TSYN , max TSDR)

T SYN: This is the minimum time
that must be available to each
device as a rest condition before
it is allowed to accept the start of
a query and it is determined at 33
bit times.

-

Remark 1:
To display the parameters of this column, enable the option “Show generic device configuration
views” under “Tools è Options è Device editor”.

Configuration of 3rd party PROFIBUS DP slaves
A PROFIBUS DP slave can be added by right-clicking on “Profibus_Master_x
(Profibus_Master)” and selecting “Add object”.
If the desired device is not listed it can be installed via the “Device Repository” (menu item
“Tools” -> “Device Repository”).
The slave configuration parameters can be edited in slave related editor window. To open this
editor window, double-click the corresponding slave in the device tree.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5887

All times for the PROFIBUS parameters are given in bit time [tBit]. The bit time
is the result of the reciprocal of the transmission rate:

tBit = 1 / transmission rate in [bit/s]

The conversion from milliseconds into a bit time is shown in following formula:

tBit = Time in [ms] * transmission rate in [bit/s]

The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1)

Identification
Station address 1 0...126 Station address of the

PROFIBUS DP slave device.
StationAd-
dress

Ident number GSD file
specific

FALSE Station address of the
PROFIBUS DP slave device.

SlavePrmData
-> ident-
Number

Parameter
T_SDR (tBit) 11 11...255 The parameter T_SDR (tBit) rep-

resents the minimum station
delay of a responder (time a res-
ponder waits before generating
the reply frame).

SlavePrmData
-> minTsdr

Max. TSDR 2 (Lock) 0 (T_SDR
unlock)

The TSDR and slave-specific
parameter may be overwritten.

Bit 6 = 0 and
bit 7 = 0 of bit-
mask Slave-
PrmData ->
stationStatus

1 (Will be
unlocked)

The slave is released to other
masters.

Bit 6 = 1 and
bit 7 = 0 of bit-
mask Slave-
PrmData ->
stationStatus

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5888

Parameter Default Value Description Parameter
(Remark 1)

2 (Lock) The slave is locked to other mas-
ters, all parameters are accepted.

Bit 6 = 0 and
bit 7 = 1 of bit-
mask Slave-
PrmData ->
stationStatus

3 (Unlock) The slave is released to other
masters.

Bit 6 = 1 and
bit 7 = 1 of bit-
mask Slave-
PrmData ->
stationStatus

Watchdog
Watchdog control Enabled Disabled The PROFIBUS slave does not

utilize the Watchdog Control Time
setting.

SlavePrmData
-> wdFact1

Enabled The PROFIBUS slave utilizes
the Watchdog Control Time set-
ting in order to detect commu-
nication errors to the assigned
master. When the slave finds an
interruption of an already opera-
tional communication, defined by
a Watchdog time, then the slave
carries out an independent Reset
and places the outputs into the
secure condition.

Time (ms) 400 0...2540 Watchdog time in [ms].
The default value depends on the
number of slaves attached to the
master and their configuration.

SlavePrmData
-> wdFact2

User parameter
Symbolic values Enabled Disabled No symbolic names for the user

parameters.
-

Enabled The values for the parameters
are shown with symbolic names.

-

Length of user
parameter (Byte)

3 Device-
specific

The length of the user parame-
ters in [bytes]. By default this
value is 3 due to the existing
reserved values.

-

Defaults - - The button restores the default
values of the user parameters.

-

Remark 1:
To display the parameters of this column, enable the option “Show generic device configuration
views” under “Tools è Options è Device editor”.

Configuration of the PROFIBUS DP slaves connected via FBP
A PROFIBUS DP slave can be added by right-clicking on Profibus_Master_x (Profibus_Master)
and selecting “Add object”.
The slave configuration parameters can be edited in tab “PROFIBUS slave”:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5889

All times for the PROFIBUS parameters are given in bit time [tBit]. The bit time
is the result of the reciprocal of the transmission rate:

tBit = 1 / transmission rate in [bit/s]

The conversion from milliseconds into a bit time is shown in following formula:

tBit = Time in [ms] * transmission rate in [bit/s]

The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5889)

Groups...
Remark 2 Ä Fur-
ther information
on page 5889

BUTTON - Opens the Group Properties
dialog window

Bitmask Slave-
PrmData ->
group

Identification
Station address 1 0...126 Station address of the

PROFIBUS DP slave device.
StationAddress

Watchdog
Watchdog con-
trol

Enabled Disabled The PROFIBUS slave does
not utilize the Watchdog Con-
trol Time setting.

SlavePrmData
-> wdFact1

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5890

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5889)

Enabled The PROFIBUS slave utilizes
the Watchdog Control Time
setting in order to detect
communication errors to the
assigned master. When the
slave finds an interruption
of an already operational
communication, defined by
a Watchdog time, then the
slave carries out an inde-
pendent Reset and places the
outputs into the secure condi-
tion.

Time (ms) 400 0...2540 Watchdog time in [ms].
The default value depends on
the number of slaves attached
to the master and their config-
uration.

SlavePrmData
-> wdFact2

User parameter
DPV1 Enabled Disabled DPV1 is disabled. Item 7 of array

SlavePrmData
-> userPrm-
Data -> user-
Parameter
(enabled =
128, disabled =
0)

Enabled DPV1 is enabled.

Block Parameter Use Block-
Parameters

Use Block-
Parameters

Use block parameters. Item 4 of array
SlavePrmData
-> userPrm-
Data -> user-
Parameter
(enabled = 1,
disabled = 0)

Ignore Block-
Parameters

Ignore configured block
parameters.

Diagnosis format DPV1 Diag-
nosis
Format

DPV0 Diag-
nosis Format

Use DPV0 diagnosis format. Item 3 of array
SlavePrmData
-> userPrm-
Data -> user-
Parameter
(enabled = 1,
disabled = 0)

DPV1 Diag-
nosis Format

Use DPV1 diagnosis format.

Set default
values ...

- - The button restores the
default values of the user
parameters.

-

Parameter
TSDR (TBit) 11 The TDSR in [tBit] represents

the station delay of a res-
ponder (time a responder
waits before generating the
reply frame).

minTSDR

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5891

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5889)

Freeze Req Enabled Disabled Freeze request is disabled. Bit 4 of Slave-
PrmData ->
stationStatusEnabled Freeze request is enabled.

Sync Req Enabled Disabled Sync request is disabled. Bit 5 of Slave-
PrmData ->
stationStatusEnabled Sync request is enabled.

Lock Req Enabled Disabled Lock request is disabled. Bit 7 of Slave-
PrmData ->
stationStatusEnabled Lock request is enabled.

Unlock Req Disabled Disabled Unlock request is disabled. Bit 6 of Slave-
PrmData ->
stationStatusEnabled Unlock request is enabled.

Remark 1:
The parameters in this column are shown in tab PROFIBUS slave Configuration which is only
visible if the parameter Show generic device configuration views is activated (open the Options
dialog with “Tools è Options è section Device editor”):

The table shows all configuration parameters which are available for the device.
Remark 2:
Click [Groups...] to open the Group Properties dialog window. The relevant group(s) for the
slave device can be selected by activating the corresponding item in the dialog window. The
selection(s) can be confirmed with [OK]. To cancel the selection, use the cross symbol on the
right of window title bar.

I/O configuration check
Tab “Check configuration” can be used to check the current I/O configuration. The device
specific number of available I/Os can be compared with the actually configured I/Os to detect a
faulty I/O configuration before downloading the program.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5892

Parameter Default value Value Description
I/O length
 Device-specific 0...244 Length of the config-

ured input data in
[bytes].

 Device-specific 0...244 Length of the config-
ured output data in
[bytes].

 Device-specific 0...368 Length of the config-
ured input/output data
in [bytes].

Restriction on [device name]
AI Device-specific 0...128 Available analog

inputs of the device in
[words].

AO Device-specific 0...128 Available analog out-
puts of the device in
[words].

DI Device-specific 0...32 Available digital inputs
of the device in
[bytes].

DO Device-specific 0...32 Available digital out-
puts of the device
[bytes].

Parameter length
Parameter length Device-specific 0...244 Parameter length in

[bytes].

Changing the target of a device
As of Automation Builder 1.2, the support of Communication Module CM572-DP is discontinued
by the manufactorer Hilscher.
In Automation Builder, you can update CM572-DP to CM592-DP. Automation Builder will pre-
serve the protocol specific configuration after the device update.
Alternatively, you can copy the existing PROFIBUS protocol configuration to any new
PROFIBUS device, e.g. from CM572-DP to CM592-DP or vice versa. Also the CM592-DP
module of the AC31-Adapter is supported.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5893

To update CM572-DP device to a CM592-DP, proceed as follows:
● Right-click “CM572-DP” node in the device tree and select “Update objects”.
● From the dialog select the CM592-DP device and select “Update objects”.
● Rename the node to CM592-DP.
Automation Builder configuration will be preserved after the device update.

An existing PROFIBUS protocol configuration can be copied to any other PROFIBUS device,
e.g. from a CM572-DP device to a CM592-DP device. For this, right-click the device node to be
transferred and click copy. Right-click the device node to be changed and click paste.
Automation Builder configuration of CM592-DP is changed.

CM582-DP PROFIBUS DP slave communication module
Configuration of PROFIBUS DP slave

Double-click on “PROFIBUS_DP_Slave” to open the PROFIBUS slave configuration in the
editor window:

Update CM572-
DP to CM592-DP

Protocols in
PROFIBUS
devices

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5894

The following parameters can be modified:

Parameter Default value Value Description
Bus address 1 0...126 The bus address is the individual device

address of the slave device on the bus.

Configuration of I/O data objects
To append I/O data, add the desired input / output objects to the Communication Module node.
Right-click the Communication Module node and select “Add object”.
Different types of data objects group I/O variables by size and direction. The I/O driver of the
PLC firmware copies the amount of data bytes configured by these data objects cyclically. The
time which is required for data copying is defined by the parameter “Min. update time” Ä Further
information on page 5883.

Select the desired I/O objects from the list and click [Add object].

To keep basic load of PLC low, only configure as much I/O data objects as
actually required. If further I/O variables need to be added later, additional data
objects can be inserted.

Technical details on the device such as the maximum amount of bytes used for I/O data is
described in the device specification for Ä Chapter 1.6.2.4.8.1 “CM582-DP - PROFIBUS DP
slave” on page 4075.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5895

Double-click an added I/O object node to open the preset configuration. As the I/O objects do
not need user configuration all parameters in the “Parameters” tab are read-only.
Open the “I/O Mapping” tab to configure the mapping configuration for the I/O object.

On using CM582-DP slave device configured with modules types combining input and output
data the following situation may happen:

CM582-DP Communication Module configuration uses module type 16 Byte In/Out.
The device representation assigned to CM592-DP master uses module types 16 Byte Output
and 16 Byte Input at the same place instead.

Example

This mismatch will not be detected; neither by Automation Builder nor by PROFIBUS master
and slave.
However, the communication will run stable and I/O data exchange is executed successfully.
Reason:
AC500 defines modules combining input and output directions to be split to two separated
module configurations internally with output direction first.
Thus in AC500 the PROFIBUS configuration data for one module of type 16 Byte In/Out looks
the same as for the combination of module types 16 Byte Output and 16 Byte Input.

Mapping of the I/Os
Double-click on the desired I/O data object in the device tree to show current I/O mapping
connected to this data object.
See chapter Symbolic Names for Variables, Inputs and Outputs for further details on mapping
inputs and outputs Ä Chapter 1.6.5.2.2.1.2 “Symbolic names for variables, inputs and outputs”
on page 5815.

CM574-RS - Programmable serial communication module
Configuration of the CM574-RS in the AC500 CPU project

To append a Communication Module, add the Communication Module to the “Extension_Bus”
node.
● Right-click the desired slot and select “Add object”.
● Select the Communication Module from the list and click [Replace object].

● Double-click on CM574_RS (CM574-RS) to open the CM574-RS configuration.
The following parameters are available:

Possible incon-
sistency

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5896

Parameter Default value Value Description
Run config fault No No The user program is

not started in case of
a configuration error.

Yes The user program is
started independent of
a faulty configuration
of the CM574.

Max. wait run 3000 0...120000 Max wait time for valid
inputs.

Min. update time 10 10...2000 Minimum update time
of inputs and outputs
in [ms].

Enable debug On Off The user program of
the CPU only runs
if the communication
module is in RUN
mode. The user pro-
gram of the commu-
nication module only
runs when the CPU
is in RUN mode.
Debug commands on
the communication
module are not per-
mitted.

On The user program of
the CPU runs inde-
pendent of the com-
munication module
status, i.e., all debug
commands are per-
mitted on the commu-
nication module.

Watchdog 400 400..60000 Watchdog in [ms]

Basically 2 different modes can be configured at the sub modules of the CM574-RS communi-
cation module. Either cyclic data exchange (default setting) or remotely controlled COM port
usage is available.

Using cyclic data exchange
The submodules Channel 1 and Channel 2 can be used to transfer I/O data cyclically between
the processor module and the CM574-RS communication module. Input and output modules
can be attached to these submodules. The procedure corresponds to the one of the Ä Chapter
1.6.4.1.1.3 “Processing of inputs and outputs in the multitasking system” on page 5399.
Per channel, a maximum of 500 Bytes of I/O data can be exchanged.
A maximum of 32 sub modules can be attached. There is no automatic monitoring of the 500
bytes being exceeded. For this reason, it needs to be checked whether the last module exceeds
the highest permissible input or output address. These addresses are:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5897

Channel Communication Module inputs in
slot x

Communication Module outputs in
slot x

%IBx.y %IWx.y %IDx.y %QBx.y %QWx.y %QDx.y
Channel 1 %IBx.499 %IWx.249 %IDx.124 %QBx.499 %QWx.249 %QDx.124

Channel 2 %IBx.999 %IWx.499 %IDx.249 %QBx.999 %QWx.499 %QDx.249

In the project of the CM574-RS, the same I/O modules have to be configured
for data exchange with the processor module.

Using COM protocols

In the CM574-RS project the corresponding COM port which should be
remotely controlled by the AC500 CPU project must be set to COMx - Shared.
At least an empty boot project with this setting must be deployed on the CM574-
RS communication module.

If the cyclic data exchange is unused or not required for the project the corresponding channel
can be switched to a COM protocol that is configured at a COM interface of the CM574-RS
communication module and remotely controlled by the AC500 CPU. See Remote Control
of COM ports of the CM571-RS communication module for further information Ä Chapter
1.6.5.2.6.3.3 “-Remote control of COM ports of the CM574-RS communication module”
on page 5905.
The protocol selection is done in the same way as it is known for the local COM interfaces
Ä Chapter 1.6.5.2.11.1 “Setting up the protocol of a serial interface” on page 6098.

Only the protocol CS31, Modbus and ASCII are allowed to be used remotely.

Shared Modbus Modus
CM547 as an additional CPU
Protocols of the serial interfaces of the CM574-RS
● Online Access
● CS31
● ASCII
● Modbus RTU
● Multi
● SysLibCom
View the different protocols here, Ä Chapter 1.6.4.2.6.2 “Protocols of the serial interfaces of the
CM574-RS” on page 5594

Communication Mode
The cyclic and acyclic data can be adjusted in the function blocks.
● Cyclic - Ä Chapter 1.6.4.2.6.2.6.2 “Cyclic data exchange CM574-RS/CS31 bus <-> AC500

CPU” on page 5597
● Acyclic - Ä Chapter 1.6.4.2.6.3.1 “Function blocks for acyclic data exchange CM574-RS/

AC500 CPU” on page 5607

Overview

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5898

Communication Settings
Ä Chapter 1.6.3.6.4 “Connection and wiring” on page 5337

Program in CODESYS 2.3
Download
CM574 in shared Mode
Configuration in CM574
Ä Chapter 1.6.5.2.6.3.1 “Configuration of the CM574-RS in the AC500 CPU project”
on page 5896

• Shared Mode
Communication Settings
Ä Chapter 1.6.3.6.4 “Connection and wiring” on page 5337

Download in CODESYS 2.3
Program in Main PLC
Download Project in Main PLC
Example project
In the following, the configuration of the Modbus communication between a AC500 CPU and the
CM574-RS via a common channel is described using an example project.
● Configuration protocols in CM574

– CPU PM583
CM574-RS mounted in the first slot

● Wiring
– CM574-RS COM1 - CPU PM578-ETH COM1

● Functionality
– CM574-RS is a Modbus Server. The COM1 of a CPU is a Modbus Client.

● Purpose
– Direct access from the CPU program to the Modbus Clients wired to CM574-RS

The project contains two sub-projects, one for the communication module CM574-RS and
another one for the CPU.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5899

1. Configure the settings in the CM574-RS project. See Ä Chapter 1.6.5.2.6.3.1 “Configura-
tion of the CM574-RS in the AC500 CPU project” on page 5896.

2. Configure the settings in the CPU project.

3. Configure the COM 1 port as Modbus Client. Ä Chapter 1.6.5.2.6.3.3 “-Remote control of
COM ports of the CM574-RS communication module” on page 5905

4. In the “Device” interface double-click on the “COM1_Modbus_1 ”port.

ð The tab with the adjustable “COM1 - Modbus Parameters” opens on the right.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5900

5. Double-click on the “Value” in the “Operation mode” to change the setting to “Client”.

ð

6. Click to change to the “Modbus Server Settings”.
7. Compare the settings with the following figure, if necessary change the settings.

8. Set the CM574-RS as Modbus server in the CPU project.
9. In the “Device” interface double-click on the “COM1_Modbus” port.

ð The tab with the adjustable “COM1 - Modbus Parameters” opens on the right.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5901

10. Double-click on the “Value” in the “Operation mode” to change the setting to “Server”.

ð

ð The “COM_PORT” for RCM574-RS COM 1 are now created.

CPU project
● No program in the CM574-RS necessary
● The Server FB for the CM574-RS COM 1 is contained in the CPU program
● The COM number is given by the “alias” variable
● SLAVE=1

communication with the client addressed with 1
● FCT=15

master writes (sends) n words
● ADDR=0

data from master will be stored in the slave from address %MW0.0
● NB=1 1

word will be sent
● DATA=

address of begin the data to be sent
Indication of the received data by client 1 in the CPU project.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5902

In the CM574-RS project no programm is available.

Configuration of CM574-RS
A project for the serial communication module CM574-RS is created in the same way as an
AC500 CPU project. See Ä Chapter 1.6.5.1.1.1 “Creating a new project ” on page 5758 for
further details.
All interfaces of the Communication Module are pre-assigned with default values.

Parameterization
Double-click on “CPU_parameters” (CPU parameters) to open the CPU parameters configura-
tion in the editor window.

Parameter Default value Value Description
Error LED On On The Error LED lights

up in case of non-
acknowledged errors
in the diagnosis
system.

Off The Error LED does
not automatically light
up in case of non-
acknowledged error
messages.

Flexible configuration None None No flexible configura-
tion is used.

Flash FlexConf.ini is loaded
from Flash.

User program FlexConf.ini is loaded
by user program.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5903

Parameter Default value Value Description
FTP file FlexConf.ini is loaded

from FTP.

Flexible configuration
timeout

1000 0...65535 FlexConf.ini timeout in
seconds [s].

Free wheeling pause 10 0...255 Free wheeling pause.

If the Error LED should be activated by the user program, the parameter has to
be set to "Off".

The library "SysIntExt_AC500_V10.lib" contains the function block LED_SET
for controlling the LEDs of the CM574-RS. See description of the function
block LED_SET of the Ä Chapter 1.5.4.20 “Extended internal system library”
on page 1626.

Configuration of the cyclic data exchange between CM574-RS and the processor module
Configuration of the cyclic data exchange of the CM574-RS with the AC500 CPU via inputs/
outputs is carried out in the entry CPU Communication.

In the project of the CM574-RS the same I/O channels have to be configured for
data exchange with the AC500-CPU as they are configured in the AC500 CPU
project.

The data exchange is cyclically but might be asynchronous. It cannot be
ensured that all signals are present with chronological synchronism on the
communication partners. This particularly applies in case of several tasks with
different cycle times.

Configuration of the serial interfaces of the CM574-RS

If a COM port should be remotely controlled by the AC500 CPU project it must
be set to COMx shared. At least an empty boot project with this setting must be
deployed on the CM574-RS Communication Module.

In the standard configuration, the Serial Interfaces COM1 and COM2 of the CM574-RS are
pre-assigned with the Online access protocol. Thus, online access from CODESYS can occur
via one of the two interfaces with the serial driver Serial (RS-232) or ABB RS232 AC.
To set another protocol, proceed as follows:
Right-click the respective interface and select “Plug Device”.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5904

Select the desired protocol and click [OK].
The protocols have the same properties as for the serial interfaces of the AC500 CPUs PM57x,
PM58x and PM59x.
The current interface settings can be displayed with the PLC browser command 'com settings'.

-Remote control of COM ports of the CM574-RS communication module

In order to use remote COM protocols for a CM574-RS serial port, the cor-
responding COM must be set to COMx- Shared within the CM574-RS CPU
project.

CM574-RS Communication Module's COM ports can be configured and used directly in the
CPU project as if they were local COM interfaces. Each communication channel can be
replaced by a COM port which is linked as follows:
● Channel 1 --> COM1 on CM574-RS Communication Module
● Channel 2 --> COM2 on CM574-RS Communication Module
The following protocols are available:
● ASCII
● Modbus RTU
● CS31 bus
The protocol selection as well as the configuration of the available parameters is done in the
same way as it is known for a local COM interface. See Setting Up the Protocol of a Serial
Interface Ä Chapter 1.6.5.2.11.1 “Setting up the protocol of a serial interface” on page 6098.

Shared ports in the CM574-RS Project
In any case the COM port which should be remotely controlled must be "shared" by selecting
the port to COMx-Shared within the CM574-RS Communication Module project. This option
automatically sets the CPU Communication Module for the corresponding communication
channel to Not Used. The ability to program the CM574-RS Communication Module is not
affected.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5905

CAUTION!
It is not possible to combine cyclic DPRAM-I/O data exchange with remote
protocol functionality.

CS31 bus I/O configuration and access
The CS31 bus is configured as described for the local interfaces Ä Chapter 1.6.5.2.10.1 “Con-
figuration of CS31 bus master” on page 6078. The I/O mapping is done in exact the same way
so that it is possible to access the CS31 bus I/Os locally in the project of the AC500 CPU.

When using the remotely controlled CS31 bus in combination with a CM574-RS
Communication Module the I/O area size for each port is restricted to 500 bytes
input and 500 bytes output data (for local interfaces 1000 bytes in each direc-
tion are available). Automation Builder automatically calculates the configured
I/O sizes and warns as soon as the available size has been reached.

Alias parameter
The protocols ASCII Ä Chapter 1.6.5.2.11.3 “Setting COMx - ASCII” on page 6100 and Modbus
Ä Chapter 1.6.5.2.11.4 “Setting COMx - Modbus” on page 6108 work with function blocks
which require the target COM port number as an input. The COM port number of the remote
controlled port is an internal identifier and might differ because it depends on the existing
remote COM interfaces of the project. To address a remote COM interface the parameter Alias
which represents the corresponding COM interface is used:

Parameter Default Value Description
Alias ‘COM_[x]_[y]’ STRING(80) The alias of the COM port which repre-

sents the unique identifier of the COM
port.
By default the alias is generated by
Automation Builder and consists of
the slot number of the Communication
Module (x) and the COM port’s index at
the Communication Module (y).

CAUTION!
It must be ensured that the alias string represents an IEC-conform variable
name. Otherwise it will not be possible to compile the IEC project.

Automation Builder automatically adds a new section RemoteInterface to the Global Variables
of CODESYS V2.3.9.x project after (re)creating the configuration data. This section contains
the generated aliases as constant variables which can be used to address each remote
COM interface at the existing function blocks of the protocols (COM_SEND, COM_REC,
COM_MOD_MAST).

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5906

CM574-RCOM - RCOM/RCOM+ Communication module
Module parameters

The RCOM/RCOM+ Communication Module CM574-RCOM provides an implementation of the
serial remote protocol RCOM/RCOM+ in master and slave mode.

1. In the device tree under “Extension_Bus”, right-click “Slot_1” or “Slot_2” node and select
[Add object]. The slot corresponds to the slot of the Terminal Base.

2. Select “CM574-RCOM” from the list and click [Replace object].
3. In the device tree, double-click the “CM574-RCOM” node.

ð The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of configuration fault the
user program will not be launched.

Yes The user program will be also
launched in case of configuration
error on the I/O Bus.

Min. update time 10 10...20000 Minimum update time of the in- and
outputs in [ms].

Watchdog 400 400...60000 Watchdog time [ms].

For each interface of the Communication Module, a module is added in the project structure.
● RCOM (RCOM/RCOM+): represents the RCOM protocol interface Ä Chapter 1.6.5.2.6.4.3

“Configuration of the RCOM protocol interface” on page 5908.
● Console (Console): represents the debugging terminal interface (operator terminal)
Ä Chapter 1.6.5.2.6.4.2 “Configuration of the operator terminal” on page 5907.

Configuration of the operator terminal
In the device tree, double-click the “Console (Console)” node.

ð The following parameters are available for debugging the terminal interface (operator
terminal):

Parameter Default value Value Description
RTS control None None RTS control is not enabled.

Transmisson
rate

19200 19200 The transmission rate of the Operator
terminal is 19200 Baud/sec (read-only).

Parity None None The operator console COM port does not
use a parity check (read-only).

Data Bits 8 8 The number of data bits is 8 (read-only).

Stop Bits 1 1 One stop bit is used (read-only).

Debug level No messages No messages Only error messages are printed on the
terminal.

Level 1 Brief messages of protocol events like
data transmissions are printed.

Level 2 Detailed information of protocol events is
printed.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5907

Configuration of the RCOM protocol interface
In the device tree, double-click the “RCOM (RCOM/RCOM+)” node.

ð The following parameters are available:

Parameter Default value Value Description
Operation
mode

RCOM+ master RCOM+
Master

The Communication Module works as a
master device in an RCOM+ network.

RCOM+ Slave The Communication Module works as a
slave device in an RCOM+ network.

RCOM Master The Communication Module works as a
master device in an RCOM network.

RCOM Slave The Communication Module works as a
slave device in an RCOM network.

Address
(NODE)

0 0...254 Address (node number) of the Communica-
tion Module.

Transmission
rate

9600 baud/s 300
600
1200
2400
4600
9600
19200

Transmission rate in Baud per second.

Parity None None No parity check is used for telegram trans-
mission.

Odd Odd parity check is used for telegram
transmission.

Even Even parity check is used for telegram
transmission.

CDLY 0 0 Value for carrier delay. The value will be
converted internally into [ms] according to
the specified transmission rate.

Character
timeout

30 30 Value for character timeout. The value is
internally converted into [ms] according to
the specified transmission rate.

Turnaround
time

4000 4000 Turnaround time to calculate timeout [ms].

Type of modem Direct connec-
tion

Direct connec-
tion

Setting for direct connections.

Fixed line
modem

Setting for usage of fixed line modems.

Installed
RS-485 inter-
face

Settings for usage of Hayes compatible
dial-up modems. This requires the config-
uration of a telephone list as described
below (module Telephone number).

Installed
RS-485 inter-
face

Setting for installed RS-485 interface.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5908

Parameter Default value Value Description
Modem
23WT90 half
duplex

Settings for usage of a 23WT90 modem in
half duplex operation mode.

Retransmis-
sions

2 0...255 Number of telegram retransmissions after
a reply was not received from the corre-
sponding slave.

Max. number of
polls

3 0...255 Number of event polls that are sent by the
master during one event polling phase.

Number of pre-
ambles

1 1...255 Number of preamble bytes.

Number of
postambles

1 1...255 Number of postamble bytes. This value
must be equal to the number of preambles.
If the values are different, the Communica-
tion Module automatically sets both param-
eters to the configured number of pream-
bles.

The values of the parameters TLS (line stab time) and CDLY (carrier delay) are
dependent on the length of the line and the type of modems used and might
vary from system to system.

Parameter TLS always must be higher than parameter CDLY.

If a dial-up connection is used for the RCOM network, proceed with dial-up configuration. If no
dial-up configuration is used, skip this section.

Dial-up configuration
In order to use dial-up connections, a modem module has to be appended to the RCOM/
RCOM+ Communication Module in the project structure.

ABB recommends HSM Eco modems for usage with CM574-RCOM Communi-
cation Modules.

1. Right-click the “RCOM (RCOM/RCOM+)” node and select “Add object”.
2. Select “Dial-up modem” and click [Add object].
3. In the device tree, double-click the new “Dial-up modem object”. The module contains

all commands required for controlling the modem. It is preconfigured for the HSM Eco
modem:

Parameter Default value Value Description
Modem init ATZ^M~~ATI4^M~ String Hayes compatible AT command to initi-

alize connected modem.

Dial prefix 1...6 ATDT String Hayes compatible AT command to dial a
number. 6 different dial prefixes can be
configured.

Dial suffix ^M String Hayes compatible AT command string
that is appended to the dial string.

Connect answer CONNECT String Message of the connected modem, if
connection is established.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5909

Parameter Default value Value Description
Modem ring RING String Message of the connected modem, if

incoming call is registered.

No carrier NO CARRIER String String Message of the connected
modem, if no carrier is detected.

Command
mode

~~+++~~ String Hayes compatible AT command to
switch modem to command mode.

Modem answer ATA^M String Hayes compatible AT command to
answer incoming call.

Modem hangup ATA^M~~~~~ String Hayes compatible AT command to hang
up (terminate) an existing connection.

Max ring time 70 0...255 Maximum time [s] until a call is can-
celled.

Max number of
calls

3 0...255 Maximum number of calls executed to
establish a connection to a communica-
tion partner.

Call delay 2 0...255 Delay time [s] between two calls.

Hangup time 30 0...255 Time until a hang up process is consid-
ered as completed.

After configuring the modem, a list of telephone numbers (phone book) has to be created for
the nodes of the RCOM network. This is done by adding new sub entries to the Dial-up modem
entry.
1. In the device tree, right-click the “Dial_up_modem (Dial-up modem)” node and select “Add

object”. Select “Telephone number” and click [Add object].
2. In the device tree, double-click the “Telephone_number” node to open the telephone

number parameters.

ð The following parameters are available:

Parameter Default value Value Description
Dial prefix number 1 1...6 Identifier for the corre-

sponding prefix. Pre-
fixes can be config-
ured under module
"Dial-up modem" as
described above.

Telephone number - Valid telephone
number

Telephone number as
a string.

CM597-ETH
Parameterization of the external communication module CM597-ETH

Double-click the “CM597_ETH” node:

The following parameters are available:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5910

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration of
the Internal Ethernet Communication
Module.

Do not delete
Config on Reset
origin

0 0 The Ethernet configuration is deleted
after Reset origin.

1 The Ethernet configuration (e.g. IP
address) is still available after Reset
origin.

Configuration of the external communication module CM597-ETH (IP data)

The IP data are used with highest priority. Existing settings done by the display
or any other method will be overwritten.

Double-click the “IP_Settings” node to open the IP settings in the editor window:

The following parameters are available:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5911

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5911)

Force IP
settings

Enabled Disabled The IP data is not used. The device
must be configured by another
means of settings the IP data.

Use IP data

Enabled The IP data set in this editor is used
for the device.

DHCP Disabled Disabled The DHCP client services are disa-
bled. A static IP address must be
used.

IP mode (+
DHCP)

Enabled The DHCP client services are ena-
bled. The IP address of the device
will be set by a DHCP server in the
network.

IP address 0.0.0.0 Valid IP
address

IP address of the device. IP address

Subnet-
mask

255.255.25
5.0

Valid subnet
mask

Subnet mask for the device. Netmask

Default
gateway

0.0.0.0 Valid
gateway
address

Default gateway address for the
device.

Gateway

Link mode Auto nego-
tiation

Auto nego-
tiation

The link mode will be detected auto-
matically.

Link mode

10 Mbit Half-
Duplex

The link mode is statically set to 10
Mbit half-duplex.

10 Mbit Full-
Duplex

The link mode is statically set to 10
Mbit full-duplex.

100 Mbit
Half-Duplex

The link mode is statically set to 100
Mbit half-duplex.

100 Mbit
Full-Duplex

The link mode is statically set to 100
Mbit full-duplex.

Remark 1: Generic Device Configuration View Parameters
Tab IP Settings Configuration shows a list of all available parameters which is only visible
if parameter 'Show generic device configuration views' is activated (in the menu click “Tools
è Options è section 'Device editor'”).

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5912

Configuration of the external communication module CM597-ETH (Extended settings)

The following parameters are available:

Parameter Default Value Description
Remote configuration
ABB NetConfig pro-
tocol active

Enabled Disabled ABB NetConfig pro-
tocol is disabled. IP
Config Tool is not sup-
ported in this case.

Enabled ABBNetConfig pro-
tocol is enabled. IP
Config Tool can be
used to configure the
device.

Hilscher NetIdent pro-
tocol active

Enabled Disabled The Hilscher NetIdent
protocol is disabled.
Hilscher IP Config
Tool is not supported
in this case.

Enabled The Hilscher NetIdent
protocol is enabled.
Hilscher IP Config
Tool can be used to
configure the IP of the
device temporarily.

ABB NetConfig protocol is more secure than Hilscher NetIdent protocol. It is
recommended to disable the Hilscher NetIdent protocol if not needed.

CANopen
CM598-CN - CANopen master communication module
CM598-CN - CANopen manager communication module

The configuration of the CANopen field bus has to be done in the following steps:
● Parameterization of the AC500 Communication Module Bus Interface
● Parameterization of the CAN bus
Optionally the following steps are required to complete the configuration. These steps depend
on the desired functionality:
● Configuration of the CAN2A
● Configuration of the CANopen Manager
● Configuration of the CANopen Slaves

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5913

Parameterization of the CM598-CN Communication Module Interface Ä Chapter 1.6.5.2.6.6.1.2
“Parameterization of CM598-CN” on page 5914

Configuration of the CAN Protocols Ä Chapter 1.6.5.2.6.6.1.3 “Configuration of the CAN proto-
cols” on page 5917

Configuration of the CANopen Manager Ä Chapter 1.6.5.2.6.6.1.4 “Configuration of CANopen
manager” on page 5918

Configuration of the CANopen Remote Devices Ä Chapter 1.6.5.2.6.6.1.5 “Configuration of the
CANopen remote devices” on page 5920

Mapping and Properties of the PDOs Ä Chapter 1.6.5.2.6.6.1.6 “PDO mapping editor”
on page 5923

Configuring the Service Data Object Ä Chapter 1.6.5.2.6.6.1.7 “Configuring the service data
object” on page 5926

Configuring the CAN Slave Boot Up Ä Chapter 1.6.5.2.6.6.1.8 “Configuring the CAN slave boot
up” on page 5928

Checking the I/O Configuration Ä Chapter 1.6.5.2.6.6.1.9 “Checking the I/O configuration”
on page 5931

Parameterization of CM598-CN

Presetting
– Click menu “Tools è Options ” and select “Device editor” in the Options

window.
– Enable first checkbox “Show generic device configuration views” and click

[OK].

To append a Communication Module, add the Communication Module to the “Extension_Bus”
node.
● Right-click the desired slot and select “Add object”.
● Select the Communication Module from the list and click [Replace object].

● Double-click on CM598_CAN to open the CM598-CAN configuration in the editor window.
The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error,
the user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the CANopen communication
module.

Min update time 10 0...20000 Minimum update time of inputs
and outputs in [ms].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5914

Parameter Default value Value Description
CANopen Sync
mode

Sync Bus only Sync Bus only The CANopen Manager sends
Sync messages (if enabled) to
CAN bus only.
The properties of the sync mes-
sage are configured in the
CANopen Manger parameters.

Sync Bus and
Task

CANopen Manager sends Sync
messages to CAN bus and trig-
gers IEC Task. The associated
task has to be added manually in
the task configuration.
If there is any problem with
CANopen Sync, check the fol-
lowing points in configuration:
1. CANopen Sync mode has to be
set to Sync Bus and Task.
2. Sync Message has to be ena-
bled.
3. A task of type "triggered by
external event" has to be config-
ured. The external event has to be
"Ext_CouplerX_InputAny".
4. PDO transmission type has to
be "cyclic synchronous".

The tab CAN Bus contains the basic CAN bus parameters:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5915

Parameter Default value Value Description
Bus Parameters
Transmission
rate

250 kBit/s 10 kBit/s
20 kBit/s
50 kBit/s
100 kBit/s
125 kBit/s
250 kBit/s
500 kBit/s
800 kBit/s
1000 kBit/s

Transmission speed in [kBit/s]

Node settings
Stop in case of
monitoring error

Disabled Disabled The manager does not stop if a
monitoring error (Node Guard or
Heartbeat Error) appears. This func-
tion defines the behavior of the
manager if the communication is
interrupted to at least one node.
If this function is enabled, the man-
ager will also stop the communica-
tion to all further nodes which were
still responding and active. If this
function is disabled, a lost commu-
nication to one node has no influ-
ence on the communication of the
still present nodes. For all the error
affected nodes the master remains
in the state to try the reestablish-
ment of the communication again.

Enabled

Send "Global
Start Node"

Enabled Disabled No "Global Start Node" message is
sent after configuring the nodes.

Enabled After the manager started all nodes
configured individually first, it sends
a "Global Start Node" afterwards,
in order to synchronize all nodes
again.

29 Bit COB ID
Enable 29 bit
COB-ID

Disabled Disabled The receive filter of CAN2.0 B pro-
tocol is disabled.
The 29-bit COB-ID is disabled.
An 11-bit COB-ID is used.

Enabled Enable this option in order to
receive CAN2.0 B frames when
using CAN 2.0 B protocol.
The 29-bit COB-ID is enabled.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5916

Parameter Default value Value Description
Acceptance
mask

0 29 bit Here it is possible to define the bits,
the filter uses. In other words: All
not set bits will not be filtered out.
The parameter Enable 29 bit COB-
ID must be enabled.

Acceptance
code

0 29 bit Those are the bits set to filter the
IDs. Those bits must have the value
'1' in the acceptance code and the
received COB ID to pass the filter.
If a bit is not set in the acceptance
mask, the filter will pass the mes-
sage anyway.
The parameter Enable 29 bit COB-
ID must be enabled.

Configuration of the CAN protocols
The Communication Module CM598-CAN can be used to realize CAN bus based networks in
combination with library CANopen_AC500_V11.lib.

1. Plug the communication module CM598-CAN to the desired slot of the communication
module bus.

2. Right-click “CM598_CAN (CM598-CAN)” and select “Add device” in the context menu.
3. Select the desired “CAN 2.0A” protocol or “CAN 2.0B” protocol from the list.
4. The CAN data transmission requires a buffer for the incoming data.

Right-click “CAN_2_0A_11_bit_identifier_ (CAN 2.0A)” or “CAN_2_0B_29_bit_identifier_
(CAN 2.0B)” and select “Add object”. Select the corresponding receive buffer for your
selected CAN protocol from the list.

5. In the device tree, double-click on “Buffer_for_CAN_2A (Buffer for CAN2A)” or
“Buffer_for_CAN_2B (Buffer for CAN2B)” to open the Buffer configuration in the editor
window.

The following parameters are available:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5917

Parameter Default value Value Description
Identifier 0 CAN 2A:

0...2047
CAN 2B:
0...536870911

The value of the CAN identifier
that is compared with the identifier
of the incoming telegrams. The
telegrams will be added to the
buffer if the identifier matches.

Number of receive
buffers

1 1..16 The size of the buffer in number of
telegrams.

Behaviour on receive
buffer overflow

Overwrite Overwrite The oldest telegram in the buffer
is overwritten by the incoming
telegram.

Discard The incoming telegrams are dis-
carded as long as the buffer is full.

Wait The incoming telegram is stored
as soon as a telegram is read out
of the buffer.

Enable triggering of
IEC task
(only for CM598-CN)

No No No triggering of IEC task

Yes On receiving of a CAN object with
this identifier the CAN manager
triggers an IEC task. A task of
type "triggered by external event"
has to be configured.
The external event has to be
"CAN2A event"/"CAN2B event".

Configuration of CANopen manager
In the device tree, double-click “CANopen_Master” to open the configuration in the editor
window. The following parameters are available on the the “General” tab:

The following parameters are available:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5918

Parameter Default value Value Description
Node ID 127 1...127 Node ID of the communication

module

Sync

Sync cycle period
[µs]

1000 100.. 232-1 Determines the interval in which
the synchronization message will
be sent.

Sync COB-ID 128 128
1664
1759
1761
1792
1920
2047

Sets the communication object
identifier (COB-ID) which identi-
fies the synchronization message.

Synchronous
window length [µs]

1200 0.. 232-1 Determines the length of the time
window for synchronous PDOs.

Check and fix con-
figuration
Remark 1 Ä Fur-
ther information
on page 5918

- - This button opens the dialog that
allows checking and fixing the
current configuration.

Heartbeat

Enable Heartbeat
Producing

Disabled Disabled The heartbeat generation is disa-
bled.

Enabled The master sends heartbeats
according to the interval defined
in parameter Heartbeat time. If
new slaves with heartbeat func-
tionality are added their behavior
will automatically be enabled and
configured appropriately.
If the heartbeat generation of the
CANopen manager is not ena-
bled, nodeguarding is enabled
instead. The CANopen slaves can
be configured as heartbeat pro-
ducers.

Node ID 127 1...127 Parameter Node ID determines
the identifier of the heartbeat pro-
ducer on the bus.

Heartbeat time
[ms]

10 1...65535 Time interval for the heartbeat
generation in [ms].

Remark 1: Check and fix configuration
The dialog Check and fix configuration shows an overview of the current conflicts of the config-
ured node IDs and the COB-IDs. It detects double node IDs and shows the wrong COB-IDs of
the PDOs of the remote devices:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5919

The dialog gives suggestions to resolve the existing conflicts that can be accepted by clicking
on the corresponding button. Alternatively the configuration must be adapted manually for the
faulty devices.

Configuration of the CANopen remote devices
CANopen remote devices can be added to the module CM598_CAN (CM598-CAN).
Double-click on a remote device to open the corresponding CANopen remote device configura-
tion in the editor window. The basic parameters of a remote device can be set up in “CANopen
Remote Device” tab. See the following section for more information on the parameters.

If “Enable Expert PDO Settings” check box is enabled additional parameters to
set PDO are displayed.

Configuring the expert PDO settings

If “Enable Expert PDO Settings” check box is enabled additional parameters to
set PDO are displayed.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5920

The following parameters are available:

Parameter Default value Value Description
General
Node ID 1 1...127 Note ID of the remote device

Enable Expert
PDO Settings

Disabled Disabled Expert PDO settings are disa-
bled.

Enabled Expert PDO settings are ena-
bled.

Create all SDOs Enabled Disabled Creation of all SDOs is disabled.

Enabled Creation of all SDOs is enabled.

No initialization Disabled Disabled No initialization option is disa-
bled.

Enabled No initialization option is ena-
bled.

Enable Sync Pro-
ducer

Disabled Disabled Sync producer is disabled.

Enabled Sync producer is enabled.

Factory Settings Disabled Disabled No factory settings are used.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5921

Parameter Default value Value Description
Enabled Factory settings are used. The

corresponding factory setting
can be selected in the combo
box right of the check box.

Node Guard
Enable Node-
guarding

Enabled Disabled Nodeguarding is disabled.

Enabled Nodeguarding is enabled. This
function can only be enabled
if Heartbeat Generation is disa-
bled.

Guard time [ms] 200 0...65535 The parameter Guard time sets
the cycle time for the Node-
guarding in [ms].

Life time factor 2 0...255 The Life time factor sets the
factor when the connection
should be applied as lost.
Warning: To reach a stable com-
munication of the node on the
CANopen, the Life time factor
has to be set to minimal 2.

Emergency
Enable Emergency
(read only)

Enabled Enabled CANopen Remote Device sends
emergency telegrams.

COB-ID (read
only)

$NODEID+16#80 $NODEID+16#80 Communication Object Identifier
of the remote device.

Heart Beat
Enable Heartbeat
Generation

Disabled Disabled Heartbeat generation is disa-
bled.

Enabled Heartbeat Generation is ena-
bled. This option can only be
enabled if Nodeguarding is disa-
bled.

Heartbeat pro-
ducer time [ms]

10 0...65535 The Heartbeat producer time
represents the cycle time for the
Heartbeat Generation in [ms].

Change Proper-
ties Heartbeat con-
sumer
Remark 1 Ä Fur-
ther information
on page 5920

- - The button Change Properties
Heartbeat consumer opens the
dialog Heartbeat Properties
where the heartbeat parameters
can be set.

Checks at startup
Check vendor id Enabled Disabled The vendor id will not be

checked on startup.

Enabled The vendor id will be checked on
startup.

Check product
number

Disabled Disabled The product number will not be
checked on startup.

Enabled The product number will be
checked on startup.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5922

Parameter Default value Value Description
Check revision
number

Disabled Disabled The revision number will not be
checked on startup.

Enabled The revision number will be
checked on startup.

Remark 1: Button “Change Properties Heartbeat consumer”

The dialog shows the nodes defined in the EDS files which can be selected for getting guarded.
For this purpose set a check in the Enable field and enter the desired value in milliseconds in
the Heartbeat time field (double-clicking on this field opens a selection box of time values). If the
Heartbeat Consumer option is activated, then the corresponding module will listen to heartbeats
which are sent by the master. As soon as no more heartbeats are received, the module will
switch off the I/Os.

To reach a stable communication of the node on the CANopen bus the param-
eter Life Time factor has to be set to 2 at least.

A life guarding can only be used if the master carries out a Nodeguarding. That
means Life-Guarding presumes Nodeguarding.

PDO mapping editor
Overview

The PDO Mapping editor contains tree views respectively for the Receive and Transmit PDOs.
On opening the editor, all the PDO communication parameters entries are are displayed. Each
PDO Mapping channel is displayed below the corresponding PDO:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5923

Per default all PDOs are activated and preconfigured with a valid COB-ID.

PDO configuration
Only the configurable elements are present at the user interface:
● For the Receive PDOs: COB-ID, Type and Num of syncs
● For the Transmit PDOs: COB-ID, Type, Num of syncs, Inhibit time, Event timer and RTR
The settings can be directly changed inside this editor. No additional dialog will be opened for
this.

COB-ID

If an entered value is not correct, an error message is displayed and the entry will be reset to its
original value.

Transmission type
The allowed values for “Transmission type” depends on the type of PDO. For Receive PDOs,
only Type 0, Type 1-240, Type 254 and Type 255 are allowed. The enumeration box displays in
this case also only the configurable values:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5924

● Receive PDO:

● Transmit PDO:

Number of syncs
The field “Num of syncs” is only editable when the transmission type is configured to “Type 1 –
240”:

The allowed values for this field are 1 – 240. Entering a value outside this range generates an
error message for the user. The value will be reset to its original value.

Inhibit time
Inhibit time is only configurable for the Transmit PDOs and only when transmission type is
configured to “Type 254” or “Type 255”.

The allowed values for this field are 0 – 65535. Entering a value outside this range generates an
error message for the user. The value will be reset to its original value.

Event timer
Event timer is only configurable for the Transmit PDOs and only when transmission type is
configured to “Type 254” or “Type 255”.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5925

The allowed values for this field are 0 – 65535. Entering a value outside this range generates an
error message for the user. The value will be reset to its original value.

RTR
RTR is only configurable for the Transmit PDOs.
When the field “RTR” is checked, the RTR flag for the PDO is set.

Configuring the service data object
During the initialization of the CANbus, the current configuration values will be transferred via
Service Data Objects (SDO) to the CAN module.
In the Service Data Object configuration dialog, the desired SDOs can be configured and it can
be defined in which sequence they should be transferred and what should happen in case of an
incomplete transfer.

If option Enable expert PDO settings is not activated for the current device only
the user-defined SDOs will be listed. for more information, see Enable Expert
PDO Settings Ä Chapter 1.6.5.2.6.6.1.5 “Configuration of the CANopen remote
devices” on page 5920.

The “Service Data Object” tab can be used to configure the Service Data objects. The view
shows all parameters of the Service Data Object of the current device including the device-spe-
cific values and sizes.

Parameter Default value Value Description
SDO table columns
Line Device-specific Device-specific Line number of the param-

eter.

Index:Subindex Device-specific Device-specific Index and the subindex of the
parameter.

Name Device-specific Device-specific Name of the parameter.

Value Device-specific Device-specific Configured value of the
parameter.

Bitlength Device-specific Device-specific Length of the parameter in
[bit].

Abort if error Device-specific Device-specific If this parameter is activated,
transfer will be terminated on
error detection.

Jump to line if
error

Device-specific Device-specific If this parameter is activated,
in case of an error the
transfer will be continued with
the line which is set in param-
eter 'Next line'.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5926

Parameter Default value Value Description
Next line 0 1...number of lines In case of an error this

parameter determines the line
with which the transfer will
be continued if the parameter
'Jump to line if error' is acti-
vated.

Comment '' Device-specific Shows a comment text of the
corresponding line

Buttons
Move up - - The order (top-down) in the

SDO table represents the
sequence in which the SDOs
will be transferred to the
module. 'Move up' shifts up
the selected entry.

Move down - - The order (top-down) in the
SDO table represents the
sequence in which the SDOs
will be transferred to the
module. 'Move down' shifts
up the selected entry.

New...
see Remark 1

- - Opens the 'Select item from
object directory' to add an
SDO entry to the table.

Delete... - - Deletes the currently selected
line from the table.

Edit...
see Remark 1

- - Opens the 'Select item from
object directory' dialog where
it can be edited.

Remark 1: The dialog 'Select item from object directory' shows all entries defined in the EDS
file:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5927

The dialog allows editing the available SDOs before adding them to the table. New entries can
be created and edited which are not defined in the EDS file.

Configuring the CAN slave boot up
“CAN slave” tab allows the configuration of the boot up behavior of the CAN slave:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5928

The following options are available and can be set by either clicking on the graphics or selecting
the corresponding check box on the right side of the editor window. The graphic illustrates the
order of execution:

Parameter Default value Value Description
Node ID-active Enabled Disabled The node is inactive.

Enabled The node is active.

Node BootUp

Node Reset (Send
the Reset-Node
command)

Enabled Disabled No specific node reset commu-
nication command is sent.

Enabled The master sends the
CANopen specific node reset
communication command.

Check node type
and profile (Com-
pare the configured
Profile and Type
Object 1000H with
real value)

Disabled Disabled The content of the node object
1000H are not compared with
the current parameters.

Enabled The master compares the con-
tent of the mandatory node
object 1000H. If the values are
different, the master will report
a parameterization error.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5929

Parameter Default value Value Description
Configuration
Guard Protocol
(Configure the
Guard-Time and
Lifetime-Factor)

Enabled Disabled The guard time and Life-Time
factor of the node configuration
are not written.

Enabled A CANopen has 2 specific reg-
ister responsible for the Node
guarding protocol. The master
writes the guard time and Life-
Time factor of the node config-
uration into the corresponding
objects of the node during
startup.

Configuration
SYNC COB-ID
(Configure the
COB-ID for
the Synchroniza-
tion-Telegram)

Enabled Disabled The master does not write the
SYNC COB-ID of the configu-
ration into the corresponding
objects of the node.

Enabled The master will write the SYNC
COB-ID of the configuration
into the corresponding objects
of the node during startup.

Configuration
EMCY COB-ID
(Configure the
COB-ID for
the Emergency-
Telegram)

Enabled Disabled The master does not write the
EMCY COB-ID of the configu-
ration into the corresponding of
the node.

Enabled The master writes the EMCY
COB-ID of the configuration
into the corresponding objects
of the node during startup.

Configuration
Download of
objects (Download
the Object Configu-
ration to the Node)

Enabled Disabled

Enabled To get a PDO communication
to a node working, the master
has to send all relevant configu-
ration objects to the Node. For
example, the COB-IDs of PDOs
are covered here in the map-
ping table.
If enabled, all these param-
eter and also the user specific
objects which are added man-
ually in the Node object con-
figuration window are written
down to the Node by the
master.

Start Node (Send
the Start-Node
Command)

Enabled Disabled No start node command is sent.

Enabled To reach the operational state
in CANopen, a node has to
get the CANopen specific start
node command. The master
sends the start node command
to the node at the end of the
boot-up procedure.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5930

Parameter Default value Value Description
Initiate PDO data
(Remote request all
TxPDOs and send
current RxPDOs
once after

Enabled Disabled PDOs are not written and read
by the master automatically.

Enabled This item selects if the installed
PDOs shall be automatically
written and read by the master
directly after the startup once.
This ensures that the latest
output data which can be found
within the master’s output
process data area is sent to the
node and that the latest node
input data is read from the node
and be placed into the input
process data area.

Checking the I/O configuration
Tab “Check configuration” can be used to check the current I/O configuration. The device
specific number of available I/Os can be compared with the actually configured I/Os to detect a
faulty I/O configuration before downloading the program:

Parameter Default value Value Description
Max. I/O length
AI Device specific 0...128 Available analog inputs of the

device in [words].

AO Device specific 0...128 Available analog outputs of the
device in [words].

DI Device specific 0...32 Available digital inputs of the
device in [bytes].

DO Device specific 0...32 Available digital outputs of the
device [bytes].

Actual length
AI 0 Read-only Actually configured length of

analog inputs in [words].

AO 0 Read-only Actually configured length of
analog outputs of the device in
[words].

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5931

Parameter Default value Value Description
DI 0 Read-only Actually configured length of dig-

ital inputs in [bytes].

DO 0 Read-only Actually configured length of dig-
ital outputs [bytes].

CM588-CN - CANopen slave communication module
Configuration steps

The configuration of the CM588-CN CANopen slave module has to be done in the following
steps:
● Parameterization of the AC500 Communication Module interface Ä Chapter 1.6.5.2.6.6.2.2

“Parameterization of the CM588-CN communication module interface” on page 5932
● Configuring the module CM588-CN for use as CANopen Slave device Ä Chapter

1.6.5.2.6.6.2.2 “Parameterization of the CM588-CN communication module interface”
on page 5932

● Parameterization of the CANopen slave protocol stack Ä Chapter 1.6.5.2.6.6.2.3 “Parame-
terization of the CANopen slave protocol stack” on page 5933

● Configuring I/O data objects Ä Chapter 1.6.5.2.6.6.2.4 “Configuration of I/O data objects”
on page 5933

● Mapping of the CANopen Slave I/Os Ä Chapter 1.6.5.2.6.6.2.5 “Mapping of the I/Os”
on page 5934

Parameterization of the CM588-CN communication module interface
Double-click on CM588_CAN (CM588-CAN) to open the CM588-CAN configuration in the editor
window.
The following parameters are available:

Parameter Default Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started even in
case of configuration error.

Min. update time 10 ms 0 ms ... 20000 ms Update time of inputs and outputs

Transmission
rate

1000 kBit/s 1000 kBit/s
800 kBit/s
500 kBit/s
250 kBit/s
125 kBit/s
100 kBit/s
50 kBit/s
20 kBit/s
10 kBit/s

Supported transmission rates of the
Communication Module

Parameter transmission rate can be configured also by using the “CAN Bus” tab.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5932

Parameterization of the CANopen slave protocol stack
Double-click on CM588_CANopen_Slave (CM588-CANopen slave) to open the “CM588 Slave”
tab.
The following parameters are available:

Parameter Default Value Description
Node-ID 1 1...127 The node-ID the CANopen Slave Com-

munication Module uses on acting at
the network.

“CAN addresses” tab provides overview of assigned I/O variables and how they are mapped to
CANopen objects located in slave object dictionary. Find these object indexes and sub-indexes
on looking at the PDO configuration of the CM588 CANopen slave from a CANopen Master
configuration point of view.

“CAN addresses” tab only shows read-only data.

Further parameters are available in the “CM588-CANopen Slave Configuration” tab. Activate
parameter “Show generic device configuration views” to get this tab visible. This setting is
available under “Tools è Options”.

Configuration of I/O data objects
Data objects added to CM588-CN CANopen Slave configures I/O data. Inserting variable
names at the data objects maps the variables to dedicated I/O channels.
Several types of data object groups I/O variables by size and direction. The I/O driver of the
PLC firmware copies the amount of data bytes configured by these data objects cyclically. The
copy cycle time is defined by the parameter “Min. update time”.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5933

Keep basic load of PLC low by configuring only as much data objects as really
needed. If further I/O variables need to be added later additional data objects
can be inserted.

The maximum amount of bytes used for I/O data is limited to 512 bytes for input data and 512
bytes for output data.
Inserting new data objects checks these limits and generates an error message if the new
object does not fit. Pasting a single or a number of copied data objects checks these limits also.
In case of a limit violation the paste operation is canceled completely and no data object is
inserted.

Mapping of the I/Os
Double-click on the desired I/O data object in the device tree to show current I/O mapping
connected to this data object.
See chapter Symbolic Names for Variables, Inputs and Outputs for further details on mapping
inputs and outputs Ä Chapter 1.6.5.2.2.1.2 “Symbolic names for variables, inputs and outputs”
on page 5815.

PROFINET
CM579-PNIO - PROFINET communication module

The configuration of the PROFINET fieldbus has to be done in the following steps:
● Parameterization of the AC500 Communication Module Bus Interface Ä Chapter

1.6.5.2.6.7.1.1 “Parameterization” on page 5934
● Configuration of the PROFINET IO controller Ä Chapter 1.6.5.2.6.7.1.2 “Configuration of the

PROFINET IO controller” on page 5935
● Configuration of the PROFINET IO devices:

ABB PROFINET IO devices
– Ä Chapter 1.6.5.2.7.2 “CI504-PNIO/CI506-PNIO” on page 5970
– Ä Chapter 1.6.5.2.6.7.1.3 “Configuration of ABB PROFINET IO devices” on page 5936

3rd party devices)
– Ä Chapter 1.6.5.2.6.7.1.4 “Configuration of 3rd party PROFINET IO devices”

on page 5941
● Configuration of the PROFINET IO device names
● Configuration and mapping of the I/Os Ä Chapter 1.6.5.2.6.7.1.7 “Mapping of the

PROFINET IO devices” on page 5950
● Name Assignment of a PROFINET IO device Ä Chapter 1.6.5.2.6.7.1.6 “Name assignment

of a PROFINET IO device” on page 5949
● Ä Chapter 1.7.2 “Online diagnosis in Automation Builder” on page 6374

Parameterization
To append a Communication Module, add the Communication Module to the “Extension_Bus”
node.
● Right-click the desired slot and select “Add object”.
● Select the Communication Module from the list and click [Replace object].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5934

● Double-click on “CM579_PNIO (CM579-PNIO)” to open the CM579-PNIO configuration in
the editor window.

The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the CM579-PNIO communication
module.

Min update time 10 0...20000 Minimum update time of inputs and
outputs in [ms].

Inhibit error sig-
naling on LED
STA2

Off On/Off Inhibit error signaling on LED STA2
of PROFINET IO controller CM579-
PNIO

Configuration of the PROFINET IO controller
Double-click on “PNIO_Controller” to open the PROFINET IO controller configuration in the
editor window.
The following parameters are available:

Parameter Default Value Description Parameter
Identification
IP-Address 192.168.0.1 Valid IP address IP address of the

PROFINET IO controller
station.

IP address

Subnetmask 255.255.255.
0

Valid subnet
mask

Network mask of the
PROFINET IO controller
station.

Subnet Mask

Default
gateway

0.0.0.0 Valid gateway
address

Gateway address of the
PROFINET IO controller
station.

Default
gateway

Station name controller Up to 240 char-
acters

Network name of the
PROFINET IO controller
station. Must be a valid
hostname.

Station name

Address settings for devices
First IP-
Address

192.168.0.2 Valid IP address First IP address of the
PROFINET IO devices.
This parameter determines
the address range of the
PROFINET IO devices in
combination with parameter
Last IP address.

First IP address

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5935

Parameter Default Value Description Parameter
Last IP-
Address

192.168.0.25
4

Valid IP address Last IP address of the
PROFINET IO devices.
This parameter determines
the address range of the
PROFINET IO devices in
combination with parameter
First IP address.

Last IP address

Subnetmask 255.255.255.
0

Valid subnet
mask

Network mask of the
PROFINET IO devices.

Default subnet
mask

Default
gateway

0.0.0.0 Valid gateway Gateway address of the
PROFINET IO devices.

Default
gateway
address

Ä Chapter 1.6.5.2.6.7.1.3 “Configuration of ABB PROFINET IO devices” on page 5936

Configuration of ABB PROFINET IO devices
A PROFINET IO device can be added by right-clicking on a master module, e.g. CM589-PNIO
and selecting “Add device”.

PROFINET IO device
Edit the communication parameters:

The following parameters are available:

Parameter Default Value Description Parameter
Identification
Station name Device-spe-

cific
Up to 240
characters

This is a system wide unique
name for addressing the
device. Must be a valid host-
name.

Slave parame-
ters -> Identifi-
cation -> Sta-
tion name

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5936

Parameter Default Value Description Parameter
Parameter
Send clock
(ms)

Device-spe-
cific

0.25
0.5
1
2
4

Parameter Send clock deter-
mines the SendCycle.
SendCycle = Send clock x
Reducation ratio <= 512ms x

Slave parame-
ters -> Reduc-
tion ratio

Reduction
ratio

Device-spe-
cific

1...16384 The Reduction ratio deter-
mines the factor for calcu-
lating the cycle time.
Cycle time = Send clock x
Reducation ratio

Slave parame-
ters -> Reduc-
tion ratio

Phase 1 1…Reduction
ratio

Defines the part of the Send-
Cycle at which an IO frame is
sent.

Phase

Watchdog
factor

3 1...65535 The Watchdog time is calcu-
lated as Watchdog time =
SendCycle * Watchdog factor.
The transfer of a IO telegram
is always checked of the con-
sumer side. Within this time
the next IO telegram must
be received by a consumer.
Otherwise it is checked if the
Datahold has been expired
too.

Watchdog
factor

Datahold
factor

3 1...65535 The Data Hold Time is cal-
culated as Datahold time =
SendCycle * Datahold factor.
If the Watchdog time has
been expired, the Data Hold
Time will checked. If the
Data Hold Time also has
been expired, the substitution
values of the IOs will be
used. For RT_Class_1 com-
munication Data Hold Time
and the Watchdog time are
usually configured with the
same value.

Datahold factor

Frame send
offset

0xFFFFFFFF
(means: as
soon as pos-
sible)

1...2^32 - 1 Only available for RT Class 3
Data-RTC-PDU

Frame send
offset

RT Class
RT Class RT Class 1

Data-RTC-
PDU

RT Class 1
Data-RTC-
PDU

Defines the Realtime Class
of cyclic data. Currently only
RT Class 1 (legacy) and
RT Class 1 are supported.

Slave parame-
ters -> RT
Class

RT Class 2
Data-RTC-
PDU

RT Class 3
Data-RTC-
PDU

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5937

Parameter Default Value Description Parameter
RT Class
UDP-RTC-
PDU

VLAN ID 0 0..4095 or
0..32767

In case of VLAN usage the
parameter VLAN ID repre-
sents the ID of the virtual net-
work.
For VLAN type 802.1Q the
range is 0..4095 while VLAN
type ISL accepts values from
0 to 32767.
The supported type depends
on the used device.

Slave parame-
ters -> VLAN
ID

IP Parameter
IP-Address 192.168.0.8 Valid IP

address
IP address of the PROFINET
IO Controller station.

Slave parame-
ters -> Identifi-
cation -> IP
address

Subnetmask 255.255.255.
0

Valid subnet
mask

Network mask of the
PROFINET IO Controller sta-
tion.

Slave parame-
ters -> Identifi-
cation ->
Subnet mask

Default
gateway

0.0.0.0 Valid gateway
address

Default gateway address of
the PROFINET IO Controller
station.

Slave parame-
ters -> Identifi-
cation ->
Default
gateway
address

Ä Chapter 1.6.5.2.6.7.1.3 “Configuration of ABB PROFINET IO devices” on page 5936

PROFINET IO timing
In the current implementation per device 2 Communication Relations (CR) between the con-
troller and the device are defined. One CR describes the IO telegram from the controller to the
device (outputs) and the other the IO telegram from the device to the controller (inputs).
The timing of the corresponding IO telegrams can be defined separately for each device.
The editable timing parameters are:
● Send clock
● Reduction ratio
● Phase
● FrameSendOffset.
The relation between these parameters is shown in the following drawing.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5938

For each device a SendCycle must be configured, which determines the sending interval of IO
frames.
It is based on a time base of 31.25 µs und is calculated as:
SendClock [ms] = SendClockFactor * 31.25 µs / 1000.
The cycle time of an IO telegram is defined by the SendCyle. It’s calculated as:
SendCyle [ms] = SendClock [ms] * Reduction Ratio.
The values of the individual parameters are limited by the maximum value 512 ms of the
SendCycle.
The following table summarizes the relation of the timing parameters.

Parameter Description Relation Range
SendCycle Is the cycle time of a RT telegrams. SendCyle = Send-

Clock * Reduction
ratio.

1ms ..512 ms

SendClock The SendCycle is divided into sev-
eral time slots. The SendClock
defines the size of a time slot within
the SendCyle.

SendClock =
SendClock factor *
31.25 µs;

SendClock *
Reduction ratio £
512 ms

SendClock factor Is multiplied with the time base
31.25 µs to calculate the SendClock.

SendClock
factor = Send-
Clock / 31.25 µs

1..128

Reduction ratio The reduction ratio defines the
number of time slots within the
SendCyle.

SendClock *
Reduction factor £
512 ms

1..16384

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5939

Parameter Description Relation Range
Phase The time slot in which the IO frame

is sent.
A integer value of
the range 1 …
Reduction ratio

1..16384

FrameSen-
dOffset

It’s an offset value relative to the
beginning of a time slot. For all
RT_Classes the value 0xFFFFFFFF
means sending as soon as possible.

Only for
RT_CLASS_3 it is
necessary to sup-
port this param-
eter.

0x0 …
0xFFFFFFFF

PNIO configuration
This tab is a generic view of all PROFINET IO device parameters. It is normally hidden and is
normally not needed for configuration.
Use this dialog only, if you need to change a parameter, which is not visible in other dialogs.
This dialog could be activated with the parameter “Show generic device configuration views” in
the Automation Builder options (“Tools è Options è Device editor”).

CI504-PNIO/CI506-PNIO
Configuration of CI504-PNIO and CI506-PNIO is described in the PROFINET IO Controller
configuration Ä Chapter 1.6.5.2.7.2 “CI504-PNIO/CI506-PNIO” on page 5970.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5940

Configuration of 3rd party PROFINET IO devices
A PROFINET IO device can be added by right-clicking on CM579_Master (CM579-PNIO
master) and selecting “Add device”.
The “Add Device” dialog appears where all available PROFINET IO devices are listed.
If the desired device is not listed you can add this device to the “Device Repository” by installing
the associated GSDML-File (via “Tools è Device Repository è Install”).
The device parameters are edited in the PROFINET IO device dialog, which is divided into 2
tab-sheets:
● PNIO Parameters
● PNIO Configuration.
To open the PROFINET IO device dialog, double-click on the desired device in the configuration
tree.

PNIO parameters
In this “General” tab-sheet the “IP Parameter”, the “Communication” and the “User-defined
Parameters” will be edited.

The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1)

Station name Device-spe-
cific

Up to 240
characters

This is a system wide unique
name for addressing the
device. Must be a valid host-
name.

Slave param-
eters -> Identi-
fication -> Sta-
tion name

IP Parameter

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5941

Parameter Default Value Description Parameter
(Remark 1)

IP Address 192.168.0.4 Valid IP
address

IP address of the PROFINET
IO controller station.

Slave param-
eters -> Identi-
fication -> IP
address

Subnet mask 255.255.255
.0

Valid subnet
mask

Network mask of the
PROFINET IO controller sta-
tion.

Slave param-
eters -> Identi-
fication ->
Subnet mask

Default Gateway 0.0.0.0 Valid
gateway
address

Default gateway address of
the PROFINET IO controller
station.

Slave param-
eters -> Identi-
fication ->
Default
gateway
address

Communication
Send Clock (ms) Device-spe-

cific
Device-spe-
cific

Parameter Send clock deter-
mines the sending interval in
[ms].

Slave param-
eters -> Send
clock

Reduction Ratio Device-spe-
cific

1...512 The Reduction ratio deter-
mines the factor for calcu-
lating the SendCycle.
Cycle time = Send clock x
Reducation ratio <= 512ms

Slave param-
eters ->
Reduction
ratio

Phase - 1…Reduction
ratio

Defines the part of the Send-
Cycle at which an IO frame is
sent.

Phase

RT Class RT Class 1
Data-RTC-
PDU

RT Class 1
Data-RTC-
PDU

Defines the real-time Class
of cyclic data. Currently only
RT Class 1 (legacy) and
RT Class 1 are supported.

Slave param-
eters -> RT
Class

RT Class 2
Data-RTC-
PDU

RT Class 3
Data-RTC-
PDU

RT Class 1
UDP-RTC-
PDU

Watchdog [ms] 3 1...65535 The Watchdog time is calcu-
lated as Watchdog time =
SendCycle * Watchdog factor.
The transfer of a IO telegram
is always checked of the con-
sumer side. Within this time
the next IO telegram must
be received by a consumer.
Otherwise it is checked if the
Datahold has been expired
too.

Watchdog
time

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5942

Parameter Default Value Description Parameter
(Remark 1)

VLAN ID 0 0..4095 or
0..32767

In case of VLAN usage the
parameter VLAN ID repre-
sents the ID of the virtual net-
work.
For VLAN type 802.1Q the
range is 0..4095 while VLAN
type ISL accepts values from
0 to 32767.
The supported type depends
on the used device.

Slave param-
eters -> VLAN
ID

User-Defined Parameters
User-Defined
Parameters

Device-spe-
cific

Device-spe-
cific

The parameters of a
PROFINET device are stored
as RecordData items. The
table "User parameter" is a
generic view of the elements
of a RecordData item. The
Record Data item and it’s
default values are read from
GSDML-File.

-

Set All Default
Values

- - The button restores the
default values of the user
parameters.

-

In this “PROFINET IO device” tab-sheet the following “Parameter” will be edited.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5943

Parameter Default Value Description Parameter
(Remark 1)

Frame send
offset [ns]

0xFFFFFFFF
(means: as
soon as pos-
sible)

1...2^32 - 1 Only available for RT Class
3 Data-RTC-PDU

Frame send
offset

Datahold factor 3 1 ...65535 The Data Hold Time is cal-
culated as Datahold time
= SendCycle * Datahold
factor. If the Watchdog time
has been expired, the Data
Hold Time will checked.
If the Data Hold Time
also has been expired,
the substitution values of
the IOs will be used.
For RT_Class_1 communi-
cation Data Hold Time and
the Watchdog time are
usually configured with the
same value.

Datahold factor

PNIO configuration
This tab is a generic view of all PROFINET IO device parameters. It is normally hidden and is
normally not needed for configuration.
Use this dialog only, if you need to change a parameter, which is not visible in other dialogs.
This dialog could be activated with the parameter “Show generic device configuration views” in
the Automation Builder options (“Tools è Options è Device editor”).

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5944

Configuration of PROFINET shared device functionality
“PROFINET Shared Device Functionality” enables an IO device to be connected to more than
one IO controller at the same time. In this situation the IO controllers share the IO devices IO
modules/submodules to have access to the IO data. Each IO controller exclusively connects a
set of IO modules/submodules as defined in its configuration. Accessing the same IO device
modules/submodules by more than one IO controller in parallel is not allowed for Shared
Device.
Following figure taken from “PROFINET IO System Description” as provided by PNO gives an
impression about the concept of “Shared Device Functionality”.

IO Controller 1 connects the modules labeled with orange color.
IO Controller 2 connects the modules labeled with blue color.
Each IO controller that should connect the shared IO device has to have this device configured
in its device list. In Automation Builder all configurations of the shared IO device have to look
the same at all IO controllers; all modules/submodules have to be configured in the same order.
Each IO controller has to be configured which modules/submodules should be connected.
One of the IO controllers has to be defined as responsible to connect the IO device access
point (DAP) with its assigned submodules. To do so Automation Builder provides the parameter
“Shared Device”. This parameter can be found in the IO device configuration as part of the
device list sub-tree of the IO controller. Parameter “Shared Device” defines which IO controller
will connect the DAP and which IO controllers use the IO device just as shared device.
To connect the DAP this parameter must not be checked; at all other IO controllers this param-
eter has to be checked.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5945

If this rule is not followed accurately the PROFINET communication will start anyway but the IO
controllers / IO devices may signal errors.
Two possible error cases have to be considered:

Error Case 1 Effect
All IO controllers have parameter 'Shared
Device' selected. Thus, no IO controller will
connect the DAP to load related parameters.

No error will be signaled; PROFINET network
will run with default parameters.

Error Case 2 Effect
More than one IO controller has parameter
'Shared Device' unselected. These IO control-
lers try to connect to the DAP in parallel.

One IO controller will succeed. The
other IO controllers will fail but further
modules/submodules can be connected with
success. Communication will run to con-
nected modules/submodules. The IO device
responds with error signaling DAP's submod-
ules as already connected.

In Error case 2 IO controller and IO device specific diagnosis pages in Automation Builder,
will show error information. See Ä Chapter 1.7.2.7.5.1 “IO controller views” on page 6408 and
Ä Chapter 1.7.2.7.6 “CM579-PNIO PROFINET IO device views” on page 6413.
In display “CM579-PNIO PROFINET IO Device Views” field “Diagnosis state” shows a text
message describing the error. Basically this text depends on the type of device signaling the
error. In case of CM589-PNIO-4 the text “The IO-Device reported a ModuleDiffBlock during
connection establishment” will be found.

Take care to have parameter “Shared Device” unselected at one IO controller
device and have it selected at all other involved IO controller devices.

This rule also applies in case of using different Automation Builder projects or
3rd party IO controller devices.

The following workflow applies to configure an IO device to be connected by more than one IO
controller as shared device:
● Add IO device at first IO controller
● Add list of IO modules as defined at IO device configuration itself
● Define set of IO modules to be connected by this IO controller

– use function “connect/disconnect”
● Add same IO device the same way at further IO controllers
● Define set of IO modules to be connected for each of the further IO controllers
● Define one IO controller to be responsible to connect DAP

– this may be a different IO controller outside this configuration
– parameter “Shared Device” in Automation Builder; may be different approach at 3rd party

tools

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5946

Inserting an IO module at a “PROFINET IO device” assigned to a “CM579 IO controller” defines
this module as to be connected by default. If the module should not be connected by this
IO controller this setting has to be adjusted. Via context menu at IO device module sub-tree
Automation Builder provides the function “disconnect module” to define a certain module as not
to be connected.
To define a not connected module as to be connected again the context menu shows the
function “connect module”.

The module nodes that are configured to be connected will be shown in active state (black
style). Modules not to be connected will be shown in in-active state (gray style).
Once a PROFINET IO device is configured as child at an IO controller the IO device sub-tree
(complete IO device or its module configuration) may be copied from one IO controller node to a
different. The selection which modules should be connected has to be adjusted to the needs at
the new position.
The following example shows a configuration of “Shared Device” usage by using one AC500
“CM589-PNIO-4 IO device” and two IO controllers represented by two ABB “CM579-PNIO IO
controller” modules.
“CM579_PNIO_1” connects the modules “InputBy_1” and “InputBy_2” only; represented by
“CM589 PNIO_Device” modules “DevInputBy_1” and “DevInputBy_2”.
“CM579_PNIO_2” connects module “InputWrd_1”; represented by “PNIO_Device” modules
“DevInputWrd_1”.
The other modules are not connected here but may be connected from outside this configura-
tion by an external IO controller.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5947

In case of connecting the same module/submodule by more than one IO controller only the first
connect will have success. All further connect attempts will fail. The IO device will reply to those
attempts with a connect error. The effected IO controllers will show this error at their diagnosis
interface.

See Ä Chapter 1.7.2.7.5.1 “IO controller views” on page 6408 on how
Automation Builder will show this diagnosis information.

In display “CM579-PNIO PROFINET IO Device Views” field “Diagnosis state” shows a text
message describing the error. Basically this text depends on the type of device signaling the
error. In case of “CM589-PNIO-4” the text The IO-Device reported a ModuleDiffBlock during
connection establishment will be found.

Rules to be followed on using PROFINET “Shared Device” configurations:

– All configurations of the IO device at IO controllers using this IO device have
to look the same

– IP configuration (IP address, subnet mask) have to be the same
– Station name has to be the same
– Configure each IO module as to be connected at one single IO controller

only
– Automation Builder is not able to check these details for consistency

In case of using more than one single IO controller device in the same network
take care to assign unique station names and IP addresses to these IO con-
troller devices.

In case of having a configuration with overlapping module usage it cannot
be foreseen which IO controller will connect to which module. The result of
connecting the modules/submodules depends on the start-up sequence of the
complete system. The IO controller running first will get the connection.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5948

Name assignment of a PROFINET IO device
A “PROFINET IO device” is addressed with a system wide unique name.
This name is permanently stored in the device and must be assigned during the initial start-up of
a PROFINET IO system.

Parameter Description
Configure IO-Device name Configure I/O device name

Selected IO-Device type Selected I/O device type

MAC address of selected IO-Devices MAC address of selected I/O devices

IP address IP address

Network mask Network mask

Gateway address Gateway address

Parameter flag Values:
● Assign configuration temporarily: Store

the IP configuration (IP address, network
mask, gateway) temporarily. After pow-
ering off/on the configuration will be lost.

● Assign configuration permanently: Store
the IP configuration (IP address, network
mask, gateway) permanently.

For name assignment to a PROFINET IO Device the following steps are necessary:
1. Configure the PROFINET IO controller and the PROFINET IO devices of your system as

described in the previous sections of this chapter.
2. Configure a name for each “PROFINET IO device” in the PROFINET IO device parameter

editor.
3. Configure a communication connection to AC500 in communication gateway.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5949

4. Open the PROFINET IO controller parameter editor by double-clicking on the corre-
sponding device. Open “Assign IO-Device” name.

5. Use the button “Connect to PLC” to open an online connection.
6. Perform PROFINET IO bus scan. All PROFINET IO devices, which are connected to the

PROFINET IO controller, will appear in the device list after a while.
7. Select the desired PROFINET IO devices in the device list.
8. Select the desired name from the pull-down-box Configure station name. This box con-

tains all names, which were configured in the PROFINET IO device parameter editor.
9. Press the button Assign station name to assign the desired name to the selected device.
10. Perform the steps 7 to 9 for all other devices, which have not yet a device name.

In addition to the name assignment, this dialog has the following functions:
● Start LED Signal:

The button Start LED Signal can be used to find the device in the system. If it’s pressed the
selected device will start blinking with it's LED.

● Factory reset:
With this function a PROFINET IO device can be reset to factory settings.

● Assign IP configuration:
The assignment of an ip address, network mask and gateway address can be performed
in the same way as the name assignment. These values will be stored permanently in a
device.

Mapping of the PROFINET IO devices
Doube-click on the “PROFINET IO device” or module in the configuration tree to open the
configuration dialog.
Then select the mapping tab to show the current I/O mapping.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5950

See chapter Symbolic Names for Variables, Inputs and Outputs Ä Chapter 1.6.5.2.9.6 “Sym-
bolic names for variables, inputs and outputs” on page 6060 for further details on mapping of
inputs and outputs.

CM589-PNIO / CM589-PNIO-4 - PROFINET IO device communication module
CM589-PNIO / CM589-PNIO-4 - PROFINET IO device communication module

The configuration of the CM589-PNIO PROFINET IO device module has to be done in the
following steps:
● Parameterization of the AC500 communication module interface Ä “Parameterization - CM

interface” on page 5952
● Parameterization of the PROFINET IO device protocol stack Ä “Parameterization -

PROFINET IO stack” on page 5952
● Configuring PROFINET IO device module structure Ä “Configuring PROFINET IO structure”

on page 5952
● Parameterization of the PROFINET IO device modules Ä “Parameterization - PROFINET

IO device modules” on page 5953
● Mapping of the I/Os Ä “Mapping of the I/Os” on page 5954
● Configuration specific to CM589-PNIO-4 Ä “Configuration CM589-PNIO-4” on page 5955

Configuration procedure for CM589-PNIO and CM589-PNIO-4 are basically the
same. Thus this description refers to CM589-PNIO only. Differences between
CM589-PNIO and CM589-PNIO-4 will be highlighted explicitly if necessary!

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5951

For connecting a PLC as “PROFINET IO device”, plug “CM589-PNIO / CM589-PNIO-4” at the
“Extension_Bus” node.
Double-click on “CM589-PNIO” to open the CM589-PNIO configuration in the editor window.
The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started even in
case of configuration error.

Min update time 10 0...20000 Update time of inputs and outputs in
[ms].

“PROFINET IO device” protocol does not need user configuration. All needed parameters are
set automatically by Automation Builder. Double-click on “PROFINET IO device” in tree view
will show the parameter set in tab “PROFINET IO device parameters”. The parameters are
displayed just for information and in read-only mode.

– Station name: the default name is displayed. The real name used on acting
at the field bus is combined out of this default name and the used setting
of the rotary switches at the CM589 module (“cm589-pnio-00”, “00” will be
replaced by rotary switch value) or the name set via PROFINET set name
service.

– Parameter “IP address”, “Subnet Mask”, “Default Gateway”: the default
values are displayed here. These values are not used as communication
settings. “PROFINET IO controller” supplies the IO devices with IP settings
on communication establishing.

CM589-PNIO provides I/O data as modules with different data types and directions. Create an
application specific I/O structure by compiling an appropriate combination of modules.
To assign I/O modules to “PROFINET-IO-device” node open “Add Object” dialog.

Parameteriza-
tion - CM inter-
face

Parameteriza-
tion - PROFINET
IO stack

Configuring
PROFINET IO
structure

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5952

The maximum image size available for I/O data depends on CM589-PNIO modules FW revision
(for details see Ä Chapter 1.6.2.4.9.2 “CM589-PNIO(-4) - PROFINET IO RT with 4 devices”
on page 4089). If FW revision run by connected CM589-PNIO module does not support the
number of I/O data configured, download configuration will fail. See Ä “Calculating size of I/O
data” on page 5954 how to calculate number of I/O data occupied by certain configuration.

PROFINET-IO device modules do not need user configuration. All needed parameters are set
automatically by Automation Builder. Double-click on a module node shows the parameter set
just for information. This parameter set is identical for all module types and is displayed in
read-only mode.

Parameteriza-
tion - PROFINET
IO device
modules

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5953

– API: shows the API which is used by the CM589-PNIO modules. As API
0 is supported only CM589-PNIO modules do not provide configuration
capabilities for this parameter

– Slot number, Sub-Slot-Number, Offset in DPM, inputs/outputs: will be set
to default values on inserting a module. On creating configuration data
Automation Builder calculates real values and overwrites the defaults

– Offset IOPS provider/consumer: not used and set to 0 values

PROFINET defines IO data and status information to be exchanged between IO controller and
IO device. The status information is called “Provider Status” and “Consumer Status”. Both (IO
data and status information) have to be considered on calculating allocated memory in input
and output image.
● The number of status bytes depends on the type of module used.
● The different types of modules input, output and in/output have to be considered different.
● Some status bytes are reserved for predefined submodules have to be considered addition-

ally.
A configured IO module allocates memory space at the corresponding IO image for data and
status bytes. Additionally memory is allocated at the opposite directions IO image to store
further status bytes. E.g. an input module allocates memory at the input image but additionally it
allocates one byte for status at the output image. Summarized size of input and output data and
status has to fit to the corresponding image.
See following table for an overview of IO module types and corresponding status bytes:

Module
Type

Input Data Output data
Inputs Provider

Status
Inputs

Consumer
Status Out-
puts

Outputs Provider
Status Out-
puts

Consumer
Status
Inputs

Reserved 0 Input
Bytes

4 Bytes 0 Bytes 0 Bytes 0 Bytes 4 Bytes

Input
Module
(e.g. 4 Byte
Input)

n Input
Bytes

1 Byte 0 Bytes 0 Bytes 0 Bytes 1 Byte

Output
Module

0 Input
Bytes

0 Bytes 1 Byte n Output
Bytes

1 Byte 0 Bytes

Input/
Output
Module

n Input
Bytes

1 Byte 1 Byte n Output
Bytes

1 Byte 1 Byte

Following expressions calculate allocated sizes of input and output data:

Size Input = Input + Status + 4 bytes (reserved status)
Size Output = Output + Status + 4 bytes (reserved status)

● Input = summarized number input bytes all modules
● Output = summarized number output bytes all modules
● Status = count input modules + count output modules + 2 * count input/output modules

Double-click on the desired “PROFINET-IO-device” module object in the device tree to show
current I/O mappings connected to this module.

Calculating size
of I/O data

Mapping of the
I/Os

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5954

See chapter Symbolic Names for Variables, Inputs and Outputs Ä Chapter 1.6.5.2.9.6 “Sym-
bolic names for variables, inputs and outputs” on page 6060 for further details on mapping
inputs and outputs.

CM589-PNIO-4 adds PROFINET “Shared Device” feature to already described CM589-PNIO
device functionality. Thus CM589-PNIO-4 is able to communicate to 4 different PROFINET IO
controllers in parallel.
Shared device usage of a CM589-PNIO-4 does not need to be considered on doing the configu-
ration of the CM589-PNIO-4 communication module itself. It has to be considered only on doing
the configuration of CM589-PNIO-4 as child to the CM579-PNIO IO controller. See Ä Chapter
1.6.5.2.6.7.1.5 “Configuration of PROFINET shared device functionality” on page 5945.

CM579-ETHCAT - EtherCAT master communication module
AC500 CM579-ETHCAT - Communication module EtherCAT master

The configuration of the EtherCAT field bus has to be done in the following steps:
● Parameterization of the AC500 Communication Module Interface Ä Chapter 1.6.5.2.6.8.2

“Parameterization of the CM579-ETHCAT communication module interface” on page 5955
● Configuration of the EtherCAT master Ä Chapter 1.6.5.2.6.8.3 “Configuration of the

EtherCAT master” on page 5956
● Configuration of the EtherCAT slaves Ä Chapter 1.6.5.2.6.8.4 “Configuration of the

EtherCAT slaves” on page 5959
● Mapping of the EtherCAT slave I/Os Ä Chapter 1.6.5.2.6.8.5 “Mapping of the EtherCAT

slave I/Os” on page 5966
● EtherCAT Sync - Synchronization of a PLC Task with the IO Image Ä Chapter 1.6.5.2.6.8.7

“EtherCAT Sync - Synchronization of a PLC task with the IO image” on page 5966

Parameterization of the CM579-ETHCAT communication module interface
To append a Communication Module, add the Communication Module to the “Extension_Bus”
node.
● Right-click the desired slot and select “Add object”.
● Select the Communication Module from the list and click [Replace object].

● Double-click on “CM579_ECAT (CM579-ECAT)” to open the CM579-ECAT configuration in
the editor window.

The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error,
the user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the EtherCAT Communication
Module.

Max wait run 3000 3000 Maximum wait time for the
Master to build up the communi-
cation relation to the slaves.
A restart to build up the commu-
nication is initiated as long as
BootUpTime has not run out.

Configuration
CM589-PNIO-4

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5955

Parameter Default value Value Description
Min update time 10 0...20000 Priority of the data exchange

between CPU and Communica-
tion Module.
This parameter should never be
set to values under 10, otherwise
important sequences in the CPU
might be influenced.

Broken slave
behavior

Leave all broken
slaves down

Leave all broken
slaves down

Broken slaves will not be served.

Leave addressless
slaves down

Only slaves without address will
be left down.

Leave no slaves
down

Broken slaves will be ignored.

Distributed clocks Inaktiv Inactive Distributed clocks are inactive.

Active Distributed clocks are active.

BootUpTime 10000 10000 Maximum wait time for the slaves
to boot completely.
This absolute time value must
be a multiple of Max wait run.
It defines the time in which Max
wait run is restarted to wait for
the slaves to boot up completely.
The multiplication ratio between
Max wait run and BootUpTime
can be interpreted as number of
trials to boot up the slaves.

Configuration of the EtherCAT master
To append a Communication Module, add the Communication Module to the “Extension_Bus”
node.
● Right-click the desired slot and select “Add object”.
● Select the Communication Module from the list and click [Replace object].

● Double-click the added object to open the Master configuration in the editor window.

The following parameters are available:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5956

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5956)

Autoconfig
Master/Slaves
Remark 2
Ä Further
information
on page 5956:

Enabled Disabled The automatic configuration is
disabled.

Autoconfig

Enabled The configuration parameters
are set automatically based
on the given device descrip-
tion and network topology.
Normally the parameters do
not have to be modified for
standard applications.

Ethercat NIC Setting

Destination
Address
(MAC)

FF-FF-FF-
FF-FF-FF

Valid MAC
address

Parameter Destination
Address (MAC) determines
the MAC address of the par-
ticipant of the EtherCAT net-
work which should receive the
telegrams. If option Broad-
cast is activated, no specific
address must be entered.

DestAddress1
and DestAd-
dress 2

Source
Address
(MAC)

00-00-00-00-
00-00

Valid MAC
address

Parameter Source Address
(MAC) determines the MAC
address of the system.

SrcAddress1
and SrcAd-
dress2

Network Name empty String Parameter Network Name
determines the network name
of the system.

NetworkName

 Select net-
work by MAC

If this option is selected, the
network is selected by the
MAC address determined by
parameter Source Address
(MAC).

SelectNetwork-
ByName =
FALSE

Select net-
work by
Name

If this option is selected, the
network is selected by the
network name determined by
parameter Network Name.

SelectNetwork-
ByName =
TRUE

Broadcast Enabled Disabled The destination address is
not the broadcast address.
The parameter Destination
Address (MAC) must be
edited.

-

Enabled The destination address is set
to broadcast address FF-FF-
FF-FF-FF-FF. The parameter
Destination Address (MAC)
can not be edited.

Distributed Clock

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5957

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5956)

Cycle time 4000 0...10000 Period of time in [µs] after
which a new data telegram is
to be sent on the bus. If the
Distributed Clock functionality
is activated, the master cycle
time will be transferred to the
slave clocks. Thus an accu-
rate synchronization of data
exchange can be reached,
which is particularly impor-
tant in cases where spatially
distributed processes require
simultaneous actions (e.g. in
applications where several
servo axes carry out coordi-
nated movements simultane-
ously). So a very precise
network-wide timebase with
a jitter of significantly less
then 1 microsecond can be
achieved.

MasterCycle-
Time

Options

Use LRW
instead of
LWR/LRD

Disabled Disabled Slave-to-slave communication
is not allowed.

MasterUseLRW

Enabled Slave-to-slave communication
is allowed.

Enable mes-
sages per task

Disabled Disabled This parameter is currently
not supported.

EnableTask-
MessageEnabled

Auto restart
slaves

Disabled Disabled This parameter is currently
not supported.

Enabled

Master Setting (only available if AutoconfigMaster/Slaves option is disabled)

Image In
Address

16#10880 16#0000000
0...
16#FFFFFFF
F

Parameter Image In Address
determines the first logical
address of the first slave for
input data.

ImageInAd-
dress and
ImageInLength

Image Out
Address

16#10000 16#0000000
0...
16#FFFFFFF
F

Parameter Image Out
Address determines the first
logical address of the first
slave for output data.

ImageOutAd-
dress and
ImageOut-
Length

Remark 1: Tab CM579-Master Configuration
The parameters in this column are shown in tab EtherCAT Configuration which is only visible
if the parameter Show generic device configuration views is activated (open the Options dialog
window with menu item Tools -> Options, parameter is located under section Device editor):

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5958

The table shows all configuration parameters.
Remark 2: Autoconfig
The autoconfig mode is activated by default and usually sufficient and strongly recommended
for standard applications. If the option is deactivated, all configuration settings for the Master
and the Slave(s) will have to be done manually and expert knowledge is required. For the
configuration of a slave-to-slave communication the autoconfig option has to be deactivated.

Configuration of the EtherCAT slaves
Double-click on a EtherCAT slave module in the device tree:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5959

All parameters are set to the device-specific standard values by default. To edit the parameters
enable the “Enable Expert Settings” check box. This option also displays detailed parameters.
The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5959)

Address
AutoInc
Address

0 0...65535 Autoincremental address (16-
bit), defined by the position of
the slave in the network. This
address is only used during
startup, when the master
is assigning the EtherCAT
addresses to the slaves.
When for this purpose the
first telegram runs through
the slaves, each run-through
slave increases its AutoInc
Address by 1. The slave with
address 0 finally will receive
the data. Possible input for
example "-8".

General ->
AutoIncr
Address of the
Slave

EtherCAT
Address

0 0...65535 Final address of the slave,
assigned by the master
during startup. This address
is independent from the posi-
tion in the network.

General ->
Physical
Address of the
Slave

Additional
Enable Expert
Settings

Disabled Disabled Expert settings are not edit-
able.

-

Enabled Expert settings are editable.

Distributed Clock
Select DC - - The drop-down menu pro-

vides all settings for distrib-
uted clocks provided by the
device description file.
Currently this parameter is
deactivated.

-

Enable Disabled Disabled The distributed clock is not
enabled. The parameter set-
ting for Sync0 and Sync1 are
disabled and unused.

Distrib-
uted_Clock ->
DC enable

Enabled The distributed clock is ena-
bled. The parameter settings
for Sync0 and Sync1 are ena-
bled and can be edited.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5960

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5959)

Sync Unit
Cycle (µs)

Device-spe-
cific

Device-spe-
cific

If the Distributed Clock func-
tionality is enabled, the data
exchange cycle time, dis-
played in the field Sync
Unit Cycle (µs) will be deter-
mined by the master cycle
time. Thus the master clock
can synchronize the data
exchange within the network.
The master cycle time for
the distributed clock can be
determined by editing param-
eter Cycletime of section Dis-
tributed Clock in the Master
editor window.

Parameter of
the Master

Sync 0
Enable Sync 0 Disabled Disabled Sync 0 is currently not sup-

ported.
Distrib-
uted_Clock ->
DC sync0
enable

Enabled

Sync Unit
Cycle

x 1 / 16 .. x 16 Distrib-
uted_Clock ->
DC sync0
factor

Cycle time (µs) - 0..232-1 Distrib-
uted_Clock ->
DC sync0
cycletime

User defined - - -

Shift Time (µs) 0 0..232-1 Distrib-
uted_Clock ->
DC sync0 shift
time

Sync 1
Enable Sync 1 Disabled Disabled Sync 1 is currently not sup-

ported.
Distrib-
uted_Clock ->
DC sync1
enable

Enabled

Sync Unit
Cycle

- - Distrib-
uted_Clock ->
DC sync1
factor

Cycle time (µs) - 0..232-1 Distrib-
uted_Clock ->
DC sync1
cycletime

User defined - - -

Shift Time (µs) Distrib-
uted_Clock ->
DC sync1 shift
time

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5961

Parameter Default Value Description Parameter
(Remark 1
Ä Further
information
on page 5959)

Startup checking
Check Vendor
ID

Enabled Disabled The vendor ID is not checked
against the current configura-
tion settings.

General ->
CheckVendorID

Enabled The vendor ID is checked
against the current configura-
tion settings. If a mismatch
is detected the bus will
be stopped and no further
actions will be executed.

Check Product
ID

Enabled Disabled The product ID is not checked
against the current configura-
tion settings.

General ->
CheckPro-
ductID

Enabled The product ID is checked
against the current configura-
tion settings. If a mismatch
is detected the bus will
be stopped and no further
actions will be executed.

Timeouts
SDO Access 1000 0...10000 Timeout for sending SDO list

at system startup in [ms].
General ->
Timeout SDO
Access

I -> P 1000 0...10000 Timeout for switch from mode
Init to mode Preoperational in
[ms].

General ->
Timeout Init

P -> S / S -> O 10000 0...10000 Timeout for switch from
mode Preoperational to Safe
Operational resp. from Safe
Operational to Operational in
[ms].

General ->
Timeout Preop
to Safeop

DC cyclic unit control: assign to local µC
Cyclic Unit Disabled Disabled DC cyclic unit control is cur-

rently not supported.
-

Enabled

Latch Unit 0 Disabled Disabled

Enabled

Latch Unit 1 Disabled Disabled

Enabled

Station alias
Enable (read-
only)

Disabled Disabled Station alias is currently not
supported.

-

Value (read-
only)

0 0 -

Remark 1:
The parameters in this column are shown in tab EtherCAT Configuration which is only visible
if parameter Show generic device configuration views is activated (open the Options dialog
window under “Tools è Options è Device editor”).

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5962

Export process data
Tab Expert Process Data is only shown if the parameter Show generic device configuration
views is activated (open the Options dialog window under “Tools è Options è Device editor”):

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5963

The Expert Process Data dialog allows the set up of the PDO assignment and the PDO
configuration.

Startup parameters
Double-click on the EtherCAT slave module in the device tree and open the “Startup
parameters” tab:

The following parameters are available:

Parameter Default value Value Description
Startup parameters table columns
Line Device-specific Device-specific The line number of the param-

eter.

Index:Subindex Device-specific Device-specific The index and the subindex of
the parameter.

Name Device-specific Device-specific The name of the parameter.

Value Device-specific Device-specific The configured value of the
parameter.

Bitlength Device-specific Device-specific The length of the parameter in
[bit].

Abort if error Device-specific Device-specific If parameter Abort if error is acti-
vated the transfer will be termi-
nated on error detection.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5964

Parameter Default value Value Description
Jump to line if error Device-specific Device-specific If parameter Jump to line if error

is activated, the transfer will be
continued with the line which is
set in parameter Next line in
case of an error.

Next line 0 1 ... number of
lines

The parameter Next line deter-
mines the line with which the
transfer will be continued in case
of an error if the parameter Jump
to line if error is activated.

Comment " String The parameter Comment shows
a comment text of the corre-
sponding line.

Buttons
Move up - - The order (top-down) in the

startup parameters table repre-
sents the sequence in which the
parameters will be transferred
to the module. Button Move up
shifts up the selected entry.

Move down - - The order (top-down) in the
startup parameters table repre-
sents the sequence in which
the startup parameters will be
transferred to the module. Button
Move down shifts up the selected
entry.

New...
Remark 1 Ä Fur-
ther information
on page 5959

- - The button New... opens the
Select item from object directory
to add a startup parameter entry
to the table.

Delete... - - The button Delete... deletes the
currently selected line from the
table.

Edit
Remark 1 Ä Fur-
ther information
on page 5959

- - The button Edit... opens the
Select item from object dictionary
dialog where it can be edited.

Remark 1
The dialog “Select item from object dictionary” shows all entries defined in the EtherCAT XML
file:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5965

The dialog allows editing the available startup parameters before adding them to the table. New
entries can be created and edited which are not defined in the XML file.

Mapping of the EtherCAT slave I/Os
Double-click on the EtherCAT slave device in the device tree and select the mapping tab to
show the current I/O mapping.
See Symbolic Names for Variables, Inputs and Outputs for further details on mapping of
inputs and outputs Ä Chapter 1.6.5.2.9.6 “Symbolic names for variables, inputs and outputs”
on page 6060.

EtherCAT Master configuration of DA501

NOTICE!
Special attention is required for configuration of DA501 devices on EtherCAT
networks:
– The order of the I/O channels in the Automation Builder I/O mapping editors

is different from the order on the device
– The Automation Builder I/O mapping editors contain internal I/O channels

that are not available on the device and must not be used in the configura-
tion and application

EtherCAT Sync - Synchronization of a PLC task with the IO image
The EtherCAT master CM579-ETHCAT supports the synchronization of a PLC task with the IO
image. For the configuration of EtherCAT Sync Automation Builder and the task configuration is
used. Configuration of EtherCAT Sync is described in Ä Chapter 1.6.4.2.4.6.2 “EtherCAT sync”
on page 5569.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5966

Configuration
To configure EtherCAT synchronization perform the following steps:

1. Configure the EtherCAT master. Ä Chapter 1.6.5.2.6.8.3 “Configuration of the EtherCAT
master” on page 5956

2. Configure the EtherCAT slaves. This is identically to configuration in unsynchronized
mode. Ä Chapter 1.6.5.2.6.8.4 “Configuration of the EtherCAT slaves” on page 5959

3. Ä Chapter 1.6.5.2.6.8.7.1.1 “Configuration of the bus cycle time” on page 5967

4. Ä Chapter 1.6.5.2.6.8.7.1.2 “Configuration of the master synchronization mode”
on page 5967

5. Ä Chapter 1.6.5.2.6.8.7.1.3 “Configuration of PLC task and synchronization mode”
on page 5967

Configuration of the bus cycle time
The bus cycle time can be set with the parameter "bus cycle time" which is part of the node
CM579-ETHCAT of PLC configuration tree. It has a range from 0.5 ms to 20 ms.

Configuration of the master synchronization mode
The EtherCAT can operate in "Cyclic mode" or "DC mode". The operation mode can be
selected with the parameter "distributed clock" which is part of node CM579-ETHCAT of PLC
configuration tree.

Parameter Value Description
Distributed clocks Inactive Cyclic mode

Active DC mode

Configuration of PLC task and synchronization mode
In Automation Builder the PLC program is written and assigned to a PLC task. For task creation
and parameterization the dialog "task configuration" is used.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5967

The task configuration is evaluated when a PLC project is loaded and the corresponding sync
mode is activated for the EtherCAT master. The synchronization will be activated if the param-
eter task type is set to the value "triggered by external event". The mode of synchronization
can be selected with the parameter event. Between the value of the parameter event and the
synchronization mode exists the following relationship:

Parameter Value Description
Event Ext_CouplerX_InputAny Sync mode 1

Ext_CouplerX_Input2Any Sync mode 2

Ext_CouplerX_Inpu-
tAny_high_prio

Sync mode 1 with increased
priority

Ext_Cou-
plerX_Input2Any_high_prio

Sync mode 2 with increased
priority

1.6.5.2.7 Communication interface modules
Configuration of communication interface modules

Automation Builder can be used to configure the parameters of CI5xx devices.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5968

Configuration of S500 I/O modules can be performed without CI5xx devices
connected.

1. Right click in the device tree on the node “Slot1” or “Slot2” of the “Extension_Bus” and
click “Add object”.

ð The window Replace object : Slot <...> opens.

2. Select your CM5xx master module and click [Add object].

ð The CM5xx master appears in the Slot.

3. Right click on the CM5xx master module and click “Add object”.

ð The window Add object below : <...>_Master opens.

4. Select your “CI5xx” device and click [Add object].

ð The “CI5xx” device appears in your device tree.

1. Right click on your “CI5xx” device and click [Add object].

ð The window Add object below: opens.

2. Select your I/O module and click [Add object].

ð The I/O module is added.

Double-click the “CI5xx” device to open editors and select the “CI5xx_IO Parameters” tab.

This editor shows the parameters that can be set for each device. For more information see
Ä Chapter 1.6.2.8 “Communication interface modules (S500)” on page 4681, and Ä Chapter
1.6.2.6 “I/O modules” on page 4124.

Adding CI5xx
device to the
device tree

Adding S500 I/O
modules

Configure
parameters

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5969

CI504-PNIO/CI506-PNIO
Device tree

Remarks:
● The different hardware layers (RS-232, RS-485, RS-422) are configurable by plugging of

corresponding module.
● For configuration of "COM1 ASCII", see The Setting "COMx ASCII" Ä Chapter 1.6.5.2.11.3

“Setting COMx - ASCII” on page 6100.
● For inputs of serial (or raw CAN) interface see explanation below.
● For outputs of serial (or raw CAN) interface see explanation below.
● For configuration of "COM2 ASCII", see The Setting "COMx ASCII" Ä Chapter 1.6.5.2.11.3

“Setting COMx - ASCII” on page 6100.
● For configuration of the CANopen master and underlying CANopen network, see Commu-

nication Module CANopen manager Ä Chapter 1.6.5.2.6.6.1.1 “CM598-CN - CANopen
manager communication module” on page 5913.
=> CANopen master is not available for CI504-PNIO. Instead a 3rd serial interface is
available (configuration is the same as configuration of COM1)
=> CANopen master can be replaced by raw CAN (CAN 2A / CAN2B) at CI506-PNIO

Outputs of serial (or Raw CAN) interface

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5970

Name of Output Type of Output Description
CAP_IN_FRAME UINT Reserved for future use

CAP_IN_NUM UINT Reserved for future use

CAP_OUT_FRAME UINT Reserved for future use

CAP_OUT_NUM UINT Reserved for future use

DATA_LENGTH UINT Reserved for function blocks -
DO NOT USE

FLAGS UINT Reserved for function blocks -
DO NOT USE

Inputs of serial (or Raw CAN) interface

Name of Input Type of Input Description
CAP_IN_FRAME UINT Remaining free capacity in the

serial transmission FIFO (in
frames)

CAP_IN_NUM UINT Remaining free capacity in the
serial transmission FIFO (in
bytes)

CAP_OUT_FRAME UINT Occupied level in serial recep-
tion FIFO (in frames)

CAP_OUT_NUM UINT Occupied level in serial recep-
tion FIFO (in bytes)

DATA_LENGTH UINT Reserved for function blocks -
DO NOT USE

FLAGS UINT Reserved for function blocks -
DO NOT USE

CI521-MODTCP/CI522-MODTCP
Unbundled CI52x-MODTCP configuration

Automation Builder can be used to configure the parameters of CI52x-MODTCP devices.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5971

A direct Ethernet connection is required between the PC running Automation
Builder and the CI52x-MODTCP module.

Configuration of S500 I/O modules can be performed without CI52x-MODTCPs
modules connected.

1. Select “New Project” in menue item “File”.

ð The window “New Project” appears.

2. Select the “CI52x-MODTCP Configuration Project” and click “OK”.

ð The window “Select PLC” opens.

3. Select a “CI52x-MODTCP” device and click “Add device”.

ð A project is created. More modules can be added.

1. Right click in the device tree on the root of the “Project” and click “Add object”.

ð The window “Add object below” opens.

2. Select “Modbus devices” and click “Add object”.

ð The node“Modbus_devices” appears in your device tree.

3. Right click on the node “Modbus_devices” and click “Add object”.

ð The window “Select PLC” opens.

4. Select your “CI52x-MODTCP” device and click “Add device”.

ð The “CI52x-MODTCP” device appears in your device tree.

1. “Add object” to your “CI52x-MODTCP” device.

ð The window “Add object below: CI52x-MODTCP” opens.

2. Select your I/O module and click “Add object”.

ð The I/O module is added.

Double-click the device to open editors and select the “CI52x-MODTCP Parameters” tab.

Start a project
from template

Add CI52x-
MODTCP to a
project

Add S500 I/O
modules

Configure
parameters

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5972

This editor shows the parameters that can be set for each device. For more information
see Ä Chapter 1.6.2.8.5.1.7.1 “Parameters of the module” on page 4884 CI521, Ä Chapter
1.6.2.8.5.2.7.1 “Parameters of the module” on page 4914 CI522 and Ä Chapter 1.6.2.6 “I/O
modules” on page 4124.

To read or write parameters, the CI52x-MODTCP module must be connected to the PC with an
Ethernet connection.
See Ä Chapter 1.6.2.8.5.1.5 “Addressing” on page 4883 CI521 and Ä Chapter 1.6.2.8.5.2.5
“Addressing” on page 4914 CI522 of the CI52x-MODTCP hardware documentation for informa-
tion on configuring the IP address of the device.
On the CI52x-MODTCP device editor, the “Connection Settings” tab allows the IP address of the
device to be entered.

Read Reads the parameters from the CI52x-MODTCP and also for the attached S500 I/O
modules.

Write Sends the parameters from the editors to the CI52x-MODTCP and also the S500 I/O
modules.

The CI52x-MODTCP module knows which I/O modules are attached.
While reading and writing parameters, the project must match the physical hardware. Otherwise
an error will be given.
Communication errors will also result in error messages.
When the parameters have been read or written correctly, a message is seen in the “All
messages” window:

Connect to
device

Device checking

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5973

It is possible to read and write parameters when the S500 I/O modules are not attached to the
CI52x-MODTCP module.

To perform a read, the project structure must still match the configuration of
CI52x-MODTCP.

A warning will be shown if an I/O module is not detected:

When writing parameters, the CI52x-MODTCP configuration is overwritten so the current config-
uration of missing (unplugged) modules does not matter.
If the I/O modules are attached, then the project must match the hardware, otherwise an error
will be given.

As of Automation Builder 2.2.1, the IP Configuration Tool can be used to perform firmware
updates for CI52x-MODTCP devices.

1.6.5.2.8 Function modules
DC541-CM interrupt and counter module

The function module DC541-CM can be used for a wide variety of control tasks. It can be
configured to act for example as an interrupt I/O, as a fast counter or to provide pulse width
modulation functionality.
Configuration in Automation Builder is mainly identical, however, programming with the provided
function blocks differ. All necessary function blocks for DC541-CM programming are available in
the Ä Chapter 1.5.4.11 “DC541 library” on page 1103.
Details on the hardware is provided in the device descriptions Ä Chapter 1.6.2.6.1.2.4 “DC541-
CM - Digital input/output module” on page 4290.

General Automation Builder configuration
1. In the device tree, add the object “DC541-CM” (Extension Bus -> Slot).
2. Double-click the added object and configure the I/O channels.

The following parameters are available:

Attached S500
modules

Firmware
update

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5974

Parameter Default value Value Description
Run on config fault No No In case of a con-

figuration error, the
user program is not
started.

Yes The user program is
started even if the
internal Ethernet com-
munication module is
configured incorrectly.

Do not delete config
on Reset (original)

On On The configuration of
the DC541-CM is not
deleted in case of a
reset (original).

Off In case of a reset
(original), the configu-
ration of the DC541-
CM is deleted, too.

Num edges ignore
input 0

0 0...255 Number of edges that
may occur at input
0 without initiating
the interrupt task, if
channel C0 is con-
figured as interrupt
input.

Watchdog On On Mutual time moni-
toring between the
CPU and the DC541-
CM is switched on.

Off No time monitoring.

Depending on the desired use case of the function module DC541-CM, the appropriate oper-
ating mode is to be defined. For this, add a new object to the “DC541-CM” node and select an
operating mode.

Usage as interrupt I/O device
Cycle time modification

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

 Access to the channels configured as normal inputs and outputs is performed
using the function block Ä Chapter 1.5.4.11.1.1.8 “DC541_IO” on page 1139.

The module's cycle time is set automatically depending on its channel configuration. The fol-
lowing values are possible for the cycle time:

Data type Default value Range Unit
WORD - - µs

CYCLE

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5975

CYCLE (cycle time) output displays the cycle time of the device. The cycle time is set during the
device configuration and can have the following values depending on the channel configuration:

Parameter Description Value
IO device 50 µs

Counting device 1-2 functions 50 µs

 3-4 functions 100 µs

 5-8 functions 200 µs

"Functions"

 PWM Pulse-width modulator

 FREQ Time and frequency measurement

 FREQ_OUT Frequency output

 32BIT_CNT 32-bit counter

 FWD_CNT 32-bit count up counter

 LIMIT Limit value monitoring for the 32-bit counter

The used cycle time can be read at output CYCLE of the block Ä Chapter 1.5.4.11.1.1.6
“DC541_GET_CFG” on page 1132.
The following table shows an overview of all possible combinations.

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Mode 1: Interrupt function; mutually exclusive with mode 2 (counting functions).

Interrupt Dig.
input

1 1 1 1 4 8 Each
channel
can be
config-
ured
individu-
ally as
interrupt
input or
output.

Interrupt
inp.

1 1 1 1 4 8

Dig.
output

1 1 1 1 4 8

Mode 2: Counting functions and multifunctional I/Os; mutually exclusive with mode 1 (interrupt
functions).

Multi-
function
I/Os,
PWM,
coun-
ters,

Dig.
input

1 1 1 1 4 8 Normal
input

Dig.
output

1 1 1 1 4 8 Normal
output

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5976

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

time and
fre-
quency
meas-
uring

PWM,
resolu-
tion 10
kHz

1 1 1 1 4 8 Outputs
a pulsed
signal
with an
adjust-
able on-
off ratio.

Fre-
quency
output,
resolu-
tion
2.5 kHz

1 1 1 1 4 8 Outputs
an
adjust-
able fre-
quency
(endless
output or
output of
a speci-
fied
number
of
pulses).

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5977

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Up/down
counter,
50 kHz

1 1 OK
*1)

OK
*1)

OK
*1)

2 *1)
a) Both
channels
(0 and 1)
config-
ured as
50 kHz
counter
=>
Chan-
nels 2 to
7 can be
config-
ured as
digital
I/Os.
b) Only
one
channel
(0 or 1)
config-
ured as
50 kHz
counter
 =>
Second
channel
can be
config-
ured as
counter
< 50 kHz
or for
time/
fre-
quency
meas-
urement
with a
max.
resolu-
tion of
200 µs.
The
remainin
g chan-
nels (2
to 7) can
be con-
figured
as digital
I/Os.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5978

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Up/down
counter,
5 kHz

1 1 1 1 OK
*2)

4 *2)
a) Four
channels
(0 to 3)
config-
ured as
5 kHz
counter
=>
Chan-
nels 4 to
7 can be
config-
ured as
digital
I/Os.
b) Only a
portion
of the 4
channels
(0 to 3)
config-
ured as
5 kHz
counter
=> The
other
ones (of
channels
0 to 3)
can be
config-
ured as
desired:
as 2.5
kHz
counter
or for
time/
fre-
quency
meas-
urement
with a
max.
resolu-
tion of
200 µs
or as
digital
I/Os.
The
remainin

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5979

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)
g chan-
nels (4
to 7) can
be con-
figured
as digital
I/Os.

Up/down
counter,
2.5 kHz

1 1 1 1 4 8

Time/
fre-
quency
meas-
urement,
resolu-
tion
50 µs

1 OK
*3)

OK
*3)

OK
*3)

OK
*3)

1 *3)
Channel
0 config-
ured for
a max.
resolu-
tion of
50 µs =>
Chan-
nels 1 to
7 can be
config-
ured as
digital
I/Os.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5980

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Time/
fre-
quency
meas-
urement,
resolu-
tion
100 µs

1 1 OK
*4)

OK
*4)

OK
*4)

2 *4)
a) Two
channels
(0 and 1)
config-
ured for
a max.
resolu-
tion of
2x100 µs
=>
Chan-
nels 2 to
7 can be
config-
ured as
digital
I/Os.
b) Only
one
channel
(0 or 1)
config-
ured for
a max.
resolu-
tion of
50 µs =>
Second
channel
(0 or 1)
can be
config-
ured as
counter
< 50 kHz
or for
time/
fre-
quency
meas-
urement
with a
max.
resolu-
tion of
200 µs.
The
remainin
g chan-
nels (2

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5981

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)
to 7) can
be con-
figured
as digital
I/Os.

Time/
fre-
quency
meas-
urement,
resolu-
tion
200 µs

1 1 1 1 4 8 Times,
frequen-
cies and
rota-
tional
speeds
are
meas-
ured with
a max.
resolu-
tion of
200 µs.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5982

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

High-
speed
counter

Up/down
32-bit
counter,
50 kHz
max.

Channels 0 to 3: Track A, track B, zero
track, touch trigger

OK
*6)

1 For con-
nection
of an
incre-
mental
trans-
mitter.
For sig-
nals up
to 50
kHz.
This fre-
quency
corre-
sponds
to a
motor
with a
rota-
tional
speed of
3000
rpm. The
counter
always
uses the
first 4
channels
(0 to 3).
*6) The
remainin
g chan-
nels (4
to 7) can
be con-
figured
as limit
values,
as 5 kHz
coun-
ters, for
time/
fre-
quency
meas-
urement
with a
resolu-
tion of
200 µs
or as
digital
I/Os.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5983

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

Axis of
rotation
(endless
counting
)

1 OK
*7)

1 "End-
less" for-
ward
counting.
An over-
flow
occurs
corre-
sponding
to the
32-bit
value.
*7) The
remainin
g chan-
nels can
be con-
figured
as limit
values,
as 5 kHz
coun-
ters, for
time/
fre-
quency
meas-
urement
with a
resolu-
tion of
200 µs
or as
digital
I/Os.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5984

Config-
ured as

Func-
tion/
can be
con- fig-
ured for
channel

C0 C1 C2 C3 C4 to C7 Max.
number
of chan-
nels for
this
function

Remark
and ref-
erence
to alter-
native
combi-
nations
(a and
b)

32-bit
counter
incl. sign

1 OK
*8)

1 *8) The
remainin
g chan-
nels can
be con-
figured
as limit
values,
as 5 kHz
coun-
ters, for
time/
fre-
quency
meas-
urement
with a
resolu-
tion of
200 µs
or as
digital
I/Os.

Limit
values
for 32-bit
counter

OK *9) 1 1 Various
counting
values of
the 32-
bit
counter
can be
dis-
played
directly
via these
outputs.
*9) In
this
case, the
channels
0 to 3
are used
as 32-bit
coun-
ters.

Creating an interrupt task for the interrupt inputs
If one or more channels of DC541-CM are configured as interrupt inputs, a corresponding
interrupt task has to be created to enable the processing of the interrupt(s).
For this purpose, a new task has to be added in the task configuration of Automation Builder:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5985

● Enter the task name
● Set the task type to "triggered by external event"
● Specify the event that triggers the task
For each Communication Module slot, two types of interrupt tasks are available in the Event list
box:
● Ext_Communication ModuleX_InputAny:

The task is triggered by any interrupt from Communication Module slot X with the priority
specified in the Priority field (0...31).

● Ext_Communication ModuleX_InpuAny_high_prio:
The task is triggered by any interrupt from Communication Module slot X with highest
priority, i.e. with a priority higher than the max. adjustable "0" and higher than the priority
of the communication task. In this case, the priority (0...31) specified in the Priority field is
without any significance.

If the interrupt task is started with highest priority, the program execution time
must not be longer than approx. 400 µs. Otherwise online access is no longer
possible.

In the example below, the task is named HIGHInterrupt_1, meaning that it is a high-priority
interrupt from Communication Module slot 1. The task type is "external event triggered" and the
event to trigger the task is "Ext_Communication Module1_InputAny_high_priority".

Like for all other tasks, a program call has to be assigned to the task.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5986

In the example, the program DC541_Interrupt_Ext1() shall be started with any interrupt from
Communication Module slot 1.

The task configuration for an AC500 equipped with two DC541-CM modules inserted in the
Communication Module slots 1 and 2 and containing one cyclically running "background pro-
gram" PLC_PRG could for example look as follows. Here, an interrupt from slot 1 should start
the program DC541_Interrupt_Ext1 with high priority, an interrupt from slot 2 should start the
program DC541_Interrupt_Ext2 with priority 2:

Structure of the interrupt program
The following blocks contained in the library DC541_AC500_V11.lib are available for the inter-
rupt program:
● Ä Chapter 1.5.4.11.1.1.7 “DC541_INT_IN” on page 1136 Determination of the interrupt

initiating source
● Ä Chapter 1.5.4.11.1.1.8 “DC541_IO” on page 1139 Reading and writing of channels

C0...C7

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5987

It is possible to start one interrupt task per Communication Module slot. This task can be
started by any channel (C0...C7) configured as interrupt input. Therefore, it is necessary for the
interrupt program to differentiate which channel(s) triggered the interrupt in order to enable the
processing of the corresponding actions.
The information whether a channel (C0...C7) has triggered an interrupt since the last call
of the block is provided by the outputs IN0...IN7 of the block Ä Chapter 1.5.4.11.1.1.7
“DC541_INT_IN” on page 1136. This is why this block always has to be called at the beginning
of the interrupt program, if more than one channel is configured as interrupt input.
The access to the channels configured as inputs or outputs is done using the block DC541_IO.
Therefore, it makes sense to call this block at the beginning of the interrupt program in order to
read the inputs and at the end of the interrupt program in order to write the outputs.

--Configuration example: DC541-CM used as interrupt I/O device
The example control system shall have the following configuration:
● Terminal base TB521 (two Communication Module slots)
● DC541-CM in Communication Module slot 1 (first slot on the left of the CPU)
● PM591-ETH
● I/O module DC532 on the I/O Bus

The channels are connected as follows:
DC532 / C16 -------------- DC541 / C0
DC532 / C17 -------------- DC541 / C1
DC532 / C18 -------------- DC541 / C2
DC532 / C19 -------------- DC541 / C3
DC532 / C20 -------------- DC541 / C4
DC532 / C21 -------------- DC541 / C5

- DC541-CM in slot 1, operating mode "IO mode"

- Configuration: Channels C0...C4 Interrupt input

 Channel C5 Input

 Channels C6...C7 Outputs

● Specification of the Ethernet communication module as internal communication module (if
available)

● DC532 on the I/O bus

● Task 1: Cyclic program / Prio = 10 / Interval = t#10ms / PLC_PRG
● Task 2: HIGHInterrupt_1 / DC541_Interrupt_Ext1()

The interrupt program should fulfill the following functionality:
● Counting of all interrupts
● Counting of the interrupts per input
● Calculation of the interrupt frequency in [Int/s]
● Reporting of the number of interrupts per input
● Input C4: Resetting the counters
● Input C5: Input

Hardware con-
figuration

Wiring

PLC configura-
tion

Task configura-
tion

DC541_Inter-
rupt_Ext1()

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5988

● Output C6: Status of input C5
● Output C7: Toggle output
The declaration part of the program looks as follows:

PROGRAM DC541_Interrupt_Ext1

VAR

 dwIntCount : DWORD; (* count all interrupts
*)

 dwIntCountOld : DWORD; (* start value for next
measure *)

 tActual : TIME; (* systemtick in ms *)

 tStart : TIME; (* start value of sys-
temtick for next calcu-
lation *)

 dwUsedTime : DWORD; (* time for 1000 inter-
rupts in ms *)

 dwFrequenz : DWORD; (* interrupt frequency
in [Int / sec] *)

 DC541_IntSource : DC541_INT_IN; (* instance FB: read
interrupt source *)

 DC541_Ios : DC541_IO; (* instance FB: read/
write inputs/outputs *)

 dwCount_InX :
ARRAY[0..cbyDC541_
IntInp] OF DWORD;

(* count interrupts of
In0..In3 *)

 dwCount_InXOld :
ARRAY[0..cbyDC541_
IntInp] OF DWORD;

(* start value for next
1000 interrupts *)

 dwIntHisto :
ARRAY[0..cbyDC541_
IntInp,
0..cbyDC541_MaxHist
] OF DWORD;

(* histo data C0...C3
*)

 wIndex : WORD; (* index for histo data
*)

 byInd : BYTE; (* loop index *)

END_VAR

VAR CONSTANT

 cbyDC541_SLOT : BYTE := 1; (* SLOT number of
DC541 *)

 cbyDC541_MaxHist : BYTE := 9; (* max number of
histo entries *)

 cbyDC541_IntInp : BYTE := 4; (* number of interrupt
inputs -1 *)

END_VAR

The instruction part looks as follows:
At the beginning, the interrupts are counted in dwIntCount. After each 1000 interrupts, a calcu-
lation of the frequency is performed and the counting values for the interrupts per input are
stored.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5989

dwIntCount := dwIntCount + 1; (* count all interrupts *)

IF dwIntCount - dwIntCountOld >= 1000 THEN (* after 1000 interrupts -> cal-
culate frequency *)

 dwIntCountOld := dwIntCount; (* save dwIntCount for next
call *)

 tActual := TIME();

 dwUsedTime :=
TIME_TO_DWORD(tActual -
tStart);

(* duration in ms for 1000
interrupts *)

 dwFrequenz := 1000000 /
dwUsedTime;

(* [Interrupt / sec] 1000 Int *
1000 ms/sec *)

 tStart := tActual; (* for next measure *)

 dwIntHisto[0,wIndex] :=
dwCount_InX[0] -
dwCount_InXOld[0];

(* IN0 interrupts of last 1000 *)

 dwCount_InXOld[0] :=dwCoun
t_InX[0];

(* start value for next measure
*)

 dwIntHisto[1,wIndex] :=
dwCount_InX[1] -
dwCount_InXOld[1];

(* IN1 interrupts of last 1000 *)

 dwCount_InXOld[1] :=dwCoun
t_InX[1];

(* start value for next measure
*)

 dwIntHisto[2,wIndex] :=
dwCount_InX[2] -
dwCount_InXOld[2];

(* IN2 interrupts of last 1000 *)

 dwCount_InXOld[2] :=dwCoun
t_InX[2];

(* start value for next measure
*)

 dwIntHisto[3,wIndex] :=
dwCount_InX[3] -
dwCount_InXOld[3];

(* IN3 interrupts of last 1000 *)

 dwCount_InXOld[3] :=dwCoun
t_InX[3];

(* start value for next measure
*)

 wIndex := wIndex + 1; (* increase index *)

 IF wIndex >
cbyDC541_MaxHist THEN
wIndex := 0; END_IF;

(* reset index, if >1000 *)

END_IF; (* 1000 Interrupts *)

After this, the block DC541_INT_IN is called to identify the interrupt source and then the
interrupt counters of the channels are updated depending on the outputs of this block.
(* Read interrupt source --> if output = TRUE --> interrupt since last call *)
DC541_IntSource(EN := TRUE, SLOT := cbyDC541_SLOT);
(* count the interrupts for each interrupt input C0..C3 *)
dwCount_InX[0] := dwCount_InX[0] + BOOL_TO_DWORD(DC541_IntSource.IN0);
dwCount_InX[1] := dwCount_InX[1] + BOOL_TO_DWORD(DC541_IntSource.IN1);
dwCount_InX[2] := dwCount_InX[2] + BOOL_TO_DWORD(DC541_IntSource.IN2);
dwCount_InX[3] := dwCount_InX[3] + BOOL_TO_DWORD(DC541_IntSource.IN3);
dwCount_InX[4] := dwCount_InX[4] + BOOL_TO_DWORD(DC541_IntSource.IN4);
In case of an interrupt on channel 4, the counters are reset.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5990

IF DC541_IntSource.IN4 THEN (* Input channel C4 = TRUE *)

 dwIntCount := dwIntCoun-
tOld := 0;

(* reset count all interrupts *)

 FOR byInd := 0 TO
cbyDC541_IntInp-1 DO

(* reset channel interrupt
counters C0..C3 *)

 dwCount_InX[byInd] := dwCount_InXOld[byInd] := 0;

 END_FOR; (* byInd *)

 wIndex := 0; (* start historical data from 0 *)

END_IF; (* C4 = TRUE *)

At the end, the static inputs and outputs are processed, i.e.:
● reading the inputs,
● execution of actions
● writing the outputs.

(* Read inputs of DC541 *)

DC541_IOs(EN := TRUE,
SLOT := cbyDC541_SLOT);

DC541_IOs.OUT6 :=
DC541_IOs.IN5;

(* C6 := state of input channel
C5 *)

DC541_IOs.OUT7 := NOT
DC541_IOs.OUT7;

(* toggle channel C7 *)

(* Write outputs to DC541*)

DC541_IOs(EN := TRUE,
SLOT := cbyDC541_SLOT);

Purpose of the cyclic program PLC_PRG:
The cyclic program PLC_PRG contains the following functions:
● Cycles counter dwC := dwC + 1;
● Reading the configuration of the DC541 Calling of block DC541_GET_CFG
● Reading the status of the DC541 Calling of block DC541_STATE - Reading/writing the static

channels of the DC541 Calling of block DC541_IO
● Simulation of the interrupts for the DC541 Calling of block Simu_Pulse
The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation Ä Chapter 1.5.4.11
“DC541 library” on page 1103.
The block Simu_Pulse is used to generate an adjustable number of pulses. Its representation in
the Function Block Diagram (FBD) is as follows:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5991

The meanings of the block's inputs and outputs are as follows:

Instance fbSimuPulse Instance name

bEn Input/Output BOOL Enabling of the pulse
output

bAutoReset Input/Output BOOL Automatic reset of the
pulse counter after
the specified number
of pulses have been
output and after expi-
ration of tResetTime

bReset Input/Output BOOL Reset of the pulse
counter

tResetTime Input/Output TIME Time until the reset
is initiated after the
specified number of
pulses is reached, if
bAutoReset = TRUE

dwPulse Input/Output DWORD Number of pulses to
be output:
=0: Endless mode
(pulse output con-
tinues until bEn =
FALSE or bReset =
TRUE
> 0: Cyclic mode
(output of the speci-
fied number of pulses)

bDone Output BOOL Completion message
after tResetTime has
expired or bReset =
TRUE for 1 cycle

bToggle_0 Output BOOL Provides a FALSE-
>TRUE edge with
each 2nd call (i.e. the
output is toggled with
each call)

bToggle_1 Output BOOL Provides a FALSE-
>TRUE edge with
each 4th call

bToggle_2 Output BOOL Provides a FALSE-
>TRUE edge with
each 8th call

bToggle_3 Output BOOL Provides a FALSE-
>TRUE edge with
each 16th call

dwActPulse Output DWORD Displays the number
of pulses output
(corresponds to the
number of edges at
bToggle_0)

tActTime Output TIME Displays the elapsed
time while tResetTime
is running

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5992

In the example, bEn: = bAutoReset: = TRUE. 10000 pulses are output (dwSetPulse). After the
specified number of pulses has been reached, a wait time of 10 seconds is applied and then
counting is started from the beginning.
The example has a visualization implemented which can be used to operate the program. After
10000 pulses, the visualization looks as follows:
9375 interrupts are generated:
5000 x C0 + 2500 x C1 + 1250 x C2 + 625 x C3 = 9375

Act Pulse Triggers the
following
interrupts:Value IN 3

8
IN 2
4

IN 1
2

IN 0
1

0 0 0 0 0 none

1 0 0 0 1 IN 0 -> in
every 2. cycle
(10000 : 2 =
5000)

2 0 0 1 0 IN 1 -> in
every 4. cycle
(10000 : 4 =
2500)

3 0 0 1 1 IN 0

4 0 1 0 0 IN 2 -> in
every 8. cycle
(10000 : 8 =
1250)

5 0 1 0 1 IN 0

6 0 1 1 0 IN 1

7 0 1 1 1 IN 0

8 1 0 0 0 IN 3 -> in
every 16.
cycle (10000 :
16 = 625)

9 1 0 0 1 IN 0

10 1 0 1 0 IN 1

11 1 0 1 1 IN 0

12 1 1 0 0 IN 2

13 1 1 0 1 IN 0

14 1 1 1 0 IN 1

15 1 1 1 1 IN 0

16 0 0 0 0 none

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5993

Usage as counting device
32-Bit up/down counter of module DC541-CM

The 32-bit bidirectional counter functionality is provided by the function block Ä Chapter
1.5.4.11.1.1.1 “DC541_32BIT_CNT” on page 1103.

The 32-bit counter is a count up/count down counter with a directional discriminator. The
counter can be used in two counting modes:
● EN_UD = FALSE: Encoder mode

Connection of an incremental transmitter (track A / track B, offset by 90°)
It is possible to count signals up to approx. 60 kHz. This corresponds to a motor with
a rotational speed of 3.600 rpm and a transmitter with 1.000 pulses per rotation. Pulse
multiplication (x2 or x4) is not used.

● EN_UD = TRUE: Up / down mode
Up-/down counter
It is possible to count signals up to approx. 60 kHz. Count-up for signals on channel C1,
count-down for signals on channel C0.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5994

The counter always uses the channels C0...C3 of the DC541:
● C0: Track A of the incremental transmitter.
● C1: Track B of the incremental transmitter.
● C2 and C3: Reference cam or touch trigger.
The counter can be used in two operating modes:
● Infinite counter (endless mode)
● Limiting counter (limit mode)

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

32-Bit forward counter of module DC541-CM
The 32-bit forward counter functionality is provided by the block Ä Chapter 1.5.4.11.1.1.5
“DC541_FWD_CNT” on page 1127.

The function block DC541_FWD_CNT provides a 32-bit count up counter which is able to count
a maximum frequency of 50 kHz at the inputs C0 and C1 or 5 kHz at the inputs C2-C7. In the
DC541, the counter is implemented as a 16 bit counter. The actual counter value ACT_CNT is
bulit inside the function block by adding the counter differences that occur within the individual
cycles. In order not to loose any counting pulses, the function block has to be called cyclically.
● Channel 0-1: 50 kHz max. -> 32767 / 50 = 655 ms
● Channel 2-7: 5 kHz max. -> 32767 / 5 = 6550 ms
Using the counter e.g. in a 100 ms task will prevent any loss of counting pulses.
Operating modes
● Infinite counter (endless mode)
● Limiting counter (limit mode)
The operating mode is selected at input EN_LIM.
If EN_LIM = FALSE, the counter operates as an infinite counter (endless mode). An overflow
occurs corresponding to the 32-bit value at 16#FFFFFFFF = 4 294 967 295. In this mode, any
exceeding of the limit value LIM_MAX or falling below the limit value LIM_MIN is displayed at
the outputs MAX_LIM or MIN_LIM.
If EN_LIM = TRUE (limit mode), the counting range is between the limit values LIM_MIN and
LIM_MAX. In case of an overflow, i.e. if LIM_MAX is reached, the counter restarts again at
LIM_MIN.
The upper limit value LIM_MAX has to be higher than the lower limit value LIM_MIN. If LIM_MIN
is higher than LIM_MAX, an error is displayed.
The device DC541 must be configured as counting device (counter mode).
The function block has an integrated visualization which can be used to control all function block
functions in parallel to the user program, if input EN_VISU = TRUE.

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5995

Configuration example: 32-Bit forward counter
All of the 8 channels of the DC541-CM can be used as count up counter. In the configuration
example, all 8 channels of the DC541-CM are configured as 32-bit forward counter (count-up).
The channels C0...C3 operate as infinite counters (endless mode), the channels C4...C7 as limit
counters (limit mode).
The 32-bit count up counter configured as infinite counter (endless mode) corresponds to mode
1 (1 count up counter) of the high-speed counter of the digital input/output modules. In the
configuration example, the counting pulses for the first forward counter are therefore applied in
parallel to input C0 of the DC541-CM and counting input C24 of the DC532.

The example control system shall have the following configuration:
● Terminal base TB521 (two communication module slots)
● DC541-CM in Communication Module slot 1 (first slot on the left of the CPU)
● PM591-ETH CPU with internal Ethernet Communication Module
● I/O module DC532 on the I/O bus

The channels are connected as follows:
● DC532 / C16 -------------- DC541 / C0
● DC532 / C17 -------------- DC541 / C1
● DC532 / C18 -------------- DC541 / C2
● DC532 / C19 -------------- DC541 / C3
● DC532 / C20 -------------- DC541 / C4
● DC532 / C21 -------------- DC541 / C5
● DC532 / C22 -------------- DC541 / C6
● DC532 / C23 -------------- DC541 / C7
● DC532 / C16 -------------- DC532 / C24

● DC541-CM in slot 1, operating mode "Counter mode"
● Configuration: - Channel C0..C7 Forward counter
● Specification of the Ethernet communication module as internal communication module (if

available)
● DC532 on the I/O bus / parameter "Fast counter" = 1-1 count up counter

● Task 1: Cyclic program / Prio = 10 / Interval = t#100ms / PLC_PRG
● Task 2: Simulation / Prio = 15 / Interval = t#5ms / Simulation_Task
The cyclic program PLC_PRG contains the following functions:
● Reading the cycle of PLC_PRG Calling of block TASK_INFO;
● Reading the configuration of the DC541 Calling of block DC541_GET_CFG
● Reading the status of the DC541 Calling of block DC541_STATE
● Reading/writing the static channels of the DC541 Calling of block DC541_IO
● Calling of the sequence control for the counters Calling of program proForwardCounter
The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation Ä Chapter 1.5.4.11
“DC541 library” on page 1103.
The block TASK_INFO is contained in the library SysInt_AC500_V1.0 and described in detail in
the corresponding documentation Ä Chapter 1.5.4.19 “Internal system library” on page 1500.
The actual execution of the 32-bit forward counter functionality is implemented in the program
proForwardCounter.
Purpose of the program proForwardCounter:
The program proForwardCounter executes the following step chain:

Hardware con-
figuration

Wiring

PLC configura-
tion

Task configura-
tion

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5996

Counte
r block

DC541_FWD_CNT CNT_IO CNT_I
O

Step |
Chann
el

C0 C1 C2 C3 C4 C5 C6 C7 1

0 |
Action

Init: SET = 0, endless counter,
limit values MIN = 300 / MAX = 1300

Init: SET = 0, limit counter,
limit values MIN = 300 / MAX = 1300

Init

| Value 0 0 0 0 0 0 0 0 0

1 |
Action

Reset of SET input

| Value 0 0 0 0 300 300 300 300 0

2 |
Action

Start of pulse output - 2000 pulses

| Value 0 0 0 0 300 300 300 300 0

3 |
Action

Wait until pulse output is completed

| Value 2000 1000 500 250 1299 1300 800 550 2000

4 |
Action

Selection last step: byStep = 249

| Value 2000 1000 500 250 1299 1300 800 550 2000

200 |
Action

Manual operation

| Value xxx xxx xxx xxx xxx xxx xxx xxx xxx

249 |
Action

Wait time 5 seconds, then restart from step 0

| Value 2000 1000 500 250 1299 1300 800 550 2000

The block Simu_Pulse is used to generate an adjustable number of pulses. Its representation in
the Function Block Diagram (FBD) is as follows:

Instance fbSimuPulse Instance name
Ben Input/Output BOOL Enabling of the pulse

output

bReset Input/Output BOOL TRUE = Reset of the
pulse counter, bDone
= TRUE

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5997

Instance fbSimuPulse Instance name
bAutoReset Input/Output BOOL TRUE and cyclic

mode - The time
tResetTime is started
when the number
of pulses set with
dwPulse is reached.
After this time, the
pulse output is
restarted again.

tResetTime Input/Output TIME Wait time until restart,
if bAutoReset = TRUE

dwPulse Input/Output DWORD Number of pulses to
be output:
= 0: Endless mode
(pulse output con-
tinues until bEn =
FALSE or bReset =
TRUE)
> 0: Cyclic mode
(output of the speci-
fied number of pulses)

Bdone Output BOOL Completion message
after the number
of pulses specified
at dwPulse or after
bReset if dwPulse = 0

bToggle_0 Output BOOL Output: Edge with
each clock cycle

bToggle_1 Output BOOL Output: Edge with
each 2. clock cycle

bToggle_2 Output BOOL Output: Edge with
each 4. clock cycle

bToggle_3 Output BOOL Output: Edge with
each 8. clock cycle

dwActNumPulse Output DWORD Number of pulses
output

tActTime Output TIME Elapsed time in [ms]
while tResetTime is
running

In the example, the block Simu_Pulse is called in a 5 ms task. The pulse output is enabled
or stopped via input bEn. If input dwPulse = 0, the output of pulses is performed continuously.
If dwPulse > 0, only the specified number of pulses is output. When the specified number of
pulses is reached, output bDone is set to TRUE.
In the example, the block is called with dwPulse = 2000. The wait time function is not used.
The example program has a visualization implemented that displays all states:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US5998

Clicking on the button <Enable visu control> (bEnVisuControl = TRUE) causes the program to
jump from the current step to step 200 (manual operation). Then, the operation of the blocks is
done via the corresponding buttons/switches of the individual blocks. When manual operation is
switched off again (bEnVisuControl = FALSE), the program jumps to step 249 and restarts from
step 0 after the wait time.

Usage as X4 counting device
The function module DC541-CM supports an encoder counting mode with channels A/B. This
counting mode usually just supports to count 1 edge out of possible 4 edges from the 2 encoder
lines. These are connected to C0 and C1 on DC541-CM.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 5999

Counting in X1-mode

Counting in X4-mode

For increasing the accuracy, it is possible to use a special mode with counting all 4 edges. This
mode just supports a frequency up to 4 kHz. Despite of counting 4 edges on a lower frequency,
the functionality is the same as 32-bit encoder on channel 0 and 1 and also the same function
block Ä Chapter 1.5.4.11.1.1.1 “DC541_32BIT_CNT” on page 1103 has to be used.

Automation Builder configuration
For use of DC541-CM as a X4 counting device, the operating mode of the device has to be
configured:
1. In the device tree, add a new object to the “DC541-CM” node and select “DC541 Encoder

X4 mode” from the list.
2. Double-click the added object and configure the I/O channels:

The channels C0..C3 are to be used for the encoder mode. In the module parameters, the
channels C4..C7 can be configured as:

Input -Input

Output -Output

To do so, select the corresponding value for each channel.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6000

The channels C1..C3 are automatically used, too. In the PLC configuration,
these channels are left at the default setting "Input".

The specified configuration can be read using the function block Ä Chapter 1.5.4.11.1.1.6
“DC541_GET_CFG” on page 1132.

Usage for pulse width modulation
Automation Builder configuration

1. In the device tree, add a new object to the “DC541-CM” node and select “DC541 IO
mode” from the list.

2. Double-click the added object and configure the I/O channels:

● Input
● Output
● Interrupt input
In the module parameters, you can specify the channels C0...C7 as inputs, outputs or interrupt
inputs.

Calling the function blocks
The pulse width modulation functionality of the DC541 is provided by the block Ä Chapter
1.5.4.11.1.1.10 “DC541_PWM” on page 1146.

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

The function block DC541_PWM outputs a pulsed signal with an adjustable on-off ratio. The on
and off times are adjusted as 8 bit numbers.
The minimum switching time is specified at input CYCLE, i.e. if an output has been switched to
FALSE or TRUE by the PWM, this output remains in this state for at least this time (CYCLE µs).
The minimum time specified at input CYCLE must not be smaller than the cycle time of the
device DC541. Depending on its configuration, the cycle time of the DC541 can be 50, 100
or 200 µs. The cycle time can be polled using the function block Ä Chapter 1.5.4.11.1.1.6
“DC541_GET_CFG” on page 1132 (output CYCLE).

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6001

Configuration example: Pulse width modulation (PWM)
In the configuration example, channel 0 of the DC541 is configured for pulse width modulation
(PWM). The output signal is measured using the function Time and frequency measurement
Ä Chapter 1.6.5.2.8.1.6 “Usage for time and frequency measurement” on page 6004 of the
DC541-CM.
The following on-off ratio shall be used:

PULSE PAUSE CYCLE Result (x = number of
cycles of the DC541)

Cycle time of DC541 = 100 µs

1 2 2000 20 x TRUE / 40 x
FALSE / 20 x TRUE /
40 x FALSE / …
i.e. 2000 µs = TRUE
and 4000 µs = FALSE

The example control system shall have the following configuration:
● Terminal base TB521 (two communication module slots)
● DC541 in communication module slot 1 (first slot on the left of the CPU)
● PM591-ETH
● I/O module DC532 on the I/O bus

The channels are connected as follows:
DC541 / C0 -------------- DC541 / C1

- DC541-CM in slot 1, operating mode "counter mode"

- Configuration: - Channel C0 PWM

 C1 FREQ

 C2...C7 Input

- Specification of the Ethernet communication module as internal communication module (if
available)

● Task 1: Cyclic program / Prio = 10 / Interval = t#1ms / PLC_PRG
Purpose of the cyclic program PLC_PRG:
The cyclic program PLC_PRG contains the following functions:
● Reading the cycle of PLC_PRG Calling of block TASK_INFO;
● Reading the configuration of the DC541 Calling of block DC541_GET_CFG
● Reading the status of the DC541 Calling of block DC541_STATE
● Reading/writing the static channels of the DC541 Calling of block DC541_IO
● Calling of the sequence control for PWM and FREQ Calling of program proPWM_FREQ
The blocks DC541_GET_CFG, DC541_STATE and DC541_IO are contained in the library
DC541_AC500_V11.lib and described in detail in the library documentation Ä Chapter 1.5.4.11
“DC541 library” on page 1103.
The block TASK_INFO is contained in the library SysInt_AC500_V1.0 Ä Chapter 1.5.4.19
“Internal system library” on page 1500 and described in detail in the corresponding documenta-
tion.

Hardware con-
figuration:

Wiring:

PLC configura-
tion:

Task configura-
tion:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6002

Calling the pulse width modulation functionality as well as measurement and acquisition of
measured values are performed in the program proPWM_FREQ. The program proPWM_FREQ
contains the calls for the function blocks Ä Chapter 1.5.4.11.1.1.10 “DC541_PWM”
on page 1146 and Ä Chapter 1.5.4.11.1.1.2 “DC541_FREQ” on page 1111 as well as the
acquisition of the measured values. The function block DC541_FREQ is configured in a way
that it measures the time between each edge change.
The example program has a visualization implemented that displays all states:

Input EN_VISU of the function block DC541_FREQ is TRUE. Therefore, the inputs of the
block can be modified using the buttons <Enable>, <En 0>, <En 1> and <En Freq> in the
visualization.
The measured values are 2000, 4000 or 6000 µs depending on which edges were considered
for measurement.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6003

Usage for time and frequency measurement
Automation Builder configuration

1. In the device tree, add a new object to the “DC541-CM” node and select “DC541 IO
mode” from the list.

2. Double-click the added object and configure the I/O channels:

● Input
● Output
● Interrupt input
In the module parameters, you can specify the channels C0...C7 as inputs, outputs or interrupt
inputs.

Calling the function blocks
The time and frequency measurement functionality of the DC541-CM is provided by the block
Ä Chapter 1.5.4.11.1.1.2 “DC541_FREQ” on page 1111.

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

The function block DC541_FREQ is used to measure times, frequencies and rotational speeds
with a resolution of 100 µs.
It is able to measure frequencies from 0 to 2000 Hz (2 kHz). In order to obtain a precise meas-
urement of frequencies > 50 Hz, a correspondingly high accuracy setting has to be chosen. It is
recommended to use an accuracy of PREC = 1000, i.e. 0.001.
This function block has to be called cyclically, one time per second at least.
The inputs EN_0, EN_1 and EN_FREQ are used to determine the edges to be measured. If
input EN_FREQ = TRUE, the frequency and the rotational speed are calculated in addition to
the time measurement.

Configuration example: Frequency output
In the configuration example, channel 0 of the DC541-CM is configured for frequency output
Ä Chapter 1.6.5.2.8.1.7 “Usage for frequency output” on page 6007. The output signal is
measured using the function "Time and frequency measurement" of the DC541-CM.
Hardware configuration:
The example control system shall have the following configuration:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6004

● Terminal base TB521 (two communication module slots)
● DC541-CM in Communication Module slot 1 (first slot on the left of the CPU)
● PM591-ETH CPU with internal Ethernet communication module
● I/O module DC532 on the I/O bus
Wiring:
The channels are connected as follows:
DC541 / C0 -------------- DC541 / C1
PLC configuration:

DC541-CM in slot 1, operating mode "counter mode"
Configuration Channel C0 Frequency output
 C1 Frequency measure-

ment

 C2...C7 Input

Specification of the Ethernet communication module as internal communication module (if
available)

Task configuration:
● Task 1: Cyclic program / Prio = 10 / Interval = t#5ms / PLC_PRG
Purpose of the cyclic program PLC_PRG:
The cyclic program PLC_PRG contains the following functions:
● Reading the cycle of PLC_PRG Calling of block TASK_INFO;
● Reading the configuration of the DC541 Calling of block DC541_GET_CFG
● Reading the status of the DC541 Calling of block DC541_STATE
● Reading/writing the static channels of the DC541 Calling of block DC541_IO
● Calling of the sequence control for frequency output and measurement Calling of program

proFrequency
●
The blocks Ä Chapter 1.5.4.11.1.1.6 “DC541_GET_CFG” on page 1132, Ä Chapter
1.5.4.11.1.1.11 “DC541_STATE” on page 1151 and Ä Chapter 1.5.4.11.1.1.8 “DC541_IO”
on page 1139 are contained in the library DC541_AC500_V11.lib and described in detail in
the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.
The block Ä Chapter 1.5.4.19.3.22 “TASK_INFO read number of completed task cycles”
on page 1620 is contained in the library SysInt_AC500_V1.0 Ä Chapter 1.5.4.19 “Internal
system library” on page 1500 and described in detail in the corresponding documentation.
The calling of the frequency output functionality as well as the measurement and acquisition
of measured values are performed in the program proFrequency. The program proFrequency
contains the calls for the function blocks Ä Chapter 1.5.4.11.1.1.4 “DC541_FREQ_OUT”
on page 1123 and Ä Chapter 1.5.4.11.1.1.2 “DC541_FREQ” on page 1111 as well as the
acquisition of the measured values.

The example program has a visualization implemented that displays all states:
Input EN_VISU of the function blocks DC541_FREQ_OUT and DC541_FREQ is TRUE. There-
fore, the block inputs can be controlled using the buttons in the visualization.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6005

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6006

Usage for frequency output
Automation Builder configuration

1. In the device tree, add a new object to the “DC541-CM” node and select “DC541 IO
mode” from the list.

2. Double-click the added object and configure the I/O channels:

● Input
● Output
● Interrupt input
In the module parameters, you can specify the channels C0...C7 as inputs, outputs or interrupt
inputs.

Calling the function blocks
The frequency output functionality of the DC541 is provided by the block Ä Chapter
1.5.4.11.1.1.4 “DC541_FREQ_OUT” on page 1123.

Function blocks for the most module functions of DC541-CM are contained in the library
DC541_AC500_V11.lib. The library is automatically included into the project and is described in
detail in the library documentation Ä Chapter 1.5.4.11 “DC541 library” on page 1103.

The function block DC541_FREQ_OUT is used to output pulses with a fixed frequency on one
channel of the device DC541. It is able to output pulses with a frequency between 0.2 and 2.5
kHz. The pulse jitter depends on the cycle time of the DC541. The pulse length is always a
multiple of the cycle time of the DC541.
In case of a presetting of PULSE = 0, the output of pulses is infinite. The pulse output is started
with a positive edge at input START. The output is aborted if START = FALSE. A positive edge
at input STOP interrupts the pulse output. The output is continued if STOP = FALSE.
If input PULSE > 0, the function block outputs the number of pulses specified at input PULSE
with the frequency specified at input FREQ on the channel specified at input CH. After the
function block has output the number of pulses specified at PULSE, the output RDY becomes
TRUE.
The device DC541 must be configured as counting device (counter mode). Channel CH must be
configured for frequency output.
The function block has an integrated visualization which can be used to control all function block
functions in parallel to the user program, if input EN_VISU = TRUE.

For frequency output, the same configuration example is used as for the time and fre-
quency measurement Ä Chapter 1.6.5.2.8.1.6 “Usage for time and frequency measurement”
on page 6004.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6007

CD522 encoder and PWM module
Functionality of the CD522 module

The encoder and PWM module CD522 can be used at the following devices:
● Communication interface modules (e. g. CI501-PNIO, CI541-DP)
● Processor modules
Features:
● 2 independent counting functions with up to 12 configurable modes (including incremental

position encoder and frequency input up to 300 kHz)
● 2 independent PWM (pulse-width modulator) or pulse outputs with push-pull driver
● Dedicated inputs/outputs for specific counting functions (e.g. touch, set, reset)
● All unused inputs/outputs can be used with the specifications of standard inputs/outputs

range
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.
Depending on the configuration used, some inputs and outputs are dedicated to specific
counting functions (touch, set, reset…). All unused inputs and outputs can be used with the
specification of standard inputs/outputs range.

There are special function blocks available to manage and control the function of the CD522
Module. These function blocks are contained in the Ä Chapter 1.5.4.8 “CD522 library”
on page 972 which is available with a runtime system of version V1.0.2 or above. The library is
automatically included into the project when adding a CD522 Module to the Automation Builder
project. Details on the hardware is provided in the device descriptions Ä Chapter 1.6.2.7.2.1
“CD522 - Encoder, counter and PWM module” on page 4635.

The specific functionality is processed within CD522. It works independently of the user program
and therefore it is able to response quickly to external signals. A simultaneous counting opera-
tion of several expansion modules is possible.
Each module counter can be configured for 1 mode out of 12 possible ones. The desired
operating mode is selected in the PLC configuration using module parameters. After that, it is
activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
While integrating a module containing counters in the PLC configuration, the necessary oper-
ands are created and reserved immediately. Thus, a counter implementation carried out later
does not cause an address shift.

Operating modes
Inputs and outputs, which are not used by the counters, are available for other tasks. In the
following table, A means Input Channel A, B means Input Channel B and Z means Output
Channel Z.

Special features

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6008

Operating Mode Function Used inputs Description
0 No counter None This operating mode

is selected, if the inte-
grated fast counter is
not needed.

1 Up/Down counter (A) A = Counting input One Up/Down
(dynamic changes)
counter with set and
reset input, end value
reached indicator,
touch/catch value and
overflow flag.

2 Up/Down with release
input (B)

A = Counting input
B = Enable input

One count up counter
with enable input
via terminal, counting
is valid when input
B is true. Dynamic
Up/Down count pos-
sibility, end value
reached indicator,
Touch/catch value and
Overflow flag

3 Up/Down counters
(A,B)

A = Counting input 0
B = Counting input 1

2 counters with sep-
arate Up/Down and
reset input

4 Up/Down (A, B on
falling edges)

A = Counting input 0
B = Counting input 1

2 counters (counting
on falling edge of
input B) with separate
Up/Down and reset
input

5 Up/Down dynamic set
(B) / rising edge

A = Counting input
B = Dynamic set input

One Up/Down counter
with set and reset
input, end value
reached indicator,
touch/catch value and
overflow flag. Addi-
tional function to
mode 1 is the
dynamic set input (B)
on rising edge of
physical input.

6 Up/Down dynamic set
(B) / falling edge

A = Counting input
B = Dynamic set input

One Up/Down counter
with set and reset
input, end value
reached indicator,
touch/catch value and
overflow flag. Addi-
tional function to
mode 1 is the
dynamic set input (B)
on falling edge of
physical input.

7 Reserved None ---

8 Up/Down with release
(B), 0 cross detection

A = Counting input
B = Enable input

One 16 bit counter
(in range of -32768
to 32767) with zero
cross over detection,
counting valid when
input B is true

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6009

Operating Mode Function Used inputs Description
9 Reserved None ---

10 Reserved None ---

11 Incremental encoder A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for encoder x1 count,
touch/catch value,
RPI function, reset
and set

12 Incremental encoder
X2

A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for position sensor
x2 count, touch/catch
value, RPI function,
reset and set

13 Incremental encoder
X4

A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for position sensor
x4 count, touch/catch
value, RPI function,
reset and set

14 SSI, absolute encoder A = Data signal
B = Clock signal

Absolute positioning
sensor using SSI
interface

15 Time frequency meter Z = Input signal Time measurement of
Z signal, rising edge,
falling edge, rotation
per minute and fre-
quency calculation

CD522 configuration
CD522 on I/O bus

1. In the device tree, add a new object to the “I/O-Bus” node.
2. From the list, select “S500 I/O modules è Function modules” and add the CD522 device.

A maximum of 10 CD522 modules can be appended to the I/O bus.

3. Double-click the added object and configure the parameters Ä Chapter 1.6.5.2.8.2.3.3
“Parameterization” on page 6011.

CD522 Modules connected to the I/O bus occupy the address area %IB0 .. %IB999 or %QB0 ..
%QB999.
There is no fix assignment between module number and the input/output addresses of the
channels.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6010

CD522 on CS31-bus
1. In the device tree, add a new object under “Interfaces” to COM1 or COM2.
2. From the list, select a CS31 device e.g. “DC551-CS31”.
3. Add a new object to the “DC551-CS31” node.
4. From the list, select “S500 I/O modules è Function modules” and add the CD522 device.
5. Double-click the added object and configure the parameters Ä Chapter 1.6.5.2.8.2.3.3

“Parameterization” on page 6011.

CD522 modules connected to the CS31-Bus occupy the address area %IB1000 .. %IB1999 or
%QB1000 .. %QB1999.
There is no fix assignment between module number and the input/output addresses of the
channels.

A maximum of 4 CD522 modules can be appended to the CS31-Bus. If the
DC551-CS31 Module is configured with the fast counter function, the maximum
number of CD522 Modules is decreased to 3 modules (without other I/O
Modules).

Automation Builder does not check the validity/integrity (according to the I/O
limitations) of the number of expansion modules configured. The check is only
done during project compilation.

Parameterization
The Encoder and PWM Module CD522 does not store configuration data itself. The digital
inputs and outputs are used to specific counting functions depending to configuration mode
chosen. All unused inputs and outputs can be used with the specification of standard input/
output range.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion:

Name Type Value Default Internal
Value

Min. Max. EDS Slot
Index

Ignore
module *)

BYTE No
Yes

No
0x00

0
1

 Not for
FBP

Check
supply

BYTE Off
On

On
0x01

0
1

 0x0Y03

Input
delay

BYTE 0.1 ms
1 ms
8 ms
32 ms

8 ms
0x02

0
1
2
3

0 3 0x0Y04

Mode
counter 0

BYTE see table
below

0x00 0 0 15 0x0Y05

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6011

Name Type Value Default Internal
Value

Min. Max. EDS Slot
Index

Freq limit
FC0

BYTE No filter
50 Hz
500 Hz
5 kHz
20 kHz

No filter
0x00

0
1
2
3
4

0 4 0x0Y06

Input level
FC0

BYTE 0-24 V DC
0-5 V DC
Differen-
tial
1 Vpp
sinus

0-24 V DC
0x00

0
1
2
3

0 3 0X0Y07

SSI 0 fre-
quency

BYTE 200 kHz
500 kHz
1 MHz

200 kHz
0x02

2
3
4

0 4 0x0Y08

SSI 0 res-
olution (in
Bit)

BYTE 8 to 32 bit 16 bit
16

 8 32 0x0Y09

SSI 0
code type

BYTE Binary Binary
0

0 0 0 0x0Y0A

SSI 0
polling
time

BYTE 10 ms 10 1 255 0x0Y0B

5 V
sensor 0
supply

BYTE Off
On

Off
0x00

0 0 1 0x0Y0C

Mode
counter 1

BYTE see table
below

0x00 0 0 15 0x0Y0D

Freq limit
FC1

BYTE No filter
50 Hz
500 Hz
5 kHz
20 kHz

No filter
0x00

0
1
2
3
4

0 4 0x0Y0E

Input level
FC1

BYTE 0-24 V DC
0-5 V DC
Differen-
tial
1 Vpp
sinus

0-24 V DC
0x00

0
1
2
3

0 3 0X0Y0F

SSI 1 fre-
quency

BYTE 200 kHz
500 kHz
1 MHz

200 kHz
0x02

2
3
4

2 4 0x0Y10

SSI 1 res-
olution (in
Bit)

BYTE 8 to 32 bit 16 bit
16

 8 32 0x0Y11

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6012

Name Type Value Default Internal
Value

Min. Max. EDS Slot
Index

SSI 1
code type

BYTE Binary Binary
0

0 0 0 0x0Y12

SSI 1
polling
time

BYTE 10 ms 10 1 255 0x0Y13

5 V
sensor 1
supply

BYTE Off
On

Off
0x00

0 0 1 0x0Y14

Detection
SC and
sensors

BYTE Off
On

Off
0x00

0 0 1 0x0Y15

Behaviour
outputs at
comm.
error

BYTE Off
Last value
Substitute
Last value
5s
Substitute
5s
Last value
10s Sub-
stitute 10s

Off
0x00

0
1
2
3
4
5
6

0 1 0x0Y16

Substitute
value

WORD 0 Default
0x0000

0 0 65536 0x0Y17

*) Not with FBP

Table 731: Operating modes for counters 0 and 1:
Internal value Operating modes of counter
0 No counter / No PWM (default value)

1 1-1 UpDown counter (A)

2 2-1 UpDown with release input

3 3-2 UpDown counters (A, B)

4 4-2 UpDown (A, B on falling edges)

5 5-1 UpDown dynamic set (B) / rising edge

6 6-1 UpDown dynamic set (B) / falling edge

7 Not used

8 8-1 UpDown with release (B), 0 cross detec-
tion

9 - 19 Not used

20 11-1 Incremental encoder

21 12-2 Incremental encoder X2

22 13-1 Incremental encoder X4

30 14-1 SSI, absolute encoder

40 15-1 Time frequency meter

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6013

Operands
Operating modes

Inputs and outputs, which are not used by the counters, are available for other tasks. In the
following table, A means Input Channel A, B means Input Channel B and Z means Output
Channel Z.

Operating Mode Function Used inputs Description
0 No counter None This operating mode

is selected, if the inte-
grated fast counter is
not needed.

1 Up/Down counter (A) A = Counting input One Up/Down
(dynamic changes)
counter with set and
reset input, end value
reached indicator,
touch/catch value and
overflow flag.

2 Up/Down with release
input (B)

A = Counting input
B = Enable input

One count up counter
with enable input
via terminal, counting
is valid when input
B is true. Dynamic
Up/Down count pos-
sibility, end value
reached indicator,
Touch/catch value and
Overflow flag

3 Up/Down counters
(A,B)

A = Counting input 0
B = Counting input 1

2 counters with sep-
arate Up/Down and
reset input

4 Up/Down (A, B on
falling edges)

A = Counting input 0
B = Counting input 1

2 counters (counting
on falling edge of
input B) with separate
Up/Down and reset
input

5 Up/Down dynamic set
(B) / rising edge

A = Counting input
B = Dynamic set input

One Up/Down counter
with set and reset
input, end value
reached indicator,
touch/catch value and
overflow flag. Addi-
tional function to
mode 1 is the
dynamic set input (B)
on rising edge of
physical input.

6 Up/Down dynamic set
(B) / falling edge

A = Counting input
B = Dynamic set input

One Up/Down counter
with set and reset
input, end value
reached indicator,
touch/catch value and
overflow flag. Addi-
tional function to
mode 1 is the
dynamic set input (B)
on falling edge of
physical input.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6014

Operating Mode Function Used inputs Description
7 Reserved None ---

8 Up/Down with release
(B), 0 cross detection

A = Counting input
B = Enable input

One 16 bit counter
(in range of -32768
to 32767) with zero
cross over detection,
counting valid when
input B is true

9 Reserved None ---

10 Reserved None ---

11 Incremental encoder A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for encoder x1 count,
touch/catch value,
RPI function, reset
and set

12 Incremental encoder
X2

A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for position sensor
x2 count, touch/catch
value, RPI function,
reset and set

13 Incremental encoder
X4

A = Trace A of the
encoder
B = Trace B of the
encoder
Z = Trace Z of the
encoder (mechanical
zero)

One Up/Down counter
for position sensor
x4 count, touch/catch
value, RPI function,
reset and set

14 SSI, absolute encoder A = Data signal
B = Clock signal

Absolute positioning
sensor using SSI
interface

15 Time frequency meter Z = Input signal Time measurement of
Z signal, rising edge,
falling edge, rotation
per minute and fre-
quency calculation

Operands for counting function

Input information for the
counter

< Output information for the
user program

Counter settings 0 < Output double word 0

High word < Output word 0.0

Low word < Output word 0.1

Control Byte 0 < Output byte 0

Outputs counter 0 < Output byte 1

Counter settings 1 < Output double word 1

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6015

Input information for the
counter

< Output information for the
user program

High word < Output word 2.0

Low word < Output word 2.1

Control Byte 1 < Output byte 2

Outputs counter 1 < Output byte 3

Input information for the counter:
Counter settings 0 DWORD Dependent on status bit 0

within output counter 0

- SET value for the counter 0
If bit 0 = FALSE, the counter
can be set to a start value.
The start value is loaded into
the counter by the user pro-
gram using the SET signal.

- END value for the counter 0
If bit 0 = TRUE, the end
value for the counter is stored
as comparison value into the
module by the user program.
The counter compares con-
tinuously whether the pro-
grammed end value is greater
than or equal to its actual
counter value or not. When
the counter value reaches
its programmed end value,
the binary outputs C4 to C7
(output counter 0) can be set
permanently.

This value of the double word
variable is loaded into the
counter 0.
Note: In mode 2 16 bit coun-
ters, the higher word is the
value for counter A and the
lower word is the value for
counter B.

Counter settings 1 DWORD Dependent on status bit 0
within output counter 1

- SET value for the counter 1
If bit 0 = FALSE, the counter
can be set to a start value.
The start value is loaded into
the counter by the user pro-
gram using the SET signal.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6016

Input information for the counter:
- END value for the counter 1
If bit 0 = TRUE, the end
value for the counter is stored
as comparison value into the
module by the user program.
The counter compares con-
tinuously whether the pro-
grammed end value is greater
than or equal to its actual
counter value or not. When
the counter value reaches its
programmed end value, the
binary outputs C12 to C15
(output counter 1) can be set
permanently.

This value of the double word
variable is loaded into the
counter 0.
Note: In mode 2 16 bit coun-
ters, the higher word is the
value for counter A and the
lower word is the value for
counter B.

Control byte 0 BYTE Control byte for the counter 0:
Depending on operating
modes, the different bits of
Control byte 0 are used
to manage and control the
counting (see below table)

Control byte 1 BYTE Control byte for the counter 1:
Depending on operating
modes, the different bits of
Control byte 1 are used
to manage and control the
counting (see below table)

Output counter 0 BYTE Outputs for the counters 0:

Bit 0 Select SET/END value:
FALSE= SET and TRUE =
END

Bit 1-3 Digital outputs unused

Bit 4 Digital output C4, can be con-
figured to indicate END value

Bit 5 Digital output C5, can be con-
figured to indicate END value

Bit 6 Digital output C6, can be con-
figured to indicate END value

Bit 7 Digital output C7, can be con-
figured to indicate END value

Output counter 1 BYTE Outputs for the counters 1:

Bit 0 Select SET/END value:
FALSE= SET and TRUE =
END

Bit 1-3 Digital outputs unused

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6017

Input information for the counter:
Bit 4 Digital output C12, can be

configured to indicate END
value

Bit 5 Digital output C13, can be
configured to indicate END
value

Bit 6 Digital output C14, can be
configured to indicate END
value

Bit 7 Digital output C15, can be
configured to indicate END
value

Control bytes (0 and 1) functions

 Used by operative
modes:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bit
0

EN : FALSE = counter
disabled

X X X X X X X X X X X X

EN : TRUE = counter
enabled

Bit
1

SET : TRUE = set the
counter A

X X X X X X X X

or

EN_0 : TRUE = enable
time capture on falling
edge

 X

or

SET : TRUE = set
end value (with bit 0
of output byte set to
TRUE)

 X

Bit
2

RESET : TRUE = reset
counter A

X X X X X X X X X X

or

EN_1 : TRUE = enable
time capture on rising
edge

 X

Bit
3

UP/DOWN : FALSE =
up counter A; UP/
DOWN : TRUE = down
counter A

 X X

or

FREQ : FALSE =
time measure mode;
FREQ : TRUE = fre-
quency and rotation per
minute (RPM) mode

 X

Bit
4

RESET : TRUE = reset
counter B

 X X

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6018

 Used by operative
modes:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

or

RPI: reference point
indicator

 X X X

or

RESET_NEW : TRUE
= time, frequency, rota-
tion per minute (RPM)
is reset and parameter
output NEW is cleared

 X

Bit
5

UP/DOWN : FALSE
= up counter; UP/
DOWN : TRUE = down
counter

X X X X X

or

UP/DOWN : FALSE =
up counter B; UP/
DOWN : TRUE = down
counter B

 X X

Bit
6

EN_TOUCH : FALSE
= no catch operation;
EN_TOUCH : TRUE =
enable next catch oper-
ation

X X X X X X X X X X X

Bit
7

EDGE_TOUCH :
FALSE = catch
on falling edge;
EDGE_TOUCH : TRUE
= catch on rising edge

X X X X X X X X X X X

Output information for the
counter

> Input information for the
user program

32-bit counter 0 > Input double word 0

High word > Input word 0.0

Low word > Input word 1

Touch counter value 0 > Input double word 1

High word > Input word 1.0

Low word > Input word 1.1

State byte 0 > Input byte 0

32-bit counter 1 > Input double word 2

High word > Input word 2.0

Low word > Input word 2.1

Touch counter value 1 > Input double word 3

High word > Input double word 3.0

Low word > Input double word 3.1

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6019

Output information for the
counter

> Input information for the
user program

State byte 1 > Input byte 2

Inputs counter 1 > Input byte 3

Output information for the counter:
32-bit counter 0 DWORD Actual value of the counter 0

32-bit counter 1 DWORD Actual value of the counter 1

Touch counter value 0 DWORD Touch/catch value of the
counter 0

Touch counter value 1 DWORD Touch/catch value of the
counter 1

State byte 0 BYTE State byte for the counter 0:
Depending to operating
modes, the different bits of
state byte 0 are used to dis-
play and control the counting
(see below table)

State byte 1 BYTE State byte for the counter 1:
Depending to operating
modes, the different bits of
state byte 1 are used to dis-
play and control the counting
(see below table)

Input counter 0 BYTE Inputs for the counters 0:

Bit 0 State corresponding to input A

Bit 1 State corresponding to input B

Bit 2 State corresponding to input Z

Bit 3 State corresponding to input
I3

Bit 4 State corresponding to input
I4

Bit 5 State corresponding to input
I5

Bit 6 State corresponding to input
I6

Bit 7 State corresponding to input
I7

Input counter 1 BYTE Inputs for the counters 1:

Bit 0 State corresponding to input A

Bit 1 State corresponding to input B

Bit 2 State corresponding to input Z

Bit 3 State corresponding to input
I11

Bit 4 State corresponding to input
I12

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6020

Output information for the counter:
Bit 5 State corresponding to input

I13

Bit 6 State corresponding to input
I14

Bit 7 State corresponding to input
I15

Status bytes (0 and 1) functions

 Used by operative modes: 1 2 3 4 5 6 7 8 9 1
0

1
1

12 13 14 15

Bit
0

CF : TRUE = when end
value of counter is reached
The CF bit is cleared if
the counter was disabled or
a Set/Reset operation was
executed.

X X X X X X X X

CF : TRUE = zero crossover
indicator

 X

Bit
1

Not used X X X X X X X X X

Bit
2

RDY_TOUCH : TRUE = new
catch/touch value available

X X X X X X X X X

Bit
3

OVERFLOW counter : TRUE
= overflow

X X X X X X X X

or

OVERFLOW counter A :
TRUE = overflow 0000H <--
> FFFFH (65535)

 X X

Bit
4

SET INPUT counter : TRUE
= logical OR function on all
inputs (I3 to I7 or I11 to I15)
configured as SET input

X X X X X X X X X

or

OVERFLOW counter B :
TRUE = overflow 0000H <--
> FFFFH (65535)

 X X

Bit
5

RESET INPUT counter :
TRUE = logical OR function
on all inputs (I3 to I7 or I11
to I15) configured as RESET
input

X X X X X X X X X

or

RESET INPUT counter A :
TRUE = logical OR function
on all inputs (I3 to I7) config-
ured as RESET input

 X X

Bit
6

NEW : TRUE = new timing
value is available

 X

or

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6021

 Used by operative modes: 1 2 3 4 5 6 7 8 9 1
0

1
1

12 13 14 15

RDY_RPI : TRUE = when
the RPI operation is done

 X X X

Bit
7

RESET INPUT counter B :
TRUE = logical OR function
on all inputs (I11 to I15) con-
figured as RESET input

 X X

Operands for PWM/pulse function

Input information for the
output

< Output information for the
user program

PWM frequency 0 < Output word 0

PWM duty cycle/pulse C0 < Output word 1

PWM frequency C1 < Output word 2

PWM duty cycle/pulse C1 < Output word 3

PWM Control Byte C0 < Output byte 0

PWM Control Byte C1 < Output byte 1

PWM/Pulse Outputs < Output byte 2

Bit 0 < Output bit 2.0

Bit 4 < Output bit 2.4

Input information for the PWM/Pulse function:
PWM Frequency C0 WORD Frequency of channel O0

Unit: Hz or 10Hz (depending
on bit 0 of PWM control byte
0)

PWM Frequency C1 WORD Frequency of channel O1
Unit: Hz or 10Hz (depending
on bit 0 of PWM control byte
1)

PWM Duty cycle/pulse C0 WORD PWM duty cycle of channel
O0 in 1/10 of percentage
or
Number of pulses to be send
on channel O0

PWM Duty cycle/pulse C1 WORD PWM duty cycle of channel
O1 in 1/10 of percentage
or
Number of pulses to be send
on channel O1

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6022

Input information for the PWM/Pulse function:
PWM control byte 0 BYTE Control byte for the PWM/

Pulse output O0:
Depending on operating
modes, the different bits of
PWM control byte 0 are used
to manage and control the
counting (see below table)

PWM control byte 1 BYTE Control byte for the PWM/
Pulse output O1:
Depending to operating
modes, the different bits of
PWM control byte 1 are used
to manage and control the
counting (see below table)

PWM/Pulse Outputs BYTE Outputs for PWM/Pulse
output:

Bit 0 Output O0

Bit 1-3 Digital outputs unused

Bit 4 Output O1

Bit 5-7 Digital outputs unused

Control bytes (0 and 1) functions

Byte Description
Bit 0 FALSE = frequency multiplier x1 is enable

TRUE = frequency multiplier x10 is enable

Bit 1 Not used

Bit 2 Not used

Bit 3 Start pulse emission, if one rising edge =>
start pulse emission on channel O0 or O1

Bit 4 Not used

Bit 5 Not used

Bit 6 Not used

Bit 7 FALSE = PWM/Pulse function is disabled
TRUE = PWM/Pulse function is enabled

Output information of the
PWM/Pulse

> Input information for the
user program

State Byte S0 %pulse > Input byte 0

State Byte S1 %pulse > Input byte 1

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6023

Output information of the PWM/Pulse:
State Byte S0 %pulse BYTE Percentage of pulses already

sent on channel O0

State Byte S1 %pulse BYTE Percentage of pulses already
sent on channel O1

CD522 used as encoder device
Incremental encoder

The function block Ä Chapter 1.5.4.8.1.1 “CD522_32BIT_ENCODER” on page 972 can be
used to control an encoder device for relative positioning with the CD522 Module.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function encoder of module CD522, different operating modes
are available. The function block CD522_32BIT_ENCODER should be used with one of these
operating modes:

Operating Mode 11 "Incremental encoder"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x1 count, with possibility of touch/catch value, RPI
function, set and reset actions.

Operating Mode 12 "Incremental encoder X2"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x2 count, with possibility of touch/catch value, RPI
function, set and reset actions.

Operating Mode 13 "Incremental encoder X4"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
bidirectional counter for position sensor x4 count, with possibility of touch/catch value, RPI
function, set and reset actions.

Absolute SSI encoder
The function block Ä Chapter 1.5.4.8.1.5 “CD522_SSI_CNT” on page 1006 can be used to
control SSI absolute encoder function.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_SSI_CNT should be used with one of these operating
modes:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6024

Operating Mode 14 "SSI, absolute encoder"

Should be specified in PLC Configuration; parameter mode counter in order to use absolute
encoder with SSI interface.

CD522 used as counter device
32-Bit bidirectional counter

The function block Ä Chapter 1.5.4.8.1.2 “CD522_32BIT_CNT” on page 982 can be used to
control one 32-bit bidirectional counter function.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_32BIT_CNT should be used with one of these oper-
ating modes:

Operating Mode 1 "Up/Down counter (A)"

Should be specified in PLC Configuration, parameter "mode counter" in order to use one
up/down 32-bit counter on input A (dynamic changes) with set and reset input operation, end
value reached indicator, touch/catch value and overflow flag.

Operating Mode 2 "Up/Down counter with release input (B)"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
up/down 32-bit counter with enable input. Counting is valid when input B is TRUE. Dynamic
up/down count possibility, with set and reset input operation, end value reached indicator,
touch/catch value and overflow flag.

Operating Mode 5 "Up/Down dynamic set (B)/rising edge"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one up/
down 32-bit counter with set and reset input, end value reached indicator, touch/catch value
and overflow flag. Additional function to mode 1 is the dynamic set input (B) on rising edge of
physical.

Operating Mode 6 "Up/Down dynamic set (B)/falling edge"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one up/
down 32-bit counter with set and reset input, end value reached indicator, touch/catch value
and overflow flag. Additional function to mode 1 is the dynamic set input (B) on falling edge of
physical.

The module CD522 provides 2 Up/Down 32-bit counter functions. A signal used for pulse count
is identified by A0 for counter 0 and A1 for counter 1. Another signal used for enable or dynamic
set is identified by B0 for counter 0 and B1 for counter 1.

16-Bit bidirectional counter
The function block Ä Chapter 1.5.4.8.1.3 “CD522_16BIT_CNT” on page 991 can be used to
control one 16-bit bidirectional counter function.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6025

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_16BIT_CNT should be used with one of these oper-
ating modes:

Operating Mode 8 "Up/Down with release (B), 0 cross detec-
tion"

Should be specified in PLC Configuration; parameter "mode counter" in order to use one
up/down 16 bit counter (in range of -32768 to 32767) with enable input and zero crossover
detection (CF). Counting is valid when input B is TRUE. With set and reset input operation and
touch/catch value.

The module CD522 provides 2 Up/Down 16 bit counter functions. A signal used for pulse count
is identified by A0 for counter 0 and A1 for counter 1. Another signal used for enable or dynamic
set is identified by B0 for counter 0 and B1 for counter 1.

Two 16-bit bidirectional counter
The function block Ä Chapter 1.5.4.8.1.4 “CD522_16BIT_2CNT” on page 998 can be used to
control two 16-bit bidirectional counter functions.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_16BIT_2CNT should be used with one of these oper-
ating modes:

Operating Mode 3 "Up/Down counters (A,B)"

Should be specified in PLC Configuration, parameter "mode counter" in order to use 2 Up/
Down 16 bit counter (on rising edge count) functions, with separate up/down, reset operation
and overflow flag.

Operating Mode 4 "Up/Down (A, B on falling edges)"

Should be specified in PLC Configuration, parameter mode counter in order to use two Up/
Down 16 bit counter functions (with A on rising edge count and B on falling edge count), With
separate up/down, reset operation and overflow flag.

The module CD522 provides 4 Up/Down 16 bit counter functions. A signal used for pulse count
is identified by A0 and B0 for counter A and A1 and B1 for counter B.

CD522 used as PWM output device
To use CD522 as PWM output device, function block Ä Chapter 1.5.4.8.1.6
“CD522_PWM_OUT” on page 1013 is required.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6026

The module CD522 can be used to control one output pulsing signal (Max= 100 KHz) with an
adjustable duty cycle (ON/OFF ratio, max=100%). The PWM operating mode is configured in
Automation Builder.

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added in I/O bus configuration.
The module CD522 provides two independent outputs which can be used in PWM mode (O0
and O1). Both have the same specification and can work separately.
The function block CD522_PWM_OUT should be used to control with input EN_PWM, configure
the frequency with input FREQ and the input duty cycle DUTY_CYCLE of PWM outputs (pulse-
width modulator).

CD522 used as pulse output device
To use CD522 as pulse output device, function block Ä Chapter 1.5.4.8.1.7
“CD522_PULSE_OUT” on page 1016 is required.

The module CD522 can be used to control one output pulses signals with a fixed duty cycle
(ON/OFF ratio 50 %) and number of pulses sent with a fixed frequency (can be modified) .The
PULSE operating mode is configured in PLC Configuration using module parameters:

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed by using input and output oper-
ands. These necessary operands are created and reserved automatically, when one CD522
module is added into the I/O bus configuration.
The module CD522 provides two independents outputs used in PULSE mode (O0 and O1).
Both have the same specification and can work separately.
The function block CD522_PULSE_OUT should be used to control the pulse output, with input
EN_FREQ, configure the frequency with input FREQ and the number of pulses with input NUM.
The number of pulses sent can be displayed in percentage (from 0 % to 100%).
On the fast outputs O0 or O1, the brightness of yellow LED depends on the number of pulse
emitted (from 0 and 100%), When the value 100% is obtained, the yellow LED status is off.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6027

CD522 used as frequency output device
To use CD522 as frequency output device, function block Ä Chapter 1.5.4.8.1.8
“CD522_FREQ_OUT” on page 1020 is required.

The module CD522 can be used to control one output pulses signals with an fixed duty cycle
(ON/OFF ratio 50 %).The PWM operating mode is configured in PLC Configuration using
module parameters:

After that, it is activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added in I/O bus configuration.
The module CD522 provides two independent outputs which can be used in PWM mode (O0
and O1). Both have the same specification and can work separately.
The function block CD522_FREQ_OUT should be used to control with input EN_FREQ and
configure the frequency with input FREQ of frequency outputs (1 kHz to 100 kHz).

CD522 used as time frequency meter
To use CD522 to measure times, frequency and rotation speeds on channel Z0 or Z1, function
block Ä Chapter 1.5.4.8.1.9 “CD522_FREQ_SCAN” on page 1024 is required.

The module CD522 can be used in 12 different configurable operating modes. The operating
mode is configured in PLC Configuration using module parameters. After that, it is activated
during the initialization phase (power-on, cold start, warm start).
The data exchange from and to the user program is performed using input and output operands.
These necessary operands are created and reserved automatically, when one module CD522 is
added into the I/O bus configuration.
In order to configure and use the function counter of module CD522, different operating modes
are available. The function block CD522_FREQ_SCAN should be used with one of these
operating modes:

Operating Mode 15 "Time frequency meter (Z)"
Should be specified in PLC Configuration with the parameter mode counter.

The module CD522 provides 2 channels (Z0 and Z1) which can be used to measure times,
frequencies and rotational speeds with a resolution of 1 µs. Both have the same specification
and can work separately.
The function block CD522_FREQ_SCAN should be used to control with input EN_CNT, con-
figure the capture on falling edge with input EN_0 or rising edge with input EN_1 of signal,
and the specification of the mode of the measurement (time, frequency and Rpm) with input
EN_FREQ.
The table shows values measured according to configuration input parameters and this example
of timing.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6028

NOTICE!
Risk of malfunctions!
Never use the time measurement (bit EN_FREQ=FALSE) mode if the CD522 is
connected to a CS31 communication interface module, e. g. CI592.

Depending on the input parameters of function block, the result of time measurement can be
measured in time in µs, frequency in Hz or speed of rotation in rotation per minute.

FM502-CMS Function module
Condition monitoring

Components of the condition monitoring system:
● Hardware

– Function module FM502-CMS for condition monitoring, protection or as precise I/O
module Ä Chapter 1.6.2.7.2.2 “FM502-CMS - Analog measurements” on page 4658.

– Function module terminal base TF5x1-CMS Ä Chapter 1.6.2.2.2 “TF501-CMS and
TF521-CMS - Function module terminal bases ” on page 3796

– Processor module PM592-ETH Ä Chapter 1.6.2.3.2.1 “PM57x (-y), PM58x (-y) and
PM59x (-y)” on page 3848

● Configuration of FM502-CMS Ä Chapter 1.6.5.2.8.3.2 “FM502-CMS function module”
on page 6030.

● FM502-CMS library: The FM502-CMS library contains function blocks to manage and con-
trol the function of the Function Module FM502-CMS. The FM502-CMS library consists of
the WAV-File library and the CMS-IO library. Once a Function Module has been added to
the configuration, the libraries are automatically included with the next compilation of the
project. Ä Chapter 1.5.8 “FM502-CMS library” on page 2519.

Condition Monitoring (CM) is a broad term, which can be understood in different ways. For the
FM502-CMS, CM means the acquisition and analysis of high-frequency data. CM does usually
not occur in real-time. The data is analysed afterwards. If, however, online CM is controller
integrated, real-time reaction, e.g. protection, is possible within the same device and using the
same sensors. This feature is supported by AC500 and FM502.
The focus is often merely on mechanical CM. This is due to the fact that the movement or
rotations of large masses which are connected to a motor (e.g. electric machine) via a shaft
pose the greatest danger. Machines in operation inevitably generate measurable vibration, both
free or forced, even in the normal operating states and in absence of any damage.
Yet, in electrical CM, electrical high-frequency quantities like currents, voltages or partial dis-
charges can be measured by suitable sensors and can be analyzed in order to detect electrical
failure patterns, e.g. inside electrical machines or equipment (transformers). Some electrically
measurable failure patters can be induced by mechanical issues e.g. vibration.
Effective fault detection will only be possible if the data patterns indicating an arising defect can
be singled out among the data collected.
Monitoring e.g. the vibration characteristics of a machine in operation gives an understanding of
the "'health" condition of the machine and its development over time and load. This information
can be used to detect arising problems at an early stage. Operating a machine until it breaks
down might be acceptable if the machine were a "'disposable" one and the lifetime was very
high and known for sure. But many failures can be considered statistical outliers and occur very
early and spontaneously.
However, most machines are not "disposable" due to their cost. Therefore, regular monitoring
of a machine’s condition can reveal potential problems. Subsequently, counter measures can
be taken at an early stage in order to minimize damage and associated cost. If monitoring is
permanent and controller integrated, even spontaneous failures can be detected in real-time, in
order to prevent substantial damage to a larger part of the equipment and its environment.

Introduction to
condition moni-
toring

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6029

Use cases of FM502-CMS
● Condition monitoring: Longer data-stream analyses
● Protection: Fast reaction to e.g. direct or RMS values based on limits
● Fast and precise analog measurements as with any other AC500 I/O module, but even

more precise and faster
● Data logging: Fast, efficient data storage
Condition Monitoring typically means acquisition of longer data streams, also called “time
series” or “signals”. These can be analyzed after measurement in the time domain (e.g. enve-
lope, statistical analysis) or frequency domain (e.g. spectrum analysis).

The Function Module FM502-CMS works independently of the user program and therefore it is
able to response quickly to external signals and fast acquisition of the analog channel values.
The analog channels can be configured in different modes. It is also possible to change individ-
ually the sample and acquiring settings for each channel. The counter can be configured in
different modes. After that, it is activated during the initialization phase (power-on, cold start,
warm start).
The data exchange to and from the user program is performed using input and output operands.
While integrating a module containing counters in the PLC configuration, the necessary oper-
ands are created and reserved immediately. For the fast data acquisition the values are stored
inside the module in a file and transferred via file transfer to the PLC after the measurement
sequence is finished.

FM502-CMS function module
The hardware structure is automatically generated in configuration.
You can change the type of the TF5x1-CMS in the hardware configuration of the processor
module:

Only one FM502-CMS can be connected to a processor module.

FM502-CMS cannot be used as an I/O on a remote communication interface.

Preconditions

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6030

Configuration of FM502-CMS

Fig. 1152: Change the behavior on the internal bus.

Parameter Default
value

Value Description

Run on config
fault

No No In case of a configuration error, the user program
is not starting.

Yes The user program runs independent of a faulty I/O
bus configuration

Max wait run 3000 [ms] - Maximum wait time for valid inputs
(Do not change this parameter)

Min update time 10 [ms] - Cycle time for data exchange to IEC program
The “Min update time” defines the time how often
the I/O image will updated for the IEC program. If
the IEC task is faster, the I/O image is not updated
on every cycle.

Watchdog 400 [ms] - Watchdog time
(Do not change this parameter)

Parameterization
The FM502-CMS does not store configuration data itself. The digital inputs and outputs can
have specific functions depending on the selected configuration mode. All not otherwise config-
ured inputs and outputs can be used with the specification of standard input/output range.
To change the parameterization you can choose the default parameterization in Automation
Builder or the parameterization during run time in CODESYS.
The functionality of the module is directly influenced by the parameterization.

For non-standard applications, it is necessary to adapt the parameters to your system configu-
ration. After every startup of the device the default parameter set will be downloaded to the
module.
The parameterization is divided in the following sections:
● Parameter for encoder/counter functionality
● Parameter for analog channel functionality
● Parameter for digital I/O configuration

Parameteriza-
tion -
Automation
Builder

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6031

In CODESYS for the parameterization you can use function blocks of FM502-CMS
library Ä Chapter 1.5.8.2.1.9 “CMS_IO_CFG_WRITE” on page 2552Ä Chapter 1.5.8.2.1.8
“CMS_IO_CFG_READ” on page 2550.

Parameter set
Table 732: Encoder/Counter
No. Name Value Internal

value
Internal
type

Defaul
t

Min. Max.

145 Mode Ä “Operation
modes”
on page 6034

0-15 BYTE 0 0 15

146 Frequency limit No filter 0 BYTE 0 0 4

50 Hz 1

500 Hz 2

5 kHz 3

20 kHz 4

147 Input level 0 - 24 V DC 0 BYTE 0 0 3

0 - 5 V DC 1

Differential 2

1 Vss sinus 3

148 SSI frequency 200 kHz 2 BYTE 2 2

500 kHz 3

1 MHz 4

149 SSI resolution 8 Bit 0 BYTE 1 0 3

16 Bit 1

24 Bit 2

32 Bit 3

150 SSI code type Binary input 0 BYTE 0 0 0

151 SSI polling time x x BYTE 10 ms 0 255

Table 733: Analog channels
No. Name Value Internal

value
Internal
type

Defaul
t

Min. Max.

1 Available
Channel

Disabled 0 BYTE 0 0 1

Enabled 1

2 Analog Mode IEPE 0 BYTE 0 0 1

+/- 10 V 1

3 Synchronized
encoder file

Disabled 0 BYTE 0 0 1

Enabled 1

4 DC Filter Disabled 0 BYTE 0 0 1

Enabled 1

5 Sample rate 50 kHz 0 BYTE 0 0 9

25 kHz 1

Parameteriza-
tion - CODESYS

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6032

No. Name Value Internal
value

Internal
type

Defaul
t

Min. Max.

12,50 kHz 2

6,25 kHz 3

3,13 kHz 4

1,56 kHz 5

0,78 kHz 6

0,39 kHz 7

0,20 kHz 8

0,10 kHz 9

(Reserved) 10...15

6 Start condition Immediate 0 BYTE 0 0 4

Delayed 1

Binary Input 2

Zero Input 3

Encoder Value 4

7 Start condition
value
(dependend on
Start condition)

x x DWORD 0 0 42949
67296

I1 0 - 0 0 3

I2 1

C3 2

C4 3

8 Edge type Rising edge 0 BYTE 0 0 1

Falling edge 1

9 Record length
value (samples)

x x DWORD 5000 1 42949
67296

Table 734: I/O configuration: Inputs
No. Name Value Internal

value
Internal
type

Defaul
t

Min. Max.

152 Input delay 0.1 ms 0 BYTE 0 0 3

1 ms 1

8 ms 2

32 ms 3

153-15
6

DI0/DI1/DC2/D
C3 use

Digital input 0 BYTE - 0 5

Touch 1

Reset 2

Reset 2nd Bit
Counter

3

Set 4

RPI 5

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6033

Table 735: I/O configuration: Outputs
No. Name Value Internal

value
Internal
type

Defaul
t

Min. Max.

157 Behavior on
STOP

Off 0 BYTE 0 0 2

Last value 1

Substitute
value

2

158 Substitute
value 10 s

x x WORD 0 0 3

159/16
0

DC2/DC3 use Digital output 0 BYTE 0 0 3

Analog
Channel failure

1

Module failure 2

End value 3

Inputs and outputs which are not used by the counters are available for other tasks.
Table legend: A = input channel A, B = input channel B, Z = output channel Z.

Opera-
tion
Mode

Function Used inputs Description Function block

0-1 No counter None This operating mode is
selected, if the integrated
high-speed counter is not
needed.

-

1-1 Up/down
counter (A)

A = Counting
input

1 bidirectional 32-bit
counter on input A
(dynamic changes) with
set and reset input
operation, end value
reached indicator, touch/
catch value and overflow
flag.

CMS_IO_32BIT_CN
T

2-1 Up/down with
release input
(B)

A = Counting
input
B = Enable
input

1 bidirectional 32-bit
counter with enable input.
Counting is valid when
input B is TRUE. Dynamic
up/down count possibility,
with set and reset input
operation, end value
reached indicator, touch/
catch value and overflow
flag.

CMS_IO_32BIT_CN
T

3-2 Up/down coun-
ters (A,B)

A = Counting
input 0
B = Counting
input 1

2 bidirectional 16-bit
counter (on rising edge
count) functions, with sep-
arate up/down, reset oper-
ation and overflow flag.

CMS_IO_16BIT_2C
NT

Operation
modes

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6034

Opera-
tion
Mode

Function Used inputs Description Function block

4-2 Up/down (A, B
on falling
edges)

A = Counting
input 0
B = Counting
input 1

2 bidirectional 16-bit
counter functions (with A
on rising edge count and
B on falling edge count),
With separate up/down,
reset operation and over-
flow flag.

CMS_IO_16BIT_2C
NT

5-1 Up/down
dynamic set
(B) / rising
edge

A = Counting
input
B = Dynamic
set input

1 bidirectional 32-bit
counter with set and
reset input, end value
reached indicator, touch/
catch value and overflow
flag. Additional function to
mode 1 is the dynamic set
input (B) on rising edge
sets START_VALUE.

CMS_IO_32BIT_CN
T

6-1 Up/down
dynamic set
(B) / falling
edge

A = Counting
input
B = Dynamic
set input

1 bidirectional 32-bit
counter with set and
reset input, end value
reached indicator, touch/
catch value and overflow
flag. Additional function to
mode 1 is the dynamic set
input (B) on falling edge
sets START_VALUE.

CMS_IO_32BIT_CN
T

7-1 Reserved None - -

8-1 Up/down with
release (B), 0
cross detection

A = Counting
input
B = Enable
input

1 bidirectional 16-bit
counter (in range of
-32768 to 32767) with
enable input and zero
crossover detection (CF).
Counting is valid when
input B is TRUE. With set
and reset input operation
and touch/catch value.

CMS_IO_16BIT_CN
T

9-1 Reserved None - -

10-1 Reserved None - -

11-1 Incremental
encoder

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
encoder x1 count, touch/
catch value, RPI function,
reset and set
Function block counts
rising edges at input A.

CMS_IO_32BIT_EN
CODER

12-1 Incremental
encoder X2

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
position sensor x2 count,
with possibility of touch/
catch value, RPI function,
set and reset actions.
Function block counts
rising and falling edges at
input A.

CMS_IO_32BIT_EN
CODER

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6035

Opera-
tion
Mode

Function Used inputs Description Function block

13-1 Incremental
encoder X4

A = Trace A of
the encoder
B = Trace B of
the encoder
Z = Trace Z of
the encoder
(mechanical
zero)

1 bidirectional counter for
position sensor x4 count,
with possibility of touch/
catch value, RPI function,
set and reset actions.
Function block counts
rising and falling edges at
input A and B.

CMS_IO_32BIT_EN
CODER

14-1 SSI, absolute
encoder

A = Data signal
B = Clock
signal

Absolute positioning
sensor using SSI interface

CMS_IO_SSI_CNT

15-1 Time frequency
meter

Z = Input signal Time measurement of Z
signal, rising edge, falling
edge, rotation per minute
and frequency calculation

CMS_IO_FREQ_SC
AN

Process image (I/O data)
The cyclic data can be accessed to the addresses or variables defined in Automation Builder I/O
Mapping tab.

FM502-CMS analog measurement
Possibilities to use the analog input signal values:
● The values of the configured analog channels in CODESYS can be used by referencing the

I/O mapping variables. The refresh time for the cyclic data exchange of the analog input
data is according to the minimum update time in the configuration.

● For detailed data analysis you can record the analog input data into WAV files and store
them. In these files, every input data sample is stored.

Both possibilities can be used simultaneously.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6036

The DC filter needs 10 seconds to tune in after system power up. During that
time the AI values can be accessed by the user program, but the readings are
out of tolerance limit.

Configuration for analog measurements
Configure at least one analog channel for data acquisition.

The measurement file size depends on the record length value and number of available chan-
nels. The maximum capacity of one measurement file is limited by the internal memory. The
recording time for each channel is calculated by: recording time = record length value/sample
rate.
The total recording time is determined by the earliest measurement start trigger of a channel to
the measurement end of the last channel in the configuration.

Make sure to configure the right analog mode for each channel. Take care that
the sample rate is in relation to the maximum measured frequency.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6037

Start conditions for each individual channel:
● Instantly: Starts measurement instantly after setting input EN to TRUE.
● Delayed: Measurement will start when input EN was set to TRUE and the start condition

value [samples] is over.
● Digital input: Starts the measurement when input EN and the digital input was set to TRUE.
● Zero input: Starts the measurement when input EN was set to TRUE and the input Z+ gets

a rising edge.
● Encoder value: Starts the measurement when input EN was set to TRUE and the start

condition value is satisfied.
The start criteria of all analog channels in one measurement have to be in a 20 hour time
window. Otherwise, the measurement is invalid and will be aborted.

The process image (I/O data) of the function module can be mapped for analog measurements.

Measurement files
The measurement data will be stored in the WAV file format. One WAV file will be created for
each active channel.

Table 736: RIFF header
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 0 (0x00) bfChunkID "RIFX"

DWORD Little 4 4 (0x04) dwChunkSize Data length -
8

BYTE[4] Big 4 8 (0x08) bfRiffType "WAVE"

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6038

Table 737: Format chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 12 (0x0C) bfChunkID "fmt"

DWORD Little 4 16 (0x10) dwChunkSize Data length -
8

INT Little 2 18 (0x12) wFormatTag 0x0001
(PCM)

INT Little 2 20 (0x14) wChannels 0x0001 (1 ch.)

DWORD Little 4 24 (0x18) dwSamples-
PerSec

100 Hz -
50.000 kHz

DWORD Little 4 28 (0x1C) dwBytes-
PerSec

Sample rate *
block align

WORD Little 2 32 (0x1E) wBlockAlign 4 byte

WORD Little 2 34 (0x20) wBitsPer-
Sample

32 bit

Table 738: Data chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 36 (0x24) bfChunkID "data"

DWORD Little 4 40 (0x28) dwChunkSize Data length -
8

BYTE[] Big Undefined 44 (0x2C) bfData Measurement
data

Table 739: Label chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 44+sz(bfData) bfChunkID “labl”

DWORD Little 4 48+sz(bfData) dwChunkSize Data length -8

DINT Little 4 52+sz(bfData) dwIdentifier Identifier

BYTE[256] Little 255 56+sz(bfData) bfText „Label Text“

The WAV files will be stored in an uncompressed ZIP file at the destination path of
CMS_IO_MEASMNT_CTRL. The file names for of the WAV files are given by the FM502-CMS
and are directly corresponding to the analog channel and encoder configuration of the FM502-
CMS.

With no encoder, the files are named: CH00_nEN.wav, CH01_nEN.wav, ... CH15_nEN.wav
and stored in a ZIP file.

Example

Programming
In CODESYS, the data of the configured analog channels can be seen and used with the I/O
mapping variables.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6039

Use the function block CMS_IO_MEASMNT_CTRL to start a measurement.

The name of the measurement ZIP file has to be in 8.3 file format. Example:
abcdefgh.zip

After the measurement is finished, the ZIP file is transferred from the FM502-CMS to the
PM592-ETH via communication module bus. The progress of the data transfer can be seen
at the output PROGRESS in percent. After a successful measurement and data transfer, the
output DONE will change to TRUE.

FM502-CMS used as counter device

Fig. 1153: Input configuration.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6040

32-bit bidirectional counter
The function block CMS_IO_32BIT_CNT can be used to control one 32-bit bidirectional counter
function Ä Chapter 1.5.8.2.1.3 “CMS_IO_32BIT_CNT 32-bit counter” on page 2534. A signal
used for pulse count is identified by A+. Another signal used for enable or dynamic set is
identified by B+.
Possible operation modes: 1-1, 2-1, 5-1, 6-1 Ä Table on page 6034

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
double word (CNT_TOUCH). The touch/catch operation could be settled on rising or falling
edge depending on parameter EDGE_TOUCH.

Fig. 1154: Procedure and associated counting value with signal A

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the actual
counter value and to display this value at output CNT_TOUCH.

A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the
START_VALUE value and to display this value at output ACT.

Touch/Catch
operation

SET operation

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6041

A rising edge at input DI0, DI1, DC2 or DC3 causes the block to reset the value at output ACT.

The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648 and any exceeding or falling below of this value (depending to
up and down use) OFL will set to TRUE.

16-bit bidirectional counter
The function block CMS_IO_16BIT_CNT can be used to control one 16 bit bidirectional counter
function Ä Chapter 1.5.8.2.1.2 “CMS_IO_16BIT_CNT” on page 2530. A signal, used for pulse
count, is identified by A+.
Possible operation modes: 8-1 Ä Table on page 6034

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
double word (CNT_TOUCH). The touch/catch operation could be settled on rising or falling
edge depending on parameter EDGE_TOUCH.

RESET opera-
tion

Overflow opera-
tion

Touch/Catch
operation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6042

Fig. 1155: Procedure and associated counting value with signal A

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the actual
counter value and to display this value at output CNT_TOUCH.

A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the
START_VALUE value and to display this value at output ACT.

A rising edge at input DI0, DI1, DC2 or DC3 causes the block to reset the value at output ACT.

Two 16 bit up/down counters
The function block CMS_IO_16BIT_2CNT can be used to control two independent 16 bit bidir-
ectional counter functions Ä Chapter 1.5.8.2.1.1 “CMS_IO_16BIT_2CNT” on page 2526. A
signal, used for pulse count, is identified by A+ and B+.
Possible operation modes: 3-2, 4-2 Ä Table on page 6034

SET operation

RESET opera-
tion

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6043

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
double word (CNT_TOUCH). The touch/catch operation could be settled on rising or falling
edge depending on parameter EDGE_TOUCH.

Fig. 1156: Procedure and associated counting value with signal A

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the actual
counter value and to display this value at output CNT_TOUCH.

A rising edge at input DI0, DI1, DC2 or DC3 which is configured as RESET causes the function
block to reset the value at output ACT1. A rising edge at input DI0, DI1, DC2 or DC3 which
is configured as Reset 2nd Bit counter causes the function block to reset the value at output
ACT2.

The counter operates as an infinite counter. It is set to TRUE, when an overflow occurs, i.e. the
counter value ACT1 or ACT2 goes up to value 16#FFFF= -1. Any exceeding or falling below of
this value (depending to up use and down use) will set OFL1 = TRUE or OFL2 = TRUE.

Touch/Catch
operation

RESET opera-
tion

Overflow opera-
tion

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6044

FM502-CMS used as encoder device

Fig. 1157: Input configuration.

Incremental encoder
The function block CMS_IO_32BIT_ENCODER can be used to control an encoder device
for relative positioning with 3 signals Ä Chapter 1.5.8.2.1.4 “CMS_IO_32BIT_ENCODER”
on page 2538. 2 signals are used for rotation discrimination and pulse count, identified by A+
and B+. The third one is used in multi-turn encoder to count the number of rotation (mechanical
zero), identified by Z+.
The rotation is identified with a shift angle (90°) between A and B signal. In the Function
Module, the clockwise rotation is identified with A signal in advance to B.
Possible operation modes: 11-1, 12-1, 13-1 Ä Table on page 6034

Fig. 1158: Clockwise rotation in the Function Module: A signal ahead from B signal

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6045

Fig. 1159: Counter-clockwise rotation in the Function Module: A signal late from B signal

Depending on choosen operation mode, the counting procedure will be x1, x2 or x4 count. Basi-
cally the x1 counting mode is used (operation mode 11-1). The encoder module discriminates
the rotating way and count one pulse for each rising edge of the A signal.
With clockwise rotation, function block CMS_II_32BIT_ENCODER counts downwards. With
counter-clockwise rotation, function block counts upwards.
In order to increase resolution, the x2 counting mode can be specified (operation mode 12-1).
The encoder module counts one pulse on each rising and falling edge of A signal.
The resolution could be multiplied by 4, using the x4 counting mode (operation mode 13-1). The
encoder module counts a pulse on both rising and falling edge of A signal and B signal.

The touch/catch operation is the way to acquire the counting position synchronously with hard-
ware external signal removing all the latency time of I/O bus and network. This operation allows
synchronization between 2 different encoder devices if the same hardware signal is used for
touch/catch input.
On edge of the physical external signal, the current counter value (ACT) is stored in a dedicated
double word (CNT_TOUCH). The touch/catch operation could be settled on rising or falling
edge depending on parameter EDGE_TOUCH.

Touch/Catch
operation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6046

Fig. 1160: Procedure and associated counting value with signal A

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the actual
counter value and to display this value at output CNT_TOUCH.

The RPI (Reference Point Initialization) is used to synchronize the counter value with the
mechanical zero reference based on signal Z.
RPI procedure is enabled with control bit (EN_RPI). If this control bit is set, the module checks
for the Z signal. When the signal appears, the set value is copied in the current counter value
and RDY_RPI is set (see figure below).

RPI procedure

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6047

Fig. 1161: RPI operation

A rising edge at the digital inputs DI0, DI1, DC2 or DC3 activates the counter value capture and
the counter reset during the capture.
Only one function may be enabled at one time, either the RPI (reference point indicator) or
TOUCH (touch trigger measurement) function. If both functions are enabled simultaneously or
if the execution of one function is not yet completed when enabling the other function, the RPI
function will have a higher priority than the TOUCH function.

A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the
START_VALUE value and to display this value at output ACT.

A rising edge at input DI0, DI1, DC2 or DC3 causes the block to reset the value at output ACT.

The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648 and any exceeding or falling below of this value (depending to
up and down use) OFL will set to TRUE.

SET operation

RESET opera-
tion

Overflow opera-
tion

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6048

Absolute SSI encoder
The function block CMS_IO_SSI_CNT can be used to control SSI absolute encoder function
Ä Chapter 1.5.8.2.1.6 “CMS_IO_SSI_ENC” on page 2545. There is an interface for absolute
angle and linear encoders (displacement measurement systems).
It allows the transmission of absolute position information through a serial data transfer.
The transmission is based on synchronous serial communication. The device sends a clock
signal to the encoder and synchronously, the encoder returns the positioning data from the most
significant to the less significant bit.
The synchronization for a new data stream is based on time without clock pulse. This quiet time
depends on the encoder.
Possible operation modes: 14-1 Ä Table on page 6034

Fig. 1162: Chronogram with data organization with the clock pulse

For the resolution of the encoder device see technical data from manufacturer. The resolution
can be set in configuration under “SSI parameters è SSI resolution”.

Resolution

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6049

Fig. 1163: SSI parameters

The trace B of the FM502-CMS is switched as output signal (differential). On the rising edge of
the signal, the sensor shifts a new value, starting from the most significant bit.
The clock frequency can be specified under “SSI parameters è SSI frequency”.

CAUTION!
Risk of malfunctions!
The clock frequency is only an approximately value.
Do not use the clock frequency for any other purposes, e.g. time measure-
ments.

The complete read sequence is launched regularly by the Function Module. The interval
between each sequence can be configured under “SSI parameters è SSI polling time”.

Touch operation is valid with SSI sensor. The goal of touch operation is to synchronize sensors
with the same hardware signal. In the SSI mode the management is different depending on the
reading procedure is running or not.
If the reading procedure has already started while the touch signal becomes active, the reading
procedure finishes normally and the last read value is stored in the touch register.
If the reading procedure has not started, the encoder is in the interval between 2 measure-
ments. The reading procedure is started one time more and the result of the last reading is
stored in the touch register.

SSI polling time
definition

SSI and touch/
catch operation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6050

Touch/catch operation is enabled through control bit (EN_TOUCH). This resets the status flag
(RDY_TOUCH), when the pre-determined edge occurs; the current counter value is stored in
the touch value double word. In the same time, the status RDY_TOUCH is set to TRUE.
A rising edge at input DI0, DI1, DC2 or DC3 causes the function block to store the current
counter value CNT32 (ACT) and to display this value at output CNT_TOUCH.

The counter operates as infinite counter. An overflow occurs corresponding to the 32-bit value
at 16#80000000 = 2147483648 and any exceeding or falling below of this value (depending to
up and down use) OFL will set to TRUE.

Overflow opera-
tion

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6051

FM502-CMS used as time frequency meter
The function block CMS_IO_FREQ_SCAN is used to measure times, frequency and rotation
speeds on channel Z+ of the Function Module Ä Chapter 1.5.8.2.1.5 “CMS_IO_FREQ_SCAN”
on page 2542.
Possible operation modes: 15-1 Ä Table on page 6034

The Function Module provides one channel (Z+) which can be used to measure times, frequen-
cies and rotational speeds with a resolution of 1 µs.

Fig. 1164: Example of timing

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6052

Table 740: Values measured according to configuration input parameters and example
EN_0 EN_1 EN_FRE

Q
Type 1 2 3 4

FALSE FALSE TRUE No measurement 0 0 0 0

FALSE TRUE TRUE Between 2 falling
edges

 500 450

TRUE FALSE TRUE Between 2 rising
edges

 350

TRUE TRUE TRUE Between any 2
edges

300 200 150 300

FALSE FALSE FALSE No measurement 0 0 0 0

FALSE TRUE FALSE Between the rising
edge and the
subsequent falling
edge

300 150

TRUE FALSE FALSE Between the falling
edge and the sub-
sequent rising edge

 200 300

TRUE TRUE FALSE Between any
2 edges (start
between edge 0
and 1) *)

 200 300

TRUE TRUE FALSE Between any
2 edges (start
between edge 1
and 2) *)

 150

*) The timing measurement is a single shot process. The function block manages renewal of
the measurement as soon as the enable input is valid. Because of timing required to exchange
management bits on the bus, it is not possible to provide the time measurement between two
adjacent edges. Therefore, the time measured depends on when the measurement is started.
Depending on the input parameters of the function block, the result of the measurement can be
read as time in µs, frequency in Hz or speed of rotation in rotation per minute.

FM502-CMS used with synchronized counter/encoder files
Refer to the operation modes and used function blocks Ä Table on page 6034.

Configuration
Configure at least an encoder mode and one analog channel which should be recorded.

ð When encoder mode is set, on the analog channels tab the check box Synchronized
encoder file is selected.

The encoder track will only be recorded when the correct encoder function block
is used and enabled.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6053

Measurement files
The measurement data will be stored in the WAV file format. One WAV file will be created for
each active channel.

Table 741: RIFF header
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 0 (0x00) bfChunkID "RIFX"

DWORD Little 4 4 (0x04) dwChunkSize Data length -
8

BYTE[4] Big 4 8 (0x08) bfRiffType "WAVE"

Table 742: Format chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 12 (0x0C) bfChunkID "fmt"

DWORD Little 4 16 (0x10) dwChunkSize Data length -
8

INT Little 2 18 (0x12) wFormatTag 0x0001
(PCM)

INT Little 2 20 (0x14) wChannels 0x0001 (1 ch.)

DWORD Little 4 24 (0x18) dwSamples-
PerSec

100 Hz -
50.000 kHz

DWORD Little 4 28 (0x1C) dwBytes-
PerSec

Sample rate *
block align

WORD Little 2 32 (0x1E) wBlockAlign 4 byte

WORD Little 2 34 (0x20) wBitsPer-
Sample

32 bit

Table 743: Data chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 36 (0x24) bfChunkID "data"

DWORD Little 4 40 (0x28) dwChunkSize Data length -
8

BYTE[] Big Undefined 44 (0x2C) bfData Measurement
data

Table 744: Label chunk
Data type Endian Length File offset Identifier Value
BYTE[4] Big 4 44+sz(bfData) bfChunkID “labl”

DWORD Little 4 48+sz(bfData) dwChunkSize Data length -8

DINT Little 4 52+sz(bfData) dwIdentifier Identifier

BYTE[256] Little 255 56+sz(bfData) bfText „Label Text“

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6054

The WAV files will be stored in an uncompressed ZIP file at the destination path of
CMS_IO_MEASMNT_CTRL. The name of the WAV files is given by the Function Module and
is corresponds directly with the analog channel and encoder configuration. For every encoder
synchronized shannel with different sample rate, there will be a new encoder track which will be
used for synchronization.

Encoder is configured as:
Channel 0: Sample rate 50 kHz, synchronized encoder file
Channel 1: Sample rate 12,5 kHz, synchronized encoder file
Channel 2: Sample rate 6,25 kHz, synchronized encoder file
Result: The ZIP file contains the WAV files: CH00_ENA.wav, CH01_ENB.wav,
CH02_ENC.wav, Enc_A.wav, Enc_B.wav, Enc_C.wav

Example

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6055

Encoder is configured as:
Channel 0: Sample rate 50 kHz, synchronized encoder file
Channel 1: Sample rate 50 kHz, synchronized encoder file
Channel 2: Sample rate 6,25 kHz, synchronized encoder file
Result: The ZIP file contains the WAV files: CH00_ENA.wav, CH01_ENA.wav,
CH02_ENB.wav, Enc_A.wav, Enc_B.wav

Example

The encoder/counter value at the output of the function block will reset when
configuration data of the Function Module will be written in CODESYS.

FM562 module
The function module FM562 for pulse train output (PTO) is used for simple positioning tasks
with servo drives or stepper drives. FM562 provides 2 axes with 2 inputs and 2 pulse-train
outputs each.
It can be used at the following devices:
● Communication interface modules (e. g. CI501-PNIO, CI541-DP)
● Processor modules
It contains the following features:
● 2 axes control
● 2 configurable discrete digital inputs per axis for enable and limit switches signal inputs
● PTO output type: RS-422 differential output (P0, P1, P2 and P3)
● PTO frequency: 10 Hz to 250kHz
● Configurable PTO output mode: CW/CCW (clockwise/counterclockwise), pulse/direction
● Position and speed control with built in motion profile generators. Integration in the appli-

cation program by PLCopen Motion Control function blocks (PS552-MC-E motion control
library is required for programming)

The pulse outputs of the 2 axes are not galvanically isolated from each other.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6056

The other circuitry of the module is galvanically isolated from the inputs/outputs.

Special features
FM562 provides a square wave output for a specified number of pulses and a specified cycle
time. It can be programmed to produce either 1 train of pulses or a pulse profile consisting of
multiple trains of pulses. For example, a pulse profile can be used to control a stepper motor
through a simple ramp up, run, and ramp down sequence or more complicated sequences. The
control positioning is achieved according to an open loop mode, meaning without the need for
feedback information on the real position. The position loop is integrated in the servo-drive.

See also: Ä Chapter 1.6.4.4.4 “FM562 module” on page 5751

Inserting FM562 on I/O bus

1. Right-click on the “IO_Bus” element in the configuration tree opens the context menu.
2. Click “Add object” and open in the “S500 eCo I/O module” list the “Function modules”.
3. Select “FM562” and click “Add object”.

See also: Ä Chapter 1.6.2.7.1.1 “FM562 for pulse train output” on page 4617

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6057

Configuring the Library Manager

Ensure that you have installed the library PS552-MC-E before you start using
the FM562 module in your application program.

The following library files of the PLCopen Motion Control Library PS552-MC-E are required for
using the FM562 module inside an application:
PTO library file:
● PTO_FM562_MC_support_V22.lib
The PTO Library provides the access function block that contains the interface between the
PLCopen function blocks and the FM562 PTO Module.
PLCopen Library files:
● MC_Base_AC500_V11.lib
● MC_Blocks_AC500_V11.lib
The PLCopen Library contains function blocks based on the PLCopen Motion Control standard
and can be used for various motion devices, e.g: ACSM1, ACS350, ACS800, E100, E150 and
FM562.
See also: Ä Chapter 1.6.4.4.4.1.2 “The function blocks used with FM562” on page 5753

1.6.5.2.9 I/O bus and I/O modules
Hot swap configuration
Parameter configuration

I/O extension modules include the below parameters for hot swap configuration

Parameter Purpose Value
Hot-swap terminal unit
required

To include diagnosis
for missing hot-swap ter-
minal unit

Yes:
Communication Interface provides
extended diagnosis for missing hot-
swap terminal unit

No (default):
Extended diagnosis not available

Start-up with missing
module on hot-swap ter-
minal unit

Ignore missing module
during start-up on hot-
swap terminal unit.
Incomplete I/O configura-
tions must not prevent the
system from starting.

Yes:
Module is optional, start-up if there is
no module available on hot-swap ter-
minal unit

No (default):
Module is mandatory, start-up only if
correct module is available

In Automation Builder projects for Modbus TCP and V2 PLCs, hot-swap parameters can be
configured from the Parameters tab of respective I/O module

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6058

Parameterization of the I/O bus
Double-click the “IO_Bus” node in the device tree to open the I/O bus configuration.
The following parameters are available:

Parameter Default Value Description
Run on config fault No No In case of configura-

tion fault the user
program will not be
launched.

Yes The user program will
be also launched in
case of configuration
error on the I/O Bus.

Max wait run 3000 0...120000 Maximum waiting time
for valid inputs.

In case of a digital I/O Module, the channels are provided as WORD, BYTE and BOOL.
Because the analog inputs can also be configured as digital inputs, bit 0 of each channel is
also available as BOOL.
The symbolic name of a channel can be entered in front of the string "AT" in the channel
declaration.

 All channels should have a symbolic name and only symbolic names should be
used in the program code. If the hardware configuration has changed or if you
want to download the project to a PLC with another hardware configuration and
thus the PLC configuration has to be changed, the addresses of the inputs and
outputs can change. In case of symbolic programming (i.e., symbolic names are
used), the program code does not have to be changed.

Parameter 'Ignore module'
All I/O devices provide the parameter "Ignore module". This parameter can be used for simula-
tion purposes and determines whether an I/O device is considered or ignored during a PLC
configuration check.
This allows to use an existing Automation Builder project/PLC configuration though some hard-
ware devices are not physically available in a hardware installation.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6059

I/O devices with one byte input and output cannot be detected if they are
configured but not connected to the CS31-Bus.

The Automation Builder project for machine A shall be used for machine B. However, the
second DC523 device is missing in the hardware installation of machine B. Hence, for machine
B the value for 'Ignore module' is set to 'YES'.

Insertion of S500 I/O devices
1. Right-click “IO_Bus” in device tree and select [Add object].

-> The Add Device dialog window where all available S500 I/O Devices are listed will
open.

2. Append the S500 I/O Devices in the same order as they are mounted on the hardware.
Input and output modules connected to the I/O bus occupy the I/O following area: %IB0 ..
%IB999 or %QB0 .. %QB999.

AC500-eCo: PM55x-xP and PM56x-xP support up to 10 S500 I/O Devices.

AC500 (Standard): PM57x, PM58x, PM59x support up to 10 S500 I/O Devices.

Configuring the input and output modules and channels
The I/O channel configuration depends on the corresponding S500 I/O Device. See hardware
documentation of the I/O Device for more information.
The individual configuration parameters can be opened in the editor window via double-click on
the corresponding module and are listed in tab [S500 I/O device name] Configuration.

Symbolic names for variables, inputs and outputs

The IEC naming rules are not checked during input in Automation Builder.

Example

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6060

Devices with I/Os provide an I/O Mapping tab in their configuration editor where the available
I/O channels can directly be mapped to a global variable.
The corresponding variable declarations are automatically created in a global variables object in
a subfolder of the Global Variables section in the CODESYS project.
All available I/O channels can easily be assigned to a variable.

The variable is automatically added to the Global Variables in the CODESYS project after recre-
ating the configuration data Ä Chapter 1.6.5.4.1.1 “Creating configuration data” on page 6196.

AC500 uses Motorola Byte Order (Big Endian).

The numbers in column Channel correspond to the channel numbers only and
not to the bit position inside the WORD variable.

Only entries with a data type set in column "Type" can be mapped. These
entries can be expanded to show the available I/O channels.

If the project has been imported from a previous Automation Builder version,
all variables should be checked to avoid inconsistencies concerning the I/O
mapping.

The variable is automatically added to the global variables in the CODESYS project after
(re)creating the configuration data:

An additional GVL (Global Variables List) can be created and transferred to
CODESYS V2.3. Editing of lists created in CODESYS V2.3 is not possible.

I/O mapping list
Automation Builder contains an I/O mapping list feature for creating mapping variables with
better usability support compared to the tree structured view. Details on the tree structured view
is provided in the CODESYS Development System.

Input and output
mapping

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6061

Functionalities of the I/O mapping list:
● Displays I/O mappings for current node and all valid subsequent child nodes.
● Displays channel information with additional columns.
● Supports keyboard functions such as cut, copy, paste, delete, and select all within the editor

and within Excel spreadsheet (for bulk editing).
● Contains a toolbar for various actions, e.g. filtering, undo/redo and clear mappings.
● Supports single click edit and easy navigation using arrow keys.
● Improvised error handling:

– Allows to enter invalid mapping variables. This provides flexibility in bulk editing. Only
when saving the project, the errors - according to IEC 61131 standard - are displayed.

– In the message window, the error log is visible. The user can track the errors to their
corresponding channel in the editor.

● Allows multi-selection of rows and columns. (Random selection is not allowed.)

Configuring I/O mapping list
Automation Builder supports tree and list based editors for creating I/O mapping variables.
1. From the Tools menu, select Options.
2. Under Automation Builder, select the Editors tab.
3. Choose your desired mapping dialog and click OK.

● Choose tree based to display the I/O mapping in tree structure.
● Choose list based to display the I/O mapping as list with the functionalities of the

ToolBar.
● Choose both to display both the tree structure (I/O Mapping tab) and the list view (I/O

mapping list tab).

The I/O mapping list displays the channel information in offline and online mode. In online
mode, all columns are read-only. In offline mode, some columns are editable.

The order of the devices in I/O mapping list is synchronized with the order in the device tree.
The channels of a device are ordered by the device description file. If channels have a section,
the channel information is represented in a specific format.

Available
channel infor-
mation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6062

Example: Fast counter: Actual value 1. These channels are listed at last position of a device.

Editing I/O mapping list
1. In the device tree, double-click IO_Bus to configure entire I/O mapping list of different I/O

devices.
2. Enter the variables and descriptions to map the I/O devices.

Do not start variable names with a number or a special character. When
saving the project, this generates an error. Example: 12input3, @input4.

3. Click Save Project to save the I/O mapping changes.

Toolbar
Especially in case of long I/O mapping lists, it might be helpful to filter the I/O mappings. For
this, click the “Filter” icon to display all available criteria for filter options.

When reducing the width of the editor, some filters might be hidden.

● Undo: Cancels the last change.
● Redo: Repeats the last change.
● Clear mappings: Deletes all variables and descriptions.

Fast counter
Configuration for S500 I/O modules

1. In the device tree, add a digital I/O module to the “IO-Bus” node.
2. Double-click the node for the I/O module, open the “Parameters” tab and set the counting

mode Ä Chapter 1.6.5.2.9.8.2.1 “Counting modes” on page 6071 of the “Fast counter”
parameter.

3. In the “I/O Mapping” tab channel configuration is displayed. Ä Chapter 1.6.5.2.9.8.3 “Con-
trol of the fast counter” on page 6075

Filtering

Undo, redo and
clear

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6063

Operands
Table 745: Input information
Description of the
input information

Output information of
the user program

Description

Start value 1 Output double word 0 Double word Set values for the counters 1
and 2:
Each counter can be set to
a start value. Start values are
loaded into the counter by the
user program. Using the set
signal (depending on the oper-
ating mode either via a terminal
or the bit SET within the con-
trol byte 1 or 2), the values of
the double word variables are
loaded into the counter 1 or 2.

Start value 2 Output double word 1 Double word

End value 1 Output double word 2 Double word End value for the counters 1
and 2:
The end values for the
two counters are stored as
comparison values into the
module by the user program.
Both counters compare contin-
uously whether or not their pro-
grammed end value is equal
to their actual value. When the
counter (actual value) reaches
its programmed end value, the
binary output CF of the status
byte is set permanently.

End value 2 Output double word 3 Double word

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6064

Description of the
input information

Output information of
the user program

Description

Control byte 1
see 1)

Output byte 0 Byte:
Bit 0 =
UP/DWN
Bit 1 = EN
Bit 2 = SET
Bit 3 = CF_HW
Bit 4 to Bit 7
free

Control bytes for the counter 1:
UP/DWN: In some operating
modes, the counter can count
downwards, too. If counting
down is desired, set the bit
UP/DWN to TRUE and the bit
SET to 1. When doing so, the
counter starts counting down-
wards from the start value (set
value) to the end value (max.
from 4,294,967,295 to 0 or
hexadecimal from FF FF FF FF
to 00 00 00 00). After
reaching 0 the counter jumps
to 4,294,967,295.
EN: Processing of the counter
signals must be enabled.
Depending on the operating
mode, enabling is done via a
terminal or by the bit EN =
TRUE within the control byte.
SET: The counter can be set to
a start value (see the descrip-
tion of the set values for the
counters 1 and 2 at the begin-
ning of this table.
CF_HW
0 = state of CF is set to hard-
ware channel (only for mode 1
and 2)
1 = normal output is set to
hardware channel
Bit 3 is evaluated only in con-
trol byte of counter 1.

Control byte 2
see 1)

Output byte 0 Byte:
Bit 0 =
UP/DWN
Bit 1 = EN
Bit 2 = SET
Bit 3 to Bit 7
free

Control bytes for the counter 2:
UP/DWN: In some operating
modes, the counter can count
downwards, too. If counting
down is desired, set the bit
UP/DWN to TRUE and the bit
SET to 1. When doing so, the
counter starts counting down-
wards from the start value (set
value) to the end value (max.
from 4,294,967,295 to 0 or
hexadecimal from FF FF FF FF
to 00 00 00 00). After
reaching 0 the counter jumps
to 4,294,967,295.
EN: Processing of the counter
signals must be enabled.
Depending on the operating
mode, enabling is done via a
terminal or by the bit EN =
TRUE within the control byte.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6065

Description of the
input information

Output information of
the user program

Description

SET: The counter can be set to
a start value (see the descrip-
tion of the set values for the
counters 1 and 2 at the begin-
ning of this table.

1) Only for CI581-CN/CI582-CN: Control bytes 1 and 2 are available twice on grounds of
data consistency. Hence, a Start and End evaluation is only effected if the signals "Control
Byte1_0" and "Control Byte1_1" or "Control Byte2_0" and "Control Byte2_1" (process image)
are identical.

Table 746: Output information
Output informa-
tion

Input information for
the user program

Description

Actual Value 0 Input double word 0 Double word Actual value of the counter 0

Actual Value 1 Input double word 1 Double word Actual value of the counter 1

Status Byte 0 Input byte 0 Byte:
Bit 0 = CF
Bit 1 to Bit 7 free

CF: When the counter rea-
ches the programmed end
value, the counter output is
stored permanently as CF =
TRUE (end value reached).
Only when the counter is set
again (set value), CF is reset
to FALSE.

Status Byte 1 Input byte 1

Operating modes
Inputs and outputs which are not used by the counters, are available for other tasks.
Legend:
● A refers to input channel A
● B refers to input channel B
● C refers to output channel C

Operating mode Function Used inputs and out-
puts

Notes

0 No counter none This operating mode
is selected if the inte-
grated fast counter is
not necessary.

1 One count up counter A = Counting input
C = End value
reached

The counting input
and the output "End
value reached) are
enabled by the bit EN
= TRUE within the
control byte.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6066

Operating mode Function Used inputs and out-
puts

Notes

2 One count up counter
with enable input via
terminal

A = Counting input
B = Enable input
C = End value
reached

The enable input ena-
bles the counting
input and the output
"end value reached".
The counter is only
enabled if the enable
input = TRUE (signal
1) AND the bit EN =
TRUE within the con-
trol byte.

3 Two up/down counters A = Counting input 0
B = Counting input 1

With this operating
mode, two counters
exist, which are inde-
pendent of each other.
The state "End value
reached" is only read-
able from the two
status bytes. It is not
readable from output
terminals.
The counting direction
is defined by the bit
UP/DWN within the
control byte.

4 Two up/down coun-
ters (1 counting input
inverted)

A = Counting input 0
B = Counting input 1

This operating mode
equals operating
mode 3 with
one exception: The
counting input B (of
counter 1) is inverted.
It counts the TRUE/
FALSE edges at input
B.

5 One bidirectional
counter with a
dynamic set input via
terminal

A = Counting input
B = Dynamic set input

With this operating
mode, one bidirec-
tional counter is avail-
able which has a
dynamic set input.
Dynamic means that
the set operation
is performed at the
FALSE/TRUE signal
edge (0/1 edge) of the
set input and not while
the signal is TRUE.
The state "End value
reached" is only read-
able from the status
byte, not from an
output terminal.

6 One bidirectional
counter with a
dynamic set input via
terminal

A = Counting input
B = Dynamic set input

This operating mode
equals operating
mode 5 with
one exception: The
dynamic set input
operates at the TRUE/
FALSE edge (1-0
edge).

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6067

Operating mode Function Used inputs and out-
puts

Notes

7 One bidirectional
counter for position
sensors

A = Trace A of the
position sensor
B = Trace B of the
position sensor

With this operating
mode, incremental
position sensors can
be used which inter-
change their counting
signals on tracks A
and B in a 90° phase
sequence. Depending
on the sequence of
the signals at A
and B, the counter
counts up or down.
There is no pulse-mul-
tiplier function (e.g.
x2 or x4). The posi-
tion sensor must pro-
vide 24 V signals. Sig-
nals of 5 V sensors
must be converted.
Zero traces are not
processed. The state
"End value reached"
is only readable from
the state byte 0, not
from an output ter-
minal.
The bit UP/DWN
within the control byte
must be FALSE. Oth-
erwise, a parameter
error occurrs.
In this operating
mode, the maximum
counting frequency is:
I/O modules 35 kHz.
Communucation inter-
face modules 50 kHz.

8 Reserved

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6068

Operating mode Function Used inputs and out-
puts

Notes

9 One bidirectional
counter for position
sensors (pulse multi-
plier x2)

A = Trace A of the
position sensor
B = Trace B of the
position sensor

This operating mode
equals operating
mode 7 with one
exception: There is a
pulse multiplication x2
with the evaluation of
the counting inputs.
This means, that the
counter counts both
the positive edges
and the negative
edges of trace A. This
results in the double
number of counting
pulses. The precision
increases correspond-
ingly.
In this operating
mode, the maximum
counting frequency is:
I/O modules 30 kHz.
Communucation inter-
face modules 35 kHz.

10 One bidirectional
counter for position
sensors (pulse multi-
plier x4)

A = Trace A of the
position sensor
B = Trace B of the
position sensor

This operating mode
equals operating
mode 7 with one
exception: There is a
pulse multiplication x4
with the evaluation of
the counting inputs.
This means that the
counter counts the
positive and negative
edges of the traces A
and B. This results in
the fourfold number of
counting pulses. The
precision increases
correspondingly.
In this operating
mode, the maximum
counting frequency is:
I/O modules 15 kHz.
Communucation inter-
face modules 20 kHz.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6069

Configuration for onboard I/Os
1. In the device tree, double-click the “Onboard I/O” node (OBIO).
2. In the “Parameters” tab set the counting mode Ä Chapter 1.6.5.2.9.8.2.1 “Counting

modes” on page 6071 for the fast counter.

3. In the “I/O Mapping” tab channel configuration is displayed. Ä Chapter 1.6.5.2.9.8.3 “Con-
trol of the fast counter” on page 6075

The parameter of the fast counter channels of the Onboard I/O must be configured before they
can be used. User should take these steps to configure the fast counter:

Channel Direction Width Description
Actual
value X

Input DWORD Current value of the fast counter.

State byte
X

Input BYTE Bit 0 = CF
If the counter reaches the programmed end value, the
counter output is stored permanently as CF = TRUE
(end value reached). Only, if the counter is set again
(set value), CF is reset to FALSE.
Bit 1 to Bit 7 free

Start value
X

Output DWORD Each counter can be set to a start value. Start values
are loaded into the counter by the user program. Using
the set signal (dependent on the operating mode either
via a terminal or the bit SET within the control byte X),
the values of the double word variables are loaded into
the counter X.

End value
X

Output DWORD The end values for the two counters are stored as
comparison values into the module by the user pro-
gram. Both counters compare continuously, whether
or not their programmed end value is equal to their
actual value. If the counter (actual value) reaches its
programmed end value, the binary output CF of the
status byte is set permanently.

Configuring the
fast counter

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6070

Channel Direction Width Description
Control
byte 1

Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter can count down-
wards, too. If counting down is desired, the bit UP/DWN
must be set to TRUE. When doing so, the counter starts
counting downwards at the start value (set value) to the
end value (max. from 4,294,967,295 to 0 or hexadec-
imal from FF FF FF FF to 00 00 00 00). After reaching 0,
the counter jumps to 4,294,967,295.
Bit 1 = EN
The processing of the counter signals must be enabled.
Depending on the operating mode, enabling is done via
a terminal or by the bit EN = TRUE within the control
byte.
Bit 2 = SET
The counter can be set to a start value (see the descrip-
tion of the set values for the counters 1 and 2 at the
beginning of this table).
Bit 3 = CF_HW
0 = state of CF is set to hardware channel (only for
mode 1 and 2)
1 = normal output is set to hardware channel
Bit 3 is evaluated only in control byte of counter 1.
Bit 4 to Bit 7 free

Control
byte 2

Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter can count down-
wards, too. If counting down is desired, the bit UP/DWN
must be set to TRUE. When doing so, the counter starts
counting downwards at the start value (set value) to the
end value (max. from 4,294,967,295 to 0 or hexadec-
imal from FF FF FF FF to 00 00 00 00). After reaching 0,
the counter jumps to 4,294,967,295.
Bit 1 = EN
The processing of the counter signals must be enabled.
Depending on the operating mode, enabling is done via
a terminal or by the bit EN = TRUE within the control
byte.
Bit 2 = SET
The counter can be set to a start value (see the descrip-
tion of the set values for the counters 1 and 2 at the
beginning of this table).
Bit 3 to Bit 7 free

Counting modes
The fast counter can be configured as one mode out of 10 possible modes. The desired
operating mode is selected in the PLC configuration using configuration parameters. Inputs and
outputs which are not used by the counter are available for other tasks. In the following table, A
means input channel A, B means input channel B and C means output channel C.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6071

CPUs Integrated
fast counter

Assigned inputs Assigned
Outputs

Remarks

Channel A Channel B Channel C
PM55x,
PM56x

Yes Input channel
0

Input channel
1

Output
channel 0

Only 1 fast
counter is
available on
the module.
Input channel
0 is the
default
channel for
fast counter.
Input channel
1 can be used
as another
fast counter
channel
depending on
fast counter
mode.

Operating Mode Function Input channels Description Counting fre-
quency (max.)
for PM5x4-T and
PM5x4-R

0 No counter None Fast counter is
disabled

-

1 1 count up
counter

A = Counter input
C = End value
reached

Counting up A
from 0 to
0xFFFFFFFF
When the end
value is reached,
C will be set to
high.

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

2 1 count up
counter with
release input

A = Counter input
B = Enable input
C = End value
reached

Counting up A
from 0 to
0xFFFFFFFF
The counter is
enabled if B is
high When the
end value is
reached, C will
be set to high.

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6072

Operating Mode Function Input channels Description Counting fre-
quency (max.)
for PM5x4-T and
PM5x4-R

3 2 Up/Down coun-
ters

A = Counter input
1
B = Counter input
2

2 independent
counters. Status
"End value
reached" is only
readable from the
2 status bytes,
not from output
terminals. The
counting direction
is defined by the
Boolean parame-
ters UD1 and
UD2 of function
block
ONB_IO_CNT (H
andle fast
counter on
Onboard I/O)

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

4 2 Up/Down coun-
ters (2nd on
falling edges)

A = Counter input
1
B = Counter input
2

Same as oper-
ating mode 3, but
counting input B
is inverted
(counts at TRUE/
FALSE edges at
input B).

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

5 1 Up/Down
counter with
dynamic set/
rising edge

A = Counter input
B = Dynamic set
input

1 Up/Down
counter is avail-
able which
counts on the
rising edge of A
and has a
dynamic set input
on B. Dynamic
set input will set
the start value at
the rising edge of
B.

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

6 1 Up/Down
counter with
dynamic set/
falling edge

A = Counter input
B = Dynamic set
input

1 Up/Down
counter is avail-
able which
counts on the
rising edge of A
and has a
dynamic set input
on B. Dynamic
set input will set
the start value at
the falling edge
of B.

30 kHz (before
firmware V2.0.6)
50 kHz (since
firmware V2.0.6)

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6073

Operating Mode Function Input channels Description Counting fre-
quency (max.)
for PM5x4-T and
PM5x4-R

7 1 UpDown direc-
tional discrimi-
nator

A = Phase A
B = Phase B

With this mode,
incremental
encoders can be
used which give
their counting
signals on phase
A and B in a 90°
phase sequence
to each other.
Dependent on
the sequence of
the signals at A
and B, the
counter counts
up or down.
There is no pulse
multiplier func-
tion.

12 kHz (before
firmware V2.0.6)
35 kHz (since
firmware V2.0.6)

8 Reserved - - -

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6074

Operating Mode Function Input channels Description Counting fre-
quency (max.)
for PM5x4-T and
PM5x4-R

9 1 UpDown direc-
tional discrimi-
nator X2

A = Phase A B
= Phase B

This mode is the
same as mode 7
with one excep-
tion: There is a
pulse multiplica-
tion x2 with the
evaluation of the
counting inputs.
This means that
the counter
counts both the
positive edges
and the negative
edges of phase
A. This results in
the double
number of
counting pulses.
The precision
increases corre-
spondingly.

11 kHz (before
firmware V2.0.6)
30 kHz (since
firmware V2.0.6)

10 1 UpDown direc-
tional discrimi-
nator X4

A = Phase A
B = Phase B

This mode is the
same as mode 7
with one excep-
tion: There is a
pulse multiplica-
tion x4 with the
evaluation of the
counting inputs.
This means that
the counter
counts both the
positive edges
and the negative
edges of phase A
and B. This
results in the
fourfold number
of counting
pulses. The pre-
cision increases
correspondingly.

10 kHz (before
firmware V2.0.6)
15 kHz (since
firmware V2.0.6)

If channel 0 is configured as fast counter, the other channels 1,2 and 3 cannot
be configured as interrupt inputs. Otherwise, a configuration error will appear
and the CPU will be stopped.

Control of the fast counter
To control the fast counter configuration open the “I/O Mapping” tab.
The channels can be mapped as described in Symbolic Names for Variables, Inputs and Out-
puts and have the following meaning Ä Chapter 1.6.5.2.9.6 “Symbolic names for variables,
inputs and outputs” on page 6060:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6075

Channel Direction Width Description
Actual value X Input DWORD Current value of the fast counter

State byte X Input BYTE Bit 0 = CF
If the counter reaches the pro-
grammed end value, the counter
output is stored permanently as CF
= TRUE (end value reached). Only if
the counter is set again (set value),
CF is reset to FALSE.

Bit 1 to Bit 7 free

Start value X Output DWORD Each counter can be set to a start
value. Start values are loaded into
the counter by the user program.
Using the set signal (dependent on
the operating mode either via a ter-
minal or the bit SET within the control
byte X), the values of the double word
variables are loaded into the counter
X.

End value X Output DWORD The end values for the 2 counters
are stored as comparison values into
the module by the user program.
Both counters compare continuously
whether or not their programmed end
value is equal to their actual value.
When the counter (actual value) rea-
ches its programmed end value, the
binary output CF of the status byte is
set permanently.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6076

Channel Direction Width Description
Control byte 1 Output BYTE Bit 0 = UP/DWN

In some operating modes, the counter
can count downwards, too. If counting
down is desired, the bit UP/DWN
must be set to TRUE. If doing so, the
counter starts counting downwards at
the start value (set value) to the end
value (max. from 4,294,967,295 to 0
or hexadecimal from FF FF FF FF to
00 00 00 00). After reaching 0 the
counter jumps to 4,294,967,295.

Bit 1 = EN
The processing of the counter signals
must be enabled. Depending on the
operating mode, enabling is done via
a terminal or by the bit EN = TRUE
within the control byte.

Bit 2 = SET
The counter can be set to a start
value (see the description of the set
values for the counters 1 and 2 at the
beginning of this table. CF = 0
Bit 3 = CF_HW
0 = state of CF is set to hardware
channel (only for mode 1 and 2)
1 = normal output is set to hardware
channel
Bit 3 is evaluated only in control byte
of counter 1.

Bit 4 to Bit 7 free

Control byte 2 Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter
can count downwards, too. If counting
down is desired, the bit UP/DWN
must be set to TRUE. If doing so, the
counter starts counting downwards at
the start value (set value) to the end
value (max. from 4,294,967,295 to 0
or hexadecimal from FF FF FF FF to
00 00 00 00). After reaching 0 the
counter jumps to 4,294,967,295.

Bit 1 = EN
The processing of the counter signals
must be enabled. Depending on the
operating mode, enabling is done via
a terminal or by the bit EN = TRUE
within the control byte.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6077

Channel Direction Width Description
Bit 2 = SET
The counter can be set to a start
value (see the description of the set
values for the counters 1 and 2 at the
beginning of this table.

Bit 3 to Bit 7 free

1.6.5.2.10 CS31 fieldbus
Configuration of CS31 bus master

If in the device tree, for the “Interfaces” node the protocol 'CS31-Bus' is selected for the inter-
face COM1, the interface is set as CS31 bus master. CS31 cannot be used as a slave. COM2
cannot be used as CS31 bus interface.

Some modules do not support CS31 functionality.

Double-click “COMx_CS31_Bus” node to configure the parameters.
The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No The PLC program is executed even if
there are faults in configuration.

Yes The PLC program is not executed if
there are faults in configuration.

Operating mode
(read only)

Master Master Operating mode of the CS31 device.
This parameter is read-only (not edit-
able).

Max wait run 0 Max. wait time for valid inputs.

Min update time 10 Cycle time for data exchange to IEC
program.

Slave modules can be appended to the CS31 bus master Ä Chapter 1.6.5.2.10.2 “Configuration
of the slave modules” on page 6078.

Configuration of the slave modules
DC551-CS31 and S500 I/O devices as slave modules

If in the device tree, a CS31 bus master has been configured Ä Chapter 1.6.5.2.10.1 “Configu-
ration of CS31 bus master” on page 6078, the DC551-CS31 device can be used as CS31 slave.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6078

1. Right-click “COMx_CS31_Bus è Add object”.
2. DC551-CS31 module is available in two versions in the PLC configuration:

● DC551-CS31 8 DI + 16 DC / without fast counter:
The addresses 00...61 can be set at the module and in the PLC configuration.

● DC551-CS31 8 DI + 16 DC + 2FC / with 2 fast counters:
The hardware addresses 70...99 can be set at the module. This corresponds to the
module addresses 00...29 with activated counter. In the PLC configuration and at the
block CNT_DC551, the module address (00..29) is set Ä Chapter 1.5.4.9 “Counter
library” on page 1037.

Select the desired module from the list.
3. Define the parameters in the “Parameters” tab.

The following parameters are available:

Table 747: Available parameters
Parameter Default value Value Description
Ignore module
Ä Chapter
1.6.5.2.9.3 “Param-
eter 'Ignore module'”
on page 6059

No No It is checked whether
the module exists on
the CS31 Bus.

Yes Module is not
checked. -> available
as of CPU firmware
V1.2.0 and PS501
V1.2

Module address 0 0...69 Module address of the
DC551-CS31 without
fast counter

0...29 Module address of the
DC551-CS31 with fast
counter

Error-LED
Ä “Failsafe function of
CS31” on page 6090

On On The error LED lights
up for errors of all
classes, no failsafe
function activated.

Off_by_E4 Warnings (E4) are not
indicated by the error
LED, no failsafe func-
tion activated.

Off_by_E3 Warnings (E4) and
minor errors (E3) are
not indicated by the
error LED. No failsafe
function activated.

On+failsafe The error LED lights
up for errors of all
classes and the fail-
safe function of the
CS31 Bus is acti-
vated. -> available
as of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6079

Parameter Default value Value Description
Off_by_E4+failsafe Warnings (E4) are not

indicated by the error
LED, the failsafe func-
tion of the CS31 Bus
is activated. -> avail-
able as of CPU firm-
ware V1.2.0, DC551
firmware V1.9 and
PS501 V1.2

Off_by_E3+failsafe Warnings (E4) and
minor errors (E3) are
not indicated by the
error LED, the fail-
safe function of the
CS31 bus is acti-
vated. -> available
as of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

Check supply On On Control voltage moni-
toring ON

Off Control voltage moni-
toring OFF

Input delay 8 ms 0.1 / 1 / 8 / 32 ms Input delay 0.1 / 1 / 8 /
32 ms

Fast counter
Ä “No counter”
on page 6090

0-No counter 0-No counter Operation mode of
the Ä Chapter
1.6.4.1.10 “Fast coun-
ters” on page 5498

Detection short-cir-
cuits at outputs

On On Output short-circuit
detection ON

Off Output short-circuit
detection OFF

Behaviour of outputs
at communication
fault
Ä “Failsafe function of
CS31” on page 6090

Off Off Behavior of outputs at
communication faults
on the CS31 Bus OFF

Last value Last value -> avail-
able as of CPU firm-
ware V1.2.0, DC551-
CS31 firmware V1.9
and PS501 V1.2

Substitute value Substitute value -
> available as
of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

Last value 5 sec. Last value for 5
seconds -> available
as of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6080

Parameter Default value Value Description
Substitute value 5
sec.

Substitute value for
5 seconds -> avail-
able as of CPU firm-
ware V1.2.0, DC551-
CS31 firmware V1.9
and PS501 V1.2

Last value 10 sec. Last value for 10
seconds -> available
as of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

Substitute value 10
sec.

Substitute value for
10 seconds -> avail-
able as of CPU firm-
ware V1.2.0, DC551-
CS31 firmware V1.9
and PS501 V1.2

Substitute value
Ä “Failsafe function of
CS31” on page 6090

0 0...65535
0000hex...FFFFhex

Substitute value for
the outputs, one bit
per output, bit 0=C8 ..
bit 15=C23 -> avail-
able as of CPU firm-
ware V1.2.0, DC551-
CS31 firmware V1.9
and PS501 V1.2

If a DC551 is configured as a fast counter module and in Automation Builder
'0 - no Counter' is selected the channel ERR LEDs stays on and the module
does not start up. The address was adjusted with '71'. Only the'0- no Counter'
mode does not operate. If any other counter is selected e.g. '1-1 Up counter' the
module starts up and can be utilized.

The setting of the parameter “Behaviour” of outputs in communication fault directly influences
the failsafe function of the outputs of the S500 I/O modules.

S500/S500-eCo modules as slave modules
S500 / S500-eCo modules can be used as a slave module by appending the desired device to a
configured DC551-CS31 device.
In the device tree, right-click the “DC551-CS31” node and select “Add object”. Select the
desired S500 or S500-eCo module from the list.
When addressing S500 I/O devices at the CS31 bus, observe the following peculiarities con-
cerning the CS31 bus in the AC500.
● A CS31 software module can occupy a maximum of -> 15 bytes of inputs and 15 bytes of

outputs in the digital area. This corresponds to 15 x 8 = 120 digital inputs and 120 outputs.
● A CS31 software module can allocate a maximum of -> 8 words of inputs and 8 words of

outputs in the analog area.
● A maximum of 31 of these CS31 software modules are allowed for connection to the CS31

bus.
● If a device has more than 15 bytes or 8 words of inputs or outputs, it occupies 2 or more of

the 31 CS31 software modules.

No counter

Failsafe func-
tion of CS31 bus

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6081

● The DC551-CS31 can internally manage 2 CS31 software modules in the digital area and 5
CS31 software modules in the analog area. This corresponds to a maximum of: 240 digital
inputs (2 x 15 bytes), 240 digital outputs (2 x 15 bytes), 40 analog inputs (5 x 8 words) and
40 analog outputs (5 x 8 words).

● Address setting is done at the DC551-CS31 using two rotary switches at the module's front
plate.

● To enable the fast counter of the DC551-CS31, the hardware address (HW_ADR) has to be
set to the module address + 70. With activated fast counter, the module addresses 0..28
(hardware address setting 70..98) are allowed. Then, the DC55-CS31 registers as 2 CS31
software modules using the module address (hardware address 70), once in the digital area
and once in the analog area.

● CS31 software module 1 in digital area: Registers using the module address.
CS31 software module 2 in digital area: Registers using module address+7 and bit "Channel
>= 7" set.
CS31 software module 1 in analog area: Registers using the module address.
CS31 software module 2 in analog area: Registers using module address and bit "Channel
>= 7" set.
CS31 software module 3 in analog area: Registers using the module address+1.
CS31 software module 4 in analog area: Registers using module address+1 and bit
"Channel >= 7" set.

● The DC551-CS31 can manage a maximum of 255 parameters. This does not cause any
restrictions in all configurations with the currently available S500 I/O Devices.

● The next free address for a DC551-CS31 is derived from the highest address occupied in
the digital area or the analog area of the previous DC551-CS31.

● When connecting several S500 expansion modules to a DC551-CS31 via the I/O Bus, their
inputs and outputs follow the DC551-CS31's inputs and outputs without gap. Such a cluster
can occupy up to 6 CS31 software modules.

The fast counters of the input/output Modules (e.g. "DC532") are only available
if the modules are connected to the CPU's I/O Bus.

Table 748: Available input/output data and parameters with S500 I/O devices
Device ID I/O range Digital area [Byte] Analog area [Words] Param-

eter
[Byte]Inputs Outputs Inputs Outputs

CD522 1805 2 DI + 2
DI
(encoder)
+ 8 DC +
2 DO
PWM

6 7 8 8 6

DA501 1810 16 DI + 8
DC + 4 AI
+ 2 AO

3 1 5 2 8

DC551 2716 8 DI + 16
DC

3 2 0 0 15

DC551+F
C

2715 8 DI + 16
DC + FC

5 4 4 8 16

AI523 1515 16 AI 0 0 16 0 36

AI531 1535 8 AI 0 0 8 1 36

AO523 1510 16 AO 0 0 0 16 41

AX521 1505 4 AI + 4
AO

0 0 4 4 23

Summary of
input/output
data

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6082

Device ID I/O range Digital area [Byte] Analog area [Words] Param-
eter
[Byte]Inputs Outputs Inputs Outputs

AX522 1500 8 AI + 8
AO

0 0 8 8 39

DC522 1220 16 DC 2 2 0 0 8

DC523 1215 24 DC 3 3 0 0 10

DC532 1200 16 DI + 16
DC

4 2 0 0 8

DI524 1000 32 DI 4 0 0 0 4

DX522 1210 8 DI + 8
DX

1 1 0 0 6

DX531 1205 8 DI + 4
DX

1 1 0 0 6

Table 749: Available input/output data and parameters with S500-eCo I/O devices
Device ID I/O range Digital area [Byte] Analog area [Words] Param-

eter
[Byte]Inputs Outputs Inputs Outputs

DI561 6105 8 DI, 24 V
DC

1 0 0 0 0

DI562 6110 16 DI, 24
V DC

2 0 0 0 0

DI571 6115 8 DI,
100-240 V
AC

1 0 0 0 0

DO561 6120 8 DO 24 V
DC, 0.5 A,
transistor

0 1 0 0 0

DO571 6125 8 DO, up
to 240 V
AC/DC,
2.0 A,
relay

0 1 0 0 1

DO572 6130 8 DO,
100-240 V
AC, 0.5 A,
triac

0 1 0 0 0

DX561 6135 8 DI 24 V
DC + 8
DO 24 V
DC, 0.5 A,
transistor

1 1 0 0 0

DX571 6140 8 DI 24 V
DC + 8
DO, up to
240 V
AC/DC,
2.0 A,
relay

1 1 0 0 1

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6083

Device ID I/O range Digital area [Byte] Analog area [Words] Param-
eter
[Byte]Inputs Outputs Inputs Outputs

DC561 6100 24 DC, 24
V DC, 0.1
A, Inter-
fast con-
nection

2 2 0 0 0

AI561 6500 4 AI, U/I.
configu-
rable

0 0 4 0 6

AI562 6505 2 AI, RTD,
configu-
rable

0 0 2 0 4

AI563 6510 4 AI, ther-
mocouple,
configu-
rable

0 0 4 0 6

AO561 6515 2 AO, U/I,
configu-
rable

0 0 0 4 4

AX561 6520 4 AI, U/I +
2 AO, U/I,
configu-
rable

0 0 8 4 8

Due to the peculiarities concerning the CS31 bus and the DC551-CS31 described at the begin-
ning of this chapter, some configurations cannot be realized.

Impossible con-
figurations

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6084

This configuration is not possible because the DC551-CS31 can manage a maximum of 30
bytes in the digital area (= 120 inputs/outputs).

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC

3 2 0 0 15

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

Total 120 DI +
128 DC

31 16 0 0 78

Example:
DC551-CS31 +
6 x DC532

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For 7 AX522, the number of analog channels increases accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC

3 2 0 0 15

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

Total 8 DI + 16
DC + 48 AI
+ 48 AO

3 2 48 48 255

Example:
DC551-CS31 +
6 (or more)
AX522

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6085

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For each further AO523, the number of analog channels increases
accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC

3 2 0 0 15

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

Total 8 DI + 16
DC + 48
AO

3 2 0 48 141

Example:
DC551-CS31 +
3 (or more)
AO523

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For each further AI523, the number of analog channels increases
accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC

3 2 0 0 15

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

Total 8 DI + 16
DC + 48 AI

3 2 48 0 126

Example:
DC551-CS31 +
3 (or more)
AI523

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For each further AO523, the number of analog channels increases
accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC + FC

5 4 4 8 16

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

Total 8 DI + 16
DC + FC +
48 AO

5 4 4 56 142

Example:
DC551-CS31
with FC + 3 (or
more) AO523

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6086

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For each further AI523, the number of analog channels increases
accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC + FC

5 4 4 8 16

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

Total 8 DI + 16
DC + FC +
48 AI

5 4 52 8 127

Example:
DC551-CS31
with FC + 3 (or
more) AI523

Checking the CS31 modules
Double-click “COMx_CS31_Bus”:

The following information is show in the view:

Parameter Description
Number of CS31 software modules The current number of configured CS31

modules at the CS31 master.
It is not allowed to attach more than 31 slave
devices to the bus.

Min. CS31 Cycletime (ms) The predicted CS31 cycle time in [ms]. The
value may not exceed 75 ms.

In case of a violation of the described parameters an error message appears.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6087

The icon indicates the parameter that was violated.
The violation message does not block the download of an invalid configuration.

Error message

Connecting the DC551 and S500 I/O devices to the CS31 bus
The basic module DC551-CS31 is available in two versions in Automation Builder:
● DC551-CS31 8 DI + 16 DC / without fast counter

The addresses 00...69 can be set at the module and in Automation Builder.
● DC551-CS31 8 DI + 16 DC + 2FC / with 2 fast counters

The hardware addresses 70...99 can be set at the module. This corresponds to the module
addresses 00...29 with activated counter. In Automation Builder and at the function block
Ä Chapter 1.5.4.9.1.1 “CNT_DC551” on page 1037, the module address (00..29) is set.

Table 750: Available parameters
Parameter Default value Value Description
Ignore module
Ä Chapter
1.6.5.2.9.3 “Param-
eter 'Ignore module'”
on page 6059

No No It is checked whether
the module exists on
the CS31 Bus.

Yes Module is not
checked. -> available
as of CPU firmware
V1.2.0 and PS501
V1.2

Module address 0 0...69 Module address of the
DC551-CS31 without
fast counter

0...29 Module address of the
DC551-CS31 with fast
counter

Error-LED
Ä “Failsafe function of
CS31” on page 6090

On On The error LED lights
up for errors of all
classes, no failsafe
function activated.

Off_by_E4 Warnings (E4) are not
indicated by the error
LED, no failsafe func-
tion activated.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6088

Parameter Default value Value Description
Off_by_E3 Warnings (E4) and

minor errors (E3) are
not indicated by the
error LED. No failsafe
function activated.

On+failsafe The error LED lights
up for errors of all
classes and the fail-
safe function of the
CS31 Bus is acti-
vated. -> available
as of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

Off_by_E4+failsafe Warnings (E4) are not
indicated by the error
LED, the failsafe func-
tion of the CS31 Bus
is activated. -> avail-
able as of CPU firm-
ware V1.2.0, DC551
firmware V1.9 and
PS501 V1.2

Off_by_E3+failsafe Warnings (E4) and
minor errors (E3) are
not indicated by the
error LED, the fail-
safe function of the
CS31 bus is acti-
vated. -> available
as of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

Check supply On On Control voltage moni-
toring ON

Off Control voltage moni-
toring OFF

Input delay 8 ms 0.1 / 1 / 8 / 32 ms Input delay 0.1 / 1 / 8 /
32 ms

Fast counter
Ä “No counter”
on page 6090

0-No counter 0-No counter Operation mode of
the Ä Chapter
1.6.4.1.10 “Fast coun-
ters” on page 5498

Detection short-cir-
cuits at outputs

On On Output short-circuit
detection ON

Off Output short-circuit
detection OFF

Behaviour of outputs
at communication
fault
Ä “Failsafe function of
CS31” on page 6090

Off Off Behavior of outputs at
communication faults
on the CS31 Bus OFF

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6089

Parameter Default value Value Description
Last value Last value -> avail-

able as of CPU firm-
ware V1.2.0, DC551-
CS31 firmware V1.9
and PS501 V1.2

Substitute value Substitute value -
> available as
of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

Last value 5 sec. Last value for 5
seconds -> available
as of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

Substitute value 5
sec.

Substitute value for
5 seconds -> avail-
able as of CPU firm-
ware V1.2.0, DC551-
CS31 firmware V1.9
and PS501 V1.2

Last value 10 sec. Last value for 10
seconds -> available
as of CPU firmware
V1.2.0, DC551-CS31
firmware V1.9 and
PS501 V1.2

Substitute value 10
sec.

Substitute value for
10 seconds -> avail-
able as of CPU firm-
ware V1.2.0, DC551-
CS31 firmware V1.9
and PS501 V1.2

Substitute value
Ä “Failsafe function of
CS31” on page 6090

0 0...65535
0000hex...FFFFhex

Substitute value for
the outputs, one bit
per output, bit 0=C8 ..
bit 15=C23 -> avail-
able as of CPU firm-
ware V1.2.0, DC551-
CS31 firmware V1.9
and PS501 V1.2

If a DC551 is configured as a fast counter module and in Automation Builder
'0 - no Counter' is selected the channel ERR LEDs stays on and the module
does not start up. The address was adjusted with '71'. Only the'0- no Counter'
mode does not operate. If any other counter is selected e.g. '1-1 Up counter' the
module starts up and can be utilized.

The setting of the parameter Behaviour of outputs in communication fault directly influences the
failsafe function of the outputs of the S500 I/O devices.
To connect further S500 I/O Modules to the basic module DC551-CS31 via the I/O Bus, see the
following steps.

No counter

Failsafe func-
tion of CS31

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6090

1. Right-click the element DC551-CS31 in the configuration tree and select the menu item
“Add device”.

ð The “Add Device” dialog window appears. It shows all available I/O Modules that can
be added to DC551-CS31.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6091

2. Choose the modules you want to attach to DC551-CS31.

A maximum of 7 expansions with a total of 240 DI / 240 DO and 40 AI / 40 AO can be appended
to the module.
When addressing S500 I/O devices at the CS31 bus, observe the following peculiarities con-
cerning the CS31 bus in the AC500.
● A CS31 software module can occupy a maximum of -> 15 bytes of inputs and 15 bytes of

outputs in the digital area. This corresponds to 15 x 8 = 120 digital inputs and 120 outputs.
● A CS31 software module can allocate a maximum of -> 8 words of inputs and 8 words of

outputs in the analog area.
● A maximum of 31 of these CS31 software modules are allowed for connection to the CS31

bus.
● If a device has more than 15 bytes or 8 words of inputs or outputs, it occupies 2 or more of

the 31 CS31 software modules.
● The DC551-CS31 can internally manage 2 CS31 software modules in the digital area and 5

CS31 software modules in the analog area. This corresponds to a maximum of: 240 digital
inputs (2 x 15 bytes), 240 digital outputs (2 x 15 bytes), 40 analog inputs (5 x 8 words) and
40 analog outputs (5 x 8 words).

● Address setting is done at the DC551-CS31 using two rotary switches at the module's front
plate.

● To enable the fast counter of the DC551-CS31, the hardware address (HW_ADR) has to be
set to the module address + 70. With activated fast counter, the module addresses 0..28
(hardware address setting 70..98) are allowed. Then, the DC55-CS31 registers as 2 CS31
software modules using the module address (hardware address 70), once in the digital area
and once in the analog area.

● CS31 software module 1 in digital area: Registers using the module address.
CS31 software module 2 in digital area: Registers using module address+7 and bit "Channel
>= 7" set.
CS31 software module 1 in analog area: Registers using the module address.
CS31 software module 2 in analog area: Registers using module address and bit "Channel
>= 7" set.
CS31 software module 3 in analog area: Registers using the module address+1.
CS31 software module 4 in analog area: Registers using module address+1 and bit
"Channel >= 7" set.

● The DC551-CS31 can manage a maximum of 255 parameters. This does not cause any
restrictions in all configurations with the currently available S500 I/O Devices.

● The next free address for a DC551-CS31 is derived from the highest address occupied in
the digital area or the analog area of the previous DC551-CS31.

● When connecting several S500 expansion modules to a DC551-CS31 via the I/O Bus, their
inputs and outputs follow the DC551-CS31's inputs and outputs without gap. Such a cluster
can occupy up to 6 CS31 software modules.

● A maximum of 7 S500 expansion modules (extensions) can be connected to a DC551-
CS31.

Fig. 1165: Possible configuration consisting of two combined input/output modules.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6092

The fast counters of the input/output Modules (e.g. "DC532") are only available
if the modules are connected to the CPU's I/O Bus.

Table 751: Available input/output data and parameters with S500 I/O devices
Device ID I/O range Digital area [Byte] Analog area [Words] Param-

eter
[Byte]Inputs Outputs Inputs Outputs

CD522 1805 2 DI + 2
DI
(encoder)
+ 8 DC +
2 DO
PWM

6 7 8 8 6

DA501 1810 16 DI + 8
DC + 4 AI
+ 2 AO

3 1 5 2 8

DC551 2716 8 DI + 16
DC

3 2 0 0 15

DC551+F
C

2715 8 DI + 16
DC + FC

5 4 4 8 16

AI523 1515 16 AI 0 0 16 0 36

AI531 1535 8 AI 0 0 8 1 36

AO523 1510 16 AO 0 0 0 16 41

AX521 1505 4 AI + 4
AO

0 0 4 4 23

AX522 1500 8 AI + 8
AO

0 0 8 8 39

DC522 1220 16 DC 2 2 0 0 8

DC523 1215 24 DC 3 3 0 0 10

DC532 1200 16 DI + 16
DC

4 2 0 0 8

DI524 1000 32 DI 4 0 0 0 4

DX522 1210 8 DI + 8
DX

1 1 0 0 6

DX531 1205 8 DI + 4
DX

1 1 0 0 6

Table 752: Available input/output data and parameters with S500-eCo I/O devices
Device ID I/O range Digital area [Byte] Analog area [Words] Param-

eter
[Byte]Inputs Outputs Inputs Outputs

DI561 6105 8 DI, 24 V
DC

1 0 0 0 0

DI562 6110 16 DI, 24
V DC

2 0 0 0 0

Summary of
input/output
data

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6093

Device ID I/O range Digital area [Byte] Analog area [Words] Param-
eter
[Byte]Inputs Outputs Inputs Outputs

DI571 6115 8 DI,
100-240 V
AC

1 0 0 0 0

DO561 6120 8 DO 24 V
DC, 0.5 A,
transistor

0 1 0 0 0

DO571 6125 8 DO, up
to 240 V
AC/DC,
2.0 A,
relay

0 1 0 0 1

DO572 6130 8 DO,
100-240 V
AC, 0.5 A,
triac

0 1 0 0 0

DX561 6135 8 DI 24 V
DC + 8
DO 24 V
DC, 0.5 A,
transistor

1 1 0 0 0

DX571 6140 8 DI 24 V
DC + 8
DO, up to
240 V
AC/DC,
2.0 A,
relay

1 1 0 0 1

DC561 6100 24 DC, 24
V DC, 0.1
A, Inter-
fast con-
nection

2 2 0 0 0

AI561 6500 4 AI, U/I.
configu-
rable

0 0 4 0 6

AI562 6505 2 AI, RTD,
configu-
rable

0 0 2 0 4

AI563 6510 4 AI, ther-
mocouple,
configu-
rable

0 0 4 0 6

AO561 6515 2 AO, U/I,
configu-
rable

0 0 0 4 4

AX561 6520 4 AI, U/I +
2 AO, U/I,
configu-
rable

0 0 8 4 8

Due to the peculiarities concerning the CS31 bus and the DC551-CS31 described at the begin-
ning of this chapter, some configurations cannot be realized.

Impossible con-
figurations

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6094

This configuration is not possible because the DC551-CS31 can manage a maximum of 30
bytes in the digital area (= 120 inputs/outputs).

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC

3 2 0 0 15

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

DC532 16 DI + 16
DC

4 2 0 0 9

Total 120 DI +
128 DC

31 16 0 0 78

Example:
DC551-CS31 +
6 x DC532

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For 7 AX522, the number of analog channels increases accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC

3 2 0 0 15

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

AX522 8 AI + 8
AO

0 0 8 8 40

Total 8 DI + 16
DC + 48 AI
+ 48 AO

3 2 48 48 255

Example:
DC551-CS31 +
6 (or more)
AX522

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6095

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For each further AO523, the number of analog channels increases
accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC

3 2 0 0 15

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

Total 8 DI + 16
DC + 48
AO

3 2 0 48 141

Example:
DC551-CS31 +
3 (or more)
AO523

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For each further AI523, the number of analog channels increases
accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC

3 2 0 0 15

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

Total 8 DI + 16
DC + 48 AI

3 2 48 0 126

Example:
DC551-CS31 +
3 (or more)
AI523

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For each further AO523, the number of analog channels increases
accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC + FC

5 4 4 8 16

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

AO523 16 AO 0 0 0 16 42

Total 8 DI + 16
DC + FC +
48 AO

5 4 4 56 142

Example:
DC551-CS31
with FC + 3 (or
more) AO523

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6096

This configuration is not possible because the DC551-CS31 can manage a maximum of 40
words in the analog area. For each further AI523, the number of analog channels increases
accordingly.

Device I/O range Digital area [Byte] Analog area [Words] Parameter
[Byte]Inputs Outputs Inputs Outputs

DC551 8 DI + 16
DC + FC

5 4 4 8 16

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

AI523 16 AI 0 0 16 0 37

Total 8 DI + 16
DC + FC +
48 AI

5 4 52 8 127

Example:
DC551-CS31
with FC + 3 (or
more) AI523

Configuration of other module
1. Right-click on COM1_CS31_Bus => Context menu opens.
2. Select Add Device => menu Add Device opens => select Other module.
3. Click button Add Device.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6097

1. Double-click the moduls name and start configuration.
2. Double-click Digital in column Value =>set Digital or Analog.
3. Right-click the moduls name (Other module) => Add Device => Add Device menu opens.
4. Select In-/Outputs by double-clicking.

1.6.5.2.11 Serial interfaces COM1 and COM2
Setting up the protocol of a serial interface

AC500 CPUs PM57x, PM58x and PM59x are equipped with the two interfaces COM1 and
COM2 which can be operated as RS-232 and RS-485.
Some AC500 CPUs such as PM56xy-2ETH are equipped with interface COM1 only.

RS-485 operation of an interface is only possible if the parameter RTS control is
set to Telegram. The cabling of RS-232 or RS-485 is detected automatically by
the hardware.

AC500 PM55x and PM56x CPUs are equipped with two interfaces COM1 and COM2 (optional)
which can be operated as RS-485 only. The parameter RTS control is set by default to Telegram
and can not be changed.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6098

Setting COMx - Online access
By default, the serial interfaces are set to 'Online access'. That means the access is done with
help of Automation Builder.
If the default mode is set to another value, the interface protocol is directly set in the PLC
configuration. No block (such as MODINIT, COMINIT) is required.
The serial interface settings can be read in online mode using the PLC browser commands
"com settings" and "com protocols" Ä Chapter 1.6.5.4.3 “AC500-specific PLC browser com-
mands” on page 6222.

Double-click “COMx_Online_Access” to open the COMx - Online Access Configuration in the
editor window.
The following parameters are available:

Parameter Default
value

Value Description

RTS control Telegram None No RTS control (direction control, not for
PM55x and PM56x).

Telegram RTS control activated (absolutely necessary
for programming via RS-485!).

RTS/CTS
(DTE<->DTE)

RTS and CTS signals are controlled to simu-
late a DTE device at the PLC communicating
with a DTE device.

RTS/CTS
(DTE-->DCE)

RTS and CTS signals are controlled to simu-
late a DTE device at the PLC communicating
with a DCE device.

RTS/CTS
(DCE<--DTE)

RTS and CTS signals are controlled to simu-
late a DCE device at the PLC communicating
with a DTE device.

Transmission rate 19200 300
1200
4800
9600
14400
19200
38400
57600
115200

Transmission rate (Baude)

Parity (read only) None None Parity setting for the Online Access. This
parameter is read-only (not editable).

Data bits (read
only)

8 8 Number of data bits. This parameter is read-
only (not editable).

Stop bits (read
only)

1 1 Number of stop bits. This parameter is read-
only (not editable).

Run on config
fault

No No The PLC program is not executed if there are
faults in configuration.

Yes The PLC program is executed even if there
are faults in configuration.

Configuration

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6099

The serial interface settings must match the settings for the serial gateway driver. Refer to the
description for programming via the serial interfaces Ä Chapter 1.6.5.4.2.2 “Programming via
the serial interfaces” on page 6200.

Setting COMx - ASCII
With the selection ASCII, the initialization of the serial interface is done for the "free protocol",
i.e. all interface parameters can be set and any protocol can be realized.
Sending and receiving data is done by means of the function blocks COM_SEND and
COM_REC which are contained in Ä Chapter 1.5.4.3 “ASCII communication library”
on page 783.

To be able to receive data using the function block COM_REC, a buffer of the
size 272 bytes must be available (for example abyRecData : ARRAY[0..271] OF
BYTE).

This is also required if only short telegrams are received.

The operating system provides a total of 32 buffers with 272 bytes each for the transmission
and reception of data. If the PLC is in STOP mode (= pause) or the input EN at the block
COM_REC is set to FALSE or the function block is not called, these buffers run full.
If the function block COM_REC is called again (with EN = TRUE) before all buffers are used,
the data received meanwhile are available.
If all buffers were full, the error Invalid handle with ERR = TRUE and ERNO = 16#2001 = 8193
is reported for one cycle. After this the reception is reset.
Receiving is always reset after a download or the command Online/Reset.

Right-click “COMx_Online_Access è Add object” and select “COMx_ASCII ” from the list.
The parameters define how the serial interface will be initialized. The parameters can be
grouped. They are used to initialize the following functions:
● Monitoring the programming login:

Enable login
● Modem control and RS-485:

RTS control, TLS, CDLY
● Recognition of telegram ending for reception:

Character timeout, Telegram ending selection, Telegram ending value, Telegram ending
character

● Checksum
● Transmission parameters:

Transmission rate, Parity, Data bits, Stop bits
The following parameters are available:

Parameter Default value Value Description
Enable login
Ä Chapter
1.6.5.2.11.3.1
“Enable login”
on page 6102

Disabled Disabled There is no check with regard to the Con-
trol Builder login telegram.

Enabled Telegrams received are checked with
regard to the Control Builder login
sequence. If the sequence is detected,
the protocol setting is changed to Online
access.

Configuration

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6100

Parameter Default value Value Description
RTS control s
Ä Chapter
1.6.5.2.11.3.2
“Usage of
modems”
on page 6103

None None No RTS control (direction control, not for
PM55x and PM56x CPUs)

Telegram RTS control activated
(absolutely necessary for RS-485!)

RTS/CTS (DTE
<--> DTE)

RTS and CTS signals are controlled to
simulate a DTE device at the PLC commu-
nicating with a DTE device.

RTS/CTS (DTE
--> DCE)

RTS and CTS signals are controlled to
simulate a DTE device at the PLC commu-
nicating with a DCE device.

RTS/CTS (DCE
<-- DTE)

RTS and CTS signals are controlled to
simulate a DCE device at the PLC com-
municating with a DTE device.

TLS
Ä Chapter
1.6.5.2.11.3.2
“Usage of
modems”
on page 6103

0 0...65535 For AC500 CPUs and CM574-RS: Carrier
lead time in [ms] (TLS > CDLY)

0...850 For CI504-PNIO and CI506-PNIO: Carrier
lead time in [ms] (TLS > CDLY)

CDLY
Ä Chapter
1.6.5.2.11.3.2
“Usage of
modems”
on page 6103

0 0...65535 For AC500 CPUs and CM574-RS: Carrier
delay time in [ms] (CDLY <= TLS)

0...850 For CI504-PNIO and CI506-PNIO: Carrier
delay time in [ms] (CDLY <= TLS)

Character
timeout
Ä Chapter
1.6.5.2.11.3.3
“Telegram
ending identi-
fier”
on page 6104

0 0...65535 For AC500 CPUs and CM574-RS: Char-
acter timeout in characters (must be 0
if Telegram ending selection = Character
timeout)

0/32 For CI504-PNIO and CI506-PNIO: Char-
acter timeout in bits (must be 0 if Telegram
ending selection = Character timeout)

Telegram
ending selec-
tion Ä Chapter
1.6.5.2.11.3.3
“Telegram
ending identi-
fier”
on page 6104
and Ä Chapter
1.6.5.2.11.3.4
“Checksum”
on page 6107

none none No telegram ending identifier

String (check
receive)

2 characters, e.g. <CR><LF> (16#0d,
16#0a -> 16#0d0a) in parameter "Tele-
gram ending value" (not supported with
COM2 of AC500-eCo CPUs)

Telegram length Telegram ending identifier set by telegram
length

Duration Telegram ending identifier set by time (not
supported with CI504-PNIO and CI506-
PNIO)

Character
timeout

Telegram ending identifier set by character
timeout

Telegram
ending char-
acter
Ä Chapter
1.6.5.2.11.3.3
“Telegram
ending identi-
fier”
on page 6104

16#0d 0...255 Up to version V1.1.x: Telegram ending
character

0 0...2 As of version V1.2.0: Number of end char-
acters in case of telegram ending selection
"String"

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6101

Parameter Default value Value Description
Telegram
ending value
Ä Chapter
1.6.5.2.11.3.3
“Telegram
ending identi-
fier”
on page 6104

0 0...65535 Up to version V1.1.x: Telegram ending
identifier value for settings "Duration" and
"Character timeout"

0 0...65535 As of version V1.2.0: Telegram ending
identifier value for settings "Duration",
"Character timeout" and "String"

Checksum
Ä Chapter
1.6.5.2.11.3.4
“Checksum”
on page 6107

none None No checksum

CRC8 CRC8 checksum

CRC16 CRC16 checksum (Motorola format)

LRC Add all values to byte (ignore overflow),
result multiplied by -1

ADD Add all values to byte (ignore overflow)

CS31 CS31 bus checksum

CRC8-FBP CRC8 FBP field bus neutral protocol

XOR XOR all values to byte (ignore overflow)

CRC16 (Intel) Like CRC16, result swapped

Transmission
rate

19200 300
1200
4800
9600
14400
19200
38400
57600
115200

Transmission rate (Baud)

Parity none None No parity check

Odd Odd parity

Even Even parity

Mark Parity bit := TRUE (Not supported with
CI504-PNIO and CI506-PNIO)

Space Parity bit := FALSE (Not supported with
CI504-PNIO and CI506-PNIO)

Data bits 8 5, 6, 7, 8 Character length in bits/character

Stop bits 1 1, 2 Number of stop bits

Enable login
If Enable login is set to Yes, all received telegrams are checked with regard to the CODESYS
login service.

It is recommended to activate the automatic login detection only for those proj-
ects for which this function is absolutely required because it slows down com-
munication via the serial interface and also influences the PLC performance.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6102

If the connection is directly made via RS-232, a login telegram will only be detected if the same
parameters as used by CODESYS (Transmission rate=19200 Baud, Stop bits=1, Parity=None,
Data bits=8 bit) are set when initializing the interface.
The same applies if the connection is made via RS-232/RS-485 interface converters. The login
telegram can only be detected if the initialization parameters have the same values as the
parameters set in CODESYS. Because for such an application usually more than one devices
are connected to the RS-485 transmission line the following has to be observed additionally:
The CODESYS login telegram does not contain a device address. Thus, the service is first
identified by all devices connected to the RS-485 transmission line that can be programmed
using CODESYS and the interface of which is able to read the login telegram (interface with
parameter Enable login set to Yes). Due to this, telegram collisions can occur during the subse-
quent acknowledgement of the login request by these devices, resulting in an interruption of the
communication.
If the connection between CODESYS and the PLC is established via modem, the communica-
tion is not influenced by the interface parameters set in the PLC configuration. The parameter
values required for the modem used have to be set. Once the initialization is completed, the
mode processes the received telegrams according to the parameter settings. Also the assign-
ment between login request and an individual PLC is guaranteed because the connection is
established using the modem's phone number or MSN.
The login with CODESYS first causes a reinitialization of the interface. All blocks accessing this
interface are locked during the online session, i.e. they do not perform any function. During this
period the block outputs have the following values:
DONE = FALSE
ERR = TRUE
ERNO = PROTOCOL_PROTECTED = 16#301F = 12319
The blocks will be reactivated after the logout by CODESYS.
The login monitoring for an interface is only done if CODESYS is not already logged in via
another interface (Ethernet, ARCNET or other COM).

Usage of modems
The ASCII protocol considers the special properties of modems, interface converters and
repeaters. If these devices are used at a serial interface operated in 'free mode', the com-
pression mechanism possibly supported by these devices has to be deactivated. For detailed
information, refer to the operation manual of the used device.
Some repeaters, modems or interface converters require a control signal in order to set the
transfer direction. The direction control can be enabled or disabled via the input RTSCTRL.
Various devices additionally require a lead time to stabilize their carrier signal. These devices
can only transfer data in send direction after this time has elapsed. This carrier lead time can be
set via the input TLS.
Additionally, for some devices it is necessary to sustain the carrier signal in send direction for
some time after data transfer is completed. Only if this time has elapsed, the complete transfer
of a telegram is ensured and the devices are ready for data transfer in opposite direction. This
carrier delay time can be set via the input CDLY.

Carrier lead time (TLS) and carrier delay time (CDLY) must be adjusted for all
communication devices connected to the same transmission line.

The times are only considered for RTS control set to telegram.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6103

For CI504-PNIO and CI506-PNIO: For the time settings of TLS/CDLY, the used
transmission rate listed in the following table has to be considered:

Transmission rate [Bd] Max. value for TLS/CDLY [ms]
300 850

1200 212

2400 106

4800 53

9600 26

14400 17

19200 13

38400 6

57600 4

115200 2

Telegram ending identifier
The telegram ending identifier is set using the parameters Character timeout, Telegram ending
selection, Telegram ending character and Telegram ending value.
Character silent time monitoring:
Monitoring of the character timeout can be set for all possible telegram ending settings (except
Character timeout).
If the parameter Character timeout = 0, no character timeout monitoring is done.
With Character timeout > 0 the character timeout monitoring is activated.
The character silent time is defined in number of characters. The number of characters and the
interface parameters (Transmission rate, Parity, Data bits and Stop bits) are used to calculate
the silent time.
Example: Transmission rate=9600 Baud, Parity=none, Data bits=8, Stop bits=1, Character
timeout=3
This results in a frame of 10 bits/character:
1 start bit + 8 data bits + 0 parity bit + 1 stop bit
Character silent time = 1000 x Character timeout x Frame / Transmission rate [ms]
Character timeout = 1000 x 3 x 10 / 9600 = 3.125 ms ~ 4 ms.
If the time between the reception of two characters exceeds the character silent time, the
reception is aborted with an error and the characters received up to this moment are made
available.
The following parameter combinations are possible:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6104

Character
timeout
see remark on
character silent
time monitoring

Telegram
ending selec-
tion
Type of tele-
gram ending
identifier

Telegram
ending char-
acter = ignored

Telegram
ending value =
ignored

Description

Number of char-
acters 0 or > 0

None - - No telegram
ending identifier,
i.e., the charac-
ters received
since last call are
provided. The
maximum
number of char-
acters is limited
to 256. For
CI504-PNIO and
CI506-PNIO: The
data will only be
provided after
256 characters
have been
received.

Number of char-
acters 0 or > 0

String (check
receive)

Number of tele-
gram ending
characters 1 or 2

2 characters (for
example
16#0d0a)

According to
value set for
"Telegram ending
character", it is
checked for 1 or
2 ending charac-
ters.
The ending char-
acter(s) is (are)
not passed, i.e.,
they are not con-
tained in DATA
area.

1 1 16#0d =
13dec =
<CR>

After reception of
16#0d, telegram
received is
reported.

2 2 16#0d0a =
3338dec =
<CR><LF>

After reception of
16#0d and sub-
sequently 16#0a,
telegram
received is
reported.

Number of char-
acters 0 or > 0

Telegram length - Number of char-
acters > 0 and £
256

Telegram
received is
reported once the
number of char-
acters defined in
"Telegram ending
value" is
received.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6105

Character
timeout
see remark on
character silent
time monitoring

Telegram
ending selec-
tion
Type of tele-
gram ending
identifier

Telegram
ending char-
acter = ignored

Telegram
ending value =
ignored

Description

Number of char-
acters 0 or > 0

Duration - Time in [ms] Telegram
received is
reported once the
time set for "Tele-
gram ending
value" (in [ms]) is
elapsed. The
time starts with
the first FALSE -
> TRUE edge at
input EN of the
receive block
COM_REC.

0 Character
timeout

- For Onboard
COM:
Number of char-
acters > 0 and £
256

The number of
characters set for
Telegram ending
value and the
interface parame-
ters (Transmis-
sion rate, Parity,
Data bits and
Stop bits) are
used to calculate
the silent time.
Telegram
received is
reported if the
silent time
between two
characters is ³
the calculated
silent time.

For CI504-PNIO
and CI506-PNIO:
Number of bits (0
or 32)

The number of
bits set for Tele-
gram ending
value define the
silent time.
Telegram
received is
reported if the
silent time
between 2 char-
acters is ³ the
silent time.

AC500-eCo processor module do not support string (check receive) and char-
acter timeout at COM1 and COM2 as telegram ending selection.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6106

Checksum
With Checksum < > none, the selected checksum is appended when sending. If the parameter
Telegram ending selection is set to String (check receive), the checksum of the ending char-
acter(s) is entered. The character(s) is/are appended according to the inputs END_LEN and
END_CH of the function block COM_SEND.

With Checksum < > none, the selected checksum is checked during reception. If the parameter
Telegram ending selection is set to String (check receive), the checksum of the ending char-
acter(s) is expected.
The ending character(s) and the checksum are not output, i.e., they are not contained in the
DATA area.
A telegram should look as follows:

Data 0 Data 1 Data 2 .. Data n Check 1 [Check
2]

End 1 [End 2]

The values enclosed in [] are only relevant for 16 bit checksum or 2 ending characters.
At the blocks COM_SEND and COM_REC, the area addressed via the input DATA contains the
following values:

Data 0 Data 1 Data 2 .. Data n

Setting in PLC configuration:
"Telegram ending selection" = String
"Telegram ending character" = 2
"Telegram ending value" = 16#0d0a
"Checksum" = CRC16 (i.e., Motorola format)
Send with COM_SEND:
LEN = n+1 END_LEN = 2 END_CH = 16#0d0a
The area addressed via input DATA contains the following data:

Data 0 Data 1 Data 2 .. Data n

The following data are sent via the interface:

Data 0 Data 1 Data 2 .. Data n CRC16
high

CRC16
low

16#0d 16#0a

Reception with COM_REC:
The interface receives the following telegram:

Data 0 Data 1 Data 2 .. Data n CRC16
high

CRC16
low

16#0d 16#0a

The following data are written to the area addressed via DATA:

Data 0 Data 1 Data 2 .. Data n

Example

Sending with
COM_SEND

Receiving with
COM_REC

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6107

Setting COMx - Modbus
Right-click “COMx_Online_Access è Add object è COMx_MODBUS”.
The following parameters are available:

Parameter Default value Value Description
Enable login Disabled Disabled There is no check with

regard to the Control
Builder login telegram.

Enabled Telegrams received
are checked with
regard to the Con-
trol Builder login
sequence. If the
sequence is detected,
the protocol setting
is changed to 'Online
access'.
-> available as of firm-
ware V1.2.0

RTS control None None No RTS control (not
for PM55x and PM56x
CPUs)

Telegram RTS control for tele-
gram activated
-> available as of firm-
ware V1.2.0

TLS 0 0...65535 Carrier lead time in
[ms] or characters
(TLS > CDLY)
-> available as of firm-
ware V1.2.0

CDLY 0 0...65535 Carrier delay time in
[ms] or characters
(CDLY <= TLS)
-> available as of firm-
ware V1.2.0

Telegram ending
value

3 0...65535 Number of characters
for character timeout

Handshake None None No flow control

RTS/CTS Hardware handshake
-> available as of firm-
ware V1.2.0

XON/XOFF Software handshake
-> Not implemented

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6108

Parameter Default value Value Description
Transmission rate 19200 300

1200
4800
9600
14400
19200
38400
57600
115200

Transmission rate
(Baud)

Parity Even None No parity

Odd Odd parity

Even Even parity

Mark Parity bit := TRUE

Space Parity bit := FALSE

Data bits 8 5, 6, 7, 8 Number of data bits, 5
to 8

Stop bits 1 1, 2 Number of stop bits, 1
or 2

Operation mode None None None

Server Server

Client Client

Address 0 0...255 Address for Modbus
slave

Disable write to
%MB0.x from

0 0...65535 Disable write access
for segment 0 starting
at %MB0.x

Disable write to
%MB0.x to

0 0...65535 Disable write access
for segment 0 up to
%MB0.x

Disable read to
%MB0.x from

0 0...65535 Disable read access
for segment 0 starting
at %MB0.x

Disable read to
%MB0.x to

0 0...65535 Disable read access
for segment 0 up to
%MB0.x

Disable write to
%MB1.x from

0 0...65535 Disable write access
for segment 1 starting
at %MB1.x

Disable write to
%MB1.x to

0 0...65535 Disable write access
for segment 1 up to
%MB1.x

Disable read to
%MB1.x from

0 0...65535 Disable read access
for segment 1 starting
at %MB1.x

Disable read to
%MB1.x to

0 0...65535 Disable read access
for segment 1 up to
%MB1.x

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6109

At AC500-eCo Processor Modules the parameter “Parity” cannot be configured
as mark and/or space.

For Modbus slave operation, an area without read and/or write access can be set in the
segments %M0.x and %M1.x. reading/writing is disabled beginning at the set address and is
valid up to the set end address (inclusive).

The parameter “Data bits” always has to be set to 8 for Modbus.

Setting COMx - CS31
Right-click “COMx_Online_Access è Add object è COMx_CS31”.
The serial interface is definitely set as CS31 bus master. COM2 cannot be used as CS31 bus
interface.
The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No The PLC program is executed even if
there are faults in configuration.

Yes The PLC program is not executed if
there are faults in configuration.

Operating mode
(read only)

Master Master Operating mode of the CS31 device.
This parameter is read-only (not edit-
able).

Max wait run 0 Max. wait time for valid inputs.

Min update time 10 Cycle time for data exchange to IEC
program.

For further information on configuring CS31 Modules and I/O channels, see AC500 CS31 Bus
Ä Chapter 1.6.5.2.10.1 “Configuration of CS31 bus master” on page 6078.

Setting COMx - SysLibCom

For AC500-eCo processor modules the serial interface COM2 cannot be config-
ured as SysLibCom mode.

Right-click “COMx_Online_Access è Add object è COMx_SysLibCom”.
The serial interface COMx is prepared for operation with the blocks contained in the library
SysLibCom.lib and the according protocols. For details see Ä Chapter 1.4.2.4.2.1 “Overview”
on page 564.
The following parameters are available:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6110

Parameter Default
value

Value Description

Enable login, see
ASCII protocol descrip-
tion Ä Chapter
1.6.5.2.11.3.1 “Enable
login” on page 6102

Disabled Disabled There is no check with regard to the Con-
trol Builder login telegram.

Enabled Telegrams received are checked with
regard to the Control Builder login
sequence. If the sequence is detected,
the protocol setting is changed to 'Online
access'.

RTS control, see ASCII pro-
tocol description Ä Chapter
1.6.5.2.11.3.2 “Usage of
modems” on page 6103

None None No RTS control (direction control, not for
PM55x and PM56x)

telegram RTS control activated
(absolutely necessary for RS-485!)

TLS, see ASCII protocol
description Ä Chapter
1.6.5.2.11.3.2 “Usage of
modems” on page 6103

0 0...65535 Carrier lead time in [ms]
(TLS > CDLY)

CDLY, see ASCII protocol
description Ä Chapter
1.6.5.2.11.3.2 “Usage of
modems” on page 6103

0 0...65535 Carrier delay time in [ms]
(CDLY <= TLS)

Character timeout
Ä Chapter 1.6.5.2.11.6.1
“Telegram ending identifier”
on page 6112

0 0...65535 Character timeout in characters (must be
0 if Telegram ending selection = Char-
acter timeout)

Telegram ending selection
Ä Chapter 1.6.5.2.11.6.1
“Telegram ending identifier”
on page 6112

None None No telegram ending identifier

String
(check
receive)

2 characters, e.g. <CR><LF> (16#0d,
16#0a -> 16#0d0a) in parameter "Tele-
gram ending value"
Setting not recommended!
(not supported with COM2 of AC500-eCo
processor modules)

Telegram
length

Telegram ending identifier set by tele-
gram length
Setting not recommended!

Duration Telegram ending identifier set by time
Setting not recommended!

Character
timeout

Telegram ending identifier set by char-
acter timeout

Telegram ending character
Ä Chapter 1.6.5.2.11.6.1
“Telegram ending identifier”
on page 6112

0 0...1 Number of end characters in case of tele-
gram ending selection "String"

Telegram ending value
Ä Chapter 1.6.5.2.11.6.1
“Telegram ending identifier”
on page 6112

0 0...65535 Telegram ending identifier value for set-
tings "Duration", "Character timeout" and
"String"

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6111

Parameter Default
value

Value Description

Transmission rate 19200 300
1200
4800
9600
19200
38400
57600
115200

Transmission rate (Baude)

Parity None None No parity check

Odd Odd parity

Even Even parity

Mark Parity bit := TRUE

Space Parity bit := FALSE

Data bits 8 5, 6, 7, 8 Character length in bits/character

Stop bits 1 1, 2 Number of stop bits

Telegram ending identifier
The telegram ending identifier is set using the parameters Character timeout, Telegram ending
selection, Telegram ending character and Telegram ending value.
Character silent time monitoring:
Monitoring of the character timeout can be set for all possible telegram ending settings (except
Character timeout).
If the parameter Character timeout = 0, no character timeout monitoring is done.
With Character timeout > 0 the character timeout monitoring is activated.
The character silent time is defined in number of characters. The number of characters and the
interface parameters (Transmission rate, Parity, Data bits and Stop bits) are used to calculate
the silent time.
Example: Transmission rate=9600 Baud, Parity=none, Data bits=8, Stop bits=1, Character
timeout=3
This results in a frame of 10 bits/character:
1 start bit + 8 data bits + 0 parity bit + 1 stop bit
Character silent time = 1000 x Character timeout x Frame / Transmission rate [ms]
Character timeout = 1000 x 3 x 10 / 9600 = 3.125 ms ~ 4 ms.
If the time between the reception of two characters exceeds the character silent time, the
reception is aborted with an error and the characters received up to this moment are made
available.
The following parameter combinations are possible:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6112

Character
timeout
see remark
on character
silent time
monitoring

Telegram
ending selec-
tion
Type of tele-
gram ending
identifier

Telegram
ending char-
acter = ignored

Telegram
ending value =
ignored

Description

Number of
characters 0
or > 0

None - - No telegram ending
identifier, i.e., the char-
acters received since
last call are provided.
The maximum number
of characters is limited
to 256.

Number of
characters 0
or > 0

String (check
receive)

Number of tele-
gram ending
characters 1 or 2

2 characters (for
example
16#0d0a)

According to value set
for "Telegram ending
character", it is checked
for 1 or 2 ending charac-
ters.
The ending character(s)
is (are) not passed, i.e.,
they are not contained in
DATA area.

1 1 16#0d =
13dec =
<CR>

After reception of 16#0d,
telegram received is
reported.

2 2 16#0d0a =
3338dec =
<CR><LF>

After reception of
16#0d and subse-
quently 16#0a, telegram
received is reported.

Number of
characters 0
or > 0

Telegram
length

- Number of char-
acters >0 and
<=256

Telegram received is
reported once the
number of characters
defined in "Telegram
ending value" is
received.

Number of
characters 0
or > 0

Duration - Time in [ms] Telegram received is
reported once the time
set for "Telegram ending
value" (in [ms]) is
elapsed. The time starts
with the first FALSE -
> TRUE edge at input
EN of the receive block
COM_REC.

0 Character
timeout

- Number of char-
acters >0 and
<=256

The number of char-
acters set for "Tele-
gram ending value" and
the interface parame-
ters (Transmission rate,
Parity, Data bits and
Stop bits) are used to
calculate the silent time.
Telegram received is
reported if the silent
time between two char-
acters is >= the calcu-
lated silent time.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6113

An example on how data is sent/received with the protocol "SysLibCom" is provided in the
System Technology chapter Ä Chapter 1.6.4.1.11.2 “Sending/Receiving data with SysLibCom
protocol” on page 5502.

Setting COMx - Multi

For AC500-eCo processor modules the interface COM2 cannot be configured
as “COM2 - Multi”.

The serial interface COMx is prepared for operation with 2 selectable protocols.
1. Right-click “COMx_Online_Access è Add object” and select “COMx - Multi” from the list.
2. In the device tree, append the desired protocols to the node ([Add object]).
3. Modify the parameters for the appended protocol nodes.

The protocol parameters are identical to the parameters described for the individual proto-
cols.

When restarting the program, i.e. after switching power ON, a download or a reset, the protocol
appended first is always active.
Switching between the protocols is done using the function block COM_SET_PROT (contained
in the library SysInt_AC500_V10.lib). At the function block input COM, the number of the serial
interface is applied and at the input IDX the protocol index is set. The protocol appended first in
the PLC configuration has the index 0, the second protocol the index 1.
An example which describes the usage of the function block can be found in the System
Technology chapter Ä Chapter 1.6.4.1.11.1 “Function block COM_SET_PROT” on page 5501.

1.6.5.2.12 AC500 FBP slave interface

Some processor modules do not provide a neutral FBP interface.

The FBP slave interface is used to connect the AC500 controllers as fieldbus slave via Field-
BusPlug (FBP).
The neutral FBP interface is configured as “FBP_Online_Access” by default. This allows pro-
gramming and login via the FBP slave interface using the device UTF21-FBP adapter (USB
connection on PC-side).

No protocol is set for the neutral FBP interface in the standard configuration
(setting "FBP - none").

If the FBP slave interface address (ADR > 0) is set using the display/keypad,
this address has priority over the PLC configuration setting.

The FBP slave interface occupies the I/O area:
%IB3000 .. %IB3999 or %QB3000 .. %QB3999.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6114

1. Add the desired FBP module to the FBP node and modify the FBP slave parameters if
required:

Parameter Default value Value Description
Run on config fault No No The PLC program is

not executed if there
are faults in configu-
ration.

Yes The PLC program
is executed even if
there are faults in
configuration.

Operation mode
(read only)

Slave Slave Operation mode of
FBP (Slave). This
parameter is read-
only (not editable).

Address 1 0...255 Address of the FBP
slave.

2. Check the I/O configuration. I/O ranges of the different slaves:

FBP Fieldbus I/O range
PDP22 DP V1 modular PROFIBUS DP V0/V1 8 modules, but a total of 32

bytes and 128 words in/out,
244 bytes max. per direc-
tion, a total of 368 bytes per
slave

DNP21 DeviceNet 1 module with a maximum
of 16 bytes and 16 words
(inputs or outputs), for
example 1 x "Module 16
Byte and 16 Word In/Out"

DNP21 modular DeviceNet 8 modules, but a total of 16
bytes and 16 words (input or
output)

COP21 CANopen 8 modules, but a total of 16
bytes and 16 words (input or
output)

Depending on the fieldbus master, the processor module can exchange a different amount
of input/output data with the master.

ð A maximum of 8 modules can be appended to the FBP slave interface. The size of
possible modules depends on the used FBP, fieldbus and Communication Module
(fieldbus master).
The byte inputs and outputs are provided as BYTE and BOOL and the word inputs
and outputs as WORD, BYTE and BOOL.
The I/O modules saved in the PLC configuration and their addresses must match the
entries in the configuration of the respective fieldbus master.
If you want to exchange less data than the maximum allowed amount of I/O data with
the fieldbus master, you can setup a configuration consisting of different modules.

3. Set the I/O mapping.
See Symbolic Names for Variables, Inputs and Outputs for further details on mapping
Ä Chapter 1.6.5.2.9.6 “Symbolic names for variables, inputs and outputs” on page 6060.

Configuration of
a FBP slave

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6115

1.6.5.2.13 Gateway configuration
1. In the Automation Builder project, right-click the topmost PLC tree node and select

“Communication Settings”.

ð The dialog window Communication Settings appears.

2. Click “Advanced Settings” to open the Communication Parameters dialog and to change
the communication settings.

ð This information will be stored in the project file.

3. Click “Gateway” to enter the gateway settings . Specify the connection type (e.g. TCP/IP)
and the gateway address credentials if required.
Confirm your settings with “OK”.

Gateway settings on windows server 2012
To allow multiple concurrent users from different user sessions on the server to connect to
PLCs, the user has to run CODESYS gateway as a system service. This is managed by a
service called "CoDeSys V2.3 Gateway Service Wrapper". The service starts on system start-up
and launch the gateway.
If you want to restart the gateway, use "Services management console" to restart "CoDeSys
V2.3 Gateway Service Wrapper".

You can set the communication settings in the Automation Builder project for every PLC. Other-
wise, an error message is displayed while trying to open CODESYS.
See the description for Ä Chapter 1.6.5.2.13 “Gateway configuration” on page 6116 and select
"TCP/IP" under “Connection”.

1.6.5.2.14 Open Device Type editor

The Open Device Type editor has reached end-of-service-life with Automation
Builder 2.4.0. All data can be accessed, but no further maintenance or support
will be given. This option will be removed with Automation Builder 2.6.0.

Automation Builder provides Open Device Type editor to create device descriptions and param-
eters on any device connected through Modbus RTU/Modbus TCP/IP.
In the Automation Builder main menu click “Tools è Open Device Type Editor” to launch the
Open Device Type editor. The Open Device Type editor consists of device information, groups
and parameters and custom parameter types.

Device information
The “Device Information” tab is used to add basic information of a device and to select the
supported communication protocols.
See the following table to add basic information and communication settings of a device.

Device information
Name Name of the device.

Type The device type is fixed for open devices.

Gateway as a
service

Gateway set-
tings

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6116

Device information
ID The first four digits are fixed for ABB (i.e.

1020). The other four digits must be unique.

Version The version field is enabled to edit and to add
desired value.

Description Device description.

Vendor Name of the vendor.

Order number Ordering information.

Icon Default icons are used if not updated.

Image Default images are used if not updated.

Communication settings
Supported protocols Supports through Modbus RTU, Modbus

TCP/IP or both.

Groups and parameters
1. In the Open Device Type editor, click “Groups and Parameters tab è New” to create

parameter data.
2. Enter the basic information, range, scaling and parameter address information and save

the changes.
3. Click “Discard Changes” to discard the changes while editing the parameter data.
4. To modify already existing parameter data, select the parameter and edit.

See the following table to create parameter data.

Basic information
Group Name of the parameter group.

Name Name of a parameter.

Type Type of parameter.

Description Parameter data description.

Parameter ID Numeric parameter ID.

Unit Unit of parameter.

Offline Access Validates the parameter read/write settings.

Online Access Validates the parameter read/write settings.

Range information
Minimum value Minimum value of a parameter.

Maximum value Maximum value of a parameter.

Default value Default value of a parameter.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6117

Scaling
Numerator Numerator value of a parameter scaling factor.

Denominator Denominator value of a parameter scaling
factor.

Parameter Address
Register ID Address used for Modbus (range 0...65536).

The Open Device Type editor allows to copy-and-paste bulk parameters within the view and
from/to MS Excel.
In “Groups and Parameters”, right-click on parameter data and do the following:
● Click “Copy” to copy bulk parameter data.
● Click “Paste” to paste bulk parameter data to the editor.
● Click “Delete” to delete bulk parameter data from the editor.

If the fields marked with are empty, a message is displayed.

For example, if the parameter data contains inappropriate data, those parameters are high-
lighted in red color. By selecting parameter data, the error is highlighted .

Custom parameter types
The “Custom Parameter Types” tab is used to create Bit Field and Enum custom parameter
types. The custom parameter types are later used as bit field and enum type parameter.

1. In the “Custom Parameter Types” tab, right-click “Bit Field Type è Add New” to create a
new bit field type.

2. In the Basic Info editor, add the parameter Name, Default Value and Base Type.
3. In the Member editor, create a parameter type by adding Name, Default Value and Visi-

bility. Save the data.
4. Click “Previous” or “Next” to enable the bit field for editing.
5. Click “Change sequence of members” to change the bit field sequence.

See the following table to create the parameter type.

Basic info
Name Parameter name.

Default Value Default value of a parameter.

Base Type Parameter type.

Bulk editing

Bit field

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6118

Member
Name Selected bit field name.

Default Value Default value of a bit field.

Visibility Bit field visibility.

The newly created bit field parameter type is visible in the Type options in the “Groups and
parameters” tab.

1. In the “Custom Parameter Types” tab, right-click “Enum Type è Add New” to create a
new Enum parameter type.

2. In the Basic Info editor, enter the parameter Name and select the Type.
3. In the Member editor, click “New Member” to add Enum Type values.
4. Save the Enum Type values to the Device description editor.
5. Click “Previous” or “Next” to enable the Enum value to rename and to change the member

fields.
6. Click “Discard Changes” to discard the changes.

The newly created Enum type parameter is visible in “Groups and parameters è Type”.

Exporting/Importing a device description file
The Open Device Type editor allows to export the device descriptions in DEVDESC format.
In the Open Device Type editor, click “Export” and save the file to the file system.
Select a location in the file system to save the file.

For the import of a customized device description file, click “Import” in the Open Device Type
editor and select the device description file from the file system.

Installing a device description file to the device repository
The device description file can be installed in the Open Device Type editor or by using “Tools
è Device repository” in Automation Builder main menu.

Configuring a device description file in modbus RTU
1. In the Automation Builder project, right-click on Modbus RTU communication node and

select “Add object”.
2. Select the installed device description file and click “Add object”.

ð The added device description file is created using Modbus RTU protocol.

Configuring a device description file in modbus TCP/IP
1. In the Automation Builder project, right-click “Protocols è Add object”.
2. Select “Modbus TCP/IP Server è Add object”.

Enum type
parameter

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6119

3. Right-click “Modbus_TCP_IP_Server è Add object”.
4. Select the operating data file and click “Add object”.

● By default, the installed device description file is updated in CODESYS application.
● After adding the device description file (for example, operating data) to Modbus TCP

IP server, check the IP configuration in “Tools è IP configuration”.
5. Right-click “PLC_AC500 è Communication Settings” to set the gateway communication

settings.

Task configuration
1. In the Automation Builder project, double-click “Application” to launch CODESYS applica-

tion.
2. In the CODESYS application main menu, click “Online è Login”.
3. Click “Resources” tab and configure the task configuration.
4. In the “POU” tab, double-click the device description file and change the status to TRUE.

1.6.5.3 Protocols and special servers
1.6.5.3.1 General configuration of protocols and special servers

As of Automation Builder 1.0 protocol configuration and the configuration of special servers
such as FTP server configuration is done at a common device tree location under “Ethernet
è Protocols”.

Right-click “Protocols è Add object” and select the object to be configured from the list.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6120

1.6.5.3.2 IEC60870-5-104 (Telecontrol)
Configuration of IEC 60870-5-104 (Telecontrol)

Protocol IEC 60870-5-104 (telecontrol) is only available on AC500 CPUs with
onboard Ethernet.

Protocol IEC 60870-5-104 is described in Ä Chapter 1.5.4.18 “IEC60870 library” on page 1351.
For further information on telecontrol, see the following chapters:
Configuration < CBP 2.4 Ä Chapter 1.6.5.3.2.3.1 “Configuration up to and including CBP 2.3”
on page 6123

Configuration >= CBP 2.4 Ä Chapter 1.6.5.3.2.4.1 “Configuration changes >= Automation
Builder 1.1/CBP 2.4” on page 6138

General information IEC60870
Introduction

The implemented IEC60870-5-104 protocol allows link-ups between AC500 CPUs with onboard
Ethernet and external systems. The link-up takes place via the onboard Ethernet interface of the
CPU. The telecontrol protocol according to IEC60870-5 is used.
The CPU can work as both control station and substation. In control direction, setpoints and
commands can be set; in monitoring direction the control station sends status values, real
values and discrete values to the substation. Via general inquiry, the substation requests the
control station to send all status values, real values and discrete values. Otherwise, these
values are sent by the control station on a change-driven basis, cyclically or when triggered by
an application. Status values, real values and discrete values may contain timestamps. These
are filled in with the time of the process station when sent. The CPU can time-synchronize the
telecontrol link.
A module accepts the configuration of the physical interface (link layer) and the general protocol
parts (application layer).
Send and receive blocks are available for data exchange. These blocks exist for the
IEC60870-5 data types setpoint value, command value, double command value, status value,
double status value, real value and discrete value. The inputs/outputs of the send and receive
blocks are combined with the signals to be communicated. See documentation of IEC60870
library for more information.

Note: As of AB 1.1 (CBP 2.4) telecontrol configuration has been changed. Hence, description
can be found in the following chapters:
Configuration < CBP 2.4 Ä Chapter 1.6.5.3.2.3.1 “Configuration up to and including CBP 2.3”
on page 6123

Configuration ≥ CBP 2.4 Ä Chapter 1.6.5.3.2.4.1 “Configuration changes >= Automation Builder
1.1/CBP 2.4” on page 6138

Data flow control
Each send or receive block can only process one data message. Ideally, new data are available
at each user task run-through or new data can be sent.
If the output OV (send block only) indicates TRUE, the function block computes more quickly
than the data can be sent. This can happen if the receive block is not computed quickly enough
and has thus not collected all the data.
Alternatively, this block sends either cyclically or if the input value is changed. Ideally, the topical
data can be sent via the telecontrol link in connection with every user task run-through.

Configuration

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6121

Data integrity
With IEC60870-5 protocol, a distinction is made between data transmission in the monitoring
direction (status values, real values, discrete values) and in the control direction (commands
and setpoints).
All data transmissions are acknowledged from the link communication level by the receiver. This
acknowledgement is not sent to the sender of the data in every telecontrol link.
For data transmission in control direction, additional acknowledgement (e.g. ACTTERM) is
possible. These acknowledgements are not sent by every telecontrol link either. For safe data
transmission, it is necessary, in such cases, to configure data readback. The receiver then
sends the data received back to the sender via the corresponding send blocks.
Information in the monitoring direction is acknowledged by the receiver on the lowest communi-
cation level (link level) when received. This acknowledgement is generated by the telecontrol
head itself with some telecontrol heads. In the event of overload/overrun, a data message may
be lost. For data in the control direction, so-called ACTTERM acknowledgement can be used.
This additional acknowledgement is sent back to the sender when the data have been executed
in the process. If data are to be sent in the monitoring direction with guaranteed transmission, it
is necessary to read back the sent value via another variable and, after observing a monitoring
time, resend in the event of an error.

Data transmission
Send blocks

On the basis of the communication protocol, it is sensible to restrict the data types at one
send block to one type. Therefore, there are 5 types of send blocks: send of status values,
commands, real values, setpoints and discrete values. These types are mapped to the IEC1131
data types BOOL, REAL and DINT. See documentation of IEC60870 Library for more informa-
tion.
Operating modes of the send blocks
The send blocks know three operating modes to send their data:
● Caused by request pin (SEND)
● Send in connection with a change of data (AUTO)
● Cyclic send of data (CYCLE)

Send via request pin
The SEND signal is evaluated on the rising edge, the RDY signal remains applied for one
computation cycle. If a rising edge is generated again at the SEND signal although no acknowl-
edgement has yet been received from the receiver, the OV pin is set in order to indicate that
an overrun has happened. The evaluation of the receive acknowledgement is carried out before
the evaluation of whether transmission is to take place. This means, assuming that there is an
appropriately fast telecontrol link, that in connection with change-driven and cyclic transmission,
a transmission job can be sent in connection with every computation of the block. In connection
with send via the request pin it is possible to send only in connection with every second
computation (send takes place only with a rising edge).

Change-driven send of data
Data are always sent when the value of the input variables changes. When changes take place,
there is an internal simulation that the SEND pin changed from 0 to 1.
In order to prevent unnecessarily frequent send in the event of mild fluctuations in the input
value, a threshold value can be configured for real values and setpoints. The input value is not
sent until it differs positively or negatively from the value last sent by more than the threshold
value.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6122

If the input value changes again although no acknowledgement has yet been received from the
receiver, the OV pin is set in exactly the same way as in connection with send via the request
pin. If an error occurs during send, the job is automatically retried until the value has been sent
without error.

Cyclic send
The data are automatically sent after expiration of a configurable cycle time (SCANDOWN).
This cycle time is indicated in multiples of the task cycle time in which the block is computed. In
this operating mode, an overrun error can occur if the transmission is faster than the response
time of the receiver. For setpoints, it is necessary to ensure that an acknowledgement is
generated by the receiver which is not sent until the setpoint is accepted. The send block is not
ready for transmission again until after this acknowledgement has been received.

Receive blocks
In receive direction, the jobs enter the device module via the interface. The device module
selects the correct receive block using the telecontrol address. To this end, during installation
the receive blocks pass their parameterized telecontrol addresses to the device module. The
device module stores the data received and the receive blocks make the data available at their
output pins in connection with the next computation of the user task.

Configuration < Automation Builder 1.1/CBP 2.4
Configuration up to and including CBP 2.3

The IEC 60870 protocol allows link-ups between AC500 CPUs with onboard Ethernet (e.g.
PM573-ETH and PM583-ETH) and external systems.
The link-up takes place via the onboard Ethernet interface of the CPU.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6123

For further information on configuration (> CBP 2.4), see the following chapters:
Control and Substations Ä Chapter 1.6.5.3.2.3.2 “Control station and substations < Automation
Builder 1.1” on page 6124

Global Address Ä Chapter 1.6.5.3.2.3.3 “Global address” on page 6129

Data Points Ä Chapter 1.6.5.3.2.3.4 “Data points” on page 6131

Validity Check of Configuration Ä Chapter 1.6.5.3.2.3.5 “Validity check of configuration (<
Automation Builder 1.1/CBP 2.4)” on page 6135

Creating Configuration Data in Automation Builder Ä Chapter 1.6.5.3.2.3.6 “Creating configura-
tion data in Automation Builder” on page 6135

Using Control and Substations in CODESYS Ä Chapter 1.6.5.3.2.3.7 “Using control and sub-
stations in CODESYS” on page 6137

Using Data Points in CODESYS Ä Chapter 1.6.5.3.2.3.8 “Using data points in CODESYS”
on page 6137

Control station and substations < Automation Builder 1.1
The CPU can work as both control station and substation.

Control station Master, client, controlling station: Synonyms for a higher-level sta-
tion (central station, monitors others stations)

Control direction Data transfer direction from the control station to the substation

Substation Server, slave, controlled station: synonyms for a subordinate IEC
60870-5-104 telecontrol station (which is monitored)

Monitoring direction Data transfer direction from the substation to the controlling station

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6124

Control station and substation preferences
The application module contains all IEC 60870-5 application layer functionality. Within these
functions the ASDU (Application Service Data Unit) is generated and decoded. Data is
exchanged between the ASDU (protocol layer) and the telecontrol data points.
All functions within the IEC 60870 are handled by this code (ACTCON, ACTERM, General
Inquiry etc).
To use them it is necessary to select the correct settings due to the Control- /Substation.

Tab link layer
The link layer (link level) is the communication layer which accesses to the Ethernet interface.
The link layer provides the following settings:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6125

T1, T2, T3: The values for the connection control and message replication; timeout1/2/3.

This parameter gives the maximum number of outstanding messages and acknowledgement
behaviour.

Send buffer (k): Maximum difference receive sequence number to send state variable

Rec buffer (w): Latest acknowledge after receiving w I format APDUs

Network Settings are only available for control stations. The IP address of the control station
and if available the IP address of another control station (Redundant IP address) can be
selected by the user.

Tab application layer
The application layer is the communication layer with which the send and receive blocks work.
The application layer defines different information objects and services for their transmission.
A data point or information object is identified via a system-wide unambiguous address con-
taining a maximum 5 bytes. Ä Chapter 1.6.5.3.2.3.4 “Data points” on page 6131

Timeout set-
tings

Buffer settings

Network set-
tings

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6126

General
This parameter concerns only setpoints and commands. If this parameter is checked, an
acknowledgement with set ‘actterm’ is generated as reason for transmission at the time at which
the receive block is computed and outputs its telecontrol data at its output pins. On transmission
side, the data block awaits the reception of this ACTTERM acknowledgement and reacts with
its corresponding output (see Ä Chapter 1.5.4.18 “IEC60870 library” on page 1351) to the
reception of this acknowledgement. For commands with execution time, the acknowledgement
is generated when the command is terminated, for commands with continuous execution time
and for setpoints, the acknowledgement is generated when the data are output to the output
pins.

This time indicates how long an acknowledgement will be awaited on the application level. An
acknowledgement is generated only for commands and setpoints on the application level.

The station address defines which station will be subject to a count query. The values define the
2 bytes for the common telecontrol address (GADU1 and GADU2).

Value Description
0 The station address is not used.

1...254 The count is queried on the station defined by the station address.

255 The count is queried on all accessible stations.

Use ACTTERM

Application
timeout

Station address

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6127

After each new establishment of a link and once per hour, a ‘coarse time synchronisation’
message is generated. This time synchronisation is only supported from AC500 to external
systems. Time synchronisation from an external system to AC500 is not provided!
Incoming time synchronisation messages are confirmed by the process station but not exe-
cuted. Greenwich Mean Time (GMT) is used as the time for the synchronisation.

After each establishment of a link or only in connection with the first establishment of a link and
after reconfiguration, an init end message is generated. After the init end message, there is a
general inquiry, if configured.

General inquiry
This parameter concerns only real values, discrete values and status values. The device
module generates a general inquiry message after each new establishment of a link. The other
side then generates a message with the reason for transmission ‘general inquiry’ for every data
point and subsequently an init end message. This procedure ensures that, in the event of a new
establishment of a link, all data are available on the reception side in topical form.

If general inquiry is activated the parameter values are sent.

With a general inquiry no integrated total values are sent.

Counter interrogation
General, 1 .. 4: The count inquiry is executed for a specific group of counters (1 .. 4).
The count inquiry is executed for all groups of counters.

The reset quality bit is sent along with the count inquiry.

The relocate quality bit is sent along with the count inquiry.

Tab navigation
The defined Data Points from all defined global addresses were shown. Description of the
columns: Ä Chapter 1.6.5.3.2.3.3 “Global address” on page 6129

Tab control station configuration
The Control Station Configuration register shows all selectable configurations of the Control and
Substation.

Timesync

Send 'Init end'

Activated

With parameters

Without inte-
grated totals

Group

With reset

With relocate

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6128

Furthermore it is possible to do the setup directly at this register. Otherwise the configuration
can be done as described at the link layer and application layer register.

Global address
To select the correct Control Station / Substation it is necessary to assign the corresponding
global address.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6129

The configuration of the global address takes place by the following 2 global address bytes of
the common telecontrol:

The Navigation menu reflects information about all configured data points Ä Chapter
1.6.5.3.2.3.4 “Data points” on page 6131.

Description of the columns
Name: node name of the data point

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6130

Type: Type of the data point
Group: node name of the data point group
Data type: Data type of the data point
GADU1 / GADU2: Global address of the data point (parameter of the data group). Byte 1/2 of
the common telecontrol address of the block
IAD1, IAD2, IAD3: Local address (Byte 1, 2 and 3) of the data point (parameter of the data
point)
Norm Start / End / Threshold: Parameter of data point (only if available)
NORM. START: Low limit (0 %) of the normalized range for real values and setpoints.
NORM. END: High limit (100 %) of the normalized range for real values and setpoints.
THRESHOLD: Threshold limit beyond which a change of the input value referred to.

Data points
With the IEC 60870-5 protocol, a distinction is made between data transmission in the moni-
toring direction (status values, real values, discrete values) and in the control direction (com-
mands and setpoints).
Therefore, the IEC 60870 protocol contains several data point types (called Pin Group), which
were used due to their special functionality:

The Pin Groups are used by adding Data Points which have to be configured to use them.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6131

Data point configuration
For a user friendly configuration the Data Points will be structured as described in following
table:

Data Point type Parameters Group Parameters DP
 Timestamp IA

single-point information (16) Priority

double-point information Priority

integrated totals Group (none -> 4), Priority

measured value (16) Type (float/norm), Priority *1) Threshold, Normalizing

single command

double command

set point command Threshold, Normalizing Threshold, Normalizing

*1) Priority will only be evaluated if the Data Point group will be sent. If the Data Point is
connected with an receive function block the parameter will be ignored. It is also only necessary
for an unbalanced mode. So for 5-104 variant this parameter will be hidden in the parameter
mask.
All Data Point groups that are marked with (16) can be configured as multiple Data Points where
all Data Points are sent in 1 telegram. It is not possible to receive multiple Data Points.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6132

Mapping to IEC 60870-5-104 type identification

CP56Time2a No timestamp With timestamp
Data point type Norm Floating point Norm Floating point

Measured value (9) M_ME_NA_1 (13)
M_ME_NC_1

(34)
M_ME_TD_1

(36)
M_ME_TD_1

Set point com-
mand

(48) C_SE_NA_1 (50) C_SE_NC_1 (61) C_SE_TA_1 (63) C_SE_TC_1

CP56Time2a
Data Point type

No timestamp Parameters DP

 Timestamp IA

single-point information (16) Priority

double-point information Priority

integrated totals Group (none -> 4), Priority

measured value (16) Type (float/norm), Priority *1) Threshold, Normalizing

single command

double command

set point command Threshold, Normalizing Threshold, Normalizing

Data point modules
Beneath a Data Point group node the user can configure data point nodes. The Data Point
module has parameters depending on the parent node as follows:
Local address (independent from parent node)

Threshold / Normalizing / Type (only beneath measured value and set point command)

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6133

Timestamp

Available for Data Point type: All

2 possible settings: None

 Date and Time

Group

Available for Data Point type: Integrated totals

5 possible settings: None

 1

 2

 3

 4

Type

Available for Data Point type: Measured value

 Set point command

2 possible settings: Floating point. Send/Rec data message as
real value, floating-point number

 Normalized. Send/Rec data message as real
value, normalised value

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6134

Validity check of configuration (< Automation Builder 1.1/CBP 2.4)
A validity check of the IEC configuration can be issued on different levels of the IEC 60870 tree
elements via context menu:

The scope for the check is the actual selected tree element and from there down the tree
hierarchy. The overall check can be started from the top IEC60870 tree element.
The check will look for
● duplicate addresses
● stations and global addresses without a sub tree element
● missing data points
When a check finds errors this will be reported in a separate messages view:

With a double-click on the error line, the part of the configuration with the violation will be
opened. Now, you can correct the error.

Creating configuration data in Automation Builder
Information on creating configuration data in Automation Builder see Ä Chapter 1.6.5.4.1.1
“Creating configuration data” on page 6196.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6135

Connection
The created Control and Substations are read-only, i.e. the settings previously defined in
Automation Builder can not be changed.

Commands
As well as the IEC 60870 Connections the created Data points, named Commands, are also
available in CODESYS.
The created Commands are read-only, i.e. the settings previously defined in Automation Builder
can not be changed.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6136

Using control and substations in CODESYS
To map the IEC 60870-5-104 Control and Substation to CODESYS, use IEC 60870-5-104
function block library (see Ä Chapter 1.5.4.18 “IEC60870 library” on page 1351).
The created Station (Control and Substation) which is available at the global variable list (see
Ä Chapter 1.6.5.4.1.1 “Creating configuration data” on page 6196) has to be assigned to the
corresponding Input of the function blocks of the IEC60870 Library.
The created Control and Substation characteristics itself with:
● Unique names: Names of all connections (substation and control station)
● Unique addresses: All telecontrol addresses (consist of GADU1, GADU2, IA1, IA2, IA3)

have to be unique within 1 telecontrol connection (all knots beneath 1 connection knot).
● Aliases: For the project planning the plug-in generates constant data structure aliases as

global variables (read-only).
For each created connection (Substation and Control Station) the plug-in generates.

VAR_GLOBAL CONSTANT
Control_Station : IEC60870_5_104_Connection:=(Slot:=0, Con:=0);
END_VAR

Example

Description of the initialization values of the station
Slot: The number of the Communication Module slot (0: internal, 1: first external, ...)
Con: Index of connection (Substation / Control Station) beneath an IEC60870-5-104 node.

Using data points in CODESYS
To map the IEC 60870-5-104 Data Points to CODESYS, use IEC 60870-5-104 function block
library (see Ä Chapter 1.5.4.18 “IEC60870 library” on page 1351).

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6137

The created Data Points which are available at the global variable list have to be assigned
to the corresponding Input of the function blocks of the IEC 60870 Library. See Ä Chapter
1.6.5.4.1.1 “Creating configuration data” on page 6196.
For each Data Point group type an equivalent function block type in IEC60870 Library exists.
The implemented functionality of the IEC 60870-5-104 plug-in has the following characteristics:
● Unique names: Names of all connections (Substation and Control Station) and all names of

the data groups are unique
● Unique addresses: All telecontrol addresses (consist of GADU1, GADU2, IA1, IA2, IA3)

have to be unique within one telecontrol connection (all nodes beneath 1 connection node)
● Aliases: For the project planning the plug-in generates constant data structure aliases as

global variables (read only)
For each created connection (Substation / Control Station) at the Automation Builder the plug-in
generates 1 data point in CODESYS.

VAR_GLOBAL CONSTANT
Rec_sp_inf_16 : IEC60870_SinglePointInformation:=(Slot:=0, Con:=0, Idx:=17, NoDP:=1);
END_VAR

Example

Description of the initialization values of the station
Slot: The number of the Communication Module slot (0: internal, 1: first external, ...)
Con: Index of connection (Substation / Control Station) beneath an IEC60870-5-104 node.
Idx: Index of data group beneath a connection
NoDP: number of data points beneath this data group

Configuration >= Automation Builder 1.1/CBP 2.4
Configuration changes >= Automation Builder 1.1/CBP 2.4

The IEC 60870 protocol allows link-ups between AC500 CPUs with onboard Ethernet (e.g.
PM595-4ETH and PM591-2ETH) and external systems.
The link-up takes place via the onboard Ethernet interface of the CPU. As of Automation Builder
Version 1.1 telecontrol is also supported for CPUs that provide more than one Ethernet interface
(e.g. PM595-4ETH and PM591-2ETH). This allows to use different Ethernet interfaces for IEC
60870 connections, hence, telecontrol configuration is changed. Further, as of this version ter-
minology is aligned with IEC 60870 standard and provides additional features that are described
in this chapter. For a description on principle telecontrol configuration.
See Configuration Ä Chapter 1.6.5.3.2.3.1 “Configuration up to and including CBP 2.3”
on page 6123.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6138

For further information on configuration changes, see the following chapters:
Control and Substations ≥ CBP 2.4 Ä Chapter 1.6.5.3.2.4.2 “Control station and substation
configuration” on page 6139

Import Export ≥ CBP 2.4 Ä Chapter 1.6.5.3.2.4.1 “Configuration changes >= Automation Builder
1.1/CBP 2.4” on page 6138

Validity Check of Configuration ≥ CBP 2.4 Ä Chapter 1.6.5.3.2.4.4 “Validity check of configura-
tion” on page 6158

Control station and substation configuration
The CPU can work as both, control station and substation.

Control station Client, master, controlling station: Synonyms for a higher-level sta-
tion (central station, monitors other stations)

Control direction Data transfer direction from the control station to the substation

Substation Server, slave, controlled station: synonyms for a subordinate IEC
60870-5-104 telecontrol station (which is monitored)

Monitoring direction Data transfer direction from the substation to the controlling station

Configure a control station in the device tree PLC -> Interfaces -> Ethernet -> Protocols:
1. Right-click “Protocols è Add objects”.
2. Select the control station from the list and click “Add object”. Configure substations and

further control stations in the same way. As of Automation Builder 1.1 any combination of
control stations and substations can be configured, in due consideration of a total number
of 10 stations.

3. Double-click the new control station node to open parameter configuration. In the Link
Layer tab access to the Ethernet interface is configured.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6139

Tab link layer

In order to provide flexible usage of control stations and substations as of Automation Builder
1.1 configuration of substations has been changed. As several substations can be operated
with several Ethernet interfaces, select the Ethernet interface to be used from the pull-down
menu. Enter the IP address to the control station and if required to another control station
(redundant connection). If no IP address is defined, the substation accepts connection to any
control station.

This field is not available in the Link Layer tab of control stations. Selection
of ETH interface is only possible for substations. The control station is always
configured on both interfaces by default.

T1, T2, T3: The values for the connection control and message replication; timeout1/2/3.

This parameter gives the maximum number of outstanding messages and acknowledgement
behavior.
Send buffer (k): Maximum difference receive sequence number to send state variable.
Rec buffer (w): Latest acknowledge after receiving w I format APDUs.

Network settings
Network settings are available for control stations and for substations. The IP address of the
control station and if available the IP address of another control station (redundant IP address)
can be selected by the user.
For an overview on the configured Ethernet interfaces for the control stations and substations,
double-click the “Protocols” node.

Tab application layer
Settings

The application layer is the communication layer with which the send and receive blocks work.

Timeout set-
tings

Buffer settings

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6140

This parameter concerns only setpoints and commands. If this parameter is checked, an
acknowledgement with set ‘actterm’ is generated as reason for transmission at the time at which
the receive block is computed and outputs its telecontrol data at its output pins. On transmission
side, the data block awaits the reception of this ACTTERM acknowledgement and reacts with
its corresponding output (see Ä Chapter 1.5.4.18 “IEC60870 library” on page 1351) to the
reception of this acknowledgement. For commands with execution time, the acknowledgement
is generated when the command is terminated, for commands with continuous execution time
and for setpoints, the acknowledgement is generated when the data are output to the output
pins.

If this option is not enabled (default), a message that was sent is considered as ok as soon
as transmission was successful. If you enable this option, a message that was sent is not
considered as ok until a success message (foreign acknowledge) is returned from the receiver.

This time indicates how long an acknowledgement will be awaited on the application level. An
acknowledgement is generated only for commands and setpoints on the application level.

The station address defines which station will be subject to a count query. The values define
the 2 bytes for the common telecontrol address (Common addr.). The values concerned are as
follows:
0: The station address is not used.
1...254: The count is queried on the station defined by the station address.
255: The count is queried on all accessible stations.

After each new establishment of a link and once per hour, a ‘coarse time synchronisation’
message is generated. This time synchronisation is only supported from AC500 to external sys-
tems. Time synchronisation from an external system to AC500 is not provided! Incoming time
synchronisation messages are confirmed by the process station but not executed. Greenwich
Mean Time (GMT) is used as the time for the synchronisation.

Use ACTTERM

ForeignAck-
nowledge

Application
timeout

Station address

Timesync

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6141

After each establishment of a link or only in connection with the first establishment of a link and
after reconfiguration, an init end message is generated. After the init end message, there is a
general inquiry, if configured.

General inquiry
This parameter concerns only real values, discrete values and status values. The device
module generates a general inquiry message after each new establishment of a link. The other
side then generates a message with the reason for transmission ‘general inquiry’ for every data
point and subsequently an init end message. This procedure ensures that, in the event of a new
establishment of a link, all data are available on the reception side in topical form.

If general inquiry is activated the parameter values are sent.

With a general inquiry no integrated total values are sent.

Counter interrogation
General, 1 .. 4: The count inquiry is executed for a specific group of counters (1 .. 4). The count
inquiry is executed for all groups of counters.

The reset quality bit is sent along with the count inquiry.

The relocate quality bit is sent along with the count inquiry.

Tab information objects
Open the “Information object” tab to configure so called information objects and a common
address (known as 'data points' and 'Global address' in former Automation Builder versions).
In this tab different information objects and their services for transmission are defined. A data
point or information object is identified via a system-wide unambiguous address containing a
maximum 5 bytes.
1. Right-click in the empty view and select “Add Information Object with ASDU” to add a data

group. Select the desired object from the list (e.g. M_SP_NA_1).

ð An information object with a corresponding ASDU (Application Service Data Unit) is
created.

2. Configure the settings in the “Information Object” tab to your convenience.

3. Double-click a table cell to modify pre-set values. For some ASDUs additional sub infor-
mation objects can be configured. For this, right-click the already existing ASDU and
select “Add Information Object” to selected ASDU option. This allows configuration of 16
data points at the most (depending on the ASDU type). With “Remove Information Object”
the selected ASDU is deleted.

Send 'Init end'
after reconnec-
tion

Activated

With parameters

Without inte-
grated totals

Group

With reset

With relocate

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6142

● ASDU name: node name of the information object (name of the ASDU).
● Data type: Data type of the ASDU.
● ASDU type: Type of ASDU.
● Common addr: Common address of the ASDU (known as 'Global Address' in former AB

Versions). Byte 1/2 of the common telecontrol address of the block (range: 0...255).
● Info obj addr: Together with common address Info obj addr defines the endpoint (range:

0...255).
● Norm start: Low limit (0 %) of the normalized range for real values and setpoints.
● Norm end: High limit (100 %) of the normalized range for real values and setpoints.
● Threshold: Threshold limit beyond which a change of the input value referred to.
● Description: Table cell for free text. Use this field to describe your configuration settings e.g.

differences between configuration variants.

Format of common addr and info obj addr
The following adress formats of your entries in the columns Common addr and Info obj addr of
the Tab Information Objects are possible:
● 1.2 and 3.4.5 (Default format)
● 1-2 and 3-4-5
● 258 or hex 0x102 and 197637 or hex 0x30405
● 513 or hex 0x201 and 328707 or hex 0x50403
Previously you have to choose your preferred adress format:

Description of
the columns

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6143

1. Click “Tools”and then “Options...”

ð The Window Options appears

2. Select IEC 60870-5-104, make your choice and click OK.

Import options of information objects
The User can accept the imported IEC60870 information objects as single change or change as
block.

IEC60870-5-104 Multiple connections
An AC500 with more than one substation connection must be able to identify the corresponding
control station clearly. This identification takes place exclusively via the control station’s IP
address. In order to make it possible for a non-redundant control station to have redundant
access to a substation with 2 Ethernet connections. The local substation address is ignored
during connection establishment.
In the following descriptions, the term station must not be confused with the individual connec-
tion. One station can have several connections. An IEC60870-5-104 communication always
takes place between a control station and a substation. A control station can manage several
substations and also simultaneously be a substation for one or several control stations. How-
ever, these must then be realized using different stations.
A PLC may not be configured for another PLC repeatedly as a substation or a control station
unless a disjunctive Ethernet infrastructure is used for this.
Redundant connections must be specified as such in the configuration.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6144

An AC500 can be used only once as control station for another AC500, it makes no sense to
use the same AC500 repeatedly as a control station for the same substation. Such a structure
is configured as a redundant control station as long as only one AC500 exists as a control
station per substation. However, this control station may have 2 IP addresses. Therefore, this
configuration must either have the IP address 0.0.0.0 entered on the substation for the control
station, meaning that all IP addresses are accepted and no other control station can access
this AC500 or alternatively the possible control station addresses must be specified (ETH1 and
ETH2).

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
If you plan to control several substations with the AC500, they can be cascaded. This results in
a tree structure.

(1) 2 control stations
(2) Substation and 3 control stations
(3) Substation and 3 control stations
(4) Substation
(5) Substation

Structures of connections
In the following, the notation 192.168.1.0/24 is used for TCP/IP networks. Here, the figure /24
specifies the network mask with 255.255.255.0 and 192.168.1.0 describes the network. The
valid addresses for this Class C network are 192.168.1.1 to 192.168.1.254! Only the last byte of
the address is provided on the respective devices, with e.g. .10. This means that the respective
device has the address 192.168.1.10.

Tree constella-
tion

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6145

Minimal structure
A control station with an Ethernet interface is connected to a substation with an Ethernet
interface.

(1) Control station
(2) Substation

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The respective substation IP address must be specified at the control station. For this, in the
network settings of the control station (1) enter the IP address of the substation (in the example:
192.168.1.25). Option “Enable redundant connection” must be disabled.

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Either the control station IP address or the general address 0.0.0.0 must be specified at the
substation (2). For this, in the network settings of the substation enter the IP address of the
control station (in the example: 192.168.1.10). Option “Enable redundant connection” must be
disabled.

If the general address 0.0.0.0 is used at the substation, no further control station
can be configured on this controller for a further substation.

Configuration at
control station

Configuration at
substation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6146

Minimal redundancy structure
The most simple redundant structure with an AC500 consists of a redundant control station
(not AC500) which is connected to the AC500 substation with 2 different IP addresses. These
redundant control stations must synchronize which control station is active.
Only one control station can be active at any given time.

(1) Control station 1A (Not AC500)
(2) Control station 1B (Not AC500)
(3) Substation
(4) Redundancy link

The respective substation IP address must be specified at the control stations 1 and 2 (not
AC500). For this, in the network settings of both control stations enter the IP address of the
substation (in the example: 192.168.1.25).

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Either the control station IP addresses or the general address 0.0.0.0 must be specified at the
substation (3). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.1.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control station
can be configured on this controller for a further substation.

Configuration at
control stations

Configuration at
substation

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6147

Network redundancy
For network redundancy a control station can reach a substation via 2 paths.
Both the control station and the substation can have 2 different IP addresses. Without special
network routing, 2 separate networks should exist, within which both the substation and the
control station each have 2 interfaces.
Possible variants of network redundancy are described in the following.

Network redundancy with 2 separate networks

(1) Control station with 2 redundant paths
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.2.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6148

Network redundancy with 1 network and 2 Ethernet ports in substation

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.1.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6149

Network redundancy with 1 network and 1 Ethernet port in substation

No online redundancy.

Only one connection will be established.

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 1 Ethernet interface

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 0.0.0.0). Option “Enable redundant connection” must be disabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6150

Network redundancy with 2 Ethernet ports in substation

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.1.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses
of the control station (in the example: 192.168.1.11 and 0.0.0.0). Option “Enable redundant
connection” must be disabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6151

Full control station redundancy
A control stationcan consist of two fully redundant units (not AC500s), which are connected via
a redundancy link. These control stations must ensure that only one of them at a time is actively
connected to the substation and communicates with it. The inactive control station, however,
can establish non-active connection with a substation and monitor it with keep alive packages.

(1) 2 redundant Control stations (Not AC500)
(2) 1 Substation with redundant Control station and 2 Ethernet interfaces (2nd port)
(3) Redundancy link

The substation’s IP address must be specified at the control stations (1) (not AC500). For this,
in the network settings of the control station enter the IP addresses of the substation (in the
example: 192.168.1.25 and 192.168.2.26).

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6152

Multiple control stations on the same network
As of firmware version 2.4, an AC500 can be used as a substation for several control stations.
For this, the control stations must be distinguished by their IP addresses. Should a control
station have more than one IP address (redundancy), both possible IP addresses should also
be entered for the allocated substation connection. As a result, even despite being equipped
with several Ethernet interfaces, a device can only be one allocated control station at a time
for a determined substation. Thus, several substations can be configured for different control
stations on a AC500.

(1) Control station 1
(2) Control station 2
(3) 2 Substations (IEC60870-5-104 2nd Connection)

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The substation’s IP address must be specified at the control stations. For this, in the network
settings of the control station (1 and 2) enter the IP addresses of the substation (in the example:
192.168.1.25). Option “Enable redundant connection” must be disabled.

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Both control station's IP addresses must be specified at the substation (3). For this, in the
network settings of the substation enter the IP addresses of the control stations (in the example:
192.168.1.10 and 192.168.1.11). Option “Enable redundant connection” must be disabled.

Configuration at
control stations

Configuration at
substations

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6153

Multiple control stations on different networks
As of firmware version 2.4, an AC500 can have several local Ethernet interfaces which can
be used for separate control station connections. For this, a control station must be identified
via its IP address. The substation address used locally is not used to distinguish a connection
in order to enable a network and therefore route redundancy. On AC500, the acception of
IEC60870-5-104 connections on an interface can only be prevented.

(1) Control station 1
(2) Control station 2
(3) 2 Substations with 2 Ethernet interfaces (2nd port and 2nd connection)

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1 and 2). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.2.26). Option “Enable redundant connection” must be disabled.

PM591-ETH, PM595-ETH, PM5650-2ETH:
Both control station's IP addresses must be specified at the substation (3) under both substation
connections. For this, in the network settings of the substation enter the IP addresses of the
control stations (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be disabled.

Configuration at
control stations

Configuration at
substations

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6154

Double connection

This configuration does work.

But it is senseless!

It is possible to configure a double connection between 2 stations using 2 separate networks (at
least logically separated sub-networks).
However, such a setup has no advantages via-à-vis the minimal structure right at the start
Ä Chapter 1.6.5.3.2.4.2.6.1.1 “Minimal structure” on page 6146.
For this setup, connection data must be double configured and double resources are also
required at the stations, not providing any advantages whatsoever.
Rather the opposite is true, because such configurations are highly prone to errors.

(1) 2 Control stations with 2 Ethernet interfaces
(2) 2 Substations with 2 Ethernet interfaces

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6155

Faulty configuration

This configuration does not work!

If an AC500 is configured as a control station, the interface which is used to reach the substa-
tion is not defined.
The decision as to which interface is used for this is taken by TCP/IP when running.
It is also dependent on the current network configuration.
Here, the current link status and the order of link recognition may be decisive for the interface to
be used.
Such a scenario would not result in stable communication as both substations cannot clearly
distinguish the control stations.
Instead, the connection management for a substation will assume that the control station has
lost the connection and then establishes a connection.

(1) 2 Control stations with 2 Ethernet interfaces
(2) 2 Substations with 2 Ethernet interfaces

Export a CSV file
As an alternative many values can be modified at a time by exporting the configuration to a CSV
file. After modifying the file data, import the CSV file Ä Chapter 1.6.5.3.2.4.3 “Import/Export
functionality ” on page 6157.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6156

Import/Export functionality
As of Automation Builder 1.1 (CBP >= 2.4) configuration of control stations and substations
can be exported/imported via CSV file. Open the CSV file with a spreadsheet software (e.g.
Microsoft Excel) and modify the values within the file to your convenience:
1. Export configuration data: right-click the node of the control station or substation to be

exported.

2. Click “Export è IEC 60870-5-104 information objects (CSV)” and store the CSV file to a
desired directory.

3. Open the CSV file with a spreadsheet software (e.g. Microsoft Excel) and change the
values to your convenience. Added table columns are only accepted after the last column.

4. Import configuration data: right-click the node of the control station or substation that has
been exported previously.

5. Click “Import è IEC 60870-5-104 information objects (CSV)” and select the CSV file from
the file system. Configuration data is imported.

As of Automation Builder 1.1.1 during file import the project data is compared with the project
data that is already available. In order to prevent data from being overwritten inadvertently, you
can select the data that shall be imported in the “Project Compare - Differences” window:

Data on the left side of the window refers to already available project data. This data is dis-
played under “Control station è Information objects” tab. Data on the right side of the window
refers to new data that can be imported after your confirmation. Decide whether to import (and
overwrite) the data or not.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6157

● Data in black color means the existing data and the data to be imported is identical.
● Data in red color means the existing data and the data to be imported differ. Decide whether

to import the new data (and to overwrite the existing data) or not.
● Data in blue color means, the data to be imported is new and will be added to the existing

data.
● Data that has been confirmed for the import already is displayed in green color (after

clicking the [Accept Single] button).
In order to move data from one side of the window to another, select the data and click the
[Accept Single] button. Data is highlighted in yellow.

To confirm the import of all new data, click the top entry (here: All: ASDU name - ASDU tpye -
Common addr - ...). Then, click the [Accept Single] button.
Close the “Project Compare - Differences” tab, save your project and confirm the message. The
changes are displayed in the “Information objects” tab.

Validity check of configuration
We recommend you to verify the IEC configuration of control stations and substations: Right-
click a control station or substation -> Check configuration.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6158

The check will look for the following topics:
● Duplicate addresses.
● Stations without any Information objects.
● ASDU names, which are not unique.
When a check finds errors or incompatibilities this will be reported in a separate messages view
at the buttom of the window:

With a double-click on the error line, the part of the configuration with the violation will be
opened. Now, you can correct the error.

IEC60870 compatibility list

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6159

AC500 V2.4 IEC60870-5-104 Compatibility List

- 1-

9 Interoperability

This companion standard presents sets of parameters and alternatives from which subsets
must be selected to implement particular telecontrol systems. Certain parameter values, such
as the choice of "structured" or "unstructured" fields of the INFORMATION OBJECT ADDRESS of
ASDUs represent mutually exclusive alternatives. This means that only one value of the
defined parameters is admitted per system. Other parameters, such as the listed set of
different process information in command and in monitor direction allow the specification of
the complete set or subsets, as appropriate for given applications. This clause summarizes
the parameters of the previous clauses to facilitate a suitable selection for a specific
application. If a system is composed of equipment stemming from different manufacturers, it
is necessary that all partners agree on the selected parameters.

The interoperability list is defined as in IEC 60870-5-101 and extended with parameters used
in this standard. The text descriptions of parameters which are not applicable to this
companion standard are strike-through (corresponding check box is marked black).

NOTE In addition, the full specification of a system may require individual selection of certain parameters for
certain parts of the system, such as the individual selection of scaling factors for individually addressable
measured values.

The selected parameters should be marked in the white boxes as follows:

 Function or ASDU is not used

 Function or ASDU is used as standardized (default)

 Function or ASDU is used in reverse mode

 Function or ASDU is used in standard and reverse mode

The possible selection (blank, X, R, or B) is specified for each specific clause or parameter.

A black check box indicates that the option cannot be selected in this companion standard.

9.1 System or device
 (system-specific parameter, indicate definition of a system or a device by marking one

of the following with "X")

 System definition

 Controlling station definition (Master)

 Controlled station definition (Slave)

9.2 Network configuration
 (network-specific parameter, all configurations that are used are to be marked "X")

Point-to-point

Multiple point-to-point

Multipoint-

Multipoint-star

X

R

B

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6160

AC500 V2.4 IEC60870-5-104 Compatibility List

- 2-

9.3 Physical layer
 (network-specific parameter, all interfaces and data rates that are used are to be marked "X")

Transmission speed (control direction)

Unbalanced interchange Unbalanced interchange Balanced interchange
Circuit V.24/V.28 Circuit V.24/V.28 Circuit X.24/X.27
Standard Recommended if >1 200 bit/s

Transmission speed (monitor direction)

Unbalanced interchange Unbalanced interchange Balanced interchange
Circuit V.24/V.28 Circuit V.24/V.28 Circuit X.24/X.27
Standard Recommended if >1 200 bit/s

9.4 Link layer
(network-specific parameter, all options that are used are to be marked "X". Specify the
maximum frame length. If a non-standard assignment of class 2 messages is implemented for
unbalanced transmission, indicate the Type ID and COT of all messages assigned to class 2.)

Frame format FT 1.2, single character 1 and the fixed time out interval are used exclusively in
this companion standard.

100 bit/s

200 bit/s

300 bit/s

600 bit/s

1 200 bit/s

2 400 bit/s

4 800 bit/s

9 600 bit/s

2 400 bit/s

4 800 bit/s

9 600 bit/s

19 200 bit/s

38 400 bit/s

56 000 bit/s

64 000 bit/s

100 bit/s

200 bit/s

300 bit/s

600 bit/s

1 200 bit/s

2 400 bit/s

4 800 bit/s

9 600 bit/s

2 400 bit/s

4 800 bit/s

9 600 bit/s

19 200 bit/s

38 400 bit/s

56 000 bit/s

64 000 bit/s

Balanced transmission

Unbalanced transmission

Maximum length L
(number of octets)

Link transmission Address field of the link

not present (balanced transmission only)

One octet

Two octets

Structured

Unstructured

Frame length

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6161

AC500 V2.4 IEC60870-5-104 Compatibility List

- 3-

When using an unbalanced link layer, the following ASDU types are returned in class 2
messages (low priority) with the indicated causes of transmission:

Type identification Cause of transmission

9, 11, 13, 21 <1>

Type identification Cause of transmission

Note: (In response to a class 2 poll, a controlled station may respond with class 1 data when there is no class 2
data available).

9.5 Application layer

Transmission mode for application data

Mode 1 (Least significant octet first), as defined in 4.10 of IEC 60870-5-4, is used exclusively
in this companion standard.

Common address of ASDU

(system-specific parameter, all configurations that are used are to be marked "X")

Information object address
(system-specific parameter, all configurations that are used are to be marked "X")

Cause of transmission
(system-specific parameter, all configurations that are used are to be marked "X")

Length of APDU

(system-specific parameter, specify the maximum length of the APDU per system)

The maximum length of APDU for both directions is 253. It is a fixed system parameter.

One octet Two octets

One octet Structured
Two octets

Unstructured

Three octets

One octet Two octets (with originator
address). Originator address
is set to zero if not used

 X

X

 X

The standard assignment of ASDUs to class 2 messages is used as follows:

A special assignment of ASDUs to class 2 messages is used as follows:

 Maximum length of APDU per system in control direction

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6162

AC500 V2.4 IEC60870-5-104 Compatibility List

- 4-

Selection of standard ASDUs

Process information in monitor direction
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

In this companion standard only the use of the set <30> – <40> for ASDUs with time tag is permitted.

<1> := Single-point information M_SP_NA_1

<30> := Single-point information with time tag CP56Time2a M_SP_TB_1

<31> := Double-point information with time tag CP56Time2a M_DP_TB_1

<32> := Step position information with time tag CP56Time2a M_ST_TB_1

<33> := Bitstring of 32 bit with time tag CP56Time2a M_BO_TB_1

<34> := Measured value, normalized value with time tag CP56Time2a M_ME_TD_1

<35> := Measured value, scaled value with time tag CP56Time2a M_ME_TE_1

<36> := Measured value, short floating point value with time tag CP56Time2a M_ME_TF_1

<37> := Integrated totals with time tag CP56Time2a M_IT_TB_1

<38> := Event of protection equipment with time tag CP56Time2a M_EP_TD_1

<39> := Packed start events of protection equipment with time tag CP56Time2a M_EP_TE_1

<40> := Packed output circuit information of protection equipment with time tag CP56Time2a M_EP_TF_1

<2> := Single-point information with time tag M_SP_TA_1

<3> := Double-point information M_DP_NA_1

<4> := Double-point information with time tag M_DP_TA_1

<5> := Step position information M_ST_NA_1

<6> := Step position information with time tag M_ST_TA_1

<7> := Bitstring of 32 bit M_BO_NA_1

<8> := Bitstring of 32 bit with time tag M_BO_TA_1

<9> := Measured value, normalized value M_ME_NA_1

<10> := Measured value, normalized value with time tag M_ME_TA_1

<11> := Measured value, scaled value M_ME_NB_1

<12> := Measured value, scaled value with time tag M_ME_TB_1

<13> := Measured value, short floating point value M_ME_NC_1

<14> := Measured value, short floating point value with time tag M_ME_TC_1

<15> := Integrated totals M_IT_NA_1

<16> := Integrated totals with time tag M_IT_TA_1

<17> := Event of protection equipment with time tag M_EP_TA_1

<18> := Packed start events of protection equipment with time tag M_EP_TB_1

<19> := Packed output circuit information of protection equipment with time tag M EP TC 1

<20> := Packed single-point information with status change detection M_SP_NA_1

<21> := Measured value, normalized value without quality descriptor M_ME_ND_1

X

X

X

X

X

X

X

X

X

X

X

 Maximum length of APDU per system in monitor direction

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6163

AC500 V2.4 IEC60870-5-104 Compatibility List

- 5-

Process information in control direction
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

Either the ASDUs of the set <45> – <51> or of the set <58> – <64> are used.

System information in monitor direction

(station-specific parameter, mark with an “X” if it is only used in the standard direction, “R” if only
used in the reverse direction, and “B” if used in both directions).

System information in control direction
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

<45> := Single command C_SC_NA_1

<46> := Double command C_DC_NA_1

<47> := Regulating step command C_RC_NA_1

<48> := Set point command, normalized value C_SE_NA_1

<49> := Set point command, scaled value C_SE_NB_1

<50> := Set point command, short floating point value C_SE_NC_1

<51> := Bitstring of 32 bit C_BO_NA_1

<70> := End of initialization M_EI_NA_1

<100>:= Interrogation command C_IC_NA_1

<101>:= Counter interrogation command C_CI_NA_1

<102>:= Read command C_RD_NA_1

<103>:= Clock synchronization command (option see 7.6) C_CS_NA_1

<104>:= Test command C_TS_NA_1

<105>:= Reset process command C_RP_NA_1

<106>:= Delay acquisition command C CD NA 1

<107>:= Test command with time tag CP56Time2a C_TS_TA_1

X

X

X

X

X

X

X

X

<58> := Single command with time tag CP56Time2a C_SC_TA_1

<59> := Double command with time tag CP56Time2a C_DC_TA_1

<60> := Regulating step command with time tag CP56Time2a C_RC_TA_1

<61> := Set point command, normalized value with time tag CP56Time2a C_SE_TA_1

<62> := Set point command, scaled value with time tag CP56Time2a C_SE_TB_1

<63> := Set point command, short floating point value with time tag CP56Time2a C_SE_TC_1

<64> := Bitstring of 32 bit with time tag CP56Time2a C_BO_TA_1

X

X

X

X

X

X

X

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6164

AC500 V2.4 IEC60870-5-104 Compatibility List

- 6-

Parameter in control direction
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

File transfer
(station-specific parameter, mark each Type ID "X" if it is only used in the standard direction,
"R" if only used in the reverse direction, and "B" if used in both directions).

Type identifier and cause of transmission assignments
(station-specific parameters)

Shaded boxes: option not required.
Black boxes: option not permitted in this companion standard
Blank: functions or ASDU not used.

Mark Type Identification/Cause of transmission combinations:

"X" if only used in the standard direction;
"R" if only used in the reverse direction;
"B" if used in both directions.

Type identification Cause of transmission
 1 2 3 4 5 6 7 8 9 10 11 12 13 20

to
36

37
to
41

44 45 46 47

<1> M_SP_NA_1 X X X X

<2> M_SP_TA_1

<3> M_DP_NA_1 X X X X

<4> M_DP_TA_1

<5> M_ST_NA_1

<6> M_ST_TA_1

<7> M_BO_NA_1

<8> M_BO_TA_1

<9> M_ME_NA_1 X X X X X

<10> M_ME_TA_1

<11> M_ME_NB_1

<12> M_ME_TB_1

<110>:= Parameter of measured value, normalized value P_ME_NA_1

<111>:= Parameter of measured value, scaled value P_ME_NB_1

<112>:= Parameter of measured value, short floating point value P_ME_NC_1

<113>:= Parameter activation P_AC_NA_1

<120>:= File ready F_FR_NA_1

<121>:= Section ready F_SR_NA_1

<122>:= Call directory, select file, call file, call section F_SC_NA_1

<123>:= Last section, last segment F_LS_NA_1

<124>:= Ack file, ack section F_AF_NA_1

<125>:= Segment F_SG_NA_1

<126>:= Directory {blank or X, only available in monitor (standard) direction} F_DR_TA_1

X

<127>:= Query Log – Request archive file F_SC_NB_1

X

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6165

AC500 V2.4 IEC60870-5-104 Compatibility List

- 7-

Type identification Cause of transmission
 1 2 3 4 5 6 7 8 9 10 11 12 13 20

to
36

37
to
41

44 45 46 47

<13> M_ME_NC_1 X X X X X

<14> M_ME_TC_1

<15> M_IT_NA_1 X X

<16> M_IT_TA_1

<17> M_EP_TA_1

<18> M_EP_TB_1

<19> M_EP_TC_1

<20> M_PS_NA_1

<21> M_ME_ND_1

<30> M_SP_TB_1 X X

<31> M_DP_TB_1 X X

<32> M_ST_TB_1

<33> M_BO_TB_1

<34> M_ME_TD_1 X X

<35> M_ME_TE_1

<36> M_ME_TF_1 X X

<37> M_IT_TB_1 X X

<38> M_EP_TD_1

<39> M_EP_TE_1

<40> M_EP_TF_1

<45> C_SC_NA_1 X X X

<46> C_DC_NA_1 X X X

<47> C_RC_NA_1

<48> C_SE_NA_1 X X X

<49> C_SE_NB_1

<50> C_SE_NC_1 X X X

<51> C_BO_NA_1

<58> C_SC_TA_1 X X X

<59> C_DC_TA_1 X X X

<60> C_RC_TA_1

<61> C_SE_TA_1 X X X

<62> C_SE_TB_1

<63> C_SE_TC_1 X X X

<64> C_BO_TA_1

<70> M_EI_NA_1* X

<100> C_IC_NA_1 X X X

<101> C_CI_NA_1 X X X

<102> C_RD_NA_1 X

<103> C_CS_NA_1 X X

<104> C_TS_NA_1

<105> C_RP_NA_1 X

<106> C_CD_NA_1

<107> C_TS_TA_1

<110> P_ME_NA_1 X X X

<111> P_ME_NB_1

<112> P_ME_NC_1 X X X

<113> P_AC_NA_1

<120> F_FR_NA_1

<121> F_SR_NA_1

<122> F_SC_NA_1

<123> F_LS_NA_1

<124> F_AF_NA_1

<125> F_SG_NA_1

<126> F_DR_TA_1*

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6166

AC500 V2.4 IEC60870-5-104 Compatibility List

- 8-

Type identification Cause of transmission
 1 2 3 4 5 6 7 8 9 10 11 12 13 20

to
36

37
to
41

44 45 46 47

<127> F_SC_NB_1*

* Blank or X only

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6167

AC500 V2.4 IEC60870-5-104 Compatibility List

- 9-

9.6 Basic application functions

Station initialization
(station-specific parameter, mark "X" if function is used)

 Remote initialization

Cyclic data transmission
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions)

 Cyclic data transmission

Read procedure
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions)

 Read procedure

Spontaneous transmission
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions)

 Spontaneous transmission

Double transmission of information objects with cause of transmission spontaneous
(station-specific parameter, mark each information type "X" where both a Type ID without time
and corresponding Type ID with time are issued in response to a single spontaneous change of a
monitored object)

The following type identifications may be transmitted in succession caused by a single status
change of an information object. The particular information object addresses for which double
transmission is enabled are defined in a project-specific list.

Single-point information M_SP_NA_1, M_SP_TA_1, M_SP_TB_1 and M_PS_NA_1
Double-point information M_DP_NA_1, M_DP_TA_1 and M_DP_TB_1

Step position information M_ST_NA_1, M_ST_TA_1 and M_ST_TB_1

Bitstring of 32 bit M_BO_NA_1, M_BO_TA_1 and M_BO_TB_1 (if defined for a specific project)
Measured value, normalized value M_ME_NA_1, M_ME_TA_1, M_ME_ND_1 and M_ME_TD_1
 Measured value, scaled value M_ME_NB_1, M_ME_TB_1 and M_ME_TE_1

Measured value, short floating point number M_ME_NC_1, M_ME_TC_1 and M_ME_TF_1

X

X

X

X

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6168

AC500 V2.4 IEC60870-5-104 Compatibility List

- 10-

Station interrogation
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Clock synchronization
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

optional, see 7.6

Command transmission
(object-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

global
group 7 group 13 group 1
group 8 group 14 group 2
group 9 group 15 group 3
group 10 group 16 group 4
group 11 group 5
group 12 group 6

Information object addresses assigned to each
group must be shown in a separate table.

Clock synchronization

Direct command transmission

Direct set point command transmission

Select and execute command

Select and execute set point command

C_SE ACTTERM used

No additional definition
Short-pulse duration (duration determined by a system parameter in the outstation)

Persistent output

Long-pulse duration (duration determined by a system parameter in the outstation)

X

X

X

X

X

X

X

Supervision of maximum delay in command direction of commands and set point commands

Maximum allowable delay of commands and set point commands

 Day of week used

 RES1, GEN (time tag substituted/ not substituted) used

 SU-bit (summertime) used

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6169

AC500 V2.4 IEC60870-5-104 Compatibility List

- 11-

Transmission of integrated totals
(station- or object-specific parameter, mark "X" if function is only used in the standard
direction, "R" if only used in the reverse direction, and "B" if used in both directions).

Parameter loading
(object-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Parameter activation
(object-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Test procedure
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Counter read

Counter freeze without reset

Counter freeze with reset

Counter reset

General request
 Request counter group 1

Request counter group 3

Request counter group

Request counter group 4

Threshold value
Smoothing factor

Low limit for transmission of measured values
High limit for transmission of measured values

Act/deact of persistent cyclic or periodic transmission of the addressed object

X

X

X

X

X

X

X

X

X

X

Mode A: Local freeze with spontaneous transmission

Mode B: Local freeze with counter interrogation

Mode C: Freeze and transmit by counter-interrogation commands

Mode D: Freeze by counter-interrogation command, frozen values reported

Test procedure X

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6170

AC500 V2.4 IEC60870-5-104 Compatibility List

- 12-

File transfer
(station-specific parameter, mark "X" if function is used).
File transfer in monitor direction

File transfer in control direction

Background scan
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Acquisition of transmission delay
(station-specific parameter, mark "X" if function is only used in the standard direction, "R" if
only used in the reverse direction, and "B" if used in both directions).

Definition of time outs

Parameter Default value Remarks Selected value

t0 30 s Time-out of connection establishment

t1 15 s Time-out of send or test APDUs

t2 10 s Time-out for acknowledges in case of no data
messages t2 < t1

t3 20 s Time-out for sending test frames in case of a
long idle state

Maximum range for timeouts t0 to t2: 1 s to 255 s, accuracy 1 s.
Recommended range for timeout t3: 1 s to 48 h, resolution 1 s.
Long timeouts for t3 may be needed in special cases where satellite links or dialup
connections are used (for instance to establish connection and collect values only once per
day or week).

Maximum number of outstanding I format APDUs k and latest acknowledge APDUs (w)

Parameter Default value Remarks Selected value

k 12 APDUs Maximum difference receive sequence number
to send state variable

w 8 APDUs Latest acknowledge after receiving w I format
APDUs

Maximum range of values k: 1 to 32767 (215–1) APDUs, accuracy 1 APDU

Transparent file

Background scan

Acquisition of transmission delay

Transparent file

Transmission of disturbance data of protection equipment

 Transmission of sequences of events

Transmission of sequences of recorded analogue values

X

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6171

AC500 V2.4 IEC60870-5-104 Compatibility List

- 13-

Maximum range of values w: 1 to 32767 APDUs, accuracy 1 APDU (Recommendation: w
should not exceed two-thirds of k).

Portnumber

Parameter Value Remarks

Portnumber 2404 In all cases

Redundant connections

RFC 2200 suite

RFC 2200 is an official Internet Standard which describes the state of standardization of
protocols used in the Internet as determined by the Internet Architecture Board (IAB). It offers
a broad spectrum of actual standards used in the Internet. The suitable selection of
documents from RFC 2200 defined in this standard for given projects has to be chosen by the
user of this standard.

 Ethernet 802.3

 Serial X.21 interface

 Other selection from RFC 2200:

 List of valid documents from RFC 2200
 1. ...
 2. ...
 3. ...
 4. ...
 5. ...
 6. ...

7. etc.

Number N of redundancy group connections used 2

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6172

1.6.5.3.3 Modbus protocol
Modbus on TCP/IP protocol
Configuration of Modbus TCP/IP server settings

As of Automation Builder 1.1 (CBP 2.4.) Modbus configuration has been moved to another
location within the device tree. Note: Principle of Modbus configuration remains unchanged.

Double-click on “MODBUS_on_TCP_IP (MODBUS on TCP/IP)” to open the Modbus TCP set-
tings in the editor window:

For Modbus TCP/IP protocol configuration add a new object for Modbus Server settings under
“Ethernet Interface è Protocols”. In the device tree double-click the new added item to open the
configuration:

Depending on the Automation Builder/CBP version some or all parameters are available:

Configuration
up to CBP 2.4

Configuration
as of CBP 2.4

Parameters

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6173

Parameter Default Value range Description
Server connections 0 0...X

(X depending on
CPU)

Maximum number of logical
server connections allowed in
parallel.
0 means only client usage
(Modbus master). Requests
from other clients are ignored.

Task timeout 2000 100...6000000 Used for client mode only: A
request is cancelled if no reply
from the server is received
during the time given in task
timeout [in ms].

OMB time 1000 100...6000000 Used for server mode only:
determining how long a logical
connection in [ms] remains after
receiving the reply message of
a client. Establishing and ter-
minating of connection takes
some time. When the data com-
munication between the con-
troller and the servers should
take place only at long inter-
vals, it is useful to close the
connection immediately after
completion of the data commu-
nication.

Send timeout 0 0 ... 2000000000 Used for client mode only: defi-
nition, how long [in ms] the PLC
tries to send a request to a
server.
CM579-ETH: 0 is default value
31000 ms
Onboard Ethernet: not imple-
mented

Connect timeout 0 0 ... 2000000000 Used for client mode only: defi-
nition, how long [in ms] the PLC
tries to establish a TCP connec-
tion with a server.
CM579-ETH: 0 is default value
31000 ms
Onboard Ethernet: fixed value
18000 ms

Close timeout 0 0 ... 2000000000 Used for client mode only: defi-
nition, how long [in ms] the PLC
tries to quit a TCP connection
with a server.
CM579-ETH: 0 is default value
31000 ms
Onboard Ethernet: not imple-
mented

Byte order Big endian Little endian Valid for client and server
mode. Format for the transmis-
sion of WORD values (register)
within the telegram.

Big endian

Set default values - - Restoring the default values of
all parameters.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6174

Configuration of Modbus server settings
As of AB 1.1 (CBP 2.4.) Modbus configuration has been moved to another location within the
device tree. Note: Principle of Modbus configuration remains unchanged.

Up to CBP 2.4
Double-click on “MODBUS_on_TCP_IP (MODBUS on TCP/IP)” and select the tab “Modbus
settings” to show the available Modbus settings in the editor window:

As of CBP 2.4
For Modbus TCP/IP protocol configuration add a new object for Modbus Server settings under
Ethernet Interface. In the device tree double-click the new added item to open the configuration:

The following parameters are available:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6175

Parameter Default Value Description Generic see
remark 1

Disable write to
%MB0.x from

0 0...65535 Disable write access for
segment 0 starting at
%MB0.x

Disable write to
%MB0.x from

Disable write to
%MB0.x to

0 0...65535 Disable write access for
segment 0 up to %MB0.x

Disable write to
%MB0.x to

Disable read to
%MB0.x from

0 0...65535 Disable read access for
segment 0 starting at
%MB0.x

Disable read to
%MB0.x from

Disable read to
%MB0.x to

0 0...65535 Disable read access for
segment 0 up to %MB0.x

Disable read to
%MB0.x to

Disable write to
%MB1.x from

0 0...65535 Disable write access for
segment 1 starting at
%MB1.x

Disable write to
%MB1.x from

Disable write to
%MB1.x to

0 0...65535 Disable write access for
segment 1 up to %MB1.x

Disable write to
%MB1.x to

Disable read to
%MB1.x from

0 0...65535 Disable read access for
segment 1 starting at
%MB1.x

Disable read to
%MB1.x from

Disable read to
%MB1.x to

0 0...65535 Disable write access for
segment 1 up at %MB1.x

Disable read to
%MB1.x to

Like for Modbus RTU on the serial interfaces COMx, it is also possible to disable read and/or
write access to individual segments for slave operation. Reading/writing is disabled beginning at
the set address and is valid up to the set end address (inclusive).
Remark 1: Generic device configuration view parameters
Tab IP Settings Configuration or Modbus TCP/IP Server Configuration shows a list of all avail-
able parameters which is only visible if the parameter Show generic device configuration views
is activated (open Options dialog window with menu item Tools -> Options, parameter is located
under section Device editor):

Configuration of Modbus TCP/IP configuration
As of Automation Builder 1.1 (CBP 2.4.) Modbus configuration has been moved to another
location within the device tree. Note: Principle of Modbus configuration remains unchanged.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6176

Double-click on “MODBUS_on_TCP_IP (MODBUS on TCP/IP)” and select the tab “MODBUS
on TCP/IP Configuration” to show the available Modbus settings in the editor window:

For Modbus TCP/IP protocol configuration double-click the Modbus item in the device tree and
select the tab Modbus TCP/IP Server Configuration:

Depending on the Automation Builder/CBP version some or all parameters are available:

Parameter Default Value Description
Server connections 0 0...X

(X depending
on PLC)

Maximum number of logical parallel
connections, that are kept for con-
nection requests by clients in oper-
ation mode as server. The value 0
means pure client mode (Modbus
master) (0..X, depending on the
performance of the PLC)

Task timeout 2000 100 ... 6000000 Only valid for client mode.
A request is canceled when
no response by the server is
received within this time in [ms].
(100..6.000,000 ms)

Configuration
up to CBP 2.4

Configuration
as of CBP 2.4

Parameters

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6177

Parameter Default Value Description
OMB time 1000 100 ... 6000000 Only valid for server mode. Deter-

mining how long a logical connec-
tion in [ms] remains after receiving
the reply message of a client.
Establishing and terminating of
connection takes some time. When
the data communication between
the controller and the servers
should take place only at long inter-
vals, it is useful to close the con-
nection immediately after comple-
tion of the data communication.
(100..6.000,000 ms)

Send timeout 0 0 ...
2000000000

Only valid for client mode. Deter-
mining how long the controller
should try to send a request to a
server. (0..2.000,000,000 ms)

Connect timeout 0 0 ...
2000000000

Only valid for client mode.
Determining how long the con-
troller should try to create a
TCP connection with a server.
(0..2.000,000,000 ms)

Close timeout 0 0 ...
2000000000

Only valid for client mode.
Determining how long the con-
troller should try to close a
TCP connection with a server.
(0..2.000,000,000 ms)

Byte order Big endian Little endian Valid for client and server mode.
Format of the transfer of word
values (registers) in the telegram.
Depending on the settings, the byte
order will be changed by sending
and receiving. Changing the byte
order may be required e.g. when
devices with different processor
types are used.

Big endian

Modbus on RTU protocol
Protocol description can be found in the chapter for Serial interfaces Ä Chapter 1.6.5.2.11.4
“Setting COMx - Modbus” on page 6108.

1.6.5.3.4 MQTT client protocol
System technology

The MQTT protocol is a lightweight communication protocol which is widely used on the internet
to connect embedded device to the cloud.
The MQTT (Message Queuing Telemetry Transport) client library allows to integrate an AC500
processor module to act as a client in the MQTT protocol. Thus, it is possible to exchange data
between the AC500 and other devices connected to the MQTT network.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6178

In the figure below, there is an MQTT network with one broker (MQTT broker in the middle) and
five clients. The figure shows the main functions of MQTT to send and receive data: publish
and subscribe. The clients can publish messages with a specific topic to send data (e. g. the
temperature of a connected sensor with a timestamp) to the MQTT broker. For example, the
client “AC500_1” publishes a message to topic “topic/2”. On the other hand side clients can
also subscribe to topics to receive data. For example, the client “Laptop” has subscribed topic
“topic/2”. So all messages with the topic “topic/2” which has been published to the MQTT broker
will be sent immediately to the client “Laptop”. This creates a message flow from the client
"AC500_1" to the laptop.

To realize the MQTT behavior, there are several function blocks implemented in the Ä Chapter
1.5.4.24 “MQTT client library” on page 1710.

Table 753: Function blocks overview
Function Block Description
MqttConnectWithCertBuffer
MqttConnectWithCertFile

Every MQTT use case starts with establishing a connection to
an MQTT broker. Therefore, a connection structure needs to be
created. The connection structure is used to identify the connec-
tion for subsequent operations like publish or subscribe.
It is possible to establish an SSL connection. Using an SSL
connection, at least a certificate for the server is needed. Certif-
icates can be loaded from a buffer (program variable) or a file
which is stored on the PLC.

MqttGetReceivedPacket
MqttPing MqttPublish
MqttSubscribe
MqttUnsubscribe

These function blocks can be used on an established MQTT
connection to realize the desired use case.

MqttDisconnect This function block is the end of each use case.

One MQTT send use case could look like this:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6179

*) It makes sense for several publish messages in a row (e. g. one message per second) not
always open a new connection.
One MQTT receive use case could look like this:

The MQTT client uses the TLS version 1.2.

For the MQTT client no configuration is needed.

All function blocks have to be called in tasks with cyclically processing.
You can use the function blocks with:
● PLC_PRG with automatic task configuration or manual task configuration.
● One single program or different programs.
● One single task or different tasks.
With different programs assigned to different tasks you can define different cycle times and
priorities.

● No persistent session. After an interrupted connection, the client needs to subscribe on
topics again in case of reconnect.

● One connection (MQTT_CONNECTION) cannot be shared between multiple tasks. Different
connections can be used by different tasks or even within the same task.

● Only one FB can operate on a single connection at the same time. Always wait for the FB
to complete before calling the next FB. To use two different FB’s in parallel (like publish and
receive) it is necessary to have two different connections, otherwise they must be called one
after the other.

The MQTT protocol requires AC500 devices with integrated Ethernet.

Examples
Example projects for the libraries can be found in the folder: \Users\Public\Documents\Automa-
tionBuilder\Examples.
MQTT can be used using the MQTT client library or JSON. An introduction to programming with
JSON is given in the application example.

TLS version

Configuration in
Automation
Builder
Configuration in
CODESYS

Limitations

Hardware

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6180

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010564&LanguageCode=en&DocumentPartId=&Action=Launch

1.6.5.3.5 SMTP protocol
Introduction of the SMTP protocol

SMTP Protocol is only available on the AC500 CPUs with onboard Ethernet.

SMTP protocol allows a PLC to instruct a mail server in the network to send emails of user
specified content to email accounts the SMTP server can reach (directly or via forwarding). The
SMTP protocol is accompanied by the function block ETHx_SMTP_EMAIL_SEND within the
AC500 Ethernet library. This function block replaces the previous ETH_SMTP_EMAIL_SEND
function block of former CBP versions. Note: Input semantics have been changed.
Both function blocks allow users to transfer email content and data to the mail server via SMTP
protocol implementation.
Please consider the following restrictions and constraints in the current AB Version:
● SMTP implementation only covers client functionality (AC500 can not receive emails)
Ä Chapter 1.6.5.3.5.2 “Configuration of the SMTP protocol (>= CBP 2.4)” on page 6181.

● Number of text lines in the email body is restricted to 20 lines with 255 characters each.
● Number of files attached to an email is restricted to 10 files with a file name of 255 chars

and a path of 255 chars.
● SMTP implementation does not support secure connections to the SMTP server (like TLS or

SSL).

Configuration of the SMTP protocol (>= CBP 2.4)

SMTP Protocol is only available on the AC500 CPUs with onboard Ethernet.

For SMTP protocol configuration add a new object under Ethernet Interface. In the device tree
double-click the new added item to open SMTP configuration:

The following parameters are available:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6181

Parameter Default Value Description
Configuration for SMTP configuration
Server 0.0.0.0 - Enter the IP address of the target SMTP

server.

Port 25 - Enter the SMTP port of the target SMTP
server.

Mail address Empty - Enter a valid email address.

User name / Pass-
word

Empty - Enter the user credentials for authentica-
tion at the SMTP server.

Domain Empty - Domain of the target SMTP server. If an
email address was entered, the data is
set automatically.

Sender name Empty - Name that will be used for SMTP mails.
If an email address was entered, this
address will be set by default.

Authentication
scheme

AUTH
LOGIN

AUTH
LOGIN

With this authentication method, the
users' password used for authentication
is transferred in plain text to the target
SMTP server.

AUTH
CRAM-
MD5:

With this authentication method, the
users' password used for authentica-
tion is transferred via CRAM-MD5 tech-
nology (Challenge-Response Authentica-
tion Mechanism, Message Digest 5) to
the SMTP server.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6182

1.6.5.3.6 SNTP protocol
Introduction of the SNTP protocol

– SNTP Protocol is only available for AC500 CPUs with onboard Ethernet.
– If a high precision of system time is wanted, use a fully functional NTP

server or at least a SNTP server with a high-precision time-source (e.g.
DCF-77 receiver). Avoid cascading several levels of SNTP server / SNTP
clients.

– Client requests are normally sent at intervals depending on the frequency
tolerance of the client clock and the required accuracy. However, under no
conditions requests should be sent at less than one minute intervals (see
RFC 4330). Keep that in mind when setting polling-interval of the SNTP
client, especially if a huge amount of clients use one single server.

– Be sure not to use broadcast or multicast addresses as server or backup-
server since current SNTP implementation does not support manycast
mode.

– If the AC500 PLC acts as SNTP server but is itself not synchronized with an
external clock, e.g. a DCF77 device or the internet, the response telegram
from the server back to the client will have the following flags:
– Peer Clock Stratum: 15
– Leap Indicator: unknown (clock unsychronized)

This might lead to negative effects on or with other devices that have con-
trary clock settings, e.g. a Peer Clock Stratum < 15. To avoid this, use
the function block "RTC_SYNC_DISPLAY" (RTC_AC500_V20.lib) with the
following settings:
– Peer Clock Stratum: primary reference (1)
– Leap Indicator: no warning

As of Automation Builder 1.1 SNTP protocol configuration has been moved to another location
within the device tree. In former Versions SNTP protocol configuration has been configured
under so-called extended settings.
As of and including Automation Builder 1.1 SNTP parameters for SNTP client and SNTP server
are configured under the Protocols item in the device tree.
For further information on SNTP protocol configuration, see Ä Chapter 1.6.5.3.6.2 “Configura-
tion of the SNTP protocol ” on page 6183.

Configuration of the SNTP protocol
As of Automation Builder 1.1 SNTP protocol configuration has been moved to another location
within the device tree. Note: Principle of SNTP configuration remains unchanged.

SNTP client configuration
For SNTP client configuration (Automation Builder 1.1) add a new object “SNTP Client” under
“Ethernet Interface è Protocols”:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6183

The following parameters are available:

Parameter Default Value Description
SNTP Client
Server 0.0.0.0 Valid IP address IP address of the SNTP server.

Backup server 0.0.0.0 Valid IP address IP address of the SNTP server
which will be used if the primary
server is unreachable.

Interval 60 15 ... 65535 Sets the interval in [s] for outgoing
SNTP requests.

Wait for sync before
RUN

 Disabled CPU does not wait for time syn-
chronization from SNTP server and
turns to RUN state immediately.

Enabled CPU waits for time synchronization
from SNTP server and remains in
Stop state after the time is over.

Time to wait for sync 10 1 ... 120 The time the CPU waits for
receiving the time synchronization
from SNTP server. If the CPU
does not receive a valid time within
the given period, an EC4 error
appears.

Allow timejumps Enabled Disabled Timejumps lead to an EC4 error in
the CPU.

Enabled Timejumps are accepted. Param-
eter 'Allowed threshold for time-
jumps' can be adapted to deter-
mine the threshold for the
timejumps. If the needed timejump
exceeds the threshold, the CPU
refuses the setting of time received
from SNTP server and an EC4
error appears.

Allowed threshold for
timejumps

60 1 ... 43200 Represents the threshold which is
allowed for timejumps in [s].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6184

SNTP server configuration
For SNTP server configuration (Automation Builder 1.1) add a new object “SNTP Server” under
“Ethernet Interface è Protocols”:

The following parameters are available:

Parameter Default Value Description
Access control 0.0.0.0/24 Valid IP address Sets the subnet from which

incoming SNTP requests are
accepted. Requests from other
subnets will be ignored. Value
0.0.0.0/24 means IP address/
subnet mask.
The subnet mask 24 means
255.255.255.0
The subnet mask 16 means
255.255.0.0

1.6.5.3.7 UDP protocol
Contents of the UDP protocol configuration

The available Ethernet devices support 2 types of UDP data exchange:
● UDP (no AC31 header): Up to 12 free UDP connections can be configured.
● UDP data exchange: up to 1 AC31 compatible UDP connection can be configured.
For further information on FTP server, see the following chapters:
Using UDP (No AC31 Header) Ä Chapter 1.6.5.3.7.2 “Using UDP (No AC31 header)”
on page 6185

Using UDP Data Exchange Ä Chapter 1.6.5.3.7.3 “Using UDP data exchange” on page 6187

Using UDP (No AC31 header)
The UDP (no AC31 header) data exchange is a free UDP protocol that can be added to the
AC500 Ethernet Communication Module. Up to 12 connections can be configured to each
Ethernet device.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6185

As of AB 1.1 (CBP 2.4.) UDP configuration has been moved to another location within the
device tree. Note: Principle of UDP configuration remains unchanged.

Up to CBP 2.4
Right-click on the Communication Module and select Add device to open the Add Device dialog
where the UDP data exchange module is listed:

Double-click on Connection (Connection) to open the Connection Configuration in editor
window.

As of CBP 2.4
For UDP (no AC31 header) configuration add a new object under “Ethernet Interface
è Protocols”. In the device tree double-click the new added item to open the configuration:

The following parameters are available:

Parameter Default Value Description
Port 0 0...65535 Port that is used for the UDP con-

nection. See note below for further
information.

Size of receive buffer 4096 1464...65535 Size of the receive buffer in
[Bytes]. The behaviour in case of a
full buffer can be determined with
parameter Behaviour on receive
buffer overflow.

Size of transmit buffer 4096 0...65535 Size of the transmit buffer in
[Bytes].

Receive broadcast Disable Disable Reception of broadcast packages
is disabled.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6186

Parameter Default Value Description
Enable Reception of broadcast packages

is enabled. Broadcast packages
will not be ignored by the con-
troller.

Behaviour on receive
buffer overflow

Overwrite Overwrite Incoming packages will overwrite
the oldest packages in case of a
full receive buffer.

Reject Incoming packages will be rejected
in case of a full receive buffer.

The following ports are reserved and will cause a configuration error if selected:
1200, 1201, 123, 80, 24576, 25383.

Using UDP data exchange
The UDP data exchange can be used to realize communication with AC31 devices and is an
optional module that can be added to the AC500 Ethernet communication module.
Right-click on the communication module and select Add device to open the Add Device dialog
where the UDP data exchange module is listed:

Double-click on UDP_data_exchange (UDP data exchange) to open the UDP data exchange
Configuration in the editor window:

The following parameters are available:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6187

Parameter Default Value Description
Size of receive buffer 8192 1464...65535 Size of the receive buffer in [Bytes].

The behavior in case of a full buffer
can be determined with parameter
Behaviour on receive buffer over-
flow.

Size of transmit buffer
high prio

4096 0...65535 Size of the high priority transmit
buffer in [Bytes].

Size of transmit buffer
low prio

4096 0...65535 Size of the low priority transmit
buffer in [Bytes].

Size of timeout buffer 2048 0...65535 Size of the timeout buffer in [Bytes].

Number of header
data

10 0...1464 Number of bytes that are copied into
the timeout buffer for timeout pack-
ages.

Receive broadcast

See note1)

Disable Disable Reception of broadcast packages is
disabled.

Enable Reception of broadcast packages is
enabled.

Behaviour on receive
buffer overflow

Overwrite Overwrite Incoming packages will overwrite
the oldest packages in case of a full
receive buffer.

Reject Incoming packages will be rejected
in case of a full receive buffer.

UDP Port

See note1)

0 0...65535 Port used for the UDP connection.

Note1)

The following ports are reserved and will cause a configuration error if selected:
1200, 1201, 123, 80, 24576, 25383.

At this operating mode, the function blocks have no input for setting a port, so
the port has to be identically at both sides. Otherwise, a communication is not
possible.

UDP broadcast is only working properly with broadcast to the address
255.255.255.255.

1.6.5.3.8 FTP server
Preconditions for the use of the FTP server

● The FTP server is available on all AC500 PLCs with onboard Ethernet (i.e. AC500 CPU with
Ethernet) and firmware version 2.1.0 or higher.

● To start the FTP server it has to be activated in the Automation Builder Ä Chapter
1.6.5.3.8.2 “Configuration of FTP server (< CBP 2.4)” on page 6189.

● After downloading a project with an activated FTP server, you can connect to the PLC with
a standard FTP client Ä Chapter 1.6.5.3.8.4 “Connection to a PLC running a FTP server”
on page 6192 (e.g. "FileZilla").

● You can log in with different usernames giving access to different drives (for further details
please see AC500_CPU_Memory_Locations.doc of the PLC):

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6188

Username Accessible Drives Comment
userdisk user ramdisk

"userdisk"
Size depends on product

ramdisk system ramdisk
"ramdisk"
The system ramdisk should
only be used for Firmware
updates

Size depends on product

sdcard SD card
"sdcard"

Availability and size depends
on inserted memory card

flashdisk flashdisk
"flashdisk"

PM592-ETH only

sramdisk sramdisk
"sramdisk"

Size depends on product

root All available drives -

Constraints for the usage of the FTP server are:
● User passwords are limited to 10 characters (no whitespaces).
● Directory and file names have to be in standard DOS 8.3 notation (e.g.: "abcdefgh.123" for a

file or "12345678" for a directory) without \ / : * ? " < > |.
● Directory and file names may not contain whitespaces and are not case-sensitive.
● Maximum total path length: 255 characters.
● Maximum number of files in the root directory is limited (depends on memory location).

Configuration of FTP server (< CBP 2.4)
1. Open/Create a project for a PLC with onboard Ethernet (i.e. AC500 CPU with Ethernet).
2. Configure the onboard Ethernet.
3. Select: “Node "IP_Settings" è Tab "Extended settings" è checkbox "FTP-Server active"”.
4. Configure the FTP server:

"Port"
--> TCP/IP-Port used to connect to the FTP-Server on the PLC.
"Sessions"
--> maximum number of allowed simultaneous, parallel connections to the FTP-server
each session uses one socket
some FTP clients require several connections to work
"Passwords"
--> set each user’s passwords for login (no entry means = no password).

5. Create configuration & download project to PLC.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6189

If the checkbox "Allow Firmware update" is activated, you can download a PLC firmware to
the RAM disk and the PLC will automatically update the device with the downloaded firmware.
Afterwards a restart of the PLC is required. For further details please see FW_UPDATE_DOCU-
MENTATION.

The system RAM disk should only be used for Firmware updates.

If the TCP protocol listens on the configured FTP port, the server is ready for login.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6190

Configuration of FTP server (>= CBP 2.4)
1. Under Ethernet -> Protocols add a new object and select FTP server from the list.
2. Double-click the “FTP_Server” item to open FTP server configuration. Depending on the

PLC device all or some of the following parameters and options are available:

Parameter Default Value Description
Configuration for ETH1 ETH1/

ETH2
Select the desired Ethernet connection used for
FTP server.

FTP Server

 Allow Firmware
update

Disa-
bled

Enabled CBP firmware/Automation Builder firmware is
not updated automatically. You can download a
PLC firmware to the RAM disk and the PLC
will automatically update the device with the
downloaded firmware. Afterwards a restart of
the PLC is required. For further details see
FW_UPDATE_DOCUMENTATION.

Disabled CBP firmware is updated automatically.

 Port 21 1...x Enter the TCP/IP-Port used to connect to the
FTP server on the PLC.

 Sessions 1 1...4 Enter the max. number of allowed simultaneous
and parallel connections to the FTP server. Each
session uses one socket. Note: Some FTP cli-
ents require several connections to work.

Passwords - - Set each user’s passwords for login. No entry =
no password.

 root - -

 ramdisk - - The system RAM disk should only be used for
firmware updates.

 sdcard - - Inserted memory card.

 userdisk - - User section of the flash disk.

 flashdisk - - Only available with PM5675-2ETH

 sramdisk - -

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6191

1. Create configuration & download project to PLC.
2. If the TCP protocol listens on the configured FTP port, the server is ready for login.

Connection to a PLC running a FTP server
After activating the FTP server, you can log onto the PLC from a PC with a FTP client. In the
following example the web browser Microsoft Internet Explorer has been used:
1. Start the FTP client application.
2. Enter the URL with the syntax:

"ftp://<USERNAME>:<USER_PASSWORD>@<HOST_IP>:<PORT>" into the address line
with:
"USERNAME" to the drive you want to access;
"USER_PASSWORD" to the password of the user set in the Automation Builder;
"HOST_IP" to the IP address of your target PLC running the FTP server;
"PORT" to the FTP port configured in the Automation Builder;
for example:
ftp://root:MyPwd@192.168.0.92:21
ftp://sramdisk:Pwd123@192.168.0.83:20

3. Connect to the PLC (Press "Enter"-key).

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6192

If the connection has been established successfully, Internet Explorer will show the available
contents of the root directory of the chosen user (i.e. the available drives is logged in as "root"
as shown above). For further details on usage of a FTP client please refer to its documentation.

1.6.5.3.9 Web server
Configuration

1. In your PLC project, click “Interfaces è Ethernet è Protocols” and add a new object
“Web Server”.

2. Open the web server settings to change the default settings if required.
Before changing the number of parallel connections for the web server, check the general
information on Ä Chapter 1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2 prod-
ucts” on page 5442.

Parameter Default Value Description
Port 80 0 ... 65535 Listen port of the web

server

Connections 2 1 ... 25 (depending on
CPU type)

Number of parallel
connections accepted
by the web server.
Depending on the
CPU type and web-
visu complexity it
might be possible to
have more connec-
tions to different cli-
ents. The connections
will be opened and
closed one after the
other. This might lead
to the impression of
more parallel connec-
tions than configured.

Configuration in
Automation
Builder

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6193

1. Open the CODESYS.
2. In the “Resources” tab click on “Target Settings” and select the “Visualization” tab.

ð If required, change “Display width” and “Display height” for the web pages.

Enable “Web visualization” check box, otherwise the webpages are only visible in
online mode.
Ensure “Inhibit download of visualization files” check box is disabled.

If you enable “Activate system variable 'CurrentVisu’” check box and
define a global variable “CurrentVisu” [STRING(40)] in your project,
then the name of the active visualization will be stored in this variable.
You can switch between your visualization pages by changing this
value.

Configuration in
CODESYS

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6194

3. In CODESYS open the “Visualizations” tab to create the webpages. The first entry is the
start page of your visualization project and must be named "PLC_Visu".

ð Further information on the creation and formatting of websites is provided in the
CODESYS section Ä Chapter 1.4.5 “Web visualization” on page 721. When building
up your visualization project, consider the required disk space on the user RAM disk.

4. By default, all objects in the visualizations tab are marked for web visualization. When
the project is built, all marked objects are saved as XML files (objectname.xml) into the
project.
To exclude a particular visualization object from the web visualization, click “Project
è Object è Properties”.
In the “Visualization” tab disable Web-Visualization check box.

5. Open a web browser and enter the IP address to the PLC (webserver project): http://<IP
address/webvisu.htm>.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6195

6. Click “Online è Show file information” to check the “PLC Project Data Sizes”.

1.6.5.4 Data transfer and programming
1.6.5.4.1 Data transfer and CODESYS programming
Creating configuration data

If the setup of all devices has been finished, you can create the configuration file.
Right-click on “Application” and select “Create configuration data” from context menu.

ð The generation process starts. The progress is shown in the status bar of Automation
Builder.

Within a Automation Builder version only device versions of this Automation Builder version can
be used. By following the use case described in the chapter Use Cases the system takes care
about this project integrity. Additionally Automation Builder performs an integrity check for the
selected PLC before generating the configuration.
The integrity check can manually be called for the complete project:

Check integrity

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6196

1. Select the menu item “Project è Check integrity”.

ð Automation Builder checks the project integrity for the complete project ("Project integ-
rity" checks if all devices in the device tree are installed in the device repository).
If the integrity check was successful a success message is displayed.
If the integrity check was not successful the following message is displayed:

2. Click “Update” button:

ð Automation Builder updates the configuration to the latest version, creates configura-
tion data and starts CODESYS V2.3.

3. Click “Cancel” button:

ð Creates configuration data and Automation Builder does not start CODESYS V2.3.

If the integrity check fails the Message Window displays further details.

In case of inconsistent configuration data update correct your project. Update all
devices and install all 3rd party devices as used in the project.

Following error messages indicating that devices are not installed properly: "The device
XXXXXX was not found in the device repository! Please reinstall this device using the menu
item “Tools è DeviceRepository”.
Install the device. Ä Chapter 1.6.5.2.1 “Device repository” on page 5811.
"The version of device XXXXXX is not compatible with the current version."
Update to new version.

Launching programming system CODESYS V2.3.9.x
In your PLC project, double-click on “Application” to open the CODESYS V2.3.9.x project.

CAUTION!
Risk of damaged Automation Builder projects!
Projects created with Automation Builder are incompatible with CODESYS
V2.3.9.x. Opening these projects directly with CODESYS V2.3.9.x may cause
corrupted projects. Always use Automation Builder to open these projects.

If several instances of CODESYS V2.3.9.x are opened, double-clicking on the
target item brings the corresponding CODESYS V2.3.9.x instance to the front.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6197

The name of the used AC500 CPU is shown in the main node of the device tree.
The names of the devices can be edited by selecting the corresponding entry and clicking the
entry. The name must be unique and cannot be reused in the same project. Automation Builder
automatically appends double entries with an up counting number as an suffix.

The IEC naming rules are not checked during input in Automation Builder.

Source download/upload in Automation Builder
The “Source download” downloads and stores the current project as a Zip-file on the PLC’s
memory card.
● Right-click “PLC_AC500_V2 <...>” node and click “Source download”.

The “Source upload” retrieves a previously downloaded project from memory card to a select-
able directory on the Automation Builder PC and optionally opens Automation Builder with this
uploaded project.
● Click “File” in the main menu of Automation Builder and click “Source upload”.

Internally both commands are invoking a hidden instance of CODESYS V2.3 which is then
working in batch mode to accomplish the download/upload.
Most of the error messages which could occur during the process are raised by CODESYS V2.3
and will then be displayed in Automation Builder as a result message box (the language of the
message box is the installed language of CODESYS V2.3, the messages are sometimes quite
"basic").

Before using the commands, check the following:

– No CODESYS V2.3 instance started from within Automation Builder on the
same PLC node should be running.

– To perform the download/upload, CODESYS V2.3 must be able to log in/on
to the PLC. Therefore the gateway settings should be correct and saved to
project file. It is recommended to test once the ability of CODESYS V2.3 to
log in/on to the PLC.

– A formatted memory card must be mounted in the PLC’s memory card slot.

1.6.5.4.2 Programming and testing
Programming interfaces to the AC500 used by control builder plus / Automation Builder

The AC500 controllers provide the following interfaces for communication with other devices.
For all AC500 CPUs:

CPU name

Source down-
load

Source upload

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6198

No. Designation Interface Programming
access

0 CPU Own CPU CPU for online opera-
tion

1 COM1 Serial interface COM1 yes

2 COM2 Serial interface COM2 yes

For PM57x, PM58x and PM59x only:

No. Designation Interface Programming
access

3 FBP FBP slave interface yes (as of FW V1.1.7)

4 I/O bus I/O bus no

1x Line 0 Internal communication module with
channel 0 x 9

depends on type

2x Line 1 Communication module inserted in
slot 1 with chan. 0 x 19

depends on type

4x Line 2 Communication module inserted in
slot 2 with chan. 0 x 19

depends on type

6x Line 3 Communication module inserted in
slot 3 with chan. 0 x 19

depends on type

8x Line 4 Communication module inserted in
slot 4 with chan. 0 x 19

depends on type

PM55x and PM56x CPUs only have RS-485 COM-interface, which can be
transferred to RS-232 by using a RS-232->RS-485 adapter.

The following communication drivers are available and recommended for programming the
AC500:

Communication
drivers

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6199

Communication driver Description
Tcp/Ip Ethernet driver

ABB Tcp/Ip Level 2 AC Ethernet driver with routing functionality (as of
PS501 V1.2, routing as of firmware V1.3.x)

Serial (RS-232) Serial interface driver

ABB RS-232 Route AC Driver for serial interfaces with routing func-
tionality (as of PS501 V1.2, routing as of firm-
ware V1.3.x)

ABB ARCNET AC Driver for programming via ARCNET with
routing and adjustable block size (as of PS501
V1.2, routing as of firmware V1.3.x)

Serial (Modem) Modem driver for modem connected to serial
interface of the PC and PLC

Note: It is recommended not to use the Tcp/Ip (Level 2 Route) driver for new projects. This
driver is only available for compatibility reasons in order to support easy update of an old
project.

Routing is available with version V1.3.x of the Control Builder and PLC firm-
ware.

In Control Builder, select "Online/Communication Parameters/Gateway" and select "Local" from
the "Connection" list box:
The following gateway settings apply for the Ethernet driver "ABB Tcp/Ip Level 2 AC":

The communication parameters and address data are set in the Control Builder by selecting the
desired driver and specifying the parameters in the "Communication Parameters" window, which
can be opened using the menu item "Online/Communication Parameters".
The following sections describe the drivers listed above and their settings.

Programming via the serial interfaces
The operation modes of the serial interfaces COM1 and COM2 are described in the chapter
Ä Chapter 1.6.5.2.11 “Serial interfaces COM1 and COM2” on page 6098. Both serial interfaces
COM1 and COM2 are defined as programming interface by default.
The Installation guide provides information how to set the serial interfaces for the different PC
operating systems.

Gateway config-
uration

Communication
parameters

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6200

For the CPUs PM57x, PM58x and PM59x, PC and PLC are connected via the Programming
Cable TK501 or TK502.
For the CPUs PM55x and PM56x, PC and PLC are connected via the Programming Cable
TK503 or TK504.

The load of PM55x and PM56x should not exceed 80 % in order to obtain a
stable communication between the PLC and the PC via the serial interfaces.
The load of the CPU can be displayed with the PLC Browser via the command
cpuload.

The interface parameters are set to fixed values and cannot be changed.
Transmission rate: 19200 baud
Parity bit: no
Data bits: 8
Stop bits: 1
Synchronization: none
Motorola byteorder: yes
The following drivers are available for programming via the serial interfaces:
● Serial (RS-232)
● ABB RS-232 Route AC (as of PS501 V1.2, routing as of firmware V1.3.x)

Serial driver "Serial (RS-232)"
The serial driver "Serial (RS-232)" provides the following functions:
● Online operation of the PLC with the Control Builder
● OPC connection with OPC server, as of version V1.0
● Parallel operation of Control Builder and OPC server

To define a new gateway channel for the serial driver, select "Online/Communication Parame-
ters" and press the button "New" in the "Communication Parameters" window. In the appearing
window, enter a name for the channel (for example USB->COM4) and select the driver "Serial
RS232" from the device list. Select the desired values by double clicking the corresponding
parameter:
Port: COM port on the PC
Transmission rate: 19200 Baud
Motorola byteorder: Yes

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6201

Serial driver "ABB RS232 Route AC"
As of version V1.2.0, the serial routing driver "ABB RS232 Route AC" is available in addition to
the serial driver. This driver provides the following functions:
● Online operation of the PLC with the Control Builder
● OPC connection with OPC server, as of version V1.2.0
● Online operation of PLCs connected via Ethernet or ARCNET using the serial interface

(Control Builder version V1.3 and later)
● Parallel operation of Control Builder and OPC server

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6202

To define a new gateway channel for the serial routing driver, select "Online/Communication
Parameters" and press the button "New" in the "Communication Parameters" window. In the
appearing window, enter a name for the channel (for example AC COM1 Route ARC 2) and
select the driver "ABB RS232 Route AC" from the device list.

The following communication parameters can be set for the serial routing driver "ABB RS232
Route AC":

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6203

Parameter Possible values Description
Port COMx (PC dependant) Serial interface of the PC

Transmission rate 19200 Always 19200 baud

Parity No Always no parity

Stop bits 1 Always one stop bit

Routing levels 0...2 Routing levels (0 = none)

Communication Module (Level
1)

0, line 0...line 4 Communication Module for
level 1

Channel (Level 1) 0...19 Channel on Communication
Module level 1

Address (Level 1) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target Communica-
tion Module level 1

Communication Module (Level
2)

0, line 0...line 4 Communication Module for
level 2

Channel (Level 2) 0...19 Channel on Communication
Module level 2

Address (Level 2) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target Communica-
tion Module level 2

Motorola byteorder yes Selection of Motorola or Intel
byte order

If you want to use the serial routing driver in order to directly access the connected CPU, set
all routing parameters (parameter Routing levels and following parameters listed in the table
above) to 0.

Routing is available with version V1.3.x of the Control Builder and PLC firm-
ware.

The following applies to the routing levels:
Routing levels = 0 No routing (parameters for Level 1 and Level 2 not set)

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6204

Routing levels = 1 Single-level routing (set parameters for Level 1)
Routing levels = 2 Double-level routing (set parameters for Level 1 and Level 2)

Configuration of PLC 2 (IP: 10.49.88.205) shall be performed via the external Ethernet Commu-
nication Module (IP: 10.49.88.203) inserted in slot 1 of PLC 1. The serial PC interface COM2 is
connected to the serial interface COM1 of PLC 1:

Parameter Value Remark
Port COM2 PC COM2

Transmission rate 19200

Parity No

Stop bits 1

Routing levels 1 Single-level routing

Communication Module (Level
1)

Line 1 Communication Module in slot
1

Channel (Level 1) 0 Channel 1

Address (Level 1) 10, 49, 88, 205, 0 Subscriber address of the
target PLC (Node 2)

Communication Module (Level
2)

0 No level 2

Example

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6205

Parameter Value Remark
Channel (Level 2) 0

Address (Level 2) 0, 0, 0, 0, 0

Motorola byteorder yes Motorola byteorder

Programming via ARCNET

The ARCNET Communication Module is available as of Control Builder version
V1.2 and PLC firmware version V1.2.0.

Programming via ARCNET is only possible on a PC with installed ARCNET board.
When programming via ARCNET, the PC is an ARCNET node.

The "sender node", i.e., the ARCNET subscriber address of the PC is set in the file:
Arcnet_xx.ini with the parameter NodeID1 = 254.
The file Arcnet_xx.ini is located in the folder where the PC operating system is installed (for
example C:\WINNT for Win2000).
For a PC with installed ARCNET board, the file Arcnet_xx.ini contains for example the following
entries:
[ARCNET]
DriverAccessName1=FARC
;Default = Farc
NodeID1 = 254
; Default = 254
;DriverAccessName2=FARC1
; Default = Farc1
;NodeID2 = 253
; Default = 253
;DriverAccessName3=FARC11
; Default = Farc11
;NodeID3 = 252

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6206

; Default = 252
;DriverAccessName4=FARC111
; Default = Farc111
;NodeID4 = 251
; Default = 251
The current card drivers can be downloaded from the SoHard website. The driver versions listed
in the "Driver file" column were tested.

Installation of ARCNET cards
Overview of Supported ARCNET cards

Support of ARCNET cards is available as of version V2.x

The following ARCNET cards are available for the programming of AC500 PLCs in the inte-
grated ARCNET Communication Module.

ARCNET card Bus type Operating
system

Driver file (on
SoHard website)

Driver

SH FARC E3 (K) (with
COM20022)

ISA Win2000/XP W2K_RAW_DRIVER
_V0518.zip ..\ARCNE
T\Win2000

Farc.sys

SH ARC PCI PCI Win2000/XP W2K_RAW_DRIV-
ERSH FARC E3 (K)
(with
COM20022)_V0518.z
ip ..\ARCNET\Win200
0

Farc.sys

SH ARC PCMCIA with SH
KOAX-PCMCIA

PCMCIA Win2000/XP W2K_RAW_DRIVER
_V0518.zip ..\ARCNE
T\Win2000

Farc.sys

The current card drivers can be downloaded from the SoHard website. The driver versions listed
in the "Driver file" column were tested.

Installation of ARCNET cards under Win2000 / XP
SH ARC PCI - ARCNET Card for PCI Bus under Win2000 / XP

Internet: W2K_RAW_DRIVER_V05xx.zip
CD V5.x: ..\CD_Menu\Files_V5x\ARCNET\Win2000\farc.sys (sharcraw.inf)
packed: W2K_RAW_DRIVER_V0517.zip
Driver after installation: ..\WINNT\system32\drivers\farcpci.sys

Proceed as follows to install the ARCNET card:

SH ARC PCI -
ARCNET card

Driver files

Installing the
card

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6207

1. Delete the possibly existing old ARCNET driver (V4.xx).
To do so, delete the following path in the registry:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\farc (or farc66)

2. Reboot the PC afterwards.
3. Copy the driver without any subdirectory to a floppy disk.
4. Shut down the operating system of the PC and then switch the computer off.
5. Install the ARCNET card to a PCI slot.
6. Reboot the PC. The card is automatically detected since it supports PnP.

The message "Found new Hardware / Network controller -> Please wait" is displayed.
The "Hardware Wizard" is executed. This may take some time.

7. After the "Found ..." message is displayed, click on "Have Disk" and select:
"A:\sharcraw.inf" and "Next". The driver is going to be installed.

8. Reboot the PC.
9. Select "Start => Settings => Control Panel => System => Hardware => Device Manager"

and then "SoHard ARCNET / SH ARC PCI (RAW)".
10. In the "Properties", change the DriverAccessName from FARCPCI to FARC.
11. Reboot the PC.

Proceed as follows to remove the ARCNET card:

1. Select "Start => Settings => Control Panel => System => Hardware => Device Manager".
2. Select "SoHard ARCNET / SH ARC PCI (RAW)".
3. Select "Delete".
4. Shut down the operating system of the PC and then switch the computer off.
5. Remove the card and restart your PC.

The following notes will help you, if the communication does not work properly after the installa-
tion.
● The card SH ARC PCI requires PCI version V2.10 and hardware level V1.1.
● Test program for the drivers:

The program arcread.exe is supplied together with the drivers. Start it from a DOS shell
using the following command:
arcread farc 254<ENTER>
The driver will either be started or a corresponding error message will be displayed!

● LED indication:
If the driver is activated correctly and no ARCNET cable is connected, both LEDs should
flash (on/off time approx. 1 s).
If only the green LED flashes, the interrupt has failed!

● If necessary, use another PCI slot.

SH ARC PCMCIA - ARCNET-PCMCIA Card under Win2000 / XP

Internet: W2K_RAW_DRIVER_V05xx.zip
CD V5.x: ..\CD_Menu\Files_V5x\ARCNET\Win2000\farc.sys (sharcraw.inf) packed:
W2K_RAW_DRIVER_V0517.zip
Driver after installation: ..\WINNT\system32\drivers\farcpcmcia.sys

Uninstalling the
card

Tips and tricks

SH ARC
PCMCIA card

Driver files

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6208

Proceed as follows to install the ARCNET card:

1. Delete the possibly existing old ARCNET driver (V4.xx).
To do so, delete the following path in the registry:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\farc (or farc66)
After this, reboot the PC.

2. Copy the driver without any subdirectory to a floppy disk.
3. Shut down the operating system of the PC and then switch the computer off.
4. Install the ARCNET card to a PCMCIA slot.
5. Reboot the PC. The card is automatically detected since it supports PnP.

The message "Found new Hardware / Network controller -> Please wait" is displayed.
The "Hardware Wizard" is executed. This may take some time.

6. After the "Found ..." message is displayed, click on "Have Disk" and select:
"A:\sharcraw.inf" and "Next". The driver is going to be installed.

7. Reboot the PC.
8. Select "Start => Settings => Control Panel => System => Hardware => Device Manager"

and then "SoHard ARCNET / SH ARC PCMCIA (RAW)".
9. In the "Properties" change the DriverAccessName from FARCPCMCIA to FARC.
10. Reboot the PC.

Proceed as follows to remove the ARCNET card:

1. Select "Start => Settings => Control Panel => System => Hardware => Device Manager".
2. Select "SoHard ARCNET / SH ARC PCMCIA (RAW)".
3. Select "Delete".
4. Shut down the operating system of the PC and then switch the computer off.
5. Remove the card and restart your PC.

The following notes will help you, if the communication does not work properly after the installa-
tion.
● Verify that the IRQ and/or the I/O range are not assigned twice.

To do so, select
"Start => Settings => Control Panel => Network => Network Adapter => Resources".

● Test program for the drivers:
The program arcread.exe is supplied together with the drivers. Start it from a DOS shell
using the following command: arcread farc 254 <ENTER>
The driver will either be started or a corresponding error message will be displayed!

● If the error message ..59 (E_FARC_NO_NEXTID) is displayed, the selected interrupt has
failed. In this case you should change between master PIC (IRQ 0-7) and slave PIC (IRQ
8-15). IRQ 5 or IRQ 7 should work in almost every case.

● LED indication:
If the driver is activated correctly and no ARCNET cable is connected, both LEDs should
flash (on/off time approx. 1 s). If only the green LED flashes, the interrupt has failed!

SH FARC E3 [K] - ARCNET Card for ISA Bus under Win2000 / XP

Installing the
card

Uninstalling the
card

Tips and tricks

SH FARC E3 [K]
card

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6209

Internet: W2K_RAW_DRIVER_V05xx.zip
CD V5.x: ..\CD_Menu\Files_V5x\ARCNET\Win2000\farc.sys
packed: W2K_RAW_DRIVER_V0517.zip
Driver after installation: ..\WINNT\system32\drivers\farc0.sys

Proceed as follows to install the ARCNET card:

1. Delete the possibly existing old ARCNET driver (V4.xx). To do so, delete the following
path in the registry: HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\farc
(or farc66) After this, reboot the PC.

2. Determine a free IRQ and I/O range (16 bytes), e.g. by selecting "Start => Programs =>
Accessories => System Tools => System Information => Hardware Resources".

3. Shut down the operating system of the PC and then switch the computer off.
4. On the card, set the I/O range and the interrupt IRQ according to the enclosed documen-

tation.

The following settings are set ex works:

I/O-Address = 120 hex

IRQ = 10

KOAX mode

2.5 MHz

5. Install the ARCNET card to an ISA slot.
6. Reboot the PC.
7. Copy the driver without any subdirectory to a floppy disk.
8. Select "Start => Settings => Control Panel => System => Hardware => Hardware Wizard

=> OK".
9. Select "Choose a Hardware device" and "Add new device" and then confirm with "Next".
10. A new hardware component is searched. This may take some time. Since the card does

not support PnP, the message "Does not find any new devices on your computer" is
displayed.

11. Select "Other devices" and click on "Have disk".
12. Insert the floppy disk and confirm with "OK". The message "Install from disk" is displayed.
13. Select "A:\tsharcraw.inf" and confirm with "OK". The driver is going to be installed.
14. Enter the following card properties:

Controller: COM20022
DriverAccess: FARC (is entered automatically)
IRQ: Free IRQ determined in step 2
I/O Address: Free I/O range determined in step 2

15. Confirm with "Ready" and "Close" and answer the message dialog with "Yes" to restart the
PC.

Proceed as follows to remove the ARCNET card:

1. Select "Start => Settings => Control Panel => System => Hardware => Device Manager".
2. Select "SoHard ARCNET / SH FARCxx (RAW)".

Driver files

Installing the
card

Uninstalling the
card

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6210

3. Select "Delete".
4. Shut down the operating system of the PC and then switch the computer off.
5. Remove the card and restart your PC.

The following notes will help you, if the communication does not work properly after the installa-
tion.
● Verify that the IRQ and/or the I/O range are not assigned twice.

To do so, select
"Start => Settings => Control Panel => System => Hardware => Device Manager => SoHard
ARCNET => SH FARCxx".

● The interrupt must be enabled for ISA in the BIOS.
● Test program for the drivers:

The program arcread.exe is supplied together with the drivers. Start it from a DOS shell
using the following command: arcread farc 254<ENTER>
The driver will either be started or a corresponding error message will be displayed!

● If the error message ..59 (E_FARC_NO_NEXTID) is displayed, the selected interrupt has
failed. In this case you should change between master PIC (IRQ 0-7) and slave PIC (IRQ
8-15). IRQ 5 or IRQ 7 should work in almost every case.

● LED indication:
If the driver is activated correctly and no ARCNET cable is connected, both LEDs should
flash (on/off time approx. 1 s).
If only the green LED flashes, the interrupt has failed!

ARCNET driver "ABB ARCNET AC"
As of runtime system version V1.2.0 and Control Builder version V1.2, the driver "ABB ARCNET
AC" is available. This driver provides the following functions:
● Online operation of the PLC with the Control Builder
● OPC connection with OPC server, as of version V1.3
● Parallel operation of Control Builder and OPC server
● Parallel operation of Control Builder instances with several PLCs
To define a new gateway channel for the ARCNET routing driver, select "Online/Communication
Parameters" and press the button "New" in the "Communication Parameters" window. In the
appearing window, enter a name for the channel (for example ARC AC 254 -> 2) and select the
driver "ABB ARCNET AC" from the device list.

The following communication parameters can be set for the ARCNET routing driver "ABB
ARCNET AC":

Tips and tricks

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6211

Parameter Possible values Description
Driver instance FARC DriverAccessName set in

Arcnet_xx.ini

Target node 1...255 ARCNET subscriber address
of the PLC

Receive Timeout ³ 2000 Timeout [ms] for response

Routing levels 0...2 Routing levels (0 = none)

Communication Module (Level
1)

0, line 0...line 4 Communication module for
level 1

Channel (Level 1) 0...19 Channel on communication
module level 1

Address (Level 1) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target communica-
tion module level 1

Communication Module (Level
2)

0, line 0...line 4 Communication module for
level 2

Channel (Level 2) 0...19 Channel on communication
module level 2

Address (Level 2) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target communica-
tion module level 2

Block size 128...226 / 246...480 User data size

Motorola byteorder yes/no Motorola or Intel byte order

If you want to use the ARCNET routing driver to directly access the connected CPU, set
all routing parameters (parameter Routing levels and following parameters listed in the table
above) to 0.
The parameter "Block size" (128...480) sets the number of user data within one block. The
default value is 480 (this is the maximum allowed block size). Values in the range of 227 .. 245
are not allowed.
The parameter "Motorola byteorder" must be set to "Yes" for AC500 controllers.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6212

Configuration of communication via Ethernet (TCP/IP)
Programming via Ethernet is only possible on a PC with Ethernet board and installed network.
Programming can be done via the internal and external Ethernet communication module.
Programming via internal (onboard) Ethernet communication module:

Programming via external Ethernet communication module (in the example communication
module 1 in slot 1):

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6213

Enter a known PLC IP address
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Enter your PLC IP Address and click [OK].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6214

Enter PLC IP address by scanning devices
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box Communication Settings <...> appears.

2. Click [...].

ð Dialog box Communication Settings <...> appears.

3. Click [Scan], select your desired PLC and click [OK].

ð Entry is transferred to the dialog box Communication Settings <...>.

Click [OK].

4. Click to log in the “PLC_AC500_V2” project.

Enter PLC IP address by [Advanced Settings...]
If a remote gateway instead of a local one has to be used it can be configured in the [Advanced
Settings...].

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6215

1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the
context menu.

ð Dialog box Communication Settings <...> appears.

2. Enable checkbox Use advanced settings and click [Advanced Settings].

ð Dialog box Communication Parameters appears.

3. Select your channel, enter your PLC IP address and click [OK].

ð Entry is transferred to the dialog box Communication Settings <...>.

Click [OK].
4. Click to log in the “PLC_AC500_V2” project.

Ethernet driver "TCP/IP"
Programming AC500 controllers with internal and/or external Ethernet communication module
via Ethernet can be done by using the driver "TCP/IP". This driver provides the following
functions:
● Online operation of the PLC with the Control Builder
● OPC connection with OPC server, as of version V1.3
● Parallel operation of Control Builder and OPC server
● Parallel operation of Control Builder instances with several PLCs
To define a new gateway channel for the Ethernet interface, select "Online/Communication
Parameters" and press the button "New" in the "Communication Parameters" window. In the
appearing window, enter a name for the channel (for example ETH 169.254.145.200) and select
the driver "TCP/IP" from the device list.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6216

The following communication parameters can be set for the Ethernet driver "TCP/IP":

Parameter Possible values Description
Address 0.0.0.0 IP address or hostname of the

PLC

Port 1201 Port 1201

Motorola byteorder Yes (Yes/No) Motorola or Intel byteorder
(=Yes for AC500)

Ethernet driver "ABB TCP/IP Level 2 AC"
As of version V1.2, the driver "ABB TCP/IP Level 2 AC" is available for programming AC500
controllers with internal and/or external Ethernet communication module via Ethernet. This
driver provides the following functions:
● Online operation of the PLC with the Control Builder
● OPC connection with OPC server, as of version V1.3
● Parallel operation of Control Builder and OPC server

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6217

● Parallel operation of Control Builder instances with several PLCs
● Online operation of PLCs connected via ARCNET. One PLC equipped with Ethernet com-

munication module and one PLC with ARCNET communication module (Routing Ethernet
-> ARCNET), as of version V2.x

To define a new gateway channel for the Ethernet interface, select "Online/Communication
Parameters" and press the button "New" in the "Communication Parameters" window. In the
appearing window, enter a name for the channel (for example ETH 169.254.145.200) and select
the driver "ABB Tcp/Ip Level 2 AC" from the device list.

The following communication parameters can be set for the Ethernet driver "ABB TCP/IP Level
2 AC":

Parameter Possible values Description
Address 0.0.0.0 IP address or hostname of the

PLC

Port 1200 Port 1200

Timeout (ms) >= 2000 Timeout [ms] for response

Routing levels 0...2 Routing levels (0 = none)

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6218

Parameter Possible values Description
Communication Module (Level
1)

0, line 0...line 4 Communication module for
level 1

Channel (Level 1) 0...19 Channel on communication
module level 1

Address (Level 1) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target communica-
tion module level 1

Communication Module (Level
2)

0, line 0...line 4 Communication module for
level 2

Channel (Level 2) 0...19 Channel on Communication
Module level 2

Address (Level 2) 0, 0, 0, 0, 0 (max. 5 bytes) Address in target communica-
tion module level 2

Block size 1430 (128...1430) Bytes per telegram (unallowed
227..245)

Motorola byteorder Yes (Yes/No) Motorola or Intel byteorder
(=Yes for AC500)

If you want to use the Ethernet driver to directly access the PLC, set all routing parameters
(parameter Routing levels and following parameters listed in the table above) to 0.
The "Address" parameter sets the IP address or hostname of the PLC. To be able to use
hostnames, the names have to be added to the file "Hosts". Under Win2000, this file is located
in the directory "WINNT\System32\drivers\etc".

If you have changed the "Hosts" file accordingly, you can enter the symbolic name for
the "Address" parameter instead of the IP address. In the following figure, the IP address
"169.254.34.38" is replaced by the hostname "SPS_2".

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6219

Ethernet ARCNET routing

Routing is available as of PLC firmware version V1.3.

For controllers with Ethernet and ARCNET communication module, the PLCs connected via
ARCNET can be programmed using the PLC Ethernet interface.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6220

For each PLC connected via ARCNET, one gateway channel has to be defined. To do this,
select "Online/Communication Parameters" and press the button "New" in the "Communication
Parameters" window. In the appearing window, enter a name for the channel (for example
TcpIp: PLC1:169.29.44.48 -> ARC_2) and select the driver "ABB Tcp/Ip Level 2 AC" from the
device list.
For example, set the communication parameters as follows for the configuration shown above:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6221

Parameter Possible values Description
Address 10.49.88.205 IP address of PLC 1

Port 1200 Port 1200

Timeout (ms) 2000 Timeout [ms] for response

Routing levels 1 Single-level routing

Communication Module (Level
1)

Line 0 Communication module for
level 1 (internal: ARCNET)

Channel (Level 1) 0 Channel on Communication
module level 1

Address (Level 1) 2, 0, 0, 0, 0 ARCNET node of the target
PLC (Node 2)

Communication Module (Level
2)

0 No level 2

Channel (Level 2) 0

Address (Level 2) 0, 0, 0, 0, 0

Block size 480 Bytes per block: 128...1430

Motorola byteorder Yes

For the parameter "Communication Module (Level 1)", enter the slot where the ARCNET com-
munication module "Line 0" is inserted (the ARCNET Communication Module is always the
internal communication module).
The ARCNET communication module has only one communication channel. Thus, the
"Channel" value must always be 0.
For the ARCNET communication module, 1 byte is required for the subscriber address (node).
The address (Node=2) of the target PLC is entered to the first byte of the address byte.
The default value for the block size is 1430. If routing on ARCNET is required (and "large
ARCNET packages" are enabled for the target PLC), the block size can be increased to 480
bytes. Values in the range of 227 .. 245 are not allowed.

1.6.5.4.3 AC500-specific PLC browser commands
Automation Builder provides IEC 61131 standard commands as well as AC500-specific com-
mands.
Online help is available for all commands. The help information is displayed language-
dependent by entering command "?" when operating in online mode. The command "?" lists
all available firmware commands.
The commands listed in online mode can differ from the commands shown when pressing the
button [...] as Automation Builder version and firmware version can differ.
Depending on the device, the PLC browser provides the following commands:

Command Description Implementation
? Displays all implemented

commands
Standard

mem Memory dump of an area
Usage: mem [from-addr] [to-
addr]

Standard

memc Memory dump relative to code
area

Standard

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6222

Command Description Implementation
memd Memory dump relative to data

area
Standard

reflect Reflect current command (for
test purposes)

Standard

dpt Displays the data pointer table Standard

ppt Displays the block pointer
table

Standard

pid Displays the project ID Standard

pinf Displays project information in
the format:
pinf
Address of Structure:
16#0013CF74
Date: 4213949F
Project Name:
MODBUS_Test_BB.pro
Project Title: Test
MODBUS
Project Version: V1.0
Project Author: Test
User
Project Description:
Test of serial
interfaces
End of Project-info.

Standard

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6223

Command Description Implementation
tsk Displays the IEC task list with

task information in the format:
tsk
Number of Tasks: 1
Task 0: Main program,
ID: 1519472
 Cycle count: 45402
 Cycle time: 1 ms
 Cycle time (min): 1
ms
 Cycle time (max): 1
ms
 Cycle time (avg): 1
ms
 Status: RUN
 Mode: CONTINUE

 Priority: 10
 Interval: 5 ms
 Event: NONE

 Function pointer:
16#00601584
 Function index: 131

Standard

tskclear Clears IEC Task information
(cycle count & overall max-
imum and minimum cycle
time)

Specific as of V2.0

startprg Starts the user program Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

stopprg Stops the user program Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

resetprg Resets the user program Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

resetprgcold Resets the user program
(cold)

Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6224

Command Description Implementation
resetprgorg Resets the user program

(origin)
Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

reload Reloads the boot project from
user flash memory

Standard (not supported with
CPU firmware V2.2 or higher)

getprgprop Displays program properties
in the format:
getprgprop
Name:
MODBUS_FBP_Test_BB.pro
Title: Test MODBUS
Version: V1.0
Author: Test User
Date: 4213949F

Standard

getprgstat Displays the program status in
the format:
getprgstat
Status: Run
Last error: Id
00000000 TimeStamp
000055F3 Parameter
00000000 Text
Flags:

Standard

filecopy File command copy No

filerename File command rename No

filedelete File command delete No

filedir File command dir No

saveretain In V1.0 and V1.1: Saves
the RETAIN variables to the
memory card.
As of V1.2: Writes the RETAIN
variables to RAM
(same as retain save)

Specific

restoreretain In V1.0 and V1.1: Restores
the RETAIN variables from the
memory card.
As of V1.2: Restores the
RETAIN variables from RAM
(same as retain restore)

Specific

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6225

Command Description Implementation
setpwd Sets the PLC password

(required at logon!)

Note: From CPU firmware
V2.3.0 and higher, this com-
mand works as follows:
● If there is no password

set, a password can
be set with: setpwd
<new_password>

● If a [new] password
has been set, the
old password must
also be inserted.:
setpwd <old_password>
<new_password>

Standard (with CPU firmware
to V2.3.0)
Specific (with CPU firmware
V2.3.0 and higher)

delpwd Deletes the PLC password

Note: From CPU firmware
V2.3.0 and higher, this com-
mand works only if a pass-
word has been set. Also,
you have to specify the
old password to delete it,
i. e. syntax is: delpwd <cur-
rent_password>

Standard (with CPU firmware
to V2.3.0)
Specific (with CPU firmware
V2.3.0 and higher)

plcload Displays the PLC utilization
(system + IEC + tasks + com-
munication)

Standard

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6226

Command Description Implementation
rtsinfo Displays the firmware informa-

tion (version, driver) in the
format:

rtsinfo
rts version: 2.4.7.24
OS version: SMX smxPPC
3.5.2
uses IO driver
interface
rts api version: 2.408
4 driver(s) loaded
driver 1: AC500
CPU driver, device
interface version:
2.403
driver 2: AC500 I/O-
BUS driver, device
interface version:
2.403
driver 3: AC500
COM driver, device
interface version:
2.403
driver 4: AC500
Coupler driver, device
interface version:
2.403
AC500 PM___(DISP) :
V2.1
AC500 PM___(BOOT) :
V2.0.5, 2017-10-26
(Build: 9603,
13:55:09, Rel)
AC500 PM___(FW) :
V2.0.4, 2017-10-12
(Build: 9530,
14:30:50, Rel)

Specific

traceschedon Enables task tracing No

traceschedoff Disables task tracing No

traceschedstore Stores task trace to RAM No

fdir <path> Show content of a drive or
directory <path> (e.g. fdir
userdisk, fdir sdcard/
userdata)

Specific as of V2.1

fread <path> Dump a file's content Specific as of V2.1

fmove <path> Move a file to a directory Specific as of V2.1

mkdir <path> Create a directory Specific as of V2.1

deldir <path> Delete an empty directory Specific as of V2.1

rndir <old path> <new path> Rename a directory Specific as of V2.1

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6227

Command Description Implementation
ipaddr Sets the IP address of the

CPU
No

basetick Sets the basetick to µs No

diagreset Resets the diagnosis system Specific

diagack all Acknowledges all errors Specific

diagack x Acknowledges all errors of the
class X (with X= 1...4)

Specific

diagshow all Shows all errors in the format:
diagshow all
--- All errors ---
State Clas
s Comp Dev Mod Ch Err
0152502216
active and
acknowledged 4 9
 22 31 31 8
 1970-01-01
00:00:08 occurred

 disappeared
 1970-01-01
00:00:15 ack.
0152369165
active not
acknowledged
49 2031013
 1970-01-01
01:19:12 occurred
 -
 disappeared
 -
 ack.
--- end ---

Specific

time Displays and sets the time of
the real-time clock.
If no battery is inserted in the
PLC and the control voltage
is switched on, the PLC clock
is set to "01. January 1970,
00:00".

Specific

date Displays and sets the date of
the real-time clock.
If no battery is inserted in the
PLC and the control voltage
is switched on, the PLC clock
is set to "01. January 1970,
00:00".

Specific

batt Polls the battery status Specific

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6228

Command Description Implementation
sdappl Saves the boot project to the

memory card
Specific

sdclone Copys the user program and
the user data to the memory
card.

For AC500-S only!

sdfunc Displays and changes the
memory card function

Specific

sdsys Save firmware to memory
card

Specific

sdboot Updates the bootcode from
the memory card

Specific

sddisplay Updates the MMI firmware
from the memory card

Specific

sdfirm Updates the firmware from the
memory card

Specific

sdcoupler x Updates the firmware of Com-
munication Module x from the
memory card

Specific

cpuload Displays the CPU load (cur-
rent, min., max., average)

Specific

delappl Deletes the user program in
the user flash memory

Specific

retain Saving and restoring the
RETAIN variables:
retain clear -> Clears all
RETAIN variables
retain save -> Saves the
RETAIN variables to the RAM
disk
retain restore -> Restores the
RETAIN variables from the
RAM disk
retain export -> Exports the
RETAIN variables from the
RAM disk to the memory card
retain import -> Imports the
RETAIN variables from the
memory card to the RAM disk

Specific as of V1.2

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6229

Command Description Implementation
persistent Saving and restoring the per-

sistent area %R area:
persistent clear -> Clears the
%R area
persistent save -> Saves the
buffered %R area to the RAM
disk
persistent restore -> Restores
the buffered %R area from the
RAM disk
persistent export -> Exports
the buffered %R area from the
RAM disk to the memory card
persistent import -> Imports
the buffered %R area from the
memory card to the RAM disk

Specific as of V1.2

cfginfo Print expected and active con-
figuration version. This is for
internal use.

Specific

hashappl Hash the user program Specific

io-bus stat Displays the I/O bus statistic Specific

io-bus desc Displays the I/O bus configu-
ration

Specific

com protocols Displays the protocols avail-
able for the serial interfaces

Specific

com settings Displays the serial interface
settings

Specific

coupler desc Displays information on the
communication module inter-
faces (type, firmware, serial
number, date)

Specific

coupler settings Displays the current commu-
nication module settings, for
example, IP address and
socket assignment

Specific as of V1.2

ping Ping a address, usage: ping
<ipaddr> <couplerid> <ms>

Specific as of V2.1.3

reboot Reboots the PLC (IEC 61131
performs a logout when
restarting or logout possible
up to 3 seconds after com-
mand input)
(This command is not avail-
able for CM574-RS as of firm-
ware revision V2.1.x)

Specific

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6230

Command Description Implementation
diskcfg Access to drive maintenance

Command Syntax:
diskcfg [option]
[drivename]
Command Options:
● unlock : unlock a

drive for writing MBR or
formating

● lock : lock drive
again

● writembr : write clean
MBR (unlock required)

● format : write
clean file system (unlock
required)

● settings : show drive
configuration details

● desc : show drive
overview

● help : show this help
● [none] : no option

shows this help
Available Drives (not all com-
mands are supported on all
drives):
● Flash memory
● Memory card
● RAM disk
● Userdisk
● Flash disk
● SRAM disk

Specific as of V2.1

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6231

Command Description Implementation
proddata Shows Production Data of

PLC
proddata
Production data

Ident :
1SAP123456R0001
Index : B1
Type : PM___
Date : 0447
BA-Inst : 1S120
Factory : 05
Year : 17
Serial No. : 00007134
MAC-Addr : "

Specific as of V2.0

confdata Shows Configuration Data of
PLC
It is possible to save and
load PLC specific configu-
ration of any kind with
the function blocks (from
SysInt_AC500_V10.lib):
Ä Chapter 1.5.4.19.2.3
“CPU_CONFIG_READ”
on page 1508

Ä Chapter 1.5.4.19.2.4
“CPU_CONFIG_WRITE”
on page 1511

The AC500 firmware also
uses this INI file for settings
like IP addresses.

Specific

1.6.5.4.4 Watch- and recipe manager
General information

Since CODESYS 2.3.9.25 (Control Builder Plus V2.1), the programming environment is
extended by the Watch- and Recipe Manager which provides more comfortable online debug-
ging functions.
For general information, see Ä Chapter 1.4.1.4.9 “Watch- and recipe manager” on page 395.

Function
In the Watch- and Recipe Manager (Resources tab of the Object Organizer) the current values
of specified variables can be viewed in so-called "watch lists (Monitoring).

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6232

Further on the variables listed in a watch list can be preset with constant values and this set of
values, named "Recipe" be transferred to the PLC. Also the current values of the variables of
a watch list can be read from the PLC to the Watch and Recipe Manager as a preset/recipe. In
this context regard the possibility to save recipes in files and to reload them to the Recipe Man-
ager when required. For further information on the usage of recipes see Ä Chapter 1.4.1.4.9.2
“Creating watch lists, recipes” on page 397.
In online mode watch lists as well can be used to Write (Ä Chapter 1.4.1.2.6.16 “'Online' 'Write
values'” on page 286) and Force (Ä Chapter 1.4.1.2.6.17 “'Online' 'Force values'” on page 287)
variables.
All these functions for example can be used for logging and setting of control parameters.

Watch- and recipe manager extensions

Activate the Watch- and Recipe Manager with “ Project è Options è Tab
Desktop è Tabular watch editor”.

The Watch window displays the values in a table oriented view.

The table display is used in both offline and online mode. It is not necessary to switch on/off
monitoring mode to insert or delete a variable. It is possible to insert and append a variable in
online and offline mode at any time. In addition it is also possible to add an address range.
The online value is displayed in CODESYS in online mode only.
A "+" will appear in the first column in case of function block instances, structured variables and
arrays. It allows to expand and collapse them.
The editor allows manually to
● add watch entries
● delete watch entries
● change the name of a watch entry.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6233

In online mode, the prepared value can be defined with a dialog. More than one prepared value
can be selected. It is possible to enter the same value for all of them. One or more prepared
values can be sent to the PLC via “Online è Write Variables or Online è Force variables”.

Each watch list is viewed in a separate tabular editor window and multiple windows can be
opened at the same time. In this case the available watch lists will be shown as entries in the
“Resources” tab and can be opened by double-click.

● name: Here a variable identifier according to the following syntax must be entered of an
address in standard format:
<POU name>.<variable name>
In case of global variables the POU name is dropped. The variable name can be multilevel.
Addresses can be entered directly (e.g. "%IB0.0").
Example for a multilevel variable:
PLC_PRG.Instance1.Instance2.Structure.Component
Example for a global variable:
globalvar.component1

● address, comment: As specified in the declaration of the variable.
● value: In online mode here the current value of the variable is displayed (Monitoring).
● recipe value: Here a value can be entered, which will be transferred to the PLC when

command Ä Chapter 1.4.1.4.9.14 “'Extras' 'Write Recipe'” on page 401 is applied on the
whole watch list. The recipe values of all variables of the list can be replaced by the current
values from the PLC by using command Ä Chapter 1.4.1.4.9.15 “'Extras' 'Read Recipe'”
on page 402.
In case of function block instances and structured variables a plus respectively minus sign
appears in front of the name in the first column. It serves to expand resp. collapse the list of
components. For function block variables the context menu is extended by the items 'Open
function block' and 'Open instance'.

By a double-click on a non-editable position within the editor window, the table gets adapted to
the window width and the column widths get optimized.

There is only one bipartite editor window, in the left part of which you find all available watch
lists. For the list currently selected the right part of the window shows the associated variables.
This editor view is opened via object 'Watch- and Recipe Manager' in the “Resources” tab in
the Object Organizer. The watch variables are entered line by line and a recipe value can be
assigned to each by ":=".

Tabular editor

1-Window-editor

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6234

Adding variables to watch lists is possible in offline mode by typing, or in online mode directly
out of the POU editors. See Ä Chapter 1.4.1.4.9.2 “Creating watch lists, recipes” on page 397

A 'Cross Reference List' can be called directly from a watch list, when one of the watch
variables is selected. In this case the command Ä Chapter 1.4.1.3.7 “Show cross references”
on page 295 in the Extras menu or in the context menu is available.

Adding variables to watch window from language editors
If one or more variables or elements are selected in a language editor or the declaration editor,
the following additional menu items will appear in the “Extras” menu:
● “Into new watch list”
● “Add to watch list”

1. Select “Into new watch list” to automatically create a new watch list for the selected
variables.

2. Select “Add to watch list” to open a submenu containing a list of all existing watch lists.
After that, select the desired watch list to append the variables to that watch list.

If an area with more than one variables is selected in a language editor (it is dependent on
the language editor how multiple selections of elements is realized, see below), all selected
variables will be added to the watch list.
It is not necessary to enable/disable monitoring active manually.
To enable/disable monitoring active manually (to add a variable manually), press [ALT] + [X] +
[M].
These menu items are available in online mode only, if the full instance path of a variable inside
a function block is known.
The possibilities of multiple selections are explained in the following sections.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6235

Function Block Diagram (FBD)
The FBD editor has a tree-oriented selection. By selecting one box in the tree, all elements to
the left of it are selected, too.
In the following example, variable b3 is selected.

Right-click onto the selected variables to open the context menu and adding them to a watch
window.

Ladder Diagram (LD)
Press [SHIFT] and click onto the desired elements to do a multiple selection. Only consecutive
elements can be selected for a multiple selection.
In the following example, variables b1 and b2 are selected.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6236

Right-click onto the selected elements to open the context menu and adding them to a watch
window.

Continous function chart (CFC)
Press [SHIFT] and click onto the desired elements to do a multiple selection.
In the following example, variables b2 and b4 are selected.

Right-click onto the selected variables to open the context menu and adding them to a watch
window.

Instruction list (IL)
In Online Mode, the IL editor window displays the IL text on the left side and the variables and
their online values on the right side of the window.
To select multiple variables, mark the text on the left side of the window.

Right-click on the text to open the context menu and adding them to a watch window.

Sequential function chart (SFC)
Multiple selection is possible with consecutive elements.
Press [SHIFT] and click onto the desired elements to do a multiple selection.

Right-click onto the selected variables to open the context menu and adding them to a watch
window.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6237

Adding an address range to the watch window
To add an address range to a watch list, proceed as follows:

1. Right-click the Watch Window and select “Insert address range”.

2. In the Enter address range dialog box enter the name or address of the variable and the
number of element you want to insert.

3. Confirm the dialog box with [OK].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6238

Filtering within input assistant
1. Press [F2] within the Watch Window to open the Input assistant dialog.

ð If check box “Structured” is enabled, the variables are displayed in a structured way by
global variable lists, POUs, libraries and folders.
If check box “Structured” is disabled, all variables are displayed in one list.

2. Enter the filter text in text field 'Filter'. Select one of the 3 filter criteria from the pull-down
menu:
● “Prefix”: Beginning of the variables is compared with the filter text.
● “Suffix”: Ending of the variables is compared with the filter text.
● “Substring”: Complete variable name is compared with the filter text.

Defining display format for each watch variable separately
With an additional column in the Watch Window table, the display format of integer variables
can be selected. A drop-down list allows to select between decimal, hexadecimal, binary and
default display format. This selection can be made for every variable separately. One variable at
a time can be selected to change the display format.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6239

Default format means that the display format of the variable is defined by the
global setting.

1.6.5.4.5 Cross-reference list in watch- and recipe manager
General information

In this chapter extended features for the cross-reference list are described.
Extended Features:
● Open “Cross Reference List” from Watch Windows
● Open “Cross Reference List” from Language Editors
● Including Visualizations into “Cross Reference List”
● Including arrays, structures and addresses into “Cross Reference List”

Open “Cross Reference List” from watch window
To open the cross-reference list from Watch Window (possible in Online and Offline Mode),
proceed as follows:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6240

1. Select the desired variable, e.g. PLC_PRG.ByTest.

2. Right-click on the variable and select Show cross references in the context menu.

ð The Cross references window appears which displays the full path names.

Open “Cross Reference List” from language editors
To open the cross-reference list from a language editor, proceed as follows:

Right-click on the variable in the language editor window and select Show cross refer-
ences.

ð The Cross references window appears which displays the full path names.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6241

The following language editors are supported:
● FBD
● LD
● CFC
● ST
● IL
● SFC

Cross references in visualizations
The Cross reference window will display the usage of a variable also in a visualization. Visuali-
zation can use variables in read- and write access.
The visualization will be shown in the POU column of the Cross reference window. Information
will be added to indicate it is a visualization. For example: vis1 (VIS).

Cross references for arrays, structures and addresses
The Cross references window displays the usage of variables that are within the address range
of a structure or array.

1.6.5.4.6 Reference to libraries
Library configuration is described in the chapter Ä Chapter 1.5 “Libraries and solutions”
on page 735.

1.6.5.4.7 Programming in C code
Preface

The user shall be able to implement custom application parts in C or C++ code and call them
from IEC application. This document shows how to create a simple application with parts of it
written in C or C++ code.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6242

Table 754: Abbreviations
Abbreviation Definition
OBJ OBJect file

FW FirmWare

PLC Programmable Logic Controller

ST Structured Text

AB Automation Builder

POU Program Organization Unit

Overview
C/C++ application is part of IEC application and hence seamlessly integrated into Automation
Builder engineering tool.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6243

Key facts:
● AC500 and AC500-eCo POUs (Program Organization Units) can be implemented in

IEC61131-3 or C/C++ code.
● C/C++ code can use C/C++ standard libraries and can access the PLC functions

e.g. floating point calculations, memory allocation, µs-resolution, real-time clock, file
access. Ä Chapter 1.6.5.4.7.4.2 “Firmware Application Programming Interface (FWAPI)”
on page 6254

● C/C++ compilation with target CPU specific optimization, like FPU. Ä Further information
on page 6264

● Application libraries can be implemented in C/C++. As only the object files need to be
shipped to the customer, knowledge within the code is protected. Ä Chapter 1.6.5.4.7.4.5
“Binary Deployment of C/C++ Application” on page 6257

How to Create a C/C++ Application
This chapter will guide you through the necessary steps to create an AB project using a simple
POU implemented in C/C++.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6244

Creating a “Hello World” Application
1. In the tree view right-click on “App” node and add a new object.

2. In the following dialog select “C_Code_App” and click “Add object”.
Select the compiler to be used for the new C/C++ application and click “Add”.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6245

3. In the following dialog select “POU” and click “Add object”.

4. Select the type for the POU object and click “Open”.

5. Enter a parameter and variable declaration.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6246

6. Right-click at the desired code position and select “Input Assistant” in order to define the
data type:

7. Then, click “Apply” to update the interface. As an alternative the interface can be dis-
played tabularly. Tabular view is a comfortable way to edit parameters:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6247

8. On the “C_Code_App” tab open the “Compiler options” tab. Select a compiler and con-
figure compiler settings for the C/C++ application. These settings enable the compiler to
interprete and process the source files listed on the “C-Code” tab.

9. Open the “C-Code” tab. The following files are listed:
● C_Code_App.c: Implementation of POU.
● C_Code_App.h: C/C++ Interface of POU.
● C_Code_App_Init.c: Initialization of POU variables and parameters.
● C_Code_App_Shell.c: Main module.

ð
Double-click the Folder icon to open the directory in Windows
Explorer.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6248

10. To edit the POU implementation double-click or right-click a file and select “Open...)”. The
*.c and *.h files are opened in your operating system’s default editor.

11. Save your settings and click “Compile” on the right side of the screen. The object files are
generated from source code. Compilation errors are reported within a message window.
Details on the error can be found in the compiler.log file.

12. Save your project. In the tree view double-click “Application”. CODESYS is started with
C/C++ interface. From the “C_Code_App” node an external library is generated. This
library can be found in CODESYS 2.3 in the Library Manager.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6249

13. Call the C/C++ code POU from your IEC application.

ð
In order to lookup C/C++ POUs, press F2 and open section “Standard
Functions / Standard Function Blocks” .

14. Build the project via “Project è Build”: C/C++ application parts are linked together with
IEC application.

ð Application is ready for download.

Interface between C/C++ and IEC Code
C/C++ applications may contain POUs as well as data types. Declaration and definition of stubs
both are automatically done by Automation Builder when a POU or data type is created by the
user. Following sections show how this is done in detail.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6250

POU Type Function

Fig. 1166: Interface between C/C++ and IEC code: POU type function.

POU type function block

Fig. 1167: Interface between C/C++ and IEC code: POU type function block.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6251

POU Structure with VAR_IN_OUT

Fig. 1168: Interface between C/C++ and IEC code: POU structure with VAR_IN_OUT.

VAR_IN_OUT parameters are passed as reference to C/C++ implementation (parameter is
implemented as pointer).

Function block instance data

Fig. 1169: Interface between C/C++ and IEC code: function block instance data.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6252

For each POU an init function is generated. This function is called on load-time and on reset
of IEC application. Within this function, all parameters (VAR_IN, VAR_OUT, VAR_IN_OUT) and
instance variables (VAR) are set to zero. If an instance variable is initialized in IEC declaration,
this value is automatically taken for initialization inside of init function.

Data Type

Fig. 1170: Interface between C/C++ and IEC code: Data type.

Advanced Topics
Debugging C/C++ Code

Fig. 1171: Debugging C/C++ code.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6253

Debugging with Local POU Variables
Local POU variables are accessible via CODESYS and OPC server, thus they can be utilized to
any means to reflect the state of the C/C++ implementation as desired.

Write User-defined Content to File
You can create your own logging messages. Write them to any memory location available for
IEC access e.g. to read the file via the PLC’s FTP server.
1. Use the SysLibFile.h or stdio.h file.
2. For further information, please refer to the CODESYS online help (chapter AC500 CPU

Storage Devices).

Send User-defined Content via Ethernet
You can create your own logging messages. Send them to any other PLC or PC for further
analysis.
1. Use the SysLibSocket.h file.
2. For further information, please refer to the CODESYS online help (chapter AC500

Ethernet Protocols and Ports).

Firmware Application Programming Interface (FWAPI)
Access to AC500 firmware from C/C++ application part is gained via the FWAPI (Firmware
Application Programming Interface). It consists of a set of libraries sorted in two categories (C
standard libraries and SysLib libraries). This allows a fine-grained selection of needed function-
ality.

In order to use FWAPI from C/C++ application part, select the Libraries tab and click
Apply.

ð #include statements are automatically included into source files.

FWAPI implements a subset of C standard library. Ä Chapter 1.6.5.4.7.5 “Known Issues and
Frequently Asked Questions” on page 6258

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6254

Fig. 1172: FWAPI (Firmware Application Programming Interface).

1. Right-click a list entry to open the context menu.
2. Select “Display” to open the header file in your default editor.

Additional Source Code Files in C/C++ Application
The C/C++ application can be split into any number of header and source files, as long as they
are assembled via #include directives into one of the auto-generated .c files: <application
name>_shell.c or <application_name>_app.c. In V2.3 this is to be done manually.

Adding files to C/C++ application:
1. Copy the files to the project’s source folder. You might have to compile or change the tabs

to update the file list in the Automation Builder.
2. Right-click the project’s source folder, select “Add files” and use the dialog.

ð A copy of the selected files is placed in the project’s source folder.

Removing files from the project:
1. Delete the files from the project’s source folder. You might have to compile or change the

tabs to update the file list in the Automation Builder.
2. Right-click the file and select “Delete”.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6255

Fig. 1173: Integration of additional source code into C/C++ application.

Migration of Existing Applications
An existing C/C++ application can be used as part of an IEC application. All functions, which
shall be called from IEC application have to be wrapped by a POU.

Exception: Functions of an existing application, which shall exclusively be
called from other parts of the C/C++ code, do not need to be wrapped by POU
definitions.

Fig. 1174: Migration of existing applications

Wrapping a function by a POU:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6256

1. Define one or more encapsulating POU types for each corresponding function.
2. Define encapsulating POU shell with needed inputs, outputs, and local variables in

Automation Builder.
3. Include existing code in generated C source template.
4. Compile and download the function.

Binary Deployment of C/C++ Application
Application libraries can be implemented in C/C++ code. Only the object files need to be
shipped to the customer. This protects the knowledge within the code.

Fig. 1175: Binary deployment of C/C++ application.

Export/Import of C/C++ Code
Export/Import of C/C++ Application

Not supported yet.

Export/Import of Data Type
To import/export an interface of a single data type, right-click on the POU in tree view.

Export/Import of POU Interface
To import/export an interface of a single POU, right-click on the POU in tree view.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6257

Project Backup Mechanism
The .c and .h files are saved in TEMP user directory under CCodeFiles\ProjectName. A copy
of these files is always created on interface update (e.g. POU changes - definitions/names). A
timestamp is added to the file name by copying in the TEMP user directory.
Location of the default TEMP directory:
Windows 7/8.1: %USERPROFILE%\AppData\Local\Temp. By default, "AppData" is hidden.

These files are never removed by the system. The user can decide when to delete.

Known Issues and Frequently Asked Questions
Supported compiler toolchains:
● GCC 4.7.3

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6258

CAUTION!
Support for Windriver DIAB 5.9.2 has been dropped.

Supported compiler toolchains for AC500 PLCs are shipped along with Automation Builder.
If using another version or another C/C++ cross compiler toolchain or to modify the predefined
environment settings, the compiler settings must be configured manually:
1. From the Tools menu select Options. From the menu list select C compiler settings.

Fig. 1176: Defining compiler settings.

2. Open the GCC <> tab.
3. Under Environment Variables click New to enter the path to compiler executable.
4. Under Include path click New to add custom include paths. The include path to FWAPI is

automatically detected and cannot be changed.

CAUTION!
Changes on the preset FWAPI path lead to ending support service.

When optimizing for size, GCC uses primitives for saving and restoring GPR and FPR registers
from libgcc. Since C/C++ application is not linked against libgcc, this results in link errors
(symbol not found). Therefore optimization level –Os is not available in the compiler settings.

Restrictions on C:
Language elements: ANSI C and C99 language extension are supported.

Specifying opti-
mization level

Restrictions

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6259

Restrictions on C++ :
● Online change functionality is not available, if C++ toolchain is used. After changes in IEC

application part, always a full download will occur.
● Language elements: ISO C++98 and ISO C++2003 C++ dialects are supported as it is

supported by GCC –std option.
● We currently do not support:

– RTTI (Runtime Type Information)
– Exceptions
When existing code is imported, please ensure that the code works with these restrictions.

Restrictions for PM595:
Do not use 64-bit data types (LREAL, LINT, ULINT, LWORD) as return value of Function POUs.
Workaround: Use either function block POU, or encapsulate 64-bit return values in a STRUCT
declaration and return this data instead.

Problems with accessing function block parameters from C/C++ application:
In order to convert the parameter names of POUs or DUTs automatically, follow the following
rules:
● Function block parameters/DUT members get converted to uppercase (e.g. FirstParam ->

FIRSTPARAM).
● Function parameters get converted to uppercase and a postfix is added (e.g. abc -> ABC-

param).

Using standard output/standard error:
Access to standard streams (e.g. via printf, puts, etc.) is not available. Please use standard file
access instead (e.g. fprintf, fputs, etc.).

A description on available functions in the standard library
(FWAPI functions) is provided under <AB InstallDirectory>\CCodeTool-
chain\FWAPI\2.4\doc\index.html.

Header Description Sup-
ported

Remarks

assert.h Contains the assert macro,
used to assist with detecting
logical errors and other error
types in debugging versions of
a program.

Yes -

com-
plex.h

A set of functions for manipu-
lating complex numbers.

Yes -

Supported parts
of C standard
library

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6260

Header Description Sup-
ported

Remarks

ctype.h Defines a set of functions
used to classify characters
by their types or to convert
between uppercase and low-
ercase in a way that is inde-
pendent of the used character
set (typically ASCII or one of
its extensions, although imple-
mentations utilizing EBCDIC
are also known).

Partially Not supported: setchrclass

errno.h For testing error codes
reported by library functions.

Yes -

fenv.h Defines a set of functions for
controlling floating-point envi-
ronment.

Yes -

float.h Defines macro constants
specifying the implementation-
specific properties of the
floating-point library.

Yes -

inttypes.
h

Defines exact-width integer
types.

Yes -

iso646.h Defines several macros that
are equivalent to some of the
operators in C. For program-
ming in ISO-646 variant char-
acter sets.

Yes -

limits.h Defines macro constants
specifying the implementation-
specific properties of the
integer types.

Yes -

locale.h Defines localization functions. Yes Standard C/POSIX locales only

math.h Defines common mathemat-
ical functions.

Partially
(ANSI
and
C99)

Not supported:
Macros: NAN, HUGE VAL

setjmp.h Declares the macros setjmp
and longjmp, which are used
for non-local exits.

Yes -

signal.h Defines signal handling func-
tions.

No -

stda-
lign.h

For querying and specifying
the alignment of objects.

No Part of C11: Not supported by GCC 4.7.3

stdarg.h For accessing a varying
number of arguments passed
to functions.

Yes -

stda-
tomic.h

For atomic operations on data
shared between threads.

No Part of C11: Not supported by GCC 4.7.3

stdbool.h Defines a boolean data type. Yes -

stddef.h Defines several useful types
and macros.

Yes -

stdint.h Defines exact-width integer
types.

Yes -

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6261

Header Description Sup-
ported

Remarks

stdio.h Defines core input and output
functions.

Partially Not supported:
Operations on files: tmpfile, tmpnam
File access: freopen, setbuf, setvbuf
Formatted input/output: scanf, vscanf
Character input/output: getc, getchar,
gets, ungetc
Error-handling: clearerr, ferror, perror
Macros: BUFSIZ, FILENAME_MAX,
FOPEN_MAX, L_tmpnam, TMP_MAX

stdlib.h Defines numeric conversion
functions, pseudo-random
numbers generation functions,
memory allocation, process
control functions.

Partially Not supported:
Pseudo-random sequence generation:
srand
Environment: abort, atexit,
at_quick_exit, exit, getenv, quick_exit,
system, _Exit
Integer arithmetics: llabs, lldiv
Multibyte characters /strings: mblen,
mbtowc, wctomb, mbstowcs, wcstombs
Macros: EXIT_FAILURE, EXIT_SUC-
CESS, MB_CUR_MAX

stdnore-
turn.h

For specifying non-returning
functions.

No Part of C11: Not supported by DIAB C lib
and GCC 4.7.3

string.h Defines string handling func-
tions.

Partially Not supported:
Comparison: strcoll, strxfrm
Searching: strtok (alternative: strtok_r)
Other: strerror

tgmath.h Defines type-generic mathe-
matical functions.

Yes -

threads.
h

Defines functions for man-
aging multiple threads as well
as mutexes and condition var-
iables.

No Part of C11: Not supported by GCC 4.7.3

time.h Defines date and time han-
dling functions.

Partially Not supported:
Conversion: localtime

uchar.h Types and functions for
manipulating unicode charac-
ters.

No -

wchar.h Defines wide string handling
functions.

No -

wctype.h Defines set of functions used
to classify wide characters
by their types or to convert
between uppercase and low-
ercase.

No -

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6262

A description on available functions in the standard library
(FWAPI functions) is provided under <AB InstallDirectory>\CCodeTool-
chain\FWAPI\2.4\doc\index.html.

Header Description Supported
<c*> (.h) C library headers Yes

array Containers No

bitset Containers No

deque Containers No

forward_list Containers No

list Containers No

map Containers No

queue Containers No

set Containers No

stack Containers No

unordered_map Containers No

unordered_set Containers No

vector Containers No

ios Input/output base classes No

streambuf Stream buffer No

istream Input streams No

ostream Output streams No

iostream Standard input/output streams library No

fstream File streams No

sstream String streams No

iomanip IO manipulators No

iosfwd Input/output forwarding No

atomic Atomics and threading library No

condition_variable Atomics and threading library No

future Atomics and threading library No

mutex Atomics and threading library No

thread Atomics and threading library No

algorithm Algorithms No

chrono Time No

complex Complex numbers No

functional Function objects No

initializer_list Initializer list No

iterator Iterator definitions No

limits Numeric limits No

Supported parts

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6263

Header Description Supported
memory Memory elements No

new Dynamic memory Yes

numeric Generalized numeric operations No

random Random No

ratio Ratio header No

regex Regular expressions No

string Strings No

system_error System errors No

tuple Tuple library No

typeindex Type index No

typeinfo Type information No

type_traits type_traits No

utility Utility components No

valarray Library for arrays of numeric values No

Floating point instructions:
Support for floating point instructions (single and double precision) in hardware.

Debugging:
At the moment the development environment does not support debugger, i.e. debugging while
running on PLC target is not possible.

Linking third-party binaries or libraries:
At the moment it is not possible to link against third-party binaries or libraries.

Adding third-party source code to C/C++ applications:
Ä Chapter 1.6.5.4.7.4.3 “Additional Source Code Files in C/C++ Application” on page 6255

Compiler/linker options for compiling C/C++ code:

CAUTION!
These compiler/linker settings are activated by default, and cannot be changed
by end-users, since otherwise compilation/linking may fail or lead to unexpected
results.

In addition to that, following options are configurable by end users via C/C++ compiler settings
dialog.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6264

Table 755: Compile options:
Type of PLC GCC (C) G++ (C++)
PM55x, PM56x, PM57x,
PM58x

-mcpu=860
-fno-common
-msdata=none
-fno-jump-tables
-fno-section-anchors
-fno-merge-constants
-fno-builtin
-nostdlib
-Wconversion
-Werror-implicit-function-
declaration
fstack-usage

-

PM590, PM591, PM592 -mcpu=603e
-fno-common
-msdata=none
-fno-jump-tables
-fno-section-anchors
-fno-merge-constants
-fno-builtin
-nostdlib
-Wconversion
-Werror-implicit-function-
declaration
fstack-usage

-fmessage-length=0
-fno-rtti
-fomit-frame-pointer
-fno-exceptions
-fno-asynchronous-unwind-tables
-fno-unwind-tables

PM595 -mcpu=8540
-mdouble-float
-mfloat-gprs=double
-mspe
-mabi=spe
-fno-common
-msdata=none
-fno-jump-tables
-fno-section-anchors
-fno-merge-constants
-fno-builtin
-nostdlib
-Werror-implicit-function-
declaration
-Wconversion
-fstack-usage

-

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6265

Dialect options

Table 756: GCC (C):
Option GCC (C)
C99 -std=c99

ANSI -ansi

Table 757: G++ (C++):
Option GCC (C)
ISO C++98 -std=c++98

ISO C++03 -std=c++03

Optimization options:

Option GCC (C) and G++ (C++)
none -

normal -O2

extra -O3

Linker options:

Linker options are used in exactly the order as shown in the following table.

C C++
--emit-relocs
--no-check-sections
-L%TOOLCHAINPATH%\powerpc-elf-eabi\lib
-L%TOOLCHAINPATH%\lib\gcc\powerpc-elf-
eabi\4.7.3

--emit-relocs
--no-check-sections
-L%TOOLCHAINPATH%\powerpc-elf-eabi\lib
-L%TOOLCHAINPATH%\lib\gcc\powerpc-elf-
eabi\4.7.3

 %TOOLCHAINPATH%\lib\gcc\powerpc-elf-
eabi\4.7.3\ecrti.o
%TOOLCHAINPATH%\lib\gcc\powerpc-elf-
eabi\4.7.3\crtbegin.o

userapplication.obj userapplication.obj

- -lstdc++

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6266

C C++
- %TOOLCHAINPATH%\lib\gcc\powerpc-elf-

eabi\4.7.3\crtend.o
%TOOLCHAINPATH%\lib\gcc\powerpc-elf-
eabi\4.7.3\ecrtn.o

%TOOLCHAINPATH%\powerpc-elf-
eabi\lib\lib_a-setjmp.o
%FWAPIPATH%\libFWAPI.a"
-o user_libname.obj
--strip-debug
--script=ac500_link_script

%TOOLCHAINPATH%\powerpc-elf-
eabi\lib\lib_a-setjmp.o
%FWAPIPATH%\libFWAPI.a"
-o user_libname.obj
--strip-debug
--script=ac500_link_script

Why are VAR_IN_OUT parameters of a function block not initialized in corresponding init
function?
During initialization of the function block the pointer BYTE *B; is not valid. It is getting valid
during first call of the function block in IEC, therefore it is first accessible in FB main function
code.

CODESYS compiler complains about unresolved symbols _f_sub, __subsf3, …:
Your PLC uses math emulation. Please include math standard library (math.h) to support this.

Type char:
Type char is implemented as unsigned char. Hence, its definition is equal to IEC type
BYTE.

Why does GCC generate code that aborts application when va_list is used?
If you use va_list, GCC performs an automatic type promotion of the list members:

● char/short ➔ int
● unsigned char/unsigned short ➔ unsigned int
● float ➔ double
When extracting list members with va_arg(), ensure using the promoted type (e.g. int
instead of char). We recommend you, to check the compiler warnings. In case of type mis-
match, GCC will throw a warning similar to the following:
warning: 'unsigned char' is promoted to 'int' when passed through
'...' [enabled by default]
note: (so you should pass 'int' not 'unsigned char' to 'va_arg')
note: if this code is reached, the program will abort

CAUTION!
In this case call to va_arg(). Otherwise GCC will insert a trap instruction, that
halts your application.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6267

Parameters of POU or the members of data types defined in Automation Builder differ from
definition in C sources:
On code generation, parameters of POU and members of data types are slightly transformed:
● Names of POU and data types are converted to uppercase (e.g. mypou -> MYPOU).
● Parameters of POUs and members of data types are converted to uppercase.
● Parameters of POU type FUNCTION: A postfix "param" is added (e.g. myByte -> MYBYTE-

param).

Number of POUs or data types for a Automation Builder project:
Up to 50 POUs or data types can be created in one single Automation Builder project.

Searching for a POU or data type name in Automation Builder:
Search with Edit -> Find/Replace -> Find does not work is not supported yet.

Online change after changes in C/C++ application parts:
After a change in C/C++ application part, online change is not possible. Perform a "Clean All"
function before downloading to PLC.
If changes are in IEC code only, online changes are still possible.

Appendix
IEC vs. C/C++ Operators

IEC C Remark
a AND b a && b Logical AND

a OR b a || b Logical OR

a AND b a & b Bitwise AND

a OR b a | b Bitwise OR

NOT a !a Logical negation

NOT ~a Bitwise negation

XOR ^a Bitwise XOR

SHL(a,b) a << b Bitwise left shift

SHR(a,b) a >> b Bitwise right shift

a > b a > b Greater than

a >= b a >= b Greater than or equal to

a < b a < b Less than

a <= b a <= b Less than or equal to

a = b a == b Equal to

a <> b a != b Not equal to

a := b a = b Assignment

ADR(a) &a Reference (address of)

a^ *a Indirection (object pointed to by)

a^.b a->b Structure dereference

a.b a.b Structure reference

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6268

IEC C Remark
a + b a + b Addition

a – b a – b Subtraction

a * b a * b Multiplication

a / b a / b Division

MOD(a,b) a % b Modulo

n/a ++a Pre-increment

n/a a++ Post-increment

n/a --a Pre-decrement

n/a a-- Post-decrement

IEC vs. C/C++ Types

IEC C Remark
BOOL Unsigned char -

BYTE Unsigned char -

WORD Unsigned short -

DWORD Unsigned long -

SINT Signed char -

USINT Unsigned char -

INT Short -

UINT Unsigned short -

DINT Long -

UDINT Unsigned long -

REAL Float -

LREAL Double -

STRING(size) Char[size+1] Size specifier is optional. Default size is 80
characters (IEC). Size in C code is +1 due to
null termination.

TIME Unsigned long Milliseconds starting from 00:00:00

TIME_OF_DAY (TOD) Unsigned long Milliseconds starting from 00:00:00

DATE Unsigned long Seconds starting from 1.1.1970 at 00:00:00

DATE_AND_TIME
(DT)

Unsigned long Seconds starting from 1.1.1970 at 00:00:00

LWORD Unsigned long long -

LINT Long long -

ULINT Unsigned long long -

C 99 vs. ANSI C
For further information refer to http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6269

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf

● Restricted pointers: http://gcc.gnu.org/onlinedocs/gcc/Restricted-Pointers.html.
● Variable-length arrays: http://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html.
● Flexible array members: http://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html.
● static and type qualifiers in parameter array declarators.
● long long int type:http://gcc.gnu.org/onlinedocs/gcc/Long-Long.html.
● Additional floating-point characteristics in <float.h>.
● Removed implicit int.
● Reliable integer division.
● Universal character names (\u and \U).
● Compound literals:http://gcc.gnu.org/onlinedocs/gcc/Compound-Literals.html.
● Non-constant initializers:http://gcc.gnu.org/onlinedocs/gcc/Initializers.html.
● Designated initializers:http://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html.
● // comments:http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Comments.html.
● Extended integer types and library functions in <inttypes.h> and <stdint.h>.
● Removed implicit function declaration.
● Preprocessor arithmetic done in intmax_t/uintmax_t.
● Mixed declarations and code:http://gcc.gnu.org/onlinedocs/gcc/Mixed-Declarations.html.
● New block scopes for selection and iteration statements.
● Integer constant type rules.
● Integer promotion rules.
● Macros with a variable number of arguments.
● The vscanf family of functions in <stdio.h> and <wchar.h>.
● Additional math library functions in <math.h>.
● Floating-point environment access in <fenv.h>.
● IEC 60559 (also known as IEC 559 or IEEE arithmetic) support.
● Trailing comma allowed in enum declaration.
● %lf conversion specifier allowed in printf.
● Inline functions.
● The snprintf family of functions in <stdio.h>.
● Boolean type in <stdbool.h>.
● Empty macro arguments.
● New struct type compatibility rules (tag compatibility).
● Additional predefined macro names.
● _Prama preprocessing operator.
● Standard pragmas.
● __func__ predefined identifier.
● va_copy macro.
● Additional strftime conversion specifiers.
● Deprecate ungetc at the beginning of a binary file.
● Removed deprecation of aliased array parameters.
● Conversion of array to pointer not limited to values.
● Relaxed constraints on aggregate and union initialization.
● return without expression not permitted in function that returns a value (and vice versa).

C++ 98 vs. C++ 03
As C++ 98 and C++ 03 can be used interchangeably, programming is identical.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6270

http://gcc.gnu.org/onlinedocs/gcc/Restricted-Pointers.html
http://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html
http://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
http://gcc.gnu.org/onlinedocs/gcc/Long-Long.html
http://gcc.gnu.org/onlinedocs/gcc/Compound-Literals.html
http://gcc.gnu.org/onlinedocs/gcc/Initializers.html
http://gcc.gnu.org/onlinedocs/gcc/Designated-Inits.html
http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Comments.html
http://gcc.gnu.org/onlinedocs/gcc/Mixed-Declarations.html

1.6.5.5 Server installation
1.6.5.5.1 OPC server for AC500 V2 products
Introduction
Architecture of the CODESYS OPC server

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6271

Essential documents
For further information see Ä Chapter 1.6.5.5.1.2 “Hints” on page 6277.

 File name Com-
ment

Where to find

REF1 OPC_V3_how_to_use_E.pd
f

OPC_V3_how_to_use_D.pd
f

OPC V3 C:\Program Files\ABB\CoDeSys OPC Server
3 AE

REF2 AeConfigurator_User-
Guide.pdf

OPC V3 C:\Program Files (x86)\3S
CODESYS\CODESYS OPC Server 3

REF3 ReadMe.rtf OPC V3 Installation ABB DM Suit 1.0.:
\PLC - AC500\OPC Server\OPC-
ServerV3.xAE\

REF4 ReleaseNotesOPCV3 AE for
HA

OPC V3 Installation ABB DM Suit 1.0.:
\PLC - AC500\OPC Server\OPC-
ServerV3.xAE\

REF5 OPC_20_how_to_use_E.pdf

OPC_20_how_to_use_D.pdf

OPC V2 C:\Program Files (x86)\3S Software\CoDe-
SysOPC

REF6 HA_OPC_Example.pdf OPC V3
HA

Installation CD PS501:
\CD_AC500\Projects\Examples\High_Availa-
bility_OPCV3

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6272

Work flow
Consideration and preparation

1) Ä Chapter 1.6.5.5.1.2.1 “When using OPC server V2 or V3” on page 6277
2) Ä Chapter 1.6.5.5.1.2.3 “Installation of OPC server” on page 6281

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6273

Commission OPC server

1) Ä Chapter 1.6.5.5.1.1.2 “Essential documents” on page 6272 REF6.
2) Ä Chapter 1.6.5.5.1.2.5.1.1 “Configure a symbol file” on page 6285
3) Ä Chapter 1.6.5.5.1.2.5.1.2 “Create and download a symbol file” on page 6287
4) Ä Chapter 1.6.5.5.1.2.5.1.1 “Configure a symbol file” on page 6285
5) Ä Chapter 1.6.5.5.1.4.1.1 “AC500 project” on page 6309 “step 5”.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6274

1) Ä Chapter 1.6.5.5.1.2.6.1 “Configure OPC server V2 (for AC500 V1 and V2)” on page 6289
2) Ä Chapter 1.6.5.5.1.1.2 “Essential documents” on page 6272 REF2.
3) Ä Chapter 1.6.5.5.1.2.7.1 “Check AlarmEvents” on page 6299

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6275

Adjustment to target OPC client

1) Ä Chapter 1.6.5.5.1.1.2 “Essential documents” on page 6272 REF4.
2) Ä Chapter 1.6.5.5.1.2.8 “Configure user account for OPC server” on page 6299

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6276

Hints
When using OPC server V2 or V3

Required functions of the OPC
client

OPC server
V2

OPC server
V3 Hints

Windows 7 32-bit, Windows 7 64-
bit, Windows Server 2003, Windows
Server 2008

X X

OPC client runs as service - X

Support alarm/event - X

Support AC500 HA - X

OPC performance
- Faster

Comparison with OPC
server V2 to V3: trans-
mission rate

Support VB, VBA OPC clients
(Automation Interface, Automation
Wrapper)

X X

OPC server V3 supports
VBA OPC clients. How-
ever, a OPC server V2
must be installed addi-
tionally as otherwise
an essential DLL is
missing.

Resource-saving to older OPC cli-
ents, which support only the old OPC
DA 1.0a (Async I/O 1.0a) groups. X X

See hints Ä Chapter
1.6.5.5.1.3.4 “Behavior
OPC server V3 via
interface IOPCAsyncIO”
on page 6308

Simulation without AC500 - X

Several OPC clients used at the same time, must run in the same session.

See Hints Ä Chapter 1.6.5.5.1.3.3 “Session isolation” on page 6306.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6277

Default folder and contents
Windows 7, Windows Server 2008/2016 (64-bit)

OPC Server V2 Windows 7 64-bit, Windows Server 2008
64-bit, Windows Server 2016 64-bit

CoDeSysOPC.exe

OPCConfig.exe

OPCConfig_e.exe

OPC_20_how_to_use_D.pdf

OPC_20_how_to_use_E.pdf

C:\Program Files (x86)\3S Software\CoDeSy-
sOPC\

CoDeSysOPC.ini

OPCServer.log

C:\ProgramData\CoDeSysOPCV2.3

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\ProgramData\Gateway Files\
After starting the OPC server:
C:\ProgramData\Gateway Files\Upload\

Gateway.exe C:\Windows\SysWOW64\

OPC Server V3 Windows 7 64-bit, Windows Server 2008
64-bit, Windows Server 2016 64-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

C:\Program Files (x86)\3S CoDeSys\CoDeSys
OPC Server 3\

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\ProgramData\CoDeSysOPC\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\ProgramData\Gateway Files\
After starting the OPC server:
C:\ProgramData\Gateway Files\Upload\

Gateway.exe C:\Windows\SysWOW64\

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6278

Windows 7 (32-bit), Windows Server 2008/2016 (32-bit)

OPC Server V2 Windows 7 32-bit, Windows Server 2008
32-bit, Windows Server 2016 32-bit

CoDeSysOPC.exe

OPCConfig.exe

OPCConfig_e.exe

OPC_20_how_to_use_D.pdf

OPC_20_how_to_use_E.pdf

C:\Program Files\3S Software\CoDeSysOPC\

CoDeSysOPC.ini

OPCServer.log

C:\ProgramData\CoDeSysOPCV2.3

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\ProgramData\Gateway Files\
After starting the OPC server:
C:\ProgramData\Gateway Files\Upload\

Gateway.exe C:\Windows\System32\

OPC Server V3 Windows 7 32-bit, Windows Server 2008
32-bit, Windows Server 2016 32-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

C:\Program Files\3S CoDeSys\CoDeSys OPC
Server 3\

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\ProgramData\CoDeSysOPC\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\ProgramData\Gateway Files\
After starting the OPC server:
C:\ProgramData\Gateway Files\Upload\

Gateway.exe C:\Windows\System32\

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6279

Windows Server 2008/2016 (32-bit)

OPC Server V2 Windows Server 2008 32-bit, Windows
Server 2016 32-bit

CoDeSysOPC.exe

OPCConfig.exe

OPCConfig_e.exe

OPC_20_how_to_use_D.pdf

OPC_20_how_to_use_E.pdf

CoDeSysOPC.ini

OPCServer.log

C:\Program Files\3S Software\CoDeSysOPC\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\WINDOWS\Gateway Files\
After start CODESYS OPC server:
C:\WINDOWS\Gateway Files\Upload\

Gateway.exe C:\Windows\System32\

OPC Server V3 Windows Server 2008 32-bit, Windows
Server 2016 32-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\Program Files\3S CoDeSys\CoDeSys OPC
Server 3\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\WINDOWS\Gateway Files\
After start CODESYS OPC server:
C:\WINDOWS\Gateway Files\Upload\

Gateway.exe C:\Windows\System32\

If folder C:\ProgramData\ is missing, select “Show hidden files, folders and
drives” at “Control Panel è All Control Panel Items è Folder Options è View
è Hidden files and folders”.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6280

Installation of OPC server

The following applications are closed:
– All OPC clients
– ABB OPC tunnel
– CODESYS gateway server

Ensure termination of the following processes:
– Gateway.exe
– CoDeSysOPC.exe
– WinCoDeSysOPC.exe
– OCTsvc.exe

Installing with Automation Builder
1. Go to homepage http://new.abb.com/plc/automationbuilder/platform/software .
2. Click button of Latest Automation Builder version (recommended) and run the installer.

3. Open “Installer Options and Additional Tools” and click [Install Additional Tools].
4. Agree to the “License Terms”.

Prerequisites

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6281

http://new.abb.com/plc/automationbuilder/platform/software

5. Select “Version 2 and/or 3” and install.

ð All required files are installed for OPC and the OPC server is registered automatically
as user application.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6282

Manual registration and unregistration
It is possible to register or to uninstall the OPC server manually either as COM server (user
application) or as a service.

Register the OPC server as interactive software in the Windows registry:

Command for OPC 3: WinCoDeSysOPC/RegServer

Command for OPC 2: CoDeSysOPC/RegServer

Register the OPC server as system service:

Command for OPC 3: WinCoDeSysOPC/Service

Unregister the OPC server from the Windows registry and from the service
entry:

Command for OPC 3: WinCoDeSysOPC/UnRegServer

Command for OPC 2: CoDeSysOPC/UnRegServer

Please see REF1 chapter 3 (OPC 3) and REF6 chapter 2.2 (OPC 2) Ä Table
on page 6272 for details.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6283

Register OPC server V3 as a system service
● All programs, processes and services which connect to the OPC server are closed.
1. Start the “Command Prompt” with command “cmd” in the “Start è Run... ” window.

2. Go to the CoDeSysOPC V2 installation folder.
3. Unregister the OPC server with WinCoDeSysOPC/UnRegServer.

4. Register the OPC server as system service with WinCoDeSysOPC/Service.

OPC clients for tests
Free of charge test clients can be found in the web:
https://industrial.softing.com/us/downloads.html

http://www.matrikonopc.com/products/opc-desktop-tools/index.aspx

CODESYS settings

Please refer to REF5 Online Help of PS501 chapter OPC for details Ä Table
on page 6272.

Prerequisites

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6284

https://industrial.softing.com/us/downloads.html
http://www.matrikonopc.com/products/opc-desktop-tools/index.aspx

Symbol file
AC500 (V1 and V2)
Configure a symbol file

Symbol files contain the items (variables) which are exchanged with the PLC for OPC communi-
cation. After the project has been build, the following symbol files are generated and stored in
the project (.pro) folder:
● .sdb

Important binary file needed by OPC server (computer-readable).
● .sym

Human-readable file with content from .sdb. It can be used to check if .sdb has been
generated correctly.

Please refer to REF5 Online Help of PS501 for how to configure a symbol file
Ä Table on page 6272.

1. Open CoDeSys - Application.AC500PRO by double-click “Application” in the device tree.
2. Select the “Symbol configuration” in menu “Project è Options”.

3. Enable checkbox “Dump symbol entries” and click [Configure symbol file].

ð
In the case a symbol file gets corrupt and e.g. contains additional
symbols, please follow the steps to recreate a clean symbol file.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6285

1. Disable all checkboxes in window Set object attributes and confirm twice with [OK].
2. Go to “Project è Options” “Symbol configuration” and click [Configure symbol file].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6286

ð Select the variables which should be communicated as symbol:

3. Enable the following checkboxes:
● Export variables of object
● Export structure components
● Export array entries
● Write access

4. Confirm twice with [OK].

ð Rebuild the project.

Create and download a symbol file
If the PLC hardware is available, use “login / download program” to copy the .sdb file automati-
cally to the gateway folder, e.g. “C:\WINNT\Gateway Files”. If the PLC hardware is not available,
copy the .sdb file manually to the gateway folder.
When the OPC server is started, the .sdb file will be copied to the folder for gateway communi-
cation, e.g. to “C:\WINNT\Gateway Files\Upload”.

For CPU with
FW V1:

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6287

Following option can be chosen to download the .sdb file also to the PLC.

When the OPC server is started, .sdb will be copied from the PLC (if available) or from the
gateway folder to “C:\WINNT\Gateway Files\Upload”.

Do not configure the program as a cyclic program, use a task configuration.
Call the PLC Browser and have a look at the task time (command “tsk” in the
command line). For example, if the program has a cycle time of 40 ms, use a
task time of 50 or 60 ms to enable the CPU to answer the OPC request from the
OPC server between the tasks.

For CPU with
FW V2:

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6288

Configure OPC server
Configure OPC server V2 (for AC500 V1 and V2)

1. Start the OPC Configurator and select Server.

ð
Update rate
– The Update Rate may not be 0 (ms)!
– The default value of 200 ms is a suitable value of many applica-

tions.
– The adjustment for the Update Rate depends on the number of

symbols (variables).
– For a big number of symbols it can be better to increase the

Update Rate.

The checkboxes Sync Init and Log Events must be enabled.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6289

2. Select the 'PLC1' node.

ð
– If the *.sdb files should be loaded from the “Gateway Files” direc-

tory on PC, the project name must be identical with project name
in CODESYS. The extension is not necessary.

– If the symbol information should be loaded from V2.x, the project
name is not required and can also be empty.

– The parameters displayed in the screenshot above are recom-
mended default settings.

– The checkboxes Active, Motorola Byteorder and No Login-Service
must be enabled.

3. Select “Connection” and click [Edit].
4. Choose a channel of the channel list (normally the channel which is used for program-

ming) or click “New”.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6290

5. Define a Name, select “TCP/IP” and click [OK].

6. Under Value, enter the gateway address (192.168.0.10) and click [OK].

If you have more than one PLC, repeat the steps 2 - 5.

Previous settings of gateway channels are only visible, after the first time the
connection has been built up.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6291

Configure OPC Server V3
1. Start CODESYS/ CoDeSysOPC Server V3/OPC Configurator.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6292

2. If the configuration is needed furthermore, save the configuration.

ð
Update rate
– The Update Rate may not be 0 (ms)!
– The default value of 200 ms is a suitable value of many applica-

tions.
– The adjustment for the Update Rate depends on the number of

symbols (variables).
– For a big number of symbols it can be better to increase the

Update Rate.

The checkboxes Sync Init and Enable logging (Defaultevents) must be
enabled.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6293

3. Select “PLC1”.

ð
– If the *.sdb files should be loaded from the “Gateway Files” direc-

tory on PC, the project name must be identical with project name
in CODESYS. The extension is not necessary.

– If the symbol information should be loaded from AC500 V2.x, the
project name is not required and can also be empty.

– The parameters displayed in the screenshot above are recom-
mended default settings.

– The checkboxes Active, Motorola Byteorder and No Login-Service
must be enabled.

– Enabled checkbox “Enable logging” allows a later diagnosis.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6294

4. Select “Connection” and click [Edit].

5. Choose a channel of the channel list (normally the channel which is used for program-
ming) or click [New].

6. Define Name select “TCP/IP” and click [OK].

ð
– Previous settings of gateway channels are only visible, after the

first time the connection has been built up.
– See Ref 5 Online Help of PS501 CoDeSys, Help, Contents,

System Technology, OPC Ä Table on page 6272.
– Use of the CODESYS OPC server.
– Configure the OPC server with OPCconfig.exe.

If there are more than one PLC, then repeat for the other PLCs (gateway depends on
version of AC500).

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6295

7. Save As.
Click “File è Save as...” OPCserver.ini “Save” and “File è Exit” OPCConfig.

Check OPC function with AC500

It is urgently recommended to check the function of the previous configuration
steps.

In order to check the OPC function without AC500, see Ä Chapter 1.6.5.5.1.4.1
“Test OPC function without AC500” on page 6309.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6296

Check OPC server V2
1. Start OPCExplorer.exe and connect “CoDeSys.OPC.02”.

2. Add Group, add Items, select availabe Items in “Server CoDeSys.OPC.02”.
Add to Tag List, close the .

ð If anything is right, then “CoDeSys.OPC.02” is connected, is running and the “Quality”
of the items is good.

3. With the “Matrikon” is it possible to read / write the values of the items.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6297

Check OPC server V3
1. Start OPCExplorer.exe and connect “CoDeSys.OPC.DA”.

2. Add Group, add Items, select availabe Items in Server “CoDeSys.OPC.DA”.
Add to Tag List, close the Item browser.

ð If anything is right, then “CoDeSys.OPC.DA” is connected, is running and the “Quality”
of the items is good.

Check processes with windows task manager

Correct configuration: All processes run with the same “User Name” and with the same “Session
ID”.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6298

Configure AlarmEvents

Refer to REF2 AeConfigurator_UserGuide.pdf for details Ä Table
on page 6272.

Check AlarmEvents
The function of the “AlarmEvents” can be checked with “MatrikonOPC Explorer”.

The “AlarmEvents” can be simulated by writing the value of the Items.

Configure user account for OPC server

Please refer to REF3 ReadMe.rtf and REF4 ReleaseNotes OPCV3 AE for HA
Ä Table on page 6272.

OPC server V3 on Windows Server 2003/ 2008/ 2012/ 2016
When running the OPC server V3 on Windows Server 2003/ 2008/ 2012 /2016 multiple ses-
sions need to be supported. Therefore the installation of the OPC server as service running with
a dedicated user account is recommended.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6299

● Create specific user, no administrator account is required
● Register V3 OPC server as service
● Configure V3 OPC server as service

Register the OPC Server executable as service from the command line.

With command “WinCoDeSysOPC /Service” WinCoDeSysOPC.exe gets
installed as system service.

Started once, the service will stay “started” until the system gets terminated.

The communication to the configured PLCs survives.

Also here the service gets installed in the current position of WinCoDeSy-
sOPC.exe.

Configuration
steps

Create specific
user

Registration

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6300

At “Computer Management è Services and Applications è Services” open the “Properties” of
the “CoDeSysOPCDAService”.

Complete the Service Configuration

Configuration

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6301

Check Users and Session during Test Cases

Check the “Session ID” and “User Name” of

Testing

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6302

● Gateway.exe,
● WinCoDeSysOPC.exe and
● OPC Client
on different test cases like multi session with terminal service sessions.

Potential issues

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6303

Gateway communication not possible
The CODESYS Gateway server uses TCP port 1210 for communication.

– The gateway communication is not possible if gateway ports 1210 and 1211
are used by other applications.

Possible applications that also use port 1210 and/or 1211:
● Java update client
● ABB 800xA System
If there are problems to establish a gateway communication, check the usage of port 1210 (via
any port scanning tool, e.g. SysInternals) and close the application which uses this port.

Change port number of ABB 800xA System:

1. Open the registry editor and double-click “Port”.

2. Change the “registry key” from 1210 to 51000 and click [OK].
3. Restart the “Gateway Server” and close all applications.

ABB 800xA
system

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6304

4. Close the processes gateway.exe in Windows Task Manager.

5. Change the port number of Gateway communication parameter from standard port
number 1210 to 51000 (in the example).

6. The OPC Server Configuration (OPCConfig.exe) must be renewed to enter this change in
the Ä Chapter 1.6.5.5.1.2.6.2 “Configure OPC Server V3” on page 6292OPCServer.ini.

Windows Server 2012/ 2016
At Windows Server 2012 /2016 (64-bit) the path for the Reg Key is:
“HKEY_LOCAL_MACHINE è Software è WOW6432Node è 3S-Smart Software Solutions
GmbH è Gateway Server è Config è TcpIp”

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6305

Symbol file from AC500 not loaded
OPC server is shown, but no OPC variables are to be found.
OPC with symbol file on AC500 does not work.
OPC server does not load the symbol file (.sdb) from AC500 PLC (FW V2) to PC

● Programming Software “907AC1131” is installed.

1. Check the registry item: “HKEY_LOCAL_MACHINE\ SOFTWARE\ 3S-Smart Software
Solution GmbH\ Gateway Server\ Config\ EnableSymbolFileUpload”.
If this item is inside, the symbol file will not be loaded from AC500 PLC to PC. For Control
Builder Plus this item must be deleted but for AC1131 this item must be available. You
must ckeck this.

2. In Windows, go to “Start è Run” type “regedit” and click [OK].

3. Open the folder “Config” in “Registry Editor”.
● For AC500 FW V2 delete the item “EnableSymbolFileUpload”.
● For AC1131 the item “EnableSymbolFileUpload” must be available.

Session isolation
With Windows Server 2003, Windows Server 2008, Windows Server 2016 the Windows 7
services are alone in session 0. User applications run in session 1 (2 and so on).
Services:

A Windows service is a computer program that operates in the background.
Windows services can be configured to start when the operating system is started or can be
started manually and run in the background as long as Windows is running. They can operate
when a user is not logged on.
Services are:

Windows operating systems include numerous services. OPC client like S+ OPC scanner
PGIM, Aspen CIM-IO Manager, ICONICS, .. can also installed as a service.
User applications are:

Situation

Possible reason

Problem solving

Situation

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6306

Microsoft Word, Notepad, MatrikonExplorer, ControlBuilderPlus.exe and Codesys.exe

Service and user application are isolated in their session. They can not communicate with each
other directly.
OPC Server uses, like the CBP and CODESYS, the gateway server from CODESYS
(gateway.exe) for the communication with the AC500 and starts the gateway in their session.
That creates undefined behavior, if the OPC Server runs as a service. The gateway server is not
able to run in multi sessions.

● Install all OPC clients and OPC Server, which use the gateway server, in the same session.
● The OPC Server as a service (session 0) may not be connected at the same time (in

parallel) with an OPC server as a user application or CBP or CODESYS (all in session 1)
with the AC500. If this function is necessary, different PC or virtual machines must be used.

● Use tools like OPC tunnel. In a DigiVis 500 setup context the OPC server must not be
registered as service. The OPC tunnel itself starts the OPC server within its service.

See also http://msdn.microsoft.com/en-us/
windows7trainingcourse_sessionisolation_unit .

Problem

Resolutions

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6307

http://msdn.microsoft.com/en-us/windows7trainingcourse_sessionisolation_unit
http://msdn.microsoft.com/en-us/windows7trainingcourse_sessionisolation_unit

Behavior OPC server V3 via interface IOPCAsyncIO
Using of an “OPC client”1) with the older OPC standard Interface IOPCAsyncIO (OPC DA
V1.0a) creates a higher communication load on the OPC client, because the OPC Server sends
also the unchanged items in every scan cycle to the client.

If OPC Items are registered via Interface IOPCAsyncIO (OPC DA V1.0a), the OPC Server
sends mostly with each ready cycle a data change event, including also unchanged values. The
change detection is correct when using the interface IOPCAsyncIO2 (OPC DA V2).

● Use the interface IOPCAsyncIO2 (OPC DA V2).
● If the OPC client does not support IOPCAsyncIO2 interface, then use the OPC Server V2.

The OPC Server does not show this behavior.

“OPC client” 1):
Visualization software in VISU PMS (Fa. epro GmbH) uses an older standard OPC with the
interface IID_IAdviseSink than data sink.

Test setup

Reason

Workaround

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6308

Examples
Test OPC function without AC500

The example shows, how the OPC server V2/V3 can be tested/simulated without available
AC500.

AC500 project
1. Open CoDeSys Application.

2. Collect all OPC variables in a separate “Global Variables” list.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6309

3. Under “Project è Options ” select the “Symbol configuration”.
Enable checkbox “Dump symbol entries” and click [Configure symbol file].

4. Disable all the checkboxes and confirm twice with [OK].

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6310

5. Under “Project è Options ” “Symbol configuration” click [Configure symbol file] again.

6. Select the variables which should be communicated as symbol.
Enable the following checkboxes:
● Export variables of object
● Export structure components
● Export array entries
● Write access

7. Confirm twice with [OK].
8. Under “Project è Rebuild all” rebuild the project.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6311

9. In the project folder is the subfolder “OPC_test1__AC500_PM573_ETH__OPC_test1”. It
contains symbol files *.SYM and *.SDB with the time of the “Rebuild all”. The items in
the file *.SYM can be checked with Notepad. The binary file *.SDB contains the items for
the OPC server. With <Online> <Login> it will copied in the gateway files directory and
optionally on the AC500.

10. The folder “OPC_test1__AC500_PM573_ETH__OPC_test1” is a temporary folder, if the
CBP project is opened. For the simulation of the server OPC it is copied *.SDB by hand.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6312

Configure OPC server V2

Only the “Project name” may be specified.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6313

Check OPC server with MatrikonOPCExplorer

1. OPC Server V3: “Connect CoDeSys.OPC.DA”. Add “Group”, add “Items”, select “Availabe
Tags” and add to “Tag List”.

2. The OPC Server V3 (“CoDeSys.OPC.DA”) is connected, running and the “Quality” is
good.
One OPC client can read / write the values of the items.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6314

3. Similar configuration as above.
The OPC Server V2 (“CoDeSys.OPC.02”) is connected, running and the configured items
are found. But the “Quality” is bad. One OPC client can not read / write the values of the
items.

Check processes with windows task manager

Correct configuration: All “Processes” run with the same “User Name” and with the same
“Session ID”.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6315

Summary

The correct function of OPC Server V2 and V3 can be checked without AC500.

With OPC Server V3 with the configuration “SIMULATION” the Project name
with the directory name has to be specified. The values of the items can be read
and write by one OPC client.

With OPC Server V2, as well as with OPC Server V3 in configuration
“GATEWAY”, only the project name may be specified. The configured items
are found, but the quality is bad. The values of the items can not be read and
not write by one OPC client.

Refer to REF5 Online Help of PS501 chapter OPC for details Ä Table
on page 6272.

Create an OPC client with Microsoft Excel
How do you create an OPC client with Microsoft Excel?
See Application Example, OPC.
This application example consists of two parts:
● AC500_to_OPC_Excel_Client.pro: AC500eCo project with symbol and CoDeSysOPC
● OPC_Excel_Client.xls: MS Excel sheet with VBA program

Block Diagram

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6316

http://new.abb.com/plc/application-examples

Worksheet “Control panel” for the communication with the OPC-Server.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6317

Worksheet “Overview” for visualization.

This works also with OPC Server V3 but because of a missing DLL the OPC
Server V2 must be installed also.

It will be fixed in later Releases as V2.3.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6318

OPC server V3 with S+

Test with ABB PS Mannheim, 2012. Communication via OPC with AC500.

● Windows Server 2008 64 Bit
● S+
● OPC Server V3

Setup

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6319

1. Install OPC-Server V3 from folder CBP.

ð After the installation OPC server runs in session ID: 1

2. Test with Testclients, as Softing or Matrikon OPC, if the data is able to be called up.

ð The S+ OPC-Scanner runs as a service.

3. Configure OPC Server V3 according to Hints Ä Chapter 1.6.5.5.1.2.6.2 “Configure OPC
Server V3” on page 6292.

4. Configure User account for OPC server Ä Chapter 1.6.5.5.1.2.8 “Configure user account
for OPC server” on page 6299.

ð The OPC server runs then in session ID: 0.

Procedure

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6320

Win7 64 bit OPC server V3 symbol file local
1. Create a new project and take a look at your symbol file.

The project must be opened to see this file.

2. Copy your *.sdb file to the following folder “C:\Windows\Gateway Files”.

3. Open the OPCConfig and select “PLC<...>”. The Project name must be the same as the
name of the symbol file.
Enable check boxes Active, Motorola Byteorder, No Login-Service and Enable logging
(Defaultevents).

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6321

4. Select “Connection” to the PLC.

5. Save the current OPCServer.ini in the following folder “C:\Programme (x86)/ABB/
CoDeSys OPC Server 3 AE”.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6322

6. Check the OPC connection with a OPC client e.g. Matrikon.

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6323

Appendix
Transmission rate - Comparison with OPC server V2 to V3

Some figures about OPC Server transmission rates of a special test setup of HHZ:
● PC Lenovo T430, Windows 7, 64 bit

– OPC client (OPC Systemtest Teststand, LabView 8.6 application)
– OPC Server V2 und V3

● AC500 PM592 (task freewheeling and t=2 ms shown similar values)
● OPC client application: 100 cycles (write item, read item, compare value, increment value)

OPC Server Item Byte

 Connect
[ms]

Mean value
[ms]

Max. value
[ms]

Disconnect
[ms]

OPC Server V2: write cycle 2 2.374 4 0

OPC Server V2: read
cycle

2 127.2 133 0

OPC Server V3: write cycle 2 1.838 4 1

OPC Server V3: read
cycle

2 96.8889 99 1

OPC Server Item Byte

 Connect
[ms]

Mean value
[ms]

Max. value
[ms]

Disconnect
[ms]

OPC Server V2: write cycle 1 2.333 4 0

OPC Server V2: read
cycle

1 127.152 133 0

OPC Server V3: write cycle 1 1.616 4 1

OPC Server V3: read
cycle

1 97.1414 99 1

Performance - Comparison with OPC server V3 and TCPIP drivers
Measured on a Lenovo Thinkpad with Core-I5, Windows 7-64, 8GB RAM using a minimum
OPC-Client (console application) written in C# with use of OpcNetApi-Library.
V2.3 project with 5 AC500 PLCs

TCPIP - Driver Name
Buffer size setting

in
opcserver.ini

Average CPU
Load (PM591) [%]

Throughput Cyclic
items

per second at OPC-
Client

3S TCPIP 0 16 8500
ABB TCP/IP Level 2
AC

1000 19 2886

ABB TCP/IP Level 2
AC

5000 19 4770

ABB TCP/IP Level 2
AC

7000 19 5202

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6324

1.6.5.5.2 Web server
Use of the web server for the AC500

As of firmware 2.0 an integrated web server on AC500/AC500-eCo PLCs is available. A web
browser communicates with the web server on the PLC and displays the visualization by means
of a Java applet using http 1.0.
Prerequisite: The processor module provides onboard Ethernet. No access via the interface of
an Ethernet Communication Module.
Features:
● Web visualization (created in CODESYS)
● Download and storage of the webpages as part of the boot project on RAM disk of the CPU
● Access to the integrated AC500 web server with web browsers that contain a Java plug-in
● Access to the integrated AC500 web server with web panels e.g. CP6xx-WEB.
● File transfer from the PLC to the web browser on the PC.
● No special license required.

Usage of the web server occupies storage on the user RAM disk.

Table 758: User RAM disk (required for Java)
PM55x-xP-ETH
PM56x-xP-ETH

PM556 PM573-
ETH

PM583-
ETH

PM590-
ETH

PM591-
ETH

PM592-
ETH

PM595

512 kB (+ 400 kB) 1024 kB
(+ 400
kB)

1024 kB
(+ 400
kB)

4096 kB
(+ 400
kB)

8 MB (+
400 kB)

8 MB (+
400 kB)

8 MB (+
400 kB)

32 MB (+
400 kB)

Configuration

1. In your PLC project, click “Interfaces è Ethernet è Protocols” and add a new object
“Web Server”.

2. Open the web server settings to change the default settings if required.
Before changing the number of parallel connections for the web server, check the general
information on Ä Chapter 1.6.4.1.6.1.1 “Ethernet protocols and ports for AC500 V2 prod-
ucts” on page 5442.

Integrated web
server on AC500

Configuration in
Automation
Builder

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6325

Parameter Default Value Description
Port 80 0 ... 65535 Listen port of the web

server

Connections 2 1 ... 25 (depending on
CPU type)

Number of parallel
connections accepted
by the web server.
Depending on the
CPU type and web-
visu complexity it
might be possible to
have more connec-
tions to different cli-
ents. The connections
will be opened and
closed one after the
other. This might lead
to the impression of
more parallel connec-
tions than configured.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6326

1. Open the CODESYS.
2. In the “Resources” tab click on “Target Settings” and select the “Visualization” tab.

ð If required, change “Display width” and “Display height” for the web pages.

Enable “Web visualization” check box, otherwise the webpages are only visible in
online mode.
Ensure “Inhibit download of visualization files” check box is disabled.

If you enable “Activate system variable 'CurrentVisu’” check box and
define a global variable “CurrentVisu” [STRING(40)] in your project,
then the name of the active visualization will be stored in this variable.
You can switch between your visualization pages by changing this
value.

Configuration in
CODESYS

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6327

3. In CODESYS open the “Visualizations” tab to create the webpages. The first entry is the
start page of your visualization project and must be named "PLC_Visu".

ð Further information on the creation and formatting of websites is provided in the
CODESYS section Ä Chapter 1.4.5 “Web visualization” on page 721. When building
up your visualization project, consider the required disk space on the user RAM disk.

4. By default, all objects in the visualizations tab are marked for web visualization. When
the project is built, all marked objects are saved as XML files (objectname.xml) into the
project.
To exclude a particular visualization object from the web visualization, click “Project
è Object è Properties”.
In the “Visualization” tab disable Web-Visualization check box.

5. Open a web browser and enter the IP address to the PLC (webserver project): http://<IP
address/webvisu.htm>.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6328

6. Click “Online è Show file information” to check the “PLC Project Data Sizes”.

Alarm configuration
In case of a required alarm configuration via web server, alarms in the web server can be
configured.
1. In your PLC project, open the CODESYS.

2. Enable “Alarmhandling in the PLC”.

ð In the “Task configuration” section a new task ALARM_TASK is created and the
following CODESYS libraries are loaded:
● SysLibAlarmTrend
● SysLibFile

PLC Automation with V2 CPUs

PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6329

3. In the “Alarm configuration” modify the default settings for the alarm classes if required.
Under “System” append an alarm group.

4. Open the “Visualizations” view and add a new object.
5. If necessary, create a configuration table. However, do not change the alarm group to the

option “All alarm groups”.

1.6.5.6 Converting an AC500 V2 project to an AC500 V3 project
A project that has been configured for an AC500 V2 PLC can be converted to a project for an
AC500 V3 PLC.
Essentially, the conversion is done in Automation Builder, however, some additional actions
have to be executed manually. The complete procedure is described in the application example
Instructions on how to convert a V2 project to a V3 project and differences between V2 and V3.

PLC Automation with V2 CPUs
PLC integration (hardware) > Configuration in Automation Builder for AC500 V2 products

2022/01/203ADR010582, 3, en_US6330

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch

1.6.6 Storage devices for AC500 V2 products
1.6.6.1 Introduction of AC500 storage devices for AC500 Products
1.6.6.1.1 Overview

AC500 PLCs offer a variety of storage devices. The following table gives a short overview and a
description on these storage devices:

IEC access means that the storage device can be accessed by function blocks
of an IEC program.

FTP access means that the device can be accessed via FTP server on the PLC
(if available).

Component Description IEC access FTP access CPUs
AC500 V2

RAM disk System RAM
disk
Volatile storage
device placed in
the SDRAM
Used by the firm-
ware during its
operation
For internal firm-
ware use only!

No Yes
FTP user = "ram-
disk"

All

User disk User RAM disk
Volatile storage
device placed in
the SDRAM
Can be used for
any application
purpose

Yes Yes
FTP user = "user-
disk"

All

SRAM disk Battery-buffered,
non-volatile RAM
disk placed in the
SRAM
Can be used for
any application
purpose

Yes Yes
FTP user =
"sramdisk"

All processor
modules for
AC500
(Standard) V2
Ä Chapter
1.6.1.7.2 “Device
list: Processor
modules
(CPUs) ”
on page 3713

Internal flash PLCs persistent
memory
Used for storing
firmware, user
application and
user data

Yes No All

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6331

Component Description IEC access FTP access CPUs
AC500 V2

Flash disk Internal persis-
tent mass
storage device
Can be used for
any application
purpose

Yes Yes
FTP user =
"flashdisk"

PM592-ETH
PM595-4ETH

memory card
(removable)

memory card
(removable)
Removable per-
sistent mass
storage device
Can be used for
any application
purpose

Yes Yes
FTP user =
"sdcard"

All processor
modules with
memory card slot
Ä Chapter
1.6.1.7.2 “Device
list: Processor
modules
(CPUs) ”
on page 3713

1.6.6.1.2 Functionalities

The maximum number of files opened at the same time is limited to 1007.

The max. length of the user string (path and filename) is 241 characters.

Component As of CPU firmware Functionality
RAM disk V2.0.2 Load / save boot project

Firmware update
Internal system files

V2.1.3 Files via FTP server (e. g. firmware update)

User disk V2.0.2 WebVisu files and Java applet for web server
Symbol file for OPC server and CP600 panels

V2.1.3 Java script files for web server
User data via CAA_File_xxx.lib Ä Chapter
1.5.4.4 “CAA_File library” on page 789

Files via FTP server

SRAM disk V2.1.3 User data via CAA_File_xxx.lib Ä Chapter
1.5.4.4 “CAA_File library” on page 789

Files via FTP server

Internal flash V2.0.2 CPU firmware
Traceability and configuration data
User application: boot project, symbol file and
WebVisu files (BOOT.ZIP + WEBVISU.ZIP)
User data via Ä Chapter 1.5.4.19 “Internal
system library” on page 1500 Internal System
Library -> FLASH_<...>

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6332

Component As of CPU firmware Functionality
Flash disk V2.1.3 User data via CAA_File_xxx.lib Ä Chapter

1.5.4.4 “CAA_File library” on page 789

Files via FTP server

Memory card (remov-
able)

V2.0.2 Firmware update
Load / save boot project
Source code of user project load / save
User data via POUs Ä Chapter 1.5.4.19.2.23
“SD_WRITE” on page 1563 and Ä Chapter
1.5.4.19.2.22 “SD_READ” on page 1558

Retain data
Persistent data

V2.1.3 User data via CAA_File_xxx.lib Ä Chapter
1.5.4.4 “CAA_File library” on page 789

Files via FTP server

Unlike the PLC's memory areas like %M or Retain, where 1 byte actually con-
sumes 1 byte, all storage device utilize a file system.

That means there is a difference between a files size and its size on the disk.

On disks the files are stored in so-called clusters which are a group of disk
sectors. "Size on disk" refers to the amount of cluster(s) a file is taking up, while
"file size" is an actual byte count of the file data. So you will usually find that
the size on disk is larger than the file size. This is not an error, but a result
of the disk organization via a file system. Since sector and cluster sizes vary
depending on a disk's size and the used file system, the ratios between the size
on disk and the file size also vary between the various storage devices.

1.6.6.1.3 Memory sizes

PLC type RAM
disk

User
RAM
disk

SRAM
disk

Flash memory Flash
disk

memory
card *)User Data User Appli-

cation
PM554 2048 kB 256 kB None 128 kB 704 kB None up to 2

GB

PM564 2048 kB 256 kB None 128 kB 704 kB None up to 2
GB

PM554-
ETH

4096 kB 512 kB None 128 kB 1024 kB None up to 2
GB

PM556-
ETH

4096 kB 512 kB None - - None up to 2
GB

PM564-
ETH

4096 kB 512 kB None 128 kB 1024 kB None up to 2
GB

PM572 4096 kB 512 kB 32 kB 128 kB 1024 kB None up to 2
GB

PM573-
ETH

8192 kB 1024 kB 32 kB 128 kB 3072 kB None up to 2
GB

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6333

PLC type RAM
disk

User
RAM
disk

SRAM
disk

Flash memory Flash
disk

memory
card *)User Data User Appli-

cation
PM582 8192 kB 512 kB 64 kB 128 kB 2048 kB None up to 2

GB

PM583-
ETH

8192 kB 4096 kB 64 kB 128 kB 4096 kB None up to 2
GB

PM585-
ETH

8192 kB 4096 kB 64 kB - - None up to 2
GB

PM590-
ETH

16384 kB 8192 kB 256 kB 128 kB 12288 kB None up to 2
GB

PM590-
ARC

16384 kB 8192 kB 256 kB - - None up to 2
GB

PM591-
ETH

16384 kB 8192 kB 256 kB 128 kB 16384 kB None up to 2
GB

PM591-2
ETH

16384 kB 8192 kB 256 kB - - None up to 2
GB

PM592-
ETH

16384 kB 8192 kB 256 kB 128 kB 16384 kB 4 GB up to 2
GB

PM595-4
ETH-M

65535 kB 65535 kB 960 kB - - 4 GB up to 2
GB

PM595-4
ETH-F

65535 kB 65535 kB 960 kB - - 4 GB up to 2
GB

*) Size of the MC502 memory card.

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

1.6.6.1.4 Storage device details
This section contains some details on each storage device. For further details on specific topics
please also refer to the following chapters:

Storage device sizes see Ä Chapter 1.6.4.1.1 “Inputs, outputs and
flags for AC500 V2 products” on page 5395

IEC access Ä Chapter 1.5.4.4 “CAA_File library”
on page 789

Ä Chapter 1.5.4.19 “Internal system library”
on page 1500

FTP access Ä Chapter 1.6.5.3.8 “FTP server”
on page 6188

PLC browser commands Ä Chapter 1.7.2.5.5 “AC500-specific PLC
browser commands” on page 6382

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6334

RAM disk
The RAM disk is a volatile storage device placed in the SDRAM. It is used by the firmware
during its operation and download. Via the Ä Chapter 1.6.5.3.8 “FTP server” on page 6188 it is
possible to load new firmware to the PLC. The system files must not be deleted during run time.
Further, the RAM disk is used to temporarily save the PLC's web visualization before it is moved
to the User disk.

Size Product specific, see table Memory Sizes
Ä Chapter 1.6.6.1.3 “Memory sizes”
on page 6333

Diagnosis device number 17

User disk
The User disk is a volatile storage device located in the SDRAM. It can be used for any applica-
tion purpose. If activated, the PLC's web visualization is saved in the User Disk's subdirectory
WEBVISU. If configured, the symbol file is also stored in the User disk.

Size Product specific, see table Memory Sizes
Ä Chapter 1.6.6.1.3 “Memory sizes”
on page 6333

IEC access Ä Chapter 1.5.4.4 “CAA_File library”
on page 789

Diagnosis device number 17

Additional hint for the size of the User disk:
The web visualization's size is the sum of the user's visualization data plus the web visualization
overhead (e.g. some Java applets (.jar files)). This means, the actual size of the User disk may
differ from the offical documented size.
This difference can be recognized by comparing the sizes of the PLC browser command fdir
userdisk and the information in the dialog “File Sizes”. This additional space is reserved for the
web visualization's overhead.

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6335

To get detailed information on your web visualization files, click “...” in the “File Sizes” dialog.

To get a summary of the various data which will be downloaded into the User disk, click “...” in
line “Used” of the “File Sizes” dialog.

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6336

Thus, the number in line “Used” of the “File Sizes” dialog, means "total sum of the web visuali-
zation in Bytes" and the number in line “Maximum” means "Maximum allowed user data for web
visualization". So, it is possible that “Used” becomes bigger than “Maximum”.

SRAM disk
The SRAM disk is a battery-buffered, nonvolatile RAM disk located in the SRAM and can be
used for any application purpose. If a battery is inserted into the processor module, the data
stored in the SRAM disk will not get lost during a power-down cycle. During PLC startup,
the SRAM disk will be formatted automatically if no or an empty battery is inserted into the
processor module. In this case, the PLC issues an E4 error (#0153286827 = [4-9-34-31-2-43],
i.e. SRAM disk has been formatted). To enable the visibility of errors, set the CPU parameter
“Check for battery” to TRUE. With this, the system will signal errors during the formatting of the
SRAM disk.

Size Product specific, see table Memory Sizes
Ä Chapter 1.6.6.1.3 “Memory sizes”
on page 6333

IEC access Ä Chapter 1.5.4.4 “CAA_File library”
on page 789

Diagnosis device number 34

Memory card
The memory card is a removable persistent mass storage device and can be used for any
application purpose. Both firmware updates and boot project updates can be run from the
memory card Ä Chapter 1.6.6.2 “Memory card in AC500 V2” on page 6339.

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6337

Size Product specific, see table Memory Sizes
Ä Chapter 1.6.6.1.3 “Memory sizes”
on page 6333

IEC access Ä Chapter 1.5.4.4 “CAA_File library”
on page 789

Ä Chapter 1.5.4.19 “Internal system library”
on page 1500

Diagnosis device number 20

Flash
The internal flash is the PLCs persistent memory.
It is used for storing firmware.
It is used for storing firmware, user application and user data (see chapter 'Data Storage in
Flash Memory' Ä Chapter 1.6.6.3 “Data storage in flash memory for AC500 V2 products”
on page 6364).

Size Product specific, see table Memory Sizes
Ä Chapter 1.6.6.1.3 “Memory sizes”
on page 6333

Diagnosis device number 18

Flash disk
The flash disk is an internal persistent mass storage device and can be used for any application
purpose.
It has a memory capacity of 4 GB (preformatted).
The flash disk is capable of high data throughput, however, the actual values to be achieved
depend on the use cases Ä Chapter 1.6.6.4 “Flash disk for AC500 V2 products” on page 6364.
If the performance seems to get insufficient, check the following:
● If the PLCs CPU load is high, reduce overall CPU load of the PLC to have more perform-

ance for file operations.
● If the device has low free space, cleanup the disk.

Please consider the cluster size of 4 kB in your application design to achieve optimal usage
of the flash disks space and access performance. For example, 10 files with 10 byte each
require 10*4 kB disk space, while 1 file with 100 byte requires only 4 kB.

● If the device is fragmented, cleanup the disk.

Size Product specific, see table Memory Sizes
Ä Chapter 1.6.6.1.3 “Memory sizes”
on page 6333

IEC access Ä Chapter 1.5.4.4 “CAA_File library”
on page 789

Diagnosis device number 33

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6338

1.6.6.2 Memory card in AC500 V2

1.6.6.2.1 Memory card functions for AC500 V2 products
AC500 processor modules contain a user flash memory card of the type memory card as
external storage device which is accessed by the CPU like a floppy disk drive. The memory card
is used to transfer data between a commercially available PC with memory card interface and
the AC500 PLC.

NOTICE!
Removal of the (micro) memory card
Do not remove the (micro) memory card when it is working!
Remove the memory card or micro memory card with micro memory card
adapter only when the RUN LED is not blinking.
Otherwise the (micro) memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

The memory card can be used to:
● update the AC500 CPU processor firmware
● update the CPU boot code
● update the display controller firmware (as of version V2.0)
● update of the RTC_Batt module (eCo)
● update of the onboard I/O firmware (eCo)
● update the Communication Module firmware
● load and save user programs (boot project)
● load and save the source code of the user program
● load and save retentive variables (RETAIN, %R area)
● load and save user data (with blocks)
The memory card can be operated by:
● writing/reading files using a standard PC card reader with memory card interface
● specific PLC-Browser commands
● reading and writing data from the user program using specific blocks
● using FTP client (firmware version > V2.1.x and a Processor Module with onboard Ethernet)

For accessing the memory card the following PLC browser commands can be used:
● persistent
● retain
● sdappl
● sdboot x
● sdcoupler x
● sddisplay x
● sdfirm x
● sdfunc
● sdonboardio x
● sdrtcbat x
For details on the PLC browser commands for AC500 V2 products see Ä Chapter 1.7.2.5.5
“AC500-specific PLC browser commands” on page 6382

Summary

PLC browser
commands

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6339

1.6.6.2.2 Firmware and/or application update with memory card
Memory card file structure for AC500 V2 products

The following table provides information on the file structure of version V2.x. Depending on the
version, the directory names of the actual firmware may differ.

Module Type Directory (Root) Data File
(SDCARD.INI)

Supported
as of Ver-
sion

CM574-RS
CM574-
RCOM

FIRMWARE\CM574\2_1_3\ C574.gza
C574B.gza
RCOM.PRG
RCOM.CHK

V1.3.x

PM554 FIRMWARE\PM554\ Pm55x.gza V1.3.x

FIRMWARE\PM554\2_4_2\ Pm55x.gza

FIRMWARE\PM554\1_3_0\ Pm55xB.gza

FIRM-
WARE\PM554\ONB_IO\1_1_2

5500.app

FIRMWARE\PM554\ONB_IO\ 5500.app

FIRM-
WARE\PM554\RTC_BATT\1_6\

RtcBatt.app

PM554-ETH FIRMWARE\PM554ETH\ Pm55xE.gza V2.0.x

FIRMWARE\PM554ETH\2_4_2\ Pm55xE.gza

FIRMWARE\PM554ETH\2_0_2\ Pm55xEB.gza

FIRMWARE\PM554ETH
\ONB_IO\1_1_2\

5505.app

FIRMWARE\PM554ETH\ONB_IO\ 5505.app

FIRM-
WARE\PM554ETH\RTC_BATT\1_
6\

RtcBatt.app

PM564 FIRMWARE\PM564\ Pm55x.gza V1.3.x

FIRMWARE\PM564\2_4_2\ Pm55x.gza

FIRMWARE\PM564\1_3_0\ Pm55xB.gza

FIRM-
WARE\PM564\ONB_IO\1_1_2\

5501.app

FIRMWARE\PM564\ONB_IO\ 5501.app

FIRM-
WARE\PM564\RTC_BATT\1_6\

RtcBatt.app

PM564-ETH FIRMWARE\PM564ETH\ Pm55xE.gza V2.0.x

FIRMWARE\PM564ETH\2_4_2\ Pm55xE.gza

FIRMWARE\PM564ETH\2_0_2\ Pm55xEB.gza

FIRMWARE\PM564ETH
\ONB_IO\1_1_2\

5501.app

FIRMWARE\PM564ETH\ONB_IO\ 5501.app

FIRM-
WARE\PM564ETH\RTC_BATT\1_
6\

RtcBatt.app

File structure as
of version V2.x

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6340

Module Type Directory (Root) Data File
(SDCARD.INI)

Supported
as of Ver-
sion

PM572 FIRMWARE\PM572\ PM58xN.gza V2.0.x

FIRMWARE\PM572\2_4_2\ PM58xN.gza

FIRMWARE\PM572\2_3_0\ PM58xNB.gza

FIRMWARE\PM572\Display\2_8 Display.app

PM573-ETH FIRMWARE\PM573ETH\ PM58xN.gza V2.0.x

FIRMWARE\PM573ETH\2_4_2\ PM58xN.gza

FIRMWARE\PM573ETH\2_3_0\ PM58xNB.gza

FIRMWARE\PM573ETH\Dis-
play\2_8\

Display.app

PM582 FIRMWARE\PM582\ PM58xN.gza V2.0.x

FIRMWARE\PM582\2_4_2\ PM58xN.gza

FIRMWARE\PM582\2_3_0\ PM58xNB.gza

FIRMWARE\PM582\Display\2_8\ Display.app

PM583-ETH FIRMWARE\PM583\ PM58xN.gza V2.0.x

FIRMWARE\PM583\2_4_2\ PM58xN.gza

FIRMWARE\PM583\2_3_0\ PM58xNB.gza

FIRMWARE\PM583\Display\2_8\ Display.app

PM590-ARC FIRMWARE\PM590ARC\ Pm59xRD.gza V2.3.x

FIRMWARE\PM590ARC\2_4_2\ Pm59xRD.gza

FIRMWARE\PM590ARC\2_3_1\ Pm59xRDB.gza

FIRMWARE\PM590ARC\Dis-
play\2_8\

Display.app

PM590-ETH FIRMWARE\PM590ETH\ PM59xRD.gza V2.0.x

FIRMWARE\PM590ETH\2_3_1\ PM59xRD.gza

FIRMWARE\ PM590ETH\2_4_2\ PM59xRDb.gza

FIRMWARE\ PM590ETH\Dis-
play\2_8\

Display.app

PM591-ETH FIRMWARE\PM591ETH\ PM59xRD.gza V2.0.x

FIRMWARE\PM591ETH\2_3_1\ PM59xRD.gza

FIRMWARE\PM591ETH\2_4_2\ PM59xRDb.gza

FIRMWARE\PM591ETH \Dis-
play\2_8\

Display.app

PM591-2ETH FIRMWARE\PM591_2.ETH\ Pm59xRD.gza V2.4.x

FIRMWARE\PM591_2.ETH\2_4_2\ Pm59xRD.gza

FIRMWARE\PM591_2.ETH\2_3_1\ Pm59xRDB.gza

FIRMWARE\PM591_2.ETH\Dis-
play\2_8\

Display.app

PM592-ETH FIRMWARE\PM592ETH\ PM59xRD.gza V.2.1.x

FIRMWARE\PM592ETH\2_4_2\ PM59xRD.gza

FIRMWARE\PM592ETH\2_3_1\ PM59xRDb.gza

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6341

Module Type Directory (Root) Data File
(SDCARD.INI)

Supported
as of Ver-
sion

FIRMWARE\PM591ETH\Dis-
play\2_8\

Display.app

PM595-4ETH FIRMWARE\PM595_4.ETH\ PM595.gza V2.4.x

FIRMWARE\PM595_4.ETH\2_4_1\ PM595B.gza

FIRMWARE\PM595_4.ETH\2_4_2\ PM595.gza

FIRMWARE\CMETH\2_7_22\ ETHCFG.nxf

FIRMWARE\PM595_4.ETH\LED-
BOARD\

LEDBoard.app

FIRMWARE\PM595_4.ETH\LED-
BOARD\1_5\

LEDBoard.app

Command file SDCARD.INI for AC500 V2 Products

[Status]
FunctionOfCard=2

0 = Perform no function when inserting the memory card or voltage ON
1 = Load user program according to entry in group [UserProg]
2 = Start firmware update according to entry in group [FirmwareUp-
date]
3 = Update firmware according to entry in group [FirmwareUpdate] and
load user program according to entry in [UserProg]

[FirmwareUpdate]
CPUPM5x1=2

0 = No update
1 = Update firmware always from base directory on the CPU (sup-
ported for CPU firmware only, but not for other firmware components,
e. g. display firmware, firmware of onboard I/Os etc.).
2 = Update with specific version, the update is only performed if the
key version in a product section (for example [PM583]) and the*)
according file returns a different result than the version on the CPU.
If the key version is missing, no update is performed.
3 = Update with newer version, the update is only performed if the key
version in a product section (for example [PM583]) and the*) according
file returns a newer version than the version on the CPU. If the key
version is missing, no update is performed.

Display=2 0 = No update
2 = Update with specific version, the update is only performed if
the key version in a product section (for example [PM583]) and the
according file returns a different result than the version on the CPU. If
the key version is missing, no update is performed.
3 = Update with newer version, the update is only performed, if the key
version in a product section (for example [PM583]) and the according
file returns a newer version than the version on the CPU. If the key
version is missing, no update is performed.

FW version V2.0
to V2.4

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6342

OnboardIO=2 0 = No update
2 = Update with specific version, the update is only performed if the
key OnboardIO in a product section (for example [PM554]) and the
according file returns a different result than the version on the CPU. If
the key OnboardIO is missing, no update is performed.
3 = Update with newer version, the update is only performed if the
key OnboardIO in a product section (for example [PM554]) and the
according file returns a newer version than the version on the CPU. If
the key version is missing, no update is performed.

RtcBatt=2 0 = No update
2 = Update with specific version, the update is only performed, if
the key RtcBatt in a product section (for example [PM554]) and the
according file returns a different result than the version on the CPU. If
the key OnboardIO is missing, no update is performed.
3 = Update with newer version, the update is only performed if the key
RtcBatt in a product section (for example [PM554]) and the according
file returns a newer version than the version on the CPU. If the key
version is missing, no update is performed.

Coupler0=0 Update communication module slot 0
0 = No update
2 = Update with specific version, the update is only performed if
the key Version in a product section (for example [PM5x1]) and the
according file returns a different result than the version on the CPU. If
the key version is missing, no update is performed.
3 = Update with newer version, the update is only performed if the key
version in a product section (for example [PM5x1]) and the according
file returns a newer version than the version on the CPU. If the key
version is missing, no update is performed.

Coupler1=0
Coupler2=0
Coupler3=0
Coupler4=0
Coupler5=0
Coupler6=0

Update module slot 1; available modes: 0/2/3; see description Cou-
pler0)
Update module slot 2; available modes: 0/2/3; see description Cou-
pler0)
Update module slot 3; available modes: 0/2/3; see description Cou-
pler0)
Update module slot 4; available modes: 0/2/3; see description Cou-
pler0)
Update module slot 5; available modes: 0/2/3; see description Cou-
pler0)
Update module slot 6; available modes: 0/2/3; see description Cou-
pler0)

LedBoard=0 Update LED Board of PM595-4ETH CPU
0 = No update
2 = Update with specific version, the update is only performed, if
the key version in the product section (for PM595-4ETH]) and the
according file returns a different result than the version on the CPU. If
the key version is missing, no update is performed.
3 = Update with newer version, the update is only performed if the key
version in the product section (for PM595-4ETH) and the according file
returns a newer version than the version on the CPU. If the key version
is missing, no update is performed.

[UserProg]

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6343

UserProgram=0
RetainData=0
PersistentData=0
ConfData=0

Update user program: 0 = no update / 1 = update)
Update retain variables: 0 = no update / 1 = update)
Update persistant variables: 0 = no update / 1 = update)
Update configuration data of the onboard Ethernet CPU´s and the
communication module´s: 0 = no update / 1 = update*)

CouplerConfig0=0
CouplerConfig1=0
CouplerConfig2=0
CouplerConfig3=0
CouplerConfig4=0

Update coupler configuration slot 0 : 0 = no update / 1 = update*)
Update coupler configuration slot 1 : 0 = no update / 1 = update*)
Update coupler configuration slot 2 : 0 = no update / 1 = update*)
Update coupler configuration slot 3 : 0 = no update / 1 = update*)
Update coupler configuration slot 4 : 0 = no update / 1 = update*)

[PM554]
VERSION=2_4_2
PLCBOOT=1_3_0
ONB_IO=1_1_2
RTC_BATT=1_6

CPU type
CPU firmware version
CPU bootcode version
Onboard IO version
RTC_Batt version

[PM554ETH]
VERSION=2_4_2
PLCBOOT=2_0_2
ONB_IO=1_1_2
RTC_BATT=1_6

[PM564]
VERSION=2_4_2
PLCBOOT=1_3_0
ONB_IO=1_1_2
RTC_BATT=1_6

[PM564ETH]
VERSION=2_4_2
PLCBOOT=2_0_2
ONB_IO=1_1_2
RTC_BATT=1_6

[PM572]
VERSION=2_4_2
PLCBOOT=2_3_0
DISPLAY=2_8

CPU type
CPU firmware version
CPU bootcode version
CPU display version

[PM573ETH]
VERSION=2_4_2
PLCBOOT=2_3_0
DISPLAY=2_8

[PM582]
VERSION=2_4_2
PLCBOOT=2_3_0
DISPLAY=2_8

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6344

[PM583]
VERSION=2_4_2
PLCBOOT=2_3_0
DISPLAY=2_8

[PM590ARC]
VERSION=2_4_2
PLCBOOT=2_3_1
DISPLAY=2_8

[PM590ETH]
VERSION=2_4_2
PLCBOOT=2_3_1
DISPLAY=2_8

[PM591ETH]
VERSION=2_4_2
PLCBOOT=2_3_1
DISPLAY=2_8

[PM591-2ETH]
VERSION=2_4_2
PLCBOOT=2_3_1
DISPLAY=2_8

[PM592ETH]
VERSION=2_4_2
PLCBOOT=2_3_1
DISPLAY=2_8

[PM595-4ETH]
VERSION=2_4_2
PLCBOOT=2_4_1
LEDBOARD=1_5

[CM574]
VERSION=2_1_3

[CM578]
VERSION=1_109

[CMETH]
VERSION=2_7_22

As of firmware version 2.5 all firmware updates are triggered by the command file SDCARD.INI.
This is independent from the way of the firmware update (memory card, FTP, write file to plc,
…). In addition a result file of the firmware update is generated (SDCARD.RDY, identical path
as SDCARD.INI, see Initializing an memory card Ä Chapter 1.6.6.2.2.4.1 “Using the AC500
PLC for AC500 V2 Products” on page 6349). For the group [FirmwareUpdate] the new parame-
ters 11, 12 and 13 are defined.
SDCARD.INI for memory card PM595 in part:

FW version V2.5

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6345

[FirmwareUpdate]
CPUPM5x1=11
Coupler1=11
Coupler2=11
Coupler5=11
Coupler6=11
[CPU]
Firmware=FIRMWARE\PM595ETH\2_5_0\PM595.gza
[Coupler1]
Firmware=FIRMWARE\CM597\V1_0_1\AC500eth.nxf
[Coupler2]
Firmware=FIRMWARE\SM560\1_0_0\S560_1.gza
Firmware2=FIRMWARE\SM560\1_0_0\S560_2.gza
[Coupler5]
Firmware=FIRMWARE\CM597\2_7_5\AC500pnm.nxf
[Coupler6]
Firmware=FIRMWARE\CM597\4_1_3_7\NX_ECM.nxf
SDCARD.INI for update via FTP in part:
In this case the files PM595.gza, AC500eth.nxf, S560_1.gza, S560_2.gza, AC500pnm.nxf and
NX_ECM.nxf are transferred via FTP to the RAM disk of the PLC. The last step is the transfer
of the file SDCARD.INI to the RAM disk of the PLC. At the end of the update the result file
SDCARD.RDY is generated. The evaluation of this file shows the results of the updates.
[FirmwareUpdate]
CPUPM5x1=11
Coupler1=11
Coupler2=11
Coupler5=11
Coupler6=11
[CPU]
Firmware=PM595.gza
[Coupler1]
Firmware=AC500eth.nxf
[Coupler2]
Firmware=S560_1.gza
Firmware2=S560_2.gza
[Coupler5]
Firmware=AC500pnm.nxf
[Coupler6]
Firmware=NX_ECM.nxf

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6346

[FirmwareUpdate]
CPUPM5x1=2

In addition to the unchanged parameters 0, 1, 2 and 3 the parameters
11, 12 and 13 are defined.
11 = Update firmware always with the file specified in module's section
[CPU] and component's path key Boot or/and Firmware (for SM560 the
component’s path keys Boot2 and Firmware2 are defined additionally).
12 = Update with specific version, the update is only performed if the
version of the file specified by the component path key Boot and/or
Firmware in module’s section [CPU] differs from the current version of
the CPU.
13 = Update with newer version, the update is only performed, if the
version of the file specified by the component key Boot and/or Firm-
ware in module’s section [CPU] is newer than the current version of the
CPU.

Display=2 In addition to the unchanged parameters 0, 2 and 3 the parameters 11,
12 and 13 are defined.
11 = Update firmware always with the file specified in module's section
[CPU] and component's path key Display.
12 = Update with specific version, the update is only performed, if
the version of the file specified by the component path key Display in
module’s section [CPU] differs from the current version of the Display.
13 = Update with newer version, the update is only performed, if the
version of the file specified by the component key Display in module’s
section [CPU] is newer than the current version of the Display.

OnboardIO=2 In addition to the unchanged parameters 0, 2 and 3 the parameters 11,
12 and 13 are defined.
11 = Update firmware always with the file specified in module's section
[CPU] and component's path key OnboardIO.
12 = Update with specific version, the update is only performed, if the
version of the file specified by the component path key OnboardIO
in module’s section [CPU] differs from the current version of the
OnboardIO.
13 = Update with newer version, the update is only performed, if the
version of the file specified by the component key OnboardIO in mod-
ule’s section [CPU] is newer than the current version of the OnboardIO.

OnboardCan=2 Update OnboardCan of PM595-4ETH CPU
0 = No update
2 = Update with specific version, the update is only performed, if
the key Version in the product section (for PM595-4ETH]) and the
according file returns a different result than the version on the CPU. If
the key version is missing, no update is performed.
3 = Update with newer version, the update is only performed, if the key
version in the product section (for PM595-4ETH) and the according file
returns a newer version than the version on the CPU. If the key version
is missing, no update is performed.
11 = Update firmware always with the file specified in module's section
[CPU] and component's path key OnboardCan.
12 = Update with specific version, the update is only performed, if the
version of the file specified by the component path key OnboardCan
in module’s section [CPU] differs from the current version of the
OnboardCan.
13 = Update with newer version, the update is only performed, if
the version of the file specified by the component key OnboardCan
in module’s section [CPU] is newer than the current version of the
OnboardCan.

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6347

RtcBatt=2 In addition to the unchanged parameters 0, 2 and 3 the parameters 11,
12 and 13 are defined.
11 = Update firmware always with the file specified in module's section
[CPU] and component's path key RtcBatt.
12 = Update with specific version, the update is only performed, if
the version of the file specified by the component path key RtcBatt in
module’s section [CPU] differs from the current version of the RtcBatt.
13 = Update with newer version, the update is only performed, if the
version of the file specified by the component key RtcBatt in module’s
section [CPU] is newer than the current version of the RtcBatt.

LedBoard=0 Update LED Board of PM595-4ETH CPU
0 = No update
2 = Update with specific version, the update is only performed, if
the key version in the product section (for PM595-4ETH]) and the
according file returns a different result than the version on the CPU. If
the key version is missing, no update is performed.
3 = Update with newer version, the update is only performed, if the key
version in the product section (for PM595-4ETH) and the according file
returns a newer version than the version on the CPU. If the key version
is missing, no update is performed.
11 = Update firmware always with the file specified in module's section
[CPU] and component's path key LedBoard.
12 = Update with specific version, the update is only performed, if
the version of the file specified by the component path key LedBoard
in module’s section [CPU] differs from the current version of the Led-
Board.
13 = Update with newer version, the update is only performed, if the
version of the file specified by the component key LedBoard in mod-
ule’s section [CPU] is newer than the current version of the LedBoard.

Coupler0=0 In addition to the unchanged parameters 0, 2 and 3 the parameters 11,
12 and 13 are defined.
11 = Update firmware always with the file specified in module's section
[Coupler0] and component's path key Firmware.
12 = Update with specific version, the update is only performed, if
the version of the file specified by the component path key Firmware
in module’s section [Coupler0] differs from the current version of the
Coupler.
13 = Update with newer version, the update is only performed, if
the version of the file specified by the component key Firmware in
module’s section [Coupler0] is newer than the current version of the
Coupler.

Coupler1=0
Coupler2=0
Coupler3=0
Coupler4=0
Coupler5=0
Coupler6=0

Update module slot 1; see description Coupler0)
Update module slot 2; see description Coupler0)
Update module slot 3; see description Coupler0)
Update module slot 4; see description Coupler0)
Update module slot 5; see description Coupler0)
Update module slot 6; see description Coupler0)

Description of LEDs
The LEDs below the display indicate the status of the processor module:

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6348

LED State Color LED = ON LED = OFF LED flashes
Power LED
(PWR)

Denotes the
power supply
state of the pro-
cessor module

Green Voltage is
present (24 V
DC)

Voltage is
missing

-

Run LED
(RUN)

Denotes the
activity state of
the processor
module

Green Processor
module is in
RUN mode

Processor
module is in
STOP mode

If the Run LED
(RUN) flashes fast
(4 Hz), the pro-
cessor module
is reading/writing
the memory card.
Together with a
flashing Error LED
(ERR), the pro-
cessor module is
writing the internal
Flash.
If the Run LED
flashes slowly (1
Hz), a firmware
update from the
memory card is
finished without
errors.

Error LED
(ERR)

Denotes an
error

Red An error has
occurred. After
pressing the
DIAG function
key, the error
type and the
error code will
be displayed.
The error codes
can be shown
by means of the
DIAG and OK
function keys.

No errors or
only warnings
have
occurred.

If the Error LED
flashes fast (4 Hz)
together with a
flashing Run LED,
the firmware is
updated and a
Flash is written.
If the Error LED
flashes slowly
(1 Hz) a firm-
ware update from
the memory card
is finished with
errors.

A running processor module is indicated with the state RUN on the display, a deactivated
processor module is indicated with the state STOP. In both cases the display's backlight is off.

Initializing an memory card
Using the AC500 PLC for AC500 V2 Products

The file structure is created on the memory card when a formatted memory card is inserted into
the AC500 PLC. The file SDCARD.INI contains the following entries:
[Status]FunctionOfCard=0
[FirmwareUpdate]
CPUPM5x1=0
Display=0
Coupler0=0
Coupler1=0
Coupler2=0
Coupler3=0
Coupler4=0
Coupler5=0
Coupler6=0
OnboardIO=0

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6349

RtcBatt=0
OnboardCAN=0
LEDboard=0
[UserProg]
UserProgram=0
RetainData=0
AddressData=0

By default, not all AC500 processor modules are listed in the SDCARD.INI file.
Not until the memory card is inserted in the processor module, all data is added
to the SDCARD.ini file and the folders are created.

Table 759: The following error message is displayed, if you insert a non-formatted memory card:
152369164 EC4 Warning Unable to read the memory card

Other files or subdirectories in the root directory on the memory card are kept unchanged.

The file SDCARD.INI as of V2.5 looks as follows:
;File sdcard.ini to be used by CPU FW version >= 2.5.
;For usage in CPU FW version < 2.5 delete all comments and
whitespaces.
;
[Status]
;FunctionOfCard
;0 = Perform no function when inserting the card or voltage ON
;1 = Load user program according to entry in group |UserProg|
;2 = Start firmware update according to entry in group |
FirmwareUpdate|
;3 = Update firmware according to entry in group |FirmwareUpdate|
; and load user program according to entry in |UserProg|
FunctionOfCard=0

;Note: Any ?? below to be replaced by real CPU's / couplers'
identifiers

[FirmwareUpdate]
; 0 = No update
; 1 = Supported for CPU firmware and for other components of CPU
; (e. g. display, Onboard I/O, etc.).
; Not supported for couplers.
; CPU:
; Update firmware always from base directory of the CPU (e.g.
FIRMWARE\PM590ETH\).
; Components:
; Update firmware always from subdirectory specified by <compkey>
within
; CPU specific base directory of the component <pathkey>
; (e.g. FIRMWARE\PM590ETH\LedBoard\2_8_0\).
; 2 = Update with specific version, the update is only performed if
the key <compkey>
; in a product section <prodsec> according file returns a
; different result than the current version.
; If the key <compkey> is missing, no update is performed.
; 3 = Like 2, but check version of file to be newer (instead of
different) than current one.
; If the key <compkey> is missing, no update is performed.
;11 = Update with file specified in module's section <modsec>,
component's path key
<pathkey>

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6350

;12 = Like 11, but check version of file to be updated differs from
current one.
;13 = Like 11, but check version of file to be updated is newer than
current one.
CPUPM5x1=0 ;<prodsec>=|PM5??|,<compkey>=VERSION, <modsec>=|CPU|,
<pathkey>=Firmware
Boot=0 ;<prodsec>=|PM5??|,<compkey>=PLCBOOT, <modsec>=|CPU|,
<pathkey>=Boot
Display=0 ;<prodsec>=|PM5??|,<compkey>=DISPLAY, <modsec>=|CPU|,
<pathkey>=Display
OnboardIO=0 ;<prodsec>=|PM5??|,<compkey>=ONB_IO, <modsec>=|CPU|,
<pathkey>=OnboardIO
OnboardCAN=0 ;<prodsec>=|PM5??|,<compkey>=ONB_CAN, <modsec>=|
CPU|,
<pathkey>=OnboardCAN
RtcBatt=0 ;<prodsec>=|PM5??|,<compkey>=RTC_BATT, <modsec>=|CPU|,
<pathkey>=RtcBatt
LedBoard=0 ;<prodsec>=|PM5??|,<compkey>=LEDBOARD, <modsec>=|
CPU|,
<pathkey>=LedBoard
Coupler=0 ;<prodsec>=|CM???|,<compkey>=VERSION, <modsec>=|
Coupler0|,
<pathkey>=Firmware
Coupler=1 ;<prodsec>=|CM???|,<compkey>=VERSION, <modsec>=|
Coupler1|,
<pathkey>=Firmware
Coupler=2 ;<prodsec>=|CM???|,<compkey>=VERSION, <modsec>=|
Coupler2|,
<pathkey>=Firmware
Coupler=3 ;<prodsec>=|CM???|,<compkey>=VERSION, <modsec>=|
Coupler3|,
<pathkey>=Firmware
Coupler=4 ;<prodsec>=|CM???|,<compkey>=VERSION, <modsec>=|
Coupler4|,
<pathkey>=Firmware
Coupler=5 ;<prodsec>=|CM???|,<compkey>=VERSION, <modsec>=|
Coupler5|,
<pathkey>=Firmware
Coupler=6 ;<prodsec>=|CM???|,<compkey>=VERSION, <modsec>=|
Coupler6|,
<pathkey>=Firmware

[UserProg]
UserProgram=0 ;Update user program: 0 = no update / 1 = update)
RetainData=0 ;Update retain variables: 0 = no update / 1 = update)
PersistentData=0 ;Update persistent variables: 0 = no update / 1 =
update)
ConfData=0 ;Update configuration data of the onboard Ethernet
CPUs
; and the communication modules: 0 = no update / 1 =
update)
CouplerConfig0=0 ;Update internal coupler's configuration: 0 = no
update / 1 = update)
CouplerConfig1=0 ;Update external coupler's configuration slot 1 : 0
= no update / 1 = update)
CouplerConfig2=0 ;Update external coupler's configuration slot 2 : 0
= no update / 1 = update)
CouplerConfig3=0 ;Update external coupler's configuration slot 3 : 0
= no update / 1 = update)
CouplerConfig4=0 ;Update external coupler's configuration slot 4 : 0
= no update / 1 = update)
CouplerConfig5=0 ;Update coupler's config. slot 5 (builtin/fct.): 0 =
no update / 1 = update)
CouplerConfig6=0 ;Update coupler's config. slot 6 (builtin/fct.): 0 =
no update / 1 = update)

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6351

[PM5??]
VERSION=
PLCBOOT=
ONB_IO=
ONB_CAN=
RTC_BATT=
DISPLAY=
LEDBOARD=

[PM5??ETH]
VERSION=
PLCBOOT=
ONB_IO=
ONB_CAN=
RTC_BATT=
DISPLAY=
LEDBOARD=

[CM5??]
VERSION=

[CMETH]
VERSION=

[CPU];
Boot= ;Path/file of CPU's bootcode to update
Firmware= ;Path/file of CPU's firmware to update
Display= ;Path/file of Display's firmware to update
OnboardIO= ;Path/file of OnboardIO's firmware to update
OnboardCAN= ;Path/file of OnboardCAN's firmware to update
RtcBatt= ;Path/file of Rtc/Battery module's firmware to update
LedBoard= ;Path/file of LED board's firmware to update

[Coupler0]
Firmware= ;Path/file of internal coupler's firmware to update

[Coupler1]
Firmware= ;Path/file of external coupler's firmware slot 1 to
update

[Coupler2]
Firmware= ;Path/file of external coupler's firmware slot 2 to
update

[Coupler3]
Firmware= ;Path/file of external coupler's firmware slot 1 to
update

[Coupler4]
Firmware= ;Path/file of external coupler's firmware slot 4 to
update

[Coupler5]
Firmware= ;Path/file of coupler's firmware slot 5 (builtin/
fct.) to update

[Coupler6]
Firmware= ;Path/file of coupler's firmware slot 6 (builtin/
fct.) to update
The generated result file SDCARD.RDY looks as follows:

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6352

[CPU]
;Result of CPU's bootcode to update
Boot=0
;Result of CPU's firmware to update
Firmware=0
;Result of Display's firmware to update
Display=0
;Result of OnboardIO's firmware to update
OnboardIO=0
;Result of OnboardCAN's firmware to update
OnboardCAN=0
;Result of Rtc/Battery module's firmware to update
RtcBatt=0
;Result of LED board's firmware to update
LedBoard=0

[Coupler0]
;Result of internal coupler's firmware to update
Firmware=0

[Coupler1]
;Result of external coupler's firmware slot 1 to update
Firmware=0

[Coupler2]
;Result of external coupler's firmware slot 2 to update
Firmware=0

[Coupler3]
;Result of external coupler's firmware slot 3 to update
Firmware=0

[Coupler4]
;Result of external coupler's firmware slot 4 to update
Firmware=0

[Coupler5]
;Result of coupler's firmware slot 5 (builtin/fct.) to update
Firmware=0

[Coupler6]
;Result of coupler's firmware slot 6 (builtin/fct.) to update
Firmware=0

;Meaning of results
; 1 Update not yet started
; 2 Update pending, analyzing source file
; 3 Update pending, transmitting source file to destination
component
; 4 Update pending, destination component storing source file\
; 0 No Update to be performed
;100 Update successfully performed
; 5 Update not performed since at least one condition not
fulfilled (e.g. comparison of versions)
; 6 Update not allowed in current PLC state (e.g. RUN)
; 7 Unknown update mode
; 8 Key specifying path/file not found
; 9 Source file not found
; 10 Source file corrupt
; 11 Source file does not match component
; 12 Error reading source file
; 13 Internal Error
; 14 Error writing file
; 15 Not supported by this type of CPU (e.g. Display, Rtc/Battery,

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6353

LED board)
; or not available (e.g. coupler not present)
; 16 Skipped update of this file due to preceding failure
; (e.g. failed version check of an associated file)
;-<num> Individual error code on performing update

1.6.6.2.3 Content of the memory card for firmware/application update

Only advanced users should apply the instructions in this chapter.

1.6.6.2.4 Storing/Loading the Firmware to the memory card for AC500 V2 products
1. Initialize the memory card, i.e., create the file structure the CPU requires by, for example,

inserting a new memory card into the AC500 PLC Ä Chapter 1.6.6.2.2.4.1 “Using the
AC500 PLC for AC500 V2 Products” on page 6349.

2. Copy the firmware files into the corresponding directory:

AC500 CPU Directory File
PM5xy FIRMWARE\<PLC type>\<firm-

ware version number>
Example: FIRM-
WARE\PM564\2_4_4

*.GZA

3. Change the command file SDCARD.INI located in the root directory on the memory card
as follows:
● In section [Status] set the key FunctionOfCard to "2", if you only want to update the

firmware or "3" for firmware and user program update (i.e. FunctionOfCard=2).
● In section [FirmwareUpdate] set the key CPUPM5x1 to "1" [=update always] (i.e.

CPUPM5x1=1)

A specific firmware version can be loaded. This is done by setting the key CPUPM5x1 to "2"
[= update, if versions are different] or "3" [= update, if version on the memory card is newer]
and creating an according key for the CPU in the product specific section of SDCARD.INI. The
firmware has to be copied to the according directory Ä Chapter 1.6.6.2.2 “Firmware and/or
application update with memory card” on page 6340.

1.6.6.2.5 Storing/Loading the user program to/from the memory card for AC500 V2 products
Storing the user program to the memory card

To store the user program to the memory card, proceed as follows:
1. Build the complete project. “Project è Clean all and Project è Rebuild all”.
2. Load the project into the AC500 PLC.
3. Create the bootproject on the controller using “Online è Create boot project”.

The bootproject files (<project name>.PRG.ZIP and <project name>.WEB.ZIP) are loaded
into the AC500 PLC and flashed.
The RUN LED on the AC500 PLC flashes while data flashing is in progress.

Online

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6354

4. Insert the memory card. If the memory card does not already contain the required file
structure, the structure will be created Ä Chapter 1.6.6.2.2.4.1 “Using the AC500 PLC for
AC500 V2 Products” on page 6349.

NOTICE!
Overwriting of files on the memory card
If a user program is already stored on the memory card, i.e., the directory
UserData\PM5x1\UserPrg already contains the files DEFAULT.PRG and
DEFAULT.CHK, these files will be overwritten without any warning.
If you want to store several user programs to the memory card, you have
to copy them into other directories using the PC.

5. Open the PLC Browser/ PLC Shell and enter the command "sdappl"<ENTER>.
The files <project name>.PRG.ZIP and <project name>.WEB.ZIP are loaded from the
user flash memory and stored as BOOT.ZIP / WEBVISU.ZIP to the directory User-
Data\PM5x1\UserPrg on the memory card.
In the file SDCARD.INI, the parameter FunctionOfCard is set to 1 (bit 0 = 1) and
the parameter UserProgram is set to 1, i.e. the function "Load the user program" is
activated.
The RUN LED on the AC500 PLC flashes while writing to the memory card is in progress.
If you insert the memory card containing the user program into the AC500 PLC, the
memory card is loaded into the user flash memory of the AC500 PLC.

Furthermore it is possible to create a project offline. Before creating it offline the project has to
be compiled. After creating the bootproject the files are available at according storage folders of
the project.
● PM5xy: <project name>.PRG.ZIP / <project name>.WEB.ZIP has to be renamed to

BOOT.ZIP / WEBVISU.ZIP and copied to the according PM5xy CPU folder: USER-
DATA\PM5xx\USERPRG folder.

● CM574-RS: Copy the created CM574 ZIP file into the according PM5xy CPU folder: USER-
DATA\PM5xx\USERPRG and rename it to CM574_X1.bpz (X = Slot number).

●

Loading the user program from the memory card to the AC500 PLC
If a memory card is inserted into the AC500 PLC when the CPU is in STOP mode, or
if the memory card is already inserted when switching on the control voltage, the file
structure on the memory card is checked. If the file structure exists, the file SDCARD.INI
is read. If the parameter "FunctionOfCard" is set to 1 (bit 0 = 1) and the parameter
"UserProgram" = 1 and for the CM574-RS (CouplerConfigX=1 X = Slotnumber), the files
DEFAULT.PRG and DEFAULT.CHK (CM574_X1.PRG and CM574_X2.CHK (X=Slotnumber)
(*PS501V1*) or Boot.zip (CM574_X1.bpz - X = Slot number) (*PS501V2.x*) in the directory
UserData\PM5xy\UserPrg on the memory card are loaded into the user flash memory of the
AC500 PLC.
The RUN LED on the AC500 PLC flashes while loading. Flashing the user program is in
progress.
The loaded program is activated after a CPU restart. If the user program cannot be loaded
(for example, due to missing files, wrong directory structure or mismatching project for the
controller), a corresponding error message appears. A summary of the memory card errors can
be found in the section memory card error messages.
If you insert the memory card into the AC500 PLC when the CPU is in RUN mode, the user
program is not loaded independent of the settings for the parameters "FunctionOfCard" (bit 0=1)
and "UserProgram" (=1). Thus, the function "Load user program" can be deactivated with the
PLC Browser "sdfunc 0" even if no PC card reader is available.

Offline

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6355

1.6.6.2.6 Storing/Reading user data for AC500 V2 products
Structure of data files stored on the memory card

Depending on the AC500 CPU type, the data is stored in the following memory card directory:

AC500 CPU Directory File
PM5xy ..\UserData\PM5xy\UserDat USRDATxx.DAT

PM5xy-ETH ..\User-
Data\PM5xyETH\UserDat

USRDATxx.DAT

A maximum of 100 files (USRDAT00.DAT...USRDAT99.DAT) can be stored in one directory.
Each data file USRDATxx.DAT can be divided into individual sectors, if necessary. The "sector
label" enclosed in square brackets (such as [Sector_01]<CR><LF>) indicates the start of the
sector. Within a sector, data are saved as data sets in ASCII format. The individual values of a
data set are separated by semicolon. Each data set is closed with <CR><LF> (0Dhex, 0Ahex).
This enables the direct import/export of the data from/to MS Excel. The data files can be viewed
and edited using a standard ASCII editor (such as Notepad).
When saving/loading data files, observe the following rules:
● Data sets within a sector must always have the same number of values.
● Data sets in different sectors can have a different number of values.
● Values of integer data types can be stored. REAL or LREAL variables cannot be stored.
● The values of a data set must have the same data format (BYTE, WORD, INT,..).
● A sector can have data sets with different data format.

Warning: The user has to know the structure of the data for reading them.
● The data sets are always appended to the end of the file when writing.
● Searching for a "sector label" within a file is possible when reading it.
● Data sets can be read starting from a particular "sector label".
● A particular data set of a sector cannot be read or written.
● If you want to read each data set individually, a "sector label" must be inserted before each

data set.
● Reading and writing the data with help of the user program is done with the blocks

SD_READ and SD_WRITE.
● The values of a data set must be available in variables successively stored in the CPU (e.g.,

ARRAY, STRING, %M area).
● A data file can be deleted with help of the CPU program.
● Individual data sets and/or sectors cannot be deleted with the user program. This has to be

done on the PC using an ASCII editor such as Notepad.

Data file USRDAT5.DAT without sectors:
-> 5 data sets, each with 10 DINT values:
600462;430;506;469;409;465;466;474;476;-1327203
600477;446;521;484;425;480;482;490;491;-1327187
600493;461;537;499;440;496;497;505;507;-1327172
600508;477;552;515;456;511;513;521;522;-1327156
600524;492;568;530;471;527;528;536;538;-1327141

Example 1:

Data file exam-
ples

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6356

Data file USRDAT7.DAT with sectors:
-> 3 sectors, each with 3 data sets and 10 DINT values per data set:
[Sector_01]
610439;10408;10483;10446;10387;10442;10444;10452;10453;-1317225
610455;10423;10499;10462;10402;10458;10460;10467;10469;-1317209
610476;10445;10520;10483;10424;10479;10481;10489;10490;-1317188
[Sector_02]
610570;10539;10614;10577;10518;10573;10575;10583;10584;-1317094
610585;10554;10630;10592;10533;10589;10591;10598;10600;-1317078
610602;10571;10646;10609;10550;10605;10607;10615;10616;-1317062
[Sector_03]
610701;10670;10746;10708;10649;10704;10706;10714;10715;-1316963
610717;10686;10761;10724;10665;10720;10722;10730;10731;-1316947
610739;10708;10783;10746;10686;10742;10744;10751;10753;-1316926

Example 2:

Function blocks for storing/reading user data to/from the memory card
The following function blocks from the SysInt_AC500_Vxx.lib library are used to write and read
user data from the CPU program to/from the memory card:
● Ä Chapter 1.5.4.19.2.23 “SD_WRITE” on page 1563 - writes user data
● Ä Chapter 1.5.4.19.2.22 “SD_READ” on page 1558 - reads user data
The SysInt_AC500_Vxx.lib library and the SysExt_AC500_Vxx.lib library are loaded automati-
cally when creating a project for an AC500 CPU.
Storage folder: ..\Data Storage\SD memory card.

Table 760: Inputs and outputs of SD_WRITE
Name Type Assignment
Inputs
EN BOOL The FALSE->TRUE edge starts the write process

ATTRIB BYTE Write attribute of the function block:
1 - Delete file
2 - Write append
3 - Write sector label

FILENO BYTE Consecutive file number 0 <=xx<=99 (USR-
DATxx.DAT)

SEG POINTER TO
STRING

Pointer to sector label string (via ADR operator)

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6357

Name Type Assignment
FORMAT BYTE Data format:

00 hex - 0 - BYTE
01 hex - 1 - CHAR
10 hex - 16 - WORD
11 hex - 17 - INT
20 hex - 32 - DWORD
21 hex - 33 - DINT

NVAR WORD Number of variables to be written

ADRVAR DWORD Address of the first variable, starting from which
the data are available in the CPU (via ADR oper-
ator)

Outputs
DONE BOOL Function completed

ERR BOOL Error: FALSE=no error, TRUE=error

ERNO INT Error number

Table 761: Inputs and outputs of SD_READ
Name Type Assignment
Inputs
EN BOOL The FALSE->TRUE edge starts the read process

ATTRIB BYTE Read attribute of the function block:
1 - Open file, seek sector, read data set
2 - Open file, read data set
3 - Open and read next data set
4 - Read data set, close file
5 - Close file

FILENO BYTE Consecutive file number 0 <=xx<=99 (USR-
DATxx.DAT)

SEG POINTER TO
STRING

Pointer to sector label string (via ADR operator)

FORMAT BYTE Data format:
00 hex - 0 - BYTE
01 hex - 1 - CHAR
10 hex - 16 - WORD
11 hex - 17 - INT
20 hex - 32 - DWORD
21 hex - 33 - DINT

NVAR WORD Number of variables to be read

ADRVAR DWORD Address of the first variable, starting from which
the data are stored to the CPU (via ADR operator)

Outputs
DONE BOOL Function completed

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6358

Name Type Assignment
ERR BOOL Error: FALSE=no error, TRUE=error

ERNO INT Error number

Deleting a data file stored on the memory card
To delete a data file from the memory card, proceed as follows:
1. Insert the memory card.
2. Call the function block Ä Chapter 1.5.4.19.2.23 “SD_WRITE” on page 1563 with the

following settings:

EN := TRUE

ATTRIB := 1 (* delete *)

FILENO := 0...99 (* number of the file to be deleted *)

SEG, FORMAT, NVAR, ADRVAR - any

Storing user data to the memory card
Data file without sectors

To store user data to the memory card in a data file without sectors, proceed as follows:
1. Insert the memory card.
2. Write a data set by calling the function block Ä Chapter 1.5.4.19.2.23 “SD_WRITE”

on page 1563 with the following settings:

EN := TRUE (* FALSE/TRUE edge starts writing *)

ATTRIB := 2 (* write append *)

FILENO := 0...99 (* number of the file to which the data set is to be
appended *)

SEG := Address of the variable of the sector label (*any*)

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable to be written

If no corresponding file exists, then it is created.
The write process is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A write error is indicated by ERR:=TRUE and ERNO<>0

3. Further data sets can be written with the same function block settings after the completion
message is displayed (output DONE=TRUE). This process is started with a FALSE/TRUE
edge at input EN.

The file USRDATxx.DAT is saved as USRDATxx.BAK for each write process.
An "Open file / Write file / Close file" procedure is performed.

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6359

Data file with sectors
Proceed as follows to store user data to the memory card in a data file with sectors:
1. Insert the memory card.
2. Write the sector label by calling the function block Ä Chapter 1.5.4.19.2.23 “SD_WRITE”

on page 1563 with the following settings:

EN := TRUE

ATTRIB := 3 (* write sector *)

FILENO := 0...99 (* number of the file to which the data set is to be
appended *)

SEG := Address of the variable of the sector label

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable to be written

If no corresponding file exists, then it is created.
The sector is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A write error is indicated by ERR:=TRUE and ERNO<>0

3. Write a data set by calling the function block SD_WRITE with the following settings:

EN := TRUE (* FALSE/TRUE edge starts writing *)

ATTRIB := 2 (* write append *)

FILENO := 0...99 (* number of the file to which the data set is to be
appended *)

SEG := Address of the variable of the sector label

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable to be written

The write process is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A write error is indicated by ERR:=TRUE and ERNO<>0

4. Further data sets can be written with the same function block settings after the completion
message is displayed (output DONE=TRUE). This process is started with a FALSE/TRUE
edge at input EN.

5. If you want to write further sectors and data sets, repeat the steps as of step 2.

The file USRDATxx.DAT is saved as USRDATxx.BAK for each write process.
An "Open file / Write file / Close file" procedure is performed.

Loading user data from the memory Card for AC500 V2 products
Data file without sectors

Proceed as follows to read user data from a data file without sectors on the memory card and
write them to the CPU:

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6360

1. Insert the memory card.
2. Read a data set by calling the function block Ä Chapter 1.5.4.19.2.22 “SD_READ”

on page 1558 with the following settings:

EN := TRUE (* FALSE/TRUE edge starts writing *)

ATTRIB := 2 (* open / read *)

FILENO := 0...99 (* number of the file which is to be read *)

SEG := Address of the variable of the sector label (*any*)

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable into which data are to be written

The read process is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A read error is indicated by ERR:=TRUE and ERNO<>0

3. Further data sets can be read with the following settings after the completion message
is displayed (output DONE=TRUE). This process is started with a FALSE/TRUE edge at
input EN:

EN := TRUE (* FALSE/TRUE edge starts reading *)

ATTRIB := 3 (* continue read *)

FILENO := 0...99 (* number of the file which is to be read*)

SEG := Address of the variable of the sector label (*any*)

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable into which data are to be written

If an unexpected sector label or the end of file (EOF) is detected when reading, a
corresponding error message is generated.

4. To read a further data set and to close the file afterwards, call the function block
SD_READ with the following settings after the completion message (output DONE=TRUE)
and start the process with a FALSE/TRUE edge at input EN:

EN := TRUE (* FALSE/TRUE edge starts reading *)

ATTRIB := 4 (* read / close *)

FILENO := 0...99 (* number of the file which is to be read*)

SEG := Address of the variable of the sector label (*any*)

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable into which data are to be written

If an unexpected sector label or the end of file (EOF) is detected when reading, a
corresponding error message is generated.

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6361

5. To close the file, call the function block SD_READ with the following settings after the
completion message (output DONE=TRUE) and start the process with a FALSE/TRUE
edge at input EN:

EN := TRUE (* FALSE/TRUE edge starts reading *)

ATTRIB := 4 (* close *)

FILENO := 0...99 (* number of the file which is to be read*)

SEG := Address of the variable of the sector label (*any*)

FORMAT := Data format

NVAR := Number of values in data set (*any*)

ADRVAR := Address of the first variable (*any*)

Data file with sectors
Proceed as follows to read user data from a data file with sectors on the memory card and write
them to the CPU:
1. Insert the memory card.
2. Seek a sector label and read a data set by calling the function block Ä Chapter

1.5.4.19.2.22 “SD_READ” on page 1558 with the following settings:

EN := TRUE (* FALSE/TRUE edge starts writing *)

ATTRIB := 1 (* open / seek / read *)

FILENO := 0...99 (* number of the file which is to be read *)

SEG := Address of the variable of the sector label

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable into which data are to be written

The read process is successfully completed when output DONE:=TRUE and output
ERR:=FALSE. A seek error is indicated by ERR:=TRUE and ERNO<>0

3. Further data sets can be read with the following settings after the completion message
is displayed (output DONE=TRUE). This process is started with a FALSE/TRUE edge at
input EN:

EN := TRUE (* FALSE/TRUE edge starts reading *)

ATTRIB := 3 (* continue read *)

FILENO := 0...99 (* number of the file which is to be read*)

SEG := Address of the variable of the sector label (*any*)

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable into which data are to be written

If an unexpected sector label or the end of file (EOF) is detected when reading, a
corresponding error message is generated.

4. If you want to read further sectors / data sets, close the file and repeat the steps 2 and 3.

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6362

5. To read a further data set and to close the file afterwards, call the function block
SD_READ with the following settings after the completion message (output DONE=TRUE)
and start the process with a FALSE/TRUE edge at input EN:

EN := TRUE (* FALSE/TRUE edge starts reading *)

ATTRIB := 4 (* read / close *)

FILENO := 0...99 (* number of the file which is to be read*)

SEG := Address of the variable of the sector label

FORMAT := Data format

NVAR := Number of values in data set

ADRVAR := Address of the first variable into which data are to be written

If an unexpected sector label or the end of file (EOF) is detected when reading, a
corresponding error message is generated.

6. To close the file, call the function block SD_READ with the following settings after the
completion message (output DONE=TRUE) and start the process with a FALSE/TRUE
edge at input EN:

EN := TRUE (* FALSE/TRUE edge starts reading *)

ATTRIB := 4 (* close *)

FILENO := 0...99 (* number of the file which is to be read*)

SEG := Address of the variable of the sector label

FORMAT := Data format

NVAR := Number of values in data set (*any*)

ADRVAR := Address of the first variable (*any*)

1.6.6.2.7 Storing force values onto memory card
The force values can be written onto a memory card to reactivate them after a loss of power
supply voltage. A precondition for storing is that a memory card is plugged into the CPU.
For storing the force values, there is no need for a special program. It is performed automati-
cally if the respective options are configured in the CODESYS project.
1. In the CODESYS open the “Resources” tab. Then, open the “Target Settings”.
2. In the “General” tab, activate the check boxes “Retain forcing” and “Save”.
3. Compile the project and store it to the user flash memory of the CPU (use “Create boot

project”).

ð The current force values are stored onto the memory card at every forcing and a
warning message is displayed with every logout from the PLC. To keep the forced
values, confirm this message with No.

After a loss of power supply voltage, the values are read from the memory card automatically
and the forcing is activated.

The force values are only deleted from the memory card by deactivation of the
forcing function.

PLC Automation with V2 CPUs

PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/20 3ADR010582, 3, en_US 6363

1.6.6.3 Data storage in flash memory for AC500 V2 products
The library "SysInt_AC500_V10.lib" Ä Chapter 1.5.4.19 “Internal system library” on page 1500
contains the following function blocks which are used to store data in the flash memory:

Block Function
Ä Chapter 1.5.4.19.2.16 “FLASH_DEL”
on page 1542

Deletes a data segment in the flash memory

Ä Chapter 1.5.4.19.2.17 “FLASH_READ”
on page 1544

Reads a data segment from the flash memory

Ä Chapter 1.5.4.19.2.18 “FLASH_WRITE”
on page 1547

Writes a data segment to the flash memory

1.6.6.4 Flash disk for AC500 V2 products
Some AC500 CPUs (e.g. PM592-ETH, PM595) are equipped with an non-removable and non-
volatile flash disk. It contains no moving parts. The flash disk is designed for operation in
industrial environments and applications. A wear levelling algorithm and a power-fail protected
file system provide industrial robustness. To write on the flash disk the Ä Chapter 1.5.4.4
“CAA_File library” on page 789 is required.

NOTICE!
The flash disk has a finite number of write cycles.
A warning will be generated when the flash disk reaches 80 % of its max.
number of write cycles. The flash disk will be set into read-only mode to avoid
data loss, when the max. number of write cycles is reached.

Technically, the flash chip used in flash disk has 100000 Erase-Cycles (Write cycles).
Due to the produced write overhead, the optimum achievable number of write cycles is 50000
(for typical payload sizes of 256 kB).

The write overhead is indicated by the write amplification factor (WAF).Example

Table 762: Rule of thumb for assessing the flash lifetime for an application:
Typical payload sizes WAF Max. write cycles

256 kB 2 50000

128 kB 4 25000

64 kB 8 12500

...

1024 Byte 512 < 200

512 Byte 1024 < 100

Used function
blocks

Number of max.
write cycles

PLC Automation with V2 CPUs
PLC integration (hardware) > Storage devices for AC500 V2 products

2022/01/203ADR010582, 3, en_US6364

Lifetime of flash disk will also depend on the operating environment.

E.g. high ambient temperatures will impose stress on the user flash memory
and reduce the total overwrites achievable.

Read cycles are unlimited.

● Programmer should keep the amount of cyclic written data low to assure long availability.
● To increase the number of write cycles, the programmer could choose to use only 90 %, 75

% or even 50 % of the flash disk capacity. The disk space left free will automatically be used
by the wear levelling algorithm.

● The wear levelling information of the flash disk can be read from the PLC browser with the
command diskcfg settings flash disk. In applications with high data generating
processes (typical more then 1,5 GByte/day) this information should be monitored during
implementation.

1.7 Diagnosis and debugging for AC500 V2 products
1.7.1 The diagnosis system

The AC500 contains a diagnosis system that allows to manage up to 100 error messages in
a circular buffer. For each of these events, a time stamp with date and time based on the
controller's real-time clock (RTC) is generated in the runtime system.
Each error message has a unique internal error number. The error number provides the fol-
lowing information:
● State: error occured (come), error disappeared (gone), error acknowledged Ä Chapter

1.7.1.5.1 “State (come, gone, acknowledged)” on page 6370
● Error class Ä Chapter 1.7.1.5.2 “Error severity” on page 6371
● Faulty component or interface
● Faulty device
● Faulty module
● Faulty channel
● Error identifier Ä Chapter 1.7.1.5 “Structure of error numbers” on page 6369

Ä Chapter 1.7.1.5 “Structure of error numbers” on page 6369

1.7.1.1 Access to diagnosis data
Diagnosis data of the devices can be accessed by:
● CPU display Ä Chapter 1.7.1.2 “Diagnosis in CPU display” on page 6365
● Automation Builder: status line Ä Chapter 1.7.1.3 “Diagnosis in Automation Builder”

on page 6367
● Automation Builder: PLC commands Ä “PLC browser commands” on page 6368
● IEC application Ä Chapter 1.7.1.4 “Diagnosis in IEC application” on page 6369

1.7.1.2 Diagnosis in CPU display
1.7.1.2.1 Device state

If there is at least one active diagnosis message, the error LED ERR is on.
The behavior of the error LED depends on the setting of CPU parameter “Error LED” Ä Chapter
1.6.5.2.3.3 “Parameters of the processor module” on page 5839.

Important hints

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/20 3ADR010582, 3, en_US 6365

Diagnosis of AC500-eCo CPUs can only be shown by LED ERR at CPU. No
display is available.

General information on the LEDs, the display and the function keys can be found in chapter
Ä Chapter 1.6.4.1.5 “LEDs, display and function keys on the front panel” on page 5422.

1.7.1.2.2 Diagnosis descriptions
If one or several unacknowledged errors exist, the errors can be displayed and acknowledged
using the [DIAG] key. The latest unacknowleged error is displayed first (LIFO-principle: last in
first out). Pressing the [DIAG] key the first time displays the error class Ä Chapter 1.7.1.5.2
“Error severity” on page 6371 and error identifier Ä Chapter 1.7.1.5.3 “Error identifiers”
on page 6371. After this, pressing the [DIAG] key several times browses through the detailed
information:
d1 - Component
d2 - Device
d3 - Module
d4 - Channel

If the "d4" information is displayed and the [DIAG] key is pressed once more, the error class/
error identifier is re-displayed.
If you quit the diagnosis display by pressing [ESC], the error remains unacknowledged and will
be displayed again when pressing the [DIAG] key.
If you quit the diagnostic display with the [OK] key, the error is acknowledged.
The LED ERR goes off when all errors are acknowledged.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/203ADR010582, 3, en_US6366

Battery empty or not installed

Key Display Description
[DIAG] E4 008 E4 = warning

Error identifier 008 = empty or missing

[DIAG] d1 009 d1 = component
009 = CPU

[DIAG] d2 022 d2 = device
022 = battery

[DIAG] d3 031 d3 = module
031 = no specification

[DIAG] d4 031 d4 = channel
031 = no specification

[DIAG] E4 008 See above

[ESC] run/StoP Diagnosis display is quit without error acknowledge-
ment.

[DIAG] E4 008 See above

[OK] run/StoP Diagnosis display is quit with error acknowledge-
ment. If no further unacknowledged errors exist, the
LED ERR goes off.

Example

1.7.1.3 Diagnosis in Automation Builder
When the Automation Builder is switched to online mode, incoming error messages or state
changes of an error message (come, gone, acknowledged) are displayed as plain-text in the
status line Ä Chapter 1.7.2 “Online diagnosis in Automation Builder” on page 6374.

The error "Battery empty or not installed" is displayed in online mode as follows:
#152502216: x 1970-01-01 06:33:53 E4 : No battery or battery empty
#152502216 - Error number
x - State:

+ = error occured (come), - = error removed (gone) x = error
acknowledged

1970-01-01 06:33:53 - Time stamp: date and time of acknowledgement
E4 : - Error class 4 = Warning
No battery or battery empty - Error description

Example

The error description is read from the file Errors.xml and displayed according
to the error number. The language of the error description is dependent of
the language in Automation Builder. Errors which do not have an entry in
the file Errors.xml are displayed without error description. The file Errors.xml
is part of the target support package (TSP) and located in the directory ..\Tar-
gets\ABB_AC500 or ..\Targets\ABB_AC500\AC500_V12.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/20 3ADR010582, 3, en_US 6367

With the PLC browser commands all errors or errors of a certain error class can be displayed
and/or acknowledged, the complete diagnosis system can be deleted Ä Chapter 1.7.2.5.5
“AC500-specific PLC browser commands” on page 6382.
The error information of the internal error number and the plain-text and online text is diplayed
as plain-text interpretation of component/interface, device, module and channel.

1.7.1.3.1 Diagnosis history
Diagnosis history is available as of Automation Builder 2.4.0 / System FW 3.4.0 the diagnosis
system has been extended with diagnosis history.
The 'Diagnosis History' view provides an overview of the current and past system events that
resulted in a diagnosis event.
● Incoming diagnosis events are indicated with .

After the problem that causes a diagnosis event has been resolved, this diagnosis event is
indicated automatically with .

● Alarm events, e.g. PROFINET alarms are indicated with .
In the 'Diagnosis' view the user can acknowledge an alarm. Note that an alarm event can be
acknowledged though the problem that causes the alarm still persists.
The acknowledge action is indicated with on the concerning event entry. If the icon
changes to , the acknowledge action has been completed by the PLC.

The following buttons are available in the 'Diagnosis History' view:
● Start/Stop refresh:

Enables or disables the automatic refresh mode. In refresh mode new diagnosis events
will be displayed automatically. Only the last 100 entries are shown in this view, the latest
events on top of the list.

● Get next entries:
Adds the previous (older) 100 diagnosis events at the bottom of the list.

● Export complete history:
Creates a csv file with all events from the diagnosis history (not only the visible ones).

PLC browser
commands

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/203ADR010582, 3, en_US6368

1.7.1.4 Diagnosis in IEC application
The diagnosis messages can be accessed with the library SysInt_AC500_Vxx.lib. All function
blocks from the folder "Diagnosis" can be used for diagnosis. Ä Chapter 1.5.4.19 “Internal
system library” on page 1500

1.7.1.5 Structure of error numbers
For each error, an internal error number is stored in the firmware. This error number is coded as
follows:

Table 763: Error number, 32 bit
Bit Bit length Possible

values
Definition Description

- 4 bits - State Ä Chapter 1.7.1.5.1 “State
(come, gone, acknowledged)”
on page 6370

28 ... 29 2 bits 0 ... 3 Error class E1 ... E4 Ä Chapter 1.7.1.5.2
“Error severity” on page 6371

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/20 3ADR010582, 3, en_US 6369

Bit Bit length Possible
values

Definition Description

24 ... 27 4 bits 0 ... 15 Component 1 ... 6 = external communication
module
8 = local I/O
9 = CPU
10 = internal communication
module
11 = COM1
12 = COM2
13 = FBP
14 = I/O bus
15 = user
Ä Chapter 1.7.3.1 “Possible error
combinations” on page 6429

16 ... 23 8 bits 0 ... 255 Device Component specific Ä Chapter
1.7.3.1 “Possible error combina-
tions” on page 6429

11 ... 15 5 bits 0 ... 31 Module Device specific, but mostly:
1 = initialization
2 = runtime
3 = project / configuration
4 = protocol
31 = device itself

6 ... 10 5 bits 0 ... 31 Channel Module specific Ä Chapter 1.7.3.1
“Possible error combinations”
on page 6429

0 ... 5 6 bits 0 ... 63 Error identifier 0 ... 63 Ä Chapter 1.7.1.5.3 “Error
identifiers” on page 6371

1.7.1.5.1 State (come, gone, acknowledged)
In addition to the error information, the diagnosis message also contains state information (1 bit
per state). Each state is set by a specific event:

State value Description
Bit 0 not used

Bit 1 Error occured (come)

Bit 2 Error removed (gone)

Bit 3 Error acknowledged

The diagnosis message is generated when an error occurs. In this case, the state bit 1 is
set. If this error is acknowledged or removed afterwards, the corresponding state bits are set
additionally.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/203ADR010582, 3, en_US6370

1.7.1.5.2 Error severity

Bit 29 Bit 28 Error class Type Description Example
0 0 E1 Fatal errors Safe operation

of the operating
system is no
longer ensured.

Checksum error
in system flash,
RAM error

0 1 E2 Severe error The operating
system works
correctly, but the
error-free execu-
tion of the user
program is not
ensured.

Checksum error
in user flash,
task cycle times
exceeded

1 0 E3 Minor error It depends on
the application
whether the user
program has to
be stopped by
the operating
system or not.
The user
decides which
reaction is to be
done.

Flash memory
cannot be pro-
grammed, I/O
module failed

1 1 E4 Warnings Errors that occur
on peripheral
devices or that
will have an
effect only in the
future. The user
decides which
reactions are to
be done.

Short circuit in
an I/O module,
battery
empty/not
installed

Errors with error severitiy 1 - fatal errors
Errors with error severity 1 are not entered in the diagnosis system. These
errors do not allow normal operation of the PLC. These errors are detected
during PLC start-up and stop the PLC immediately.

Examples are RAM errors or checksum errors when starting the firmware.

Such errors are indicated by rapid flashing of the ERR LED.

1.7.1.5.3 Error identifiers
The error identifier specifies which kind of error occured. It is kept generally in order to reach
a maximum systematic. The exact meaning of each error depends on the information provided
by the error messages. The error message is a combination of the error identifier and the
information where the error occured.

Error identifier Description
0 General

1 Wrong value

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/20 3ADR010582, 3, en_US 6371

Error identifier Description
2 Invalid value

3 Timeout

4 Highest level

5 High level

6 Low level

7 Lowest level

8 Empty or missing

9 Full

10 Too big / overflow

11 Too small

12 Read

13 Write

14 Delete

15 Alloc memory

16 Free memory

17 Access

18 Test

19 Checksum

20 Message

21 Put message

22 Get message

23 Wait message

24 Message deleted

25 Wait answer

26 Config data

27 No config

28 Different config

29 Write config

30 Read config

31 Wrong type or model

32 Unknown type or model

33 Wait reset

34 Wait ready

35 Wait run

36 Wait com

37 Cycle time

38 Exception

39 Unknown POU

40 Version

41 Transmit

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/203ADR010582, 3, en_US6372

Error identifier Description
42 Receive

43 Internal

44 No adjustment values

45 Cut wire

46 Overload

47 Short circuit

48 Overload / Cut wire

49 Short-circuit / Cut wire

50 Overload / Short-circuit

51 Overload / Short-circuit / Cut wire

52 Lost value

53 Changed

54 Conflict

55 Tolerance

56

57

58

59

60

61

62

63 (max.) others

63 is the absolute maximum

1.7.1.6 Diagnosis history file
Diagnosis history is available as of Automation Builder 2.4.0 / System FW 3.4.0 the diagnosis
system has been extended with diagnosis history.
Diagnosis history is the entry of all diagnoses into a file according to their time of occurrence.
The diagnosis history file is in the root directory of the user disk and has the name
“DiagHistory.csv”. The max. number of entries is 2000. When 2000 entries are reached, the
oldest entry is overwritten. The max. size of the extended data is 32 bytes.

An entry consists of following data:

Name Type Comment Example
timestamp ARRAYDT OF

BYTE
RTC time of event in milliseconds
consists of diTimestamp in DT
format and uiMs milliseconds.

1603371910177

event BYTE Event type (1=comes, 2=gone). 1

class BYTE Severity of error event. 4

compID UDINT Component ID 270540802

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > The diagnosis system

2022/01/20 3ADR010582, 3, en_US 6373

Name Type Comment Example
conn UDINT Connector 0xb17777ac

connIdx UDINT Connector index 0

sub DWORD SubsystemID: Any number
describing detail/location within
device, device specific

369098752

addl DWORD AdditionalID: Additional number
describing detail/location within
device, optional, device specific

0

error DWORD Error code 9

extended data ARRAYDT OF
BYTE

Extended diagnosis data, max. 32
bytes

As shown in the example data of the diagnosis history file is not easily readable. The entries
must be interpreted according to device and/or fieldbus. Therefor the Automation Builder con-
sists a special view for diagnosis history Ä Chapter 1.7.1.3.1 “Diagnosis history” on page 6368.

With the entries CompID, conn and connID, the device generating the event is
clearly identified in the device tree.

If the PLC configuration is changed, the values of this entries may be changed
also.

Therefore, the diagnosis history will be deleted during each download.

1.7.2 Online diagnosis in Automation Builder
1.7.2.1 Short description and overview

To use the diagnosis system in Automation Builder, login to the online mode is required
Ä Chapter 1.7.2.2 “Entering/leaving the online mode” on page 6375. The online diagnosis in
Automation Builder consists of a set of partly animated, mostly read only views. They can be
invoked by a double-click on a project tree element which shows a circle indicating that this
element is able to show diagnosis messages Ä Chapter 1.7.2.3 “Project tree in online mode”
on page 6375.
Available online diagnosis and statistics:
● Error messages

When the Automation Builder is switched to online mode, incoming error messages or
status changes of an error message (come, gone, acknowledged) are displayed as plain-
text in the status line. Ä Chapter 1.7.2.4 “Error messages, warnings and notes (dialogs)”
on page 6376

● CPU/PLC diagnosis
Ä Chapter 1.7.2.5 “CPU diagnosis views” on page 6378.
All errors or errors of a certain error class can be displayed and/or acknowledged using the
PLC browser. Also the complete diagnosis system can be deleted Ä Chapter 1.7.2.5.4 “PLC
browser” on page 6381.

● I/O module diagnosis
Ä Chapter 1.7.2.6 “Live values in views with I/O components” on page 6391.

● Communication module and fieldbus diagnosis
Ä Chapter 1.7.2.7 “Communication module and fieldbus diagnosis” on page 6392

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6374

1.7.2.2 Entering/leaving the online mode
Prerequisite: Set the gateway before entering the online mode. Ä Chapter 1.6.5.2.13 “Gateway
configuration” on page 6116

Right-click the PLC tree node and select “Login”.
The Automation Builder project login to online mode updates the latest changes of the project.

The online mode can be entered or left for each PLC in the project separately.

Right-click the PLC tree node and select Logout.
When online mode is active, a thread is running on Automation Builder project which sends
cyclically a message to the PLC and expects a response. If the PLC does not respond, the
online mode is left programmatically.

1.7.2.3 Project tree in online mode
When Automation Builder enters the online mode internally, an identification message is sent to
all configured communication modules.
The connection's status can be recognized by a symbol in the device tree:

Module responds to identification message and is available for online connec-
tion.

Module responds to identification message, but some warning messages
are available. See Ä Chapter 1.7.2.4 “Error messages, warnings and notes
(dialogs)” on page 6376.

Module does not respond to identification message and is not available for
online connection.

Enter the online
mode

Leave the online
mode

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6375

The identification is done once when switching from offline to online mode.

If a communication module is a master unit and contains several configured slave devices
below the level (e.g., PROFIBUS, CANopen, PROFINET) will always have the same master, i.e.
there is no identification check for the slaves of the fieldbus.
Apart from the online availability the blue circle icon indicates the possibility to activate a
diagnosis view on the right screen by a double-click the tree node with the green circle.

1.7.2.4 Error messages, warnings and notes (dialogs)
Wrong target

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6376

This error message appears if there is a mismatch between the selected target in Automation
Builder and the CPU hardware. For example, the selected CPU type is PM583-ETH and in
Automation Builder project, the configured CPU type is PM573-ETH.
A login to the CPU is not possible.
To avoid this error message, correct the project to the appropriate CPU target.

The following warning message will only appear with CPU firmware V2.3.0 or
higher.

This warning message appears if the current project in Automation Builder and the project
located inside the PLC are different.

To avoid this warning message, perform the following tasks:
● Log out from the PLC.
● Re-create configuration data (right-click on “AC500 è Check configuration”).
● Download the IEC application program to the PLC via CODESYS V2.3.x (a full download is

needed).
● Log in for Online Diagnosis again.

The following warning message will only appear with CPU firmware V2.3.0 or
higher.

Configuration
not yet in PLC

Old profile in
firmware

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6377

This warning messages appears, if the firmware version inside the PLC is older than the version
profile of Automation Builder and therefore, the CPU's firmware does not support all features of
the current version profile of Automation Builder.

To avoid this warning message, perform one of the following tasks:
● Update the CPU's firmware to the version which is equivalent to the Automation Builder

version profile.
● Select a version profile in Automation Builder which is equivalent to the firmware version of

the CPU.

1.7.2.5 CPU diagnosis views
1.7.2.5.1 CPU diagnostics (error log)

“Read Errors”: fetches the actual contents of the CPU diagnosis buffer (max. 100 entries pos-
sible at the moment).
“Acknowledge”: acknowledges one selected entry. The display will refresh automatically and the
time of the acknowledge is shown.
“Clear All Errors”: clears the error buffer on the PLC.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6378

As a result of the Clear Errors command the PLC could go into RUN after next
run command.

Description of the columns:
● Index: Sequence of the errors entered in the diagnosis buffer, with icon reflecting the states

active/inactive/acknowledged/not acknowledged.
● State: Active/inactive: When inactive the reason for the entry is gone "“ with timestamp

("Time dis.").
● Acknowledged: If yes, the timestamp in “Time ack.” column is also displayed.
● Class: Severity classes E1-E4 (E1 is most severe).
● Description: A description for this error code is displayed (multilingual). The last columns

Comp, Dev till Error number are needed to decode this message.
● Online Text: Error or warning message delivered from the firmware (non multilingual).
● Mostly: Indicates the Communication Module position (Ext.1-4) or I/O Bus Module where a

problem exists.

1.7.2.5.2 Statistics

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6379

The “Statistics” tab shows the following information:
● CPU Load: The actual resource run state and the battery load state are shown. The CPU

load values "Min", "Max" and "Avg." can be cleared with the “Clear” button.
● Date and time: The actual date and time of the PLC is shown. It can be set or synchronized

with the date/time of the PC via “Set PLC Date & Time” button.
● Application task statistics: Information on the number of application tasks.
● Local I/O statistics: Information on the locally connected I/O Modules.

This complete view is refreshed cyclically (refresh rate is depending on the
underlying communication protocol).

1.7.2.5.3 Version information
Information on the firmware versions of the processor modules or communication modules, is
provided on the “Version information” tab.
Remarks:
● The “Version information” tab displays the version identified on the device and the version

provided with Automation Builder.
● The firmware on the devices must match to the Automation Builder version. Upgrade or

downgrade to version supplied with Automation Builder is recommended (especially for
CPUs) to ensure correct functionality.

● The firmware type can be changed to the type required by the hardware configuration for
devices that support changing the firmware type. E.g., the onboard field bus communication
modules of PM595 that may be used as PROFINET, Ethernet or EtherCAT communication
module.

Firmware version on device matches version supplied with
Automation Builder.

Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Only for communication modules if CPU firmware must be updated
first. This happens when CPU firmware has version below 2.5.0.0.
Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

State icons

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6380

Identified device is different from configured device, thus no firmware
update is possible. Happens only for Communication Modules.

No icon Firmware of device is not updateable or no newer firmware than the
initial version is available.

The [Update Firmware] button to download the new firmware is only enabled if
there is updateable firmware.

1.7.2.5.4 PLC browser

In the “PLC Browser” tab all supported PLC browser commands can be entered.
Via “Save content to file” the content of the output can be saved to a text file.

This view has the same functionality as the PLC browser in CODESYS V2.3.

See Ä Chapter 1.7.2.5.5 “AC500-specific PLC browser commands” on page 6382.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6381

1.7.2.5.5 AC500-specific PLC browser commands
Automation Builder provides IEC 61131 standard commands as well as AC500-specific com-
mands.
Online help is available for all commands. The help information is displayed language-
dependent by entering command "?" when operating in online mode. The command "?" lists
all available firmware commands.
The commands listed in online mode can differ from the commands shown when pressing the
button [...] as Automation Builder version and firmware version can differ.
Depending on the device, the PLC browser provides the following commands:

Command Description Implementation
? Displays all implemented

commands
Standard

mem Memory dump of an area
Usage: mem [from-addr] [to-
addr]

Standard

memc Memory dump relative to code
area

Standard

memd Memory dump relative to data
area

Standard

reflect Reflect current command (for
test purposes)

Standard

dpt Displays the data pointer table Standard

ppt Displays the block pointer
table

Standard

pid Displays the project ID Standard

pinf Displays project information in
the format:
pinf
Address of Structure:
16#0013CF74
Date: 4213949F
Project Name:
MODBUS_Test_BB.pro
Project Title: Test
MODBUS
Project Version: V1.0
Project Author: Test
User
Project Description:
Test of serial
interfaces
End of Project-info.

Standard

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6382

Command Description Implementation
tsk Displays the IEC task list with

task information in the format:
tsk
Number of Tasks: 1
Task 0: Main program,
ID: 1519472
 Cycle count: 45402
 Cycle time: 1 ms
 Cycle time (min): 1
ms
 Cycle time (max): 1
ms
 Cycle time (avg): 1
ms
 Status: RUN
 Mode: CONTINUE

 Priority: 10
 Interval: 5 ms
 Event: NONE

 Function pointer:
16#00601584
 Function index: 131

Standard

tskclear Clears IEC Task information
(cycle count & overall max-
imum and minimum cycle
time)

Specific as of V2.0

startprg Starts the user program Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

stopprg Stops the user program Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

resetprg Resets the user program Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

resetprgcold Resets the user program
(cold)

Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6383

Command Description Implementation
resetprgorg Resets the user program

(origin)
Standard (with CPU firmware
below V2.3.0)
No (with CPU firmware V2.3.0
and higher)

reload Reloads the boot project from
user flash memory

Standard (not supported with
CPU firmware V2.2 or higher)

getprgprop Displays program properties
in the format:
getprgprop
Name:
MODBUS_FBP_Test_BB.pro
Title: Test MODBUS
Version: V1.0
Author: Test User
Date: 4213949F

Standard

getprgstat Displays the program status in
the format:
getprgstat
Status: Run
Last error: Id
00000000 TimeStamp
000055F3 Parameter
00000000 Text
Flags:

Standard

filecopy File command copy No

filerename File command rename No

filedelete File command delete No

filedir File command dir No

saveretain In V1.0 and V1.1: Saves
the RETAIN variables to the
memory card.
As of V1.2: Writes the RETAIN
variables to RAM
(same as retain save)

Specific

restoreretain In V1.0 and V1.1: Restores
the RETAIN variables from the
memory card.
As of V1.2: Restores the
RETAIN variables from RAM
(same as retain restore)

Specific

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6384

Command Description Implementation
setpwd Sets the PLC password

(required at logon!)

Note: From CPU firmware
V2.3.0 and higher, this com-
mand works as follows:
● If there is no password

set, a password can
be set with: setpwd
<new_password>

● If a [new] password
has been set, the
old password must
also be inserted.:
setpwd <old_password>
<new_password>

Standard (with CPU firmware
to V2.3.0)
Specific (with CPU firmware
V2.3.0 and higher)

delpwd Deletes the PLC password

Note: From CPU firmware
V2.3.0 and higher, this com-
mand works only if a pass-
word has been set. Also,
you have to specify the
old password to delete it,
i. e. syntax is: delpwd <cur-
rent_password>

Standard (with CPU firmware
to V2.3.0)
Specific (with CPU firmware
V2.3.0 and higher)

plcload Displays the PLC utilization
(system + IEC + tasks + com-
munication)

Standard

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6385

Command Description Implementation
rtsinfo Displays the firmware informa-

tion (version, driver) in the
format:

rtsinfo
rts version: 2.4.7.24
OS version: SMX smxPPC
3.5.2
uses IO driver
interface
rts api version: 2.408
4 driver(s) loaded
driver 1: AC500
CPU driver, device
interface version:
2.403
driver 2: AC500 I/O-
BUS driver, device
interface version:
2.403
driver 3: AC500
COM driver, device
interface version:
2.403
driver 4: AC500
Coupler driver, device
interface version:
2.403
AC500 PM___(DISP) :
V2.1
AC500 PM___(BOOT) :
V2.0.5, 2017-10-26
(Build: 9603,
13:55:09, Rel)
AC500 PM___(FW) :
V2.0.4, 2017-10-12
(Build: 9530,
14:30:50, Rel)

Specific

traceschedon Enables task tracing No

traceschedoff Disables task tracing No

traceschedstore Stores task trace to RAM No

fdir <path> Show content of a drive or
directory <path> (e.g. fdir
userdisk, fdir sdcard/
userdata)

Specific as of V2.1

fread <path> Dump a file's content Specific as of V2.1

fmove <path> Move a file to a directory Specific as of V2.1

mkdir <path> Create a directory Specific as of V2.1

deldir <path> Delete an empty directory Specific as of V2.1

rndir <old path> <new path> Rename a directory Specific as of V2.1

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6386

Command Description Implementation
ipaddr Sets the IP address of the

CPU
No

basetick Sets the basetick to µs No

diagreset Resets the diagnosis system Specific

diagack all Acknowledges all errors Specific

diagack x Acknowledges all errors of the
class X (with X= 1...4)

Specific

diagshow all Shows all errors in the format:
diagshow all
--- All errors ---
State Clas
s Comp Dev Mod Ch Err
0152502216
active and
acknowledged 4 9
 22 31 31 8
 1970-01-01
00:00:08 occurred

 disappeared
 1970-01-01
00:00:15 ack.
0152369165
active not
acknowledged
49 2031013
 1970-01-01
01:19:12 occurred
 -
 disappeared
 -
 ack.
--- end ---

Specific

time Displays and sets the time of
the real-time clock.
If no battery is inserted in the
PLC and the control voltage
is switched on, the PLC clock
is set to "01. January 1970,
00:00".

Specific

date Displays and sets the date of
the real-time clock.
If no battery is inserted in the
PLC and the control voltage
is switched on, the PLC clock
is set to "01. January 1970,
00:00".

Specific

batt Polls the battery status Specific

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6387

Command Description Implementation
sdappl Saves the boot project to the

memory card
Specific

sdclone Copys the user program and
the user data to the memory
card.

For AC500-S only!

sdfunc Displays and changes the
memory card function

Specific

sdsys Save firmware to memory
card

Specific

sdboot Updates the bootcode from
the memory card

Specific

sddisplay Updates the MMI firmware
from the memory card

Specific

sdfirm Updates the firmware from the
memory card

Specific

sdcoupler x Updates the firmware of Com-
munication Module x from the
memory card

Specific

cpuload Displays the CPU load (cur-
rent, min., max., average)

Specific

delappl Deletes the user program in
the user flash memory

Specific

retain Saving and restoring the
RETAIN variables:
retain clear -> Clears all
RETAIN variables
retain save -> Saves the
RETAIN variables to the RAM
disk
retain restore -> Restores the
RETAIN variables from the
RAM disk
retain export -> Exports the
RETAIN variables from the
RAM disk to the memory card
retain import -> Imports the
RETAIN variables from the
memory card to the RAM disk

Specific as of V1.2

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6388

Command Description Implementation
persistent Saving and restoring the per-

sistent area %R area:
persistent clear -> Clears the
%R area
persistent save -> Saves the
buffered %R area to the RAM
disk
persistent restore -> Restores
the buffered %R area from the
RAM disk
persistent export -> Exports
the buffered %R area from the
RAM disk to the memory card
persistent import -> Imports
the buffered %R area from the
memory card to the RAM disk

Specific as of V1.2

cfginfo Print expected and active con-
figuration version. This is for
internal use.

Specific

hashappl Hash the user program Specific

io-bus stat Displays the I/O bus statistic Specific

io-bus desc Displays the I/O bus configu-
ration

Specific

com protocols Displays the protocols avail-
able for the serial interfaces

Specific

com settings Displays the serial interface
settings

Specific

coupler desc Displays information on the
communication module inter-
faces (type, firmware, serial
number, date)

Specific

coupler settings Displays the current commu-
nication module settings, for
example, IP address and
socket assignment

Specific as of V1.2

ping Ping a address, usage: ping
<ipaddr> <couplerid> <ms>

Specific as of V2.1.3

reboot Reboots the PLC (IEC 61131
performs a logout when
restarting or logout possible
up to 3 seconds after com-
mand input)
(This command is not avail-
able for CM574-RS as of firm-
ware revision V2.1.x)

Specific

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6389

Command Description Implementation
diskcfg Access to drive maintenance

Command Syntax:
diskcfg [option]
[drivename]
Command Options:
● unlock : unlock a

drive for writing MBR or
formating

● lock : lock drive
again

● writembr : write clean
MBR (unlock required)

● format : write
clean file system (unlock
required)

● settings : show drive
configuration details

● desc : show drive
overview

● help : show this help
● [none] : no option

shows this help
Available Drives (not all com-
mands are supported on all
drives):
● Flash memory
● Memory card
● RAM disk
● Userdisk
● Flash disk
● SRAM disk

Specific as of V2.1

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6390

Command Description Implementation
proddata Shows Production Data of

PLC
proddata
Production data

Ident :
1SAP123456R0001
Index : B1
Type : PM___
Date : 0447
BA-Inst : 1S120
Factory : 05
Year : 17
Serial No. : 00007134
MAC-Addr : "

Specific as of V2.0

confdata Shows Configuration Data of
PLC
It is possible to save and
load PLC specific configu-
ration of any kind with
the function blocks (from
SysInt_AC500_V10.lib):
Ä Chapter 1.5.4.19.2.3
“CPU_CONFIG_READ”
on page 1508

Ä Chapter 1.5.4.19.2.4
“CPU_CONFIG_WRITE”
on page 1511

The AC500 firmware also
uses this INI file for settings
like IP addresses.

Specific

1.7.2.6 Live values in views with I/O components
“I/O mapping list” tab: In online mode, all Automation Builder views, which contain I/O compo-
nent mapping tables, show animated live values which are updated every second.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6391

1.7.2.7 Communication module and fieldbus diagnosis
1.7.2.7.1 Fieldbus commissioning

Common online diagnosis views for all netX-based communication modules (e. g. CM579-
ETHCAT, CM579-PNIO) can be accessed whenever the related PLC is in online mode
Ä Chapter 1.7.2.2 “Entering/leaving the online mode” on page 6375.

Master/controller modules
Master/controller modules like CM579-ETHCAT or CM579-PNIO, provide the following diag-
nosis views:
● “Diagnostics main”: provides diagnosis messages which are common for all protocols (e.g.,

protocol state and error)
● “Diagnostics live list”: provides a list of connected slaves/devices and their state Ä Chapter

1.7.2.7.1.1.1 “ PROFINET scan and comparison view” on page 6393
● “Diagnostics eventlog”: provides diagnosis messages from the master/controller and its

connected slaves/devices

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6392

PROFINET scan and comparison view

1. After going online, double-click on “PNIO_Controller (PROFINET-IO-Controller)” in the
device tree.

ð The editor “PNIO_Controller” is displayed.

2. Select tab “Diagnostics live list” and click [Scan] to find all hardware devices that exist.

ð The found devices are listed in a table.

3. Click [Compare] to compare the found hardware I/O devices with the current project
configuration.

If any I/O hardware device is unknown:
● The devices will be marked with a red exclamation mark.
● A message box will be appear for each unknown device.
● Automation Builder generates a message with information about its vendor ID and device

ID.

PNIO_Controller

Unknown hard-
ware

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6393

1. To display the comparison view, install the device description for the unknown device.
2. After installing the device description, click [Scan] and click [Compare].

ð The message box informs you, that the application will go offline to display the com-
parison view.

3. Click [Yes].

ð The “Project Comparison - Differences” tab displays the difference between the
PROFINET configuration in Automation Builder (left side) and the real hardware con-
figuration (right side).

4. Click [Accept Single] to accept only a part of the differences or [Accept Block] to accept all
differences.

ð After clicking on the Button [Accept Single] or [Accept Block] the found devices will be
moved from the right side to the left side.

Comparison
view

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6394

5. Close tab “Project Comparison - Differences”.

ð A message will be displayed to ask if you want to commit the new changes into
project.

6. Click [Yes].

ð The changes will be saved and the devices will be added to the project.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6395

Slave/device communication modules
Diagnosis views for slave/device communication modules like CM589-PNIO:
● “Diagnostics main”: provides diagnosis messages which are common for all protocols
● “Diagnostics details”: provides protocol specific diagnosis messages

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6396

1.7.2.7.2 Onboard Ethernet statistic

This view is refreshed cyclically and shows in above part the common Ethernet errors like late
collisions, invalid frame errors.
If these error counters are growing, this indicates problems with the Ethernet cabling or over-
load.
Transmitted and received bytes are shown as a sum and bytes per second.
The lower part shows information about the throttling status.
Throttling is a mechanism that could protect the PLC from network bursts, "brute force" or DoS
(denial of service) attacks.
The receive/transmit parts of the network driver are handled separately.
If throttling is active (default) depending on the throttling method (which can be "bytes/second",
"packets/second" or both) every cycle (depends on CPU type, about 10 ms) the firmware
decides, if the limits (bytes per second limit or packets per second limit) are exceeded.
If this happens, the receiver or transmitter will ignore the data at least for 1 cycle and then
calculates again.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6397

1.7.2.7.3 CM592-DP PROFIBUS DP communication module statistic views
Extended status block view

Parameter Values Description
Bus and master
main errors

MSK_PROFIBUS_APM_EXT_STA
_CTRL_ERR

CONTROL-ERROR:
This error is caused by incorrect
parameterization.

 MSK_PROFIBUS_APM_EXT_STA
_ACLR_ERR

AUTO-CLEAR-ERROR:
The device stopped the communi-
cation to all slaves and reached
the auto-clear end state

 MSK_PROFIBUS_APM_EXT_STA
_NEXC_ERR

NON-EXCHANGE-ERROR:
At least one slave has not reached
the data exchange state and no
process data are exchanged with
it.

 MSK_PROFIBUS_APM_EXT_STA
_FATL_ERR

FATAL-ERROR:
Because of a severe bus error, no
bus communication is possible any
more

 MSK_PROFIBUS_APM_EXT_STA
_NRDY

Host-NOT-READY-NOTIFICA-
TION:
Indicates, if the host program has
set its state to operative or not. If
the bit is set, the host program is
not ready to communicate

 MSK_PROFIBUS_APM_EXT_STA
_TOUT

TIMEOUT-ERROR:
The device has detected an over-
stepped timeout supervision time
because of rejected PROFIBUS
telegrams. It's an indication for
bus short circuits while the master
interrupts the communication. The
number of detected timeouts are
fixed in the Time_out_cnt variable.
The bit will be set when the first
timeout was detected and will not
be deleted any more.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6398

Parameter Values Description
Master main state Offline In OFFLINE state, there is no

communication (data transfer) per-
mitted at all. This is the state
after initialization. This means, the
master is waiting for a signal to
start and does not participate in
the token ring of the PROFIBUS
access control mechanism

 Stop In STOP state, there is no data
transfer permitted between master
and slaves. Data transfer to other
masters in multi-master system is
allowed, however. The bus param-
eter set has been loaded success-
fully in order to get into STOP
state.

 Clear In CLEAR state, the master is able
to read the input data from the
DP slaves. The master forces the
outputs to the slaves to be in a
safe state (i.e. they contain only
the value 0). For instance, incor-
rect data transfer of a slave can
cause the PROFIBUS DP master
to fall back from OPERATE state
to CLEAR state. Parameterization
and configuration checks are pos-
sible in this state.

 Operate In OPERATE state, unrestricted
data transfer is possible. This data
transfer is cyclic, i.e. periodically,
the input values are read from the
slaves and the output data are
written to the slaves.

Location of error 0..125 Address of the slave with error

Error event Not used currently

Bus error counter Counter for the bus error events

Number of bus time-
outs

 Counter for bus timeouts

Common status block view

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6399

Parameter Description
Communication change of state The communication change of state register con-

tains information about the current operating status
of the communication channel and its firmware
Ä Table 764 “Communication change of state flags”
on page 6401.

Communication state The communication state field contains information
regarding the current network status of the communica-
tion channel.
Depending on the implementation all or a subset of the
following definitions is supported:
● UNKNOWN
● NOT_CONFIGURED
● STOP
● IDLE
● OPERATE

Communication error This field holds the current error code of the communi-
cation channel. If the cause of error is resolved, the
communication error field is set to 0 (= RCX_SYS_SUC-
CESS) again.
Depending on the implementation protocol stacks use all
or a subset of the following error codes:
● SUCCESS 0x00000000
● Runtime Failures:

– WATCHDOG TIMEOUT 0xC000000C
● Initialization Failures:

– INITIALIZATION FAULT 0xC0000100
– DATABASE ACCESS FAILED 0xC0000101

● Configuration Failures
– NOT CONFIGURED 0xC0000119
– CONFIGURATION FAULT 0xC0000120
– INCONSISTENT DATA SET 0xC0000121
– DATA SET MISMATCH 0xC0000122
– INSUFFICIENT LICENSE 0xC0000123
– PARAMETER ERROR 0xC0000124
– INVALID NETWORK ADDRESS 0xC0000125
– NO SECURITY MEMORY 0xC0000126

● Network Failures
– NETWORK FAULT 0xC0000140
– CONNECTION CLOSED 0xC0000141
– CONNECTION TIMED OUT 0xC0000142
– LONELY NETWORK 0xC0000143
– DUPLICATE NODE 0xC0000144
– CABLE DISCONNECT 0xC0000145

Version The version field holds version of this structure. It starts
with 1. 0 is not defined. Version should be 1.

Host watchdog This field holds the configured watchdog timeout value
in milliseconds. The application may set its watchdog
trigger interval accordingly. If the application fails to copy
the value from the host watchdog location to the device
watchdog location, the protocol stack will interrupt all
network connections immediately regardless of their cur-
rent state.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6400

Parameter Description
Error count This field holds the total number of errors detected since

power-up, respectively after reset. The protocol stack
counts all sorts of errors in this field no matter if they
were network related or caused internally.

Number of configured I/O devices The firmware maintains a list of slaves to which the
master has to open a connection. This list is derived
from the configuration database. This field holds the
number of configured slaves.

Slave state The slave state field indicates whether the master is in
cyclic data exchange to all configured slaves. In case
there is at least 1 slave missing or if the slave has a
diagnostic request pending, the status is set to FAILED.
For protocols that support non-cyclic communication
only, the slave state is set to OK as soon as a valid
configuration is found.
(UNDEFINED, NO_FAULT, FAILED)

Number of I/O devices currently
exchanging cyclic data

The firmware maintains a list of slaves to which the
master has successfully opened a connection. Ideally,
the number of active slaves is equal to the number of
configured slaves. For certain fieldbus systems it could
be possible that the slave is shown as activated, but still
has a problem in terms of a diagnostic issue. This field
holds the number of active slaves.

Number of configured I/O devices
not exchanging data or with
reported diagnosis alarm

If a slave encounters a problem, it can provide an indica-
tion of the new situation to the master in certain fieldbus
systems. As long as those indications are pending and
not serviced, the field holds a value unequal 0. If no
more diagnosis information is pending, the field is set to
0.

Table 764: Communication change of state flags
Value Description
Ready 0 - ...

1 - The Ready flag is set as soon as the protocol stack is
started properly. Then the protocol stack is awaiting a configu-
ration. As soon as the protocol stack is configured properly, the
Running flag is set, too.

Running 0 - ...
1 - The Running flag is set if the protocol stack has been con-
figured properly. Then the protocol stack is awaiting a network
connection. Now both the Ready flag and the Running flag are
set.

Bus On 0 - ...
1 - The Bus On flag is set to indicate to the host system
whether or not the protocol stack has the permission to open
network connections. If set, the protocol stack has the permis-
sion to communicate on the network. If cleared, the permission
was denied and the protocol stack will not open network con-
nections.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6401

Value Description
Configuration Locked 0 - ...

1 - The Configuration Locked flag is set, if the communica-
tion channel firmware has locked the configuration database
against being overwritten. Re-initializing the channel is not
allowed in this state. To unlock the database, the application
has to clear the Configuration Locked flag in the control block.

Configuration New 0 - ...
1 - The Configuration New flag is set by the protocol stack
to indicate that a new configuration became available, which
has not been activated. This flag may be set together with the
Restart Required flag.

Restart Required 0 - ...
1 - The Restart Required flag is set if the channel firmware
requests to be restarted. This flag is used together with the
Restart Required Enable flag below. Restarting the channel
firmware may become necessary, if a new configuration was
downloaded from the host application or if a configuration
upload via the network took place.

Restart Required Enable 0 - ...
1 - The Restart Required Enable flag is used together with the
Restart Required flag above. If set, this flag enables the execu-
tion of the Restart Required command in the netX firmware (for
details on the Enable mechanism see section 2.3.2 of the netX
DPM Interface Manual).

Firmware identification view

Parameter Description
System channel version Version of the RcX operating system

System channel firmware name Name of the operating system

System channel firmware build
date

Date of the operating system

Protocol channel version Version of the communication module

Protocol channel name Name of the communication module

Protocol channel date Date of the communication module

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6402

Station diagnosis view

For every configured slave the following data is displayed:

Value Description
Not configured Not configured

Active All OK: slave is in data exchange

Diagnosis Configured, active has diagnosis

Not found Configured but not found

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6403

1.7.2.7.4 CM592-DP PROFIBUS DP slave view

The PROFIBUS Slave diagnosis must be enabled explicit by the user every
time he opens this view (the enabled state will not be saved). This has the
following reason:

Each time, when a diagnosis read request is sent to a slave which has actual
diagnosis data, the diagnosis data is automatically acknowledged. Thus, an
alarm handling function block running on PLC, will possibly miss this alarm. So
enabling this view should only be done, if no function blocks are used to handle
alarms/diagnosis data.

Table 765: Meaning of Station Status 1
Station Status 1 Activated

by
Description and Remedy

Master Lock (Bit 7) Master Description:
The slave has been parameterized by another master, and
is locked for accesses by the selected master.

Remedy:
This is a safety mechanism of PROFIBUS DP. Firstly, you
should decide which master should have access to the
slave. After that, the slave has to be added into the con-
figuration of that master, which should have access to the
slave. Finally, the slave must be deleted in the configuration
of the other master(s).

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6404

Station Status 1 Activated
by

Description and Remedy

Parameter Error (Bit
6)

Slave Description:
This bit is set by the slave automatically, if the parameter,
which the master has output, is wrong or incomplete. Each
received partner telegram is checked completely by the
slave. If the slave recognises an error, it will report an
parameter error. Furthermore, the slave verifies its ident
number with the ident number the master has sent.

Remedy:
Firstly, verify the ident number inside the device with the
ident number inside the GSD file. They must me equal. If
they are different, there is either a the wrong GSD file used
or a wrong device has been connected to the bus. If both
ident numbers are equal, check the parameter data.

Invalid Slave
answer (Bit 5)

Master Description:
This bit is set by the master, if an invalid reply from the
slave has been received. The physical connection to the
slave has been established, but the logical answer could not
be understood.

Remedy:
There can be an error on the physical cable line, e. g. inter-
changed wires, missing bus termination or missing shield
connection. Use a PROFIBUS DP slave, which is corre-
sponding to the norm.
This error can also happen, if a PROFIBUS-FMS slave is
connected instead of a PROFIBUS DP slave to the DP
master. Then the slave cannot understand the TP telegram
and returns it to the sender. It will be recognized by the
master as an invalid slave reply.

Function not sup-
ported (Bit 4)

Slave Description:
This bit is set by the slave, if it should process a function
it does not support. No version of slaves normally support
Sync- and Freeze commands. This is mentioned inside the
GSD file and is read by Automation Builder and sent as
parameter telegram to the slave.

Remedy:
If this error occurs, the GSD file contains at least 1 function,
which is not supported by the slave. Ask the device vendor
for the correct GSD file which belongs to the slave.

Enhanced device
diagnosis available
(Bit 3)

Slave Description:
This bit is set by the slave, if enhanced diagnosis data have
been read. These data are optional and are used by the
slave to output vendor-specific diagnosis messages.

Remedy:
Activate the enhanced diagnosis to display the enhanced
diagnosis data and read the manual of the device vendor
for the meaning. If the GSD file contains information about
the enhanced device diagnosis, the evaluation can also be
threatened by the DTM.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6405

Station Status 1 Activated
by

Description and Remedy

Configuration error
(Bit 2)

Slave Description:
During the PROFIBUS DP initialization, the slave compares
its internal I/O configuration to the configuration of the
master. If the slave recognises a difference, it will report a
configuration error. This means the master has an other I/O
constellation than the slave.

Remedy:
First of all, check whether the I/O modules detected by
the slave and the connected I/O modules match. Make
sure that the sequence of the modules also matches. At
the beginning some slaves need virtual I/O modules or
empty modules to achieve an even number of modules.
This slave-specific behavior should be mentioned in the
vendor manual as it cannot be read inside the GSD file.
Pay attention to the configuration hints of the device vendor.

Station not ready
(Bit 1)

Slave Description:
The PROFIBUS DP slave is not ready for data exchange
yet.

Remedy:
The norm does not specify why and when a slave sets this
bit; therefore, there may be several reasons. Mostly this
error occurs combined with other errors.
Verify the parameters and the configuration. The error Sta-
tion not ready is often a consecution of a parameter or con-
figuration error. Eventually, the power supply of the slave
has just been turned on. Wait until the device has started.

Station is not
existing (Bit 0)

Master Description:
This bit is set automatically by the master if the slave in the
bus does not reply or is not reachable.

Remedy:
Check the PROFIBUS cable. Both signal lines must be
connected correctly between all devices. Additionally, both
cable ends must be equipped with terminators.
Check the power supply connection of the slave.
Check the slave station address and the configuration of the
master. Verify, whether the slave supports the configured
transmission rate. Some older slaves will only work up to
1.5 MBaud or must be set to a special PROFIBUS DP con-
form behavior.

Table 766: Meaning of Station Status 2
Station Status 2 Activated

by
Description

Slave deactivated (Bit 7) Master This bit is set by the master, if the parameterization
of the slave marks itself as inactive. Thus, it will be
excluded from the cyclically data exchange.

Reserved (Bit 6) - -

Sync Mode (Bit 5) Slave This bit is set by the slave, if a Sync command has
been received.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6406

Station Status 2 Activated
by

Description

Freeze Mode (Bit 4) Slave This bit is set by the slave, if a Freeze command has
been received.

Watchdog active (Bit 3) Slave This bit is set by the slave, if time monitoring is acti-
vated for controlling the communication with the asso-
ciated master.

Slave device (Bit 2) Slave This bit is always set by the slave.

Static diagnosis (Bit 1) Slave This bit is set by the slave to signal the master, that it
has a general error and is out of order. Typically, the
slave is not available for the exchange of user data.
In this case, the master should request diagnosis data
as long as the bit is set to 0 again. The event or point
of time the bit is set, is not described in the norm and
cannot be specified more precisely.

Re-parameterization
requested (Bit 0)

Slave This bit is set by the slave to signal the master, that it
asks for a new parameterization. The bit stays set until
the parameterization is processed. If this error occurs,
firstly compare the ident number of the device with the
ident number inside the GSD file. These numbers must
match. Additionally, check the parameter data.

Table 767: Meaning of Station Status 3
Station Status 3 Activated

by
Description

Overflow enhanced
diagnosis (Bit 7)

Master
Slave

This bit is set, if more enhanced diagnosis data are
sent to the master than match into a diagnosis tele-
gram. For example, the slave sets this bit, if more
diagnosis data are pending than fit into its buffer.

Reserved (Bit 6) - -

The display of the extended diagnosis of a PROFIBUS slave is not supported.

Diagnosis Description
Assigned to master address At Assigned to master address, the address

of the master, which has parameterized and
configured the slave, is displayed. The value
255 shows that the slave is neither parame-
terized nor configured or the received param-
eterization and configuration information was
rejected with errors.

Slave station ident number At slave station ident number, the (real) ident
number of the used slave is displayed.
If the value 0000 is shown, the master has no
connection to the PROFIBUS DP slave yet.

Update Updates the displayed diagnosis conditions.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6407

The ident number, deposited in the device, must match to the ident number in
the GSD file. If they are different, either a wrong GSD file is used or the wrong
device is connected to the PROFIBUS.

1.7.2.7.5 CM579-PNIO PROFINET IO controller views
IO controller views

The views in PROFINET master and slave are not refreshed cyclically, because of the big
communication load this would impose. For updating the data the Refresh button is available.
Ä Chapter 1.7.2.7.5.2 “IO controller list of slaves view” on page 6408

Ä Chapter 1.7.2.7.5.4 “IO controller common status block view” on page 6409

Ä Chapter 1.7.2.7.5.3 “IO controller firmware and task info view” on page 6408

IO controller list of slaves view

This is the main diagnosis view for the PROFINET IO Controller: List of slaves table view.
For every configured slave the following data are displayed:
Slave name: This is the main identifier on the PROFINET. (This name can be set or changed
using the Assign station name editor tab available at the CM579 master level)
Name in Project: Name of the node in the Project Tree where this Device is configured
Status:
● configured, active -> all OK, slave is in data exchange
● configured, inactive -> configured, but not found
● configured, inactive, faulted -> configured, not in data exchange but with errors
● configured, active, has active alarm, not acknowledged
● configured, active, has active alarm, acknowledged

Diagnosis state: special diagnosis error messages (independent of alarms)
Device ID: type ID given by the Vendor
VendorID: identifies the Vendor, ID is unique

IO controller firmware and task info view
The last 2 sections provide information about the communication module's firmware versions,
build dates and internal information about the different running tasks on the communication
module side.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6408

IO controller common status block view

Parameter Description
Communication state of change The communication change of state register contains

information about the current operating status of the
communication channel and its firmware.
Possible state changes (see below table for details) are:
● Restart Required Enable
● Restart Required
● Configuration New
● Configuration Locked
● Bus On
● Running
● Ready

Communication state The communication state field contains information
regarding the current network status of the communica-
tion channel. Depending on the implementation, all or a
subset of the definitions below is supported:
UNKNOWN
NOT_CONFIGURED
STOP
IDLE
OPERATE

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6409

Parameter Description
Communication error This field holds the current error code of the communi-

cation channel. If the cause of error is resolved, the
communication error field is set to 0 (= RCX_SYS_SUC-
CESS) again. Not all of the error codes are supported in
every implementation. Protocol stacks may use a subset
of the error codes below:
SUCCESS 0x00000000
Runtime Failures:
WATCHDOG TIMEOUT 0xC000000C
Initialization Failures:
INITIALIZATION FAULT 0xC0000100
DATABASE ACCESS FAILED 0xC0000101
Configuration Failures
NOT CONFIGURED 0xC0000119
CONFIGURATION FAULT 0xC0000120
INCONSISTENT DATA SET 0xC0000121
DATA SET MISMATCH 0xC0000122
INSUFFICIENT LICENSE 0xC0000123
PARAMETER ERROR 0xC0000124
INVALID NETWORK ADDRESS 0xC0000125
NO SECURITY MEMORY 0xC0000126
Network Failures
NETWORK FAULT 0xC0000140
CONNECTION CLOSED 0xC0000141
CONNECTION TIMED OUT 0xC0000142
LONELY NETWORK 0xC0000143
DUPLICATE NODE 0xC0000144
CABLE DISCONNECT 0xC0000145

Version The version field holds version of this structure. It starts
with 1; 0 is not defined. Version should be 1.

Host Watchdog This field holds the configured watchdog timeout value
in milliseconds. The application may set its watchdog
trigger interval accordingly. If the application fails to copy
the value from the host watchdog location to the device
watchdog location, the protocol stack will interrupt all
network connections immediately regardless of their cur-
rent state.

Error Count This field holds the total number of errors detected since
power-up, respectively after reset. The protocol stack
counts all sorts of errors in this field no matter if they
were network related or caused internally.

Number of configured slaves The firmware maintains a list of slaves to which the
master has to open a connection. This list is derived
from the configuration database. This field holds the
number of configured slaves.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6410

Parameter Description
Slave state The slave state field indicates whether the master is in

cyclic data exchange to all configured slaves. In case
there is at least 1 slave missing or if the slave has a
diagnostic request pending, the status is set to FAILED.
For protocols that support non-cyclic communication
only, the slave state is set to OK as soon as a valid
configuration is found.
(UNDEFINED, NO_FAULT,FAILED)

Number of IO-Devices currently
exchanging cyclic data

The firmware maintains a list of slaves to which the
master has successfully opened a connection. Ideally,
the number of active slaves is equal to the number of
configured slaves. For certain fieldbus systems it could
be possible that the slave is shown as activated, but still
has a problem in terms of a diagnostic issue. This field
holds the number of active slaves.

Number of configured IO-Devices
not exchanging …

If a slave encounters a problem, it can provide an indica-
tion of the new situation to the master in certain fieldbus
systems. As long as those indications are pending and
not serviced, the field holds a value unequal 0. If no
more diagnosis information is pending, the field is set to
0.

Table 768: Communication change of state flags
Bit Definition Description
Ready 0 - …

1 - The Ready flag is set as soon as the protocol stack is
started properly. Then the protocol stack is awaiting a configu-
ration. As soon as the protocol stack is configured properly, the
Running flag is set, too.

Running 0 - …
1 - The Running flag is set if the protocol stack has been con-
figured properly. Then the protocol stack is awaiting a network
connection. Now both the Ready flag and the Running flag are
set.

Bus On 0 - …
1 - The Bus On flag is set to indicate to the host system
whether or not the protocol stack has the permission to open
network connections. If set, the protocol stack has the permis-
sion to communicate on the network; if cleared, the permission
was denied and the protocol stack will not open network con-
nections.

Configuration Locked 0 - …
1 - The Configuration Locked flag is set, if the communica-
tion channel firmware has locked the configuration database
against being overwritten. Re-initializing the channel is not
allowed in this state. To unlock the database, the application
has to clear the Lock Configuration flag in the control block.

Configuration New 0 - …
1 - The Configuration New flag is set by the protocol stack
to indicate that a new configuration became available, which
has not been activated. This flag may be set together with the
Restart Required flag.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6411

Bit Definition Description
Restart Required 0 - …

1 - The Restart Required flag is set if the channel firmware
requests to be restarted. This flag is used together with the
Restart Required Enable flag below. Restarting the channel
firmware may become necessary, if a new configuration was
downloaded from the host application or if a configuration
upload via the network took place.

Restart Required Enable 0 - …
1 - The Restart Required Enable flag is used together with the
Restart Required flag above. If set, this flag enables the execu-
tion of the Restart Required command in the netX firmware (for
details on the Enable mechanism see section 2.3.2 of the netX
DPM Interface Manual).

IO controller firmware identification view

Parameter Description
System channel version Version of the RcX operating system

System channel firmware name Name of the operating system

System channel firmware build
date

Date of the operating system

Protocol channel version Version of the communication module

Protocol channel name Name of the communication module

Protocol channel date Date of the communication module

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6412

1.7.2.7.6 CM579-PNIO PROFINET IO device views

The different states for node state and the entries for node data are the same data already
described in CM579_PROFINET_CM_controller_list_slaves_views Ä Chapter 1.7.2.7.5.2 “IO
controller list of slaves view” on page 6408.

In PROFINET every device can have only 1 active alarm. The PROFINET IO device diagnosis
view displays the alarm data of the last active alarm of the selected device.

The read out of these diagnosis data does NOT affect the alarm function blocks
like it does in CANopen and PROFIBUS. Automation Builder reads only a local
copy of the alarm data.

Date and time the alarm was triggered.

Date and time, the user has acknowledged the alarm via alarm function block.
There is no "alarm off" notification, but it is possible to get this information:
During the time the alarm condition is still active, the PROFINET IO device repeats its alarm
message to the master continuously. So, if the alarm function block acknowledges an alarm,
and shortly afterwards the alarm is again in not acknowledged state -> this means, the alarm
cause is not gone. Otherwise it is gone.

Alarm data

Time occurred

Time acknowl-
edged

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6413

If there is more than 1 alarm triggered on 1 slave, it could happen that after the acknowledge-
ment of 1 alarm the other alarm gets the active alarm. So the data displayed could switch
between the different alarm causes.
Slot / SubSlot / ModuleID and SubModuleID are addressing information to locate the alarm
cause/area on a PROFINET IO device.

There are 2 alarm priorities : ALARM_HIGH and ALARM_LOW

0x0000 Reserved

0x0001 Diagnosis

0x0002 Process

0x0003 Pull a)

0x0004 Plug

0x0005 Status

0x0006 Update

0x0007 Redundancy

0x0008 Controlled by supervisor

0x0009 Released

0x000A Plug Wrong Submodule

0x000B Return of Submodule

0x000C Diagnosis disappears

0x000D Multicast communication mismatch notification

0x000E Port data change notification

0x000F Sync data changed notification

0x0010 Isochronous mode problem notification

0x0011 Network component problem notification

0x0012 Time data changed notification

0x0013 0x001D Reserved

0x001E Upload and retrieval notification

0x001F Pull module b)

0x0020 0x007F Manufacturer specific

0x0080 0x00FF Reserved for profiles

0x0100 0xFFFF Reserved

Bit Meaning Value

0 ... 10 Alarm Sequence Number 0 … 2047

11 Channel Diagnosis 0 ... 1

12 Manufacturerspecific Diagnosis 0 ... 1

13 Submodule Diagnosis State 0 ... 1

14 Reserved 0

15 AR Diagnosis State 0 ... 1

Alarm priority

Alarm type (hex-
adecimal)

Alarm specifier

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6414

The additional alarm data are completely manufacturer specific data.
Every manufacturer can specify a User structure-ID which describes a structured data called
Additional Alarmdata.

For ABB PROFINET IO devices the structure is well known and the add. Alarm data can be
displayed decoded into details and error codes.

ModuleDiffBlock error
As of Automation Builder 2.1.1 the user can read diagnosis information about modules below
any PROFINET IO device (e.g. CI50x or CM589).
If a modular PNIO device detects an issue with one of its modules, like plugged module does
not match configuration, it reports a ModuleDiffBlock error.

1. Double-click the node “CM589_PNIO_4_Device” and open view “Diagnosis for
PROFINET slave”.

ð In the section Node state appears Node inactive and in the section Node data the
Diagnosis state >The IO-Device reported a ModuleDiffBlock...during...<.

2. Right-click the node “CM589_PNIO_4_Device” and click “Check modules”

ð A popup-window appears.

It shows a list of all modules that are different from the current configuration.
The list contains the slot number(s) of the erroneous module so that a user knows
which module(s) causes the issue.

Example

The related context menu item “Check modules” is visible in online mode of V2
PLCs only.

Automation Builder does not show the popup-window in case of no differences.

In any case the Automation Builder adds a message with the result in the
message window.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6415

1.7.2.7.7 CM598-CN CANopen communication module statistic views
Extended status block view

Parameter Values Description
Bus and master
main errors

TIMEOUT-ERROR The DEVICE has detected an
overstepped timeout supervision
time of at least one CAN mes-
sage to be sent. The transmis-
sion of this message was aborted.
The data ist lost. It is an indica-
tion that no other CAN device
was connected or responsive at
this time to acknowledge the sent
messages requests. The number
of detected timeouts is fixed in
the Msg_Time_Out variable. The
bit will be sent when the first
timeout was detected and will not
be deleted anymore.

 HOST-NOT-READY-NOTIFICA-
TION

Indicates if the HOST program has
set its state to operate or not. If the
bit is set the HOST program is not
ready to communicate.

 EVENT-ERROR The DEVICE has detected trans-
mission errors. The number of
detected events are fixed in the
Bus_Error_Cnt and Bus Off Cnt
variables. The bit will be sent when
the first event was detected and
will not be deleted anymore.

 NON-EXCHANGE-ERROR At least one node hast not reached
the data exchange state and no
process data is exchanged with it.

 AUTO-CLEAR-ERROR Device stopped the communica-
tion to all nodes and reached the
autoclear end state.

 CONTROL-ERROR Parameterization error or severe
run time error.

Master main state Offline In OFFLINE state, there is no
communication (data transfer) per-
mitted at all. This is the state
after initialization. This means, the
master is waiting for a signal to
start and does not participate in
the token ring of the PROFIBUS
access control mechanism

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6416

Parameter Values Description
 Stop In STOP state, there is no data

transfer permitted between master
and slaves. Data transfer to other
masters in multi-master system is
allowed, however. The bus param-
eter set has been loaded success-
fully in order to get into STOP
state.

 Clear In CLEAR state, the master is able
to read the input data from the
DP slaves. The master forces the
outputs to the slaves to be in a
safe state (i.e. they contain only
the value 0). For instance, incor-
rect data transfer of a slave can
cause the PROFIBUS DP master
to fall back from OPERATE state
to CLEAR state. Parameterization
and configuration checks are pos-
sible in this state.

 Operate In OPERATE state, unrestricted
data transfer is possible. This data
transfer is cyclic, i.e. periodically,
the input values are read from the
slaves and the output data are
written to the slaves.

Location of error 0..125 Address of the slave with error

Error event not used currently

Bus error counter Counter for the bus error events

Number of bus time-
outs

 Counter for bus timeouts

Common status block view

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6417

Parameter Description
Communication state of change The communication change of state register contains

information about the current operating status of the
communication channel and its firmware.
Possible state changes (see below table for details) are:
● Restart Required Enable
● Restart Required
● Configuration New
● Configuration Locked
● Bus On
● Running
● Ready

Communication state The communication state field contains information
regarding the current network status of the communica-
tion channel. Depending on the implementation, all or a
subset of the definitions below is supported:
UNKNOWN
NOT_CONFIGURED
STOP
IDLE
OPERATE

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6418

Parameter Description
Communication error This field holds the current error code of the communi-

cation channel. If the cause of error is resolved, the
communication error field is set to 0 (= RCX_SYS_SUC-
CESS) again. Not all of the error codes are supported in
every implementation. Protocol stacks may use a subset
of the error codes below:
SUCCESS 0x00000000
Runtime Failures:
WATCHDOG TIMEOUT 0xC000000C
Initialization Failures:
INITIALIZATION FAULT 0xC0000100
DATABASE ACCESS FAILED 0xC0000101
Configuration Failures
NOT CONFIGURED 0xC0000119
CONFIGURATION FAULT 0xC0000120
INCONSISTENT DATA SET 0xC0000121
DATA SET MISMATCH 0xC0000122
INSUFFICIENT LICENSE 0xC0000123
PARAMETER ERROR 0xC0000124
INVALID NETWORK ADDRESS 0xC0000125
NO SECURITY MEMORY 0xC0000126
Network Failures
NETWORK FAULT 0xC0000140
CONNECTION CLOSED 0xC0000141
CONNECTION TIMED OUT 0xC0000142
LONELY NETWORK 0xC0000143
DUPLICATE NODE 0xC0000144
CABLE DISCONNECT 0xC0000145

Version The version field holds version of this structure. It starts
with 1; 0 is not defined. Version should be 1.

Host Watchdog This field holds the configured watchdog timeout value
in milliseconds. The application may set its watchdog
trigger interval accordingly. If the application fails to copy
the value from the host watchdog location to the device
watchdog location, the protocol stack will interrupt all
network connections immediately regardless of their cur-
rent state.

Error Count This field holds the total number of errors detected since
power-up, respectively after reset. The protocol stack
counts all sorts of errors in this field no matter if they
were network related or caused internally.

Number of configured slaves The firmware maintains a list of slaves to which the
master has to open a connection. This list is derived
from the configuration database. This field holds the
number of configured slaves.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6419

Parameter Description
Slave state The slave state field indicates whether the master is in

cyclic data exchange to all configured slaves. In case
there is at least 1 slave missing or if the slave has a
diagnostic request pending, the status is set to FAILED.
For protocols that support non-cyclic communication
only, the slave state is set to OK as soon as a valid
configuration is found.
(UNDEFINED, NO_FAULT,FAILED)

Number of IO-Devices currently
exchanging cyclic data

The firmware maintains a list of slaves to which the
master has successfully opened a connection. Ideally,
the number of active slaves is equal to the number of
configured slaves. For certain fieldbus systems it could
be possible that the slave is shown as activated, but still
has a problem in terms of a diagnostic issue. This field
holds the number of active slaves.

Number of configured IO-Devices
not exchanging …

If a slave encounters a problem, it can provide an indica-
tion of the new situation to the master in certain fieldbus
systems. As long as those indications are pending and
not serviced, the field holds a value unequal 0. If no
more diagnosis information is pending, the field is set to
0.

Table 769: Communication change of state flags
Bit Definition Description
Ready 0 - …

1 - The Ready flag is set as soon as the protocol stack is
started properly. Then the protocol stack is awaiting a configu-
ration. As soon as the protocol stack is configured properly, the
Running flag is set, too.

Running 0 - …
1 - The Running flag is set if the protocol stack has been con-
figured properly. Then the protocol stack is awaiting a network
connection. Now both the Ready flag and the Running flag are
set.

Bus On 0 - …
1 - The Bus On flag is set to indicate to the host system
whether or not the protocol stack has the permission to open
network connections. If set, the protocol stack has the permis-
sion to communicate on the network; if cleared, the permission
was denied and the protocol stack will not open network con-
nections.

Configuration Locked 0 - …
1 - The Configuration Locked flag is set, if the communica-
tion channel firmware has locked the configuration database
against being overwritten. Re-initializing the channel is not
allowed in this state. To unlock the database, the application
has to clear the Lock Configuration flag in the control block.

Configuration New 0 - …
1 - The Configuration New flag is set by the protocol stack
to indicate that a new configuration became available, which
has not been activated. This flag may be set together with the
Restart Required flag.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6420

Bit Definition Description
Restart Required 0 - …

1 - The Restart Required flag is set if the channel firmware
requests to be restarted. This flag is used together with the
Restart Required Enable flag below. Restarting the channel
firmware may become necessary, if a new configuration was
downloaded from the host application or if a configuration
upload via the network took place.

Restart Required Enable 0 - …
1 - The Restart Required Enable flag is used together with the
Restart Required flag above. If set, this flag enables the execu-
tion of the Restart Required command in the netX firmware (for
details on the Enable mechanism see section 2.3.2 of the netX
DPM Interface Manual).

Firmware identification view

Parameter Description
System channel version Version of the RcX operating system

System channel firmware name Name of the operating system

System channel firmware build
date

Date of the operating system

Protocol channel version Version of the communication module

Protocol channel name Name of the communication module

Protocol channel date Date of the communication module

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6421

Station diagnosis view

For every configured slave the following data is displayed:

Value Description
Not configured Not configured

Active All OK: slave is in data exchange

Diagnosis Configured, active has diagnosis

Not found Configured but not found

1.7.2.7.8 CI506-PNIO communication interface CANopen master view
Master view

The PROFINET slave CI506-PNIO has a built-in CANopen gateway. The user can plug a
CANopen Master.
Because of diverse components and assemblies some diagnosis views are different and there
are differences in operation.
All these CI506 CANopen views have a refresh button and are not refreshed cyclically.
Ä Chapter 1.7.2.7.8.2 “Station view” on page 6423 Ä Chapter 1.7.2.7.8.3 “Global state field
view” on page 6424

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6422

Station view

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6423

Global state field view

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6424

1.7.2.7.9 CI506-PNIO communication interface CANopen slave view

The node flag is an unsigned integer (32 bits) which represents different states of the Slave:
States with green background are normal and expected. All other states have a red background
when active indicating that something unexpected has happened or diagnosis data is available.

This variable is organized as a bitfield as described in the table below:

Node Diagnostic Flags Bit Name Description
D31 FLAG_DEACTIVATED Node is deactivated and not handled by the Master.

This bit does not generate an entry in the diag-
nostic list.

D30 FLAG_STATE_NOT_HANDLED At least one state has been omitted during the initi-
alization sequence of the node. This bit does not
generate an entry in the diagnostic list.

D13 .. Reserved

D29 .. Reserved

D12 FLAG_INVALID_PARAMETER Parameter set of node is invalid.

D11 FLAG_UNEXPECTED_BOOTUP Unexpected Bootup Message from node received.

D10 FLAG_BOOTUP Expected Bootup Message from node received.

D9 FLAG_EMCY_BUFF_OVER Emergency buffer overflow

D8 FLAG_EMCY_RECEIVED Emergency telegram received.

D7 FLAG_UNEXPECTED_STATE Node is in unexpected NMT state.

Node flag

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6425

Node Diagnostic Flags Bit Name Description
D6 FLAG_HEARTBEAT_ERROR Error in heartbeat protocol.

D5 FLAG_CON_LOST Node guarding has been lost.

D4 FLAG_GUARD_ERROR A guarding message has been lost. This bit does
not generate an entry in the diagnostic list.

D3 FLAG_HEARTBEAT_STARTED Heartbeat protocol started. This bit does not gen-
erate an entry in the diagnostic list.

D2 FLAG_CFG_FAULT Configuration fault.

D1 FLAG_SDO_ERROR Error during SDO transfer.

D0 FLAG_SDO_TIMEOUT Timeout during SDO transfer.

This variable holds the internal NMT state of the node according to the following table:

NMT State Value
CANOPEN_MASTER_NODE_NMT_STATE_UNKNOWN 0x00000000L

CANOPEN_MASTER_NODE_NMT_STATE_INITIALISING 0x00000001L

CANOPEN_MASTER_NODE_NMT_STATE_STOPPED 0x00000002L

CANOPEN_MASTER_NODE_NMT_STATE_OPERATIONAL 0x00000003L

CANOPEN_MASTER_NODE_NMT_STATE_PRE_OPERA-
TIONAL

0x00000004L

CANOPEN_MASTER_NODE_NMT_STATE_RESET_APPLICA-
TION

0x00000005L

CANOPEN_MASTER_NODE_NMT_STATE_RESET_COMM 0x00000006L

In this information the last diagnosis information of this node station is held down.

This variable indicates whether the device type in variable DeviceType is valid or not.

These 4 bytes are read out from the node while startup. There are several predefined profile
numbers existing, each described in an own specification manual. Here is an extract of these:

 decimal
Device Profile for I/O modules 401

Device Profile for Drives and Motion Control 402

Device Profile for Encode 406

Each slave can held up to 5 emergency data structures which consists of 8 bytes each.
An Emergency data structure consist of a 2 byte error code, a 1 byte error register and 5 bytes
emergency data (which are always manufacturer specific):

Nmt (network
management)
state

Last diag info

Device type
valid

DeviceType

Emergency data

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6426

Emergency Error Codes (hex) Error Code Description
00xx Error Reset or No Error

10xx Generic Error

20xx Current

21xx Current, device input side

22xx Current inside the device

23xx Current, device output side

30xx Voltage

31xx Mains Voltage

32xx Voltage inside the device

33xx Output Voltage

40xx Temperature

41xx Ambient Temperature

42xx Device Temperature

50xx Device Hardware

60xx Device Software

61xx Internal Software

62xx User Software

63xx Data Set

70xx Additional Modules

80xx Monitoring

81xx Communication

8120 CAN in Error Passive Mode

8130 Life Guard Error or Heartbeat Error

8140 Recovered from bus off

8150 Transmit COB-ID collision

82xx 82xx

8210 PDO not processed due to length error

8220 PDO length exceeded

90xx External Error

F0xx Additional Functions

FFxx FFxx Device specific

The bits of the error register have the following meaning:

Error Code
CANOPEN_MASTER_ERROR_REGISTER_GENERIC_BIT 0x01

CANOPEN_MASTER_ERROR_REGISTER_CURRENT_BIT 0x02

CANOPEN_MASTER_ERROR_REGISTER_VOLTAGE_BIT 0x04

CANOPEN_MASTER_ERROR_REGISTER_TEMPERATURE_BIT 0x08

CANOPEN_MASTER_ERROR_REGISTER_COMM_ERROR_BIT 0x10

CANOPEN_MASTER_ERROR_REGISTER_DEV_PROFILE_BIT 0x20

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/20 3ADR010582, 3, en_US 6427

Error Code
CANOPEN_MASTER_ERROR_REGISTER_RESERVED_BIT 0x40

CANOPEN_MASTER_ERROR_REGISTER_MANU_SPEC_BIT 0x80

For some ABB CANopen Slaves the emergency data is well known and can be
displayed in a decoded way.

ABB CANopen Slaves are signalling the "Alarm Off/Gone" situation by sending
a second emergency data with error code "No Error"

1.7.2.7.10 CI52x Modbus diagnosis
1. Double-click node “CI52x_MODTCP” in the device tree.
2. Select “CI52x Diagnosis” tab.

ð The button [Get Diagnosis] appears in the tab view.

3. Click on the button [Get Diagnosis].

ð One of the following use cases will be displayed:

● Device not connected Ä “Device not connected” on page 6428
● No Errors on the device Ä “No errors on the device” on page 6428
● Diagnosis list Ä “Diagnosis list” on page 6429

If there is no device connected to the project, the following dialog will be displayed:

1. Select tab “Connection Settings” and enter the IP address for the device.
2. Click again button [Get Diagnosis].

If there are no errors on the device the following dialog will be displayed:

Device not con-
nected

No errors on the
device

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Online diagnosis in Automation Builder

2022/01/203ADR010582, 3, en_US6428

If the device is not correctly configured the errors will be displayed with “Error Code” and “Code
Description”.

1.7.3 Diagnosis messages
1.7.3.1 Possible error combinations

The following tables contain the possible combinations of error numbers.

Compo-
nent

Device Module or type Channel Remark

N
um

be
r Co

mp

N
um

be
r Dev

N
um

be
r Mod

N
um

be
r Ch <- Soft-

ware view
d1 d2 d3 d4 <- Device

display
9 CP

U
0 CPU 1 Operating system 1 Initialization error

2 Runtime error

3 Configuration error

31 Operating system

2 Runtime system 1 Initialization error

2 Runtime error

3 Configuration error

31 Operating system

4 IEC task online display %s 1 Initialization error

2 Runtime error

1 Extern
al
Com-
muni-
cation
Modul
e 1...6
or
interna
l

1 Initialization 0 not used

2 Runtime error

3 Configuration 26

4 Protocol

31 Communication Module

2 Extern
al
Com-
muni-
cation
Modul
e 2

1 Initialization 0 not used

2 Runtime error

3 Configuration

4 Protocol

31 Communication Module

Diagnosis list

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6429

Compo-
nent

Device Module or type Channel Remark

N
um

be
r Co

mp
N

um
be

r Dev

N
um

be
r Mod

N
um

be
r Ch <- Soft-

ware view
d1 d2 d3 d4 <- Device

display
3 Extern

al
Com-
muni-
cation
Modul
e 3

1 Initialization 0 not used

2 Runtime error

3 Configuration 26

4 Protocol

31 Communication Module

4 Extern
al
Com-
muni-
cation
Modul
e 4

1 Initialization 0 not used

2 Runtime error

3 Configuration 26

4 Protocol

31 Communication Module

8 Local
I/O

1 Initialization 0 not used

2 Runtime error

3 Project 26

4 Protocol

31 local I/O itself

10 Interna
l Com-
muni-
cation
Modul
e

1 Initialization 0 not used

2 Runtime error

3 Configuration 26

4 Protocol

31 Communication Module

11 COM1 1 Initialization 0 not used

2 Runtime error

3 Configuration 26

4 Protocol

31 COM

12 COM2 1 Initialization 0 not used

2 Runtime error

3 Configuration 26

4 Protocol

31 COM

13 FBP 1 Initialization 0 not used

2 Runtime error

3 Configuration 26,

4 Protocol

31 FBP

14 I/O
bus

1 Initialization 0 not used 18, 15

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6430

Compo-
nent

Device Module or type Channel Remark

N
um

be
r Co

mp
N

um
be

r Dev

N
um

be
r Mod

N
um

be
r Ch <- Soft-

ware view
d1 d2 d3 d4 <- Device

display
2 Runtime error

3 Configuration

4 Protocol

31 I/O bus

16 Syste
m
Flash
EPRO
M

0...
31

Sector,
block no. or similar

0...
31

Sector, block no.

17 RAM 1 Initialization 0 ramdisk

2 Runtime error 3 webvisu files

3 Project 4 bootproject

4 Protocol

31 RAM itself

18 Data
Flash
EPRO
M

1 Initialization 0 cfg file

2 Runtime error 1 production data header

3 Project 2 production data

4 Protocol 3 webvisu files

31 Data Flash
EPROM itself

4 bootproject

 31 module itself

19 HW
watch
dog

31 Watchdog 31 Watchdog

20 SD
Memor
y Card

1 Initialization 0 bootcode file

2 Runtime error 1 firmware file

3 Configuration 2 sdcard.ini file

4 Protocol 3 formatting failed

31 SDcard 4 bootproject file

 5 persistent file

 6 retain data file

 7 OEM file

 8 MMI FW file

 9 local I/O file

 10
+

10 + communication module
communication module cfg file

 19 any cfg file

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6431

Compo-
nent

Device Module or type Channel Remark

N
um

be
r Co

mp
N

um
be

r Dev

N
um

be
r Mod

N
um

be
r Ch <- Soft-

ware view
d1 d2 d3 d4 <- Device

display
 20

+
20 + communication module
communication module FW file

 29 any FW file

31 31 module itself

21 Dis-
play

1 Initialization 0 any

2 Runtime error 1 FW version obsolete

4 Protocol

31 Display

22 Bat-
tery

31 Battery 31 Battery 8

23 Clock 1 Initialization 0 not used

2 Runtime error

3 Configuration

4 Protocol

31 Clock

24 FPU 1 Initialization 0 no error

2 Runtime error 1 division by zero

 2 overflow

 3 underflow

 4 invalid

 5 inexact

 6 function

25 Host 1 Initialization 0 any

2 Runtime error x channel

3 Project

26 User

27 Power
Supply

1 Initialization 0 no error

2 Runtime error 1 voltage dip

 2 reset after dip

28 Pro-
duc-
tion
Data

1 Initialization 0 any

2 Runtime error 1 key

 2 data

29 RUN/
StopS-
witch

31 device itself 0 PLC in STOP

 1 PLC in RUN

30 Emu-
lated
SRAM

1 Initialization 0 unknown

2 Runtime error 1 retain

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6432

Compo-
nent

Device Module or type Channel Remark

N
um

be
r Co

mp
N

um
be

r Dev

N
um

be
r Mod

N
um

be
r Ch <- Soft-

ware view
d1 d2 d3 d4 <- Device

display
 2 persistent

 4 coredump

31 Interna
l PHY

1 Initialization 0 unknown

2 Runtime error 0 any

32 Con-
figura-
tion
Data

1 Initialization 2 data

2 Runtime error

33 Flash-
disk

1 Initialization 0 any

2 Runtime error 1 flashdisk init failed

31 Flashdisk itself 2 no filesystem

 3 formatting failed

 4 MBR writing failed

 5 threshold reached

 6 write protection

34 SRAM
disk

1 Initialization 0 any

2 Runtime error 2 no filesystem

31 SRAMdisk itself

Component Device Module or type Channel Remark
 Comp Dev Mod Ch <- Soft-

ware view
 d1 d2 d3 d4 <- Device

display
1..
4
10

External Communi-
cation Module 1..4
or internal Commu-
nication module

0..25
4

Address/
Socket:
Fieldbus: Slave
ARCNET: ID partner
- 1
Modbus: Comm
partner

0..
29

Module number 0..
31

Channel
number

30 Module number > 29 0..
31

Channel
number

31 Slave device 31 Slave device

255 Communication
Module

1 Initialization 0 not used

2 Runtime error

3 Configuration

4 Protocol

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6433

Component Device Module or type Channel Remark
 Comp Dev Mod Ch <- Soft-

ware view
 d1 d2 d3 d4 <- Device

display
5 Operating system

Communication
Module

0...
15

Bit 0...3 of
the error
number
reported by
the Commu-
nication
Module

see
chapter
Communi-
cation
Module
errors
Ä Chapter
1.7.3.4
“Communi-
cation
modules
diagnosis”
on page 6489

6 Task 1 Communica-
tion Module

Bit 4...7 of
the error
number
reported by
the Commu-
nication
Module

7 Task 2 Communica-
tion Module

8 Task 3 Communica-
tion Module

9 Task 4 Communica-
tion Module

10 Task 5 Communica-
tion Module

11 Task 6 Communica-
tion Module

12 Task 7 Communica-
tion Module

13 Watchdog Communi-
cation Module

31 Communication
Module

11 COM1 0..25
4

Address:
CS31: Slave
Dec.
expansion:
Slave
Modbus :
Comm
partner

0..
29

Module number
CS31: Module type:
00 - Digital input
01 - Analog input
02 - Digital output 03
- Analog output
04 - Digital in/output
05 - Analog in/output

0..
31

Channel
number

8, 48

30 Module number > 29 0..
31

Channel
number

31 Slave device 31 Slave device

255 COM 1 Initialization 0 not used

2 Runtime error

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6434

Component Device Module or type Channel Remark
 Comp Dev Mod Ch <- Soft-

ware view
 d1 d2 d3 d4 <- Device

display
3 Configuration

4 Protocol

31 COM

12 COM2 0..25
4

Address:

Slave
Modbus:
Comm
partner

0..
29

Module number 0..
31

Channel
number

30 Module number > 29 0..
31

Channel
number

31 Slave device 31 Slave device

255 COM 1 Initialization 0 not used

2 Runtime error

3 Configuration

4 Protocol

31 COM

Component Device Module or type Channel Remark
 Comp Dev Mod Ch <- Soft-

ware
view

d1 d2 d3 d4 <-
Device
display

8 Local I/O 1 PWM 31 local I/O itself 0 any

2 interrupt 1 Initialization

3 fast counter 2 Runtime

4 analog input 3 Project

5 analog output 4 Protocol

255 local I/O itself 31 local I/O itself

13 FBP 0...
254

Module number P
arameter number

0..3
0

Slot number 0..3
1

Channel number

255 FBP 1 Initialization 0 not used

2 Runtime error

3 Configuration

4 Protocol

31 FBP

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6435

Component Device Module or type Channel Remark
 Comp Dev Mod Ch <- Soft-

ware
view

d1 d2 d3 d4 <-
Device
display

14 I/O bus 0...
254

I/O bus module 0..6 Module type:
00 - Digital input
01 - Analog
input
02 - Digital
output
03 - Analog
output
04 - Digital in/
output
05 - Analog in/
output
06 - others (e.g.,
fast counter)

0..3
1

Channel number %s

31 Module 1 Initialization error

2 Runtime error

3 Configuration 26

4 Protocol

31 Module

255 I/O bus 1 Initialization 0 not used

2 Runtime error

3 Configuration

4 Protocol

31 I/O bus

15 User 0...
255

any 0..3
1

any 0..3
1

any, meaning is
project-specific

Remarks for FBP diagnosis block:
● Display:

– Error class = Byte 6 Bit 6..7
– Device = Byte 3
– Module = Byte 4
– Channel = Byte 5
– Error identifier = Byte 6 Bit 0..5

● FBP diagnosis blocks do not contain the interface identification.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6436

1.7.3.2 CPU diagnosis
Table 770: Diagnosis messages directly reported by the CPU
Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 9 0 2 0 15 Not enough memory
to generate the
external reference list

 150
999
055

E2:

E2 9 0 2 1 40 Expected and current
FWAPI version are
incompatible

Update to newer
version of PLC firm-
ware

150
999
144

E2:

E2 9 0 2 2 2 Heap check failed /
heap is corrupt

1) Check project
regarding usage of
pointers for write
access.
2) Check project
regarding usage
of loops containing
write accesses to
variables probably
exceeding their bor-
ders.
3) Check project
regarding usage
of dynamically allo-
cated memory.
4) Check stack size
of application task.

150
999
170

E2:

E2 9 0 2 2 37 Cycle time is greater
than the set watchdog
time

Change task config-
uration

150
999
205

E2:

E2 9 0 2 2 38 Access violation by an
IEC task, e. g. zero
pointer (details in call
hierarchy)
Exception cannot be
assigned to an IEC
task

Correct program 150
999
206

E2:

E2 9 0 2 3 27 No configuration avail-
able

Please contact
AC500 support

150
999
259

E2:

E2 9 0 2 x ³
4

38 x = 2: Exception
cannot be assigned to
IEC Task
x ³ 4: Index of the
faulty IEC task, Task
Index = x - 4

Correct program 150
999
334

E2:

E2 9 0 x ³4 2 38 x = 2: Exception
cannot be assigned to
IEC Task
x ³ 4: Index of the
faulty IEC task, Task
Index = x - 4

Correct program 151
003
302

E2: IEC Task 1

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6437

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 9 0 x 2 37 Cycle time of IEC task
index x - 4 is greater
than watchdog time (x
= 31 -> IEC task index
> 27)

Change task config-
uration

151
003
301

E2: IEC Task 0

E2 9 0 5 2 37 Cycle time is greater
than the set watchdog
time
Cycle time exceeded,
but shorter than
watchdog time

Change task config-
uration

151
003
301

E2: IEC Task 1

E2 9 1..6/
10

1 0 15 ● Watchdog task
could not be
installed

● Installation of
the Communica-
tion Modbus bus
driver failed

● Initialization error,
not enough
memory

Check communica-
tion module
Check CPU firm-
ware version

151
652
367

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6/
10

1 0 17 Access test failed. Check communica-
tion module
Check CPU FW
version.
For safety PLC:
Check safety PLC
switch address set-
ting. Restart safety
PLC. If this error
persists, replace
safety PLC.

151
652
369

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER

E2 9 1..6/
10

1 0 18 Watchdog test for
the Communication
Module failed

Check communica-
tion module

151
652
370

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6/
10

1 0 30 Error in configuration
data, PLC cannot read
configuration data

Create new configu-
ration data

151
652
382

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6/
10

1 0 34 Timeout when setting
the warm start param-
eters of the Communi-
cation Module

Check communica-
tion module

151
652
386

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6/
10

1 0 38 Installation of
the Communication
Module driver failed

Check communica-
tion module and FW
version

151
652
390

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6438

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 9 1..6 1 0 43 Internal error For safety PLC:
Check safety PLC
switch address set-
ting. Restart safety
PLC. If this error
persists, replace
safety PLC.

151
652
395

E2: Ext. [1..6]
[COUPLER]

E2 9 1..6 2 0..1 0 This error occurs, if
the CPU was stopped
but a coupler does not
stop the communica-
tion.

Restart CPU or call
support

151
654
400
151
654
464

E2: Ext. [1..6]
[COUPLER]

E2 9 1..6/
10

2 0 15 Error occurred when
creating the I/O
description list of
the Communication
Module

Check communica-
tion module and FW
version

151
654
415

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6 3 0 15 There is not enough
memory available
for configuration of
PROFINET Controller

Reboot PLC,
reduce PROFINET
configuration and
reload project

151
656
463

E2: Ext. [1..6]
[COUPLER]

E2 9 1..6/
10

3 0 27 Error configuration or
no configuration avail-
able

Check configuration 151
656
475

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6/
10

3 0 40 Error in firmware ver-
sion of Communica-
tion Module (version
not supported/too old)

Update firmware 151
656
488

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6 3 0 43 Internal error occured
during configuration of
PROFINET Controller

Reboot PLC and
reload project

151
656
491

E2: Ext. [1..6]
[COUPLER]

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6439

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 9 1..6/
10

31 0..7 3 Watchdog error Com-
munication Module/
channel

Check communica-
tion module and FW
version

151
713
795
151
713
859
151
713
923
151
713
987
151
714
051
151
714
115
151
714
179
151
714
243

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6/
10

4 0 15 Installation of a driver
for the Communication
Module failed

Check communica-
tion module and FW
version

151
658
511

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E2 9 1..6 31 0 43 Internal error Replace module 151
713
835

E2: Ext. [1..6]
[COUPLER]

E2 9 1..6 31 1 17 Internal error, no
access to IO data

Restart CPU or call
support

151
713
873

E2: Ext. [1..6]
[COUPLER]

E2 9 1..6 31 2 17 Internal error, no
access to IO data

Restart CPU or call
support

151
713
937

E2: Ext. [1..6]
[COUPLER]

E2 9 8 4 0 0 Maximum errors in
series detected 50
telegrams in sequence
are invalid or cor-
rupted. Onboard I/O
module is shut down

Restart PLC. If error
still exists, replace
PLC.

151
527
424

E2: Onboard I/O

E2 9 11..
12

2 0 43 Watchdog error of
CS31 protocol task.

Check CS31 con-
figuration and task
configuration

151
719
979

E2: COM[1|2]

E2 9 11..
13

1 0 15 Installation of a pro-
tocol driver for the
serial interface failed,
not enough memory

Check CPU FW
version

151
717
903

E2: COM[1|2]
E2: FBP

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6440

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 9 11..
13

1 0 17 Initialization of the pro-
tocol driver for the
serial interface failed

Check CPU FW
version

151
717
905

E2: COM[1|2]
E2: FBP

E2 9 11..
13

1 0 38 Installation of the
hardware for the serial
interface failed

Check CPU FW
version

151
717
926

E2: COM[1|2]
E2: FBP

E2 9 11..
13

3 0 27 No configuration avail-
able

Please contact
AC500 support

151
722
011

E2:

E2 9 14 1 0 15 Not enough resources
for the I/O-Bus

Check CPU FW
version

151
914
511

E2: I/O-Bus

E2 9 14 1 0 17 Installation of the I/O-
Bus driver failed

Check CPU FW
version

151
914
513

E2: I/O-Bus

E2 9 14 1 0 43 Incorrect data format
of the hardware driver
of the I/O-Bus

Check CPU FW
version

151
914
539

E2: I/O-Bus

E2 9 14 2 0 43 I/O-Bus communica-
tion breakdown

Restart PLC 151
916
587

E2: I/O-Bus

E2 9 20 31 2 2 Error factory test Check memory card 152
369
282

E2: SD card

E2 9 20 31 31 18 Error update Check memory card 152
371
154

E2: SD card

E2 9 21 31 1 2 Display firmware is
below version 2.2
AC500-eCo: Firmware
of RTC module too old

Update display firm-
ware
AC500-eCo: Update
firmware of RTC
module

152
434
754

E2:

E2 9 24 2 1 38 FPU division by zero Correct program 152
572
006

E2:

E2 9 24 2 2 38 FPU overflow Correct program 152
572
070

E2:

E2 9 24 2 3 38 FPU underflow Correct program 152
572
134

E2:

E2 9 24 2 4 38 Forbidden FPU opera-
tion

Correct program 152
572
198

E2:

E2 9 24 2 6 38 FPU library function
generated

Correct program 152
572
326

E2:

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6441

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 9 25 3 1..2 27 No configuration avail-
able

Please contact
AC500 support

152
639
579
152
639
643

E2:

E2 9 31 1 0 3 Error internal Ethernet Replace module 153
028
611

E2:COM [1|2]
E2: FBP

E3 9 0 2 1 15 Init error Web
Server, error allocating
memory

Make web visualiza-
tion smaller, clean
up user RAM disk

150
999
119

E3:

E3 9 0 2 1 17 Registering the han-
dler for persistent data
areas, areas do not
work correctly

Check CPU FW
version

150
999
121

E3:

E3 9 0 2 2 20 Program not started
because of an existing
error (see PLC con-
figuration CPU param-
eters, stop on error
class)

Eliminate error and
acknowledge

150
999
188

E3:

E3 9 0 2 2 37 User program con-
tains an endless loop,
a stop by hand is nec-
essary

Correct user pro-
gram

150
999
205

E3:

E3 9 0 2 3 26 Configuration error Adapt PLC configu-
ration

150
999
258

E3:

E3 9 0 2 3 1 Loading of boot
project failed due to
invalid target ID

Use correct target 150
999
233

E3:

E3 9 0 2 3 27 No configuration avail-
able

Create new configu-
ration, check config-
uration

150
999
259

E3:

E3 9 0 3 0 40 Expected and current
major configuration
version are not equal

Check version of
PLC firmware and
PLC configuration

151
001
128

E3:

E3 9 0 4 0 3 Initialization of shared
interface failed.

Check CPU
and communication
module configura-
tion.

151
003
139

E3: IEC Task 0

E3 9 0 4 1 3 Initialization of shared
interface failed.

Check CPU
and communication
module configura-
tion.

151
003
203

E3: IEC Task 0

E3 9 0 4..
31

3 26 Event-controlled task,
unknown external
event

Check task configu-
ration

151
003
354

E3: IEC Task
[0..27]

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6442

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 9 0 5 2 37 CPU will not run when
IRQ task is configured

Check task configu-
ration

151
003
301

E3: IEC Task 1

E3 9 1..6/
10

2 0 12 Error occurred when
reading the I/O
description

Check communica-
tion module configu-
ration

151
654
412

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 9 1..6/
10

2 0 26 Program was not
started because of
invalid configuration
data of the Communi-
cation Module

Configure communi-
cation module

151
654
426

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 9 1..6/
10

2 0 29 Error occurred when
deleting the configura-
tion

Check communica-
tion module

151
654
429

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 9 1..6/1
0

2 0 30 Exporting coupler con-
figuration failed

Contact service 151
654
430

E3: Ext. [1..6]
[COUPLER]

E3 9 1..6/
10

3 0 26 In the PLC configura-
tion, the Communica-
tion Module was not
configured correctly or
not at all

Adapt PLC configu-
ration

151
656
474

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 9 1..6/
10

4 0 26 IEC60870: Queue
overrun

On IEC60870 try to
increase sendbuffer
k value

015
165
822

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 9 1..6/
10

31 0 40 Ethernet: Wrong firm-
ware version of
Ethernet Communica-
tion Module
PROFINET Wrong
firmware version of
PROFINET Communi-
cation Module or
wrong configuration

Ethernet: Update
firmware
PROFINET: Update
firmware. It is not
possible to use the
2.1 configuration
format with firmware
version 2.0.1

151
713
832

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 9 8 1 0 3 Timeout occurred
while downloading
configuration to
Onboard I/O.

Restart PLC 151
521
283

E3:

E3 9 8 1 0 8 Onboard I/O module
is defective, missing
or firmware (boot-
code/application) is
invalid or not sup-
ported

Restart PLC, if error
still exists replace
PLC

151
521
288

E3:

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6443

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 9 8 1 0 31 Wrong or unknown
Onboard I/O module
installed. Wrong
Onboard I/O module
in PLC configuration
selected (e .g. module
8DI+6DO selected for
PM564) or mismatch
between production
data and installed
module detected.

Check PLC configu-
ration

151
521
311

E3:

E3 9 8 4 0 0 Maximum errors in
series detected. More
than 50 telegrams in
sequence are invalid
or corrupted. Onboard
I/O module is shut-
down

Restart PLC 151
527
424

E3:

E3 9 8 31 0 43 Internal error in
Onboard I/O module
detected, e. g.
resource problem or
error of device driver.

Restart PLC 151
582
763

E3:

E3 9 10 4 0 9 IEC60870: Command
queue within the
IEC60870 Protocol
ran out of resources.

Please contact
AC500 support

151
658
505

E3: Int. [COU-
PLER]

E3 9 11..
13

3 0 26 Configuration error of
the serial interface

Check configuration 151
722
010

E3: COM[1|2]
E3: FBP

E3 9 11..
13

3 4 26 Configuration error at
protocol configuration

Check configuration 151
722
266

E3: COM[1|2]

E3 9 14 3 0 26 Parameter "Error
LED"=Failsafe is only
allowed, if parameter
"Behaviour of outputs
in stop=actual state in
hardware and online"

Change configura-
tion

151
918
618

E3: I/O-Bus

E3 9 16 1 0 13 Writing of the boot
project failed (possibly
no valid boot project
available)

Reload project 152
045
581

E3:

E3 9 18 2 4 14 Failed to delete boot
project

 152
045
582

E3:

E3 9 20 1 2 13 Failed to write to /
read from SD card

Check write protec-
tion and file system
consistenc

152
307
853

E3: SD card

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6444

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 9 20 1 20..
24

8 Error firmware update
of the SD card, file
could not be opened

Check memory card 152
309
000
152
309
064
152
309
128
152
309
192
152
309
256

E3: SD card
Int/Ext i <Name>
FW

E3 9 20 1 20..
24

12 Error firmware update
of the SD card, error
while reading the file

Check memory card 152
309
004
152
309
068
152
309
132
152
309
196
152
309
260

E3: SD card
Int/Ext i <Name>
FW

E3 9 20 1 20..
24

13 Error firmware update
of the SD card, error
while writing the file

Check CPU + com-
munication module

152
309
005
152
309
069
152
309
133
152
309
197
152
309
261

E3: SD card
Int/Ext i <Name>
FW

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6445

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 9 20 1 20..
24

17 Error firmware update
of the SD card,
error while accessing
the Communication
Module

Check communica-
tion module

152
309
009
152
309
073
152
309
137
152
309
201
152
309
265

E3: SD card
Int/Ext i <Name>
FW

E3 9 20 1 20..
24

31 Error firmware update
of the SD card,
file does not match
the Communication
Module type

Check memory card 152
309
023
152
309
087
152
309
151
152
309
215
152
309
279

E3: SD card
Int/Ext i <Name>
FW

E3 9 20 1 31 43 Error creating the SD
card task, involving no
more use of the SD
card

Restart PLC, check
memory card

152
309
739

E3: SD card

E3 9 20 3 10..
14

8 Error while reading/
writing the configura-
tion data from/to the
SD card, file could not
be opened

Check memory card 152
312
456
152
312
520
152
312
584
152
312
648
152
312
712

E3: SD card
Int/Ext i <Name>
CFG

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6446

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 9 20 3 10..
14

12 Error while reading/
writing the configura-
tion data from/to the
SD card, error while
reading the file

Check memory card 152
312
460
152
312
524
152
312
588
152
312
652
152
312
716

E3: SD card
Int/Ext i <Name>
CFG

E3 9 20 3 10..
14

13 Error while reading/
writing the configura-
tion data from/to the
SD card, error while
writing the file

Check memory card 152
312
461
152
312
525
152
312
589
152
312
653
152
312
717

E3: SD card
Int/Ext i <Name>
CFG

E3 9 20 3 10..
14

17 Error while reading/
writing the configura-
tion data from/to the
SD card, error while
accessing the Com-
munication Module

Check memory card
and hardware con-
figuration

152
312
465
152
312
529
152
312
593
152
312
657
152
312
721

E3: SD card
Int/Ext i <Name>
CFG

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6447

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 9 20 3 10..
14

31 Error while reading/
writing the configura-
tion data from/to the
SD card, file does not
match the Communi-
cation Module type

Check memory card
and hardware con-
figuration

152
312
479
152
312
543
152
312
607
152
312
671
152
312
735

E3: SD card
Int/Ext i <Name>
CFG

E3 9 20 31 0 2 File does not exist Check memory card 152
369
154

E3: SD card
Bootcode

E3 9 20 31 0 8 Error: Invalid file Check memory card 152
369
160

E3: SD card
Bootcode

E3 9 20 31 0 13 Error while updating
the bootcode. Perhaps
bootcode is invalid or
some errors occurred
while loading the boot-
code into the PLC.

Check memory
card, reload

152
369
165

E3: SD card
Bootcode

E3 9 20 31 0 19 Error while updating
the bootcode.
Checksum error has
occur while loading
the new bootcode into
the PLC.

Check memory
card, reload

152
369
171

E3: SD card
Bootcode

E3 9 20 31 0 40 Version is not sup-
ported, e.g. obsolete
firmware

Check firmware ver-
sion, update to
latest version

152
369
192

E3: SD card
Bootcode

E3 9 20 31 0 43 Other error, e. g. not
enough memory or file
system error

Update CPU firm-
ware

152
369
195

E3: SD card
Firmware

E3 9 20 31 1 2 File does not exist Check memory card 152
369
218

E3: SD card
Firmware

E3 9 20 31 1 8 Error: Invalid file Check memory card 152
369
224

E3: SD card
Firmware

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6448

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 9 20 31 1 13 SD card errors:
SDCARD.INI on SD
card is missing,
default was generated
Copying the boot
project from the SD
card failed (may be
that there is no valid
boot project)
Creating of the boot
project failed (may be
that there is no valid
boot project)

Check memory card 152
369
229

E3: SD card
Firmware

E3 9 20 31 1 40 Version is not sup-
ported, e.g. obsolete
firmware

Check firmware ver-
sion, update to
latest version

152
369
256

E3: SD card
Firmware

E3 9 20 31 1 41 Copying the firmware
from the PLC to the
SD card failed

Check memory card 152
369
257

E3: SD card
Firmware

E3 9 20 31 1 43 Other error, e .g. not
enough memory or file
system error

Update CPU firm-
ware

152
369
259

E3: SD card
Firmware

E3 9 20 31 4 12 Copying the boot
project and/or (at
least) the Communica-
tion Module configura-
tion from PLC to SD
card failed

Check memory card 152
369
420

E3: SD card
Bootproject

E3 9 20 31 4 13 Copying the boot
project and/or (at
least) the Communica-
tion Module configura-
tion from PLC to SD
card failed

Check memory card 152
369
421

E3: SD card
Bootproject

E3 9 20 31 5 13 Error while writing the
source file

Check memory card 152
369
485

E3: SD card
Sourcecode

E3 9 20 31 7 8 Error image update,
file could not be found

Check memory card 152
369
608

E3: SD card
Image

E3 9 20 31 7 12 Error while copying
the boot project,
retains, persistent
and/or (at least) Com-
munication Module
from SD card to PLC

Check memory card 152
369
612

E3: SD card
Image

E3 9 20 31 7 13 Error while updating
the image, perhaps
firmware is defective
or an error occurred
while writing the new
image

Check memory card
and firmware ver-
sion, retry

152
369
613

E3: SD card
Image

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6449

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 9 20 31 7 19 Error while updating
the image. Checksum
error has occur while
loading the new image
into the PLC

Check memory card
and firmware ver-
sion, retry

152
369
619

E3: SD card
Image

E3 9 20 31 7 43 Other error, e. g. not
enough memory or file
system error

Update CPU firm-
ware

152
369
643

E3: SD card
Image

E3 9 20 31 29 0 Error while updating
the image of (at
least) 1 Communica-
tion Module

Check memory card
and FW version,
retry

152
371
008

E3: SD card
Firmware Com-
munication
Module

E3 9 21 31 0 17 Display could not be
installed

Check FW 152
434
705

E3:

E3 15 1 2 0 26 Different configura-
tion values at
function block
HA_CS31_CONTROL
in CPU A and CPU B

Correct Application
-> HA_CS31_CON-
TROL

- -

E3 15 1 3 0 26 Different configura-
tion values at
function block
HA_DATA_SYNC in
CPU A and CPU B

Correct Application
-> HA_DATA_SYNC

- -

E4 1 255 30 2 39 More than one
instance of
SF_WDOG_TIME_SE
T or
SF_MAX_POWER_DI
P_SET

Correct user pro-
gram

184
545
447

E4:

E4 9 0 2 2 9 Diagnosis buffer full Clear all errors 150
999
177

E4:

E4 9 0 2 2 10 Error while copying
web visualization/IEC
RAM disc, RAM disc
to small

Make web visuali-
zation/IEC program
smaller, clean up
user RAM disk

150
999
178

E4:

E4 9 0 2 2 20 Program not started
because of an existing
error (see PLC con-
figuration CPU param-
eters, stop on error
class)

Eliminate error and
acknowledge

150
999
188

E4:

E4 9 0 2 2 37 Cycle time exceeded,
but shorter than
watchdog time

Adapt task configu-
ration

150
999
205

E4:

E4 9 0 2 2 43 Control system was
restarted by EC2 or
power dip according to
PLC configuration

 150
999
211

E4:

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6450

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 0 2 3 17 Internal Error Contact ABB Tech-
nical Support

150
999
249

E4 9 0 2 3 54 FlexConfID is greater
than the number of
alternative configura-
tion files.

Change FlexConf
ID

150
999
286

E4:

E4 9 0 3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

151
001
116

E4:

E4 9 0 3 1 40 Boot code versions
V1.1.3. (or older ver-
sions) support smaller
RAM disk

Update boot code to
1.2.0

151
001
192

E4:

E4 9 1..6/
10

1 0 32 Installation of
the Communication
Module driver failed,
unknown Communica-
tion Module type

Check configuration 151
652
384

E4: Ext. [1..6]
[COUPLER]
E4: Int. [COU-
PLER]

E4 9 1..6/
10

2 0 3 Within the specified
time, connection could
not be established to
all of the slaves, I/O
data may be (partly)
invalid

Check slave for
existence or set
times according to
the slave behavior

151
654
403

E4: Ext. [1..6]
[COUPLER]
E4: Int. [COU-
PLER]

E4 9 1..6/
10

2 0 4 No socket available Check communica-
tion module settings
with PLC browser

151
654
404

E4: Ext. [1..6]
[COUPLER]
E4: Int. [COU-
PLER]

E4 9 1..6 3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

151
656
476

E4: Ext. [1..6]
[COUPLER]

E4 9 1..6 3 0 40 Selected configuration
is not supported by
the current coupler
firmware.

Update the com-
munication module
firmware so that this
configuration can be
used

151
656
488

E4: Ext. [1..6]
[COUPLER]

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6451

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 8 2 0 52 Interrupt lost. This
happens when some
input channels are
configured as Interrupt
on rising edge or Inter-
rupt on falling edge
and the function block
ONB_IO_INT_IN is
not called fast
enough to acknowl-
edge incoming inter-
rupts events.

Check Task configu-
ration and PLC pro-
gram

151
523
380

E4:

E4 9 10 3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

151
656
476

E4: Int. [COU-
PLER]

E4 9 11/12 3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

151
722
012

E4: COM1

E4 9 13 3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

151
722
012

E4: FBP

E4 9 17 2 3 10 Web visualization
exceeds size of RAM
disk

Build smaller web
visualization

152
113
354

E4:

E4 9 17 2 4 10 Boot project exceeds
size of RAM disc

Build smaller boot
project

152
113
418

E4:

E4 9 17 3 3 10 Web visualization
exceeds size of user
RAM disk

Build smaller web
visualization

152
115
402

E4:

E4 9 17 3 3 8 Incomplete download
of web visualization

Try to download
web visualization
again

152
115
400

E4:

E4 9 17 3 3 14 Failed to cleanup
unused parts of web
visualization

not available 152
115
406

E4:

E4 9 18 1 0 17 PLC Configuration file
could not be read

Reload project 152
176
657

E4:

E4 9 18 2 0 8 Failed to write to /
read from SD card

Check write protec-
tion and file system
consistency

152
178
696

E4:

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6452

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 18 2 4 10 Boot project exceeds
size of flash

Build smaller boot
project

152
178
954

E4:

E4 9 18 31 3 12 Failed to read web vis-
ualization, power-off
while web visualiza-
tion has been flashed

Recreate web visu-
alization

152
238
284

E4:

E4 9 18 31 4 12 Failed to read boot
project from flash;
power-off while boot
project has been
flashed

Recreate boot
project

152
238
348

E4:

E4 9 20 1 2 2 Invalid value for
FunctionOfCard in
SDCARD.INI, value
will be ignored

Check file
SDCARD.INI on the
memory card

152
307
842

E4: SD card

E4 9 20 1 2 13 Error of the key
actualization of the
SDCARD.ini file

Check memory card 152
307
853

E4: SD card

E4 9 20 1 10..
14

8 Error Firmware update
of the SD card, file
could not be opened

Check memory card 152
308
360
152
308
424
152
308
488
152
308
552
152
308
616

E4: SD card

E4 9 20 1 10..
14

12 Error Firmware update
of the SD card, error
while reading the file

Check memory card 152
308
364
152
308
428
152
308
492
152
308
556
152
308
620

E4: SD card

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6453

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 1 10..
14

13 Error Firmware update
of the SD card, error
while writing the file

Check CPU + com-
munication module

152
308
365
152
308
429
152
308
493
152
308
557
152
308
621

E4: SD card

E4 9 20 1 10..
14

17 Error Firmware update
of the SD card,
error while accessing
the Communication
Module

Check communica-
tion module

152
308
369
152
308
433
152
308
497
152
308
561
152
308
625

E4: SD card

E4 9 20 1 10..
14

31 Error Firmware update
of the SD card,
file does not match
the Communication
Module type

Check memory card 152
308
383
152
308
447
152
308
511
152
308
575
152
308
639

E4: SD card

E4 9 20 1 31 3 static error - Failed to
deinit filesystem stack
for SD card!

PLC restart required 152
309
699

E4: SD card

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6454

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 1 31 17 static error - SD
card removed during
access!

PLC restart required 152
309
713

E4: SD card

E4 9 20 2 4 13 Failed to copy boot
project to SD Card

Check memory card
for free space

152
310
029

E4: SD card

E4 9 20 3 10..
14

1 Error updating
the Communication
Module configuration,
file does not match
the Communication
Module type

Check memory card 152
312
449
152
312
513
152
312
577
152
312
641
152
312
705

E4: SD card
CFG Int.
E4: SD card
Ext.1..4 CFG

E4 9 20 3 10..
14

8 Error updating
the Communication
Module configuration,
file could not be found

Check memory card 152
312
456
152
312
520
152
312
584
152
312
648
152
312
712

E4: SD card
CFG Int.
E4: SD card
Ext.1..4 CFG

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6455

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 3 10..
14

27 Error updating
the Communication
Module configuration,
error while accessing
the Communication
Module

Check CPU + com-
munication module

152
312
475
152
312
539
152
312
603
152
312
667
152
312
731

E4: SD card
CFG Int.
E4: SD card
Ext.1..4 CFG

E4 9 20 3 10..
14

35 Error updating
the Communication
Module configuration
error while reading the
file

Check communica-
tion module

152
312
483
152
312
547
152
312
611
152
312
675
152
312
739

E4: SD card
CFG Int.
E4: SD card
Ext.1..4 CFG

E4 9 20 3 10..
14

36 Error updating
the Communication
Module configuration,
error while writing the
file

Check memory card 152
312
484
152
312
548
152
312
612
152
312
676
152
312
740

E4: SD card
CFG Int.
E4: SD card
Ext.1..4 CFG

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6456

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 3 20..
24

8 Error while reading/
writing the configura-
tion data from/to the
SD card, file could not
be opened

Check memory card 152
313
096
152
313
160
152
313
224
152
313
288
152
313
352

E4: SD card

E4 9 20 3 20..
24

12 Error while reading/
writing the configura-
tion data from/to the
SD card, error while
reading the file

Check memory card 152
313
100
152
313
164
152
313
228
152
313
292
152
313
356

E4: SD card

E4 9 20 3 20..
24

13 Error while reading/
writing the configura-
tion data from/to the
SD card, error while
writing the file

Check memory card 152
313
101
152
313
165
152
313
229
152
313
293
152
313
357

E4: SD card

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6457

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 3 20..
24

17 Error while reading/
writing the configura-
tion data from/to the
SD card, error while
accessing the Com-
munication Module

Check memory card
and hardware con-
figuration

152
313
105
152
313
169
152
313
233
152
313
297
152
313
361

E4: SD card

E4 9 20 3 20..
24

31 Error while reading/
writing the configura-
tion data from/to the
SD card, file does not
match the Communi-
cation Module type

Check memory card
and hardware con-
figuration

152
313
119
152
313
183
152
313
247
152
313
311
152
313
375

E4: SD card

E4 9 20 31 0..
15

0..15 Communication
Module update failed,
error message of
the Communication
Module:
Channel = Bit 4..7;
Error = Bit 0..3

Ä Chapter 1.7.3.4
“Communication
modules diagnosis”
on page 6489

E4 9 20 31 0 2 Error while updating
the bootcode, *.gza is
incorrect or not sup-
ported

Check memory
card, update CPU
firmware

152
369
154

E4: SD card
Bootcode

E4 9 20 31 0 8 Error while updating
the bootcode, *.gza
file could not be
opened, e. g. file not
found

Check memory card 152
369
160

E4: SD card
Bootcode

E4 9 20 31 0 13 Error while reading/
writing the bootcode
from/to the SD card,
error while writing the
file

Check memory card 152
369
165

E4: SD card
Bootcode

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6458

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 31 0 19 Error while updating
the bootcode,
checksum failure of
the written file

Update CPU
firmware, check
memory card

152
369
171

E4: SD card
Bootcode

E4 9 20 31 0 40 Error while updating
the bootcode, version
is not supported by
hardware

Update CPU firm-
ware

152
369
192

E4: SD card
Bootcode

E4 9 20 31 0 43 Error while updating
the bootcode, internal
error, e. g. not enough
memory or file system
error

Update CPU firm-
ware

152
369
195

E4: SD card
Bootcode

E4 9 20 31 1 2 Error while updating
the firmware, *.gza is
incorrect or not sup-
ported

Check memory
card, update CPU
firmware

152
369
218

E4: SD card
Firmware

E4 9 20 31 1 8 Error while updating
the firmware, *.gza file
could not be opened,
e. g. file not found

Check memory card 152
369
224

E4: SD card
Firmware

E4 9 20 31 1 13 Error while reading/
writing the firmware
from/to the SD card,
error while writing the
file

Check memory card 152
369
229

E4: SD card
Firmware

E4 9 20 31 1 19 Error while updating
the firmware,
checksum failure of
the written file

Check memory
card, reload

152
369
235

E4: SD card
Firmware

E4 9 20 31 1 40 Error while updating
the firmware, version
is not supported by
hardware

Update CPU firm-
ware

152
369
256

E4: SD card
Firmware

E4 9 20 31 1 41 Error while exporting
the firmware to the SD
card

Check memory
card, reload

152
369
257

E4: SD card
Firmware

E4 9 20 31 1 43 Error while updating
the firmware, internal
error, e. g. not enough
memory or file system
error

Update CPU firm-
ware

152
369
259

E4: SD card
Firmware

E4 9 20 31 2 12 No SD card inserted
or SDCARD.INI file
not found

Check memory card 152
369
292

E4: SD card

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6459

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 31 3 13 SD card errors:
● SDCARD.INI on

SD card is
missing, default
was generated

● Copying the boot
project from the
SD card failed

● Copying the boot
project from the
SD card failed
(may be that there
is no valid boot
project)

● Creation of the
boot project failed
(may be that there
is no valid boot
project)

Check memory card 152
369
357

E4: SD card

E4 9 20 31 4 12 Error while exporting
the user program
and/or the Communi-
cation Module's con-
figuration to the SD
card

Check memory
card, reload

152
369
420

E4: SD card
Bootproject

E4 9 20 31 4 13 Error while importing
the user program
and/or the Communi-
cation Module's con-
figuration from SD
card

Check memory
card, reload

152
369
421

E4: SD card
Bootproject

E4 9 20 31 5 12 Error while importing
the persistent data
from the SD card

Check memory
card, reload

152
369
484

E4: SD card Per-
sistents

E4 9 20 31 5 13 Loading the source
code failed

Check memory
card, reload

152
369
485

E4: SD card Per-
sistents

E4 9 20 31 6 12 Error while importing
the retain data from
the SD card

Check memory
card, reload

152
369
548

E4: SD card
Retains

E4 9 20 31 7 8 Error while updating
the OEM-image, file
not found

Check memory card 152
369
608

E4: SD card
Image

E4 9 20 31 7 12 Error while updating
the OEM-image, error
while reading the file

Check memory card 152
369
612

E4: SD card
Image

E4 9 20 31 7 13 Error while updating
the OEM-image, error
while writing the file

Check memory card 152
369
613

E4: SD card
Image

E4 9 20 31 7 19 Error while updating
the OEM-image,
checksum failure

Check memory
card, reload

152
369
619

E4: SD card
Image

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6460

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 31 7 43 Error while updating
the OEM-image,
internal error (e. g. not
enough memory)

Check memory
card, update CPU
firmware

152
369
643

E4: SD card
Image

E4 9 20 31 8 1 Error Firmware update
of the SD card, no ver-
sion could be found at
the sdcard.ini

Check memory card 152
369
665

E4: SD card
Firmware MMI

E4 9 20 31 8 2 Error Firmware update
of the SD card, file is
incorrect or does not
exist

Check memory card 152
369
666

E4: SD card
Firmware MMI

E4 9 20 31 8 8 Error Firmware update
of the SD card, file
could not be opened

Check memory card 152
369
672

E4: SD card
Firmware MMI

E4 9 20 31 8 27 Error Firmware
update, wrong PLC
mode (RUN)

Check PLC mode 152
369
691

E4: SD card
Firmware MMI

E4 9 20 31 8 35 Error Firmware update
of the SD card, error
while reading the file

Check memory card 152
369
699

E4: SD card
Firmware MMI

E4 9 20 31 8 36 Error Firmware update
of the SD card, error
while writing the file

Check memory card 152
369
700

E4: SD card
Firmware MMI

E4 9 20 31 8 40 Error Firmware update
of the SD card, PLC
version does not sup-
port the update

Update CPU firm-
ware

152
369
701

E4: SD card
Firmware MMI

E4 9 20 31 9 1 Error Firmware update
of the SD card, no ver-
sion could be found at
the sdcard.ini

Check memory card 152
369
729

E4: SD card
Firmware IO

E4 9 20 31 9 2 Error Firmware update
of the SD card, file is
incorrect or does not
exist

Check memory card 152
369
730

E4: SD card
Firmware IO

E4 9 20 31 9 8 Error Firmware update
of the SD card, file
could not be opened

Check memory card 152
369
736

E4: SD card
Firmware IO

E4 9 20 31 9 12 Error Firmware update
of the SD Card, file
could not be read

Check memory card 152
369
740

E4: SD card
Firmware IO

E4 9 20 31 9 17 Error Firmware
update, wrong PLC
mode (RUN)

Check PLC mode 152
369
745

E4: SD card
Firmware IO

E4 9 20 31 9 36 Error Firmware update
of the SD card, error
while writing the file

Check memory card 152
369
764

E4: SD card
Firmware IO

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6461

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 20 31 9 40 Error Firmware update
of the SD card, PLC
version does not sup-
port the update

Update CPU firm-
ware

152
369
768

E4: SD card
Firmware IO

E4 9 20 31 9 43 Other error, e. g. not
enough memory or file
system error

Update CPU firm-
ware

152
369
771

E4: SD card
Firmware IO

E4 9 20 31 29 0 Error while updating
the image of (at
least) 1 Communica-
tion Module

Check memory card
and FW version,
retry

152
371
008

E4: SD card
Firmware Com-
munication
Module

E4 9 20 31 41 0 Error Firmware update
of the Communication
Module

Update CPU firm-
ware, reload

152
369
728

E4: SD card
Firmware Cou-
pler

E4 9 21 31 1 2 Error display firmware Update display firm-
ware

152
434
754

E4:

E4 9 22 31 31 8 Missing or exhausted
battery

Insert battery or set
parameter "Check
Battery" to "Off"

152
502
216

E4:

E4 9 22 31 31 53 Battery status
changed

 152
502
261

E4:

E4 9 25 3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

152
639
516

E4:

E4 9 27 1 2 0 PLC performed reboot
due to power dip

Check PLC's power
supply

152
766
592

E4:

E4 9 29 31 0 2 RUN/STOP switch in
STOP position and
trying to run user pro-
gram via CODESYS

Check position of
RUN/STOP switch

152
502
216

E4:

E4 9 33 31 1 6
8
15

Startup/Restart of
flashdisk failed

Check flash disk 153
221
190
153
221
192
153
221
199

E4:

E4 9 33 31 2 43 No filesystem found Format flash disk
manually (PBC)

153
221
291

E4:

E4 9 33 31 3 43 Format failed Check flash disk 153
221
355

E4:

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6462

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 33 31 4 43 Writing MBR failed Check flash disk 153
221
419

E4:

E4 9 33 31 5 43 Flashdisk has aged
(close to end of life)

Prepare replace-
ment of CPU

153
221
483

E4:

E4 9 33 31 6 43 Flashdisk has reached
end of life, switched to
read-only mode

Replace CPU 153
221
547

E4:

E4 9 34 31 2 43 SRAM disk has been
formatted

 153
286
827

E4:

E4 9 255 30 2 39 More than one
instance of
SF_WDOG_TIME_SE
T or
SF_MAX_POWER_DI
P_SET

Correct user pro-
gram

167
768
231

E4:

Table 771: Diagnosis messages of the file system
Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 17 31 2 43 No filesystem found Contact support 152
172
715

--

E4 9 17 31 3 43 Formating memory
location failed

Contact support 152
172
779

--

E4 9 20 31 2 43 No filesystem found Contact support 152
369
323

--

E4 9 20 31 3 43 Formating memory
location failed

Contact support 152
369
387

Online text
--

E4 9 33 31 1 8 No filesystem found Contact support 153
221
192

Startup/Restart
of flashdisk
failed

E4 9 33 31 1 15 Could not create drive
instance

Contact support 153
221
199

Startup/Restart
of flashdisk
failed

E4 9 33 31 1 6 Can't open device
driver

Contact support 153
221
190

Startup/Restart
of flashdisk
failed

E4 9 33 31 1 43 Unknown Contact support 153
221
227

--

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6463

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 9 33 31 2 43 No filesystem found Contact support 153
221
291

--

E4 9 33 31 3 43 Formating memory
location failed

Contact support 153
221
355

Format failed ->
Check flashdisk

E4 9 33 31 5 43 Flashdisk has aged Contact support 153
221
483

Flashdisk has
reached end of
life, switched to
read-only mode -
> Replace CPU

E4 9 33 31 6 43 Flashdisk is at end of
(write) lifetime

Contact support 153
221
547

--

E4 9 34 31 2 43 No filesystem found Contact support 153
286
827

SRAM disk has
been formatted

E4 9 34 31 3 43 Formating memory
location failed

Contact support 153
286
891

--

Table 772: Diagnosis messages of the I/O bus
Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 14 1..10 31 1 34 Timeout while initial-
izing an I/O Module

Replace module 234
944
610

E2: I/O-Bus,
Mod. [1..10]

E2 14 1..10 31 3 27 No configuration avail-
able

Please contact
AC500 support

234
944
731

E2: I/O-Bus,
Mod. 1..10

E2 14 1..10 31 4 33 Timeout while waiting
for Reset

Check I/O module 234
944
801

E2: I/O-Bus,
Mod. [1..10]

E2 14 1..10 31 4 42 Failure of the module,
more than the max.
permissible communi-
cation errors have
occurred in sequence

Check module, FW
version
(PLC-browser: I/O
bus desc)

234
944
810

E2: I/O-Bus,
Mod. [1..10]

E2 14 255 3 0 27 No configuration avail-
able

Please contact
AC500 support

251
598
875

E2: I/O-Bus

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6464

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 14 1..10 31 1 32 Master and module
could not agree on
any protocol variant,
no variant found which
is supported by both
the master and the
module

Check FW version
CPU / I/O module

234
944
608

E3: I/O-Bus,
Mod. [1..10]

E3 14 1..10 31 3 26 Configuration error
PLC configuration
master

Check configuration 234
944
730

E3: I/O-Bus,
Mod. [1..10]

E3 14 255 2 0 3 Timeout while
updating the I/O data
at the program start

Check FW version
CPU / I/O modules

251
596
803

E3: I/O-Bus

E3 14 255 2 0 26 Program was not
started because of
configuration error of
the I/O-Bus

Check configuration 251
596
826

E3: I/O-Bus

E3 14 255 3 0 26 Configuration error
PLC configuration
master

Check configuration 251
598
874

E3: I/O-Bus

E4 14 0..
254

3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

234
881
052

E4: I/O-Bus,
Mod. 0..254, 3, 0

E4 14 1..10 31 1 34 Timeout during param-
eterization

Check FW version
CPU / I/O modules

234
944
610

E4: I/O-Bus,
Mod. [1..10]

E4 14 1..10 31 1 35 Timeout during param-
eterization

Check FW version
CPU / I/O modules

234
944
611

E4: I/O-Bus,
Mod. [1..10]

E4 14 1..10 31 31 44 Module has not
passed factory test

Replace module 234
946
540

E4: I/O-Bus,
Mod. [1..10]

E4 14 255 3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

251
598
876

E4: I/O-Bus

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6465

Table 773: Diagnosis messages of the onboard I/O modules
Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 8 0..7 3 0 27 No configuration avail-
able

Please contact
AC500 support

134
223
899
134
289
435
134
354
971
134
420
507
134
486
043
134
551
579
134
617
115
134
682
651

"E2: Onboard
I/O
E2: Onboard I/O
PWM
E2: Onboard I/O
IRQ
E2: Onboard I/O
FC
E2: Onboard I/O
AI
E2: Onboard I/O
AO
E2: Onboard I/O
E2: Onboard I/O

E2 8 255 3 0 27 No configuration avail-
able

Please contact
AC500 support

150
935
579

E2: Onboard I/O

E3 8 255 2 0 3 MaxWaitRun for
onboard I/O Module
has expired, when
PLC is put into RUN
state

Reboot and try it
again. If the error
still exists, replace
CPU for testing

150
933
507

E3: Onboard I/O
Ch: 0

E3 8 255 3 0 26 Invalid configuration of
Onboard I/O Module,
e. g. 2 input chan-
nels are configured as
fast counter and inter-
rupt input at the same
time.

Correct PLC config-
uration

150
935
578

E3: Onboard I/O
Ch: 0

E3 9 8 2 0 52 Frequency on interrupt
input pin too high and
interrupt events are
missed

Correct frequency 150
933
556

E3: Onboard I/O
Ch: 0

E4 8 1 2 0..1 4 PWM channel fre-
quency or cycle time
too high

Correct frequency
or cycle time

134
287
364
134
287
428

E4: Onboard I/O
PWM Ch: 0/1

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6466

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 8 1 2 0..1 7 PWM channel fre-
quency or cycle time
too low

Correct frequency
or cycle time

134
287
367
134
287
431

E4: Onboard I/O
PWM Ch: 0/1

E4 8 1 2 0 52 Frequency at interrupt
input too high

Check task configu-
ration and PLC pro-
gram

151
523
380

E3: Onboard I/O

E4 8 1 2 1 2 Invalid configuration
value for PWM
channel. Frequency /
cycletime for the
PWM channel of
the 8DI+6DO and
8DI+6DO+2AI+1AO
module are common
and if both channel
are configured for
PWM, the frequency
of the second channel
must be set to 0.

Correct frequency 134
287
426

E4: Onboard I/O
PWM Ch: 1

E4 8 4 2 0..1 48 Analog input value too
high

Correct value 134
484
016
134
484
080

E4: Onboard I/O
AI Ch: 0/1

E4 8 5 2 0 48 Analog output value
too high

Correct value 134
549
552

E4: Onboard I/O
AO Ch: 0

E4 8 255 0 0 43 Unspecified or internal
error occured

Replace CPU 150
929
451

E4: Onboard I/O
Ch: 0

E4 8 255 2 0 26 PLC was put into
RUN state, although
a configuration error
is present, because
parameter Run on
config fault is set to
YES

Correct PLC config-
uration

150
933
530

E4: Onboard I/O
Ch: 0

E4 9 8 3 0 28 Different configuration
-> old firmware
with new Automation
Builder or new
firmware with old
Automation Builder

Update CPU firm-
ware

151
525
404

E4: Onboard I/O

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6467

Table 774: Diagnosis messages of the communication module interface 1)
Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 1..6 11/12 3 0 27 Error configuration Check configuration 167
772
187

E2: Ext. [1..6]
[COUPLER],
[COUPLER]
11..12, 3, 0

E2 1..6/
10

255 3 0 2 Same Node ID twice
in the net

Use node IDs only
once

184
489
986

E2: Ext. [1..6]
[COUPLER]
E2: Int. [COU-
PLER]

E3 1..6 0..
254

31 31 20 Slave-To-Slave com-
munication fails

Check configuration
and version

167
837
652

E3: Ext. [1..6]
[COUPLER]

E3 1..6 0..
254

31 31 41 Error on distributed
clocks

Check configuration
and version

167
837
673

E3: Ext. [1..6]
[COUPLER]

E3 1..6/
10

255 3 0 26 Incorrect or
missing Communica-
tion Module configura-
tion.
Setting of IP parame-
ters failed.

Configure communi-
cation module.
Check the IP.

184
490
010

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 1..6/
10

255 5 0..
15

0..15 Error message of the
operating system of
the Communication
Module:
Channel = Bit 4..7
Error = Bit 0..3

Ä Chapter 1.7.3.4
“Communication
modules diagnosis”
on page 6489

184
494
080

E3: Ext. [1..6]
[COUPLER] OS
E3: Int. [COU-
PLER] OS

E3 1..6/
10

255 6..
12

0..
15

0..15 Error message of the
task x of the Commu-
nication Module:
Task x = 'Module' - 5
Channel = Bit 4..7
Error = Bit 0..3

Ä Chapter 1.7.3.4
“Communication
modules diagnosis”
on page 6489

184
496
128

E3: Ext. [1..6]
[COUPLER]
Task [1..7]
E3: Int. [COU-
PLER] Task
[1..7]

E3 1..6/
10

255 31 0 33 Timeout while waiting
for reset of the Com-
munication Module

Check communica-
tion module

184
547
361

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 1..6/
10

255 31 0 34 Timeout while waiting
for readiness of
the Communication
Module

Check communica-
tion module

184
547
362

E3: Ext. [1..6]
[COUPLER]
E3: Int. [COU-
PLER]

E3 10 255 1 1 25 Error timeout DHCP (³
30 s); fallback IP set
by configurator

Check network (IP
address, wiring, ...),
check DHCP server

184
485
977

E3: Int. [COU-
PLER]

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6468

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 10 255 3 0 28 Error: changing IP
parameter while using
this interface; no IP
parameters can be
changed if the device
is in use

Log out, log in and
set to run

184
490
012

E3: Int. [COU-
PLER]

E3 10 255 4 5 25 SNTP: Error -
Timeout, no answer
in PRESync timeout,
program does not start

Check network (IP
address, wiring, ...),
change PREsync
timeout in configu-
ration

184
492
377

E3: Int. [COU-
PLER]

E3 10 255 4 5 38 SNTP: Error - No
answer from server
(normal and backup),
try again

Check network (IP
address, wiring, ...)

184
492
390

E3: Int. [COU-
PLER]

E4 1..6/
10

0..7 31 31 47 Short-circuit Com-
munication Module/
channel

Fix short-circuit 167
837
679

E4: Ext. [1..6]
[COUPLER],
[COUPLER]
[1..7]
E4: Int. [COU-
PLER], [COU-
PLER] [1..7]

E4 1..6/
10

0..
254

31 0..
15

0..15 Communication error
to the slave,
Channel = Bit 4..7
Error = Bit 0..3

Ä Chapter 1.7.3.4
“Communication
modules diagnosis”
on page 6489

167
835
648

E4: Ext. [1..6]
[COUPLER],
[COUPLER]
[1..254]
E4: Int. [COU-
PLER], [COU-
PLER] [1..254]

E4 1..6 2 31 1 1 PROFIBUS Slave
device <device
number>: connection
lost Error initalization
of slave configuration

Check connection
Check configuration
values of slave

167
835
713

E4: PROFIBUS
Slave device 4
E4: Ext. [1..6]
[COUPLER] ,
[COUPLER] 2

E4 1..6 2 31 1 14 Error initialization of
slave configuration

Check slave config-
uration

167
835
726

E4: Ext. [1..6]
[COUPLER] ,
[COUPLER] 2

E4 1..6 2 31 2 2 Runtime error of slave Check slave config-
uration

167
835
778

E4: Ext. [1..6]
[COUPLER] ,
[COUPLER] 2

E4 1..6/
10

255 2 0..
15

0..15 Communication error
of the Communication
Module,
Channel = Bit 4..7
Error = Bit 0..3

Ä Chapter 1.7.3.4
“Communication
modules diagnosis”
on page 6489

184
487
936

E4: Ext. [1..6]
[COUPLER]
E4: Int. [COU-
PLER]

E4 10 255 4 5 3 SNTP: Error finding
connection to server;
tried 5 times to get
connection

Check network (IP
address, wiring, ...)

184
492
355

E4: Int. [COU-
PLER]

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6469

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 10 255 4 5 10 SNTP: Error time; time
difference makes time
jump necessary, but
too big / not allowed

Set time manually
or allow bigger time
jumps

184
492
362

E4: Int. [COU-
PLER]

E4 10 255 4 5 34 SNTP: Could not sync
time before configured
timeout

Check connection
to time server
and/or configure
bigger timeout

184
482
386

E4: Int. [COU-
PLER]

1) Communication module errors: 1 = UDP DataExchange, 2 = UDP no AC31 Header, 3 =
Online Protocol, 4 = Netconfig, 5 = SNTP, 6 = Modbus

Table 775: Diagnosis messages of the serial interfaces
Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E2 11..
13

255 31 0 17 Access errors:
● Interface could not

be closed
● Interface could not

be opened
● Timeslotmode

could not be acti-
vated

Check FW version,
replace CPU if nec-
essary

201
324
561
234
878
993

E2: COM [1..2]
E2: FBP

E4 13 255 4 0 42 Receiving error or
timeout of the FBP
slave interface

 234
823
722

E4: FBP

Table 776: Diagnosis messages of the CS31 bus (COM1 = CS31 master)
Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E3 11 0..61 0..5 0 8 No module found on
the CS31 bus

Adapt configuration 184
549
384

E3: COM1
[PROTOCOL]
[0..61], [0..5], 0

E3 11 0..61 1..8 0..
31

0..63 S500 class 3 diag-
nostic sent by DC551

Ä Chapter
1.7.3.3 “S500 I/O
modules diagnosis”
on page 6472

184
549
376
to
184
549
439

E3: COM1
[PROTOCOL]
[0..61], [1..8],
[0..30 | (³) 31]

E3 11 255 1 0 8 No module found on
the CS31 Bus

Check configuration 201
263
112

E3: COM1

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6470

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 11 0..61 0..5 0 8 ICMK 14 with exten-
sions configured, the
extensions was not
found on the bus

Check configuration 184
549
384

E4: COM1
[PROTOCOL]
[0..61], [0..5], 0

E4 11 0..61 0..5 0 28 Module discarded and
registered again; is
only reported at the
start

 184
549
404

E4: COM1
[PROTOCOL]
[0..61], [0..5], 0

E4 11 0..61 0..5 0 32 Not configured module
found on the bus,
again discarded

Check CS31 bus,
insert CS31_DIAG
function block into
the project

184
549
408

E4: COM1
[PROTOCOL]
[0..61], [0..5], 0

E4 11 0..61 0..5 0..
15

1 Internal error (error 1),
reported by an AC31
I/O module

Check module 184
549
377

E4: COM1
[PROTOCOL]
[0..61], [0..5],
[0..15]

E4 11 0..61 0..5 0..
15

28 Configured module
does not match the
module registered to
the bus

Check PLC con-
figuration, insert
CS31_DIAG func-
tion block into the
project

184
549
404

E4: COM1
[PROTOCOL]
[0..61], [0..5],
[0..15]

E4 11 0..61 0..5 0..
15

32 Not configured module
registered to the bus

Check PLC con-
figuration, insert
CS31_DIAG func-
tion block into the
project

184
549
408

E4: COM1
[PROTOCOL]
[0..61], [0..5],
[0..15]

E4 11 0..61 0..5 0..
15

47 Short-circuit on CS31
module/channel

Fix short-circuit 184
549
423

E4: COM1
[PROTOCOL]
[0..61], [0..5],
[0..15]

E4 11 0..61 0, 2,
4

0..
15

2 Cut wire (Error 2) of
an AC31 I/O module

Remove error at
the module or the
channel

184
549
378

E4: COM1
[PROTOCOL]
[0..61], [0|2|4],
[0..15]

E4 11 0..61 0, 2,
4

0..
15

4 Overload (Error 4) of
an AC31 I/O module

184
549
380

E4: COM1
[PROTOCOL]
[0..61], [0|2|4],
[0..15]

E4 11 0..61 0, 2,
4

0..
15

6 Overload + cut wire
(Error 6) of an AC31
I/O module

184
549
382

E4: COM1
[PROTOCOL]
[0..61], [0|2|4],
[0..15]

E4 11 0..61 0, 2,
4

0..
15

10 Short-circuit + cut wire
or "out of range" at
analog modules (Error
10) of an AC31 I/O
module

184
549
386

E4: COM1
[PROTOCOL]
[0..61], [0|2|4],
[0..15]

E4 11 0..61 0, 2,
4

0..
15

12 Overload + short-cir-
cuit (Error 12) of an
AC31 I/O module

184
549
388

E4: COM1
[PROTOCOL]
[0..61], [0|2|4],
[0..15]

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6471

Erro
r
clas
s

Com-
pone
nt
d1

Devi
ce
d2

Mod
ule
d3

Cha
nnel
d4

Error
identifier

Error message Remedy Err
or
nu
mb
er

Online text

E4 11 0..61 0, 2,
4

0..
15

14 Short-circuit + over-
load + cut wire (Error
14) of an AC31 I/O
module

184
549
390

E4: COM1
[PROTOCOL]
[0..61], [0|2|4],
[0..15]

E4 11 0..61 1, 3,
5

0..
15

3 Analog value
exceeded (Error 3) of
an AC31 I/O Module

184
549
379

E4: COM1
[PROTOCOL]
[0..61], [1|3|5],
[0..15]

E4 11 0..61 1, 3,
5

0..
15

9 Cut wire (Error 9)
of an AC31 analog
module

184
549
385

E4: COM1
[PROTOCOL]
[0..61], [1|3|5],
[0..15]

E4 11 0..61 1..8 0..
31

0..63 E4 error messages
of DC551 and S500
I/O Modules, see table
below

Ä Chapter
1.7.3.3 “S500 I/O
modules diagnosis”
on page 6472

184
549
376

E4: COM1
[PROTOCOL]
[0..61], [1..8],
[0..30 | (³) 31]

E4 11 0..61 31 31 9 Impossible configura-
tion DC551 and S500
I/O Modules (too
many I/Os in one
cluster)

Change configura-
tion

184
614
857

E4: COM1
[PROTOCOL]
[0..61]

E4 11 0..61 31 31 31 Impossible configura-
tion DC551 and S500
I/O Modules (too
many parameters in
one cluster)

Change configura-
tion

184
614
879

E4: COM1
[PROTOCOL]
[0..61]

E4 11 0..61 31 31 34 Outputs are written
before the configura-
tion of the modules
DC551 + S500 I/O
have been finished

 184
614
882

E4: COM1
[PROTOCOL]
[0..61]

1.7.3.3 S500 I/O modules diagnosis
Table 777: S500 I/O module errors
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 1 0..7 4 Measurement
overflow at the I/O
module

Check
channel
wiring
and
sensor
power
supply

2348810
28

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

11 / 12 ADR 1..10 1845493
80

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6472

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 31 31 3 Timeout in the I/O
Module

Replace
I/O
module

2349464
99

E3: I/O-
Bus,
Mod.
[1..10]

11 / 12 ADR 1..10 1845493
79

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1..10],
(³)31

E3 14 1..10 31 31 9 Overflow diagnosis
buffer

Restart 2349465
05

E3: I/O-
Bus,
Mod. [1..
10]

11 / 12 ADR 1..10 1845493
85

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
(³)31

E3 14 1..10 31 31 10 Process voltage
too high

Check
process
voltage

2349465
06

E3: I/O-
Bus,
Mod.
1..10

1..4 ADR 1..10

E3 14 1..10 31 31 11 Process voltage
too low

Check
process
voltage

2349465
07

E3: I/O-
Bus,
Mod. [1..
10]

11 / 12 ADR 1..10 1845493
87

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR]
[1.. 10],
(³) 31

E3 14 1..10 31 31 18 Plausibility check
failed (iParameter)

Check
configu-
ration

2349465
14

E3: I/O-
Bus,
Mod.
1..10

1..4 ADR 1..10

E3 14 1..10 31 31 19 Checksum error in
the I/O Module

Non-
safety
I/O:
Replace
I/O
Module
Safety-
I/O:
Check
safety
configu-

2349465
15

E3: I/O-
Bus,
Mod. [1..
10]

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6473

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

11 / 12 ADR 1..10 ration
and
CRCs
for
iPara-
meters
and F-
Parame-
ters

1845493
95

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
(³) 31

E3 14 1..10 31 31 20 PROFIsafe com-
munication error

Restart
I/O
Module.
If this
error
persists,
contact
ABB
technical
support.

2349465
16

E3: I/O-
Bus,
Mod.
1..10

1..4 ADR 1..10

E3 14 1..10 31 31 25 PROFIsafe
watchdog timed
out

Restart
I/O
Module.
If this
error
persists,
increase
PROFIs
afe
watchdo
g time.

2349465
21

E3: I/O-
Bus,
Mod.
1..10

1..4 ADR 1..10

E3 14 1..10 31 31 26 Parameter value Check
master
or con-
figura-
tion

2349465
22

E3: I/O-
Bus,
Mod. [1..
10]

11 / 12 ADR 1..10 1845494
02

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
(³)31

E3 14 1..10 31 31 28 F-Parameter con-
figuration and
address switch
value do not match

Check
I/O Mod-
ule's F-
Param-
eter
configu-
ration
and
module
address
switch
value

2349465
24

E3: I/O-
Bus,
Mod.
1..10

1..4 ADR 1..10

E3 14 1..10 31 31 36 Internal data inter-
change disturbed

Replace
I/O
Module

2349465
32

E3: I/O-
Bus,
Mod. [1..
10]

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6474

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

11 / 12 ADR 1..10 1845494
12

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
(³)31

E3 14 1..10 31 31 40 Different hardware
and firmware ver-
sions in the module

Replace
I/O
Module

2349465
36

E3: I/O-
Bus,
Mod. [1..
10]

11 / 12 ADR 1..10 1845494
16

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
(³)31

E3 14 1..10 31 31 43 Internal error in the
device

Replace
I/O
Module

2349465
39

E3: I/O-
Bus,
Mod. [1..
10]

11 / 12 ADR 1..10 1845494
19

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
(³)31

E3 14 1..10 31 31 47 Sensor voltage too
low

Check
sensor
voltage

2349465
43

E3: I/O-
Bus,
Mod. [1..
10]

11 / 12 ADR 1..10 1845494
23

E3:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
(³)31

E4 14 1..10 31 31 45 Process voltage
switched off
(ON->OFF)

Process
voltage
ON

2349465
41

E4: I/O-
Bus,
Mod. [1..
10]

11 / 12 ADR 1..10 1845494
21

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
(³)31

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6475

Table 778: Channel errors of the S500 I/O modules
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E4 14 1..10 1 0..7 1 Wrong measure-
ment; wrong
temperature at
the compensations
channel

Check
tempera-
ture
compen-
sation
channel

2348810
25

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

11 / 12 ADR 1..10 1845493
76

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 1 0..7 2 AI531: Wrong
measurement;
potential difference
is to high
CD522: PWM duty
cycle out of duty
area

AI531:
Check
potential
differ-
ence
CD522:
Check
min/max
values

2348810
26

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

11 / 12 ADR 1..10 1845493
78

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 1 0..7 4 Measurement
overflow at the I/O
module

Check
channel
wiring
and
sensor
power
supply

2348810
28

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

11 / 12 ADR 1..10 1845493
80

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 1 0..7 7 Measurement
underflow at the
analog input

Check
input
value

2348810
31

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

11 / 12 ADR 1..10 1845493
83

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 4 1..10 1 0..7 10 Input/output value
to high

Check
input/
output
value

2348810
34

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6476

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

11 / 12 ADR 1..10 1845493
86

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 1 0..7 11 AI531:Output
voltage 10 V to
small
CD522: Output
voltage 5 V to
small (sensor)

AI531:
Check
charge
of the
output
voltage
CD522:
Check
connec-
tion

2348810
35

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

11 / 12 ADR 1..10 1845493
87

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

4 14 1..10 1 0..7 18 Internal fuse to 0 V
blown, 0 V not con-
nected to ZP

Replace
I/O
Module

2348810
42

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

11 /12 ADR 1..10 1845493
94

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 1 0..7 47 Short-circuit at the
analog input

Check
terminal

2348810
71

E4: I/O-
Bus,
Mod. [1..
10], 1,
[0..7]

11 / 12 ADR 1..10 1845494
23

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 1 0..7 48 Measurement
overflow or cut wire
at the analog input

Check
input
value
and ter-
minal

2348810
72

E4: I/O-
Bus,
Mod.
[1..10],
1, [0..7]

11 / 12 ADR 1..10 1845494
24

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6477

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E4 14 1..10 2 0..23 47 Short-circuit at the
digital output

Check
terminal

2348810
71

E4: I/O-
Bus,
Mod. [1..
10], 2,
[0..7]

11 / 12 ADR 1..10 1845494
23

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 3 0..7 48 Measurement
overflow at the
analog output

Check
output
value

2348810
72

E4: I/O-
Bus,
Mod. [1..
10], 3,
[0..7]

11 / 12 ADR 1..10 1845494
24

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 3 0..7 49 Short-circuit / Cut
wire

Check
terminal

2348810
73

E4: I/O-
Bus,
Mod. [1..
10], 3,
[0..7]

11/12 ADR 1..10 1845494
25

E4:
COM [1|
2] [PRO-
TOCOL]
[ADR],
[1.. 10],
[0..7]

E4 14 1..10 3 0..7 7 Measurement
underflow at the
analog output

Check
output
value

2348810
31

E4: I/O-
Bus,
Mod. [1..
10], 3,
[0..7]

E4 14 1..10 31 5 8 I/O module
removed from hot-
swap terminal
unit or defective
module on hot-
swap terminal unit
1)

Plug I/O
module,
replace
I/O
module

2349448
40

E4: I/O-
Bus,
Mod. [1..
10], 31,
[5]

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6478

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E4 14 1..10 31 5 28 Wrong I/O module
plugged on hot-
swap terminal unit
1)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

2349448
60

E4: I/O-
Bus,
Mod. [1..
10], 31,
[5]

E4 14 1..10 31 5 42 No communication
with I/O module on
hot-swap terminal
unit 1)

Replace
I/O
module

2349448
74

E4: I/O-
Bus,
Mod. [1..
10], 31,
[5]

E4 14 1..10 31 5 54 I/O module does
not support hot
swap 1) 2)

Power
off
system
and
replace
I/O
module

2349448
86

E4: I/O-
Bus,
Mod. [1..
10], 31,
[5]

E4 14 1..10 31 6 8 Hot-swap terminal
unit required but
not found 1)

Replace
terminal
unit with
hot-
swap
terminal
unit and
restart

2349449
04

E4: I/O-
Bus,
Mod. [1..
10], 31,
[6]

E4 14 1..10 31 6 42 No communication
with hot-swap ter-
minal unit 1)

Restart,
if error
persists
replace
terminal
unit

2349449
38

E4: I/O-
Bus,
Mod. [1..
10], 31,
[6]

1) Diagnosis for hot swap available as of version index F0.
2) In case of an I/O module doesn’t support hot swapping, do not perform any hot-swap opera-
tions (also not on any other terminal units (slots)) as modules may be damaged or I/O bus
communication may be disturbed.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6479

Table 779: Module errors DC551-CS31 and CI590
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 11 ADR 31 31 3 Timeout in the I/O
Module

Replace
I/O
Module

1846148
51

E3:
COM1
[PRO-
TOCOL]
[ADR]

E3 11 ADR 31 31 9 Overflow of diag-
nosis buffer

Restart 1846148
57

E3:
COM1
[PRO-
TOCOL]
[ADR]

E3 11 ADR 31 31 11 Process voltage
too low

Check
process
voltage

1846148
59

E3:
COM1
[PRO-
TOCOL]
[ADR]

E3 11 ADR 1..7 31 17 No communication
with the I/O Module

Replace
I/O
Module

1845493
93

E3:
COM1
[PRO-
TOCOL]
[ADR],
[1..7],
(³)31

E3 11 ADR 31 31 19 Checksum error in
the I/O Module

Replace
I/O
Module

1846148
67

E3:
COM1
[PRO-
TOCOL]
[ADR]

E3 11 ADR 31 31 26 Parameter error Check
master

1846148
74

E3:
COM1
[PRO-
TOCOL]
[ADR]

E3 11 ADR 31 31 28 Configuration of
PLC 1 and PLC 2
are different

Check
PLC
CS31
Module
configu-
ration

1846148
76

E3:
COM1
[PRO-
TOCOL]
[ADR]

E3 11 ADR 31 31 36 Internal data inter-
change disturbed

Check
PLC pro-
gram

1846148
84

E3:
COM1
[PRO-
TOCOL]
[ADR]

E3 11 ADR 31 31 40 Different hardware
and firmware ver-
sions in the module

Replace
I/O
Module

1846148
88

E3:
COM1
[PRO-
TOCOL]
[ADR]

E3 11 ADR 31 31 43 Internal error in the
module

Replace
I/O
Module

1846148
91

E3:
COM1
[PRO-
TOCOL]
[ADR]

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6480

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E4 11 ADR 31 31 33 PLC conflict 3) Check
PLC pro-
gram

1846148
81

E4:
COM1
[PRO-
TOCOL]
[ADR]

E4 11 ADR 31 31 34 Outputs are dif-
ferent (synchroni-
zation error) 4)

Check
PLC pro-
gram
and syn-
chronize

1846148
82

E4:
COM1
[PRO-
TOCOL]
[ADR]

E4 11 ADR 31 31 45 Process voltage
ON/OFF

Process
voltage
ON

1846148
93

E4:
COM1
[PRO-
TOCOL]
[ADR]

E4 11 ADR 31 31 32 Wrong I/O Module
on the slot

Replace
I/O
Module
and
check
configu-
ration

1846148
82

E4:
COM1
[PRO-
TOCOL]
[ADR],
[1..10],
(³)31

1..10 1845494
10

E4:
COM1
[PRO-
TOCOL]
[ADR]

E4 11 ADR 31 31 34 No response
during initialization
of the I/O Module

Replace
I/O
Module

1846148
80

E4:
COM1
[PRO-
TOCOL]
[ADR]

1..10 1845494
08

E4:
COM1
[PRO-
TOCOL]
[ADR],
[1..10],
(³)31

3) FB HA control mode is both primary or both secondary. Could be only an error output of FB if
too much diagnosis
4) if no other error occurs, the programs are not identical and parameter is set to report an error
in this case

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6481

Table 780: Channel errors DC551-CS31 and CI590
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E4 11 ADR 1..10/31 8..23 47 Short-circuit at the
digital output

Check
terminal

1845494
23

E4:
COM1
[PRO-
TOCOL]
[ADR]
E4:
COM1
[PRO-
TOCOL]
[ADR],
[1..10],
(³)31

E4 11 ADR 1..10/31 8..23 7 Measurement
underflow at the
analog in/output

Check
value

1846133
383

E4:
COM1
[PRO-
TOCOL]
[ADR]
E4:
COM1
[PRO-
TOCOL]
[ADR],
[1..10],
(³)31

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6482

Table 781: Parameter errors
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 31 3 1 Wrong parameter
value

Check
configu-
ration

2349447
05

E3 14 1..10 31 3 19 Checksum error
has occured in
iParameter or F-
Parameters

Check
safety
configu-
ration
and
CRCs
for
iPara-
meter
and F-
Parame-
ters

2349447
23

E3: I/O-
Bus,
Mod. 1

E3 14 1..10 31 3 28 F-Parameter con-
figuration and
address switch
value do not match

Check
I/O
Module
F-
Param-
eter con-
figuratio
n and
module
address
switch
value

2349447
32

E3: I/O-
Bus,
Mod. 1

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6483

Table 782: Runtime errors
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 31 2 3 PROFIsafe
watchdog timed
out

Restart
I/O
Module.
If this
error
persists,
increase
PROFIs
afe
watchdo
g time

2349446
43

E3: I/O-
Bus,
Mod. 1

E3 14 1..10 31 2 19 Checksum error
has occured in
iParameters

Restart
I/O
Module.
If this
error
persists,
replace
I/O
module.
Contact
ABB
technical
support

2349446
59

E3: I/O-
Bus,
Mod. 1

E3 14 1..10 31 2 20 PROFIsafe com-
munication error

Restart
I/O
Module.
If this
error
persists,
contact
ABB
technical
support

2349446
60

E3: I/O-
Bus,
Mod. 1

E3 14 1..10 31 2 28 Internal error Contact
ABB
technical
support.
Replace
I/O
Module

2349446
68

E3: I/O-
Bus,
Mod. 1

E3 14 1..10 31 2 43 Internal runtime
error in I/O module

Contact
ABB
technical
support.
Replace
I/O
module

2349446
83

E3: I/O-
Bus,
Mod. 1

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6484

Table 783: Background test errors
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 31 2 4 I/O Module over-
voltage

Check
I/O
module
power
supply

2349446
44

E3: I/O-
Bus,
Mod. 1

E3 14 1..10 31 2 7 I/O Module under-
voltage

Check
I/O
module
power
supply

2349446
47

E3: I/O-
Bus,
Mod. 1

E3 14 1..10 31 2 18 Internal error Restart
I/O
module.
If this
error
persists,
replace
I/O
module.
Contact
ABB
technical
support

2349446
58

E3: I/O-
Bus,
Mod. 1

Table 784: Specific errors AI, DI and DO
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 0 0..15 3 Discrepancy time
expired

Check
discrep-
ancy
time
value,
channel
wiring
and
sensor

2348810
27

E3: I/O-
Bus,
Mod.
1-10, 0,
0-15

E3 14 1..10 0 0..15 12 Module 0:
Test pulse error

Check
wiring
and
sensor

2348810
36

E3: I/O-
Bus,
Mod.
1-10, 0,
0-15

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6485

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

2 0..8 Module 2:
Channel stuck-at
error

Check
I/O
Module
wiring.
Restart
I/O
Module,
if
needed.
If this
error
persists,
replace
I/O
Module.

E3: I/O-
Bus,
Mod.
1..10, 2,
0..8

E3 14 1..10 0 0..15 13 Module 0:
Channel test pulse
cross-talk error

Check
wiring
and
sensor.
If this
error
persists,
replace
I/O
Module.
Contact
ABB
technical
support

2348810
37

E3: I/O-
Bus,
Mod.
1-10, 0,
0-15

2 0..7 Module 2:
Channel readback
error

Check
I/O
Module
wiring.
Restart
I/O
Module,
if
needed.
If this
error
persists,
replace
I/O
Module.

E3: I/O-
Bus,
Mod.
1..10, 2,
0..8

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6486

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 0 0..15 18 Channel test error Check
I/O
module
wiring.
Restart
I/O
module,
if
needed.
If this
error
persists,
replace
I/O
Module

2348810
42

E3: I/O-
Bus,
Mod.
1-10, 0,
0-15

E3 14 1..10 0 0..15 25 Channel stuck - at
error

Check
I/O
Module
wiring.
Restart
I/O
Module,
if
needed.
If this
error
persists,
replace
I/O
Module.

2348810
49

E3: I/O-
Bus,
Mod.
1..10, 0,
0..15

E3 14 1..10 0 0..15 28 Channel cross-talk
error

Check
I/O
module
wiring.
Restart
I/O
module,
if
needed.
If this
error
persists,
replace
I/O
Module

2348810
52

E3: I/O-
Bus,
Mod.
1-10, 0,
0-15

E3 14 1..10 1 0..3 4 Measurement
overflow at the I/O
Module

Check
channel
wiring
and
sensor
power
supply

2348810
28

E4: I/O-
Bus,
Mod.
1..10, 1,
0..3

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6487

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 1 0..3 7 Measurement
underflow at the
I/O Module

Check
channel
wiring
and
sensor
power
supply

2348810
31

E3: I/O-
Bus,
Mod.
1..10, 1,
0..3

E3 14 1..10 1 0..3 45 Cut wire Check
channel
wiring
and
sensor
power
supply

2348810
69

E3: I/O-
Bus,
Mod. 1,
1, 1 - 3

E3 14 1..10 1 0..3 51 Overload Check
channel
wiring
and
sensor
power
supply

2348810
75

E3: I/O-
Bus,
Mod. 1,
1, 1 - 3

E3 14 1..10 1 0..3 55 Channel value dif-
ference too high

Adjust
toler-
ance
window
for chan-
nels.
Check
channel
wiring
and
sensor
configu-
ration.

2348810
79

E3: I/O-
Bus,
Mod. 1,
1, 1 - 3

E3 14 1..10 2 0..7 18 Channel cross-talk
error

Check
I/O
Module
wiring.
Restart
I/O
Module,
if
needed.
If this
error
persists,
replace
I/O
Module.

2348810
42

E3: I/O-
Bus,
Mod.
1..10, 4,
0..8

E3 14 1..10 2 0..8 43 Internal error Contact
ABB
technical
support.
Replace
I/O
Module.

2348810
67

E3: I/O-
Bus,
Mod. 1,
4, 0-7

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6488

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E3 14 1..10 4 0..7 13 Channel test error Check
I/O
module
wiring.
Restart
I/O
Module,
if
needed.
If this
error
persists,
replace
I/O
module

2348810
37

E3: I/O-
Bus,
Mod. 1,
4, 0-7

E3 14 1..10 4 0..7 17 Channel test error Check
I/O
module
wiring.
Restart
I/O
module,
if
needed.
If this
error
persists,
replace
I/O
Module

2348810
25

E3: I/O-
Bus,
Mod. 1,
4, 0-7

1.7.3.4 Communication modules diagnosis
1.7.3.4.1 Errors of the communication module's operating system
Table 785: General operating system errors
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 5 0 1 01hex = 1dec Error pri-
ority MAX

E3 1..4/10 255 5 0 2 02hex = 2dec Error pri-
ority NULL

E3 1..4/10 255 5 0 3 03hex = 3dec Error pri-
ority DOUBLE

E3 1..4/10 255 5 0 4 04hex = 4dec Stack
size error

E3 1..4/10 255 5 0 5 05hex = 5dec EPROM
size error

E3 1..4/10 255 5 0 6 06hex = 6dec RAM size
error

E3 1..4/10 255 5 0 7 07hex = 7dec Segment
counter error

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6489

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 5 0 8 08hex = 8dec Segment
size error

E3 1..4/10 255 5 0 9 09hex = 9dec Cycle
time error

E3 1..4/10 255 5 0 10 0Ahex = 10dec Fre-
quency error

E3 1..4/10 255 5 0 11 0Bhex = 11dec Trace
buffer size error

E3 1..4/10 255 5 0 12 0Chex = 12dec Error
min. RAM

E3 1..4/10 255 5 0 13 0Dhex = 13dec Device
address error

E3 1..4/10 255 5 0 14 0Ehex = 14dec MCL
token error

E3 1..4/10 255 5 0 15 0Fhex = 15dec Driver
type error

E3 1..4/10 255 5 1 0 10hex = 16dec SCC
error

E3 1..4/10 255 5 1 1 11hex = 17dec Flash
type OPT error

E3 1..4/10 255 5 1 2 12hex = 18dec Flash
type BSL error

E3 1..4/10 255 5 1 3 13hex = 19dec Flash
DIR name error

E3 1..4/10 255 5 1 4 14hex = 20dec Function
table error

E3 1..4/10 255 5 1 5 15hex = 21dec RAM
type error

E3 1..4/10 255 5 1 6 16hex = 22dec Flash
DIR type error

E3 1..4/10 255 5 3 2 32hex = 50dec RAM
test error

E3 1..4/10 255 5 3 3 33hex = 51dec Data
segment error

E3 1..4/10 255 5 3 4 34hex = 52dec RAM
error

E3 1..4/10 255 5 3 5 35hex = 53dec EPROM
error

E3 1..4/10 255 5 3 6 36hex = 54dec
DONGLE error

E3 1..4/10 255 5 3 7 37hex = 55dec Wrong
RCS identifier error

E3 1..4/10 255 5 3 8 38hex = 56dec Error
allocating memory

E3 1..4/10 255 5 6 4 64hex = 100dec RCS
task not ready

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6490

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 5 6 5 65hex = 101dec Task 1
not ready

E3 1..4/10 255 5 6 6 66hex = 102dec Task 2
not ready

E3 1..4/10 255 5 6 7 67hex = 103dec Task 3
not ready

E3 1..4/10 255 5 6 8 68hex = 104dec Task 4
not ready

E3 1..4/10 255 5 6 9 69hex = 105dec Task 5
not ready

E3 1..4/10 255 5 6 10 6Ahex = 106dec Task 6
not ready

E3 1..4/10 255 5 6 11 6Bhex = 107dec Task 7
not ready

E3 1..4/10 255 5 6 12 6Chex = 108dec Task 8
not ready

E3 1..4/10 255 5 6 13 6Dhex = 109dec Task 9
not ready

E3 1..4/10 255 5 6 14 6Ehex = 110dec Task
10 not ready

E3 1..4/10 255 5 6 15 6Fhex = 111dec Task 11
not ready

E3 1..4/10 255 5 7 0 70hex = 112dec Task
12 not ready

E3 1..4/10 255 5 7 1 71hex = 113dec Task
13 not ready

E3 1..4/10 255 5 7 2 72hex = 114dec Task
14 not ready

E3 1..4/10 255 5 7 3 73hex = 115dec Task
15 not ready

E3 1..4/10 255 5 7 8 78hex = 120dec MCL 0
missing

E3 1..4/10 255 5 7 9 79hex = 121dec MCL 1
missing

E3 1..4/10 255 5 7 10 7Ahex = 122dec MCL 2
missing

E3 1..4/10 255 5 8 0 80hex = 128dec MCL
double

E3 1..4/10 255 5 8 1 81hex = 129dec MCL
start address

E3 1..4/10 255 5 8 2 82hex = 130dec MCL 0
error

E3 1..4/10 255 5 8 3 83hex = 131dec MCL 1
error

E3 1..4/10 255 5 8 4 84hex = 132dec MCL 2
error

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6491

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 5 8 10 8Ahex = 138dec MCL
mode

E3 1..4/10 255 5 8 12 8Chex = 140dec RCS 0
missing

E3 1..4/10 255 5 8 13 8Dhex = 141dec RCS 1
missing

E3 1..4/10 255 5 8 14 8Ehex = 142dec RCS 2
missing

E3 1..4/10 255 5 8 15 8Fhex = 143dec RCS 3
missing

E3 1..4/10 255 5 9 0 90hex = 144dec RCS 4
missing

E3 1..4/10 255 5 9 1 91hex = 145dec RCS 5
missing

E3 1..4/10 255 5 9 2 92hex = 146dec RCS 6
missing

E3 1..4/10 255 5 9 3 93hex = 147dec RCS 7
missing

E3 1..4/10 255 5 9 4 94hex = 148dec RCS
double

E3 1..4/10 255 5 9 5 95hex = 149dec RCS
start address

E3 1..4/10 255 5 9 6 96hex = 150dec RCS 0
error

E3 1..4/10 255 5 9 7 97hex = 151dec RCS 1
error

E3 1..4/10 255 5 9 8 98hex = 152dec RCS 2
error

E3 1..4/10 255 5 9 9 99hex = 153dec RCS 3
error

E3 1..4/10 255 5 9 10 9Ahex = 154dec RCS 4
error

E3 1..4/10 255 5 9 11 9Bhex = 155dec RCS 5
error

E3 1..4/10 255 5 9 12 9Chex = 156dec RCS 6
error

E3 1..4/10 255 5 9 13 9Dhex = 157dec RCS 7
error

E3 1..4/10 255 5 10 0 A0hex = 160dec LIB 0
missing

E3 1..4/10 255 5 10 1 A1hex = 161dec LIB 1
missing

E3 1..4/10 255 5 10 2 A2hex = 162dec LIB 2
missing

E3 1..4/10 255 5 10 3 A3hex = 163dec LIB 3
missing

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6492

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 5 10 4 A4hex = 164dec LIB 4
missing

E3 1..4/10 255 5 10 5 A5hex = 165dec LIB 5
missing

E3 1..4/10 255 5 10 6 A6hex = 166dec LIB 6
missing

E3 1..4/10 255 5 10 7 A7hex = 167dec LIB 7
missing

E3 1..4/10 255 5 10 8 A8hex = 168dec LIB
double

E3 1..4/10 255 5 10 9 A9hex = 169dec LIB
start address

E3 1..4/10 255 5 10 10 AAhex = 170dec LIB 0
error

E3 1..4/10 255 5 10 11 ABhex = 171dec LIB 1
error

E3 1..4/10 255 5 10 12 AChex = 172dec LIB 2
error

E3 1..4/10 255 5 10 13 ADhex = 173dec LIB 3
error

E3 1..4/10 255 5 10 14 AEhex = 174dec LIB 4
error

E3 1..4/10 255 5 10 15 AFhex = 175dec LIB 5
error

E3 1..4/10 255 5 11 0 B0hex = 176dec LIB 6
error

E3 1..4/10 255 5 11 1 B1hex = 177dec LIB 7
error

E3 1..4/10 255 5 12 8 C8hex = 200dec
unknown IRQ

E3 1..4/10 255 5 12 9 C9hex = 201dec
Watchdog

E3 1..4/10 255 5 12 10 CAhex = 202dec SCC
TX IRQ

E3 1..4/10 255 5 12 11 CBhex = 203dec SCC
RX IRQ

E3 1..4/10 255 5 12 12 CChex = 204dec Task
state

E3 1..4/10 255 5 14 6 E6hex = 230dec Task 0

E3 1..4/10 255 5 14 7 E7hex = 231dec Task 1

E3 1..4/10 255 5 14 8 E8hex = 232dec Task 2

E3 1..4/10 255 5 14 9 E9hex = 233dec Task 3

E3 1..4/10 255 5 14 10 EAhex = 234dec Task 4

E3 1..4/10 255 5 14 11 EBhex = 235dec Task 5

E3 1..4/10 255 5 14 12 EChex = 236dec Task 6

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6493

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 5 14 13 EDhex = 237dec Task 7

E3 1..4/10 255 5 15 0 F0hex = 240dec DBG
task 0 segment

E3 1..4/10 255 5 15 1 F1hex = 241dec DBG
task 1 segment

E3 1..4/10 255 5 15 2 F2hex = 242dec DBG
task 2 segment

E3 1..4/10 255 5 15 3 F3hex = 243dec DBG
task 3 segment

E3 1..4/10 255 5 15 4 F4hex = 244dec DBG
task 4 segment

E3 1..4/10 255 5 15 5 F5hex = 245dec DBG
task 5 segment

E3 1..4/10 255 5 15 6 F6hex = 246dec DBG
task 6 segment

E3 1..4/10 255 5 15 7 F7hex = 247dec DBG
task 7 segment

Table 786: General task errors
Error
class

Compo-
nent

Device Module Channel Error
identifier

Error message Remedy

E3 1..4/10 255 6..12 0 1 01hex = 1dec No com-
munication

E3 1..4/10 255 6..12 0 2 02hex = 2dec Idle

E3 1..4/10 255 6..12 3 2 32hex = 50dec Base
initialization

E3 1..4/10 255 6..12 6 4 64hex = 100dec Parity
error

E3 1..4/10 255 6..12 6 5 65hex = 101dec Frame
error

E3 1..4/10 255 6..12 6 6 66hex = 102dec
Overrun

E3 1..4/10 255 6..12 6 7 67hex = 103dec Data
count

E3 1..4/10 255 6..12 6 8 68hex = 104dec
Checksum error

E3 1..4/10 255 6..12 6 9 69hex = 105dec
Timeout

E3 1..4/10 255 6..12 6 10 6Ahex = 106dec Pro-
tocol error

E3 1..4/10 255 6..12 6 11 6Bhex = 107dec Data
error

E3 1..4/10 255 6..12 6 12 6Chex = 108dec NACK

E3 1..4/10 255 6..12 6 14 6Ehex = 110dec Pro-
tocol base

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6494

Error
class

Compo-
nent

Device Module Channel Error
identifier

Error message Remedy

E3 1..4/10 255 6..12 9 6 96hex = 150dec Invalid
message header

E3 1..4/10 255 6..12 9 7 97hex = 151dec Invalid
message length

E3 1..4/10 255 6..12 9 8 98hex = 152dec Invalid
message command

E3 1..4/10 255 6..12 9 9 99hex = 153dec Invalid
message structure

E3 1..4/10 255 6..12 9 10 9Ahex = 154dec Mes-
sage error

E3 1..4/10 255 6..12 9 11 9Bhex = 155dec Mes-
sage timeout

E3 1..4/10 255 6..12 9 12 9Chex = 156dec Invalid
message sequence

E3 1..4/10 255 6..12 9 13 9Dhex = 157dec Invalid
message number

E3 1..4/10 255 6..12 9 14 9Ehex = 158dec Unable
to run the command,
since execution of the
previous command is
not yet finished

E3 1..4/10 255 6..12 10 0 A0hex = 160dec Error
in telegram header

E3 1..4/10 255 6..12 10 1 A1hex = 161dec Invalid
device address

E3 1..4/10 255 6..12 10 2 A2hex = 162dec Wrong
address data area

E3 1..4/10 255 6..12 10 3 A3hex = 163dec Data
address and data count
cause a buffer overflow

E3 1..4/10 255 6..12 10 4 A4hex = 164dec Invalid
data index

E3 1..4/10 255 6..12 10 5 A5hex = 165dec Invalid
data count

E3 1..4/10 255 6..12 10 6 A6hex = 166dec
Unknown data type

E3 1..4/10 255 6..12 10 7 A7hex = 167dec
Unknown function

E3 1..4/10 255 6..12 10 10 AAhex = 170dec Mes-
sage base

E3 1..4/10 255 6..12 12 8 C8hex = 200dec Task
not initialized, Commu-
nication Module not
configured

E3 1..4/10 255 6..12 12 9 C9hex = 201dec Busy

E3 1..4/10 255 6..12 12 10 CAhex = 202dec
No segment of RCS
received

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6495

Error
class

Compo-
nent

Device Module Channel Error
identifier

Error message Remedy

E3 1..4/10 255 6..12 12 11 CBhex = 203dec
Unknown or wrong
sender of a command
message

E3 1..4/10 255 6..12 13 2 D2hex = 210dec No
database

E3 1..4/10 255 6..12 13 3 D3hex = 211dec Error
writing the database

E3 1..4/10 255 6..12 13 4 D4hex = 212dec Error
reading the database

E3 1..4/10 255 6..12 13 5 D5hex = 213dec Error
registering the diag-
nosis structure

E3 1..4/10 255 6..12 13 6 D6hex = 214dec
Parameter error

E3 1..4/10 255 6..12 13 7 D7hex = 215dec Con-
figuration

E3 1..4/10 255 6..12 13 8 D8hex = 216dec Func-
tion list

E3 1..4/10 255 6..12 13 9 D9hex = 217dec
System

E3 1..4/10 255 6..12 13 10 DAhex = 218dec
Not enough internal
memory available

E3 1..4/10 255 6..12 13 11 DBhex = 219dec No
DPR

E3 1..4/10 255 6..12 13 12 DChex = 220dec
System base

1.7.3.4.2 Ethernet communication module errors
Table 787: OMB task (Modbus TCP) errors (task 3) 1)
Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 8 3 4 34hex = 52dec Invalid
configuration data,
server connections

E3 1..4/10 255 8 3 5 35hex = 53dec Invalid
configuration data, task
timeout

E3 1..4/10 255 8 3 6 36hex = 54dec Invalid
configuration data,
OMB timeout

E3 1..4/10 255 8 3 7 37hex = 55dec Invalid
configuration data,
mode

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6496

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 8 3 8 38hex = 56dec Invalid
configuration data, send
timeout

E3 1..4/10 255 8 3 9 39hex = 57dec Invalid
configuration data, con-
nect timeout

E3 1..4/10 255 8 3 10 3Ahex = 58dec Invalid
configuration data,
close timeout

E3 1..4/10 255 8 3 11 3Bhex = 59dec Invalid
configuration data,
swap

E3 1..4/10 255 8 3 12 3Chex = 60dec
TCP_UDP task not
found, TCP task not
ready

E3 1..4/10 255 8 3 13 3Dhex = 61dec PLC
task not found, PLC
task not ready

E3 1..4/10 255 8 3 14 3Ehex = 62dec Error
initializing OMB task

E3 1..4/10 255 8 3 15 3Fhex = 63dec Error
initializing PLC task
mode

E3 1..4/10 255 8 6 15 6Fhex = 111dec
Unknown sender of a
response

E3 1..4/10 255 8 7 0 70hex = 112dec Error
code in response

E3 1..4/10 255 8 7 1 71hex = 113dec
No socket found in
searched status

E3 1..4/10 255 8 7 2 72hex = 114dec Invalid
value in request

E3 1..4/10 255 8 7 3 73hex = 115dec Error
message of TCP task

E3 1..4/10 255 8 7 4 74hex = 116dec
Modbus error

E3 1..4/10 255 8 7 5 75hex = 117dec No
socket available

E3 1..4/10 255 8 7 6 76hex = 118dec Invalid
socket handle

E3 1..4/10 255 8 7 7 77hex = 119dec
Timeout in client socket

E3 1..4/10 255 8 7 8 78hex = 120dec
Socket closed, without
response to command

E3 1..4/10 255 8 7 9 79hex = 121dec Not
ready flag set

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6497

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identifier

Error message Remedy

E3 1..4/10 255 8 7 10 7Ahex = 122dec TCP
task no longer ready

E3 1..4/10 255 8 7 11 7Bhex = 123dec
Watchdog event

E3 1..4/10 255 8 7 12 7Chex = 124dec Device
in reconfiguration

E3 1..4/10 255 8 7 13 7Dhex = 125dec PLC
task not initialized

E3 1..4/10 255 8 7 14 7Ehex = 126dec OMB
server socket closed

Table 788: TCP/UDP task (task 6) errors 1)
Error
class

Compo-
nent

Device Module Channel Error
identifier

Error message Remedy

E3 1..4/10 255 11 3 2 32hex = 50dec Init of IP
task not completed

E3 1..4/10 255 11 3 3 33hex = 51dec Error
when initializing the
task configuration

E3 1..4/10 255 11 3 4 34hex = 52dec Init of IP
task failed

E3 1..4/10 255 11 3 7 37hex = 55dec No
memory available for
init

E3 1..4/10 255 11 6 14 6Ehex = 110dec
Timeout

E3 1..4/10 255 11 6 15 6Fhex = 111dec Invalid
timeout

E3 1..4/10 255 11 7 0 70hex = 112dec Invalid
socket

E3 1..4/10 255 11 7 1 71hex = 113dec Socket
status

E3 1..4/10 255 11 7 3 73hex = 115dec Target
not reachable

E3 1..4/10 255 11 7 4 74hex = 116dec Option
not supported

E3 1..4/10 255 11 7 5 75hex = 117dec Invalid
parameter

E3 1..4/10 255 11 7 6 76hex = 118dec Invalid
IP address

E3 1..4/10 255 11 7 7 77hex = 119dec Invalid
port

E3 1..4/10 255 11 7 8 78hex = 120dec CONN
closed

E3 1..4/10 255 11 7 9 79hex = 121dec CONN
reset

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6498

Error
class

Compo-
nent

Device Module Channel Error
identifier

Error message Remedy

E3 1..4/10 255 11 7 10 7Ahex = 122dec
Unknown protocol

E3 1..4/10 255 11 7 11 7Bhex = 123dec No
sockets

E3 1..4/10 255 11 8 2 82hex = 130dec
Unknown mode

E3 1..4/10 255 11 8 3 83hex = 131dec Max.
data length exceeded

E3 1..4/10 255 11 8 4 84hex = 132dec Mes-
sage count exceeded

E3 1..4/10 255 11 8 5 85hex = 133dec Max.
group exceeded

E3 1..4/10 255 11 9 5 95hex = 149dec Unex-
pected response mes-
sage

Table 789: IP task (task 7) errors 1)
Error
class

Compo-
nent

Device Module Channel Error
identifier

Error message Remedy

E3 1..4/10 255 12 3 2 32hex = 50dec No TCP
task initialized

E3 1..4/10 255 12 3 3 33hex = 51dec Error
when initializing the
task configuration

E3 1..4/10 255 12 3 4 34hex = 52dec No
Ethernet address

E3 1..4/10 255 12 3 5 35hex = 53dec Wait for
warm start

E3 1..4/10 255 12 3 6 36hex = 54dec Invalid
flags

E3 1..4/10 255 12 3 7 37hex = 55dec Invalid
IP address

E3 1..4/10 255 12 3 8 38hex = 56dec Invalid
net mask

E3 1..4/10 255 12 3 9 39hex = 57dec Invalid
gateway

E3 1..4/10 255 12 3 11 3Bhex = 59dec
Unknown hardware

E3 1..4/10 255 12 3 12 3Chex = 60dec No IP
address

E3 1..4/10 255 12 3 13 3Dhex = 61dec Error
initializing the driver

E3 1..4/10 255 12 3 14 3Ehex = 62dec No IP
address configuration

E3 1..4/10 255 12 3 15 3Fhex = 63dec Invalid
serial number

E3 1..4/10 255 12 4 0 40hex = 64dec No
memory on chip

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6499

Error
class

Compo-
nent

Device Module Channel Error
identifier

Error message Remedy

E3 1..4/10 255 12 6 14 6Ehex = 110dec
Timeout

E3 1..4/10 255 12 6 15 6Fhex = 111dec
Timeout invalid

E3 1..4/10 255 12 7 3 73hex = 115dec Target
not reachable

E3 1..4/10 255 12 7 6 76hex = 118dec IP
address invalid

E3 1..4/10 255 12 7 12 7Chex = 124dec
Ethernet address
invalid

E3 1..4/10 255 12 8 2 82hex = 130dec
Unknown mode

E3 1..4/10 255 12 8 3 83hex = 131dec ARP
cache full

E3 1..4/10 255 12 8 6 86hex = 134dec No
ARP entry found

E3 1..4/10 255 12 9 5 95hex = 149dec Unex-
pected response

1):
● The error information is also available at the output ERNO of the blocks used for the

Communication Module.
● The following applies: ERNO := 6000hex OR error.

1.7.3.4.3 CM579-ETHCAT

Hexadecimal Value Definition Description
0x00000000 TLR_S_OK Status ok

0xC0650005 TLR_E_ETHERCAT_MASTER_ERR
OR_BUSSCAN_FAILED

Existing bus does not match config-
ured bus.

0xC0650006 TLR_E_ETHERCAT_MASTER_NOT
_ALL_SLAVES_AVAIL

Not all slaves are available.

0xC065000B TLR_E_ETHERCAT_MASTER_INV
ALID_BUSCYCLETIME

The requested bus cycle time is
invalid.

0xC065000C TLR_E_ETHERCAT_MASTER_INV
ALID_BROKEN_SLAVE_BEHAV-
IOUR_PARA

Invalid parameter for broken slave
behavior.

0xC065000F TLR_E_ETHERCAT_MASTER_CO
E_INVALID_SLAVEID

Invalid SlaveId was used for CoE.

0xC0650012 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_INDEX

Invalid Index on slave requested.

0xC0650013 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_COMMUNICA-
TION_STATE

Invalid bus communication state for
CoE-Usage.

0xC0650014 TLR_E_ETHERCAT_MASTER_CO
E_FRAME_LOST

Frame with CoE data is lost.

Status codes

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6500

Hexadecimal Value Definition Description
0xC0650015 TLR_E_ETHERCAT_MASTER_CO

E_TIMEOUT
Timeout during CoE service.

0xC0650016 TLR_E_ETHERCAT_MASTER_CO
E_SLAVE_NOT_ADDRESSABLE

Slave is not addressable (not on bus
or power down?).

0xC0650017 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_LIST_TYPE

Invalid list type requested (during
GetOdList).

0xC0650018 TLR_E_ETHERCAT_MASTER_CO
E_SLAVE_RESPONSE_TOO_BIG

Data in slave response is too big for
confirmation packet.

0xC0650019 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_ACCESSBITMASK

Invalid access mask selected (during
GetEntryDesc).

0xC065001A TLR_E_ETHERCAT_MASTER_CO
E_WKC_ERROR

Slave Working Counter Error during
CoE service.

0xC065001C TLR_E_ETHERCAT_MASTER_INV
ALID_COMMUNICATION_STATE

Command is not usable in the com-
munication state.

0xC065001E TLR_E_ETHERCAT_MASTER_BUS
_SCAN_CURRENTLY_RUNNING

The scan is already running. It
cannot be started twice at the same
time.

0xC065001F TLR_E_ETHERCAT_MASTER_BUS
_SCAN_TIMEOUT

Timeout during bus scan. But at
least a link is established.

0xC0650020 TLR_E_ETHERCAT_MASTER_BUS
_SCAN_NOT_READY_YET

The bus scan was not started before
or is not finish yet.

0xC0650021 TLR_E_ETHERCAT_MASTER_BUS
_SCAN_INVALID_SLAVE

The requested slave is invalid.

0xC0650022 TLR_E_ETHERCAT_MASTER_CO
E_INVALIDACCESS

Slave does not allow reading or
writing (CoE-Access).

0xC0650023 TLR_E_ETHERCAT_MASTER_CO
E_NO_MBX_SUPPORT

Slave does not support a mailbox.

0xC0650024 TLR_E_ETHERCAT_MASTER_CO
E_NO_COE_SUPPORT

Slave does not support CoE.

0xC0650025 TLR_E_ETHERCAT_MASTER_TAS
K_CREATION_FAILED

Task could not be created during run
time.

0xC0650026 TLR_E_ETHERCAT_MASTER_INV
ALID_SLAVE_SM_CONFIGURA-
TION

The Sync Manager configuration of
a slave is invalid.

0xC0650027 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TOGGLE

SDO abort code: Toggle bit not alter-
nated.

0xC0650028 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TIMEOUT

SDO abort code: SDO protocol
timed out.

0xC0650029 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_CCS_SCS

SDO abort code: Client/server com-
mand specifier not valid or unknown.

0xC065002A TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_BLK_SIZE

SDO abort code: Invalid block size
(block mode only).

0xC065002B TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_SEQNO

SDO abort code: Invalid sequence
number (block mode only).

0xC065002C TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_CRC

SDO abort code: CRC error (block
mode only).

0xC065002D TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_MEMORY

SDO abort code: Out of memory.

0xC065002E TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_ACCESS

SDO abort code: Unsupported
access to an object.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6501

Hexadecimal Value Definition Description
0xC065002F TLR_E_ETHERCAT_MASTER_SD

O_ABORTCODE_WRITEONLY
SDO abort code: Attempt to read a
write only object.

0xC0650030 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_READONLY

SDO abort code: Attempt to write a
read only object.

0xC0650031 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_INDEX

SDO abort code: Object does not
exist in the object dictionary.

0xC0650032 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_PDO_MAP

SDO abort code: Object cannot be
mapped to the PDO.

0xC0650033 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_PDO_LEN

SDO abort code: The number and
length of the objects to be mapped
would exceed PDO length.

0xC0650034 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_P_INCOMP

SDO abort code: General parameter
incompatibility reason.

0xC0650035 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_I_INCOMP

SDO abort code: General internal
incompatibility in the device.

0xC0650036 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_HARDWARE

SDO abort code: Access failed due
to an hardware error.

0xC0650037 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE

SDO abort code: Data type does not
match, length of service parameter
does not match.

0xC0650038 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE1

SDO abort code: Data type does not
match, length of service parameter
too high.

0xC0650039 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE2

SDO abort code: Data type does not
match, length of service parameter
too low.

0xC065003A TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_OFFSET

SDO abort code: Sub-index does not
exist.

0xC065003B TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE

SDO abort code: Range of values of
parameter exceeded (only for write
access).

0xC065003C TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE1

SDO abort code: Value of parameter
written too high.

0xC065003D TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE2

SDO abort code: Value of parameter
written too low.

0xC065003E TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_MINMAX

SDO abort code: Maximum value is
less than minimum value.

0xC065003F TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_GENERAL

SDO abort code: general error.

0xC0650040 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TRANSFER

SDO abort code: Data cannot be
transferred or stored to the applica-
tion.

0xC0650041 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TRANSFER1

SDO abort code: Data cannot be
transferred or stored to the applica-
tion because of local control.

0xC0650042 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TRANSFER2

SDO abort code: Data cannot be
transferred or stored to the applica-
tion because of the present device
state.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6502

Hexadecimal Value Definition Description
0xC0650043 TLR_E_ETHERCAT_MASTER_SD

O_ABORTCODE_DICTIONARY
SDO abort code: Object dictionary
dynamic generation fails or no object
dictionary is present (e.g. object dic-
tionary is generated from file and
generation fails because of an file
error).

0xC0650044 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_UNKNOWN

SDO abort code: unknown code.

0xC0CC0001 ECM_ERROR_LLD_TIMEOUT LLD: Timeout

0xC0CC0003 ECM_ERROR_LLD_UNSUP-
PORTED_COMMAND

LLD: Unsupported command

0xC0CC0004 ECM_ERROR_LLD_DUPLI-
CATE_FIXED_STATION_ADDRESS

LLD: Duplicate fixed station address

0xC0CC0005 ECM_ERROR_LLD_SII_CHECKSU
M_ERROR

LLD: SII Checksum Error

0xC0CC0006 ECM_ERROR_LLD_SII_EEPROM_
LOADING_ERROR

LLD: SII EEPROM Loading Error

0xC0CC0007 ECM_ERROR_LLD_SII_MISSING_
ERROR_ACK

LLD: SII Missing Error Ack

0xC0CC0008 ECM_ERROR_LLD_STATE_CHAN
GE_FAILED

LLD: State Change Failed

0xC0CC0009 ECM_ERROR_LLD_UNEX-
PECTED_AL_STATUS

LLD: Unexpected AL Status

0xC0CC000A ECM_ERROR_LLD_UNEX-
PECTED_WKC

LLD: Unexpected WKC

0xC0CC000B ECM_ERROR_LLD_MAILBOX_NO
T_AVAILABLE

LLD: Mailbox not available

0xC0CC000C ECM_ERROR_LLD_MAILBOX_ME
SSAGE_TOO_LARGE

LLD: Mailbox message too large

0xC0CC000D ECM_ERROR_LLD_CONFIGURA-
TION_IN_PROGRESS

LLD: Configuration in progress

0xC0CC000E ECM_ERROR_LLD_TOO_MANY_C
YCLIC_FRAMES

LLD: Too many cyclic frames

0xC0CC000F ECM_ERROR_LLD_CYCLIC_FRA
ME_EXCEEDS_MTU

LLD: Cyclic frame exceeds MTU

0xC0CC0010 ECM_ERROR_LLD_INVALID_CYCL
IC_TELEGRAM_CONFIG

LLD: Invalid cyclic telegram config

0xC0CC0011 ECM_ERROR_LLD_BUILDING_CO
PY_ROUTINES_FAILED

LLD: Building copy routines failed

0xC0CC0012 ECM_ERROR_LLD_UNSUP-
PORTED_SLAVE_STA-
TION_ADDRESS

LLD: Unsupported slave station
address

0xC0CC0013 ECM_ERROR_LLD_STA-
TION_ADDRESS_NOT_ALLOWED

LLD: Station Address not allowed

0xC0CC0014 ECM_ERROR_LLD_INVALID_STD_
TX_MBX_PHYS_OFFSET

LLD: Invalid Std TxMbx PhysOffset

0xC0CC0015 ECM_ERROR_LLD_INVALID_STD_
RX_MBX_PHYS_OFFSET

LLD: Invalid Std Rx Mbx PhysOffset

0xC0CC0016 ECM_ERROR_LLD_INVALID_BOO
T_TX_MBX_PHYS_OFFSET

LLD: Invalid BOOT Rx Mbx Phys-
Offset

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6503

Hexadecimal Value Definition Description
0xC0CC0017 ECM_ERROR_LLD_INVALID_BOO

T_RX_MBX_PHYS_OFFSET
LLD: Invalid BOOT Tx Mbx Phys-
Offset

0xC0CC0018 ECM_ERROR_LLD_INVALID_STD_
TX_MBX_SM_NO

LLD: Invalid Std Tx Mbx SmNo

0xC0CC0019 ECM_ERROR_LLD_INVALID_STD_
RX_MBX_SM_NO

LLD: Invalid Std Rx Mbx SmNo

0xC0CC001A ECM_ERROR_LLD_INVALID_BOO
T_TX_MBX_SM_NO

LLD: Invalid BOOT Tx Mbx SmNo

0xC0CC001B ECM_ERROR_LLD_INVALID_BOO
T_RX_MBX_SM_NO

LLD: Invalid BOOT Rx Mbx SmNo

0xC0CC001C ECM_ERROR_LLD_UNCON-
FIGURED_SLAVE_STA-
TION_ADDRESS

LLD: Unconfigured slave station
address

0xC0CC001D ECM_ERROR_LLD_WRONG_SLAV
E_STATE

LLD: Wrong slave state

0xC0CC001E ECM_ERROR_LLD_CYCLE_TIME_
TOO_SMALL

LLD: Cycle time too small

0xC0CC001F ECM_ERROR_LLD_REPETI-
TION_COUNT_NOT_SUPPORTED

LLD: Repetition count not supported

0xC0CC0020 ECM_ERROR_LLD_INVALID_CALL
BACK_TYPE

LLD: Invalid callback type

0xC0CC0021 ECM_ERROR_LLD_INVALID_CYCL
E_MULTIPLIER

LLD: Invalid cycle multiplier

0xC0CC0022 ECM_ERROR_LLD_UNKNOWN_E
RROR

LLD: Unknown Error

0xC0CC0023 ECM_ERROR_LLD_INVALID_REG
_LENGTH

LLD: Invalid reg length

0xC0CC0024 ECM_ERROR_LLD_INVALID_PARA
METER

LLD: Invalid parameter

0xC0CC0025 ECM_ERROR_LLD_IRQ_NOT_AVA
ILABLE

LLD: IRQ not available

0xC0CC0026 ECM_ERROR_LLD_IOMEM_IRQ_N
OT_AVAILABLE

LLD: IOMem Irq not available

0xC0CC0027 ECM_ERROR_LLD_HW_INIT_FAIL
ED

LLD: Hardware init failed

0xC0CC0028 ECM_ERROR_LLD_MUTEX_CRE-
ATION_FAILED

LLD: Mutex creation failed

0xC0CC0029 ECM_ERROR_LLD_DC_RX_LATC
H_COM-
MAND_REQUIRED_FOR_DC

LLD: DC Rx Latch command is not
configured within cyclic frames

0xC0CC002A ECM_ERROR_LLD_TX_PROCESS
_IMAGE_EXCEEDED

LLD: Transmit process image is
exceeded

0xC0CC002B ECM_ERROR_LLD_RX_PROCESS
_IMAGE_EXCEEDED

LLD: Receive process image is
exceeded

0xC0CC002C ECM_ERROR_LLD_MBX_STATE_I
MAGE_EXCEEDED

LLD: Mailbox State image is
exceeded

0xC0CC002D ECM_ERROR_LLD_RESULT_DUP
LICATE_BWR_RX_LATCH_CMD

LLD: Duplicate BWR Rx DC Latch
command detected in cyclic frames

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6504

Hexadecimal Value Definition Description
0xC0CC002E ECM_ERROR_LLD_RESULT_DUP

LICATE_EXT_SYSTIME_CON-
TROL_CMD

LLD: Duplicate External Sync Sys-
Time Control command detected in
cyclic frames

0xC0CC002F ECM_ERROR_LLD_CC_PROCESS
_IMAGE_EXCEEDED

LLD: Cross Communication Process
image exceeded

0x40CD0017 ECM_INFO_EMC_BUS_IS_OFF Bus is off

0xC0CD0001 ECM_ERROR_EMC_REQUEST_D
ESTINATION_PROBLEM

Request Destination Problem

0xC0CD0002 ECM_ERROR_EMC_INVALID_SLA
VE_STATION_ADDRESS

Invalid slave station address

0xC0CD0003 ECM_ERROR_EMC_CONFIGURA-
TION_BUFFER_IS_OPEN

Configuration buffer is open

0xC0CD0004 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURATION

Wrong state for reconfiguration

0xC0CD0005 ECM_ERROR_EMC_CONFIGURA-
TION_BUFFER_IS_NOT_OPEN

Configuration buffer is not open

0xC0CD0006 ECM_ERROR_EMC_SLAVE_STA-
TION_ADDRESS_ALREADY_IN_C
ONFIG

Slave station address already in
config

0xC0CD0007 ECM_ERROR_EMC_INVALID_STD
_MBX_PARAMETERS

Invalid Std Mbx parameters

0xC0CD0008 ECM_ERROR_EMC_INVALID_BOO
T_MBX_PARAMETERS

Invalid BOOT Mbx parameters

0xC0CD0009 ECM_ERROR_EMC_STD_MBX_S
M_ARE_OVERLAPPING

Std Mbx SMs are overlapping

0xC0CD000A ECM_ERROR_EMC_BOOT_MBX_
SM_ARE_OVERLAPPING

BOOT Mbx SMs are overlapping

0xC0CD000B ECM_ERROR_EMC_SM_PARAMS
_ALREADY_ADDED

SM Params already added

0xC0CD000C ECM_ERROR_EMC_INVALID_SM_
NUMBER

Nvalid SM number

0xC0CD000D ECM_ERROR_EMC_FMMU_PARA
MS_ALREADY_ADDED

FMMU params already added

0xC0CD000E ECM_ERROR_EMC_INVALID_FMM
U_NUMBER

Invalid FMMU number

0xC0CD000F ECM_ERROR_EMC_INVALID_MIN
_STATE

Invalid min state

0xC0CD0010 ECM_ERROR_EMC_CYCLE_FRA
ME_AMOUNT_EXCEEDED

Cycle frame amount exceeded

0xC0CD0011 ECM_ERROR_EMC_INVALID_CYC
LIC_FRAME_IN_CONFIGURATION

Invalid cycle frame in configuration

0xC0CD0012 ECM_ERROR_EMC_CYCLE_FRA
ME_INDEX_NOT_VALID

Cycle frame index not valid

0xC0CD0013 ECM_ERROR_EMC_INVALID_TEL
EGRAM_LENGTH

Invalid telegram length

0xC0CD0014 ECM_ERROR_EMC_CYCLE_FRA
ME_LENGTH_EXCEEDED

Cycle frame length exceeded

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6505

Hexadecimal Value Definition Description
0xC0CD0015 ECM_ERROR_EMC_AMOUNT_OF

_TELE-
GRAMS_IN_CYCLIC_FRAME_EXC
EEDED

Amount of telegrams in cyclic frame
exceeded

0xC0CD0016 ECM_ERROR_EMC_STATE_CHAN
GE_IN_PROGRESS

State change in progress

0xC0CD0018 ECM_ERROR_EMC_TOO_MANY_
SLAVES_GIVEN

Too many slaves given

0xC0CD0019 ECM_ERROR_EMC_DUPLI-
CATE_STA-
TION_ADDRESS_IN_LIST

Duplicate station address in list

0xC0CD001A ECM_ERROR_EMC_COM-
MAND_TYPE_NOT_ALLOWED_FO
R_SLAVE_FSM

Command type not allowed for slave
FSM

0xC0CD001B ECM_ERROR_EMC_CONFIGURA-
TION_DATA_INCORRECT

Configuration data incorrect

0xC0CD001C ECM_ERROR_EMC_VEN-
DORID_MISMATCH

VendorID mismatch

0xC0CD001D ECM_ERROR_EMC_PRODUCT-
CODE_MISMATCH

ProductCode mismatch

0xC0CD001E ECM_ERROR_EMC_REVI-
SIONNO_MISMATCH

Revision number mismatch

0xC0CD001F ECM_ERROR_EMC_SERI-
ALNO_MISMATCH

Serial number mismatch

0xC0CD0020 ECM_ERROR_EMC_LOST_CON-
NECTION

Lost connection

0xC0CD0021 ECM_ERROR_EMC_UNKNOWN_S
TATE_CHANGE_HAPPENED

Unknown state change happened

0xC0CD0022 ECM_ERROR_EMC_UNEX-
PECTED_STATE_CHANGE_HAP-
PENED

Unexpected state change happened

0xC0CD0023 ECM_ERROR_EMC_SLAVE_CHAN
GED_STATE

Slave changed state

0xC0CD0026 ECM_ERROR_EMC_DC_RX_TIME-
STAMP_ERROR

DC Rx Timestamp error

0xC0CD0027 ECM_ERROR_EMC_DC_MASTER
_PORT_TIMESTAMP_ERROR

DC master port timestamp error

0xC0CD0028 ECM_ERROR_EMC_INVALID_SLA
VE_INDEX

Invalid slave index

0xC0CD0029 ECM_ERROR_EMC_WRONG_MAS
TER_STATE

0xC0CD002A ECM_ERROR_EMC_INVALID_TRA
NSFER_ID

Invalid Transfer Id

0xC0CD002B ECM_ERROR_EMC_INVALID_SEG
MENTATION

Invalid Segmentation

0xC0CD002C ECM_ERROR_EMC_IP_PARAMS_
ALREADY_ADDED

EoE IP Params already added

0xC0CD002D ECM_ERROR_EMC_EOE_SUP-
PORT_NOT_AVAILABLE

EoE support not available

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6506

Hexadecimal Value Definition Description
0xC0CD002E ECM_ERROR_EMC_END_CON-

FIGURATION_IN_PROGRESS
End configuration in progress

0xC0CD002F ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_BUS_IS_ON

Wrong state for reconfiguration (Bus
Is On)

0xC0CD0030 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_BUS_SCAN_ACTIVE

Wrong state for reconfiguration (Bus
Scan Active)

0xC0CD0031 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_IN_PROGRESS_TO_BU
SOFF

Wrong state for reconfiguration (In
Progress to Bus off)

0xC0CD0032 ECM_EROR_EMC_NO_DIAG_ENT
RY_AVAILABLE

No Diag Entry available

0xC0CD0033 ECM_ERROR_EMC_SLAVE_SYNC
_PARAMS_NOT_POS-
SIBLE_WITHOUT_WORKING_DC

A slave has been configured to have
SYNC0 and/or SYNC1 but does not
support DC at all.

0xC0CD0034 ECM_ERROR_EMC_MANDA-
TORY_SLAVE_MISSING

At least one required slave for boot
up is missing.

0xC0CD0035 ECM_ERROR_EMC_WRONG_SLA
VE_AT_POSITION

A wrong slave at a specific position
has been detected.

0xC0CD0036 ECM_ERROR_EMC_NO_DC_REF_
CLOCK

No DC reference clock

0xC0CD0037 ECM_ERROR_EMC_DC_REF_CLO
CK_DOES_NOT_PROVIDE_64BIT

DC Reference clock does not pro-
vide 64 Bit

0xC0CD0038 ECM_ERROR_EMC_INVALID_DC_
REF_CLOCK

Invalid DC Reference clock

0xC0CD0039 ECM_ERROR_EMC_COE_SUP-
PORT_NOT_AVAILABLE

CoE support not available

0xC0CD003A ECM_ERROR_EMC_SOE_SUP-
PORT_NOT_AVAILABLE

SoE support not available

0xC0CD003B ECM_ERROR_EMC_FOE_SUP-
PORT_NOT_AVAILABLE

FoE support not available

0xC0CD003C ECM_ERROR_EMC_AOE_SUP-
PORT_NOT_AVAILABLE

AoE support not available

0x40CD003E ECM_INFO_EMC_RECONNECTED Reconnected

0x80CD003F ECM_WARN_EMC_DC_STOPPED DC stopped

0xC0CD0040 ECM_ERROR_EMC_STOPPED_D
UE_SYNC_ERROR

Stopped due Sync Error

0xC0CD0041 ECM_ERROR_EMC_MANDA-
TORY_SLAVE_NOT_IN_OP

At least one mandatory slave is not
in OP

0xC0CD0042 ECM_ERROR_EMC_BUS_CYCLE_
TIME_NOT_POSSIBLE

Bus Cycle Time not possible

0xC0CD0043 ECM_ERROR_EMC_TOP-
OLOGY_ERROR_DETECTED

Topology error detected

0xC0CD0044 ECM_ERROR_EMC_TOP-
OLOGY_MISMATCH_DETECTED

Topology mismatch detected

0xC0CD0045 ECM_ERROR_EMC_NO_VALID_T
OPOLOGY_CONFIGURA-
TION_DATA

No valid topology configuration data

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6507

Hexadecimal Value Definition Description
0xC0CD0046 ECM_ERROR_EMC_UNEX-

PECTED_SLAVE_AT_PORT0
Unexpected slave at port 0 of slave.

0xC0CD0047 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1

Unexpected slave at port 1 of slave.

0xC0CD0048 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT2

Unexpected slave at port 2 of slave.

0xC0CD0049 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT3

Unexpected slave at port 3 of slave.

0xC0CD004A ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_RECONNECTED

-

0xC0CD004B ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT0

Missing slave at port 0 of slave.

0xC0CD004C ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT1

Missing slave at port 1 of slave.

0xC0CD004D ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT2

Missing slave at port 2 of slave.

0xC0CD004E ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT3

Missing slave at port 3 of slave.

0xC0CD004F ECM_ERROR_EMC_SLAVE_NOT_
CHECKED

Slave is not checked.

0xC0CD0050 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1

Unexpected slave at port 0 and 1 of
slave.

0xC0CD0051 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_2

Unexpected slave at port 0 and 2 of
slave.

0xC0CD0052 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_3

Unexpected slave at port 0 and 3 of
slave.

0xC0CD0053 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1_2

Unexpected slave at port 1 and 2 of
slave.

0xC0CD0054 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1_3

Unexpected slave at port 1 and 3 of
slave.

0xC0CD0055 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT2_3

Unexpected slave at port 2 and 3 of
slave.

0xC0CD0056 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1_2

Unexpected slave at port 0, 1 and 2
of slave.

0xC0CD0057 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1_3

Unexpected slave at port 0, 1 and 3
of slave.

0xC0CD0058 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_2_3

Unexpected slave at port 0, 2 and 3
of slave.

0xC0CD0059 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1_2_3

Unexpected slave at port 1, 2 and 3
of slave.

0xC0CD005A ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1

Missing slave at port 0 and 1 of
slave.

0xC0CD005B ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_2

Missing slave at port 0 and 2 of
slave.

0xC0CD005C ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_3

Missing slave at port 0 and 3 of
slave.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6508

Hexadecimal Value Definition Description
0xC0CD005D ECM_ERROR_EMC_MISSING_SL

AVE_AT_PORT1_2
Missing slave at port 1 and 2 of
slave.

0xC0CD005E ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT1_3

Missing slave at port 1 and 3 of
slave.

0xC0CD005F ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT2_3

Missing slave at port 2 and 3 of
slave.

0xC0CD0060 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1_2

Missing slave at port 0, 1 and 2 of
slave.

0xC0CD0061 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1_3

Missing slave at port 0, 1 and 3 of
slave.

0xC0CD0062 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_2_3

Missing slave at port 0, 2 and 3 of
slave.

0xC0CD0063 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT1_2_3

Missing slave at port 1, 2 and 3 of
slave.

0xC0CD0065 ECM_ERROR_EMC_HC_PARTIC-
IPANT_NOT_ALLOWED_IN_MAN-
DATORY_SLAVE_LIST

A Hot Connect group participant is
not allowed to be configured a man-
datory slave

0xC0CD0066 ECM_ERROR_EMC_HC_PARTIC-
IPANT_NOT_ALLOWED_IN_MUL-
TIPLE_HC_GROUPS

A Hot Connect group participant is
not allowed to be configured in mul-
tiple Hot Connect groups

0xC0CD0067 ECM_ERROR_EMC_GC_GROUP_
HEAD_IS_NOT_LISTED_FOR_HC_
DETECTION

Hot Connect group head is not listed
for Hot Connect detection

0xC0CD0068 ECM_ERROR_EMC_DC_SETUP_C
ALCULATION_ERROR

DC Setup calculation has encoun-
tered an error

0xC0CD0069 ECM_ERROR_EMC_NON_DC_SL
AVE_MORE_THAN_2_PORTS_IN_
DC_SETUP

A slave, which does not support DC,
has more than 2 ports in a DC setup

0xC0CD006A ECM_ERROR_EMC_HC_GROUP_
CONTAINS_NOT_CONFIG-
URED_SLAVE

A Hot Connect group has been
defined to include a slave address
that has no configuration

0xC0CD006B ECM_ERROR_EMC_ALCON-
TROL_TIMEOUT

AL Control Timeout happened i.e.
a slave ESM state change was not
completed in time

0xC0CD006C ECM_ERROR_EMC_DC_MEAS-
UREMENT_ERROR

DC measurement encountered an
error

0xC0CD006D ECM_ERROR_EMC_RX_DESTINA-
TION_EXCEEDS_RX_IMAGE_SIZE

Receive destination exceeds receive
image size

0xC0CD006E ECM_ERROR_EMC_TX_SOURCE
_EXCEEDS_TX_IMAGE_SIZE

Transmit source exceeds transmit
image size

0xC0CD006F ECM_ERROR_EMC_WCSTA-
TEBIT_EXCEEDS_RX_IMAGE_SIZ
E

WcState bit placement exceeds
receive image size

0xC0CD0070 ECM_ERROR_EMC_WKC_MAP-
PING_EXCEEDS_RX_IMAGE_SIZE

Wkc value placement exceeds
receive image size

0xC0CD0071 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0

DC Latch Error detected at port 0 of
slave

0xC0CD0072 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1

DC Latch Error detected at port 1 of
slave

0xC0CD0073 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT2

DC Latch Error detected at port 2 of
slave

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6509

Hexadecimal Value Definition Description
0xC0CD0074 ECM_ERROR_EMC_DC_RX_LATC

H_ERROR_AT_PORT3
DC Latch Error detected at port 3 of
slave

0xC0CD0075 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1

DC Latch Error detected at ports 0
and 1 of slave

0xC0CD0076 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_2

DC Latch Error detected at ports 0
and 2 of slave

0xC0CD0077 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_3

DC Latch Error detected at ports 0
and 3 of slave

0xC0CD0078 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1_2

DC Latch Error detected at ports 1
and 2 of slave

0xC0CD0079 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1_3

DC Latch Error detected at ports 1
and 3 of slave

0xC0CD007A ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT2_3

DC Latch Error detected at ports 2
and 3 of slave

0xC0CD007B ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1_2

DC Latch Error detected at ports 0, 1
and 2 of slave

0xC0CD007C ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1_3

DC Latch Error detected at ports 0, 1
and 3 of slave

0xC0CD007D ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS0_2_3

DC Latch Error detected at ports 0, 2
and 3 of slave

0xC0CD007E ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS1_2_3

DC Latch Error detected at ports 1, 2
and 3 of slave

0xC0CD007F ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS0_1_2_3

DC Latch Error detected at ports 0,
1, 2 and 3 of slave

0xC0CD0080 ECM_ERROR_EMC_ASSIGN_PDO
_IS_MISSING_PDO_MAPPING

AssignPDO data is missing related
PDO mapping data

0xC0CD0081 ECM_ERROR_EMC_EXT_SYNC_O
BJ_IS_NOT_MAPPED_TO_SAME_
SM

Parts of Ext Sync object are not
mapped to the same SyncManager

0xC0CD0082 ECM_ERROR_EMC_DUPLI-
CATE_EXT_SYNC_OBJ

Duplicate Ext Sync object mapping

0xC0CD0083 ECM_ERROR_EMC_UNSUP-
PORTED_EXT_SYNC_OBJ_RECO
RD

Unsupported Ext Sync object record
detected

0xC0CD0084 ECM_ERROR_EMC_UNSUP-
PORTED_MAP-
PING_OF_EXT_SYNC_OBJ_RECO
RD

Unsupported mapping of Ext Sync
object record detected

0xC0CD0085 ECM_ERROR_EMC_MISSING_MA
PPING_OF_EXT_SYNC_OBJ_REC
ORD

Missing mapping of Ext Sync object
record detected

0xC0CD0086 ECM_ERROR_EMC_EXT_SYNC_O
BJ_IS_NOT_MAPPED_TO_SAME_
FMMU

Parts of Ext Sync object are not
mapped to the same FMMU

0xC0CD0087 ECM_ERROR_EMC_EXT_SYNC_O
BJ_INTERNAL_ERROR

Internal error detected regarding Ext
Sync object

0xC0CD0088 ECM_ERROR_EMC_EXT_SYNC_O
BJ_IS_NOT_MAPPED_IN_ONE_CY
CLIC_CMD

Parts of Ext Sync object are not
mapped within the same cyclic com-
mand

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6510

Hexadecimal Value Definition Description
0xC0CD0089 ECM_ERROR_EMC_UNSUP-

PORTED_FMMU_MAP-
PING_OF_EXT_SYNC_OBJ_RECO
RD

Unsupported FMMU mapping of Ext
Sync object detected

0xC0CD008A ECM_ERROR_EMC_EXT_SYNC_R
EQUIRES_ADJUST_EXT_SYNC_C
MD

Unicast Ext Sync control (APWR/
FPWR 0x910) is required

0xC0CD008B ECM_ERROR_EMC_EXT_SYNC_C
MD_DOES_NOT_MATCH_XRMW_
CMD

Unicast Ext Sync control does not
match xRMW command

0xC0CD008C ECM_ERROR_EMC_EXT_SYNC_R
EQUIRES_XRMW_CMD

Ext Sync requires DC configuration
(xRMW command to 0x910)

0xC0CD008D ECM_ERROR_EMC_EXPLICIT_DE
V_IDENT_FAILED_ALSTATUS

Explicit Device identification via
ALSTATUS failed

0xC0CD008E ECM_ERROR_EMC_EXPLICIT_DE
V_IDENT_FAILED_REG

Explicit Device identification via reg-
ister failed

0xC0CD008F ECM_ERROR_EMC_COPY_INFOS
_FOUND_AT_UNMAPPED_RECEIV
E_DATA

CopyInfos found at unmapped
receive data

0xC0CD0090 ECM_ERROR_EMC_COPY_INFO_
RECEIVE_DATA_AREA_NOT_MAT
CHING

CopyInfo receive data area is not
matching

0xC0CD0091 ECM_ERROR_EMC_SDO_UPLOA
D_TOO_LONG

SDO Upload data too long

0xC0CD0092 ECM_ERROR_EMC_SDO_UPLOA
D_TOO_SHORT

SDO Upload data too short

0xC0CD0093 ECM_ERROR_EMC_SDO_UPLOA
D_COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

SDO Upload compare does not
match expectation

0xC0CD0094 ECM_ERROR_EMC_SOE_READ_T
OO_LONG

SoE Read IDN data too long

0xC0CD0095 ECM_ERROR_EMC_SOE_READ_T
OO_SHORT

SoE Read IDN data too short

0xC0CD0096 ECM_ERROR_EMC_SOE_READ_
COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

SoE Read compare does not match
expectation

0xC0CD0097 ECM_ERROR_EMC_REG_INITCM
D_COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

Register read compare does not
match expectation

0xC0CD0098 ECM_ERROR_EMC_REDUN-
DANCY_PORT_ONLY_POS-
SIBLE_ONCE

Redundancy port can only be placed
once into configuration

0xC0CD0099 ECM_ERROR_EMC_STARTUP_SC
AN_SII_FAILED

Startup scan of SII failed

0xC0CD009A ECM_ERROR_EMC_STARTUP_VE
RIFY_SII_FAILED

Startup verification of SII failed

0xC0CD009B ECM_ERROR_EMC_MAIN_PORT_
NOT_CONNECTED

Main port not connected during top-
ology scan

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6511

Hexadecimal Value Definition Description
0xC0CD009C ECM_ERROR_EMC_BUS_SCAN_T

OO_MANY_SLAVES
Bus scan detects too many slaves

0xC0CD009D ECM_ERROR_EMC_BUS_SCAN_S
PLIT_RING_NOT_SUPPORTED

Bus Scan detects unsupported split
ring topology

0xC0CD009E ECM_ERROR_EMC_BUS_SHUT-
DOWN

Bus is shutting down

0xC0CD009F ECM_ERROR_EMC_MASTER_AD
DRESS_NOT_ALLOWED_AS_STA-
TION_ADDRESS

Master address (0) is not allowed as
station address

0xC0CD00A0 ECM_ERROR_EMC_FIRST_STA-
TION_HAS_INVALID_PORT_0

First station has invalid port 0

0xC0CD00A1 ECM_ERROR_EMC_STA-
TION_HAS_INVALID_PORT

Station has invalid port

0xC0CD00A2 ECM_ERROR_EMC_STA-
TION_HAS_NOT_LISTED_STA-
TION_ADDRESS_IN_PORT

Station has not listed station address
in port

0xC0CD00A3 ECM_ERROR_EMC_PORT_CON-
NECTION_BETWEEN_STA-
TIONS_DOES_NOT_MATCH

Port connection between stations
does not match

0xC0CD00A4 ECM_ERROR_EMC_STA-
TION_HAS_ALREADY_USED_STA-
TION_ADDRESS_IN_PORT

Station has already used station
address in port

0xC0CD00A5 ECM_ERROR_EMC_INVALID_SM_
PHYS_START_ADDRESS

Invalid Sm physical start address

0xC0CD00A6 ECM_ERROR_EMC_DC_TOP-
OLOGY_ON_REDUN-
DANCY_PORT_NOT_SUPPORTED

DC topology on redundancy port
connection not supported. DC
slaves having AutoIncrement posi-
tions behind redundancy port

0xC0CD00A7 ECM_ERROR_EMC_SM_ASSIGN_
PDO_ALREADY_ADDED

Sm AssignPdo already added

0xC0CD00A8 ECM_ERROR_EMC_BASE_SYNC_
OFFSET_PER-
CENTAGE_OUT_OF_RANGE

Base Sync Offset percentage out of
range

0xC0CF0001 ECM_ERROR_COE_INITIALIZA-
TION_ERROR

CoE: Initialization Error

0xC0CF0002 ECM_ERROR_COE_INVALID_TRA
NSFER_HANDLE

CoE: Invalid transfer handle used

0xC0CF0003 ECM_ERROR_COE_NO_MAILBOX
_AVAILABLE

CoE. No mailbox available

0xC0CF0004 ECM_ERROR_COE_INVALID_TRA
NSFER_STATE

CoE: Invalid transfer state

0xC0CF0005 ECM_ERROR_COE_TRANSFER_S
EGMENT_TOO_LONG

CoE: Transfer segment is too long

0xC0CF0006 ECM_ERROR_COE_SHUT-
TING_DOWN

CoE is shutting down.

0xC0CF0007 ECM_ERROR_COE_MAX_TOTAL_
BYTES_SMALLER_THAN_ACTUAL
_TOTAL_BYTES

CoE: Maximum total bytes is smaller
than actual total bytes.

0xC0CF0008 ECM_ERROR_COE_MAILBOX_TR
ANSMIT_FAILED

CoE: Mailbox transmit failed

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6512

Hexadecimal Value Definition Description
0xC0CF0009 ECM_ERROR_COE_TRANSFER_A

BORTED
CoE: Transfer has been aborted.

0xC0CF000A ECM_ERROR_COE_SDOINFO_INI-
TIALIZATION_ERROR

0xC0CF000B

0xC0CF000C ECM_ERROR_COE_PRO-
TOCOL_ERROR

CoE Protocol Error

0xC0CF000D ECM_ERROR_COE_NO_AOE_AVA
ILABLE

CoE: No AoE available

0xC0CF000F ECM_ERROR_COE_INVALID_SLA
VE_STATION_ADDRESS

CoE: Invalid slave station address

0xC0CF8000 ECM_ERROR_COE_ABORT-
CODE_TOGGLE_BIT_NOT_ALTER
NATED

SDO Abort Code: Toggle Bit not
alternated

0xC0CF8001 ECM_ERROR_COE_ABORT-
CODE_COMMAND_SPECI-
FIER_NOT_VALID

SDO Abort Code: Command speci-
fier not valid

0xC0CF8002 ECM_ERROR_COE_ABORT-
CODE_PROTOCOL_TIMEOUT

SDO Abort Code: Protocol Timeout

0xC0CF8003 ECM_ERROR_COE_ABORT-
CODE_OUT_OF_MEMORY

SDO Abort Code: Out Of Memory

0xC0CF8004 ECM_ERROR_COE_ABORT-
CODE_UNSUPPORTED_ACCESS

SDO Abort Code: Unsupported
access

0xC0CF8005 ECM_ERROR_COE_ABORT-
CODE_OBJECT_IS_WRITE_ONLY

SDO Abort Code: Object is write
only

0xC0CF8006 ECM_ERROR_COE_ABORT-
CODE_OBJECT_IS_READ_ONLY

SDO Abort Code: Object is read only

0xC0CF8007 ECM_ERROR_COE_ABORT-
CODE_SUB-
INDEX_CANNOT_BE_WRITTEN_SI
0_NZ

SDO Abort Code: Subindex cannot
be written if subindex 0 is not zero

0xC0CF8008 ECM_ERROR_COE_ABORT-
CODE_COM-
PLETE_ACCESS_NOT_SUP-
PORTED

SDO Abort Code: Complete access
not supported

0xC0CF8009 ECM_ERROR_COE_ABORT-
CODE_OBJECT_LENGTH_EXCEE
DS_MAILBOX_SIZE

SDO Abort Code: Object length
exceeds mailbox size

0xC0CF800A ECM_ERROR_COE_ABORT-
CODE_OBJECT_MAPPED_TO_RX
PDO_NO_WRITE

SDO Abort Code: Object mapped to
RxPDO, SDO Download blocked

0xC0CF800B ECM_ERROR_COE_ABORT-
CODE_OBJECT_DOES_NOT_EXIS
T

SDO Abort Code: Object does not
exist

0xC0CF800C ECM_ERROR_COE_ABORT-
CODE_OBJECT_CANNOT_BE_PD
O_MAPPED

SDO Abort Code: Object cannot be
mapped to PDO

0xC0CF800D ECM_ERROR_COE_ABORT-
CODE_PDO_LENGTH_WOULD_E
XCEED

SDO Abort Code: PDO Length
would exceed maximum size

0xC0CF800E ECM_ERROR_COE_ABORT-
CODE_GEN_PARAM_INCOMPATI-
BILITY

SDO Abort Code: General param-
eter incompatibility

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6513

Hexadecimal Value Definition Description
0xC0CF800F ECM_ERROR_COE_ABORT-

CODE_ACCESS_FAILED_DUE_TO
_HW_ERROR

SDO Abort Code: Access failed due
to hardware error

0xC0CF8010 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_DOES_NOT_MATCH

SDO Abort Code: Data type does
not match

0xC0CF8011 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_LENGTH_TOO_LONG

SDO Abort Code: Data type length
too long

0xC0CF8012 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_LENGTH_TOO_SHORT

SDO Abort Code: Data type length
too short

0xC0CF8013 ECM_ERROR_COE_ABORT-
CODE_SUB-
INDEX_DOES_NOT_EXIST

SDO Abort Code: Subindex does not
exist

0xC0CF8014 ECM_ERROR_COE_ABORT-
CODE_RANGE_OF_PARAM-
ETER_EXCEEDED

SDO Abort Code: Range of param-
eter exceeded

0xC0CF8015 ECM_ERROR_COE_ABORT-
CODE_VALUE_OF_PARAM_WRITT
EN_TOO_HIGH

SDO Abort Code: Value of param-
eter written too high

0xC0CF8016 ECM_ERROR_COE_ABORT-
CODE_VALUE_OF_PARAM_WRITT
EN_TOO_LOW

SDO Abort Code: Value of param-
eter written too low

0xC0CF8017 ECM_ERROR_COE_ABORT-
CODE_MIN_VALUE_IS_LESS_THA
N_MAX_VALUE

SDO Abort Code: Minimum value is
less than maximum value

0xC0CF8018 ECM_ERROR_COE_ABORT-
CODE_GENERAL_ERROR

SDO Abort Code: General Error

0xC0CF8019 ECM_ERROR_COE_ABORT-
CODE_NO_TRANSFER_TO_APP

SDO Abort Code: Data cannot be
transferred or stored to the applica-
tion

0xC0CF801A ECM_ERROR_COE_ABORT-
CODE_LOCAL_CONTROL

SDO Abort Code: Data cannot be
transferred or stored to the applica-
tion because of local control

0xC0CF801B ECM_ERROR_COE_ABORT-
CODE_NO_TRANSFER_DUE_TO_
CURRENT_STATE

SDO Abort Code: Data cannot be
transferred or stored to the applca-
tion because of the present device
state

0xC0CF801C ECM_ERROR_COE_ABORT-
CODE_NO_OBJECT_DIC-
TIONARY_PRESENT

SDO Abort Code: Object dictionary
dynamic generation fails or no object
dictionary is present

0xC0CF801D ECM_ERROR_COE_ABORT-
CODE_UNKNOWN_ABORT_CODE

SDO Abort Code: Unknown abort
code

0xC0CF801E ECM_ERROR_COE_ABORT-
CODE_GEN_INTERNAL_COMPAT

SDO Abort Code: General internal
incompatibility in the device

0xC0D00001 ECM_ERROR_EOE_INVALID_MAC
_ADDRESS

Invalid MAC address

0xC0D00002 ECM_ERROR_EOE_INVALID_CAL
LBACK_TYPE

Invalid callback type

0xC0D00003 ECM_ERROR_EOE_DESTINA-
TION_UNREACHABLE

Destination unreachable

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6514

Hexadecimal Value Definition Description
0xC0D00004 ECM_ERROR_EOE_INVALID_EOE

_RESPONSE
Invalid EoE Response

0xC0D00005 ECM_ERROR_EOE_UNKNOWN_E
RROR

SetIPParam/SetFilterParam:
Unknown error

0xC0D00006 ECM_ERROR_EOE_UNSPECI-
FIED_ERROR

SetIPParam/SetFilterParam: Unspe-
cified Error

0xC0D00007 ECM_ERROR_EOE_UNSUP-
PORTED_FRAME_TYPE

SetIPParam/SetFilterParam: Unsup-
ported frame type

0xC0D00008 ECM_ERROR_EOE_NO_IP_SUP-
PORT

SetIPParam/SetFilterParam: No IP
support

0xC0D00009 ECM_ERROR_EOE_DHCP_NOT_S
UPPORTED

SetIPParam/SetFilterParam: DHCP
not supported

0xC0D0000A ECM_ERROR_EOE_NO_FILTER_S
UPPORT

SetIPParam/SetFilterParam: No filter
supported

0xC0D0000B ECM_ERROR_EOE_TIMEOUT EoE Timeout

0xC0D0000C ECM_ERROR_EOE_SHUT-
TING_DOWN

EoE is shutting down

0xC0D0000D ECM_ERROR_EOE_MASTER_AD
DRESS_NOT_ALLOWED

EoE: Master address is not allowed
to use here

0xC0D0000E ECM_ERROR_EOE_CONFIGURA-
TION_IS_NOT_OPEN

EoE: Configuration is not open

0xC0D0000F ECM_ERROR_EOE_CONFIGURA-
TION_IS_ALREADY_OPEN

EoE: Configuration is already open

0xC0D00010 ECM_ERROR_EOE_DUPLI-
CATE_IP_ADDRESS

EoE: Duplicate IP address

0xC0D00011 ECM_ERROR_EOE_DUPLI-
CATE_MAC_ADDRESS_ON_MUL-
TIPLE_PORTS

EoE: Duplicate MAC address on
multiple ports

0xC0D00012 ECM_ERROR_EOE_FRAME_TOO_
LARGE

EoE: Frame too large

0xC0D00013 ECM_ERROR_EOE_IF_INITIALI-
ZATION_ERROR

EoE: Interface initialization error

0xC0D00014 ECM_ERROR_EOE_IF_NO_FRAM
E_AVAILABLE

EoE: No Frame available

0xC0D00015 ECM_ERROR_EOE_LINK_DOWN EoE: Link down

0xC0D10002 ECM_ERROR_FOE_ERROR_UNK
NOWN_ERROR

-

0xC0D10003 ECM_ERROR_FOE_INVALID_TRA
NSFER_HANDLE

FoE: Invalid transfer handle

0xC0D10004 ECM_ERROR_FOE_INVALID_TRA
NSFER_STATE

FoE: Invalid transfer state

0xC0D10005 ECM_ERROR_FOE_INVALID_SLA
VE_STATION_ADDRESS

FoE: Invalid slave station address

0xC0D10006 ECM_ERROR_FOE_WRONG_SLA
VE_STATE

FoE: Wrong slave state

0xC0D10007 ECM_ERROR_FOE_NO_MAILBOX
_AVAILABLE

FoE: No mailbox available

0xC0D10008 ECM_ERROR_FOE_TRANSFER_A
BORTED

FoE: Transfer has been aborted

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6515

Hexadecimal Value Definition Description
0xC0D10009 ECM_ERROR_FOE_PRO-

TOCOL_TIMEOUT
FoE: Protocol Timeout

0xC0D1000A ECM_ERROR_FOE_TRANSFER_S
EGMENT_TOO_LONG

FoE: Transfer segment is too long

0xC0D1000B ECM_ERROR_FOE_MAILBOX_TR
ANSMIT_FAILED

FoE: Mailbox transmit failed

0xC0D1000C ECM_ERROR_FOE_FILE-
NAME_TOO_LONG

FoE: Filename is too long

0xC0D1000D ECM_ERROR_FOE_BUFFER_EXC
EEDED

FoE: Buffer is exceeded

0xC0D1000E ECM_ERROR_FOE_FIRST_SEG-
MENT_SHOULD_NOT_BE_EMPTY

FoE: First segment should not be
empty

0xC0D1000F ECM_ERROR_FOE_SEG-
MENT_SHOULD_BE_EMPTY

FoE: Segment should be empty

0xC0D18000 ECM_ERROR_FOE_ERROR_NOT
_DEFINED

FoE: Error Response: not defined

0xC0D18001 ECM_ERROR_FOE_ERROR_NOT
_FOUND

FoE: Error Response: Not Found

0xC0D18002 ECM_ERROR_FOE_ACCESS_DEN
IED

FoE: Error Response: Access
Denied

0xC0D18003 ECM_ERROR_FOE_ERROR_DISK
_FULL

FoE: Error Response: Disk full

0xC0D18004 ECM_ERROR_FOE_ERROR_ILLE
GAL

FoE: Error Response: Illegal

0xC0D18005 ECM_ERROR_FOE_ERROR_PACK
ET_NUMBER_WRONG

FoE: Error Response: Packet
number is wrong

0xC0D18006 ECM_ERROR_FOE_ERROR_ALRE
ADY_EXISTS

FoE: Error Response: Already exists

0xC0D18007 ECM_ERROR_FOE_ERROR_NO_
USER

FoE: Error Response: No User

0xC0D18008 ECM_ERROR_FOE_ERROR_BOO
TSTRAP_ONLY

FoE: Acces to specified file is only
allowed in BOOT state

0xC0D18009 ECM_ERROR_FOE_ERROR_NOT
_BOOTSTRAP

FoE: Access to specified file is only
allowed when in PREOP, SAFEOP
or OP

0xC0D1800A ECM_ERROR_FOE_ERROR_NO_
RIGHTS

FoE: No Rights

0xC0D1800B ECM_ERROR_FOE_ERROR_PRO-
GRAM_ERROR

FoE: Program Error

0xC0D20001 ECM_ERROR_SOE_UNKNOWN_S
OE_ERROR

SoE: Unknown SoE Error

0xC0D20002 ECM_ERROR_SOE_INITIALIZA-
TION_ERROR

SoE: Initialization error

0xC0D20003 ECM_ERROR_SOE_INVALID_TRA
NSFER_HANDLE

SoE: Invalid transfer handle

0xC0D20004 ECM_ERROR_SOE_NO_MAILBOX
_AVAILABLE

SoE: No Mailbox available

0xC0D20005 ECM_ERROR_SOE_INVALID_TRA
NSFER_STATE

SoE: Invalid transfer state

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6516

Hexadecimal Value Definition Description
0xC0D20006 ECM_ERROR_SOE_TRANSFER_S

EGMENT_TOO_LONG
SoE: Transfer segment is too long

0xC0D20007 ECM_ERROR_SOE_SHUT-
TING_DOWN

SoE is shutting down

0xC0D20008 ECM_ERROR_SOE_MAX_TOTAL_
BYTES_SMALLER_THAN_ACTUAL
_TOTAL_BYTES

SoE: Maximum total bytes is smaller
than actual total bytes

0xC0D20009 ECM_ERROR_SOE_MAILBOX_TR
ANSMIT_FAILED

SoE: Mailbox transmit failed

0xC0D2000A ECM_ERROR_SOE_INVALID_SOE
_HEADER

SoE: Invalid SoE header

0xC0D2000B ECM_ERROR_SOE_PRO-
TOCOL_TIMEOUT

SoE: Protocol Timeout

0xC0D2000C ECM_ERROR_SOE_PRO-
TOCOL_ERROR

SoE: Protocol Error

0xC0D2000D ECM_ERROR_SOE_TRANSFER_A
BORTED

SoE: Transfer has been aborted

0xC0D2000E ECM_ERROR_SOE_WRONG_SLA
VE_STATE

SoE: Wrong slave state

0xC0D2000F ECM_ERROR_SOE_NO_AOE_AVA
ILABLE

SoE: No AoE available

0xC0D20010 ECM_ERROR_SOE_INVALID_SLA
VE_STATION_ADDRESS

SoE: Invalid slave station address

0xC0D21001 ECM_ERROR_SOE_SSC_NO_IDN SoE: No IDN

0xC0D21009 ECM_ERROR_SOE_SSC_INVALID
_ACCESS_TO_ELEMENT_1

SoE: Invalid access to element 1

0xC0D22001 ECM_ERROR_SOE_SCC_NO_NA
ME

SoE: IDN has no name

0xC0D22002 ECM_ERROR_SOE_SSC_NAME_T
RANSMISSION_IS_TOO_SHORT

SoE: Name transmission is too short

0xC0D22003 ECM_ERROR_SOE_SSC_NAME_T
RANSMISSION_IS_TOO_LONG

SoE: Name transmission is too long

0xC0D22004 ECM_ERROR_SOE_SSC_NAME_
CANNOT_BE_CHANGED

SoE: Name cannot be changed

0xC0D22005 ECM_ERROR_SOE_SSC_NAME_I
S_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Name is write protected at this
time

0xC0D23002 ECM_ERROR_SOE_SSC_ATTRIB
UTE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Attribute transmission is too
short

0xC0D23003 ECM_ERROR_SOE_SSC_ATTRIB
UTE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Attribute transmission is too
long

0xC0D23004 ECM_ERROR_SOE_SSC_ATTRIB
UTE_CANNOT_BE_CHANGED

SoE: Attribute cannot be changed

0xC0D23005 ECM_ERROR_SOE_SSC_ATTRIB
UTE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Attribute is write protected at
this time

0xC0D24001 ECM_ERROR_SOE_SSC_NO_UNI
T

SoE: IDN has no unit

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6517

Hexadecimal Value Definition Description
0xC0D24002 ECM_ERROR_SOE_SSC_UNIT_T

RANSMISSION_IS_TOO_SHORT
SoE: Unit transmission is too short

0xC0D24003 ECM_ERROR_SOE_SSC_UNIT_T
RANSMISSION_IS_TOO_LONG

SoE: Unit transmission is too long

0xC0D24004 ECM_ERROR_SOE_SSC_UNIT_C
ANNOT_BE_CHANGED

SoE: Unit cannot be changed

0xC0D24005 ECM_ERROR_SOE_SSC_UNIT_IS
_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Unit is write protected at this
time

0xC0D25001 ECM_ERROR_SOE_SSC_NO_MA
XIMUM_VALUE

SoE: IDN has no maximum value

0xC0D25002 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Minimum value transmission is
too short

0xC0D25003 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Minimum value transmission is
too long

0xC0D25004 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_CANNOT_BE_CHA
NGED

SoE: Minimum value cannot be
changed

0xC0D25005 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Mimum value is write protected
at this time

0xC0D26001 ECM_ERROR_SOE_SSC_NO_MA
XIMUM_VALUE

SoE: IDN has no maximum value

0xC0D26002 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Maximum value transmission is
too short

0xC0D26003 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Maximum value transmission is
too long

0xC0D26004 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_CANNOT_BE_CHA
NGED

SoE: Maximum value cannot be
changed

0xC0D26005 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Maximum value is write pro-
tected at this time

0xC0D27002 ECM_ERROR_SOE_SSC_OPDATA
_TRANSMIS-
SION_IS_TOO_SHORT

SoE: OpData transmission is too
short

0xC0D27003 ECM_ERROR_SOE_SSC_OPDATA
_TRANSMISSION_IS_TOO_LONG

SoE: OpData transmission is too
long

0xC0D27004 ECM_ERROR_SOE_SSC_OPDATA
_CANNOT_BE_CHANGED

SoE: OpData cannot be changed

0xC0D27005 ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: OpData is write protected at
this time

0xC0D27006 ECM_ERROR_SOE_SSC_OPDATA
_IS_LOWER_THAN_MIN-
IMUM_VALUE

SoE: OpData is lower than minimum
value

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6518

Hexadecimal Value Definition Description
0xC0D27007 ECM_ERROR_SOE_SSC_OPDATA

_IS_HIGHER_THAN_MAX-
IMUM_VALUE

SoE: OpData is higher than max-
imum value

0xC0D27008 ECM_ERROR_SOE_SSC_OPDATA
_IS_INVALID

SoE: OpData is invalid

0xC0D27009 ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_BY_PASSWORD

SoE: OpData is write protected by
password

0xC0D2700A ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_DUE_CYCLICALLY_CON-
FIGURED

SoE: OpData is write protected due
to being cyclically configured

0xC0D2700B ECM_ERROR_SOE_SSC_OPDATA
_INVALID_DIRECT_ADDRESSING

SoE: Invalid direct addressing

0xC0D2700C ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_DUE_OTHER_SETTINGS

SoE: OpData is write protected due
to other settings.

0xC0D2700D ECM_ERROR_SOE_SSC_OPDATA
_INVALID_FLOATING_POINT_NUM
BER

SoE: Invalid floating point number

0xC0D2700E ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_AT_PARAMETERIZA-
TION_LEVEL

SoE: OpData is write protected at
parameterization level

0xC0D2700F ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_AT_OPERATION_LEVEL

SoE: OpData is write protected at
operation level

0xC0D27010 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_ALREADY_ACTIVE

SoE: Procedure command already
active

0xC0D27011 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_INTERRUPTIBLE

SoE: Procedure command not inter-
ruptible

0xC0D27012 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_EXECUT-
ABLE_AT_THIS_TIME

SoE: Procedure command is not
executable at this time

0xC0D27013 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_EXECUT-
ABLE_INVALID_PARAM

SoE: Procedure command is not
executable due to invalid parameter

0xC0D4005C ECM_ERROR_ENI_NO_SLAVES_I
N_ENI

ENI does not contain any slaves

0xC0D50001 ECM_ERROR_ALSTAT-
CODE_UNSPECIFIED_ERROR

ALStatusCode: Unspecified error

0xC0D50002 ECM_ERROR_ALSTAT-
CODE_NO_MEMORY

ALStatusCode: No memory

0xC0D50003 ECM_ERROR_ALSTAT-
CODE_INVALID_DEVICE_SETUP

ALStatusCode: Invalid Device Setup

0xC0D50011 ECM_ERROR_ALSTAT-
CODE_INVALID_REQUESTED_ST
ATE_CHANGE

ALStatusCode: Invalid requested
state change

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6519

Hexadecimal Value Definition Description
0xC0D50012 ECM_ERROR_ALSTAT-

CODE_UNKNOWN_REQUESTED_
STATE

ALStatusCode: Unknown requested
state

0xC0D50013 ECM_ERROR_ALSTAT-
CODE_BOOTSTRAP_NOT_SUP-
PORTED

ALStatusCode: Bootstrap not sup-
ported

0xC0D50014 ECM_ERROR_ALSTAT-
CODE_NO_VALID_FIRMWARE

ALStatusCode: No valid firmware

0xC0D50015 ECM_ERROR_ALSTAT-
CODE_INVALID_BOOT_MAILBOX_
CONFIGURATION

ALStatusCode: Invalid BOOT
mailbox configuration

0xC0D50016 ECM_ERROR_ALSTAT-
CODE_INVALID_PREOP_MAILBOX
_CONFIGURATION

ALStatusCode: Invalid PREOP
mailbox configuration

0xC0D50017 ECM_ERROR_ALSTAT-
CODE_INVALID_SYNC_MAN-
AGER_CONFIGURATION

ALStatusCode: Invalid sync man-
ager configuration

0xC0D50018 ECM_ERROR_ALSTAT-
CODE_NO_VALID_INPUTS_AVAIL-
ABLE

ALStatusCode: No valid inputs avail-
able

0xC0D50019 ECM_ERROR_ALSTAT-
CODE_NO_VALID_OUTPUTS

ALStatusCode: No valid outputs

0xC0D5001A ECM_ERROR_ALSTAT-
CODE_SYNCHRONIZA-
TION_ERROR

ALStatusCode: Synchronization
error

0xC0D5001B ECM_ERROR_ALSTAT-
CODE_SYNC_MAN-
AGER_WATCHDOG

ALStatusCode: Sync Manager
watchdog

0xC0D5001C ECM_ERROR_ALSTAT-
CODE_INVALID_SYNC_MAN-
AGER_TYPES

ALStatusCode: Invalid Sync Man-
ager Types

0xC0D5001D ECM_ERROR_ALSTAT-
CODE_INVALID_OUTPUT_CON-
FIGURATION

ALStatusCode: Invalid output config-
uration

0xC0D5001E ECM_ERROR_ALSTAT-
CODE_INVALID_INPUT_CONFIGU-
RATION

ALStatusCode: Invalid input configu-
ration

0xC0D5001F ECM_ERROR_ALSTAT-
CODE_INVALID_WATCHDOG_CO
NFIGURATION

ALStatusCode: Invalid Watchdog
configuration

0xC0D50020 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_COLD_STA
RT

ALStatusCode: Slave needs cold
start

0xC0D50021 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_INIT

ALStatusCode: Slave needs INIT

0xC0D50022 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_PREOP

ALStatusCode: slave needs PREOP

0xC0D50023 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_SAFEOp

ALStatusCode: slave needs
SAFEOP

0xC0D50024 ECM_ERROR_ALSTAT-
CODE_INVALID_INPUT_MAPPING

ALStatusCode: Invalid Input Map-
ping

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6520

Hexadecimal Value Definition Description
0xC0D50025 ECM_ERROR_ALSTAT-

CODE_INVALID_OUTPUT_MAP-
PING

ALStatusCode: Invalid Output Map-
ping

0xC0D50026 ECM_ERROR_ALSTAT-
CODE_INCONSISTENT_SET-
TINGS

ALStatusCode: Inconsistent settings

0xC0D50027 ECM_ERROR_ALSTAT-
CODE_FREERUN_NOT_SUP-
PORTED

ALStatusCode: FreeRun not sup-
ported

0xC0D50028 ECM_ERROR_ALSTAT-
CODE_SYNCMODE_NOT_SUP-
PORTED

ALStatusCode: SyncMode not sup-
ported

0xC0D50029 ECM_ERROR_ALSTAT-
CODE_FREERUN_NEEDS_3BUFF
ER_MODE

ALStatusCode: FreeRun needs
3Buffer mode

0xC0D5002A ECM_ERROR_ALSTAT-
CODE_BACK-
GROUND_WATCHDOG

ALStatusCode: Background
Watchdog

0xC0D5002B ECM_ERROR_ALSTAT-
CODE_NO_VALID_INPUTS_AND_
OUTPUTS

ALStatusCode: No valid Inputs and
Outputs

0xC0D5002C ECM_ERROR_ALSTAT-
CODE_FATAL_SYNC_ERROR

ALStatusCode: Fatal Sync error

0xC0D5002D ECM_ERROR_ALSTAT-
CODE_NO_SYNC_ERROR

ALStatusCode: No Sync error

0xC0D50030 ECM_ERROR_ALSTAT-
CODE_INVALID_DC_SYNC_CON-
FIGURATION

ALStatusCode: Invalid DC SYNC
configuration

0xC0D50031 ECM_ERROR_ALSTAT-
CODE_INVALID_DC_LATCH_CON-
FIGURATION

ALStatusCode: Invalid DC Latch
configuration

0xC0D50032 ECM_ERROR_ALSTAT-
CODE_PLL_ERROR

ALStatusCode: PLL error

0xC0D50033 ECM_ERROR_ALSTAT-
CODE_DC_SYNC_IO_ERROR

ALStatusCode: DC Sync IO error

0xC0D50034 ECM_ERROR_ALSTAT-
CODE_DC_SYNC_TIMEOUT_ERR
OR

ALStatusCode: DC Sync Timeout
Error

0xC0D50035 ECM_ERROR_ALSTAT-
CODE_DC_INVALID_SYNC_CYCL
E_TIME

ALStatusCode: DC Invalid Sync
Cycle Time

0xC0D50036 ECM_ERROR_ALSTAT-
CODE_DC_SYNC0_CYCLE_TIME

ALStatusCode: DC Sync0 Cycle
Time

0xC0D50037 ECM_ERROR_ALSTAT-
CODE_DC_SYNC1_CYCLE_TIME

ALStatusCode: DC Sync1 Cycle
Time

0xC0D50041 ECM_ERROR_ALSTAT-
CODE_MBX_AOE

ALStatusCode: MBX_AOE

0xC0D50042 ECM_ERROR_ALSTAT-
CODE_MBX_EOE

ALStatusCode: MBX_EOE

0xC0D50043 ECM_ERROR_ALSTAT-
CODE_MBX_COE

ALStatusCode: MBX_COE

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6521

Hexadecimal Value Definition Description
0xC0D50044 ECM_ERROR_ALSTAT-

CODE_MBX_FOE
ALStatusCode: MBX_FOE

0xC0D50045 ECM_ERROR_ALSTAT-
CODE_MBX_SOE

ALStatusCode: MBX_SOE

0xC0D5004F ECM_ERROR_ALSTAT-
CODE_MBX_VOE

ALStatusCode: MBX_VOE

0xC0D50050 ECM_ERROR_ALSTAT-
CODE_EEPROM_NO_ACCESS

ALStatusCode: EEPROM no access

0xC0D50051 ECM_ERROR_ALSTAT-
CODE_EEPROM_ERROR

ALStatusCode: EEPROM error

0xC0D50060 ECM_ERROR_ALSTAT-
CODE_SLAVE_RESTARTED_LOC
ALLY

ALStatusCode: Slave restarted
locally

0xC0D50061 ECM_ERROR_ALSTAT-
CODE_DEVICE_IDENTIFICA-
TION_VALUE_UPDATED

ALStatusCode: Device identificatin
value updated

0xC0D500F0 ECM_ERROR_ALSTAT-
CODE_APPLICATION_CON-
TROLLER_AVAILABLE

ALStatusCode: Application controller
available

0xC0D58000 ECM_ERROR_ALSTAT-
CODE_VENDOR_SPE-
CIFIC_CODE_START

Begin of vendor-specific ALStatus-
Code mapping

0xC0D5FFFF ECM_ERROR_ALSTAT-
CODE_VENDOR_SPE-
CIFIC_CODE_END

End of vendor-specific ALStatus-
Code mapping

0xC0D60001 ECM_ERROR_IF_COE_SUP-
PORT_NOT_AVAILABLE

CoE support is not configured

0xC0D60002 ECM_ERROR_IF_SOE_SUP-
PORT_NOT_AVAILABLE

SoE support is not configured

0xC0D60003 ECM_ERROR_IF_FOE_SUP-
PORT_NOT_AVAILABLE

FoE support is not configured

0xC0D60004 ECM_ERROR_IF_AOE_SUP-
PORT_NOT_AVAILABLE

AoE support is not configured

0xC0D60005 ECM_ERROR_IF_INVALID_TRANS
PORT_TYPE

Invalid transfer type

0xC0D60006 ECM_ERROR_IF_SOE_INVALID_D
RIVE_NO

SoE: Invalid drive number

0xC0D60007 ECM_ERROR_IF_SOE_INVALID_E
LEMENT_FLAGS

SoE: invalid element flags

0xC0D60008 ECM_ERROR_IF_INVALID_SOE_T
RANSFER_ID

SoE: Invalid transfer ID

0xC0D60009 ECM_ERROR_IF_TRANSFER_AB
ORTED

Transfer aborted

0xC0D6000A ECM_ERROR_IF_OUT_OF_PACKE
TS

Out of packets

0xC0D6000B ECM_ERROR_IF_OUT_OF_TRAN
SFER_CONTEXTS

Out of transfer contexts

0xC0D6000C ECM_ERROR_IF_INVALID_SUB-
INDEX_FOR_COMPLETE_ACCESs

CoE: Invalid subindex for Complete
Access

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6522

Hexadecimal Value Definition Description
0xC0D6000D ECM_ERROR_IF_INVALID_COE_T

RANSFER_ID
CoE: Invalid transfer ID

0xC0D6000E ECM_ERROR_IF_INVALID_COE_S
DOINFO_LISTTYPE

CoE: Invalid SDOINFO ListType

0xC0D6000F ECM_ERROR_IF_FILE_READ_ER
ROR

File Read Error

0xC0D60010 ECM_ERROR_IF_COULD_NOT_O
PEN_FILE

Could not open file

0xC0D60011 ECM_ERROR_IF_INVALID_CONFI
G_NXD

Invalid config.nxd detected

0xC0D60012 ECM_ERROR_IF_CONFIG_NXD_
WITHOUT_SLAVES

Config.nxd does not contain any
slaves

0xC0D60013 ECM_ERROR_IF_INVALID_FILE_N
AME

Invalid file name

0xC0D60014 ECM_ERROR_IF_INVALID_FOE_T
RANSFER_ID

Invalid FoE transfer id

0xC0D60015 ECM_ERROR_IF_INVALID_GET_T
OPOLOGY_TRANSFER_ID

Invalid GetTopology transfer id

1.7.3.4.4 CM589-PNIO(-4) errors

Error
class

Compo-
nent
d1

Device
d2

Module
d3

Channel
d4

Error
identi-
fier

Error message Remedy Error
number

Online
text

E4 1..6 255 2 0 45 CM589 PNIO
device communica-
tion module has no
connection to net-
work

Check
cabeling

1844879
81

E4: Ext.
[1..6]
[COU-
PLER],
E4: Int.
[COU-
PLER]

1.7.3.4.5 CM598-CN errors
CM598-CN Errors can be read out with function blocks:
Ä Chapter 1.5.4.7.1.9 “CANOM_NODE_DIAG_EXT” on page 937

Ä Chapter 1.5.4.7.1.14 “CANOM_STATE ” on page 952

Ä Chapter 1.5.4.7.1.15 “CANOM_SYS_DIAG” on page 957.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6523

1.7.3.4.6 AC500-S: errors from safety CPU and safety I/O modules
Table 790: Common error messages for SM560-S / SM560-S-FD-1 / SM560-S-FD-4 safety CPUs
Error
severity

Compo-
nent or
interface

Device Module Channel Error Error text Remedy

E2 1 ... 4 255 30 1 0 Operation fin-
ished.

Change safety PLC switch
address setting or remove
memory card from non-safety
PLC.
Restart safety PLC. If this
error persists, replace safety
PLC.

E2 1 ... 4 255 30 1 1 Wrong user
data

Delete user data from safety
PLC. Restart safety PLC and
write user data again.

E2 1 ... 4 255 30 1 2 Internal
PROFIsafe initi-
alization error

Restart safety PLC. If this
error persists, replace safety
PLC. Contact ABB technical
support.

E2 1 ... 4 255 30 1 12 Flash read error Restart safety PLC. If this
error persists, replace safety
PLC. Contact ABB technical
support.

E2 1 ... 4 255 30 1 18 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 1 28 Boot project
download error

Reload boot project. If this
error persists, replace safety
PLC.

E2 1 ... 4 255 30 1 40 Wrong firmware
version

Update safety PLC firmware.
Restart safety PLC. If this
error persists, replace safety
PLC.

E2 1 ... 4 255 30 1 43 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 1 48 Overvoltage or
undervoltage
detected

Restart safety PLC. Check
safety PLC setting for power
supply error. If this error per-
sists, replace safety PLC.

E2 1 ... 4 255 30 1 52 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 0 User program
triggered safe
stop

Check user program

E2 1 ... 4 255 30 2 1 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 2 Internal
PROFIsafe error

Restart safety PLC. If this
error persists, replace safety
PLC. Contact ABB technical
support.

E2 1 ... 4 255 30 2 3 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 10 Internal error Contact ABB technical sup-
port. Replace safety PLC.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6524

Error
severity

Compo-
nent or
interface

Device Module Channel Error Error text Remedy

E2 1 ... 4 255 30 2 13 Flash write error Restart safety PLC. If this
error persists, replace safety
PLC. Contact ABB technical
support.

E2 1 ... 4 255 30 2 17 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 18 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 19 Checksum error
has occurred in
safety PLC.

Restart safety PLC. If this
error persists, replace safety
PLC.

E2 1 ... 4 255 30 2 25 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 37 Cycle time error
in safety PLC

Check safety PLC watchdog
time.

E2 1 ... 4 255 30 2 38 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 42 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 43 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 52 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 2 54 Internal error Contact ABB technical sup-
port. Replace safety PLC.

E2 1 ... 4 255 30 3 30 PROFIsafe con-
figuration error

Check F-Parameter configu-
ration of I/O module and
reload boot project.

E2 9 1 ... 4 1 0 17 Access test
failed

Check safety PLC switch
address setting. Restart
safety PLC. If this error per-
sists, replace safety PLC.

E2 9 1 ... 4 1 0 43 Internal error Check safety PLC switch
address setting. Restart
safety PLC. If this error per-
sists, replace safety PLC

E2 9 1 ... 4 31 0 43 Internal error Replace module

E3 1 ... 4 255 30 1 26 Error in configu-
ration data,
safety PLC
cannot read
configuration
data

Create new configuration data

E3 1 ... 4 255 30 1 27 Error in configu-
ration data,
safety PLC
cannot read
configuration
data

Create boot project

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6525

Error
severity

Compo-
nent or
interface

Device Module Channel Error Error text Remedy

E4 1 ... 4 255 30 1 0 Operation fin-
ished

Change safety PLC switch
address setting or remove
memory card from non-safety
PLC. Restart safety PLC. If
this error persists, replace
safety PLC.

E4 1 ... 4 255 30 1 4 Boot project not
loaded, max-
imum power dip
reached

Restart safety PLC

E4 1 ... 4 255 30 1 8 Power dip data
missed or cor-
rupted. Default
power dip data
was flashed by
safety PLC.

Warning

E4 1 ... 4 255 30 1 19 Checksum error
has occured in
safety PLC con-
figuration.

Create new boot project and
restart safety PLC

E4 1 ... 4 255 30 2 13 Flash write error
(production
data)

Warning

E4 1 ... 4 255 30 2 26 No or wrong
configuration
data from PM5x,
run state not
possible

Create correct boot project at
PM5x

E4 1 ... 4 255 30 2 39 More than one
instance of
SF_WDOG_TIM
E_SET or
SF_MAX_POW
ER_DIP_SET

Warning

E4 1 ... 4 255 30 4 13 Flash write error
(boot project)

Warning

E4 1 ... 4 255 30 5 13 Flash write error
(boot code)

Warning

E4 1 ... 4 255 30 6 13 Flash write error
(firmware)

Warning

E4 1 ... 4 255 30 7 13 Flash write error
(password)

Warning

E4 1 ... 4 255 30 8 13 Flash write error
(user data)

Warning

E4 1 ... 4 255 30 9 13 Flash write error
(user data)

Warning

E4 1 ... 4 255 30 10 13 Flash write error
(internal)

Warning

E4 1 ... 4 255 30 11 13 Flash write error
(internal)

Warning

E4 1 ... 4 255 30 12 13 Flash write error
(internal)

Warning

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6526

Table 791: Specific error messages for SM560-S-FD-1 / SM560-S-FD-4 safety CPUs
Error
severity

Compo-
nent or
interface

Device Module Channel Error Error text Remedy

E2 1 ... 4 255 28 0 ... 31 43 Internal
PROFIsafe F-
Device error

Restart safety PLC. If this
error persists, replace safety
PLC. Contact ABB technical
support.

E3 1 ... 4 255 28 0 ... 31 1 Safety destina-
tion address not
valid
(F_Dest_Add)

Check safety PLC configura-
tion or switch address setting.
Restart safety PLC. If this
error persists, replace safety
PLC.

E3 1 ... 4 255 28 0 ... 31 2 Safety source
address not
valid
(F_Source_Add
)

Check safety PLC configura-
tion.

E3 1 ... 4 255 28 0 ... 31 10 Parameter
"F_SIL"
exceeds SIL
from specific
device applica-
tion

Check safety PLC configura-
tion.

E3 1 ... 4 255 28 0 ... 31 11 Safety
watchdog time
value is 0 ms
(F_WD_Time)

Check safety PLC configura-
tion.

E3 1 ... 4 255 28 0 ... 31 19 CRC1-Fault Check safety PLC configura-
tion. If this error persists, con-
tact ABB technical support.

E3 1 ... 4 255 28 0 ... 31 28 Mismatch of
safety destina-
tion address
(F_Dest_Add)

Check safety PLC configura-
tion or switch address setting.
Restart safety PLC. If this
error persists, replace safety
PLC.

E3 1 ... 4 255 28 0 ... 31 42 Parameter
"F_CRC_Length
" does not
match the gen-
erated values

Check safety PLC configura-
tion.

E3 1 ... 4 255 28 0 ... 31 40 Version of F-
Parameter set
incorrect

Check safety PLC configura-
tion.

E3 1 ... 4 255 30 1 17 Safety source
addresses
cannot be
checked

Check PROFIsafe F-Host
library version (2.0.0 or
above). If this error persists,
contact ABB technical sup-
port.

E3 1 ... 4 255 30 1 54 PROFIsafe
F_Dest_Add
rules are vio-
lated

Check safety PLC configu-
ration or switch address
setting against PROFIsafe
F_Dest_Add configuration
rules. Restart safety PLC. If
this error persists, contact
ABB technical support.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6527

Error
severity

Compo-
nent or
interface

Device Module Channel Error Error text Remedy

E3 1…4 255 28 0…31 26 F_Block_ID not
supported

Check safety PLC configura-
tion

E3 1…4 255 28 0…31 20 Transmission
error: data
inconsistent
(CRC2 error)

Check installation and wiring

E3 1…4 255 28 0…31 25 Transmission
error: timeout
(F_WD_Time or
F_WD_Time_2
elapsed)

Check safety PLC configura-
tion

Table 792: Error messages for safety I/O modules (channel or module reintegration is possible)
Error
severity

Compo-
nent or
interface

Device Module Channel Error Error text Remedy

E3 14 1..10 0 0..15 3 Discrepancy
time expired

Check discrepancy time
value, channel wiring and
sensor.

E3 14 1..10 0 0..15 12 Test pulse error Check wiring and sensor.

E3 14 1..10 0 0..15 13 Channel test
pulse cross-talk
error

Check wiring and sensor. If
this error persists, replace I/O
module. Contact ABB tech-
nical support.

E3 14 1..10 0 0..15 25 Channel stuck-
at error

Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace
I/O module.

E3 14 1..10 0 0..15 28 Channel cross-
talk error

Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace
I/O module.

E3 14 1..10 1 0..3 4 Measurement
overflow at the
I/O module

Check channel wiring and
sensor power supply.

E3 14 1..10 1 0..3 7 Measurement
underflow at the
I/O module

Check channel wiring and
sensor power supply.

E3 14 1..10 1 0..3 55 Channel value
difference too
high

Adjust tolerance window for
channels. Check channel
wiring and sensor configura-
tion.

E3 14 1..10 2 0..7 13 Channel read-
back error

Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace
I/O module.

E3 14 1..10 2 0..7 18 Channel cross-
talk error

Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace
I/O module.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6528

Error
severity

Compo-
nent or
interface

Device Module Channel Error Error text Remedy

E3 14 1..10 31 31 10 Process voltage
too high

Check process voltage

E3 14 1..10 31 31 11 Process voltage
too low

Check process voltage

E3 14 1..10 31 31 20 PROFIsafe
communication
error

Restart I/O module. If this
error persists, contact ABB
technical support.

E3 14 1..10 31 31 25 PROFIsafe
watchdog timed
out

Restart I/O module. If
this error persists, increase
PROFIsafe watchdog time.

E3 14 1..10 31 31 43 Internal error in
the device

Replace I/O module

Table 793: Error messages for safety I/O modules (channel or module reintegration is not possible)
Error
severity

Compo-
nent or
interface

Device Module Channel Error Error text Remedy

E3 14 1..10 31 31 18 Plausibility
check failed
(iParameter)

Check configuration

E3 14 1..10 31 31 19 Checksum error
in the I/O
module

Check safety configuration
and CRCs for I- and F-
Parameters.

E3 14 1..10 31 31 26 Parameter error Check master or configuration

E3 14 1..10 31 31 28 F-Parameter
configuration
and address
switch value do
not match.

Check I/O module F-Param-
eter configuration and module
address switch value.

1.7.3.5 Error messages of the AC500 V2 function block libraries
1.7.3.5.1 0000hex...0FFFhex - telegram error

DEC HEX Error description
0 0000 No error

1 0001 COM_MOD_MAST: Error message from slave ILLEGAL FUNCTION
ETH_MOD_MAST:Error message from slave ILLEGAL FUNCTION

2 0002 COM_MOD_MAST: Error message from slave ILLEGAL DATA ADDRESS
ETH_MOD_MAST: Error message from slave ILLEGAL DATA ADDRESS

3 0003 COM_MOD_MAST: Error message from slave ILLEGAL DATA VALUE
ETH_MOD_MAST: Error message from slave ILLEGAL DATA VALUE

4 0004 COM_MOD_MAST: Error message from slave SLAVE DEVICE FAILURE
ETH_MOD_MAST: Error message from slave SLAVE DEVICE FAILURE

5 0005 COM_MOD_MAST: Error message from slave ACKNOWLEDGE
ETH_MOD_MAST: Error message from slave ACKNOWLEDGE

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6529

DEC HEX Error description
6 0006 COM_MOD_MAST: Error message from slave SLAVE DEVICE BUSY

ETH_MOD_MAST: Error message from slave SLAVE DEVICE BUSY

8 0008 COM_MOD_MAST: Error message from slave MEMORY PARITY ERROR
ETH_MOD_MAST: Error message from slave MEMORY PARITY ERROR

9 0009 COM_MOD_MAST: Error message from slave SEE SLAVE DESCRIPTION
ETH_MOD_MAST: Error message from slave SEE SLAVE DESCRIPTION

10 000A COM_MOD_MAST: Error message from slave GATEWAY PATH UNAVAIL-
ABLE
ETH_MOD_MAST: Error message from slave GATEWAY PATH UNAVAIL-
ABLE

11 000B COM_MOD_MAST: Error message from slave GATEWAY TARGET DEVICE
FAILED TO RESPOND
ETH_MOD_MAST: Error message from slave GATEWAY TARGET DEVICE
FAILED TO RESPOND

4095 0FFF FLASH_READ, FLASH_WRITE FLASH_DEL while ERR=FALSE: Block exe-
cution is in process

1.7.3.5.2 1000hex...1FFFhex - device error

DEC HEX Error description
4097 1001 Device does not exist

4098 1002 Command not supported by the device. The function is not supported by the
device firmware/hardware. Block library newer than the device firmware.
FC..: No high-speed counter available at the given module.

4100 1004 Error operating mode.
FC..: Operating mode "0" -> No counter set in the PLC configuration.

4101 1005 Invalid status
FLASH_READ: Block is not written yet
FLASH_WRITE: Block was already written
RETAIN..: No program loaded
Library PROFINET IO: PNIO_WRITE, PNIO_READ: Internal error. Restart the
PLC.

4117 1015 Format error
SD..: File cannot be read because of an invalid format. Data could not be read
or not be read completely.

4119 1017 Incorrect length
PERSISTENT..: Data have an incorrect length
RETAIN..: Data have an incorrect length

4120 1018 Checksum error

4122 101A FC..: Internal error (e.g. no CS31 Adr parameter found, wrong size of CS31
Adr)
HA..: Internal error (e.g. null pointer received, wrong return value of internal
function, no entry in configuration found)

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6530

DEC HEX Error description
4123 101B Device access error

Flash..: Resources are not available
HA..: Remote CPU failure: Other CPU is off or out of order
PERSISTENT..: Data could not be copied, access error or no data do exist
RETAIN..: Data could not be copied, access error or no data do exist
SD..: Access to the memory card is not possible (e.g. memory exhausted, file
already opened, etc.

4124 101C Incorrect number
PERSISTENT..: Because of the current CPU parameters, data are loaded
only partly

4127 101F Access protection
SD..: Memory card is write protected

4128 1020 Error when opening
SD..: Error when opening a file stored on the memory card

4129 1021 Not found
FC..: CS31 Bus Module not found
EtherCAT Modul not found
HA_CS31_CONTROL: Own CI590-CS31-HA slave failure (missing module)
HA_CS31_DIAG: One or more CI590-CS31-HA slave(s) is/are inactive
HA_CS31_DIAG_VIA_CM574-RS: One or more CI590 are inactive
SD..: The searched sector could not be found in the file
TASK_INFO: Unknown task

4130 1022 End reached
SD..: Section end or end of file reached
PERSISTENT..: Because of the current CPU parameters, data are not loaded

4131 1023 Reading error
FLASH..: Reading error in data segment: Incorrect checksum

4132 1024 Writing error
FLASH..: Block cannot be programmed
SD..: File could not be deleted or written

4137 1029 FC..: Wrong configuration (e.g. no CM574-RS configured on specified slot)
HA..: Remote CI590-CS31-HA slave failure (missing module)

8191 1FFF Not ready
Flash..: The command is already executed by an other instance
SD..: Command cannot be executed. Another instance is already active.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6531

1.7.3.5.3 2000hex...2FFFhex - interface error

DEC HEX Error description
8193 2001 Invalid interface, Communication Module number or slot ID

COM: Interface is not configured in the "free mode"
HA: Wrong COM number at input COM
ETH-MOD-MAST: Invalid interface or slot ID

8194 2002 Command not supported by the interface. The function is not supported by the
device firmware. Block library newer than the device firmware.

8195 2003 Invalid interface or Communication Module type. Block is not suitable for this
type.

8197 2005 HA..: CS31 Bus failure

8198 2006 Fault on both local and remote CPU.

8211 2013 Timeout
COM_MOD_MAST: Slave did not respond within the specified time
HA..: No Ethernet link, Error in DPRAM communication between CM574-RS
and AC500 CPUs.
ECAT_COE_READ, ECAT_COE_Write: Response timeout occurs

8212 2014 Framing error (incorrect transmission rate, number of stop bits and/or bits per
character)

8213 2015 Parity error
HA: Remote CS31 slave sync error. Difference in digital/ analog output buffer
of PLC A and B

8214 2016 Idle error
COM..: Character timeout occurred

8215 2017 Invalid length
COM_MOD_MAST: Invalid data length received
COM_REC: Received more data than expected

8216 2018 Checksum error

8217 2019 Handshake error

8218 201A Service failed
COM_REC: Unknown error message of the interface
COM_SET_PROT: Interface hardware not accessible. Initialization already
failed during system start-up.
COM_MOD_SLV_SET_ADDR..: Internal error (e.g. wrong return value of
internal function, null pointer received)
CS31..: Internal error (e.g. CS31 communication failed)
FC..: Internal error (e.g. null pointer received, wrong return value of internal
function, no entry in config found)
HA..: Internal error (e.g. null pointer received, wrong return value of internal
function, no entry in configuration found)

8219 201B Access error
HA..: Remote CS31 Bus failure: Other CPUs' CS31 Bus is out of order
IO..: Module number does not exist

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6532

DEC HEX Error description
8220 201C Incorrect number (quantity)

COM_SET_PROT: Invalid protocol index. Index is not supported by the device
firmware.
COM_MOD_SLV_SET_ADDR..: Invalid protocol index.
HA..: Numbers of CI590-CS31-HA devices configured in line A and line B are
different
IO..: Invalid module number

8223 201F Access denied
COM..: Access to the interface is not possible at present. Automation Builder,
OPC or another program is logged in via the interface.

8226 2022 COM_MOD_SLV_SET_ADDR..: Wrong configuration (No protocols config-
ured).
FC..: Wrong configuration (e.g. no Automation Builder configuration, no CS31
configured, no CS31 modules found).
HA..: Overflow of HA_DATA reference table

8233 2029 ● HA_CS31_CONTROL:
– CI590-CS31-HA slave configuration not complete
– CI590-CS31-HA slaves in Bus1 and Bus2 are mix-wired
– Remote CI590-CS31-HA Failure
– CS31 Master Cross Wired / No CS31 configuration / No submodules

on CS31 bus
● HA_CS31_DIAG/ HA_CS31_DIAG_VIA_CM574-RS

– CI590-CS31-HA slaves in line A and line B are mix-wired.

8234 202A HA: configuration error:
● Wrong CM574-RS communication
● CM574-RS COM interface is not configured for shared communication
● CM574-RS not added to Communication Module slot
● Wrong configuration of DIAG blocks

1.7.3.5.4 3000hex...3FFFhex - protocol error

DEC HEX Error description
12289 3001 Unknown protocol or protocol not configured.

MqttClient: The Network Connection has been made but the MQTT service is
unavailable on the specified port.

12290 3002 Command not supported by the protocol. The function is not supported by the
device firmware. Block library newer than the device firmware.

12291 3003 Another protocol is configured.
FC_DC551: The selected interface (COMx) is not set to the CS31 protocol.
COM_MOD_SLV_SET_ADDR..: The selected interface (COMx) is not set to
the Multi protocol.
COM_MOD_SLV_SET_ADDR..: Wrong protocol index (No Modbus protocol
on specified index).
HA: No CS31 protocol at COM.
BACnet B-ASC: Multiple function block instances, one instance allowed only.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6533

DEC HEX Error description
12292 3004 Operating mode error

COM_MOD_MAST: Invalid operating mode (master/slave).

12293 3005 Protocol status error
Fieldbus Communication Module .._SYS_DIAG: Master is not in the
OPERATE state.
ETH_SMTP_EMAIL_SEND: Internal error (ulHandle wrong).
BACnet B-ASC: No device object instantiated.

12307 3013 IEC..: ACTCON timeout
ETH_SMTP_EMAIL_SEND: Server timeout
MqttClient: The timeout value for the communication has been exceeded.

12308 3014 IEC..: NACK received

12309 3015 ETH_SMTP_EMAIL_SEND: Syntax error in mail address

12310 3016 IEC..: Timeout

12311 3017 Incorrect length
ARC..: Buffer is full
CAN2..: Total length of all messages too high
IEC..: Queue overrun
ETH_UDP..: Buffer is full.
MqttClient: Received topic or payload is too long.

12313 3019 IEC..: ACTERM timeout
Wait answer
ETH_SMTP_EMAIL_SEND: Could not connect to server. Not reachable or
does not answer.

12314 301A Execution failed
COM_SET_PROT: Initialization of the protocol failed
IEC..: Send failed due to queue deleted
COM_MOD_SLV_SET_ADDR..: Internal error (e.g. null pointer received,
wrong return value of internal function)
ETH_SMTP_EMAIL_SEND: Internal error. Mail not sent. (e.g. out of
resources)
ETH_ICMP_PING: Target Host did not answer the ping echo request before
the specified timeout
MqttClient: MQTT broker did not answer the ping. MQTT client has passed
the KeepAlive or MQTT broker is unreachable.

12315 301B Access error
ARC..: Buffer does not exist / is not specified
CAN2..: Buffer does not exist / is not specified
ETH_UDP..: Buffer does not exist / is not specified
IEC..: Protocol access error
IO..: There is no module in the selected slot

12316 301C Wrong number
IO..: Invalid module number > max.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6534

DEC HEX Error description
12319 301F Access denied

COM..: Access to the interface is not possible at present. Automation Builder,
OPC or another program is logged in via the interface.
MqttClient: The Client identifier is correct UTF-8 but not allowed by the Server.

12320 3020 Error when opening
ARC..: Error during protocol initialization. Protocol not yet ready.
CAN2..: Error during protocol initialization. Protocol not yet ready.
IEC..: Data type mismatch for this PIN when data arrived.
ETH_UDP..: Error during protocol initialization. Protocol not yet ready.
ETH_SMTP_EMAIL_SEND:
● File for attachment cannot be opened
● Server not ready (wrong port configured?)
MqttClient: The Server does not support the level of the MQTT protocol
requested by the Client.

12321 3021 ETH_SMTP_EMAIL_SEND: File for attachment not found
CPU_PROD_ENTRY_READ: Entry not found

12325 3025 Address error
COM_MOD_MAST: Receive telegram does not contain the expected register
address.
ETH_MOD_MAST: Cannot connect to server (IP address) OR response tele-
gram contains wrong UNIT_ID (must be the same as in request).
ETH_SMTP_EMAIL_SEND: Internal error (Could not bind sockets).
ETH_UDP_REC: Wrong INDEX for connection.
ETH_UDP_SEND: Wrong INDEX for connection or IP Destination does not
contain a valid IP address.
MqttClient: Connection refused, maybe the IP address is malformed.

12326 3026 Function error
COM_MOD_MAST: The received FCT does not correspond to the sent FCT.

12327 3027 Invalid value
COM_MOD_MAST: Receive telegram contains an unexpected value.
MqttClient: Network error on MqttSubscribe/MqttUnsubscribe. Maybe the topic
is not valid.

12328 3028 ETH_SMTP_EMAIL_SEND: Out of sockets. Mail not sent (resource starva-
tion).
ETH_ICMP_PING: Could not create internal Task (not enough resources).
BACnet B-ASC: Protocol task start failed.

12329 3029 HA..: CI590-CS31-HA slave configuration is not complete.

12331 302B Unspecified error
MqttClient: Internal library returned an unspecified error.

12333 302D No connection, sending not possible due to no connection, either closed or
not established yet
MqttClient: No connection to an MQTT Broker.

12540 30FC ETH_SMTP_EMAIL_SEND: Mailbox unavailable or not found on target
server. SMTP error by server.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6535

DEC HEX Error description
12788 31F4 ETH_SMTP_EMAIL_SEND: Syntax Error. SMTP error by server.

12789 31F5 Syntax error in parameters or arguments.

12790 31F6 Command not implemented. SMTP error by server.

12791 31F7 The SMTP server has encountered a bad sequence of commands, or it
requires an authentication.

12823 3217 ETH_SMTP_EMAIL_SEND: Wrong user login and/or password. Check config-
uration. SMTP Error by server.
MqttClient: Authentication failed: Bad username, password OR client id.

12838 3226 ETH_SMTP_EMAIL_SEND

12839 3227 ETH_SMTP_EMAIL_SEND: Mailbox unavailable or not found on target
server. SMTP Error by server.

12840 3228 ETH_SMTP_EMAIL_SEND: Exceeded mailbox storage on target server.
SMTP Error by server.

12841 3229 ETH_SMTP_EMAIL_SEND: Mailbox name not allowed. SMTP Error by
server.

12848 3230 MqttClient: Error on TLS handshake.

12849 3231 MqttClient: Server certificate not valid. Check if PLC date has been set cor-
rectly.

12850 3232 MqttClient: Server certificate format is not formatted as PEM.

12851 3233 MqttClient: Server certificate has expired.

12852 3234 MqttClient: Client certificate not valid. Check if PLC date has been set cor-
rectly.

12853 3235 MqttClient: Client certificate or client key format is not formatted as PEM.

12854 3236 MqttClient: Client certificate has expired.

16383 3FFF Not ready. Resources currently not available.
COM_MOD_MAST: Transmission is not possible at the moment. Another
instance of the function block is already transmitting.
COM_SEND: Transmission is not possible at the moment. Another instance of
the function block is already transmitting.
BACnet B-ASC: No memory for BACnet objects.

1.7.3.5.5 4000hex...4FFFhex - block input error
The error 4xxxhex is used in case of detected function block input parameter errors. The error is
structured as follows:
4 X1 X2 X3 hex

X... Value Error Description
X1 + X2 1....FF Number of the input

X3 0 Invalid value

1 Value too low

2 Value too high

3 Wrong combination of the parameters

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6536

1.7.3.5.6 5000hex...5FFFhex - request error

DEC HEX Error description
20482 5002 The request is not supported (e.g. in the simulation mode of the Automation

Builder).

20485 5005 Invalid internal state -> function block probably called in invalid manner/
sequence

20499 5013 Timeout error
ECAT_COE_READ, ECAT_COE_Write: Request timeout occurs

20503 5017 Incorrect length
ARC..: Invalid data length
CAN2..: Invalid DLC in message
ETH_UDP..: Invalid data length
ECAT_COE_READ, ECAT_COE_Write: Request/ Response length invalid

20504 5018 Traceability data is corrupted.

20507 501B Access error
COM_MOD_MAST: Invalid memory address DATA or DATA + NB. At least
one datum is outside of the access range of the user program. The range
includes different flag ranges.
ETH_MOD_MAST: Invalid memory address DATA or DATA + NB. At least one
datum is outside of the access range of the user program. The range includes
different flag ranges.

20508 501C Invalid number (quantity)
CAN2A_SEND: Invalid number of messages at input NUM
COM_MOD_MAST: Invalid number of data at NB (0 or more than permitted).
ETH_MOD_MAST: Invalid number of data at NB (0 or more than per-
mitted).20515

20513 5021 IO_PROD_ENTRY_READ: I/O Module not found: input MODULE invalid

20515 5023 Failed to read traceability data from I/O Module.

20517 5025 Address error
ARC..: Invalid IP address
CAN2..: Invalid identifier in message
COM_MOD_MAST: Invalid slave address. Broadcast not permitted in connec-
tion with the selected function code.
ETH_MOD_MAST: Invalid slave address. Broadcast not permitted in connec-
tion with the selected function code.
ETH_UDP..: Invalid IP address.

20518 5026 Function error
COM_MOD_MAST: Invalid function code FCT.
ETH_MOD_MAST: Invalid function code FCT.

20735 50FF DIAG..: Simulation mode

24575 5FFF Operation pending / busy -> wait and try again later

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6537

1.7.3.5.7 6000hex...6FFFhex - communication module errors

DEC HEX Error description
24577 6001 EtherCAT: Invalid command received

PNIO: Creating a TLR-timer-packet in RPC task failed due to insufficient
memory

24578 6002 EtherCAT: No link exists OR the watchdog expired
CAN..: Service was rejected by the node with SDO abortion. Index/subindex
not valid or no access to the specified node.
DNM..: Resource not available or invalid class ID
DPM../DPV1..: Resource not available. Free buffer memory in slave is not
sufficient for the requested service.
PNIO: Generic RPC-error code or not enough memory

24579 6003 EtherCAT: Error during reading the bus configuration OR the requested
watchdog time is too small.
DPM../DPV1..: Requested service (e.g. DPV1) is not active in the slave.

24580 6004 Communication Module does not support DPRAM message communication
function blocks OR There is no receive function block active in IEC project of
Communication Module.
EtherCAT: Error during processing the bus configuration OR The requested
watchdog time is too large.

24581 6005 EtherCAT: Existing bus does not match configured bus OR Error during reset
(resetting watchdog).

24582 6006 EtherCAT: Not all slaves are available OR Error during reset (cleanup
dynamic resources)
DPM../DPV1..: Slave address not configured

24583 6007 EtherCAT: Error during reset (stopping the master) OR master is in critical
error state, reset required.

24584 6008 EtherCAT: Error during reset (deinitializing the master) OR error activating the
watchdog.
DNM..: Service not available in module. Read/write function not supported by
the selected class.

24585 6009 EtherCAT: Error during reset (cleanup the dynamic resources) OR size of
configured input data is larger than cyclic DPM input data size.
DNM..: Attribute invalid or not supported
DPM../DPV1..: No data received from slave

24586 600A EtherCAT: Master is in critical error state. Reset required OR size of config-
ured output data is larger than DPM data output size.

24587 600B EtherCAT: The requested bus cycle time is invalid
DNM..: Request is already in progress

24588 600C EtherCAT: Invalid parameter for broken slave behavior.
DNM..: Conflict of the object status

24589 600D EtherCAT: Master is in wrong internal state

24590 600E EtherCAT: The watchdog expired
DNM..: Attribute cannot be set or writing is not permitted

24591 600F EtherCAT: Invalid SlaveID was used for CoE
DNM..: Permission check faulty or access denied

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6538

DEC HEX Error description
24592 6010 EtherCAT: No available resources for CoE Transfer

DNM..: Status conflict. Device prohibits execution

24593 6011 EtherCAT: Internal error during CoE usage
CAN..: No response from the selected node
DNM..: No response from the selected device
DPM../DPV1..: No response received from slave.

24594 6012 EtherCAT: Invalid index on slave requested
DPM../DPV1..: Master not in logical "token ring".
PNIO: Internal error inside Communication Module's firmware

24595 6013 EtherCAT: Invalid bus communication state for CoE-usage
CAN..: Selected node is not ready for operation
DNM..: Not enough receive data

24596 6014 EtherCAT: Frame with CoE data is lost
CAN..: Local resources are not available. Requested bus parameters are not
available. Communication Module is not configured.
DNM..: Local resources are not available. Requested bus parameters are not
available. Communication Module is not configured.
PNIO: Internal error inside Communication Module's firmware

24597 6015 EtherCAT: Timeout during CoE service
CAN..: Parameter error
DNM..: Parameter error

24598 6016 EtherCAT: Slave is not addressable (not on bus or power down)
DNM..: Object does not exist

24599 6017 EtherCAT: Invalid list type requested
Other Communication Modules: Received data length too big. Internal buffer
too small.

24600 6018 EtherCAT: Data in slave response is to large for confirmation packet.
PNIO: Internal error inside Communication Module's firmware

24601 6019 EtherCAT: Invalid access mask selected (during GetEntryDesc)
DPM../DPV1..: Unexpected reaction of slave or reaction not in accordance
with standard.

24602 601A EtherCAT: Slave Working Counter error during CoE service
PNIO: Another request is already running
ETH2 not supported on AC500 CPU with Ethernet

24603 601B EtherCAT: The service is already in use

24604 601C EtherCAT: Command is not usable in this communication state

24605 601D EtherCAT: Distributed Clocks must be activated for this command

24606 601E EtherCAT: The scan is already running. It cannot be started twice at the same
time

24607 601F EtherCAT: Timeout during bus scan, but at least one link is established

24608 6020 EtherCAT: The bus scan was not started before or it is not finished yet

24609 6021 EtherCAT: The requested slave is invalid

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6539

DEC HEX Error description
24610 6022 EtherCAT: Internal error during CoE usage

24612 6024 PNIO: Internal error inside Communication Module's firmware

24615 6027 EtherCAT: Internal error of SDO protocol

24616 6028 EtherCAT: Internal error of SDO protocol

24617 6029 EtherCAT: Internal error of SDO protocol

24618 602A EtherCAT: Internal error of SDO protocol

24619 602B EtherCAT: Internal error of SDO protocol

24620 602C EtherCAT: Internal error of SDO protocol

24621 602D EtherCAT: Not enough memory

24622 602E EtherCAT: Selected object could not be accessed

24623 602F EtherCAT: Selected object is write only

24624 6030 EtherCAT: Selected object is read only
CAN..: Function timeout
DNM..: Device not configured
PNIO: Internal error inside Communication Module's firmware

24625 6031 EtherCAT: Selected object does not exist
PNIO: Internal error inside Communication Module's firmware

24626 6032 EtherCAT: PDO mapping failed
DNM..: Format error in the received data
ETH_UDP..: TCP/UDP task not available or IP task not ready.
PNIO: Internal error inside Communication Module's firmware

24627 6033 EtherCAT: Selceted object is to large to be mapped to PDO
CAN..: Maximum buffer size of the receive data exceeded
ETH_UDP..: Internal task with configuration data not available
PNIO: The ALPMR protocol-machine corresponding to the index in request
packet is invalid

24628 6034 EtherCAT: General parameter error occured
CAN..: Function not available. Code unknown.
DNM..: Code unknown
ETH_MOD..: Invalid parameter for "ServerConnection"
ETH_UDP..: No MAC address available
PNIO: The ALPMR protocol-machine is invalid for the current request

24629 6035 EtherCAT: Internal device error occured
CAN..: Unknown area. Buffer exceeded.
DNM..: Overflow of buffer length
ETH_MOD..: Invalid parameter for "Task Timeout"
ETH_UDP..: Waiting for warm start performed by the application

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6540

DEC HEX Error description
24630 6036 EtherCAT: Hardware error occured

CAN..: Unknown function in HOST message or function still active
DNM..: Other service still active
ETH_MOD..: Invalid parameter for "OBM Timeout"
ETH_UDP..: Unknown flag in start parameters
DPM../DPV1..: Slave denied access to the requested data

24631 6037 EtherCAT: Invalid data type
CAN..: Parameter error
DNM..: Parameter error or MAC ID beyond the valid range
ETH_MOD..: Invalid parameter for "Mode"
ETH_UDP..: Invalid IP address in start parameters
PNIO: The index of ALPMR protocol-machine is invalid

24632 6038 EtherCAT: Invalid data type
ETH_MOD..: Invalid parameter for "Send Timeout"
ETH_UDP..: Invalid subnet mask in start parameters

24633 6039 EtherCAT: Invalid data type
CAN..: Sequence error
DNM..: Sequence error or one MAC ID was multiple used in one network
ETH_MOD..: Invalid parameter for "Connect Timeout"
ETH_UDP..: Invalid gateway IP in start parameters

24634 603A EtherCAT: Invalid sub-index
ETH_MOD..: Invalid parameter for "Close Timeout".

24635 603B EtherCAT: Invalid parameter value
CAN..: Data error
DNM..: Data error
ETH_MOD..: Invalid parameter for "Swab"
ETH_UDP..: Unknown device type

24636 603C EtherCAT: Invalid parameter value
CAN..: Node address configured twice
DNM..: Display of total number of data sets incorrect
ETH_MOD..: TCP task not ready
ETH_UDP..: Access to IP address in the specified source failed

24637 603D EtherCAT: Invalid parameter value
CAN..: ADD table incorrect
DNM..: ADD table incorrect
ETH_MOD..: PLC task not ready
ETH_UDP..: Initialization of the driver layer failed

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6541

DEC HEX Error description
24638 603E EtherCAT: Invalid parameter value

CAN..: Total length of the node parameters incorrect
DNM..: Size of the I/O configuration table incorrect
ETH_MOD..: Error during initialization
ETH_UDP..: No source specified for IP address (BOOTP, DHCP, IP address
parameter)

24639 603F EtherCAT: Internal error of SDO protocol
CAN..: Transmission type unknown
DNM..: I/O configuration does not match with the ADD table

24640 6040 EtherCAT: Internal device error occured
CAN..: Length of the PDO-cfg file too big
DNM..: Parameter size incorrct or channel/handler already in use
PNIO: Internal error inside Communication Module's firmware

24641 6041 EtherCAT: Internal device error occured
CAN..: Unknown transmission rate
DNM..: Number of defined inputs in the ADD table does not match with the
I/O configuration
PNIO: Internal error inside Communication Module's firmware

24642 6042 EtherCAT: Internal device error occured
CAN..: COB-ID SYNC beyond the valid range
DNM..: Number of defined outputs in the ADD table does not match with the
I/O

24643 6043 EtherCAT: Internal device error occured
CAN..: Value of the synchronization timer invalid
DNM..: Unknown data type in the I/O configuration

24644 6044 EtherCAT: Unknown SDO protocol error
CAN..: Input offset of the PDOs too big
DNM..: Defined data type of an I/O module does not match with the defined
data size

24645 6045 CAN..: Output offset of the PDOs too big
DNM..: The configured output address of an I/O module is not within the
permitted address range of 3584 bytes

24646 6046 CAN..: Inconsistency between the PDO and the ADD table
DNM..: The configured input address of an I/O module is not within the per-
mitted address range of 3584 bytes

24647 6047 CAN..: Length of the ADD table inconsistent
DNM..: Unknown connection type

24648 6048 CAN..: Total data length inconsistent
DNM..: Several identical connections defined

24649 6049 CAN..: COB-ID Emergency beyond the permitted range
DNM..: The configured value of the "Exp_Packet_Rate" of a connection is
smaller than the value of the "Prod_Inhibit_Time"

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6542

DEC HEX Error description
24650 604A CAN..: COM-ID Node Guard beyond the permitted range

DNM..: Inconsistent parameter field "DNM_PRED_MSTSL_CFG_DATA"

24651 604B CAN..: Configured PDO length greater than 8
DNM..: Device could not perform "Duplicate_MAC-ID check". Incorrect trans-
mission rate or no connection to the device possible.

24652 604C CAN..: Number of defined objects in SDO data too big
DNM..: Value of "usRecFragTimer" beyond the permitted range

24657 6051 PNIO: The current bus state is OFF and no frames can be sent

24659 6053 PNIO: The state of APMS protocol-machine is invalid for the current request

24660 6054 PNIO: APMS was not able to get an Edd_Frame buffer for sending a packet

24661 6055 PNIO: An error occurred while APMS was trying to send an Edd_Frame

24662 6056 PNIO: Device not reachable (DEV_NAME is not projected)

24663 6057 PNIO: Insufficient memory for APMS_send_req_Date() to allocate a timer-
indication packet

24672 6060 PNIO: The acyclic service failed. The I/O module answered with an error
code. See output STATUS (EtherCAT status) for details.

24679 6067 PNIO: The maximum amount of data supported by this service is exceeded.

24686 606E ETH_UDP..: Timeout has occurred

24687 606F ETH_MOD..: Unknown send or receive telegram
ETH_UDP..: Invalid timeout parameter

24688 6070 ETH_MOD..: TCP responds with an error
ETH_UDP..: Invalid socket

24689 6071 ETH_MOD..: No corresponding socket found
ETH_UDP..: Command cannot be executed in the current socket state

24690 6072 ETH_MOD..: Command with invalid value

24691 6073 ETH_MOD..: TCP task status error
ETH_UDP..: No access to target IP address

24692 6074 ETH_UDP..: Invalid option parameter

24693 6075 ETH_MOD..: No free socket found
ETH_UDP..: Invalid command parameter

24694 6076 ETH_MOD..: TCP command is directed to an unknown socket
ETH_UDP..: Invalid IP address or no access to address
HA..: Wrong IP address configured

24695 6077 ETH_MOD..: Time for a client job is over
ETH_UDP..: Invalid port number or port not available

24696 6078 ETH_MOD..: Socket has been closed unexpectedly
ETH_UDP..: Connection closed

24697 6079 ETH_MOD..: Not-Ready flag has been set by the user
ETH_UDP..: Connection reset

24698 607A ETH_MOD..: OMB task cannot open socket
ETH_UDP..: Invalid protocol

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6543

DEC HEX Error description
24699 607B ETH_MOD..: Watchdog event in PLC task, only in I/O mode

ETH_UDP..: No socket available

24700 607C ETH_MOD..: TCP task in configuration state
ETH_UDP..: Invalid MAC address

24701 607D ETH_MOD..: PLC task not initialized

24702 607E ETH_MOD..: Server socket was closed without response from the device

24703 607F ETH_MOD_MAST.

24705 6081 DPM../DPV1..: DPV1 not in "OPEN" state

24706 6082 ETH_UDP..: Invalid mode parameter
DPM../DPV1..: Invalid parameters received from slave. Communication
stopped.

24707 6083 ETH_UDP..: Maximum data length exceeded or ARP cache full
DPM../DPV1..: Service still active. Parallel operation is not possible

24708 6084 ETH_UDP..: Maximum number of messages exceeded
DPM../DPV1..: Data length too high for the reserved buffer

24709 6085 ETH_UDP..: Maximum number of IP multicast groups exceeded
DPM../DPV1..: Wrong parameter

24710 6086 ETH_UDP..: ARP input not found in ARP cache

24725 6095 ETH_UDP..: Invalid message response received

24727 6097 ETH_MOD..: Invalid message length
ETH_UDP..: Invalid message length

24728 6098 CAN..: Unknown message command
DNM..: Unknown message command
ETH_MOD..: Unknown message command
ETH_UDP..: Unknown message command

24730 609A DPM../DPV1..: Invalid message command

24732 609C ETH_UDP..: Sequence error during transmission in Sequence Message Mode

24734 609E ETH_UDP..: Command cannot be executed or command is currently exe-
cuted

24736 60A0 ETH_MOD..: Error in telegram header

24737 60A1 CAN..: Node address beyond the permitted range
DNM..: Device address beyond the permitted range
ETH_MOD..: Invalid address detected in the telegram
DPM../DPV1..: Invalid slave address

24738 60A2 CAN..: Invalid address range
DNM..: Invalid address range

24739 60A3 CAN..: Data buffer overflow
DNM..: Data buffer overflow
ETH_MOD..: Invalid data address

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6544

DEC HEX Error description
24741 60A5 CAN..: Incorrect data counter

DNM..: Incorrect data counter
ETH_MOD..: Invalid data counter

24742 60A6 CAN..: Unknown data type
DNM..: Unknown data type

24743 60A7 CAN..: Unknown function
DNM..: Unknown function
ETH_MOD..: OBM task received an error in the response of the TCP task

24776 60C8 CAN..: Communication Module is not configured
DNM..: Communication Module is not configured
ETH_UDP..: Task not initialized

24778 60CA ETH_MOD..: OBM task does not have a segment from RCS

24779 60CB ETH_MOD..: Unknown or invalid sender specified with the command

24786 60D2 ETH_UDP..: No configuration data available

24788 60D4 ETH_UDP..: Error while reading the configuration data

24789 60D5 ETH_UDP..: Error while creating the diagnosis structure

24794 60DA ETH_UDP..: Not enough memory available

24832 6100 PNIO: Generic RPC-error code. See output STATUS (PROFINET-status) for
details.

24847 610F ETH_MOD_MAST: Wrong MBAP header received

24848 6110 ETH_MOD..: Invalid Unit Identifier received

24850 6112 ETH_MOD_MAST: Invalid MBAP header Length value

25088 6200 PNIO: Internal error inside Communication Module's firmware

25089 6201 PNIO: Internal error inside Communication Module's firmware

26117 6605 PNIO: Internal error inside Communication Module's firmware

26118 6606 PNIO: Internal error inside Communication Module's firmware

26119 6607 PNIO: Internal error inside Communication Module's firmware

Abbreviations
RPC Remote Procedure Call

CMCTL Controller Context Management

APMS Acyclic Protocol-Machine sender

APMR Acyclic Protocol-Machine receiver

1.7.3.5.8 7000hex...7FFFhex - product libraries
Table 794: Drives library
Dec Hex Error description
28672 7000 Any activity was NOT completed within an appropiate TIME

28673 7001 Read or write parameter could not be completed

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6545

Dec Hex Error description
28674 7002 A parameter at the function block is out of the possible range. This does not refer

to the parameter range which is allowed for the drive but just to the 32-bit integer
which is used for internal calculation

28675 7003 The field bus connection is faulty

28677 7005 Wrong PPO type

28678 7006 Wrong or no adapter type could be detected

28679 7007 Drive type does not match to function block

28680 7008 Function aborted

28681 7009 Error while reading scaling parameter for REF1

28682 700A Wrong parameter number at read/write parameter

28683 700B COM interface differs from others on same LINE_TOKEN variable

28684 700C Profile type error

28685 700D Function block Read_Parameters has been executed with error

28686 700E Function block Write_Parameters has been executed with error

28687 700F No connection to communication block, or error in communication block

28688 7010 Error at reading the drives communication profile value

28689 7011 Drive communication profile can not be used with this function block

28690 7012 PROFINET or PROFIBUS write packet size exceed 240 byte data limit

Table 795: Solar library
Dec Hex Error description
28928 7100 ALARM: Limit exceeded. System has moved more than POS_DEG_LIMIT dis-

tance without any moving command.

28929 7101 ALARM: Timeout. The system has not reached POS_DEG_LIMIT within the toler-
ance time (3 * t POS_TIME_LIMIT [ms]).

28930 7102 ALARM: Limit at wrong side reached. System has reached POS_DEG_LIMIT
distance in the opposite DIR to actual movement order.

28931 7103 ALARM: Low Limit exceeded. Tracker position is less than VIRTUAL_LIMIT_MIN.

28932 7104 High Limit exceeded. Tracker position is more than VIRTUAL_LIMIT_MAX.

28933 7105 Warning: Interlocking. Try to move BACKWARD while STOP_BWD input is set.

28934 7106 Warning: Interlocking. Try to move FORWARD while STOP_FWD input is set.

28935 7107 Warning: Interlocking. Both STOP_BWD and STOP_FWD input are set.

Table 796: Data logger library
Dec Hex Error description
29184 7200 zLOG_ERROR_NO_TYPE_SPECIFIED

29185 7201 zLOG_ERROR_LENGTH_BOOL_EXCEEDED

29186 7202 zLOG_ERROR_LENGTH_BYTE_EXCEEDED

29187 7203 zLOG_ERROR_LENGTH_INT_EXCEEDED

29188 7204 zLOG_ERROR_LENGTH_WORD_EXCEEDED

29189 7205 zLOG_ERROR_LENGTH_DINT_EXCEEDED

29190 7206 zLOG_ERROR_LENGTH_DWORD_EXCEEDED

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6546

Dec Hex Error description
29191 7207 zLOG_ERROR_LENGTH_REAL_EXCEEDED

29195 720B zLOG_ERROR_OPEN_ERR

29196 720C zLOG_ERROR_GETPOS_ERR

29197 720D zLOG_ERROR_SETPOS_ERR

29198 720E zLOG_ERROR_WRITE_ERR

29199 720F zLOG_ERROR_READ_ERR

29200 7210 zLOG_ERROR_CLOSE_ERR

29201 7211 zLOG_ERROR_GETSIZE_ERR

29202 7212 zLOG_ERROR_FLUSH_ERR

29205 7215 zLOG_ERROR_MAX_NUMBER_OF_FILES_EXCEEDED

29206 7216 zLOG_ERROR_MAX_NUMBER_OF_DATASETS_PRO_FILE

29207 7217 EXCEEDED zLOG_ERROR_FILE_WRITE_FAILED

29208 7218 zLOG_ERROR_FILE_READ_FAILED

29210 721A zLOG_ERROR_CREATE_DIRECTORY

29211 721B zLOG_ERROR_FILE_MOVE

29212 721C zLOG_ERROR_NO_CSV_FOUND_IN_DATASET

29213 721D zLOG_ERROR_DELETE_ACTUAL_FILE

29214 721E zLOG_ERROR_FORMAT_DISK1

29215 721F zLOG_ERROR_FORMAT_DISK2

29216 7220 zLOG_ERROR_DELETE_ACTUAL_FILES_NO_FILE_FOUND

29217 7221 zLOG_ERROR_DELETE_SAVE_FILES_NO_FILE_FOUND

29218 7222 zLOG_ERROR_ILLEGAL_MODE

29219 7223 zLOG_ERROR_ILLEGAL_DESIGNATION_ON_DISK1

29220 7224 zLOG_ERROR_ILLEGAL_DESIGNATION_ON_DISK2

29221 7225 zLOG_ERROR_FORMAT_NOT_SUPPORTED

29222 7226 zLOG_ERROR_MODE3_AND_DISK2_EXTENTION_TRUE_NOT_ALLOWED

29230 722E zLOG_ERROR_29230_TIMEOUT_DIRECTORY_CREATE_FILE_MOVE

29231 722F zLOG_ERROR_RESERVE

29232 7230 zLOG_ERROR_TIMEOUT_DISK_FORMAT

29233 7231 zLOG_ERROR_TIMEOUT_FILE_DELETE

29234 7232 zLOG_ERROR_TIMEOUT_WRITE_DATASET_IN_FILE

29235 7233 zLOG_ERROR_TIMEOUT_READ_DATASET_IN_CASE_OF_CONNECT

29236 7234 zLOG_ERROR_TIMEOUT_WRITE_DATASET_IN_CASE_OF_CONNECT

29237 7235 zLOG_ERROR_TIMEOUT_READ_DATASET_IN_CASE_OF_NOT_CONNECT

29238 7236 zLOG_ERROR_TIMEOUT_IEC60870_COMMUNICATION

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6547

Table 797: Temperature control library
Dec Hex Error description
29312 7280 Fault (TuneFault): "Tuning failed": outputs disabled, see Tune_Status

Remedy: Check for tune set point and currrent temperatur

29313 7281 Fault (TC_Fault_1): "Bad Thermocouple reading": outputs disabled.
Remedy: Bad Thermocouple reading: outputs disabled

29314 7282 Fault (TC_Fault_2): "Plausibility check not passed": outputs disabled.
Remedy: Check for inverted connection of Thermocouple.

29315 7283 Fault (HighHighTempFalt): "HighHigh temperature alarm": outputs disabled.
Remedy
● Check for defective cooling device.
● Check for correct setting of HIGHHIGH_TEMP and SET_TEMP.

29316 7284 Fault (LowLowTempFault): "LowLow temperature alarm": outputs disabled.
Remedy
● Check for defective heating device.
● Check for correct setting of LOWLOW_TEMP and SET_TEMP.

29319 7287 High temperature alarm

29320 7288 Low temperature alarm

29321 7289 High deviation alarm

29330 7292 Zone_size and zone_index are not assigned

29335 7297 No group function block call possible: internal Group function call for
TECT_TEMP_CONTROL or TECT_PWM8 failed.

29336 7298 TimeOut of one operation state.

29337 7299 Read data failed: no correct format of data items.

29322 728A Low deviation alarm

29323 728B Fault: (NoHighHighLowLow): "No plausible HighHigh or LowLow limit is defined"
Remedy: Check the HighHighTemp and low low temp.

29324 728C Fault (WrongLimits): "No plausible wrong limits defined"
Remedy: Check the defined limits.

29325 728D Heat and Cool are not enabled: Monitoring only.

29326 728E Faut (NoAutoTune): "AutoTune cannot be started"
Remedy: Process in Manual mode or Heat is not enabled

29327 728F Fault (NoPIDProcess): "PID process cannot be started"
Remedy: Process in Manual mode or no KS, TU, TG parameters are accepted.

29328 7290 Fault (Improper setting of HigHigh and High): HighHigh and High limits are not set
correctly. Values are not taken by process/ADR_ZONEDATA.
Remedy: Check parameter settings.

29329 7291 Fault (Improper setting of LowLow and Low): LowLow and Low limits are not set
correct. Values are not taken by process/ADR_ZONEDATA.
Remedy: Check parameter settings.

29330 7292 Fault (No assignment for zone index and size): Zone_size and zone_index are not
assigned.
Remedy: Check parameter settings.

PLC Automation with V2 CPUs
Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/203ADR010582, 3, en_US6548

Dec Hex Error description
29335 7297 Fault (No Group function possible):no Group function block call possible: internal

Group function call for TECT_TEMP_CONTROL or TECT_PWM8 failed.

29336 7298 TimeOut of one operation state.

29337 7299 Fault (Reading failed):Read data failed: no correct format of data items.
Remedy: Check parameter settings.

29338 729A Fault (Incomplete log saving): Restart of the EN is required since last log saving is
not complete

29339 729B Fault (Less zone data available in RECIPE file than requested):Mismatch in
number of zones declared and zone data in recipe.
Remedy: Check the zone data in CSV file and Num_of_zones declared in
RECIPE.

Table 798: CMS/FM502 library
Dec Hex Error description
29440 7300 Invalid file format.

29445 7305 Number of channels > 1, not supported by this version of library.

29440 7300 Invalid RIFF Chunk ID

29441 7301 Invalid WAV Chunk ID

29442 7302 Invalid FMT Chunk ID

29443 7303 Invalid DATA Chunk ID

29444 7304 Invalid LABL Chunk ID

29445 7305 Number of channels >1 , not supported by this version of library.

29504 7340 No Channel activated

29505 7341 Internal Error (Start)

29506 7342 Internal Error (Poll)

29507 7343 Internal Error (Finish)

29508 7344 Not possible because of measurement running

29519 734F No Measurement possible. Device in Failure Loop.

29520 7350 Comunication Timeout to FM502

29521 7351 Internal File Error

29522 7352 Plausibility Check of Configuration wrong

29569 7381 Error in memory allocation to the input signal, due to insufficient memory available.

29571 7383 Wrong intermediate variable value

29572 7384 Error during reading wave file - check wave file for format compatibility.

29573 7385 Could not open indicated wave file.

PLC Automation with V2 CPUs

Diagnosis and debugging for AC500 V2 products > Diagnosis messages

2022/01/20 3ADR010582, 3, en_US 6549

1.8 Engineering interfaces and tools
1.8.1 Export and import interfaces
1.8.1.1 Exporting and importing ECAD data (PBF)

Automation Builder provides an ECAD interface for exchanging the PLC configuration data with
EPLAN Electric P8 and Zuken E3. This feature removes double data entry between electrical
engineering in the ECAD tool and the control logic programming in Automation Builder by
synchronizing the PLC hardware including topology and I/O signals between these tools.
Automation Builder - ECAD interface supports various flexible workflows:
● Enables PLC hardware planning and configuration in the ECAD tool and allows importing

the exported data from the ECAD tool through the PBF file (process integration bus
interchange format) into the Automation Builder project with diff and merge functionality,
providing full control on selective import/merge.

● Enables PLC hardware configuration in Automation Builder and allows exporting the config-
uration to the ECAD tool through a PBF file.

● Supports bi-directional roundtrip engineering with loss less data exchange between
Automation Builder and the ECAD tool.

Automation Builder uses the rack information to identify the relations between:
● PLC and devices plugged to I/O bus or extension bus.
● Fieldbus slave and attached IO devices.
It is recommended to assign the PLC, IO devices, communication modules and fieldbus slaves
properly to the rack in the ECAD project. If the rack information is missing, devices will be
imported to the device pool and must be arranged manually in the Automation Builder project or
mapped to already existing devices.

1.8.1.1.1 Requirements on EPLAN electric P8
● EPLAN Electric P8 with PLC and Bus Extension. It is recommended to use version 2.3 or

later.
● Use of appropriate part data and macros for ABB devices. This can be achieved by getting

the part data and macros from the EPLAN data portal.

1.8.1.1.2 Importing PLC data from the ECAD tool
You can create a new Automation Builder PLC project from the existing PLC hardware configu-
ration in your ECAD tool, by importing the exported PBF file to Automation Builder.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. From the file system, select the PBF file.

Automation Builder starts importing the devices and its associated signals from the PBF
file. After a successful import, the result is displayed in the Project Compare –Differ-
ences view. You can now decide and selectively merge the differences.

3. Select the DevicePool node and click “Accept Block” to accept the complete PLC structure
in the ECAD tool.

4. Select the PLC node and click “Accept Block” to accept all child device nodes.

The DevicePool node holds all devices coming from the ECAD tool
without any hierarchy information. The missing hierarchy information can
be defined after closing the editor.

5. Close the Project Compare – Differences view to accept the changes.

Import PBF file
to Automation
Builder

PLC Automation with V2 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/203ADR010582, 3, en_US6550

6. Arrange unassigned devices in the DevicePool to the PLC hardware structure by drag-
and-drop.

ð The I/O signals assigned to I/O devices in the PBF file are imported and allocated to
IO devices. IO signals can be viewed in I/O mapping editor of the I/O devices.

1.8.1.1.3 Importing third party devices
Prerequisite: To import third party devices from ECAD to Automation Builder, install third party
fieldbus devices (for example, GSD, GSDML and EDS files) using “Tools è Device repository”
in Automation Builder.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. From the file system, select the ECAD pbf file which consists of third party devices.

ð When the device identifier of the third party device installed in Automation Builder
does not match with the device identifier of the device imported from ECAD, an error
window is shown with the devices which are failed to import with error identifier 14.
To import third party devices, it is required to assign ECAD identifier (PLC type desig-
nation/order number) in Automation Builder in “Tools è Device ECAD data”. Click the
link in the Import window to see the error messages in a text file.

3. Click “Continue” in the Import window to import valid devices to the project that are
imported successfully or click “Cancel” to cancel the import process.

4. In Automation Builder, click “Tools è Device ECAD data”.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/20 3ADR010582, 3, en_US 6551

5. In the Device ECAD data editor, add the ECAD identifier for the devices shown in the
import errors window with error identifier 14, to enable these devices for export and
import.

ð Also, add the ECAD identifiers for all devices which need to support export/import in
ECAD.

6. Reimport the pbf file to import the third party devices.

1.8.1.1.4 Exporting PLC data to ECAD tool
1. Open the existing PLC project.
2. In the device tree, right-click “PLC è Export è ECAD (PBF)”.
3. Select the desired location in the file system to save the PBF file.

The ECAD user can import the exported PBF file from Automation Builder and can use the
imported PLC data for electrical engineering purpose. If the user modifies imported PLC
data in the ECAD project, the data can be imported back to the Automation Builder project
which supports the round trip engineering efficiently with loss less synchronization of the
data.

1.8.1.1.5 Exporting third party devices
1. Right-click on a PLC device, click “Export” and select “ECAD (PBF)”.
2. Save the file to the desired location in the file system.

If the third party devices does not contain assigned ECAD identifiers, a message is
displayed showing which devices cannot be exported.

ð To add ECAD identifiers to the devices, see Importing third party devices Ä Chapter
1.8.1.1.3 “Importing third party devices” on page 6551.
After adding ECAD identifiers to the third party devices, execute “Export” to export the
devices including third party devices.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/203ADR010582, 3, en_US6552

1.8.1.1.6 Importing ECAD PLC data to existing AB project
Automation Builder ECAD interface supports concurrent engineering by importing the ECAD
data to the existing Automation Builder PLC project.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. Select the PBF file which has been created during the export from the ECAD tool.
3. Select the PLC from the list and click “OK”.

ð A dialog window is displayed if the Automation Builder project provides PLCs of the
identical type as defined in the PBF file.
By selecting “None” in the dialog window a new PLC is defined in the ECAD tool.

4. In the Project Compare – Differences view, click to merge device signals.

ð The differences between the current PLC hardware configuration in Automation
Builder and the ECAD PLC data are displayed.

5. Select the differences as desired and click “Accept Single” to accept the selected differ-
ence block.

6. Close the Project Compare – Differences view to accept the changes.

1.8.1.1.7 Arrange or map devices imported to the device pool
Devices that are imported to the device pool because of missing hierarchy information (mainly
rack information) must be arranged manually in the Automation Builder project or mapped to
already existing devices.

Arrange the unassigned devices in the DevicePool to the PLC hardware structure by drag-and-
drop.

If the devices are already added to the Automation Builder project prior to the import, you have
to map the instances of the same type manually (one instance in the Automation Builder project
tree and one instance in the DevicePool).
After mapping the devices, you can selectively merge the device parameter or signal in the
difference view.
To map pool devices, proceed as follows:

Arrange devices
imported to the
device pool

Map devices
imported to the
device pool

PLC Automation with V2 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/20 3ADR010582, 3, en_US 6553

1. In the device tree, select the Device Pool node, click “Project” and select “Map pool
devices”.

2. Map the device pool instances of identical types in the project from the drop-down list and
click “OK”.

ð Pool devices which are mapped are removed from the device pool and mapped to
the corresponding Automation Builder device. Differences between the signals of the
mapped I/O devices are displayed. e.g. AI523_1 device:

1.8.1.1.8 Limitations
The following limitations are considered when working with the Automation Builder ECAD inter-
face:
● The scope of a PBF file is limited to one single PLC including all connected devices.
● There is no representation of XC variants of devices in Automation Builder. Therefore,

always use the standard variant for export. This might lead to part data mismatch when
importing into the ECAD tool.

● In reimport or round trip import cases, if any changes are made in ECAD by adding a
new communication module with connecting to one of the PLC slot or replacing existing
communication module, then those device changes to the communication modules are not
displayed as connected to PLC slots during the import in Automation Builder diff and import,
instead those CM modules are added under the device pool. After merging and importing is
completed, to work with device pool devices Ä Chapter 1.8.1.1.7 “Arrange or map devices
imported to the device pool” on page 6553.

● IO mapping data cannot be imported for IO devices plugged to an EtherCAT slave when
they are imported individually to the device pool because of missing hierarchy information.
After arranging the devices properly in the device tree, the import can be done again to
import also the IO mapping data.

1.8.1.2 Exporting and importing I/O mapping (CSV)
The I/O module mappings of an Automation Builder project can be exported to CSV for bulk
editing in MS Excel or other documentation purposes. I/O mappings can be exported at single
I/O module level or at PLC level.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/203ADR010582, 3, en_US6554

Further, the I/O module mappings can be imported with the option of displaying differences and
merging each single changed or import all signals at once by overwriting existing I/O module
signals.

1.8.1.2.1 Exporting IO mapping data to CSV
To export I/O mappings to a CSV signal list, proceed as follows:
1. In the device tree, right-click “PLC è Export è IO mapping (CSV)”.
2. Save the IO mappings CSV to the desired location in the file system.

If the CSV signal list has been exported successfully, a success message is displayed.
The status of the export is shown in the dialog.

3. In the export dialog, click the link to open the exported IO mapping CSV file in MS Excel.

The template can only be opened if MS Excel is installed and configured
to open .csv files.

4. In the IO mapping (CSV) file, change Variable and Description fields to edit I/O map-
pings.

ð
Do not modify other field’s data in IO mapping (CSV) file.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/20 3ADR010582, 3, en_US 6555

1.8.1.2.2 Importing I/O mapping data from CSV
To import an edited I/O mapping (CSV) file, proceed as follows:
1. From the main menu, select “Project è Import è IO mapping (CSV) è Open”.
2. A CSV signal list import dialog is displayed.

ð With “YES”, all I/O mappings will be imported without difference view. With “NO”, the
difference view is displayed with the I/O mapping differences.

3. In the Project Compare – Differences view, click to merge I/O mappings.
4. Select the signal row for which the difference is to be accepted. Select the Variable field

and click “Accept Single” to merge the I/O mappings.
5. Close the Project compare – Differences view to accept the changes and merge the I/O

mappings with the Automation Builder project.

1.8.1.3 Exporting and importing device list (CSV)
The Automation Builder project devices can be exported to CSV for bulk device renaming or
adding device tag labels to devices in MS Excel or other documentation purposes. A devices
export is only possible at PLC level.
Automation Builder provides importing devices in bulk based on device type, instance and
hierarchy information provided in the CSV file.

1.8.1.3.1 Exporting device list to CSV
To export a CSV device list, proceed as follows:
1. In the device tree, right-click “PLC è Export è Device list (CSV)”.
2. Select the desired location in the file system to save the Device list (CSV).

If the CSV device list is exported successfully, a success message is displayed.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/203ADR010582, 3, en_US6556

3. In the Export dialog, click the link to open the exported CSV device list.
The exported CSV device list consists of all devices connected to the PLC that is
exported. Each row represents a device with its device type and hierarchy information.

1.8.1.3.2 Creating CSV device list
To create the devices in CSV, use the device list template provided in Automation Builder.

In the main menu, click “Tools è Create CSV Device list”.

ð The device list template is opened in the MS Excel.

The template can only be opened if MS Excel is installed and config-
ured to open .csv files.

In this file, add each device in a separate row with device information like Device Type
(Order Num or Device Type Name) and instance details (name, tag) and hierarchy
information (parent Device name, parent Device Tag, position). The mandatory infor-
mation required to import CSV is only Device Type. All other fields are optional. After
editing the device list CSV file, save it in the file system and close.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/20 3ADR010582, 3, en_US 6557

1.8.1.3.3 Importing a device list from CSV
To import devices from CSV in bulk, proceed as follows:
1. From the main menu, click “Project è Import è Device list (CSV)”.
2. Select the device list CSV file from the file system and click “Open” in the Import dialog.

All devices that are defined in the CSV are imported. The Project Compare – Differ-
ences view displays the current project and the project that has been updated by the
import file.

3. Select the desired devices and click “Accept Block” to accept all the devices and its child
device nodes or “Accept Single” to accept only a single device.

4. After closing the Project Compare – Differences view, the devices are imported to the
Automation Builder project.

ð The devices (except PLC) are placed under the device pool if the valid device hier-
archy information is not provided in the CSV device list file. By drag-and-drop devices
can be assigned to the desired PLC hardware structure Ä Chapter 1.8.1.1.7 “Arrange
or map devices imported to the device pool” on page 6553.
If a device tag is provided for a device in CSV, it appears next to each device node in
the device tree.

1.8.1.3.4 Renaming devices
To rename the devices, proceed as follows:
1. In the device tree, right-click “PLC è Export è Device list (CSV)”.
2. Select the desired location from the file system to save the CSV device list.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Export and import interfaces

2022/01/203ADR010582, 3, en_US6558

3. Rename the device names in the column Device Name:

4. Click “Project è Import è Device list (CSV)”.
5. Select the updated CSV file from the file system.

Open the Project Compare – Differences view. If only the device names have been
changed in the CSV file, the difference view does not show the changes.

Device Name changes are not displayed as changes in the difference
view.

6. Close the Project Compare – Differences view. The Renamed Devices dialog is dis-
played with the current name and the new name provided in the CSV file.

7. In the Rename Devices window, select the desired devices and click “OK”.
The device names are updated in the Automation Builder project.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Export and import interfaces

2022/01/20 3ADR010582, 3, en_US 6559

1.8.2 Virtual commissioning technology
Virtual Commissioning Technology offers the user to do commissioning of the devices in
advance. The user can verify variable data exchange between different devices and run those
in simulation. The user need to create system model which represents physical system for
commissioning.
Virtual Commissioning Technology supports AC500 V2 PLC, ACS380 Drive and ACS580 Drive.
To work with this feature, apart from essential license, the user need to enable Virtual Mode
(“Online è Virtual Mode”).
Drive parameterization is required to start data exchange between virtual drive and virtual PLC.
For information on drive parameterization, see PROFIBUS and PROFINET manuals.

1.8.2.1 Virtual mode
Virtual Mode option enables virtual mode for Automation Builder. This mode is retained even
after closing the project. To disable virtual mode, the user need to undo the selection of Virtual
Mode option. To enable Virtual Mode, select “Online è Virtual Mode” in the Automation Builder
main menu.
The Virtual Mode is enabled and the Virtual System Testing selection appears in the menu.

1.8.2.2 Virtual system testing
Virtual System Testing devices (launch/shutdown) monitor its process state and allows simula-
tion of those devices based on selection.
The Virtual System Testing editor contains Virtual Devices and Simulation sections.

Virtual Devices section helps the user to process and monitor virtual devices by:
● Launching virtual device(s)
● Monitoring state of virtual device
● Shutdown virtual device(s)
● Selection of devices for simulation

The user can launch all the virtual devices together using “Launch All” or for individual virtual
device using “Launch”. The state of buttons changes from launch to shutdown when the
selected virtual device starts running. Virtual Device State represents the state of virtual device
process and independent of simulation state.

Virtual devices

Launching vir-
tual devices

PLC Automation with V2 CPUs
Engineering interfaces and tools > Virtual commissioning technology

2022/01/203ADR010582, 3, en_US6560

The process of logging in to virtual PLC is same as real PLC.
After launching the virtual device, login the application in the device tree to enter online mode.
● In the devices tree, right-click on “App” and select “Login” to login the application.
The virtual device enters online mode and connected virtually with the PLC device.

Fig. 1177: Online mode

If there is no program on the controller, the application notifies to download a
new program.

The user can shutdown all the virtual devices together using “Shutdown All” or for individual
virtual device using “Shutdown”. The state of buttons changes from shutdown to launch when
the selected virtual device stops.

1.8.2.3 Simulation
The simulation runs a program in virtual devices which are selected in Virtual Devices section.
The configuration of a system model should be correct to proceed with the simulation. The
variable exchange between different devices occurs when the simulation is running.

Virtual online
mode

Shutdown vir-
tual devices

PLC Automation with V2 CPUs

Engineering interfaces and tools > Virtual commissioning technology

2022/01/20 3ADR010582, 3, en_US 6561

Without system model, the simulation can be run independently for selected devices. The user
can do this when there is no variable data exchange desired.
The simulation supports Free running simulation and Time slice simulation modes. The user
need to choose the mode and then launch virtual devices in respective mode. After launching
virtual devices, switching to the other mode is not allowed.

Before starting simulation, the signal consistency check is performed on the following criteria.
● In a System Model, the broken signal should not exist. While configuring System Model, if

you delete any mapped model block instance then it will create a broken signal. The user
need to clear broken connections using Clear Broken Connection.

● Any input pin cannot be mapped to multiple output pins.
● Any mapped signal must have variable associated with it.
● Variable associated with mapped signal must have a matching data type.
If a configured system model fails to achieve any of these criteria, an error message is shown to
the user and the simulation cannot be allowed to continue.

In Free running simulation, the virtual devices are not synchronized through virtual time. Each
device which has participated is running freely. The user can only Start and Stop the simulation.
The time elapsed is displayed to indicate the time for which simulation is running.

Fig. 1178: Free running simulation

Before starting simulation, the user need to define:
● Cycle time: Defines interval for variable data exchange in free running mode.
● Reset PLC: If selected, earlier state of virtual device will be reset.

In Time slice simulation mode, the virtual devices are always synchronized through virtual
devices. In this mode, the Steps and Pause buttons are enabled. The user has the two entry
points Start or Steps for simulation.
The Virtual time displays the time for which the virtual devices are running. This time is different
than that of real time.

Checking signal
consistency

Free running
simulation

Time slice simu-
lation

PLC Automation with V2 CPUs
Engineering interfaces and tools > Virtual commissioning technology

2022/01/203ADR010582, 3, en_US6562

Fig. 1179: Time slice simulation

Before starting simulation, the user need to define:
● Time Slice (ms): Indicates time for which the virtual devices are running before synchro-

nizing with each other. Also, indicates the time interval for variable data exchange in time
slice mode. For example, if the selected time-slice for simulation is 20 ms and scan time of
PLC is 10 ms, it means in each time-slice, the PLC executes its program twice.

● Simulation Speed: Indicates or decides how fast the simulation is executed. The user
can change the value even when the simulation is in progress. The simulation speed is
independent of time-slice.

● Reset PLC on start: If selected, earlier state of virtual device is reset.

If variable exchange is not occurring as per expectations, make sure that all
the variables defined in system model are available in symbol file. To update
symbol file, make sure that the symbol file generation option is selected from
CODESYS application (“Project è Options”).

1.8.2.4 Protocol switch
In Automation Builder, the projects can be switched between real PLC mode to/from virtual
mode. Automation Builder internally manages the commands and parameters that are given to
Panel Builder software to update the changes in protocol to communicate with real or virtual
PLC.
Automation Builder verifies the following conditions each time Panel Builder is launched.
● If the project is switched between virtual to normal mode or vice versa, a message is

displayed. You can update the panel project to use new protocol or cancel the update.
● If the project is switched between virtual to normal mode or vice versa and the Drive appli-

cation program is not build, an error message is displayed. The Drive application program
must be configured and rebuild to update Panel Builder project.

● When the virtual mode project is switched to normal mode during which Panel Builder
is already open, a message is displayed. You can close and relaunch Panel Builder by
activating Update Panel Builder project on launch check box.

● When the virtual mode project is switched to normal mode, during which if you try to
launch Panel Builder with Update Panel Builder project on launch unchecked, a message
is displayed. The tags and protocol information of panel project will not synchronize with
Automation Builder.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Virtual commissioning technology

2022/01/20 3ADR010582, 3, en_US 6563

1.8.2.5 Virtual AC500 V2 extensions
1.8.2.5.1 Introduction

The Virtual AC500 V2 is a virtual PLC running on the PC. The target is to create the engineering
and the commissioning in the same way as for a real AC500 V2, with some minor exceptions
which are described in the following. Only the AC500 function blocks listed in this documenta-
tion are supported by the Virtual AC500 V2.
This documentation provides only the exceptions, limitations and hints with the Virtual AC500
V2. For further information about the function blocks please follow the AC500 documentation.

1.8.2.5.2 General
The PLC configuration created in Automation Builder is not taken into account by the Virtual
AC500 V2. Some configuration parameters that are required must be created in a Global
Variable List (GVL) “VirtualAC500_Configuration” in CODESYS V2.3.
It is also required that all these variables are added to the symbol file of the PLC.

1.8.2.5.3 UDP/IP function blocks
The supported function block are:
● ETH_UDP_STD_INFO
● ETH_UDP_STD_SEND
● ETH_UDP_STD_REC
● ETH_UDP_STD_INFO
● ETH_UDP_STD_SEND
● ETH_UDP_STD_REC

Function block in- and outputs
Input “SLOT” is ignored in all function blocks.
Only the status information about the level of all receive buffers in bytes (output “LEVR_BY” and
“LEV_BY”) is evaluated. All other status informations are always 0.

Configuration
In the Virtual AC500 V2 receiving of broadcast messages is always enabled and cannot be
disabled.
The connection parameter “Port” is required and must be added as variable to the GVL “Vir-
tualAC500_Configuration”.

Syntax
CCF_UdpConnection<Index>_Port
● <Index> is the number of the connection.

CCF_ETH<ETH index>_UdpConnection<Index>_Port
● <ETH index> is the value of the input variable ETH of the UDP function blocks.
● <Index> is the number of the connection.

ETH_UDP_STD
function blocks

ETHx_UDP_STD
function blocks

PLC Automation with V2 CPUs
Engineering interfaces and tools > Virtual commissioning technology

2022/01/203ADR010582, 3, en_US6564

Examples
ETH_UDP_STD
function blocks

PLC Automation with V2 CPUs

Engineering interfaces and tools > Virtual commissioning technology

2022/01/20 3ADR010582, 3, en_US 6565

1.8.2.5.4 CAA_File function blocks
The supported function blocks are:
● FILE_Open
● FILE_Close
● FILE_Read
● FILE_Write
The CAA_File function blocks are used for accessing directories and files. There are several
directories from the PLC from where files can be read and written equal to the real AC500, e.g.:
flash disk, user disk, memory card. The files and directories are created on the local file system
in the working directory of the Virtual AC500 V2.

1.8.2.5.5 Clock function blocks
The supported function blocks are:

ETHx_UDP_STD
function blocks

PLC Automation with V2 CPUs
Engineering interfaces and tools > Virtual commissioning technology

2022/01/203ADR010582, 3, en_US6566

● CLOCK
● CLOCK_DT
These two function blocks are used to get and set the current time and date. The current time
and date is initialized with the Windows clock during startup of the PLC. All further changes on
time and date are independent from the Windows clock, so it is possible to define time and date
for each Virtual AC500 V2 instance.

1.8.2.5.6 Ethernet function blocks
The supported function blocks are:
● ETH_OWN_IP
● ETH_ICMP_PING
The function block “ETH_OWN_IP” delivers the IP address of the Ethernet interfaces of the PC
where the Virtual AC500 V2 is running. With input “SLOT” it is possible to get the settings from
all Ethernet interfaces (0 = first interface, 1 = second, etc.).
The function block “ETH_ICMP_PING” ignores the input value “SLOT”.

1.8.2.5.7 Error numbers

The error numbers of the Virtual AC500 are depending on the associated guest
operating system.

Therefore the error numbers of the Virtual AC500 can be different to real AC500
V2.

A list with possible error numbers are to be found in MSDN.

1.8.3 System model
The System Model provides the abstract view of the system which the user wants to configure.
It captures physical devices and signals that are exchanged between different devices. Features
like virtual commissioning use the system model to capture information needed for variable
exchange and simulation.
The System Model object represents all the information configured using system model editors.
The user can have only one system model object in Automation Builder project.
To complete the System Model configuration, the user needs to ceate model block class objects
and model block instance objects.

1.8.3.1 Creating a system model
1. In the devices tree, right-click on project and click “Add object” to add System Model.
2. Select System Modelling in the Categories section and click “Add object”.

ð System Model object is added to Automation Builder project.

PLC Automation with V2 CPUs

Engineering interfaces and tools > System model

2022/01/20 3ADR010582, 3, en_US 6567

https://msdn.microsoft.com/de-de/library/windows/desktop/ms681381(v=vs.85).aspx

3. Under “System Model”, add “Model Block Class” and their instance objects.

Fig. 1180: Model Block Instance

1.8.3.1.1 Model block class editor
The Model Block Class editor represents model block class object and supports following
functions.
● Create pin definitions - The user can create definitions for input and output pin. The pin

definition includes name and type of a pin. The pin name should be unique.
● Remove pin definitions - The user can remove pin definitions either by using 'Remove'

button or by using 'Delete' Key. The user may remove multiple pin definitions at once.
● Auto correcting pin definitions - The pin name should be unique within a model block

class object. If a duplicate pin names exists, the user can auto-correct the names. Appro-
priate indexes are used to correct duplicate names if the user chooses for auto correction.

PLC Automation with V2 CPUs
Engineering interfaces and tools > System model

2022/01/203ADR010582, 3, en_US6568

1.8.3.1.2 Model block instance editor
The Model Block Instance editor represents the instances of the class object. The instance
editor derives all the pin definitions from the class object and enables the user to create pin
connections between different instance objects.
Using instance editor, you can do the following:
● Assigning a device
● Assigning variables
● Assigning endpoint
● Clear broken connections

In the instance editor, first select the virtual device from the 'Assigned Device' drop down. No
changes are allowed to the object or in the editor until the user selects the 'Assigned Device'.

Variables defined in 'IO mapping' or as global variables are created as pins in the model block
class object. The user can assign the variables using the inline editor or by using the Assign
Variable button.
● To assign variables in the inline editor, enter the variable name in the 'Variable' column.
● To assign variables using 'Assign Variable' button, click Assign Variables to show a dialog

containing all IO mapping and global variables of the corresponding device. Select the
required variable and click OK. Connect Variable indicates a variable associated with con-
nected endpoint.

● Only variables which match the direction and type of a pin are available for mapping. In
case of any incorrect data, an error is displayed in the Variable column.

Use the Refresh button to fetch if the user makes any changes to variables,
either using IO Mapping tab or using a Codesys application.

Defines the instances and pin connections (Source Block and Source Pin for inputs and Sink
Block and Sink Pin for outputs). The user can assign endpoints using Inline editor or by Assign
Endpoint button.

Assigning a
device

Assigning varia-
bles

Assigning end-
point

PLC Automation with V2 CPUs

Engineering interfaces and tools > System model

2022/01/20 3ADR010582, 3, en_US 6569

● To assign instances and pin connections in an Inline editor, enter the value in Source Block
and Source Pin for inputs and Sink Block and Sink Pin for outputs or click on drop-down
which displays the list of instances and pins.

● To assign instance and pin connections, click Assign Endpoint which displays the endpoint
selection dialog. Select the required instance or pin and click OK.

The Clear Broken Connection clears all the broken source block instance and pin connections
between Model Class objects. If there are any broken connection, the cell is indicated with an
error icon. When an instance associated with any mapped signal is deleted, it will generate
broken signal.

1.8.3.2 Generating system model
System Modelling allows you to generate System Model for Drives and I/O devices which can
be readily used for Virtual System Testing.
● System Model generation is only implemented for AC500 V2 products.
● Deleting one node of a generated System Model will result in the entire System Model being

deleted.
● Symbols are exposed for the devices which are used in System Model generation.
● It is recommended that the manual changes should not be made to any generated objects.
● If any changes are made to the devices which have a System Model, it is recommended to

use ‘Update System Model’ command to keep the System Model up-to-date.
The System Model generation commands can be found in the context menu of a System Model
object in the device tree.
● Generate System Model for Drives
● Generate System Model for I/O
● Update System Model

To generate System Model for the Drives, the user has to configure Automation Builder project
with PROFIBUS or PROFINET drive and minimum of one variable mapping. To expose the
symbols of a device, launch CODESYS application and generate the symbol file.
The command will generate a System Model for one or more selected drives.
1. Right-click on System Model node and select “System Modelling è Generate System

Model for Drives”.

Clear broken
connections

Generating
system model
for drives

PLC Automation with V2 CPUs
Engineering interfaces and tools > System model

2022/01/203ADR010582, 3, en_US6570

2. Select the desired PLC from the drop-down list and select the Drive and click OK to
generate a System Model.

ð The System Model is generated for the selected device(s). You can see multiple
nodes are been added to the device tree under the System Model node.
● Two Class and two Instance objects are generated for each device selected for

generation.
● The Drive Class object contain pin definitions for all the mapped variables on the

selected device.
● The Drive Instance object contain information about which pin/variable is mapped

to the PLC Instance.

The PLC instance will contain exposed variables and the Drive instance will contain internal
drive variables (FBAdatain/FBAdataout), but with the pin directions reversed. (for example, If
the drive has an input variable ‘var’ mapped, the PLC equivalent will have an output variable
‘var’ mapped). At this point, the System Model is successfully generated and is ready for use in
Virtual System Testing.

To generate a System Model for I/O modules, the user has to create an I/O module minimum of
one variable mapping. The same type of device have to exist under the virtual PLC and have
variable mappings with the same names and types but in opposite directions.
The command will generate a System Model for one or more selected I/O modules.

Generating
system model
for I/O

PLC Automation with V2 CPUs

Engineering interfaces and tools > System model

2022/01/20 3ADR010582, 3, en_US 6571

1. Right-click on System Model node and select “System Modelling è Generate System
Model for I/O”.

ð Generate System Model dialog shows the devices which are suitable for generating
System Model.

2. From the drop-down list, select the real and virtual PLCs which displays the I/O modules
that are associated with the real PLC.

ð The System Model for I/O mdoules are generated successfully.

Two Class and two Instance objects are generated for each device. One Real Class and
Instance, and one Virtual Class and Instance. It is possible that the generation of a System
Model can fail or generate warnings or errors. See sections Ä “Warnings” on page 6573 and
Ä “Errors” on page 6573.
The Class objects contain pin definitions for the variables which are in real and virtual devices.
The Instance objects contain the information of pin mappings.

Update System Model command updates all the existing System Models to reflect the current
state of the devices.
1. Right-click on System Model node and select System Modelling -> Update System

Model to update the System Models.
2. Confirm an upcoming message with “OK”.

ð Any manual changes made to the existing generated System Models are overwritten
and they are updated to reflect the information contained within the devices.

Update system
model

PLC Automation with V2 CPUs
Engineering interfaces and tools > System model

2022/01/203ADR010582, 3, en_US6572

When a System Model generation is failed due to the selected device with no variable map-
pings, a warning 'Model not generated for device: No variable mappings found' is displayed.
The device should contain minimum of one variable mapping to generate a System Model.

When a System Model is generated for a device which does not have the symbols exposed, an
error 'The required symbols are not exposed. Please generate the symbol file for device x' is
displayed.
The System Model can be generated without exposing the symbols. However, you cannot use
in Virtual System Testing until the symbols of the device are exposed.

1.8.3.3 Example
In the example, the PLC will send Start, Stop (CW) and Speed Reference to the drive and read
Actual speed and Drive Status (SW) using the fieldbus (PROFIBUS or PROFINET) device.
1. In the Automation Builder project, create a CODESYS application program and configure

ACS380 Drive and its variables in the PPO Type editor.

2. Add a System Model under Automation Builder project.
3. Under System Model, add a model class and their instances for the drive and PLC (virtual

devices).
4. Define input and output pins and their data types for the drive.

Fig. 1181: Drive Class Inputs and Outputs

ð Similarly, define input and output pins and their data types for the PLC.

Warnings

Errors

PLC Automation with V2 CPUs

Engineering interfaces and tools > System model

2022/01/20 3ADR010582, 3, en_US 6573

5. In the Drive Instance editor, select a device (ACS380_PROFINET_IO) from the assigned
device drop down which represents an instance.

The pins and their data types are defined in the class editor for a drive
and PLC are displayed in the drive and PLC editors.

Fig. 1182: Assigned devices

6. Assign a variable using Inline editor or by Assign Variable button.
7. Assign Source Block and Source Pin for inputs and Sink Block and Sink Pin for outputs

using the inline editor or by Assign Endpoint button.

If the connections between drive and PLC input and output pins are incorrect,
click “Clear Broken Connection” to delete the broken connection pins.

1.8.4 Drive composer pro integration
Drive Composer Pro is a start-up and maintenance tool for ABB's common architecture drives.
The tool is used to view and set drive parameters, and to monitor and tune process perform-
ance.
Drive Composer Pro provides:
● Setting parameters,
● taking local control of the drive from the PC,
● event logger handling
● control diagrams,
● fast monitoring,
● working with multiple drives on the PC tool network,
● macro script editing for parameters and much more.

1. Add “Drive Composer Pro” object into the tree via add object dialog.
2. Open the “Drive Composer Pro” with double-click on the object.

In the following section important functions are described.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Drive composer pro integration

2022/01/203ADR010582, 3, en_US6574

1. Import of FSO backup files (*.dcsafety) and Drive Parameters backup files
(*.dcparamsbak) into Automation Builder project via the Drive Composer Pro object in
the device tree.

2. View of integrated FSO backup files and Drive Parameters backup files in Automation
Builder project - refer to figure below.

ð
Drive Composer Pro can't be launched directly with integrated “FSO
backup files” but they have to be loaded manually via context menu
on the drive in Drive Composer Pro ® “Safety Settings”.

Import of
backup files

PLC Automation with V2 CPUs

Engineering interfaces and tools > Drive composer pro integration

2022/01/20 3ADR010582, 3, en_US 6575

1. Select the FSO and Drive Parameters backup files.
2. Export the selected file by clicking [Export].

ð Select the desired storage path.

Export of
backup files

PLC Automation with V2 CPUs
Engineering interfaces and tools > Drive composer pro integration

2022/01/203ADR010582, 3, en_US6576

1. Select the FSO and Drive Parameter backup files from Automation Builder project.
2. Remove the selected files by clicking [Remove].

Remove of
backup files

PLC Automation with V2 CPUs

Engineering interfaces and tools > Drive composer pro integration

2022/01/20 3ADR010582, 3, en_US 6577

1. Open the “Crane_follower12.dcparamsbak” with double-click.
2. The “Drive Composer Pro” starts automatically.

Standard Drive Parameter backup files (*.dcparamsbak) are automatically
displayed under “File Drives”.

3. Saved changes in the standard drive parameter backup file are automatically updated in
the Automation Builder project.

1.8.5 Professional Version Control
Professional Version Control allows for the development of CODESYS projects under version
control by Apache™ Subversion®. Professional Version Control provides an SVN client inte-
grated in CODESYS. The objects of your project are versioned in a central SVN repository.
As a rule, the SVN repository should be created in a server configuration and located on a
server. For testing purposes, you can create a local SVN repository where you can access via
file://.

Professional Version Control requires a valid license and can be installed using the Automation
Builder Installer or the Automation Builder Installation Manager.

View standard
drive parameter
backup files

SVN integration
in CODESYS

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6578

1.8.5.1 Getting Started
The following steps are required in order to develop your CODESYS project with Professional
Version Control with version control by Apache™ Subversion®:
1. Install the Professional Version Control package in CODESYS.
2. Install an SVN server.
3. Create an SVN repository.
4. Open your CODESYS project in CODESYS.
5. Import the CODESYS project into the SVN project archive.

ð The CODESYS project is saved in the SVN repository.

6. To edit and further develop the project with SVN version control, the project is edited in
CODESYS and then committed to the SVN repository.

A detailed description of these individual steps is located in the following sections.
See also
● Ä Chapter 1.8.5.3 “Using an SVN Repository” on page 6579
● Ä Chapter 1.8.5.4 “Using Working Copies” on page 6581

1.8.5.2 Version control
Apache™ Subversion® (SVN) is a tool for version and revision management of current and
previous versions of files, such as source code, websites, and documentation. Apache™ Sub-
version® is a registered trademark of the Apache Software Foundation.
Revision management (also known as version control, version management, and source code
management) is the management of changes to documents, programs, and other information
that is stored as computer files. Version control is employed frequently in software development
when a team of employees works on the same files.
Tasks
● Co-writing of changes in revisions: At any time, you can show who made which changes at

which time.
● Restoring of old revisions of individual files: At any time, you can reverse accidental

changes to files.
● Archiving of special revisions of a project: At any time, you can revert to older versions.
● Coordination of common access of developers to data
● Development of a project simultaneously in multiple branches

Professional Version Control provides a scripting-interface for SVN.

1.8.5.3 Using an SVN Repository
An SVN repository usually saves information as a file system tree, a hierarchy of files, and
directories. Any number of clients connects to the SVN repository and reads or writes changes
to the files in revisions.

What is version
control?

Script Engine
SVN Add-on API

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6579

NOTICE!
Consult with your IT specialists for more information, for example how to create
an SVN repository. For production purposes, we recommend a strictly dedicated
administrative SVN server.
We recommend that you create the suggested default directory structure in the
SVN repository.
See also
– http://svnbook.red-bean.com/en/1.8/

svn.tour.importing.html#svn.tour.importing.layout

NOTICE!
Use the file:// access method for testing purposes only.

You can reach SVN repositories that were created in format 1.8 or 1.9 via the
file:// protocol.

For testing purposes, you can create a local SVN repository without installing your own server.
The SVN repository is accessed via file:// and provides the same functionality as a server.

Requirement: The SVN client TortoiseSVN 1.9 is installed on the development system.
1. Create a new, empty folder on your local file system. The test repository will be created

there.

ð Example: D:\SVN repository
2. Click “TortoiseSVN è Create repository here”.

ð The dialog “Create repository” opens.

3. Click “Create directory tree”.

ð The SVN repository is created.

See also
● Documentation TortoiseSVN Documentation TortoiseSVN

Table 799: SVN repository URLs
file:/// Direct access to an SVN repository (on local hard drive)
http:// Access via WebDAV protocol to Apache server that is sup-

ported by SVN
https:// As http://, but with SSL encryption

svn:// Access via own protocol to an svnserve server

svn+ssh:// As svn://, but tunneled via SSH

Creating an SVN
repository

Creating an SVN
repository for
testing pur-
poses

Creating a test
repository with
TortoiseSVN

Accessing the
SVN repository

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6580

http://svnbook.red-bean.com/en/1.8/svn.tour.importing.html#svn.tour.importing.layout
http://svnbook.red-bean.com/en/1.8/svn.tour.importing.html#svn.tour.importing.layout
https://tortoisesvn.net/docs/release/TortoiseSVN_de/index.html

1. Open the CODESYS project that you want to save in the SVN repository.

ð Example: A.project is open.

2. Click “Project è SVN è Import project to SVN”.

ð The “Browse SVN repository” dialog opens.

3. Select the directory file:///D:/SVN repository/trunk in the directory tree.

4. Select the command.

ð The “Create remote directory” dialog opens.

5. Specify the URL for the new directory.
Note: Because the new directory should contain the CODESYS project, specify the project
name with extension here.

ð file:///D:/SVN%20repository/trunk/A.project
6. Click “OK” to close the dialog.
7. Select the new project and click “OK” to exit the “Browse SVN repository” dialog.

ð The “Import Project to SVN” dialog opens. The directory file:///D:/SVN
repository/trunk/A.project is specified in “URL of SVN repository”.

See also
● Ä Chapter 1.8.5.5.1 “Overlay Icons” on page 6582

1.8.5.4 Using Working Copies
You can copy CODESYS projects to your development system that are saved in the SVN
repository.
1. Open CODESYS.
2. Click “Project è SVN è Checkout”.

ð The “Checkout” dialog opens.

3. Specify the URL of the SVN repository and select a project in the SVN repository tree.
If a CODESYS project has the extension .project or _project, then it is recognized
automatically as a project at checkout. If it has the extension .library or _library,
then it is recognized as a library project.

4. In “Checkout to”, specify the name and location of the working copy on your development
system.

5. Click “OK” to close the dialog.

ð The project opens in CODESYS. In the object tree of the project, the SVN link is
shown with overlaid icons. Now the project is saved as a working copy on your
development system.

See also
● Ä Chapter 1.8.5.5.1 “Overlay Icons” on page 6582

Import the
project into the
SVN repository.

Checking out a
project
Creating a
working copy

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6581

Update the working copy before you start editing, especially if the project is
revised by a team. This is how you avoid conflicts.

1. Open the working copy.
2. Click “Project è SVN è Update project” (symbol:).

ð You working copy is current.

3. Revise your project.
4. Click “Project è SVN è Edit SVN working copy”.

ð The dialog opens. There you can browse your changes.

5. Close the dialog.
6. If necessary, you can click “SVN è Revert” in the context menu.

ð The file is reverted back to the base revision and your changes are discarded.

7. If necessary, you can click “Compare” in the context menu of an edited object.

ð The compare dialog opens. You can resolve any conflicts here.

8. Close the compare dialog.
9. Click “Project è SVN è Commit project” (symbol:).

ð The “Commit” dialog opens.

10. In “Message”, specify a log entry that describes your changes. Example: Changes for
customer ABC, request 1234.
ð Your changes are saved in the SVN repository as a revision with a revision number.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585

For projects in version Professional Version Control V4.1.0.0 and later, the working directory
(working copy) has a new format.
If you open a project that was created with V4.0.4.0 or earlier, then the project is updated
automatically to the new format when it is opened.
If you open a project that was created with V4.0.4.0 or earlier and the project is based on an
older SVN version of 1.7.x or earlier, then you are prompted whether or not CODESYS should
update the format. If you decline the update, then the SVN link of the project is deactivated. You
can still load and edit the project.
The update does not have an effect on saving to the SVN server. You can also checkout proj-
ects with earlier versions of the client. The new format affects only the local working directory.
See also
● http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.upgrade.html

1.8.5.5 Reference, User Interface
1.8.5.5.1 Overlay Icons

Every object in CODESYS has a status value in the SVN repository. This status value is
displayed in the object tree (in the “POUs”, “Devices”, or “Modules” views) for each object by
overlay icons.

Editing the
working copy

Changed
working copy
format in Pro-
fessional Ver-
sion Control
V4.1.0.0 and
later

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6582

http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.upgrade.html

Table 800: Overlay icons
Object is planned to be added to the SVN repository.

Object conflicted

Object deleted

Object modified

Object with modification in the metadata

Object with modifications in the memory format

Object normal

Object write-protected (read-only)

Object locked

Object with deleted subobjects

Object ignored on commit

External object

Ignored object

Unversioned object

Object with modified subobjects

The object is not saved in the SVN repository. It will be created again when
loaded from SVN.

SVN_VERSION_INFO temporarily unavailable, for example as with inter-
face libraries

The status of the object is not updated.

The object was modified on the server (Update available).

The object was locked on the server by another user (or in another working
directory).

Tree conflict by changes to the structure of the project

1.8.5.5.2 Commands
Not all commands are available in the logged in state because some SVN commands of the
project could be changed.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6583

Table 801: Availability of commands
Command Not Logged In Logged In

Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repo-
sitory Browser'” on page 6585

X X

Ä Chapter 1.8.5.5.2.2 “Command 'Edit SVN
working copy'” on page 6586

X

Ä Chapter 1.8.5.5.2.3 “Command 'Import
project to SVN'” on page 6589

X X

Ä Chapter 1.8.5.5.2.4 “Command 'Checkout'”
on page 6589

X X

Ä Chapter 1.8.5.5.2.5 “Command 'Commit',
Command 'Commit Project'” on page 6591

X X

Ä Chapter 1.8.5.5.2.6 “Command 'Compare'”
on page 6594

X

Ä Chapter 1.8.5.5.2.7 “Command 'Compare
with HEAD revision'” on page 6594

X

Ä Chapter 1.8.5.5.2.8 “Command 'Compare
with revision'” on page 6594

X

Ä Chapter 1.8.5.5.2.9 “Command 'Compare
to remote project...'” on page 6595

X

Ä Chapter 1.8.5.5.2.10 “Command 'Include
externals to project', Command 'Include exter-

nals'” on page 6596

X

Ä Chapter 1.8.5.5.2.11 “Command 'Ignore on
commit'” on page 6597

X X

Ä Chapter 1.8.5.5.2.12 “Command 'SVN Info'”
on page 6598

X X

Ä Chapter 1.8.5.5.2.13 “Command 'Show
properties'” on page 6598

X X

Ä Chapter 1.8.5.5.2.14 “Command 'Get lock'”
on page 6599

X X

Ä Chapter 1.8.5.5.2.15 “Command 'Steal
locks'” on page 6599

X X

Ä Chapter 1.8.5.5.2.16 “Command 'Release
lock'” on page 6600

X X

Ä Chapter 1.8.5.5.2.17 “Command 'Release
locks recursively'” on page 6600

X X

Ä Chapter 1.8.5.5.2.18 “Command 'Show log',
Command 'Show project log'” on page 6600

X X

Ä Chapter 1.8.5.5.2.19 “Command 'Revert',
Command 'Revert project'” on page 6602

X

Ä Chapter 1.8.5.5.2.20 “Command 'Revert
to revision', Command 'Revert project to revi-

sion'” on page 6603

X

Ä Chapter 1.8.5.5.2.21 “Command 'Update',
Command 'Update project' ” on page 6603

X

Ä Chapter 1.8.5.5.2.22 “Command 'Update to
revision'” on page 6604

X

Ä Chapter 1.8.5.5.2.23 “Command 'Update
only this'” on page 6605

X

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6584

Command Not Logged In Logged In
Ä Chapter 1.8.5.5.2.24 “Command 'Discon-

nect project from SVN'” on page 6605
X X

Ä Chapter 1.8.5.5.2.25 “Command 'Switch'”
on page 6605

X

Ä Chapter 1.8.5.5.2.26 “Command 'Un-Ignore
on commit'” on page 6606

X X

Ä Chapter 1.8.5.5.2.27 “Command 'SVN
Cleanup'” on page 6606

X X

Ä Chapter 1.8.5.5.2.28 “Command 'Clear
authentication data' ” on page 6607

X X

Ä Chapter 1.8.5.5.2.29 “Command 'Merge
changes'” on page 6607

X

Ä Chapter 1.8.5.5.2.30 “Command 'Connect
to existing project'” on page 6608

X X

Ä Chapter 1.8.5.5.2.31 “Command 'Resolve
conflict' ” on page 6609

X

Ä Chapter 1.8.5.5.2.32 “Command 'Work in
offline mode'” on page 6609

X X

Ä Chapter 1.8.5.5.2.33 “Command 'Copy
(Branch/Tag)'” on page 6610

X

Ä Chapter 1.8.5.5.2.34 “Command 'Pending
Changes'” on page 6611

X X

Command 'SVN Repository Browser'
Symbol:
Function: This command opens the SVN repository browser. The contents of an SVN reposi-
tory is shown in a tree structure here. You can search through the repository in the browser.
Call: Menu bar: “Project è SVN”.
Depending on the selected object, the following commands are available in the context menu:
● “Show log”
● “Checkout”
● “Create folder”
● “Copy to”
● “Rename”
● “Delete”

Double-clicking the object with the right mouse button opens the log dialog.

Dialog 'SVN
Repository
Browser'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6585

“URL” URL in SVN repository
Example: https://svnserver/repository/trunk/
ControlABC.project
Tip: As soon as a valid SVN repository is specified, you can browse and select a
specific project by means of the adjacent button.

Opens the dialog “Select revision”.
The button is labeled with the currently selected revision:
● “HEAD”: Top revision (latest). Preset
● “3”: Revision number of the selected revision
● “23.12.2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Updates the browser view by rescanning the SVN repository.

Navigates the URL address up by one folder.

Left area Directory tree in the SVN repository. Project nodes are shown in bold.

Note: In this view, you can directly edit the project name and the name of the
superordinate folder.

Right area List of objects of the selected directory

“Close” Closes the dialog

See also
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 6614

Command 'Edit SVN working copy'
Symbol:
Function: This command opens the dialog “Edit SVN working copy” and displays the working
copy in a browser from the SVN view.
Call: Menu bar: “Project è SVN”.
The functionality of the browser allows for:
● Access to and actions on objects that are not displayed in the “Devices” view.
● Actions on objects that can lead to exceptions in the “Devices” view.
● Editing of global objects that are modified, in conflict, or blocked.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6586

Table 802: “Edit SVN working copy: <project name> - <project URL>”
“Path in SVN repository” Display of working copy from SVN view. The file and folder structure of the

objects in the project are presented in a tree view. In this way, the recursion
depth of an object is clear.

: Object selected for the following menu command

“Name of object” File name of the object
Example: Application

“ Node type” The top node is the project root directory.

“Text status” Object status:
● “modified”
● “added”
● “deleted”
● “non-versioned”
● “Conflicted”

“Property status” Status in SVN repository:
● “modified”
● “added”
● “deleted”
● “Conflicted”
● “normal”

“Revision” Revision number

“Conflict information” File conflict, property conflict, or tree conflict

“Lock” For locked objects, the user who applied the lock is displayed.
Example: b.mayer

“Lock comment” Lock message. Implicit, normal, or stolen lock.

“URL” URL of the object

Table 803: Menu commands

“Select è All” Selects all files.

“Select è None” Deselects all files.

“Select è Modified” Selects the modified files.

“Select è Conflicted” Selects the conflicted files.

“Select è Locked” Selects the locked files.

Updates the working copy. Changes made by others are added from the SVN
repository to your working copy.

“Update è Project” Updates all files of the project.

“Update è Selected nodes” Updates only the selected files.

“Update è Selected nodes
and children”

Updates the selected files and subordinate files.

 “Reset” Discards your changes to the working copy. Then the object corresponds to the
revision in the repository.

Dialog ‘Edit SVN
working copy'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6587

“Delete è Selected nodes” Deletes the selected objects from the working copy.

 “Commit” Commits your changes to the SVN repository. Any locked objects will be
unlocked.

“Commit è Project” Commits all files in the project.

“Commit è Selected nodes” Commits only the selected files.

“Commit è Selected nodes
and children”

Commits the selected files and subordinate files.

Commands for managing locks.

“Locks è Revalidate all” Checks the validity of locks in the working copy. Any invalid locks will be
unlocked.

“Locks è Release locks” Releases the lock.

“Locks è Acquire locks” Locks the object from editing by others.

“Locks è Steal locks” Locks the file for you and removes the lock of another user.
Tip: Avoid stealing a lock because the changes made by another user can be
lost.

Commands to resolve conflicts.

“Conflicts è Mark as resolved” Indicates a displayed conflict in the SVN repository as marked and resolved.
Note: Select the command if you edited and resolved the displayed conflict.
Then you can commit changes again.

“Conflicts è Resolve using
theirs”

Resolves the conflict: In the SVN repository, the changes are accepted that were
committed by other users. Your changes are discarded.

“Conflicts è Resolve using
mine”

Resolves the conflict: In the SVN repository, the changes to your working copy
are accepted and the changes by other users are discarded.

 “Show log” Opens the dialog “Log - Application”. The history of the selected node is shown
here. The previous revisions are displayed with the respective actions.

 “Change location” Changes the storage location of the selected object within the working copy.
Example: You can resolve a tree conflict by saving the local object to another
location. Then update the parent object to apply it to the locked children.

 “Update” Updates the browser view by rescanning the working copy.

 “Cleanup” Executes an SVN cleanup operation on the working copy.

See also
● Ä Chapter 1.8.5.5.2.21 “Command 'Update', Command 'Update project' ” on page 6603
● Ä Chapter 1.8.5.5.2.19 “Command 'Revert', Command 'Revert project'” on page 6602
● Ä Chapter 1.8.5.5.2.5 “Command 'Commit', Command 'Commit Project'” on page 6591
● Ä Chapter 1.8.5.5.2.31 “Command 'Resolve conflict' ” on page 6609
● Ä Chapter 1.8.5.5.2.14 “Command 'Get lock'” on page 6599
● Ä Chapter 1.8.5.5.2.16 “Command 'Release lock'” on page 6600
● Ä Chapter 1.8.5.5.2.15 “Command 'Steal locks'” on page 6599
● Ä Chapter 1.8.5.5.2.25 “Command 'Switch'” on page 6605
● Ä Chapter 1.8.5.5.2.18 “Command 'Show log', Command 'Show project log'” on page 6600
● Ä Chapter 1.8.5.5.2.27 “Command 'SVN Cleanup'” on page 6606

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6588

Command 'Import project to SVN'
Symbol:
Function: This command opens the “Import Project to SVN” dialog for importing a CODESYS
project to the SVN repository.
Call: Menu bar: “Project è SVN”.
Requirement
● You have access to an SVN repository and you know its URL.
● You have read access to the entire project.

NOTICE!
Projects are always saved unencrypted on the server. Therefore, take appro-
priate security measures (for example, respective access rights to the SVN
server) for protecting your projects.

See also
● User and access management in Protect and save project

“URL of SVN repository” URL of the SVN repository with the new project folder where the files are
imported
Example: https://svnserver/repository/trunk/
ControlABC.project
Hint: When importing libraries, specify the extension .library or _library.
For projects, specify the extension .project or _project. Then the project
type is recognized automatically at checkout and the options are set accordingly
in the “Checkout” dialog.

Opens the “SVN Repository Browser” dialog The previous project structure is
displayed and you can edit them here.

“Import message” Text for use as log message
Example: Control project for customer A

“Recent messages” Opens the “Recent Messages” dialog. There you can reuse the last log mes-
sages.

“Generate
SVN_VERSION_INFO”

: The object SVN_VERSION_INFO is not created automatically during the
import operation. Therefore, the project does not get any global constants or
variables for the project metadata.

“OK” Creates the current project in the SVN repository and imports the project objects.
The local project in CODESYS Development System is linked to the SVN reposi-
tory. Overlay icons show this in the object trees.

See also
● Ä Chapter 1.8.5.5.2.4 “Command 'Checkout'” on page 6589
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585
● Ä Chapter 1.8.5.5.1 “Overlay Icons” on page 6582

Command 'Checkout'
Symbol:
Function: This command opens the “Checkout” dialog. Here you can checkout a project stored
in the SVN repository as a working copy.

Dialog 'Import
Project to SVN'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6589

ms-its:codesys.chm::/_cds_struct_project_protection_storage.htm

Call: Menu bar: “Project è SVN”.

Table 804: “URL of SVN repository”
URL of the project in the SVN repository
Example: https://svnserver/repository/trunk/
ControlABC.project
Tip: As soon as a valid SVN repository is specified, you can click the adjacent
button or use the options to browse in “Revision” and select a specific project.

Opens the dialog “Select revision”.
The button is labeled with the currently selected revision:
● “HEAD”: Top revision (latest). Preset
● “15”: Revision number of the selected revision
● “23.12.2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Opens the “SVN repository browser” dialog Here you can browse the SVN repo-
sitory.

Table 805: “Checkout to”
“Name” Name of the working copy

Example: ControlABC.project
“Location” Storage location of the working copy

Example: /D:/svn/repository/trunk/ControlABC.project

Table 806: “Checkout as”
“Project” The project is saved as a CODESYS project "<project name>.project".

“Library” The project is saved as a CODESYS library file "<project name>.library".

“Auto-detect” CODESYS attempts to recognize the project type by means of the extension.
The current implementation checks whether the URL of the project ends with
"_library" or ".library". In this case, the project is recognized as a library
or a project.

Table 807: “Checkout options”
“Omit externals”: : Externals (external objects) are not copied to the working directory.

Table 808: “Revision”
For a description, refer to the section "Dialog 'Select revision'".
Note: The group provides the same options as the “Revision” dialog.

“OK” Checks out the project from the SVN repository, saves it locally to the specified
location, and opens it in CODESYS as the primary project.

Dialog 'Check-
out'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6590

If files were encrypted when imported to the SVN repository, or if they have
been committed, then note the following:

When committing to the SVN repository, the information about an encrypted
project file is included. However, the type of encryption is not included (pass-
word, Wibu security key, X509 certificate). Therefore, it may be necessary to
encrypt the working copy again in the project settings. In this case, a dialog
opens when exiting the command to notify you of this. Then you are able to
switch directly to the project settings.

See also
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 6614
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585
● "Version control with Subversion", Section "Revision identifier"

Command 'Commit', Command 'Commit Project'
Symbol:
Function: The command commits changes that were made in CODESYS to the SVN reposi-
tory. The “Commit” dialog opens for this purpose.
Call:
● Context menu: “SVN” to commit exactly this object
● “Project è SVN è Commit Project” to commit all changes in the project at the same time
Requirement: At least one object was modified. An object whose contents have been modified
is overlaid in the object tree with the , , or symbol.
When you execute the command, the lock on the objects to be committed is lifted automatically.
See also
● Ä Chapter 1.8.5.5.1 “Overlay Icons” on page 6582

Table 809: “Commit to: <URL project/object>”
 URL in SVN repository

Example: file:///D:/SVN repository/trunk/ControlABC.project
“Log message” Type in a log message that comments your change.

Example: Bug fix error 123
“Recent Messages” Opens the “Recent Messages” dialog for displaying the last log messages. You

can click a log message to accept it.

Dialog 'Commit'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6591

http://svnbook.red-bean.com/de/1.8/svn.tour.revs.specifiers.html

Table 810: “Changes made (double-click on object for compare, right-click on object for more operations)”
List of objects that were changed and can therefore be committed. The SVN
URLs mirror the hierarchy of the object in the SVN repository.
The objects are highlighted in color according to the object status:
● Blue: Modified
● Green: Added
● Dark red: Deleted
● Red: Conflicted
● Black: Non-versioned (not in SVN repository)

Note: These objects are displayed when the “Show non-versioned objects”
option is selected.

● Gray: Excluded from commit
Note: This is the case when the “Ignore during commit” option is selected.

The list also contains objects which have not been modified but have a lock. This
helps to prevent locking from going unnoticed in the repository.
Double-click an object in order to open the compare dialog. The revision of
the working copy is compared with the base revision. The compare dialog also
opens when you click “Compare” in the context menu.
Right-click an object in order to open the context menu.
Note: When the “Commit Project” command has been executed, a list of objects
is shown here. When the “Commit” command is applied to a specific object,
only this object is shown (if modified or locked) and its modified or locked child
objects.

“Object” : The object is selected for the commit.

Example:

“Text status” Object status in CODESYS
● “Modified”
● “Added”
● “Deleted”
● “Non-versioned”
● “Conflicted”

“Property status” Status of the metadata of the object
● “Modified”
● “Added”
● “Deleted”
● “Conflicted”
● “Normal”

“Lock” If the object has a lock, then it is shown here the user who applied the lock.
Example: b.mayer

“Description” Display of the log message

“Select/Deselect All” : All objects in the list are selected.

“Keep Locks” : Your locked object remains in locked after the commit.

“Keep Change Lists”: : The change list also remains after the commit.

: The change list is not deleted after the commit.

“Update After Commit
(recommended)”

: The object/project is updated after the commit. Select this check box to
ensure that the project is up-to-date and to prevent conflicts resulting from mixed
revisions of working copies.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6592

Button “Update Project” Updates the project
Hint: Prevent conflicts by committing a previously updated project/object.

“OK”

Keyboard shortcut [Ctrl]+
[Enter]

Keyboard shortcut [Ctrl]+
[Enter]

Checks the working copy first. Starts the commit of changes when the working
copy is current.
Opens a dialog when the working copy is outdated. You can then select from the
following:
● “Abort the commit, I want to investigate the issue.”
● “Yes, I want to update this project now.”
● “Continue with the commit, I know what I do.”

Note: The history of the commit is displayed in the “Messages” view.
The messages are highlighted in color.
● Blue: Commit a change
● Green: Add an object
● Dark red: Delete/replace an object
● Black: Other messages (summary)

Handling external objects
If the external object is in the same SVN repository, then changes in this
external object are listed in the commit dialog and committed together with the
internal project. If an external object is in another SVN repository, then you are
notified about changes in the external project and you have to commit these
separately.

An external object has the “externals” property.

See also
● Ä Chapter 1.8.5.5.2.6 “Command 'Compare'” on page 6594
● SVN help: http://svnbook.red-bean.com/en/1.7/svn.basic.in-action.html#svn.basic.in-

action.mixedrevs)

 “Compare” Opens the compare dialog to compare the working copy with the top-level revi-
sion.

 “Compare with HEAD
version”

Opens the compare dialog to compare the working copy with the HEAD revision.

“Compare with Revision” The list entries are highlighted in color according to the object status:
● Blue: Modified
● Green: Added
● Dark red: Deleted
● Red: Conflicted
● Black: Non-versioned (not in SVN repository)

Note: These objects are displayed when the “Show non-versioned objects”
option is selected.

● Gray: Excluded from commit
Note: This is the case when the “Ignore during commit” option is selected for
the object.

“Revert” Discards your changes to the working copy. Then the object corresponds to the
revision in the SVN repository.

“Show log” Shows the version history of the selected object.

Context menu
(right-click on
object)

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6593

http://svnbook.red-bean.com/de/1.7/svn.basic.in-action.html#svn.basic.in-action.mixedrevs)
http://svnbook.red-bean.com/de/1.7/svn.basic.in-action.html#svn.basic.in-action.mixedrevs)

“Properties” Opens the “SVN Properties” dialog. The properties are displayed there and you
can edit them.

Move to change list Note: This command has not been implemented yet.

Command 'Compare'
Symbol:
Function: This command opens a tab that shows the result of the comparison of your working
copy and the BASE revision. The base revision is the top-level revision in the SVN repository.
Call:
● Menu bar: “Project è SVN”.
● Context menu
Requirement: The object is versioned, it was modified locally, and it does not contain any
conflicts.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

See also
● Ä Chapter 1.6.5.1.1.6 “Comparing projects” on page 5765

Command 'Compare with HEAD revision'
Symbol:
Function: This command opens a tab that shows the result of the comparison of your working
copy and the HEAD revision. The HEAD revision is the top-level revision in the branch. You can
revert specific changes that were committed to the HEAD revision.
Call: Context menu: “SVN”

Requirement: The object is versioned and not conflicted.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

Command 'Compare with revision'
Symbol:
Function: This command opens the “Project log” dialog or “Log - <object> ” where the version
history is displayed from the project or an object of the CODESYS project. Here you can select
a revision. A tab opens and shows the result of the comparison of your working copy and the
revision.
Call: Context menu: “SVN”

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6594

Requirement: The object is versioned and not conflicted.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

See also
● Ä “Tab 'Project log', Dialog 'Log - <object>'” on page 6600

Command 'Compare to remote project...'
Symbol:
Function: This command opens the dialog “Select Remote Project for Comparison”.
Call: Menu bar: “Project è SVN”.

Table 811: “URL of SVN repository”
URL of the project in the SVN repository that is compared.
Example: file:///D:/SVN repository/trunk/ControlDEF.project
As soon as a valid SVN repository is specified, you can click the adjacent button
or use the options to browse in “Revision” and select a project.

The label on the button corresponds to the selected revision:
● “HEAD”: Top revision (latest).
● “15”: Revision number of the selected revision
● “23.12.2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
After clicking the button, the dialog “Select revision” opens.
Note: The dialog provides the same options as the “Revision” group.

Opens the dialog “Browse SVN repository” to search the SVN repository.

Table 812: “Checkout options”
“Omit externals”: : External objects are not compared.

Table 813: “Revision”
Options for selecting a specific revision
Note: the current valid selection is also displayed next to the SVN repository URL.

“HEAD” : The HEAD revision is selected. This is the latest revision (top revision) within
a branch.

“Revision” : A specific revision is selected by the revision number.
Example: 3

Dialog 'Select
Remote Project
for Comparison'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6595

“Date” : The specific revision is selected by the modification date.
Example: 12/23/2016 11:59:59

“Use UTC Time”: : Modification date in universal time.

Table 814: “compare options”
“Ignore Whitespace” : No comparison of whitespace characters. Semantically relevant whitespaces,

such as in strings, are compared anyway.

“Ignore Comments” : No comparison of comments.

“Ignore Properties” : No comparison of properties. Folders, the property “Exclude from build”, and
POU images are not compared.
See: Dialog 'Properties'

“OK” Compares the SVN project with the working copy.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585

Command 'Include externals to project', Command 'Include externals'
Symbol:
Function: These commands open the dialog “Include externals”.
Call:
● Menu bar: “Project è SVN”.
● Context menu: “SVN”

Requirement: An object is selected in the object tree. The external objects are linked below
that. If you have selected nothing or the project root directory, then the command “Include
externals to project” is available. If you have selected an object, then the command “Include
externals” is available.

The same external objects cannot be linked multiple times at different locations
in the same project. This leads to problems in CODESYS because of conflicts
with the internal identification of the object.

Table 815: “URL of SVN repository”
URL of the external object that is linked. The object to be linked is versioned and
can have sub-objects.
External objects are located at another location in the SVN repository than the
project. It can even be in another SVN repository.
Example: file:///D:/SVN repo A/trunk/DSTest.project/
GlobalTextList
Note: The objects that should be linked below the selected object must have a
matching object type. For example, only a task can be linked below the “Task
configuration” object.

Dialog 'Include
externals'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6596

Opens the dialog “Select revision”. Here you can select a revision.
The button is labeled with the currently selected revision:
● “HEAD”: Top revision (latest). Preset
● “15”: Revision number of the selected revision
● “23.12.2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Opens the “SVN repository browser” dialog Here you can browse the SVN repo-
sitory.

Table 816: “Revision”
Options for selecting a revision
Note: the current valid selection is also displayed in the buttons next to the SVN repository URL.

“HEAD” : Latest revision (top revision) selected in a branch.

“Revision” : A specific revision by the revision number.
Example: 3

“Date” : A specific revision by the modification date.
Example: 12/23/2016 11:59:59

“Use UTC Time”: : Modification date in universal time.

“OK” Adds the external object and its sub-objects with the property svn:externals
to your project (below the selected object). The working copy is updated and the
external object is overlaid with the symbol.

Example: (external device Source)

Note: If the linking fails (for example when adding a device below a task configu-
ration), then the complete operation fails and reverts back.
Note: Renaming or moving individual external objects is permitted inly within an
external tree, whereby it is not permitted to move the top object.
To move a complete tree, you have to remove it and link it to another location.

“... You should seriously consider using explicit revision numbers in all of your
externals definitions. Doing so means that you get to decide when to pull down
a different snapshot of external information, and exactly which snapshot to pull.
Besides avoiding the surprise of getting changes to third-party repositories that
you might not have any control over, using explicit revision numbers also means
that as you backdate your working copy to a previous revision, your externals
definitions will also revert to the way they looked in that previous revision, which
in turn means that the external working copies will be updated to match the
way they looked back when your repository was at that previous revision. For
software projects, this could be the difference between a successful and a failed
build of an older snapshot of your complex codebase. ...”

This is a quote from:

http://svnbook.red-bean.com/nightly/en/svn.advanced.externals.html).

Command 'Ignore on commit'
Function: This command identifies an object and adds it to the "ignore-on-commit” list. Then it
is deactivated in the commit dialog by default.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6597

http://svnbook.red-bean.com/nightly/de/svn.advanced.externals.html

Call: Menu bar: “SVN”

Requirement: At least one object is available that is not in the change list ignore-on-
comment.

Objects of the "ignore-on-commit” list are overlaid with the symbol in the object tree. By
default, they are not selected in the commit dialog, unless a dependency of a selected object
requires it. These objects can always be selected manually in the dialog.
See also
● Ä Chapter 1.8.5.5.2.26 “Command 'Un-Ignore on commit'” on page 6606

Command 'SVN Info'
Function: This command provides information about the selected object in the SVN repository.
The “SVN Information” dialog opens for this purpose.
Call: Context menu: “SVN”

Requirement: A versioned object (with SVN link) is selected in the object tree.

Name: Device_4\Plc Logic\Application\PLC_PRG
URL: file:///D:/SVN repository/trunk/ControlABC.project/Device/Plc
Logic/Application/PLC_PRG/svnobj
Repository Root: file:///D:/SVN repository/
Repository UUID: 185325d7-73eb-e54b-ab50-206aa23c8b42
Revision: 29
Node Kind: File
Schedule: Normal
Last Changed Author: a.mayer
Last Changed Rev: 8
Last Changed Date: 17.01.2017 12:33:51
Text Last Updated: 17.01.2017 12:33:51
Checksum: d5fb4d91ebaea06f26bcdb15942724d57932b6a3

Example

Command 'Show properties'
Symbol:
Function: This command opens the “SVN Properties” dialog. Here you can edit the properties
of the versioned object.
Call: Context menu: “SVN”

Requirement: A versioned, unlocked object is selected.

Dialog 'SVN
Information'

Dialog 'SVN
Properties'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6598

Table 817: “properties for: <object name>”
“Name” Name of the property

Example: myprop:customer-number
Note: SVN has some reserved properties. Example: svn:mime-type

“Value” Example: 1234
Double-click in the field to edit the value.

“Add” Opens a dialog to define another property with its value.

“Remove” Deletes the selected property.

“Show binary properties” : The binary properties are also displayed.

“Reset” Resets the changes displayed in green.

“OK” Accepts the changes.

See also
● http://svnbook.red-bean.com.

Command 'Get lock'
Symbol:
Function: This command locks the object explicitly for you. The “Lock Message” dialog opens
for this purpose.
Call: Context menu: “SVN”

Requirement: The versioned object is not locked (not overlaid with the symbol).

“Enter the reason why you lock
the object:”

Lock message
Example: Locked for processing task 123

Button “Recent Message” Shows message in the dialog that have already been used. There you select one
in order to use the lock message.

“Recursive” : The object is locked with all subordinate child objects.

“OK” Locks the object

When the lock is successful, the object (in the object tree) is overlaid with the
symbol.

Command 'Steal locks'
Symbol:
Function: This command steal the lock of the object. The “Lock Message” dialog opens for this
purpose.
Call: Context menu: “SVN”

Requirement: The versioned object is locked by someone else (overlaid with the symbol).

Dialog 'Lock
Message'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6599

http://svnbook.red-bean.com

“Enter the reason why you lock
the object:”

Lock message
Example: a.mayer had to steal the lock because the changes
need to be implemented so urgently.

“Recent Message” Shows message in the dialog that have already been used. There you select one
in order to use the lock message.

“Recursive” : The lock is stolen by the object and all subordinate child objects.

“OK” Steals the lock.
When the stolen lock is successful, the object (in the object tree) is overlaid with
the symbol.

Command 'Release lock'
Symbol:
Function: This command releases the lock of an object.
Call: “Context menu è SVN”

Requirement: The object is locked.

Command 'Release locks recursively'
Symbol:
Function: This command releases the lock of an object explicitly with all of its subordinate
objects.
Call: “Context menu è SVN”

Requirement: The object is locked.

Command 'Show log', Command 'Show project log'
Symbol:
Function: These commands open the tab “Project log” or “Log - <object>”. The version history
of the project or an object of the CODESYS project is displayed in the tab.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If you select nothing or the base node in the object tree, then the history of the entire project
is displayed (“Show project log”). If you select one or more objects, then the history of these
elements is displayed (“Show log”).
Multiple tabs can be open at the same time with the version history of different objects.

Dialog 'Lock
Message'

Tab 'Project log',
Dialog 'Log -
<object>'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6600

Upper area
● “Revision”: Revision

number
● “Author”
● “Date”
● “Message”: Message

entered at commit

List of all revisions of the project or the selected objects in the information. The
first 100 revisions are displayed by default. The “Next 100” and “All” buttons are
provided for displaying more or all revisions.
Several commands are available in the context menu of each revision. These
context menu commands are described below.

Middle area Display of the “Message” of the revision that is selected in the upper area.

Lower area
● “Action”
● “Path”: Object path in SVN
● “Copy from path”
● “Copy from revision”

List of actions that were performed on the objects of the project in the selected
revision:

“Hide unrelated changed
paths”

: All changes of this revision are hidden that do not have any relevance to the
object.

“Stop on copy/rename” : If the object was copied from another location in the SVN repository, then no
more log messages are retrieved. This is especially beneficial when branches or
tags are monitored and only changes within the branch are relevant.

“Filter/Range” Opens the “Filter” dialog

“All” All revisions are listed.

“Next 100” The next 100 revisions are listed.

Table 818: Dialog “Filter”
“Revision range” The displayed revisions can be filtered by “Head”, “Revision”, or “Date”.

: The option fields for “Start revision” and “End revision” are editable.
“Use UTC time”: Date display in universal time.
For more detailed information, refer to the description “Dialog ‘Select revision’“.

“Message contains” Display of revision logs that contain a special text in the “Message”

“ Author contains” Display of revision logs of the specified author

“Path contains” Display of revision logs of the specified path

Table 819: Context menu commands of the revisions
“Compare with base working
copy”

Compares the selected revision of the object with the base working copy (without
local changes).

“Com with working copy” Compares the selected revision of the object with the working copy.

“Compare with HEAD revision” Compares the selected revision of the object with the HEAD revision.

“Compare with previous
revision”

Compares the selected revision of the object with the previous revision.

“Update item to revision” Updates the object to the selected revision.
Note: Changes of the project by this command cannot be committed.
For VSS users: This is comparable to loading an older version without checkout.
To revert a previous commit, the command “Revert to this revision” has to be
used.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6601

“Revert to this revision” Reverts the object to the selected revision.
This command does not have an effect on the SVN repository as long as the
changes are not committed. Internally, SVN reverts the merges for all changes
that were made after the selected revision in order to revert the changes of the
preceding commits.

“Edit author” Opens a dialog for changing the author of the revision.

“Edit log message” Opens a dialog for changing the log message of the revision.

“Revision properties” Opens the dialog “Revision properties” where the properties are displayed.
In the dialog, you can activate the “Add” and “Remove” properties and the option
“Show binary properties”.

“Create branch/tag from this
revision”

Creates a branch or tag from the selected revision.

“Browse SVN repository” Opens the “SVN repository browser” dialog

“Copy to clipboard” Copies log details of the selected revision to the clipboard This is the revision
number, author, date of revision, log message, and the list of changes objects for
each revision.

See also
● Ä Chapter 1.8.5.5.2.6 “Command 'Compare'” on page 6594
● Ä Chapter 1.8.5.5.2.7 “Command 'Compare with HEAD revision'” on page 6594
● Ä Chapter 1.8.5.5.2.8 “Command 'Compare with revision'” on page 6594
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 6614

Command 'Revert', Command 'Revert project'
Symbol:
Function: This command opens the “Revert” dialog. In the dialog, select the objects whose
local changes should be reverted, and those that are reverted to the state of the base revision
of the working copy.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If you select nothing or the main node in the device tree, then all modified objects are listed in
this dialog (“Revert project”). If you selected one or more objects, then only the changes to this
object are listed and recursively their sub-objects (“Revert”).

“Group externals” : The external definitions are grouped by their external storage locations.

“Keep locks” : The lock is retained for all files that are modified by the revert command.

“Select/deselect all”

When external objects are deleted, Professional Version Control cannot restore this data in SVN
offline mode. The user is prompted how to proceed:
● Switch back to SVN online mode and call the external objects.
● Connect now to the SVN server one time in order to complete the current operation, but

afterwards switch back to SVN offline mode.
● Skip the retrieval of the external objects. They can be fetched later by updating the project.

Dialog 'Revert'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6602

See also
● Ä Chapter 1.8.5.5.2.20 “Command 'Revert to revision', Command 'Revert project to revi-

sion'” on page 6603

Command 'Revert to revision', Command 'Revert project to revision'
Symbol:
Function: This command opens the “Select revision” dialog. In this dialog, you select the
revision to which the project or the selected objects revert.
Call:
● “Project è SVN”
● “Context menu è SVN”

If nothing or the base node is marked in the object tree, then the entire project is reverted to
a specific revision (“Revert project to revision”). If one or more objects are selected, then these
objects and their sub-objects are reverted (“Revert to revision”).

For a description of the dialog, refer to the section "Select revision".
See also
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 6614
● Ä Chapter 1.8.5.5.2.19 “Command 'Revert', Command 'Revert project'” on page 6602
● Ä Chapter 1.8.5.5.2.18 “Command 'Show log', Command 'Show project log'” on page 6600

Command 'Update', Command 'Update project'
Symbol:
Function: This command commits changes in the SVN repository to the project. The update is
performed with the HEAD revision.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If nothing or the main node is selected, then the entire project is updated (“Update project”).
If one or more objects are selected, then these objects and their sub-objects are updated
(“Update SVN”).

Dialog 'Select
revision'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6603

The following cases are possible:
● Projects are added to the project that are present in the SVN repository, but not in the

project. In this case, the message "Added <object>" is issued to the message view.
● Objects that no longer exist in the SVN repository, but are present in the project locally

(and not marked as "added”), are treated according to the Subversion standard procedure:
If local changes are present, then the object remains in the project as unversioned. If there
are no local changes, then the object is also deleted locally because the user can retrieve
the object from an older version at any time. In this case, "Deleted object" is issued to the
message view.

● Versioned objects that exist in both the SVN repository and the project are updated if they
are different. Three cases to observe:
– No local changes have been made since the last update: In this case, the local object is

overwritten by the contents from the SVN repository. The message “Object updated” is
issued to the message view.

– Local changes have been made since the last update and the corresponding object type
can be merged. When versions have been merged successfully, the message “Objects
merged” is issued to the message view. If the command is not executed successfully,
then the object is marked as "Conflicted object" in the object tree and the message
“Conflicted object” is issued.

– Local changes have been made since the last update and the corresponding object type
cannot be merged. In this case, the object is marked as "Conflicted object" in the object
tree and the message “Conflicted object” is issued.

If only some of the objects are updated, it may be that objects with the same name already
exist. For example, this situation can come from moving objects to a folder.
For this conflict, you can react in the following ways:
● Do nothing and leave the conflict-causing objects as they are.
● Update (and remove) the conflicting objects in order to correct the conflict.
● Update the entire project in order to remove all conflicting objects and correct the conflict.
See also
● Ä Chapter 1.8.5.5.2.22 “Command 'Update to revision'” on page 6604

Command 'Update to revision'
Symbol:
SFunction: This command opens the “Update” dialog. In the dialog, the revision is defined for
updating the project.
Call:
● “Project è SVN”
● “Context menu è SVN”

If you select nothing or the base node in the object tree, then the entire project is updated to a
revision (“Update project to revision”). If you select one or more objects, then these objects are
updated and their sub-objects are updated recursively (“Update to revision”). As an option, you
can define that the sub-objects are not updated.
The behavior of the updating process (for example merging of conflicts) is similar to the “Update
project” and “Update” commands.

“HEAD” : This command behaves the same as the “Update” and “Update project”
commands.

“Revision” : The revision to which was last updated is selected by the revision number.

: Opens the dialog “Log” for selecting the revision.

Dialog 'Update'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6604

“Date” : The revision to which was last updated is selected by the modification date.

“Use UTC time”: : The date is displayed in universal time.

“Recursive” : Default setting. The selected part is updated recursively. This means that all
elements below the selected object are also updated.

“Omit external objects” : External objects are not updated.

See also
● Ä Chapter 1.8.5.5.2.21 “Command 'Update', Command 'Update project' ” on page 6603
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 6614

Command 'Update only this'
Symbol:
Function: The command updates the selected objects. In contrast to the “Update” and “Update
to Revision” commands, the child objects are not updated.
Call: “Context menu è SVN”

See also
● Ä Chapter 1.8.5.5.2.21 “Command 'Update', Command 'Update project' ” on page 6603
● Ä Chapter 1.8.5.5.2.22 “Command 'Update to revision'” on page 6604

Command 'Disconnect project from SVN'
Symbol:
Function: This command deletes all connections of the current project to SVN by converting the
project into a non-versioned project.
Call: Menu bar: “Project è SVN”.

Because this operation cannot be reversed, the operation must be confirmed
before the command is executed.

Use the command "Connect to existing project” to connect to the SVN reposi-
tory again at a later time.

See also
● Ä Chapter 1.8.5.5.2.30 “Command 'Connect to existing project'” on page 6608

Command 'Switch'
Symbol:
Function: This command opens the “SVN switch” dialog. In this dialog, you specify a URL in
the SVN repository to which the current working copy of the project is updated. The command
switches a project from a branch or tag to another.
Call: Menu bar: “Project è SVN”.
Requirement: The project is versioned.

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6605

“From” Current SVN URL of the project

“To” Input field for the target URL in SVN
● “HEAD”: The “Select revision” dialog opens.
● : The “SVN Repository Browser” dialog opens. There you select the target

URL in the SVN repository.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585

Command 'Un-Ignore on commit'
Function: This command removes an unversioned object from the ignore list so that the object
is checked by default on commit.
Call: Context menu: “SVN”

Requirement: The command “Ignore on commit” was executed for the object. The object is
marked with the symbol.
See also
● Ä Chapter 1.8.5.5.2.11 “Command 'Ignore on commit'” on page 6597

Command 'SVN Cleanup'
Function: This command opens the “SVN Cleanup” dialog. In the dialog, you define actions that
are performed when cleaning up the SVN working copy.
Call: Menu bar: “Project è SVN”.

Table 820
“Internal SVN working copy”

“Update time stamps (speeds
up SVN status display)”

: Corrects recorded time stamps for unchanged files in the working directory.
This leads to a reduction in the compare time for future checks. It is not neces-
sary to execute this in regular intervals in the normal workflow.

“Vacuum cached pristine
copies (may reduce the size of
your project file)”

: Cleans the buffer for the original copies by deleting older versions that are no
longer referenced by the current project. Advantage: The size of the project file
is reduced. Disadvantage: If you downgrade to older revisions, or if you switch
between different branches, then the retrieved data size will become larger.

“Clear work queue and force
unlock of SVN internal data
structures (emergency only!)”

: Cleans up the internal SVN task queues and unlocks internal SVN data
structures. This should never be necessary during normal work by Professional
Version Control.
Note: Use this option only if errors occur for SVN commands due to locked
working copies. When this is the case, it refers to an error in Professional
Version Control. Then please send us an error report (if possible with steps to
repeat) to the CODESYS support.
Info: These are administrative locks that are internal locks in the SVN working
copy. These locks are not set up by context menu commands. For more infor-
mation, refer to the section "The three meanings of locks" in: http://svnbook.red-
bean.com/en/1.8/svn.advanced.locking.html

“Project contents”

Dialog 'SVN
switch'

Dialog 'SVN
Cleanup'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6606

http://svnbook.red-bean.com/en/1.8/svn.advanced.locking.html
http://svnbook.red-bean.com/en/1.8/svn.advanced.locking.html

“Revert all local changes (use
with care!)”

Reverts all local changes to the original status in the SVN repository.

“Release all locks” Releases all advisory locks in the project (locks visible to the user). These locks
are activated by “Acquire lock” and “Steal lock”.

“Revalidate all locks against
the repository (they could have
been stolen)”

Checks whether the locally available advisory locks are still valid or have been
stolen by someone else for example. All invalid locks are removed.

“Status caches”

“Clear all caches and refresh
status icons”

Deletes all internal caches that Professional Version Control has and updates
the status icons. Required only if it issues an error in Professional Version
Control through which the caches or the status display are inconsistent.

Command 'Clear authentication data'
Function: This command opens the “CODESYS” dialog. In this dialog, define the caches that
will be deleted.
Call: Menu bar: “Project è SVN”.

The authentication memory contains the authentication data of all SVN repositories for which the user has
selected for saving the authorization data. This memory is deleted completely by this command.

“Clear the shared on-disk
cache.”

: The data saved on the computer is deleted.

“Clear the RAM cache of this
instance.”

: The data saved in the RAM is deleted.

The authentication data saved on the computer is stored in %APPDATA%
\Subversion\auth. This memory path is also used for most other Subver-
sion client applications (for example, TortoiseSVN and AnkhSVN). Therefore,
deleting the authentication data affects these applications as well.

Command 'Merge changes'
Symbol:
Function: This command opens the “Merge” dialog. In this dialog, you determine the revisions
with the changes to be merged with the working copy of the project.
Call: Menu bar: “Project è SVN”.
Requirement: The project is linked to SVN.

Dialog 'CODE-
SYS'

Dialog 'Merge'“”

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6607

“Kind of merge” ● “Sync/Reintegrate/Symmetric merge”: Synchronizes all missing changes
from trunk (or a different branch) into this branch.

● “Cherry pick”: Integrates specifically selected revisions from one branch to
another branch. This is necessary, for example, if any error trapping has to
be ported back to an older version.

“Merge source” SVN URL of the SVN repository
● Input field
● “HEAD”: HEAD revision
● : Dialog “SVN Repository Browser” opens for selecting the SVN repository.

“Define start and end revision” Select this option to merge a cohesive range of revisions with the working copy.

“Start revision” Defines the range of revisions that are merged with the working copy:
● “HEAD”: HEAD revision
● “Revision”: Start and end revision of the range
● “Date”: Date of the start and end revisions

“End revision”

“Define revision range” Select this option to merge individual revisions with the working copy. You can
also highlight the individual revisions in the “Log” dialog.
Note: When defining ranges, CODESYS SVN behaves like other graphical cli-
ents, such as Tortoise SVN), and not like the command-line client. Example: For
a range of 4-7, revisions 4, 5, 6, and 7 are merged.

See also: Merging a Range of Revisions

“Dry run (simulation)” : This command is executed without changing the working copy. Files that are
changed during an actual merge are displayed, as well as ranges where conflicts
occur.

“Record only” : The revision is marked as "merged" without actually performing the merge.

“Ignore ancestry ” : SVN uses path-based differences only, not history-based differences.

See also
● Ä Chapter 1.8.5.5.3.3 “Dialog 'Select revision'” on page 6614
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585

Command 'Connect to existing project'
Symbol:
Function: This command opens the “Connect to SVN repository” dialog. In the dialog, you
define the URL and the revision of the SVN repository with which the unversioned project is
connected.
Call: Menu bar: “Project è SVN”.
Requirement: The project is disconnected from SVN.

NOTICE!
Only users who have read access to the entire project (see the CODESYS user
and access management) can import the project into the SVN repository or can
link to an existing database project.

NOTICE!
This command functions reliably only when the project has already been
imported into SVN and then disconnected with the command “Disconnect
project from SVN”.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6608

https://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-merge.html#tsvn-dug-merge-range

“URL of existing project” URL of the SVN repository
“HEAD”: Selection of the revision in the “Select revision” dialog

: Selection of the SVN repository in the “SVN Repository Browser”

“Checkout options” “Omit externals”: External objects are not checked out.

“Revision” ● “HEAD”: HEAD revision
● “Revision”: Number of the revision
● “Date”: Date of the revision

“Use UTC time”: : Date display in universal time.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585

Command 'Resolve conflict'
Symbol:
Function: This command opens the “<object>” dialog. In the dialog, the conflicts are displayed
and functions for resolving conflicts are prepared in order to merge changes.
Call: Context menu of the object.
Requirement: The object has a conflict that has occurred by updating the object with local
changes.

“Compare” The local objects are displayed on the left side, and the version from the SVN
repository is displayed on the right side.

“Use mine” A local change is used.

“Use yours” A change of the version from the SVN repository is changed.

“Apply” All changes are accepted that you made in this dialog. The status of the object is
changed.

“Cancel” Cancels all changes that you made in this dialog. But the object keeps the
conflicted status.

Command 'Work in offline mode'
Function: This command switches to SVN offline mode. In SVN offline mode, the implicit
locking and all commands that access the SVN repository are not possible.
Call:
● Menu bar: “Project è SVN”.
● Context menu: “SVN”

Requirement: The project is linked to SVN.
When switching back to SVN online mode, all present locks on the working copy are checked
against the server. If this locking is invalid, then it is released.

Dialog 'Connect
to SVN reposi-
tory'

Dialog '<object>'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6609

The user on a machine wants to make changes to the project without disconnecting the connec-
tion. At the moment, there is not connection to the server. Despite this, when automatic locking
is activated, work is possible because the SVN offline mode deactivates the automatic lock
temporarily.

Command 'Copy (Branch/Tag)'
Symbol:
Function: This command opens the “SVN Copy Branch/Tag” dialog. There you can “Branch” or
“Tag” a revision of your project. A specific revision of your project is saved there at this position.
A branch is normally used in order to save changes isolated in one version. A tag is used for
marking a specific state, for example a shipping version. Internally, it is copied not in the actual
sense, but more refers to the revision.
Call: Menu bar: “Project è SVN”.
Requirement: The project is versioned.

Table 821: “SVN repository”
“From” SVN path of the current project

Example: https://svnserver/repository/trunk/
ControlABC.project

“To” Target path in the SVN repository for the copy operation
Example of tag: https://svnserver/repository/tags/V4.4.4.4/
ControlABC.project

: Dialog “SVN Repository Browser” opens for selecting the target path.

Table 822: “Log message”
Input field Comment the change in a log message.

Example: Tag for version 4.4.4.4 created.
“ Recent Messages” Opens the dialog “Recent Messages” to display the last log messages. You can

click a log message to accept it.

Table 823: “Create copy from”
“Working copy (including local
changes)”

The new branch/tag refers to the working copy including all local changes. The
local changes are committed to the SVN repository for this purpose.

“Base revision of working copy
(<revision number>)”

The new branch/tag refers to the base revision of your working copy whose
revision number is displayed in the parentheses. If the working copy already
contains local changes, then these are not committed to the SVN repository.

“HEAD revision of the
repository”

The new branch/tag refers to the HEAD revision of your project.

“Specific revision in SVN
repository”

The new branch/tag refers to a revision that is displayed on the adjacent button.
Click the button to change the revision. The “ dialog opens.”.

Uses case

Dialog 'SVN
Copy (Branch/
Tag)'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6610

“Switch to new location ” : After the dialog is confirmed, the working copy switches to the new branch/
tag.

“OK” The target path is created (as a new tag ../repository/tags/V4.4.4.4
or as a new branch ../repository/branches/new_feature). Then the
revision specified in “Create copy from” is copied there.

See also
● Ä Chapter 1.8.5.5.2.1 “Command 'SVN Repository Browser'” on page 6585

Command 'Pending Changes'
Symbol:
Function: The command opens the “Pending Changes” view. All objects are listed there which
have changed from the base revision or which are locked.
Call: “View è Pending Changes”

The modified or locked objects are shown in the lower half of the view. You can use the
“Commit”, “Revert”, and “Update” commands on single or multiple objects. You will find com-
mands for comparing and displaying the version history in the context menu of a selected
object.
Double-clicking the object opens the project comparison.

“Select” Selection or clearing of all objects

“Commit” Commits local changes to the SVN repository

“Revert” Reverts the local changes to the state of the base revision of the working copy

“Update” The command commits changes in the SVN repository to the project. The
update is performed with the HEAD revision.

“Keep Locks” Lock is not released automatically after commit

“Recent Messages” Shows the last used log messages. You can click a log message to accept it.

“Messages” Type in a log message that comments your change. Example: Bug fix error
123

See also
● Ä Chapter 1.8.5.5.2.5 “Command 'Commit', Command 'Commit Project'” on page 6591
● Ä Chapter 1.8.5.5.2.19 “Command 'Revert', Command 'Revert project'” on page 6602
● Ä Chapter 1.8.5.5.2.21 “Command 'Update', Command 'Update project' ” on page 6603

1.8.5.5.3 Dialogs
1.8.5.5.3.1 Dialog 'Options' - 'SVN Settings'... 6612
1.8.5.5.3.2 Dialog 'Project Settings' - 'SVN Settings'...................................... 6613
1.8.5.5.3.3 Dialog 'Select revision'.. 6614
1.8.5.5.3.4 Dialog 'Subversion Authentication'... 6614
1.8.5.5.3.5 Dialog 'Automatic locking failed'... 6617

View 'Pending
Changes'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6611

Dialog 'Options' - 'SVN Settings'
Symbol:
Function: This tab includes the basic settings for Professional Version Control.
Call: Menu bar: “Tools è Options”.

Table 824: “Automatic locking and merging”
“Merge” Behavior for the commands “Update”, “Merge”, or “Switch”, when both sides

(working copy and SVN repository) have changed from the base version.
● “Mark all colliding changes as conflicts”: The objects are not merged auto-

matically. All changes with a conflict are marked as "With conflict", even if
some of them can be merged automatically.

● “Merge mergeable changes, mark the others as conflicts”: Changes that
can be merged are merged automatically. All others are marked as "With
conflict".

● “Merge mergeable changes, ask the user for the others”: Changes that can
be merged are merged automatically. The user is prompted for all others.

● “Always ask the user, even for mergeable changes”: For all changed objects,
the user is prompted, even if some of them can be merged automatically.

“Locks” Behavior such as Professional Version Control objects when they are changed
locally.
● “Always try to lock before modification”: All objects are locked before they

are changed, even if they can be merged.
● “Only lock the objects which don't support merging”: Only those objects are

locked that cannot be merged automatically.
● “Never acquire a lock automatically”: No objects are locked, not even if they

can be merged automatically.

“Marker” ● “Use conflict markers when merging objects”: If objects with conflicts exist
that cannot be merged, then these conflicts are marked in the source code
with conflict markers. In addition, the object itself is marked as being merged
successfully (no conflict).

● “Leave non-mergeable objects as conflicted”: No conflict marker is set.
Objects that cannot be merged remain in the status "With conflict".

“Prompt the user when
automatic locking fails.”

: If it is not possible, to lock the object, then the dialog “Automatic locking
failed” opens (see dialog description).

Foo();
>>>>>>>>>>>>>>>
I := I + 1;
===============
I := I + 2;
<<<<<<<<<<<<<<<

Example of
conflict
markers

Table 825: “Server check”
“Check server for updates and
locks”

: Professional Version Control checks in the specified time interval that objects
have been updated on the server. In addition, it checks whether objects are
locked or locks have been stolen.

“Check interval (minutes)” Example: 10

Tab 'General'

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6612

Table 826: “Ignore for comparison”
Ignore whitespace : Whitespace differences between the current project and the reference project

are ignored.

Ignore comments : Comments in the programming code are excluded from the comparison.

Ignore Properties : Object properties are excluded from the comparison.

Some of the SVN options can be overwritten by the project-specific settings.

Project-specific settings are defined in the menu “Project è Project settings”,
category “SVN Settings”.

See also
● Ä Chapter 1.8.5.5.3.5 “Dialog 'Automatic locking failed'” on page 6617
● Ä Chapter 1.8.5.5.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 6613

Symbol:
Function: This tab contains the settings for the SSH protocol.
Call: Menu bar: “Tools è Options”.

Table 827: “SSH client implementation”
“libssh2 (recommended)” Professional Version Control uses Libssh2 for establishing a connection via SSH

protocol. This is the recommended setting.

“SharpPlink (backwards
compatibility)”

Professional Version Control uses plink.exe for establishing a connection with
SSH servers. This option is required only for communication with outdated
servers that support the deprecated SSH-1 protocol.

The SSH configuration can be overwritten by means of the environment vari-
able SVN_SSH or server-specific by means of the SVN configuration file.

See also
● Tunneling via SSH

Dialog 'Project Settings' - 'SVN Settings'
Symbol:
Function: The behavior of the integrated SVN version control system is configured in this
dialog.
Call: Menu bar: “Project è Project Settings” (“SVN Settings”).
Requirement: A project is open.

Table 828: “Automatic locking and merging”
With these settings, you can overwrite the default settings that were made in the dialog “Tools è Options”,
category “SVN Settings”.

“Merge” Behavior for the commands “Update”, “Merge”, or “Switch”, when both sides
(working copy and SVN repository) have changed from the base version.

Tab 'SSH'

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6613

http://svnbook.red-bean.com/nightly/en/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sshauth

“Locks” Behavior such as Professional Version Control objects when they are changed
locally.

“Marker” Behavior for conflicts

Table 829: “Settings SVN version info”
“Create SVN_VERSION_INFO
constants for IEC access”

: The object SVN_VERSION_INFO is created and includes global constants or
variables for the project metadata.

: The object SVN_VERSION_INFO is not available.

When you activate the option, the object is created automatically. When you
deactivate the option, the object is removed from the project automatically.

See also
● Ä Chapter 1.8.5.5.3.1 “Dialog 'Options' - 'SVN Settings'” on page 6612

Dialog 'Select revision'
Function: This dialog shows the currently selected revision. You can edit the selection there.

“Revision”

“HEAD” : The latest revision (top revision) within a branch is displayed.

“Revision” : A specific revision is displayed by the revision number.
Example: 3
Tip: Click to show the revisions. Then the “Log” dialog opens to display
the revisions and the associated actions. The revision that you select there is
applied.

“Date” : A specific revision is checked out by the modification date. This is the highest
revision at the given time (the last revision before that time).
Example: 12/23/2016 11:59:59
Tip: See section "Revision identifiers" in "Version control with Subversion"

“Use UTC Time”: : Modification date in universal time is used.

“Reset recursively” : All objects below the selected object are also reset.
The action fails if
● Objects have been moved in or out of the hierarchy below
● Objects outside of the hierarchy would be changed by implicit dependencies

See also
● Ä Chapter 1.8.5.5.2.18 “Command 'Show log', Command 'Show project log'” on page 6600
● "Version control with Subversion", Section "Revision identifier"

Dialog 'Subversion Authentication'
The dialogs are used for authenticating the server/client connection. A server or client authenti-
cation is performed depending on the initial situation and protocol.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6614

http://svnbook.red-bean.com/de/1.8/svn.tour.revs.specifiers.html

Overview of possible protocols and dialogs
● svn://: The SVN protocol; either unencrypted or SSL/TLS encrypted

– Can prompt for user name and password (even for an unencrypted connection)
– Can prompt for a server certificate from the dialog for authentication in order to confirm

the server if a certificate is unknown, defective, or invalid (for TLS/SSL encryption)
– As an alternative or in addition to the user name and password prompt, the client can

also be authenticated with client certificates (for TLS/SSL encryption). The dialogs for
authentication open with the client certificate.

● http://: SVN via http, unencrypted
– Can prompt for user name and password

● https://: SVN via http, SSL/TLS encrypted.
– Can prompt for user name and password
– Can prompt for a server certificate from the dialog for authentication in order to confirm

the server if a certificate is unknown, defective, or invalid.
– As an alternative or in addition to the user name and password, the client can also be

authenticated with client certificates. The dialogs for authentication open with the client
certificate.

● svn+ssh://: The SVN protocol, encrypted through an SSH tunnel. SSH (Secure Shell) is
the usual networking tool in Linux/Unix for accessing other computers.
– Can prompt for user name and password
– Prompts for server certificate in the dialog for authentication if the server is still unknown

in order to be sure that it is the correct server.

Initial situation: CODESYS (as a client) receives an unknown or defective server certificate.
This dialog shows information about the certificate. There you can confirm the identity of the
server.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Table 830: “Certificate information” (for SSL/TLS connections)
“Host name” Example: svn repository
“Thumbprint”

“Valid from”

“Valid to”

“Issuer” Example: ABB AG
“Certificate”

Table 831: “SSH server key information” (for SSH connections)
“Key type”

“Key size (bits)”

“Key thumbprint”

Dialog for
authentication
with a server
certificate

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6615

“Save information to RAM” : The certificate is saved to the working memory. Then the client recognizes in
the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The certificate is saved on the computer and it is available for future connec-
tions.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates and established the connection.

The certificate memory is secured cryptographically and distributed with other
SVN clients.

See also
● Version Control with Subversion

Initial situation: The SVN server requires a client certificate for authentication.
In this dialog, you select the client certificate in order to confirm the identity.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Table 832: “The SSL server requires a client certificate file.”
“File” Client certificate file

“Save information to RAM” : The certificate is saved to the working memory. Then the client recognizes in
the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The certificate is saved on the computer and it is available for future connec-
tions.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates and established the connection.

Initial situation: The SVN server is configured so that it demands a client certificate for authenti-
cation. The applied certificate is protected by a pass phrase.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Dialog for
authentication
with a client cer-
tificate

Dialog for
authentication
with a pass
phrase

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6616

http://svnbook.red-bean.com/en/1.7/svn.serverconfig.netmodel.html

Table 833: “A pass phrase is needed to unlock the certificate.”
“Pass phrase” Example: ***

“Save information to RAM” : The pass phrase is saved to the working memory. Then the client recognizes
in the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The pass phrase is saved on the computer and it is available for future
connections.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates with client certificates by means of a pass phrase and establishes
the connection.

Initial situation: The SVN server is configured so that it demands a user name and password for
authentication.

“Authentication area” Connection that is secured
Example: https://svn repository:443

“User name” Example: a.mayr
“Password” Example: ***

“Save information to RAM” : Saved to the working memory. Then the client recognizes in the current
CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : Saved on the computer and it is available for future connections.
If you restart CODESYS, then the saved certificate is used.

“OK” Establishes the connection and authenticates it.

Dialog 'Automatic locking failed'
The dialog shows a list of all objects for which an automatic locking was not possible. In the
optoins you define how Professional Version Control will resolve the confilict.

Dialog for
authentication
with a user
name and pass-
word

PLC Automation with V2 CPUs

Engineering interfaces and tools > Professional Version Control

2022/01/20 3ADR010582, 3, en_US 6617

Table 834: “Automatic Locking and Merging”
● “Try to steal the lock for the

affected objects”
● “Activate the "Offline Mode"

to temporarily suppress
locking”

These options are displayed if another user has locked the object.

● “Update the affected
objects to the newest
revision”

● “Update the whole project
to the newest revision”

● “Activate the "Offline Mode"
to temporarily suppress
locking”

These options are displayed if there exists a more current version of the object
on the server.

● “Activate the "Offline Mode"
to temporarily suppress
locking”

These options are displayed if no connection can be established to the server.

“SVN Project Settings” Opens the SVN project settings dialog (menu “Project è Project Settings”).
There you can change the settings for the automatic locking.

“SVN Settings” Opens the general SVN project settings dialog (menu “Tools è Options”).

See also
● Ä Chapter 1.8.5.5.3.1 “Dialog 'Options' - 'SVN Settings'” on page 6612
● Ä Chapter 1.8.5.5.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 6613

1.8.5.5.4 Objects
1.8.5.5.4.1 Object 'SVN_VERSION_INFO'... 6618

Object 'SVN_VERSION_INFO'
Symbol:
The object contains the SVN metadata of the project as global constants or variables in a
variable list. It is located in the “POUs” view. You can specifically retrieve the data of the global
constants or variables by the application. By calling specific data, you can also reduce the
memory usage on the controller.
The SVN metadata is provided for this purpose, subdivided over multiple global variable lists
(GVLs):
● “SVN_VERSION_INFO”
● “SVN_Info_Summary”
● “SVN_Info_SummaryW”
● “SVN_Info_URI”
● “SVN_Info_Revisions”
● “SVN_Info_Flags”
● “SVN_info_LastChange”

The SVN_VERSION_INFO object is created automatically when a project is imported to a SVN
repository. To do so the option “Create SVN_VERSION_INFO” in the dialog “Import project to
SVN” must be activated.
Furthermore you can create the object or remove it from the project with the option “Generate
SVN_VERSION_INFO constants for IEC Access” (Dialog “Project è Project Settings”, category
“SVN Settings”).

PLC Automation with V2 CPUs
Engineering interfaces and tools > Professional Version Control

2022/01/203ADR010582, 3, en_US6618

Table 835: Global Constants
Name Data type Description
MINREVISIO
N

LINT Lowest revision number of the working copy

MAXREVISIO
N

LINT Highest revision number of the working copy

PARTIAL BOOL TRUE: The working copy is incomplete.

Example: Cancellation during the last update due to a net-
work error or a checkout.

MODIFIED BOOL TRUE: Local changes were made.

SWITCHED BOOL TRUE: Parts of the project were branched (with the “Switch”
command).

VERSION STRING Version identification, similar to Apache™ Subversion®
(subversion.exe)

Example: 12:34M, means MINREVISION = 12,
MAXREVISION = 34, MODIFIED = TRUE
For more information, refer to the documentation for
Apache™ Subversion®.

CLEAN BOOL TRUE: The version is clean.

This is the case when MINREVISION is equal to
MAXREVISION, the working copy is complete, and non-ver-
sioned, and is was not switched.

URL WSTRING SVN-URL of the project
Example: https://svnserver/repository/trunk/
ControlABC.project

If a controller does not support the data type WSTRING, then a compiler error is
issued when accessing the object SVN_VERSION_INFO.

See also
● Ä Chapter 1.8.5.5.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 6613
● Ä Chapter 1.8.5.5.2.3 “Command 'Import project to SVN'” on page 6589

1.8.6 Subversion
1.8.6.1 Project Version Control with Subversion

Automation Builder projects can be stored in Subversion (SVN) repositories by using the Project
Version Control. The Project Version Control can be used to track changes on a project and
to have access to historic versions of the whole project or objects in the project. It is possible
to hold different versions of a project in branches and to compare these versions. The Project
Version Control enables multiple engineers to work collaboratively on the same project.

Make yourself familiar with the concepts of SVN.
This manual about Project Version Control is additionally to the following information and
describes mainly the specific behavior of Subversion in Automation Builder.
● Homepage of Subversion: http://subversion.apache.org/
● Online user manual for Subversion: http://svnbook.red-bean.com/
● Documentation on SVN integration in Automation Builder: Refer to subfolder .

Introduction

Basic knowl-
edge

PLC Automation with V2 CPUs

Engineering interfaces and tools > Subversion

2022/01/20 3ADR010582, 3, en_US 6619

http://subversion.apache.org/
http://svnbook.red-bean.com/

1.8.6.1.1 Preconditions
● In Automation Builder, the Project Version Control must be installed.
● A valid license for the Project Version Control must be activated.
● All collaborating users working on the same project need:

– Automation Builder installed in the same version with the same features.
– License for same edition.
– Same set of optional third party device descriptions.
– Same set of optional customer specific packages.

The Project Version Control can be used in combination with an SVN server in version 1.6 or
newer, the repository format should be 1.5, 1.6 or 1.7. Newer repository formats are not yet
supported.
The usage of local repositories in the local file system or even on a network share is strongly
discouraged.

1.8.6.1.2 Working with Project Version Control
● All objects in the device tree or POU tree are represented by an object in the SVN reposi-

tory, there might be hidden objects that are not visible in the tree but that exist in SVN.
● The smallest unit in the SVN repository is one object including all its data like name,

parameters, device identification.
● Objects are identified in the SVN repository by their name. Renaming one object in

Automation Builder means to delete it from the SVN repository and add a new one to the
SVN repository. Renaming an object causes a break in the history of that object.

● By default objects are locked before they are changed to prevent other users from changing
the object. The locking strategy can be changed in the user options.

● Objects can be compared to other versions of the same object, many differences/changes
between the current object in the Automation Builder project and the compared object can
be merged into the object in the Automation Builder project. Merging changes could be used
to resolve conflicts in case concurrent changed can not be avoided.

● To ensure consistency it is required and also enforced that some changes can be committed
or reverted only together.
– All changes to device objects in the hardware tree that are sub-nodes to the same top

level device. Note: Objects that are not devices are excluded, e.g. the application node.
– All changes below the AC500 PLC application node.

● Most SVN operations can not be performed while other external applications like CODESYS
or Panel Builder work on files that are embedded in Automation Builder project.

● Some operations like changing the target or updating the project to the latest device
(description) versions do a recursive lock of the whole AC500 PLC. If the lock can’t be
obtained the operation is aborted.

● Some objects contain internal data that has no meaning to the end user but is also impor-
tant. Changes on such data are not shown in the compare dialog or are summarized by a
placeholder like "There are hidden changes".

● Including externals is not supported.

Automation
Builder

SVN server

PLC Automation with V2 CPUs
Engineering interfaces and tools > Subversion

2022/01/203ADR010582, 3, en_US6620

1.8.6.1.3 Recommendations on Working with Project Version Control
● Multiple users that work collaboratively on the same project should agree on their respon-

sibility for certain parts of the project where they do changes to avoid conflicts and tree
conflicts.

● Agree on locking strategy used by all users working on the same project.
● Distribute the work between multiple users meaningful.

– It is suggested to setup the hardware structure at first before other users checkout a
project to work on it and limit structure changes in the hardware tree to the minimum.

– Before adding objects, especially top level objects, users should agree that only one
user adds objects at top level or below the same parent, or agree on unique names for
the objects to add. The default naming scheme for new objects bears the risk of name
conflicts. These conflicts could be resolved only by reverting the changes of the user
who later tried to commit the changes.

● The SVN integration (and also project compare) gives lot of power to the user, users should
be sure to do only things they fully understand. Especially by merging changes incomplete it
is possible to create inconsistent data.

● Adding devices, removing devices or even changing parameters can have side effects to
other devices, do not change objects/parameters to their original state by merging that were
not done explicitly.

● Commit changes frequently to SVN.
– To release locks that you don’t longer need.
– To reduce the risk of conflict with co-workers.
– To keep the sets of changes to commit small.

● Do frequent updates when collaborating in a team.
– To be up-to date.
– To keep the sets of changes to get from SVN small.
– To reduce the risk of losing work results in case of conflicts.

● To avoid conflicts, it is suggested to stay with the default setting to automatically lock objects
before doing changes. Consider explicit recursive locks of sub-trees where you plan bigger
changes.

● Prefer a clean checkout over using the switch command to change between different
branches.

● Do not use the switch command to change between unrelated projects, this could corrupt
the Automation Builder project (local copy, not in SVN) easily.

● Commit local changes to the SVN repository before creating a branch.

● Give objects good/correct names after adding them and use renaming of objects already
committed to SVN sparely to maintain a continuous history in the SVN repository.

● The goal to revert only single changes of all changes done that must be committed/reverted
together, could be achieved by using project compare or the object compare dialog.

● If changes can’t be committed to the SVN repository because of locks hold by other users,
it is possible to create a branch, use the switch command to change to this branch and
commit the changes there. The branch and base line could be merged together later.

1.8.6.1.4 Known Issues and Troubleshooting
Not all changes are shown for all objects, but hidden changes are also important.
The device pool may be changed as side effect of several operations, including opening the
project.
When a project was corrupted (by performing an update that tried to add an AC500 Communi-
cation Module) it is possible to save this project and merge changes to a project that has been
cleanly checked out by project compare.

Be collaborative

Be careful

Be effective

PLC Automation with V2 CPUs

Engineering interfaces and tools > Subversion

2022/01/20 3ADR010582, 3, en_US 6621

1.8.6.2 SVN Support Examples
1.8.6.2.1 Importing Automation Builder Project to SVN Repository

1. In the Automation Builder main menu, go to “Project è SVN è Import Project to
Subversion”.

2. Enter user credentials and click “OK”.
3. Select SVN server repository to import Automation Builder project and click “OK”.

ð The Automation Builder project is imported into the selected repository and connected
automatically to the repository. The imported project nodes are identified with green
indicators.

1.8.6.2.2 Logging in User2
1. In the Automation Builder main menu, go to “Project è SVN è Checkout”.
2. Enter user credentials and click OK.
3. Select the repository location, project folder and revision if any and click “OK”.

ð The project will checked out of the repository, saved in the selected location and
opened as a primary project.

The tables below provide the descriptions of the options availlable in the check-out dialog.

Checkout options
Omit externals Do not checkout external objects.

As library project Saves the project as a CODESYS library file.

PLC Automation with V2 CPUs
Engineering interfaces and tools > Subversion

2022/01/203ADR010582, 3, en_US6622

Revisions
HEAD Checks out the Head revision.

Revision Allows to select the required revision of the
project.

Date Allows to select a revision date of the project.

The following instances can occur in the workflow.

● If the project contains any updates, the specific project level node is indicated with .
● If a new object is added to the project, the newly added node is indicated with .
● If the project node is deleted, the specific node is indicated with .

1.8.6.2.3 Examples
If User1 modifies Panel_CP600 project, then the node indicator turns to orange with lock
symbols. If User2 need to modify the same Panel_CP600 project, the Panel_CP600 project
appears with a lock symbol.

To steal the lock of an affected object, proceed as follows:
1. Double-click “Panel_CP600” project.

ð Automatic lock failed dialog is displayed.

2. Enable “Try to steal the lock for the affected objects” and click “OK” to steal the lock.
3. In the Lock Message window, enter the reason to steal the lock and click “OK”.
4. User2 can modify and commit the project.

If User1 adds a new object to the project and commit the changes, then User2 can update the
project to see the latest modifications.

Example 1

Example 2

PLC Automation with V2 CPUs

Engineering interfaces and tools > Subversion

2022/01/20 3ADR010582, 3, en_US 6623

The user can revert to any of the available project revisions.
1. Right-click on object node and select “SVN è Revert to Revision”.
2. Select or enter the revision number and click “OK”.

ð The revision command reverts local changes of this object back to the specific revision
of the working copy.

3. Right-click on the object node and select “SVN è Commit”.
4. In the commit window, enter the reason to change the project and click “OK” to make the

changes.

ð The project node is updated with the latest changes.

SVN server allows to select the required revisions of Automation Builder project. You can
checkout the project using “Project è SVN è Checkout” and then enter the credentials and
click “OK”.
In the check-out dialog, do the following:
1. Select the project repository.
2. Activate “Revision” and select or enter the revision number and click “OK”.

The user can work on the selected revision. To commit the changes to the project, right-click on
project and select “SVN è Commit Project”.

1.8.7 Python
1.8.7.1 Python script support

Scripting allows python scripts to be used to automate project configuration in Automation
Builder. Parameters can be added to scripts, so that a generic script can be customized before
execution. The user can add a script to most parts of the device tree. A script can be started
either from the user interface (by a command or with the python scripting editor) or from the
Windows command line and is saved with the project.
With the scripting feature commands or complex program operations can be automated.
Examples of use cases:

Example 3

Example 4

Using scripts

PLC Automation with V2 CPUs
Engineering interfaces and tools > Python

2022/01/203ADR010582, 3, en_US6624

● Integration of Automation Builder in automatic build server environments:
– continuous integration (CI)
– continuous delivery (CD)
– continuous testing

● Integration with third-party software, for example:
– code generators
– creation of projects that are custom tailored to a specific machine configuration

● Creation of documentation
● Updating of libraries: Setting of project information during the release process
● Automatic testing: Mostly in connection with the Professional Test Manager
● Outputting variables via monitoring APIs

A valid license is required to use the scripting. If you open a project with the existing script
object without a valid license, you are not allowed to add or edit the scripts. However, the scripts
are not removed from the project.

The Automation Builder scripting language is modular and based on IronPython. For this pur-
pose, the Automation Builder “ScriptEngine” component combines the IronPython interpreter
with the Automation Builder development environment which makes the extensive python
framework libraries available including file access in networks and much more.

1.8.7.2 Working with script objects
Scripts to execute can be added to and stored in the Automation Builder project. Additionally,
parameters can be added to scripts, so that generic scripts can be customized before execution.

1. In the device tree, right-click on a node (e.g. a PLC node) and click “Add object”.
2. Under “Scripting category” select “Script è Add object”.

ð The 'Add Script' dialog is displayed.

3. Browse and select a script from the file system or create a new script by clicking [Add].

ð A script is added below the selected node and the editor is opened.

Licensing

Scripting lan-
guage

Adding a script
object to the
project

PLC Automation with V2 CPUs

Engineering interfaces and tools > Python

2022/01/20 3ADR010582, 3, en_US 6625

4. The default parameter values are read from the script. The user can edit the default
values as required.

Editing scripts within Automation Builder is not supported. You can use an
external editor to edit the script and then import it to Automation Builder.

The script objects can be reused within the project via copy-and-paste around
the device tree.

The user can execute the script with the parameter values via the execute button in the editor or
via right-click on the script object in the device tree by selecting “Script è Execute”.

The user can import the script from the file system. This will replace the contents of the
current script object with the contents of the imported file. Optionally, parameter values will be
preserved if the imported script has a matching named parameter. In the device tree, right-click
on a script object and select “Script è Import”.

The user can export the selected script and saved it as a new file in the file system. The
exported file does not include any edited parameter values. In the device tree, right-click on a
script object and select “Script è Export”.

The following instructions help the user to create parameters in the python script:
● Parameters must be defined in the script.
● Parameters and values are optional.
● The ParameterName and the ParameterValue must be delimited with symbols. The

format must be as follows:
"#AutomationBuilder_Parameter {"ParameterName"} {= "ParameterValue"}

● {ParameterName} is the name given to the parameter. This allows the values to be refer-
enced in the python script.

● {ParameterValue} is the default value given to the parameter. This value can be modified in
the editor.

The example below shows the format of the ParameterName and ParameterValue in the
script.
● #AutomationBuilder_Parameter "numWidgets": creates a new parameter called

numWidgets.
● #AutomationBuilder_Parameter "numWidgets" = "4": creates a new parameter called

numWidgets and initializes to the value 4.

Using parameters within the python script:
● Parameters can be used in the script by creating an instance of the parameter helper:

parameterHelper = AutomationBuilder_Parameters.create()
● Individual parameters are retrieved by calling:

GetParameter(parameterName). devicename = parameterHelper.GetParameter("Name")

A set of python script examples are available in the path %Public%\Documents\Automation-
Builder\Examples\Python scripts.

Execution

Import

Export

Parameters

Python script
examples

PLC Automation with V2 CPUs
Engineering interfaces and tools > Python

2022/01/203ADR010582, 3, en_US6626

1.8.7.3 Python script editor
In Automation Builder a browser-based python script editor is integrated. This allows the user
to modify the existing python script, to create a python script from the scratch and to finally
execute the script. Moreover, it assists the user in writing the script with the following features:
● Auto suggest

– IntelliSense suggestions for the python syntax during typing.
– IntelliSense for CODESYS script engine and Automation Builder injected script objects.
– Built-in language service that provides complete code intelligence for objects, properties

and methods.
– Details of the object with [CTRL] + [spacebar].

● Auto completion
Press the Enter key on a function suggested by IntelliSense in order to insert it.

● Python syntax highlighting (basic syntax colorization)
The function and its respective namespace is automatically colored in order to match colors.

● Matching brackets
Matching brackets are highlighted as soon as the cursor is near to one of them using the
command palette.

● Zoom
Changes the font size of the editor's content.

● Find and replace
Support of 'Find' (search for a keyword) and 'Find and replace' (search and replace a
keyword). This feature is supported in the editor, however not integrated in Automation
Builder platform.

● Minimap
High level overview of the script for a quick navigation and code understanding.

● Copy/paste
Support of 'copy and paste' of the script text within and into the editor.

● Undo/redo
Support of 'undo/redo' for editing actions. This feature is supported in the editor, however
not integrated in Automation Builder platform.

● Keyboard shortcuts
Keyboard shortcuts allow to perform most tasks directly from the keyboard (e.g. [CTRL]
+ [Z], [CTRL] + [Y]) including copy and paste. For further keyboard shortcuts refer to the
command palette ([F1]).

● Folding
Support of folding and expanding script regions.

● Comment/uncomment the code
Support of commenting ([CTRL] + [K]) and uncommenting ([CTRL] + [C]) code through
shortcuts.

● 'Execution' button
Executes the script directly in the editor window.

● In order to start a new script from the scratch the user can start with an empty editor. This
can be done via the 'Add script' dialog without script file selection.

For further features that can be used in the python script editor refer to the command palette
([F1]).

● No IntelliSense available for return type of a property.
● No support of IntelliSense for keyword “None”.
● No IntelliSense support for method overloading.
● No IntelliSense support for methods that return an object.
● Private methods are also part of IntelliSense. Refer to the CODESYS script engine docu-

ment to verify the access modifier.

Limitations with
CODESYS script
engine Intelli-
Sense

PLC Automation with V2 CPUs

Engineering interfaces and tools > Python

2022/01/20 3ADR010582, 3, en_US 6627

1.9 Human machine interface
1.9.1 Panel Builder interface

This document describes HMI CP600 Control Panel configuration in Automation Builder and
starting HMI configuration and programming software Panel Builder 600 from Automation
Builder. The Panel Builder project created for the HMI CP600 is stored within the Automation
Builder project.

1.9.1.1 Adding desired AC500 PLC to the project
Before configuring basic settings, define the variables in CODESYS application.

1. In the Automation Builder device tree double-click the “Application” node, to start the
CODESYS application.

2. In the CODESYS application main menu, click “Project è Options”.
3. In the 'Options dialog', click “Symbol configuration” and enable the options “Dump symbol

entries” and “Dump XML symbol table”. Then, click “Configure symbol file”.

Basic settings
in CODESYS
application

PLC Automation with V2 CPUs
Human machine interface > Panel Builder interface

2022/01/203ADR010582, 3, en_US6628

4. Enable the following checkboxes and click [OK].

ð
Export variables of the object will be in gray background. Double-click
to activate.

5. In the CODESYS application window, click “Resources è Target settings è General tab”.
Enable “Download symbol file” and then click [OK].

6. In the CODESYS application main menu, select “Project è Build” to compile the project.

After adding/modifying the variables, update the Panel Builder project. For further information,
see Ä “Project information” on page 6632.

PLC Automation with V2 CPUs

Human machine interface > Panel Builder interface

2022/01/20 3ADR010582, 3, en_US 6629

1. In the device tree, right-click the “Application” node and click “Export è Symbol file”.

The precondition to generate a symbol file is to create the application and
to perform PLC program build in CODESYS.

2. Select the desired location in the file system to save the symbol file.
3. In the device tree, double-click “Application” to start CODESYS application.

1.9.1.2 Creating a Panel Builder project

1. Right-click in the Automation Builder device tree and click “Add object è Panel-CP600”

2. Click on “CP600 Control Panel” and click “Add object”

ð A Control Panel object is added to the Automation Builder device tree.

1. In the device tree, double-click “Panel CP600” object to start Panel CP600 screen.

2. Select the required PLC and enable the checkbox in the 'Use Standard Connection Set-
tings' column to use it as a standard gateway connection.
You can set communication settings using the application program or by creating custom
communication settings. Custom communication settings can be configured by clicking the
button in the 'Details' column.

3. Enable the “Update Panel Builder project on launch” checkbox and click [Launch Panel
Builder Editor].

If you update Automation Builder project with new variables and data
types or if there are changes in existing Automation Builder project varia-
bles and data types (new, modified, deleted), recompile CODESYS appli-
cation to refresh the symbol file, then launch Panel Builder editor.

Exporting
symbol file

Adding a panel
object

Starting a Panel
Builder project

PLC Automation with V2 CPUs
Human machine interface > Panel Builder interface

2022/01/203ADR010582, 3, en_US6630

4. Select “New” and click “Open” to create a new HMI project.

ð A project wizard is displayed.

If you want to import an already existing Panel Builder project file from
the file system, select “Import existing project file” and proceed.

5. Select the required panel type and orientation and click “Finish”.

ð A new project wizard starts only if the Panel project is empty.

The panel projects can be compared in Automation Builder using the “Compare
Objects” option.

PLC Automation with V2 CPUs

Human machine interface > Panel Builder interface

2022/01/20 3ADR010582, 3, en_US 6631

1. In the Panel project, double-click “Project properties” to change the panel type to the panel
which is used.

ð The Properties dialog is displayed.

2. In the Properties dialog, expand “Project” and click “Project Type ”.

ð A project wizard dialog is displayed.

3. Select the desired panel type and click “Finish”.

The project information view provides an overview of the Panel Builder project without opening
the project. To open the project information, double-click the “Panel_CP600” object.
The project information is updated every time the Panel Builder project is edited. You can
rename the Panel Builder project via context menu.

The project name is internally used as a base for the Panel Builder project
file name. Therefore, the project name has to comply with general file name
restrictions.

Changing panel
type

Project informa-
tion

PLC Automation with V2 CPUs
Human machine interface > Panel Builder interface

2022/01/203ADR010582, 3, en_US6632

The Panel Builder project information shows the list of PLCs added to the project.

1.9.1.3 Configuring Panel Builder

The user can configure a panel project manually in Panel Builder editor when
there is a need to create individual panel projects. Otherwise, the configura-
tion is updated in the panel project while launching Panel Builder editor in
Automation Builder.

1. In the Panel Builder project structure, double-click “Config è Protocols”.
2. Click to add a protocol.

3. Select the desired protocol and set the IP address, port, protocol type and PLC models.
Click [OK].

1. In the Panel project view, click “Config è Tags”.
2. Select the protocol from the drop-down list and click to import tags.

If the Panel Builder contains multiple tag importers, a dialog is displayed
to select the required importer type.

3. Select the symbol file which was exported to the file system.

Configuring
communication
protocols

Importing tags

PLC Automation with V2 CPUs

Human machine interface > Panel Builder interface

2022/01/20 3ADR010582, 3, en_US 6633

4. In the lower part of the tag editor, mark the desired tags and click “Import Tag (s)” to
import the tags to the Panel Builder project.

1. In the project view, expand “Pages” and double-click Page1.
2. In the Panel Builder 600 main menu, select “View è Toolbars and Docking Windows

è Widget Gallery”.
3. Drag-and-drop the desired widget to the page editor.
4. Right-click on the widget value and select “Attach To” to attach a tag to the widget.

Attaching tags
to widgets

PLC Automation with V2 CPUs
Human machine interface > Panel Builder interface

2022/01/203ADR010582, 3, en_US6634

5. Select the desired tag and select the desired option for the authorization “Read Only” or
“Read/ Write” or “Write Only”. Then, click [OK].

1. In the Panel Builder main menu, click “Run è Download To Target”.
2. Select the CP600 project from the drop-down list and click “Download”.

1. In the Automation Builder device tree, right-click the Panel project and click “Import è
Panel Builder Project”.
System prompts to overwrite the exiting project object data.

2. Click “Yes” to confirm.
3. Select the existing Panel Builder 600 project from the file system and click “Open”.

ð The imported project is displayed.

1. In the Automation Builder device tree, right-click the Panel Builder 600 project and click
“Export è Panel Builder Project”.

2. Click “Browse” and select the desired location in the file system and save the project file.

ð A success message is displayed, if the project file exports successfully.

When you double-click the Panel Builder project node, the compressed informa-
tion of the node is extracted into a temporary folder and then the external Panel
Builder program is started. After the external Panel Builder program is closed,
the corresponding Panel Builder files can be compressed back into the node
and saved in the Automation Builder project.

We recommend to edit the Panel Builder project by starting Panel Builder
through the Automation Builder. You can also export a Panel Builder project
to the file system to edit the project by using the external Panel Builder. Then,
reimport it to Automation Builder.

1.9.2 SCADA Integration
This document describes SCADA integration configuration in Automation Builder using zenon
editor. The configured device network address information and variables are synchronized with
zenon editor to avoid double entry.
The Automation Builder supports both standard and multi-user functionality.

Downloading a
project to panel

Importing an
existing Panel
Builder project

Exporting Panel
Builder project

Overview

PLC Automation with V2 CPUs

Human machine interface > SCADA Integration

2022/01/20 3ADR010582, 3, en_US 6635

1.9.2.1 Creating Workspace and Project
1. In the device tree, double-click “zenon_Project”.

ð To launch the zenon editor, click [Launch Zenon Editor].

To update the zenon project with latest changes of application program, click [Update
zenon project].

2. Select the required PLC and select the “Use Standard Conn. Settings” option to use as a
standard gateway connection.
This enables the user to use the same communication settings that Automation Builder
uses to communicate to the PLC.

The configured gateway communication settings made in Automation
Builder are displayed in the column 'Connection Type'.

As an alternative you can create custom communication settings: Deselect the “Use
Standard Conn. Settings” option and click the button in the 'Details' column.

PLC Automation with V2 CPUs
Human machine interface > SCADA Integration

2022/01/203ADR010582, 3, en_US6636

3. Click [Launch Zenon Editor] to create a new workspace and project.

Fig. 1183: Connect to zenon project

ð
If Zenon Editor is already running, then select the “Use current
workspace” option.

4. Select the “Create a new workspace” option and select the file location to create a new
workspace.

5. Select the “Create new project” option to create a project.

ð ABB zenon editor is displayed.

If you update or change an Automation Builder project with new variables or
data types (new, modified, deleted), recompile the application to refresh the
symbol file and click [Update zenon project].

After creating the project and workspace in Automation Builder, it is not required to set it again
for the zenon object. A double-clicking on the zenon project shows the previously configured
zenon project and the workspace.

1.9.2.2 Loading existing Workspace and Project
You can load an existing workspace and project to ABB zenon supervisor.
1. In the zenon_Project screen, click [Update zenon project].

ð Connection to the zenon project dialog is displayed.

2. In the workspace area, enable “Load existing workspace” and select the location.

PLC Automation with V2 CPUs

Human machine interface > SCADA Integration

2022/01/20 3ADR010582, 3, en_US 6637

3. In the project area, enable “Select loaded project” and click [OK].

ð Zenon editor loads the selected existing workspace and the project.

1.9.2.3 Checking the Gateway Settings in a Zenon Project
The gateway settings configured in Automation Builder can be checked in a zenon project. The
IP address configured in Automation Builder are displayed in the zenon driver configuration.
In the Project Manager structure of the zenon editor, click “Variables è Drivers” to configure the
driver configuration.

The “Settings” tab shows all gateway settings based on the number of configured PLCs
in Automation Builder. The IP address should be similar to the project gateway settings in
Automation Builder.

In the zenon project window, the Connect column should be checked to
transfer the desired number of PLC connection settings to the zenon editor.

1.9.2.4 Generating a Symbol File
Before generating the symbol file, define the variables in theCODESYS application.
1. In the CODESYS application main menu, click “Project è Options”.
2. In the “Options” dialog, click “Symbol configuration”. Enable “Dump symbol entries” and

“Dump XML symbol table” and click “Configure symbol file”.

ð Set object attributes dialog is displayed.

3. Enable “Export variables of object”. If this option has a gray background, double-click on it
to activate.

PLC Automation with V2 CPUs
Human machine interface > SCADA Integration

2022/01/203ADR010582, 3, en_US6638

4. In the CODESYS application window, click at the bottom of the window and click
“Resources è Tools è Target settings”.

5. In the target settings dialog, open the “General” tab and enable “Download symbol file”.
6. From the CODESYS application main menu, select “Project è Build” to compile the

project.

Precondition to generate a symbol file is to create the application and perform a
PLC program build in CODESYS application.

The symbol file is generated after the build. The data exchange can be transferred to the zenon
project by clicking [Update zenon project] in Automation Builder.

1.9.2.5 Updating Standard Data Types
The standard data types created in CODESYS application can be updated to the zenon project
by clicking on “Update zenon project”.

Data types and variables can be updated from the desired number of PLCs
configured in the zenon project of Automation Builder.

In the zenon project, double-click “Variables” and check the updated standard data type.

1.9.2.6 Creating Data Types
1. In the CODESYS application open the “Data types” tab. Right-click “Data types è Add

object” to create a new data type.
2. Enter the user defined data type name.
3. In “POUs” tab, add the user defined variable data type and compile.

ð The user defined data type is created and can be imported in the zenon editor.

PLC Automation with V2 CPUs

Human machine interface > SCADA Integration

2022/01/20 3ADR010582, 3, en_US 6639

If you modify or delete the data types in CODESYS application, compile with
“Rebuild all option”.

1.9.2.7 Importing Data Types in zenon Editor
1. In the zenon project, click [Update zenon project] to update the data types.
2. Click “Update” to update the variables and data types to the zenon project.

ð The user defined variables and data types are imported to the zenon project.

Fig. 1184: User defined variables

1.10 Contact ABB
ABB AG
Eppelheimer Str. 82
69123 Heidelberg, Germany

PLC support: +49 (0)6221 701 1444, plc.support@de.abb.com

abb.com/plc

abb.com/automationbuilder

PLC Automation with V2 CPUs
Contact ABB

2022/01/203ADR010582, 3, en_US6640

http://www.abb.com/plc
http://www.abb.com/automationbuilder

abb.com/contacts

PLC Automation with V2 CPUs

Contact ABB

2022/01/20 3ADR010582, 3, en_US 6641

http://www.abb.com/contacts

—
2 Index
1, 2, 3 ...
.ri file . 232, 283, 291
%I . 5395
%M . 5400
%Q . 5395
%R . 5395
07AC91-AD

Addressing . 3938
Analog outputs . 3942
Binary input . 3942
Configuration . 3937
Connections . 3934
CS31 bus . 3943
CS31 system bus . 3943
Device configuration 3932
Diagnosis and display 3939
Electrical connection 3934
LED display . 3932, 3983
Measuring ranges . 3938
Mechanical data . 3943
Normal operation . 3939
Ordering data . 3944
Technical data . 3941

07AC91-AD2
Addressing . 3954
Analog inputs . 3959
Analog outputs . 3960
Binary input . 3959
Configuration . 3953
connection . 3947
CS31 bus . 3960
CS31 system bus . 3960
Device configuration 3946
Diagnosis and display 3956
Electrical connection 3947
LED display . 3946
Measuring ranges . 3954
Mechanical data . 3961
Normal operation . 3955
Ordering data . 3962
Technical data . 3958

07AC92-AD
LED display . 3999

07AI91-AD
Addressing . 3972
Analog inputs . 3977
Analog voltage input 3977
Configuration . 3969
connection . 3965
CS31 bus . 3979
CS31 system bus . 3979
Current input . 3978
Device configuration 3963
Diagnosis and display 3973, 3990, 4005
Electrical connection 3965
LED display . 3964
Measuring ranges . 3970
Mechanical data . 3979
Normal operation
. 3939, 3955, 3973, 3989, 4004, 4027

Ordering data . 3981
Pt100/Pt1000 input . 3978

07DC91-AD
Addressing . 3987
Configurable inputs / outputs 3994
Configuration . 3989
connection . 3984
CS31 bus . 3995
CS31 system bus . 3995
Device configuration 3982
Diagnosis and display 3990
Digital inputs . 3993
Digital outputs . 3994
Electrical connection 3984
Mechanical data . 3995
Normal operation . 3990
Ordering data . 3997

07DC92-AD
Addressing . 4003
Configuration . 4004
connection . 4000
CS31 bus . 4012
CS31 system bus . 4012
Device configuration 3998

Index

2022/01/203ADR010582, 3, en_US6642

Diagnosis and display 4005
Digital inputs . 4009
Digital outputs . 4011
Electrical connection 4000
Mechanical data . 4012
Ordering data . 4013

A
a)

With ARProperties.PullModuleAlarmAl-
lowed(=0), subslot number 0x0001 - 0x8FFF
used as "Pull submodule" and subslot number
0 used as "Pull module" 6414

ABB specific FBs . 2878
ABB specific function blocks 2878, 3008
AC31

adapter . 3874
Creepage distances and clearances 3877
Electromagnetic compatibility 3878
Mechanical data . 3879
Operating and environmental conditions 3876
Power Supply Units . 3877
system data . 3876
Test voltages . 3877

AC31 System data
Grounding . 3879

AC500
communication modules 4038
PLC browser commands 6222, 6382
TB . 3786
Terminal bases . 3786
Terminal Units . 4095

AC500 hardware
short description . 3734

AC500 High Availability CS31 library 2017
AC500 High Availability system 2089
AC500-eCo CPUs . 5241
AC500-eCo hardware

short description . 3738
AC500-eCo starter kit . 3741
AC522 . 4408

Analog I/O module . 4408
Analog input/output module 4408

access . 445
access conflict . 249
access protection 211, 224, 250

access right . 250
access rights . 262
Accessories . 3728, 5095
acknoledgement . 358
acknowledgement . 364
acknowledgement of alarms 364
ACOS . 433
ACS / DCS drives communication via Modbus
RTU library . 2288
ACS / DCS drives communication via Modbus
TCP ext library . 2384
ACS / DCS drives communication via Modbus
TCP library . 2359
ACS / DCS drives communication via PROFIBUS
. 2410

ACS / DCS drives read / write parameter via
PROFINET library . 2451
ACS drives base library 2204
ACS_COM_MOD_RTU 2301
ACS_COM_MOD_RTU_ENHANCED 2312
ACS_COM_MOD_RTU_GEN 2322
ACS_COM_MOD_RTU_GEN_READ_N_PRM . 2327
ACS_COM_MOD_RTU_GEN_WRITE_N_PRM 2330
ACS_COM_MOD_TCP 2360
ACS_COM_MOD_TCP_ENHANCED 2367
ACS_COM_MOD_TCPx 2385
ACS_COM_MOD_TCPx_ENHANCED 2392
ACS_COM_PB . 2412
ACS_COM_PB_PZD . 2415
ACS_DRIVE_ENUM . 2251
ACS_DRIVES_CTRL_ENG 2226, 2266
ACS_DRIVES_CTRL_ENG_VISU_PH 2266
ACS_DRIVES_CTRL_ENG_VISU_PH faceplate
of function block ACS_DRIVES_CTRL_ENG . . . 2266
ACS_DRIVES_CTRL_STANDARD 2234
ACS_DRIVES_CTRL_STANDARD_GEN 2241
ACS_GEN_DEV_DATA_TYPE structure 2334
ACS_MOD_PRM_NUM_32BIT 2219
ACS_MOD_READ_N_PRM 2212
ACS_MOD_READ_N_PRM_VISU_PH

faceplate . 2256
ACS_MOD_TOKEN_TYPE 2254
ACS_MOD_TOKEN_TYPE structure 2254
ACS_MOD_WRITE_N_PRM 2215
ACS_MOD_WRITE_N_PRM_VISU_PH

faceplate . 2260

Index

2022/01/20 3ADR010582, 3, en_US 6643

ACS_PB_N_READ_PRM_DPV1 2425
ACS_PB_N_WRITE_PRM_DPV1 2431
ACS_PB_PN_PRM_DPV1_DATA_TYPE 2254
ACS_PB_PN_PRM_TYPE_ENUM 2251
ACS_PB_READ_N_PRM_DPV1_VISU_PH . . . 2447
ACS_PB_READ_PRM_DPV0 2420
ACS_PB_READ_PRM_DPV0_VISU_PH 2444
ACS_PB_WRITE_N_PRM_DPV1_VISU_PH . . . 2449
ACS_PB_WRITE_PRM_DPV0 2423
ACS_PB_WRITE_PRM_DPV0_VISU_PH 2445
ACS_PN_READ_N_PRM_DPV1 2453
ACS_PN_READ_N_PRM_DPV1_VISU_PH . . . 2463
ACS_PN_WRITE_N_PRM_DPV1 2457
ACS_PN_WRITE_N_PRM_DPV1_VISU_PH . . . 2465
ACS_REF_SCALING . 2246
ACS_REF_SCALING_VISU_PH 2279
ACS_SW_VISU_PH . 2282
ACS3XX_COM_MOD_RTU 2293
ACS3XX_DRIVES_CTRL_BASIC 2220
action . 160, 171, 263

associate in SFC . 336
action in SFC . 333, 334
actions hide programs . 209
active step . 172
Adapter with COM2 5120, 5131, 5291, 5305
Adapter with COM2 and real-time clock . . 5125, 5296
Adapter with real-time clock 5113, 5284
ADD . 407
add object . 258, 259
ADD operator in AWL . 163
add shared objects . 256, 271
ADDD . 1947
Addition . 407
additional features . 148
additional online functions 148
address . 441
address of a function block instance 421
address range in watch list 400
addresses . 441
addresses in ladder . 314
Addressing

07AC91-AD . 3938
07AC91-AD2 . 3954
07AI91-AD . 3972
07DC91-AD . 3987

07DC92-AD . 4003
DC501-CS31-AD . 4023

ADR . 421
ADRINST . 421
AI523 . 4433

Analog input module 4433
AI531 . 4455

Analog input module 4455
AI561 . 4351
AI562 . 4362
AI563 . 4373
AI581-S . 3741, 5393
alarm acknowledgement 364
alarm classes . 364, 368
alarm configuration . 364, 368

language . 371
online settings . 371
settings . 371

alarm configuration texts language 371
alarm deactivation . 368
alarm evaluation deactivation 371
alarm event . 364
alarm group . 368
alarm message . 368
alarm priority . 364, 368
alarm state . 364
alarm type . 368
alarms . 364
ALARMTABLEFONT . 723
ALARMUPDATEBLOCKSIZE 723
ALIAS . 450
alternative branch . 175
alternative branch in SFC 175, 331
Analog current input

07AI91-AD . 3978
Analog I/O modules . 4351
Analog inputs

07AC91-AD2 . 3959
07AI91-AD . 3977
Central unit 07KT9x-AD 3922
Central unit 07KT98 3905

Analog outputs
07AC91-AD . 3942
07AC91-AD2 . 3960
Central unit 07KT9x-AD 3923

Index

2022/01/203ADR010582, 3, en_US6644

Central unit 07KT98 3913
Analog voltage input

07AI91-AD . 3977
AND . 410
AND operator in AWL . 163
ANSI Z535

Safety notice 13, 3701, 5217
AO523 . 4487
AO561 . 4385
append program call . 393
append task . 391
append watch variable . 399
arc cosine . 433
arc sine 10-26 . 433
arc tangent . 434
ARC_7F_REC_SWAP . 777
ARC_7F_SEND_SWAP . 780
ARC_INFO . 756
ARC_MAP . 760
ARC_OWN_NODE . 762
ARC_REC . 764
ARC_SEND . 767
ARC_STATE . 771
ARC_STO . 774
archive . 459
archive ZIP . 225
ARCNET CM . 3927
ARCNET communication module 3927

Short description . 3928
Technical data . 3927

ARCNET coupler . 3927
Short description . 3928
Technical data . 3927

ARCNET library . 756
argument . 153
arguments . 151, 156
array . 446
ARRAY . 445
ASCII communication library 783
ASIN . 433
ask for project info . 201
ask-file . 201
asl-file . 201
assign . 318
assign in FBD . 318

assignment . 166, 318
assignment combs . 320
assignment operator . 167
AT . 304
AT declaration . 304
ATAN . 434
authentication

SVN . 6614
auto load . 201
auto save . 201
auto save before compile 201
autodeclaration . 203, 306
autoformat . 203
automatic . 306
Automatic PID control . 3270
Automation Builder

Configurating (Hardware) 3745
Online Mode . 3766
POU . 3748
Profile . 5763
Programming . 3748
Programming Organization Unit 3748
Simulation Mode . 3762
Update . 5763
Visualization . 3770

AX521 . 4502
AX522 . 4525
AX561 . 4394
Axes group synchronized motion 2717

B
b)

With ARProperties.PullModuleAlarmAl-
lowed(=1), AlarmType(Pull) shall signal pulling
of submodule and AlarmType(Pull module)
shall signal pulling of module. 6414

backup automatic . 201
BACnet B-ASC library . 2493
BASC_ANALOG_IN . 2502
BASC_ANALOG_OUT . 2504
BASC_ANALOG_VAL . 2507
BASC_BINARY_IN . 2510
BASC_BINARY_OUT . 2512
BASC_BINARY_VAL . 2515
BASC_DEVICE . 2499
BASC_SERVER . 2496

Index

2022/01/20 3ADR010582, 3, en_US 6645

batch . 457
batch commands . 457, 459
BATT . 1340
Battery . 5418

Central unit 07KT98 3914
binding of ST operators . 166
bit addressing . 439
bitaccess . 310, 439
BITADR . 421
bitvalues . 203
block . 327
BOOL . 443
BOOL constants . 435
BOOL_TO conversions . 423
boot project . . 201, 205, 209, 212, 232, 283, 291, 459
BOOTPRG_HASH_INFO 1502
bootproject . 459
BOOTPROJECT_HASH_INFO 1504
box in FBD . 319
box in the CFC . 341
box with EN in LD . 327
branch/tag

create . 6610
breakpoint . 148, 182
breakpoint dialog box . 285
breakpoint position . 285
breakpoint positions in text editor 354
broadcast . 358
browser ini-file . 376
build . 209, 231, 279, 459
BY . 169
BYTE . 443
BYTE constants . 436

C
C modifier in AWL . 163
C31 system bus:

Central unit 07KT98 3898
CAA_File library . 789
CAL . 422
CAL operator in AWL . 163
CALC . 163
CALCN . 163
call . 459
call of a program . 156

call tree . 264
calling a FB . 154
calling a function . 151
calling a function block 154, 166
calling FBs in ST . 168
calling function blocks in ST 168
calling function blocks in Structured Text 168
calling POUs with output parameters in text edi-
tors . 353
calling program organization units with output
parameters in text editors 353
Cam switch library . 852
Camswitch library . 852
CAN settings for network variables 358
CAN2A_INFO . 913
CAN2A_REC . 916
CAN2A_SEND . 919
CAN2B_INFO . 922
CAN2B_REC . 925
CAN2B_SEND . 928
CANOM_NMT . 931
CANOM_NODE_DIAG . 933
CANOM_NODE_DIAG_EXT 937
CANOM_RES_ERR . 941
CANOM_SDO_READ . 944
CANOM_SDO_WRITE . 947
CANOM_SET_NODE_MODE 950
CANOM_STATE . 952
CANOM_SYNC . 959
CANOM_SYS_DIAG . 957
CANopen library . 912
Cartesian Path movement 2684
CASE . 169
CASE instruction . 169
CASEFOR loop . 166
CD522 . 4635
CD522 configuration . 6010
CD522 library . 972
CD522_16BIT_2CNT . 998
CD522_16BIT_CNT . 991
CD522_32Bit_CNT . 982
CD522_32BIT_ENCODER 972
CD522_FREQ_OUT . 1020
CD522_FREQ_SCAN . 1024
CD522_PULSE_OUT . 1016

Index

2022/01/203ADR010582, 3, en_US6646

CD522_PWM_OUT . 1013
CD522_READ_INPUT . 1030
CD522_SSI_CNT . 1006
CD522_WRITE_OUTPUT 1034
Central unit 07KT9x-AD 3917

Analog inputs . 3922
Analog outputs . 3923
COM2 interfaces . 3924
CS31 bus . 3925
CS31 system bus . 3925
Digital inputs . 3918
Digital inputs/outputs 3920
Digital outputs . 3919
High-speed hardware counter 3926
LED display . 3926
Lithium battery . 3918
Mechanical data . 3927
Ordering data . 3927
Technical data . 3916

Central unit 07KT98
Analog inputs . 3905
Analog outputs . 3913
Battery . 3914
C31 system bus: . 3898
connection . 3897
connections . 3897
Device configuration 3896
Digital inputs . 3899
Digital inputs/outputs 3902
Digital outputs . 3901
Electrical connection 3897
Functionality . 3893
High-speed counter . 3916
Interface COM1 . 3914
Interface COM2 . 3915
network interface . 3915
networking interface 3915
Short description . 3892
SmartMedia Card . 3915
Supply voltage . 3898

CFC . 176, 339
back one/all macro level 350
changing connections 345
copy elements . 344
create macro . 349

creating connections . 344
cursor position . 340
deleting connections . 345
display order . 346
edit macro . 350
EN/ENO . 342
expand macro . 350
feedback paths . 350
insert box . 341
insert comment . 341
insert in-pin . 342
insert input . 341
insert input of box . 342
insert inputs/outputs on the fly 345
insert jump . 341
insert label . 341
insert out-pin . 342
insert output . 341
insert return . 341
negation . 342
order : end . 347
order : one down . 347
order : one up . 347
order : start . 347
order according to data flow 347
order of execution . 346
order topologically . 346
properties of POUs . 343
set/reset . 342

CFC in online mode . 351
Change over to another module type 5782, 5844
change PLC connection with web-visualization . . 731
change values online . 182
channels . 403
check . 459
check at login . 205
check automatically . 209
check in . 217, 253, 268
check out . 217, 253, 268
check prioject

concurrent access . 249
check project . 248

multiple write access on output 249
overlapping memory areas 249
unused variables . 248

Index

2022/01/20 3ADR010582, 3, en_US 6647

check.lib . 408, 446, 450
CheckBounds . 446
CheckDivReal . 408
CheckPointer function . 447
CheckPointerAligned function 447
CheckRangeSigned . 450
CheckRangeUnsigned . 450
checksum . 291
CI . 3725
CI_MOD_CI52x . 2179
CI_MOD_DIAG . 2186
ci-file . 225
CI52x library . 2178
CI501 . 4995
CI501-PNIO . 4995
CI502 . 5035
CI502-PNIO . 5035
CI504 . 5060
CI506 . 5076
CI511 . 4814
CI512 . 4846
CI512-ETHCAT . 4846
CI521 . 4864
CI521-MODTCP . 4864
CI522 . 4904
CI522-MODTCP . 4904
CI542 . 4969
CI542-DP . 4969
CI581 . 4685
CI581-CN . 4685
CI582 . 4723
CI590 . 4745
CI590-CS31-HA . 4745
CI592 . 4764
CI592-CS31 . 4764
clean . 459
clean all . 232
CLOCK . 1341
CLOCK_DT . 1345
CM . 3716, 4038
CM574 . 4049
CM574-RCOM . 4044
CM574-RS . 4049
CM579 . 4066, 4084
CM579- EtherCAT master 4066

CM579-PNIO . 4084
CM582 . 4075
CM588 . 4053
CM589 . 4089
CM589-PNIO . 4089
CM589-PNIO-4 . 4089
CM589-PNIO(-4) . 4089
CM592 . 4079
CM592- PROFIBUS DP Master 4079
CM597 . 4070
CM598 . 4060
CMC_AXIS_CONTROL_PARAMETER_INT . . . 2669
CMC_AXIS_CONTROL_PARAMETER_REAL . . 2666
CMC_AXIS_SIMU_INT 2672
CMC_AXIS_SIMU_REAL 2672
CMC_MOTION_KERNEL_INT 2662
CMC_MOTION_KERNEL_REAL 2659
CMS_IO_16BIT_2CNT . 2526
CMS_IO_16BIT_CNT . 2530
CMS_IO_32BIT_CNT . 2534
CMS_IO_32BIT_ENCODER 2538
CMS_IO_CFG_READ . 2550
CMS_IO_CFG_WRITE 2552
CMS_IO_FREQ_SCAN 2542
CMS_IO_MEASMNT_CTRL 2548
CMS_IO_SSI_ENC . 2545
CMS-IO library . 2523
CNT_CS31_EXT . 1057
CNT_DC551 . 1037
CNT_IO . 1043
CNT_IO_EXT . 1050
COB-ID . 358
coil . 177, 326
colors . 206
COM_MOD_MAST . 1698
COM_MOD_SLV_SET_ADDR 1708
COM_REC . 784
COM_SEND . 786
COM1 USB . 5190
COM2 USB programming cable 5143
COMC_GROUP_CARTESIAN 2994
COMC_TeachCartesianTransformation 2996
command entry in the PLC-browser 376
command file . 459
command line . 457

Index

2022/01/203ADR010582, 3, en_US6648

comment . 314
comment in CFC . 341
commit

ignore object, SVN . 6597
communciation parameters

dialog . 405
communication . 214

symbolic interface . 214
Communication

Modbus TCP/IP . 5488
communication gateway . 87
Communication interface modules 4681
Communication modules 3716, 4038
communication parameters 291, 403, 404

check at login . 205
dialog . 406
in Windows . 47, 87, 3742
quick check . 407
saving with project . 205
tips for editing . 406

Communication Parameters
in Automation Builder 3766

communications timeout . 205
communications timeout for download 205
compare . 6594

projects . 146, 5765
with HEAD revision, SVN 6594
with revision, SVN . 6594
working copy and base revision, SVN 6594
working copy and project in SVN repository . 6595

compare projects . 241, 242
compare view . 146, 5765

detail . 146, 5765
open detailed . 147, 5767
project . 146, 5765

compare with ENI-project 241
comparing projects . 240
comparison result . 242
comparison view . 147, 5766
compilation . 279
compile command . 459
compile files . 207
compiler errors and warnings 478
compiler version . 209
Compiling a project 86, 107, 118, 134

Components
HA-CS31 library . 2017
Pumping Library . 3537

Components of the ACS / DCS drives communi-
cation . 2385

Modbus TCP library . 2359
Components of the DCS drives library 2468
COMPRESSEDFILES . 723
CONCAT . 535
concatenation . 535
concurrent access . 249
Configurable inputs / outputs

07DC91-AD . 3994
Configuration

3rd party PROFIBUS DP slaves 5887
07AC91-AD . 3937
07AC91-AD2 . 3953
07AI91-AD . 3969
07DC91-AD . 3989
07DC92-AD . 4004
CI504-PNIO/CI506-PNIO 5970
CM574-RS . 5903
non-ABB PROFIBUS DP slaves 5887

configuration directory . 459
configuration file for webserver 731
configuration files . 207
Configure AC500 OPC server 3045
Configure OPC server . 3048
CONNECT_TO . 731
connection . 121, 3742

07AC91-AD2 . 3947
07AI91-AD . 3965
07DC91-AD . 3984
07DC92-AD . 4000
Central unit 07KT98 3897
DC501-CS31-AD . 4017

Connection
AC522 . 4411

connections . 345
07AC91-AD2 . 3947
07AI91-AD . 3965
07DC91-AD . 3984
07DC92-AD . 4000
DC501-CS31-AD . 4017

Index

2022/01/20 3ADR010582, 3, en_US 6649

Connections
07AC91-AD . 3934
AC522 . 4411
TB511 . 3789
TB521 . 3789
TB523 . 3789
TB541 . 3789

connections in CFC 344, 345
constant . 302
CONSTANT . 302
contact . 177, 325
contact (negated) . 325
content operator . 422, 447
context menu . 200
context sensitive help . 293
continuous function chart 176
Continuous Function Chart

cursor position . 340
feedback paths . 350
insert in-pin . 342
insert input . 341
insert input of box . 342
insert out-pin . 342

continuous function chart editor (CFC) 339
Continuous Function Chart in online mode 351
Continuous Path movements 2684
Control . 1778
Control principle

State machine . 3270
Statemachine . 3270

controlled variable . 551, 553
controller index . 358
controller PD . 551
controller PID . 553
controller status . 291
conversion . 67, 3785, 6330
conversion of integral number types 425
conversion of types . 422
convert object . 260
convert V2 project to V3 project 67, 3785, 6330
convertion . 5763
copy . 273
copy object . 260, 459
copying elements in CFC 344
copying in FBD . 321

copying in Function Block Diagram 321
COS . 432
cosine . 432
Counter library . 1037
CP movements . 2684
CP-C.1 . 5208, 5312, 5388
CPU . 3891
CPU_CONFIG_READ . 1508
CPU_CONFIG_WRITE 1511
CPU_DIAG . 1166
CPU_LOAD . 1168
CPU_OWN_ADR . 1627
CPU_PROD_ENTRY_READ 1514
CPUs . 3713
CR2032

Battery for real-time clock 5095, 5265
Create

a Sequential Function Chart diagram 189
a SFC diagram . 189

create backup . 201
create boot project . 291, 459
create bootproject . 459
create macro in CFC . 349
cross references

out of editor . 295
cross-reference list . 264
cross-reference list from watch list 395
CS_calculateVelocity . 867
CS31 bus

Central unit 07KT9x-AD 3925
CS31 bus system data . 3876

Bus cycle time . 3886
Bus topology . 3882
Configuration . 3887
Diagnosis . 3888
Earthing . 3884
Grounding . 3884
Wiring . 3882

CS31 library . 1067
CS31 system bus

07AC91-AD . 3943
07AC91-AD2 . 3960
07AI91-AD . 3979
07DC91-AD . 3995
07DC92-AD . 4012

Index

2022/01/203ADR010582, 3, en_US6650

DC501-CS31-AD . 4031
CS31_DIAG . 1170
CS31_DIAG_EXT . 1174
CS31_READ_VER . 1100
CS31CO . 1067
CS31CO_EXT . 1082
CS31QU . 1097
CS31QU_EXT . 1098
CTD . 542
CTRL . 1778
CTU . 541
CTUD . 543
CurrentVisu . 723
cursor position in FBD . 317
cursor position in Function Block Diagram 317
cursor position in the Ladder Diagram editor 323
cursor position in the LD editor 323
cursor positions in the CFC 340
cursor positions in the Continuous Function Chart
. 340

cursor setting in FBD . 318
cursor setting in Function Block Diagram 318
cut . 273
cutting in FBD . 321
cutting in Function Block Diagram 321
cyclic task . 391
cyclic transmission . 358

D
DA501 . 4550
DA502 . 4585

Digital/Analog input/output module 4585
data base link . 250, 265

add shared objects 256, 271
check in . 253, 268
check out . 253, 268
define . 252, 267
get all latest versions 255, 270
get latest version 253, 268
label version . 256, 271
login . 251, 266
multiple check in 253, 255, 268, 270
multiple check out 253, 255, 268, 270
multiple define 252, 254, 267, 269
multiple undo check out 253, 268

project version history 255, 270
refresh status . 257, 272
show differences 253, 268
show version history 254, 269
undo check out . 253, 268

data bse link
multiple undo check out 255, 270

data logging . 3294
data types . 162, 199
data/time in alarm log-file 371
Datalogging library . 3494
DATE . 444
DATE constants . 436
DATE_AND_TIME . 444
DATE_AND_TIME constants 436
DATE_TO conversions . 427
DC501-CS31-AD

Addressing . 4023
connection . 4017
CS31 bus . 4031
CS31 system bus . 4031
Device configuration 4015
Diagnosis and display 4027
Electrical connection 4017
Extension box . 4031
Inputs 24 V DC . 4034
LED display . 4015
Mechanical data . 4036
Normal operation . 4027
Ordering data . 4038
Outputs 24 V DC . 4035
Technical data . 4029

DC522 . 4253
DC523 . 4264

Digital input/output module 4264
DC532 . 4276

Digital input/output module 4276
DC541 . 1103, 4290

Visualization . 1154
DC541 dampener library 1157
DC541 library . 1103
DC541 PWM library . 1162
DC541_32BIT_CNT . 1103
DC541_DAMPENER . 1157
DC541_FREQ . 1111

Index

2022/01/20 3ADR010582, 3, en_US 6651

DC541_FREQ_FAST . 1117
DC541_FREQ_OUT . 1123
DC541_FWD_CNT . 1127
DC541_GET_CFG . 1132
DC541_INT_IN . 1136
DC541_IO . 1139
DC541_LIMIT . 1142
DC541_PWM . 1146
DC541_PWM_FAST . 1162
DC541_STATE . 1151
DC541-CM

Digital input/output . 4290
DC551 . 4797
DC561 . 4125

Digital input/output module 4125
DC562 . 4133
DCF file for creating global variables list 358
DCS drives library . 2467
DCS_DRIVE_ENUM

enumerations . 2484
DCS_DRIVES_CTRL . 2470
DCS_DRIVES_CTRL_GEN 2477
DCS_DRIVES_CTRL_GEN_VISU_PH 2489
DCS_DRIVES_CTRL_VISU_PH 2484
deactivate alarm evaluation in online mode 371
deactivation variable . 368
debug task . 395
debugging . 148, 182, 209
declaration . 296

AT . 304
new . 307
pragma . 310

declaration editor . 296
line numbers . 307
online mode . 308

declaration keyword . 304
declaration of a variable . 303
declaration part . 151, 297
declaration part of libraries 312
declaration variable . 278
declarations as tables 203, 307
decrementer . 542
default.chk . 291
default.prg . 291
default.sts . 291

DEFAULTENCODING . 723
define . 252, 267
Definitions: PLC system start-up 3709, 5413
Delappl Command . 3768
delay . 459
delete . 274
DELETE . 536
delete a label . 333
delete action in SFC . 334
delete object . 258
delete step and transition 331
delete transition . 334
delete watch variable . 400
deleting in FBD . 321
deleting in Function Block Diagram 321
Demounting

AC500-eCo CPUs . 5241
dereferencing . 422, 447
desktop . 205
details . 279
Details of Control and State Byte 2016
Device configuration

07AC91-AD . 3932
07AC91-AD2 . 3946
07AI91-AD . 3963
07DC91-AD . 3982
07DC92-AD . 3998
Central unit 07KT98 3896
DC501-CS31-AD . 4015

device drivers . 404
device guid . 459
device instance . 459
Device list

Accessories . 3728
Communication modules 3716
function modules . 3725
Processor modules . 3713
S500 I/O modules . 3722
S500-eCo I/O modules 3721
Terminal bases . 3712
Terminal units . 3718

Device list: Accessories 3728
Device list: Communication modules 3716
Device list: Function modules 3725
Device list: Processor modules 3713

Index

2022/01/203ADR010582, 3, en_US6652

Device list: S500 I/O modules 3722
Device list: S500-eCo I/O modules 3721
Device list: Terminal bases 3712
Device list: Terminal units 3718
device parameter . 459
DI524 . 4298

Digital input module . 4298
DI561 . 4144

Digital input module . 4144
DI562 . 4151
DI571 . 4159

Digital input module . 4159
DI572 . 4168

Digital input module . 4168
DI581-S . 3741, 5393
DIAG_ACK . 1517
DIAG_ACK_ALL . 1520
DIAG_CI5XX_DECODE 1522
DIAG_EVENT . 1525
DIAG_GET . 1528
DIAG_INFO . 1532
DIAG_INFO_NACK . 1534
DIAG_RESET . 1536
diagnosis

V2 . 6365
Diagnosis

AC522 . 4426
Diagnosis and display

07AC91-AD . 3939
07AC91-AD2 . 3956
07AI91-AD 3973, 3990, 4005
07DC91-AD . 3990
07DC92-AD . 4005
DC501-CS31-AD . 4027

Diagnosis library . 1166
diagnosis messages list

CM579-ETHCAT . 6500
CM589-PNIO . 6523

diagnosis system
V2 . 6365

diagnostic messages list
CM579-ETHCAT . 6500
CM589-PNIO . 6523

diagnostic system . 6365
Digital fast I/O module . 1103

Digital I/O modules . 4125
Digital inputs

07DC91-AD . 3993
07DC92-AD . 4009
Central unit 07KT9x-AD 3918
Central unit 07KT98 3899

Digital inputs/outputs
Central unit 07KT9x-AD 3920
Central unit 07KT98 3902

Digital outputs
07DC91-AD . 3994
07DC92-AD . 4011
Central unit 07KT9x-AD 3919
Central unit 07KT98 3901

Digital/Analog I/O modules 4550
DINT . 443
DINT constants . 436
directories . 459
directory options . 207
disable task . 395
display flow control . 290
DIV . 408
DIV operator in AWL . 163
DIVD . 1948
division by zero . 408
DO . 170
DO524 . 4307

Digital output module 4307
DO526 . 4317
DO561 . 4177

Digital output module 4177
DO562 . 4186

Digital output module 4186
DO571 . 4195

Digital output module 4195
DO572 . 4205

Digital output module 4205
DO573 . 4215

Digital output module 4215
docu file . 362
docuframe file . 362
document . 229
document frame . 362
documentation of the project 238
download 212, 279, 283, 291

Index

2022/01/20 3ADR010582, 3, en_US 6653

download information 232, 279, 283, 291
download information file 283
download wait time . 205
download web-visualization 727
DPM_CTRL . 1750
DPM_READ_INPUT . 1756
DPM_READ_OUTPUT . 1759
DPM_SET_PRM . 1762
DPM_SLV_DIAG . 1765
DPM_STAT . 1775
DPM_SYS_DIAG . 1781
DPRAM_CM5XX_REC 1537
DPRAM_CM5XX_SEND 1540
DPRAM_IO_COPY . 1629
DPRAM_KP_GET_ADDR 1631
DPRAM_PM5XX_REC . 1633
DPRAM_PM5XX_SEND 1635
DPV1 . 572
DPV1_MSAC1_READ . 1784
DPV1_MSAC1_WRITE 1789
drag & drop . 257
drag & drop in Ladder Diagram 324
drag & drop in LD . 324
Drive-based motion control 2724
DT . 444
DT conversions . 427
dwAcsVisuBackgroundColor 2255
dwAcsVisuTitleColor . 2255
DWORD . 443
DWORD constants . 436
DWW . 1949
DX522 . 4327

Digital input/output module 4327
DX531 . 4339

Digital input/output module 4339
DX561 . 4227
DX571 . 4239
DX581-S . 3741, 5393
dynamic texts . 459
dynamic texts in web-visualization 731
dynamictextfiles . 459
dynamictexthideelements on/off 459
dynamictexts on/off . 459

E
ECAT_BUS_DIAG . 1296
ECAT_BUS_SET_STATE 1323
ECAT_COE_READ . 1299
ECAT_COE_WRITE . 1302
ECAT_GET_DCLK_DEVI 1305
ECAT_SLV_DIAG . 1308
ECAT_SLV_GET_STATE 1321
ECAT_SLV_SET_STATE 1318
ECAT_SOE_READ . 1333
ECAT_SOE_WRITE . 1336
ECAT_START_COM . 1325
ECAT_STATE . 1311
ECAT_STOP_COM . 1329
ECAT_SYNC . 1315
edit . 278

autodeclare . 278
copy . 273
copy/paste in CFC . 344
cut . 273, 321
delete . 274
find . 275
find next . 275
input assistant . 276
macros . 278
next error . 278
paste . 274, 321
previous error . 278
redo . 273
replace . 275
undo . 272

edit license file info . 224
edit licensing information 734
editing functions . 272
editor

add variables to watch list 400
IL . 356
print margings . 294
shortcut mode . 305
show cross references 295
syntax coloring . 305

editor for structured text . 357
editor options . 203
electrical connection 121, 3742

Index

2022/01/203ADR010582, 3, en_US6654

Electrical connection
07AC91-AD . 3934
07AC91-AD2 . 3947
07AI91-AD . 3965
07DC91-AD . 3984
07DC92-AD . 4000
Central unit 07KT98 3897
DC501-CS31-AD . 4017

Electrical Connection
AC522 . 4411

ELSE . 168, 169
ELSIF . 168
EN input . 178, 327
EN POU . 178
EN/ENO in CFC . 342
enable task . 395
Encoder, counter and PWM module 4635
ENCODINGSTRING . 723
encrypted external library 224
encrypted internal library 224
encrypted project . 224
END_CASE . 169
END_FOR . 169
END_IF . 168
END_REPEAT . 170
END_TYPE . 448, 450
END_VAR . 301
END_WHILE . 170
engineering interface ENI 217, 220
ENI . 216, 250, 265
ENI credentials . 201
ENI parameters . 459
enryption . 211
entry action . 172, 332
entry or exit action . 172
enumeration V1State . 573
enumertation . 448
EQ . 420
EQ operator in AWL . 163
error . 459, 478
error combinations . 6429
error list

CM589-PNIO . 6523
Error list

CM579-ETHCAT . 6500

error messages for web-visualization 727
error_ini.xml files . 727
ERROR_SENSITIVITY . 723
ETH_DNS_RESOLVE . 1194
ETH_ICMP_PING . 1197
ETH_MOD_INFO . 1199
ETH_MOD_MAST . 1202
ETH_OWN_IP . 1207
ETH_OWN_IP_INFO . 1209
ETH_OWN_IP_SET . 1212
ETH_SMTP_EMAIL_SEND 1215
ETH_UDP_INFO . 1218
ETH_UDP_REC . 1222
ETH_UDP_SEND . 1225
ETH_UDP_STD_INFO . 1231
ETH_UDP_STD_REC . 1235
ETH_UDP_STD_SEND 1238
ETH_UDP_STO . 1228
EtherCAT library . 1295
EtherCAT Sync . 5966
Ethernet communication interface modules 4095
Ethernet communication module

Short description . 3929
Technical data . 3929

Ethernet coupler
Short description . 3929
Technical data . 3929

Ethernet interface
TB511 . 3792
TB521 . 3792
TB523 . 3792
TB541 . 3792

Ethernet library . 1193
ETHx_DNS_RESOLVE 1241
ETHx_ICMP_PING . 1244
ETHx_MOD_INFO . 1246
ETHx_MOD_MAST . 1250
ETHx_OWN_IP . 1254
ETHx_OWN_IP_INFO . 1257
ETHx_OWN_IP_SET . 1260
ETHx_SMTP_EMAIL_SEND 1264
ETHx_UDP_INFO . 1266
ETHx_UDP_REC . 1270
ETHx_UDP_SEND . 1274
ETHx_UDP_STD_INFO 1277

Index

2022/01/20 3ADR010582, 3, en_US 6655

ETHx_UDP_STD_REC 1281
ETHx_UDP_STD_SEND 1285
ETHx_UDP_STO . 1288
event task . 391
example project with Automation Builder and
AC500 AC500 V2 products 70, 109, 122
exclude objects . 209
exclude objects from build 209
execute comparison . 241
execute program . 731
EXIT . 166, 171, 231
exit action . 172
EXIT instruction . 171
exit-action . 332
EXITPROGRAM . 731
EXP . 431
expand nodes collapse nodes 258
exponential function . 431
exponentiation . 434
export . 239, 459
export file for creating global variables list 358
expression . 166
EXPT . 434
extended ARCNET library 777
extended cam switch library 862
extended camswitch library 862
extended EtherCAT library 1317
extended internal system library 1626
extended Modbus library 1707
extended PROFINET IO library 1841
Extension box

DC501-CS31-AD . 4031
EXTERNAL . 303
external event . 391
external library . 224, 372
external system library . 1340
external variables . 303
extras

accept access rights . 246
accept change . 244
accept changed item . 245
accept properties . 245
add label to parallel branch 333
add to watch list . 400
associate action . 336

back all macro level . 350
back one macro level 350
callstack . 395
clear action/transition 334
create macro . 349
display order in CFC . 346
edit macro . 350
edit macro in CFC . 350
EN/ENO in CFC . 342
enable/disable task . 395
expand macro . 350
expand macro in CFC 350
into new watch list . 400
link docu file . 362
load watch list . 401
make docuframe file . 362
monitoring active . 401
monitoring options . 354
negate in CFC . 342
negate in FBD . 320
negate in LD . 329
negation . 320
next difference . 244
open instance . 321
options . 314, 336
options in SFC . 336
order : end . 347
order : one down in CFC 347
order : one up . 347
order : start . 347
order display . 346
order everything according to data flow 347
order order everything according to data flow . 347
order order topologically 346
order topologically . 346
paste above in LD . 329
paste after . 333
paste after in LD . 329
paste below in LD . 329
paste parallel branch (right) 333
previous difference . 244
properties... in CFC . 343
read recipe . 402
rename watch list . 401
save watch list . 401

Index

2022/01/203ADR010582, 3, en_US6656

set debug task . 395
set/reset . 320
set/reset in CFC . 342
set/reset in LD . 329
settings alarm configuration 371
step attributes . 334
time overview . 335
use IEC steps . 336
view in FBD . 321
write recipe . 401
zoom action/transition 333
zoom to POU . 351

F
F_TRIG . 541
F_TRIG in LD . 328
F1 . 293
F4 . 205
faceplate

ACS_MOD_READ_N_PRM_VISU_PH 2256
ACS_MOD_WRITE_N_PRM_VISU_PH 2260

falling edge . 541
falling edge detection . 328
fb . 153
FB

insert . 353
FB call . 154
fb in LD . 177
FBD . 162, 176

box . 319
copy . 321
cursor position . 317
cut . 321
delete . 321
input . 320
jump . 319
online mode . 322
paste . 321
return . 319
set cursor . 318

FBD editor . 317
FBD or LD view . 321
FBP_DIAG . 1178
feedback paths in CFC . 350
feedback paths in Continuous Function Chart . . . 350

fields . 151
file . 222, 224, 225

close . 224
exit . 231
new . 222
new from template . 222
open . 222
open project from source code manager 222
print . 228
printer setup . 229
save . 224
save as . 224
save/mail archive . 225

file close command . 459
file new command . 222, 459
file open command . 222, 459
file save command . 459
FILE_ArchiveAddFile . 794
FILE_ArchiveClose . 796
FILE_ArchiveList . 798
FILE_ArchiveOpen . 800
FILE_ArchiveUnpack . 801
FILE_ArchiveUnpackFile 804
FILE_Close . 806
FILE_Copy . 808
FILE_Delete . 810
FILE_DirClose . 812
FILE_DirCreate . 813
FILE_DirList . 815
FILE_DirOpen . 818
FILE_DirRemove . 820
FILE_DirRename . 845
FILE_DiskFormat . 824
FILE_DiskStatus . 826
FILE_EOF . 828
FILE_Flush . 830
FILE_GetPos . 831
FILE_GetSize . 833
FILE_GetTime . 835
FILE_Move . 837
FILE_Open . 839
FILE_Read . 842
FILE_Rename . 822
FILE_SetPos . 847
FILE_Write . 848

Index

2022/01/20 3ADR010582, 3, en_US 6657

FILEOPENSAVEDIALOGFONT 723
find . 275, 293
FIND . 538
find next . 275
Firmware update

with IP configuration tool 5822, 5869
flag . 310
FLASH_DEL . 1542
FLASH_READ . 1544
FLASH_WRITE . 1547
FlexConf library . 1346
FLEXCONF_ID_READ . 1347
FLEXCONF_ID_WRITE 1349
flow control . 290

FBD . 322
IL . 356

flow control mode . 3552
FM . 3725
FM502 . 4658

Analog measurements 4658
FM502-CMS library . 2519
FM562 . 2741, 4617
folder . 257, 258
font . 203
FOR . 169
FOR loop . 169
force values . 287, 402
FORECEDLOAD . 723
FPU_EXCEPTION_INFO 1551
freewheeling task . 391
FREQ_MEASURE . 555
frequency measurement . 555
FTP server . 6188
function

insert . 353
function block . 153, 313

ACS_MOD_WRITE_N_PRM 2260
ACS_PB_READ_N_PRM_DPV1 2447
ACS_PB_READ_PRM_DPV0 2444
ACS_PB_WRITE_N_PRM_DPV1 2449
ACS_PB_WRITE_PRM_DPV0 2445
ACS_PN_READ_N_PRM_DPV1 2463
ACS_PN_WRITE_N_PRM_DPV1 2465
ACS_REF_SCALING 2279
DCS_DRIVES_CTRL 2484

DCS_DRIVES_CTRL_GEN 2489
insert . 353
instance . 153
MC_CamIn . 2799
MC_CamOut . 2803
MC_CamTableselect 2832
MC_CombineAxes . 2826
MC_GearIn . 2805
MC_GearInPos . 2809
MC_GearOut . 2814
MC_GroupContinue 2941

function block ACS_MOD_READ_N_PRM 2256
function block call . 154
function block diagram . 176
Function Block Diagram . 162

cursor position . 317
jump . 319
online mode . 322
return . 319
set cursor . 318

Function Block Diagram Editor 317
function block in LD . 177
function block instances . 153
function blocks in ladder diagram 177
function call . 151
Function call in

ST . 862
Structured Text . 862

function declaration . 151
Function module terminal bases 3796
Function modules 3725, 4617
FUNCTION_BLOCK . 153
functionality

AC522 . 4410
functions . 151
functions for pointer checks 447

G
gateway 291, 403, 404, 405, 459

principle of gateway system 402
quick check . 407

gateway address . 403
gateway channel 403, 404, 405
GE operator in AWL . 163
get all latest versions 255, 270

Index

2022/01/203ADR010582, 3, en_US6658

get latest version . 253, 268
get object . 217
global constant . 302
global constants . 360
global retain variables . 360
global variables . 357

constants . 360
network variables . 360
persistent variables . 360
remanent variables . 360

Global Variables . 2084
global variables list . 358, 360

create . 358
editing . 360

Glossary . 2086
graphic editor . 314

CFC . 339
FBD . 317
label . 314
LD . 323
network . 314
zoom . 295, 314

GT . 418
GT operator in AWL . 163
Guidelines for Usage . 1992

H
HA bidirectional counter 2051
HA count up counter . 2049
HA turn-on delay timer . 2071
HA_CS31_CALLBACK_STOP 2024
HA_CS31_CONTROL . 2026
HA_CS31_CONTROL_VISU_PH - Visualization
Faceplate for HA_CS31_CONTROL 2075
HA_CS31_CTD . 2047
HA_CS31_CTU . 2049

HA count up counter 2049
HA up counter . 2049

HA_CS31_CTUD . 2051
HA bidirectional counter 2051

HA_CS31_DATA_SYNC 2028
HA data synchronization FB 2028
HA data synchronization function block 2028

HA_CS31_DATA_SYNC_VISU_PH - Visualization
Faceplate for HA_CS31_DATA_SYNC 2076

HA_CS31_DIAG . 2035
HA_CS31_DIAG_EXTD 2037
HA_CS31_DIAG_EXTD_VIA_CM574 2040
HA_CS31_DIAG_EXTD_VIA_CM574_VISU_PH -
Visualization Faceplate for
HA_CS31_DIAG_EXTD_VIA_CM574 2078
HA_CS31_DIAG_EXTD_VISU_PH - Visualization
Faceplate for HA_CS31_DIAG_EXTD 2079
HA_CS31_DIAG_ON_CM574 2042
HA_CS31_DIAG_VIA_CM574 2044
HA_CS31_DIAG_VIA_CM574_VISU_PH - Visuali-
zation Faceplate for
HA_CS31_DIAG_VIA_CM574 2081
HA_CS31_DIAG_VISU_PH - Faceplate for the
function block HA_CS31_DIAG 2082
HA_CS31_DIAG_VISU_PH - Visualization Face-
plate for the function block HA_CS31_DIAG . . . 2082
HA_CS31_INTEGRAL . 2053
HA_CS31_OVERVIEW_VISU - Visualization for
High Availability Operation Overview 2073
HA_CS31_PID . 2055
HA_CS31_PID_DV500 2058
HA_CS31_PID_FIXCYCLE 2060
HA_CS31_PID_FIXCYCLE_DV500 2063
HA_CS31_RAMP_INT . 2065
HA_CS31_RAMP_REAL 2067
HA_CS31_TOF . 2069
HA_CS31_TON . 2071
HA_CS31_TON - turn-on delay timer 2071
HA_DATA_SYNC . 2136
HA_MOD_AIO . 2146
HA_MOD_CALLBACK_STOP 2134
HA_MOD_CONTROL . 2138
HA_MOD_CTD . 2151
HA_MOD_CTU . 2153
HA_MOD_CTUD . 2154
HA_MOD_DERIVATIVE 2156
HA_MOD_DIAG . 2142
HA_MOD_DIO . 2157
HA_MOD_INTEGRAL . 2160
HA_MOD_PID . 2162
HA_MOD_PID_FIXCYCLE 2165
HA_MOD_RAMP_INT . 2168
HA_MOD_RAMP_REAL 2170
HA_MOD_TOF . 2172
HA_MOD_TON . 2174
HA-CS31 library - Overview diagram 2017

Index

2022/01/20 3ADR010582, 3, en_US 6659

HA-Modbus TCP
System Technology . 2089

HA-Modbus TCP library 2133
Hardware . 1984
Hardware Configuration in Automation Builder . . 1993
height of visualization screen 723
help . 293

contents . 293
context sensitive . 293
index . 293
search . 293

help menu . 293
hide variables of library declarations 312
High Availability library versions and runtime
system details . 2085
High performance range 5208, 5312, 5388
High-speed counter

Central unit 07KT98 3916
High-speed hardware counter

Central unit 07KT9x-AD 3926
Hilscher system library . 572
history . 369
HLG . 1951
How to realize in a program 3279
HTTP-proxy-server . 722

I
I/O configuration

AC522 . 4421
I/O mapping . 5765
I/O modules . 3722, 4124
identifier . 303
IEC step . 172, 336
IEC60870 library . 1351
IEC60870_BACKGROUND_SCAN 1485
IEC60870_DISABLE . 1479
IEC60870_GET_ADDRESS 1354
IEC60870_REC_C_DC 1356
IEC60870_REC_C_SC 1360
IEC60870_REC_C_SE 1363
IEC60870_REC_C_TS_NA_1 1488
IEC60870_REC_M_DP 1366
IEC60870_REC_M_IT . 1370
IEC60870_REC_M_ME 1375
IEC60870_REC_M_ME_1 1379

IEC60870_REC_M_SP 1383
IEC60870_REC_P_ME 1387
IEC60870_SEND_C_CI_NA_1 1390
IEC60870_SEND_C_CS_NA_1 1392
IEC60870_SEND_C_DC 1394
IEC60870_SEND_C_RD_NA_1 1491
IEC60870_SEND_C_RP_NA_1 1400
IEC60870_SEND_C_SC 1403
IEC60870_SEND_C_SE 1406
IEC60870_SEND_C_TS_NA_1_ACT 1494
IEC60870_SEND_C_TS_NA_1_ACTCON 1497
IEC60870_SEND_DISABLE 1476
IEC60870_SEND_IC_NA_1 1398
IEC60870_SEND_M_DP 1409
IEC60870_SEND_M_DP_ET 1413
IEC60870_SEND_M_EI_NA_1 1417
IEC60870_SEND_M_IT 1419
IEC60870_SEND_M_IT_1_ET 1426
IEC60870_SEND_M_IT_16 1430
IEC60870_SEND_M_IT_16_ET 1434
IEC60870_SEND_M_M_IT_1 1422
IEC60870_SEND_M_ME_1 1439
IEC60870_SEND_M_ME_1_ET 1443
IEC60870_SEND_M_ME_16 1447
IEC60870_SEND_M_ME_16_ET 1452
IEC60870_SEND_M_SP 1457
IEC60870_SEND_M_SP_1_ET 1460
IEC60870_SEND_M_SP_16 1464
IEC60870_SEND_M_SP_16_ET 1469
IEC60870_SEND_P_ME 1474
IEC60870_STATE . 1481
IF . 168
IF instruction . 166, 168
IL . 153, 163

online mode . 356
IL editor . 356
IL operator in AWL . 163
implicit at load . 212
implicit variables in SFC . 174
import . 240, 459

project in SVN . 6589
in-pin in CFC . 342
in-pin in Continuous Function Chart 342
include macro library . 220
incrementer . 541

Index

2022/01/203ADR010582, 3, en_US6660

index . 293
indexing . 731
INDEXOF . 410
initalization . 445
initialization . 303, 310
initialization after reset . 302
Input

Changing Status 3762, 3770
Signal . 1144

input and output variables 301
input assistant . 276

in watch- and recipe manager 397
structured . 276
structured display . 277
unstructured . 276
unstructured display . 276

input in CFC . 341
input in FBD . 320
input of boc in Continuous Function Chart 342
input of box in CFC . 342
input simulator . 121, 3742
input variable . 301
INPUT_REFRESH . 1583
INPUT_SIGNAL . 1144
Inputs 24 V DC

DC501-CS31-AD . 4034
inser

jump in FBD . 319
insert . 229, 307

'reset' coil . 326
'set' coil . 326
add entry-action . 332
add-exit action . 332
additional library . 373
all instance paths . 361
alteranative branch (left) 331
alteranative branch (right) 331
append program call . 393
append task . 391
append watch variable 399
box in FBD . 319
box in the CFC . 341
box with EN . 327
coil . 326
coil in LD . 326

comment . 314
comment in CFC . 341
contact . 325
contact (negated) . 325
contact in LD . 325
declarations keyword 304
falling edge detection 328
FB in LD . 327
function . 353
function block . 327, 353
function block in Ladder Diagram 327
function block in LD . 327
function block in text editors 353
function in text editors 353
in-pin CFC . 342
in-pin Continuous Function Chart 342
input . 320, 341
input in CFC . 341
input in Continuous Function Chart 341
input of box in CFC . 342
input of box in Continuous Function Chart 342
inputs/outputs in CFC 345
insert at blocks in LD . 327
insert watch variable . 399
jump in CFC . 341
jump in Function Block Diagram 319
jump in Ladder Diagram 328
jump in LD . 328
jump in SFC . 332
label in CFC . 341
network (after) . 316, 325
network (after) or insert network (before) 316
network (before) 316, 325
new declaration . 307
new watch list . 399
operand . 353
operand in text editors 353
operator:text editor:insert operator 353
operators in text editors 353
ou-pin CFC . 342
ou-pin Continuous Function Chart 342
output . 341
output in CFC . 341
output in FBD . 320
parallel branch (left) . 332

Index

2022/01/20 3ADR010582, 3, en_US 6661

parallel branch (right) 332
parallel contact . 325
parallel contact (negated) 326
POU with EN in LD . 327
program call . 393
Program organization units with EN in Ladder
Diagram . 327
return in CFC . 341
return in FBD . 319
return in Function Block Diagram 319
return in LD . 328
rising edge detection . 328
step transition (after) . 331
step transition (before) 331
task . 391
timer (TON) . 328
transition-jump . 332
type . 304

Insert
FB . 353

INSERT . 536
insert address range . 400
insert at blocks in LD . 327
insert coil . 326
insert contact . 325, 326
insert declaration . 307
insert network . 325
insert network (after) . 325
Insert standard commands 376
insert watch variable . 399
inserting variables . 151
installation, start, operating 721
instance . 153

open . 321
instance name . 153, 154
instruction . 163, 166
instruction list . 153
instruction list (IL) . 163
instruction list editor . 356
INT . 443
INT constants . 436
integer data types . 443
integral number types . 425
intellisense function . 151

Intended purpose
AC522 . 4409

Interface COM1
Central unit 07KT98 3914

Interface COM2
Central unit 07KT98 3915

INTERN CONNECT_TO 731
INTERN LINK . 731
Internal data exchange

AC522 . 4421
internal library . 224, 372
internal system library . 1500
Interrupt handler

KP9x devices . 5756
INTK . 1956
into new watch list . 400
Introduction . 1983

Replacement devices for AC31 3874
IO

S500 . 3722
S500-eCo . 3721

IO mapping . 5765
IO_DIAG . 1585
IO_DRIVER_VERSION 1592
IO_INFO . 1587
IO_MODULE_DIAG . 1589
IO_PROD_ENTRY_READ 1554
IP address

change . 5821, 5868
IP address gateway . 403
IP configuration tool 5816, 5863
IP_ADR_DWORD_TO_STRING 1291
IP_ADR_STRING_TO_DWORD 1292

J
JMP operator in AWL . 163
joint interpolated movement 2684
JSON library . 1642
JSON_CONSTANTS . 1697
JSON_ERROR_ID . 1696
JSONADDARRAY . 1648
JSONADDBOOL . 1649
JSONADDINT . 1651
JSONADDOBJECT . 1652
JSONADDREAL . 1654

Index

2022/01/203ADR010582, 3, en_US6662

JSONADDSTRING . 1655
JSONARRAYADDARRAY 1673
JSONARRAYADDBOOL 1674
JSONARRAYADDINT . 1675
JSONARRAYADDOBJECT 1676
JSONARRAYADDREAL 1678
JSONARRAYADDSTRING 1679
JSONARRAYGETARRAY 1686
JSONARRAYGETBOOL 1688
JSONARRAYGETINT . 1689
JSONARRAYGETOBJECT 1691
JSONARRAYGETREAL 1692
JSONARRAYGETSTRING 1694
JSONARRAYREMOVEENTRY 1680
JSONCREATEARRAY . 1672
JSONCREATEOBJECT 1647
JSONFREEARRAY . 1683
JSONFREEOBJECT . 1660
JSONGETARRAY . 1662
JSONGETBOOL . 1664
JSONGETINT . 1665
JSONGETOBJECT . 1666
JSONGETREAL . 1668
JSONGETSTRING . 1669
JSONPARSEARRAYFROMSTRING 1685
JSONPARSEOBJECTFROMSTRING 1661
JSONREMOVEENTRY 1657
JSONSERIALIZEARRAY 1682
JSONSERIALIZEOBJECT 1658
jump . 176, 319
jump in CFC . 341
jump in Ladder Diagram . 328
jump in LD . 328
jump in SFC . 332
jump label . 333

K
key . 211, 224
keyboard usage for tables 459
KEYBOARDUSAGEFROMDIALOGS 723
KEYPADINDIALOGS . 723
keyword . 178, 303, 304, 472

L
label . 333

label for networks . 314
label in CFC . 341
label version . 256, 271
ladder diagram . 176
Ladder Diagram

cursor position . 323
insert jump . 328

ladder diagram (LD) . 176
Ladder Diagram as Function Block Diagram 178
ladder diagram in online mode 330
ladder editor . 323
LANGAUGE

toggle translation . 238
language . 459

web-visualization . 731
LANGUAGE

show project translated 238
language file . 459
language file on/off . 459
language in alarm configuration 371
language of alarm messages 364
language switching . 371
language switching in web-visualization 731
LANGUAGEDIALOG . 731
languages . 162
LD . 176

cursor position . 323
insert at blocks . 327
insert box with EN input 327
insert coil . 326
insert contact . 325
insert function block . 327
insert jump . 328
insert parallel contact 325
insert return . 328
paste above . 329
paste after . 329
paste below . 329

LD as FDB . 178
LD editor . 323
LD in online mode . 330
LD operator in AWL . 163
LD or FBD view . 321
LE . 419
lecsfc.lib . 172

Index

2022/01/20 3ADR010582, 3, en_US 6663

LED display
07AC91-AD . 3932, 3983
07AC91-AD2 . 3946
07AC92-AD . 3999
07AI91-AD . 3964
Central unit 07KT9x-AD 3926
DC501-CS31-AD . 4015

LED_SET . 1638
LEFT . 534
LEN . 533
level control mode . 3558
level-control mode . 3558
libraries . 162
library . 162

define . 372
external . 224, 372
hide declaration . 312
insert . 373
internal . 224, 372
standard.lib . 372
user defined . 372
util.lib . 547

Library Cam switch
CSDC_OUT_TYPE 860, 861
DIGPLS_REF_TYPE . 862

Library Camswitch
CSDC_IN_TYPE . 861
CSDC_OUT_TYPE . 861
CSDC_REF_TYPE . 860
DIGPLS_REF_TYPE . 862

library CANopen . 912
Library Counter

Visu . 1064
Visualization . 1064

library directory . 207, 373
library elements . 452
library encryption . 224
Library Ethernet

ETH_EMAIL_DATA_TYPE 1293
ETH_EMAIL_FILE_REF_TYPE 1293
ETH_MOD_FCT22_TYPE 1294
ETH_MOD_FCT23_TYPE 1295

library linking . 459
library manager . 371

Library Modbus
COM_MOD_FCT22_TYPE 1702
COM_MOD_FCT23_TYPE 1703
MODBUS_TO_STRING 1703
STRING_TO_MODBUS 1705

Library Motion Control
CMC_SInterpolation 2672
CMC_SIPosiLoop . 2676
MC_PATH_POINT . 2704
MC_PATH_REF . 2702

library path . 373
library private . 312
Library PROFINET_EXTENDED

ERROR_MESSAGES 1841
library public . 312
Library Series90 AC500

ADDW . 1969
BEG . 1970
BEGD . 1972
MUL2ND . 1973
MULDI . 1976
MULW . 1977
NEGD . 1978
NEGW . 1978
SUBW . 1979

Library WAV File
zWAV_FILE_BYTES_TO_STRING 2568

license free mode . 734
license management . 733

add license information 734
creating a licensed library 734

licensing a library . 373
licensing information . 734
licnesing a library . 224
LIMIT . 417
LIN_TRAFO . 550
line number . 355
line number field . 290
line numbers in declaration editor 307
LINK . 731
link pragma . 310
linking a POU . 310
list components . 203
list number field . 354
Lithium battery . 3918

Index

2022/01/203ADR010582, 3, en_US6664

LN . 431
load & save . 201
load download information 232
load file from PLC . 292
load watch list . 401
local variable . 301
lock

get, SVN . 6599
steal, SVN . 6599

log . 184, 208, 374
SVN . 6600

LOG . 431
log file for project . 374
log in . 279
log menu . 375
LOG_GENERIC_INPUT 3525
LOG_GENERIC_OUTPUT 3532
LOG_HANDLING 3503, 3504
LOG_IEC60870_INPUT 3514
LOG_IEC60870_OUTPUT 3522
log-file for alarms . 369
log-in to a CPU . 92, 135
logarithm . 431
login . 279
login to data base . 251, 266
loging . 459
logout . 283, 459
loop . 165
LREAL . 443
LREAL as REALs . 209
LREAL constants . 437
LREAL_TO conversions . 426
LT . 419
LT operator in AWL . 163
LZB . 1960

M
macro . 209, 220
macro after compile . 209
macro before compile . 209
macro in CFC . 349
macro library . 220
macros . 278
macros in PLC-browser . 378
manipulated variable 551, 553

mark . 203
marking blocks in SFC . 330
master layout . 261
MAX . 416
MAZ . 1962
MC . 6339, 6342
MC_AccelerationProfile 2794
MC_CamIn . 2799

function block . 2799
MC_CamOut . 2803

function block . 2803
MC_CamSwitch_DC . 853
MC_CamTableselect . 2832

function block . 2832
MC_CombineAxes . 2826

function block . 2826
MC_GearIn . 2805

function block . 2805
MC_GearInPos . 2809

function block . 2809
MC_GearOut . 2814

function block . 2814
MC_GroupContinue . 2941

function block . 2941
MC_GroupDisable . 2924
MC_GroupEnable . 2922
MC_GroupHalt . 2935
MC_GroupInterrupt . 2939
MC_GroupReadActualPosition 2925
MC_GroupReadActualVelocity 2927
MC_GroupReadStatus . 2943
MC_GroupStop . 2929
MC_Halt . 2784
MC_HaltSuperimposed 2764
MC_Home . 2876
MC_MoveAbsolute . 2747
MC_MoveAdditive . 2756
MC_MoveCircularAbsolute 2960
MC_MoveCircularRelative 2967
MC_MoveContinuousAbsolute 2771
MC_MoveContinuousRelative 2776
MC_MoveDirectAbsolute 2976
MC_MoveDirectRelative 2979
MC_MoveLinearAbsolute 2946
MC_MoveLinearRelative 2953

Index

2022/01/20 3ADR010582, 3, en_US 6665

MC_MovePath . 2985
MC_MoveRelative . 2751
MC_MoveSuperImposed 2760
MC_MoveVelocity . 2767
MC_PATH_DATA_REF 2704
MC_PathSelect . 2983
MC_PhasingAbsolute . 2816
MC_PhasingRelative . 2821
MC_PositionProfile . 2787
MC_Power . 2835
MC_ReadActualPosition 2852
MC_ReadActualVelocity 2854
MC_ReadAxisError . 2840
MC_ReadBoolParameter 2846
MC_ReadCartesianTransform 3003
MC_ReadCoordinateTransform 3006
MC_ReadParameter . 2844
MC_ReadStatus . 2837
MC_Reset . 2842
MC_SetCartesianTransform 2998
MC_SetCoordinateTransform 3001
MC_SetOverride . 2856
MC_SetPosition . 2858
MC_StepAbsSwitch . 2860
MC_StepDirect . 2865
MC_StepLimitSwitch . 2867
MC_StepRefPulse . 2871
MC_Stop . 2781
MC_SyncAxisToGroup 2717, 2991
MC_SyncGroupToAxis 2717, 2988
MC_VelocityProfile . 2791
MC_WriteBoolParameter 2850
MC_WriteParameter . 2848
MC502 5096, 5159, 5267, 5359
MC503

memory card adapter 5101, 5272
MC5102 5103, 5164, 5273, 5364
MC5141 5108, 5170, 5279, 5370
MCA_CAM_EXTRA . 2878
MCA_CamInDirect . 2913
MCA_CreateBuffer . 3029
MCA_DriveBasedHome 2890
MCA_GearInDirect . 2909
MCA_Home . 2887
MCA_Indexing . 2892

MCA_JogAxis . 2895
MCA_MoveBuffered . 3030
MCA_MoveByExternalReference 2885
MCA_MoveHelixRelative 3008
MCA_MovePathPos . 3022
MCA_MoveRelativeOpti 2906
MCA_MoveVelocityContinuous 2882
MCA_Parameter . 2879
MCA_PathEvent . 3015
MCA_PhasingByMaster 2919
MCA_Power . 2880
MCA_ReadParameterList 2900
MCA_SetCoordinateTransformation 3016
MCA_SetDynamicFollower 3018
MCA_SetOperatingMode 2917
MCA_SetPositionContinuous 2903
MCA_SyncCamToPath . 3027
MCA_SyncInfeedToPath 3025
MCA_WriteParameterList 2898
MCX_BinaryReference_DC 874
MCX_BinaryShift_DC . 877
MCX_CamLogic_DC . 880
MCX_CamShift_DC . 883
MCX_CamSwitchComfort_DC 889
MCX_CamSwitchMulti_DC 893
MCX_CamSwitchMultiTimed_DC 897
MCX_CamSwitchSimple_c 870
MCX_CamSwitchSimple_DC 901
MCX_CamSwitchTimed_DC 905
MCX_PulseSwitch_DC . 908
MDI representation . 205
Measuring ranges

07AC91-AD . 3938
07AC91-AD2 . 3954
07AI91-AD . 3970
AC522 . 4428

Mechanical data
07AC91-AD . 3943
07AC91-AD2 . 3961
07AI91-AD . 3979
07DC91-AD . 3995
07DC92-AD . 4012
Central unit 07KT9x-AD 3927
DC501-CS31-AD . 4036

Mechanical dimensions S500 5323

Index

2022/01/203ADR010582, 3, en_US6666

MEINBERG_SYNC . 1935
memory card . 6339, 6342

MC502 5096, 5159, 5267, 5359
MC5102 (micro) 5103, 5164, 5273, 5364
MC5141 5108, 5170, 5279, 5370

memory card adapter
MC503 . 5101, 5272

memory location . 442
Memory usage per function block 3061
menu log . 375
merge . 246
merge changes . 6607
message file . 459
message window 200, 247, 293
messages . 459
messages output via command line 457
micro memory card

MC5102 5103, 5164, 5273, 5364
micro memory card adapter

TA5350-AD 5103, 5164, 5273, 5364
MID . 535
migration 67, 3785, 5763, 6330
MIN . 417
MOD . 409
Modbus

RTU protocol . 5264, 5358
TCP/IP protocol . 5488

Modbus library . 1697
Modbus RTU library 2288, 2289
modifier . 163
modifiers and operators in IL 163
ModuleDiffBlock error . 6415
monitoring 183, 279, 308, 310, 723
monitoring active . 401
monitoring in watch list . 401
monitoring of complex types 203
monitoring options . 354
Motion control library . 2571
Mounting

AC500-eCo CPUs . 5241
Mounting and demounting

AC500-eCo CPUs . 5241
Mounting/Demounting

communication modules 5335
function module terminal bases 5326

terminal bases . 5326
terminal bases and function module terminal
bases . 5326
terminal unit . 5328

MOVE . 409
Move elements or names in the Ladder Diagram
editor . 324
Move elements or names in the LD-editor 324
MQTT . 6178
MQTT client library . 1710
MQTT_CONNECTION . 1732
MQTT_ERROR_ID . 1729
MQTT_MESSAGE . 1732
MQTT_QOS . 1732
MqttConnectWithCertBuffer 1710
MqttConnectWithCertFile 1714
MqttDisconnect . 1718
MqttGetReceivedPacket 1720
MqttPing . 1722
MqttPublish . 1724
MqttSubscribe . 1726
MqttUnsubscribe . 1728
MUL . 407
MUL operator in AWL . 163
MUL2ND . 1973
MULD . 1963
MultiOnlineChange tool 5796
multiplc . 728
multiple check in 253, 255, 268, 270
multiple check out 253, 255, 268, 270
multiple define 252, 254, 267, 269
multiple undo check out 253, 255, 268, 270
multiple write access on output 249
MUX . 418

N
N modifier in AWL . 163
NE . 420
NE modifier in AWL . 163
negation in FBD . 320
negation in LD . 329
NEGD . 1978
NEGW . 1978
netvarudp_lib_V23.lib . 358
network . 317

comment . 314

Index

2022/01/20 3ADR010582, 3, en_US 6667

network (before) . 325
network comments . 314
network in FBD . 162
network in LD . 177
network in SFC . 171
network number . 314
network number field . 290
Network scan . 5819, 5866
network variables

configuration . 358
definition . 360

network variables list . 360
Neutral FieldBusPlug interface

TB511 . 3793
TB521 . 3793
TB523 . 3793
TB541 . 3793

new channel . 404
new declaration . 307
new folder . 258
new from template . 222
new watch list . 399
next error . 278
noinfo . 457
nonpersistent . 313

pragma . 313
Normal operation

07AC91-AD . 3939
07AC91-AD2 . 3955
07AI91-AD . . 3939, 3955, 3973, 3989, 4004, 4027
07DC91-AD . 3990
DC501-CS31-AD . 4027

NOT . 412
notargetchange . 457
notice at load . 212
number constants . 436
number of data . 209

O
obejct . 257
obejct organizer . 199
object . 151

access rights . 262
add . 258
convert . 260

copy . 260
delete . 258
drag & drop . 257
folder . 257, 258
open . 261
open detailed compare view 147, 5767
properties . 261
rename . 259
tooltip . 257

object access rights . 262
object organizer

collapse node . 258
expand node . 258
new folder . 258

object properties . 261
object template . 259
OF . 169
offline mode . 459
ONB_IO_CNT . 1734
ONB_IO_INT_IN . 1740
ONB_IO_PWM_FREQ . 1743
ONB_IO_PWM_TIME . 1746
Onboard I/Os

PM55x . 3819
PM56x . 3831

Onboard I/Os in processor module PM55x 3819
Onboard I/Os in processor module PM56x 3831
onboard IO library . 1733
one down in CFC . 347
one up in CFC . 347
online . 148, 278, 457

breakpoint dialog box 285
communication parameters 291
create boot project . 291
display flow control . 290
download . 283
force values . 287
load file from PLC . 292
login . 279
logout . 283
release force . 288
reset . 284
reset (cold) . 284
reset (original) . 284
run . 283

Index

2022/01/203ADR010582, 3, en_US6668

show call stack . 290
simulation . 291
single cycle . 286
source code download 291
sourcecode download 291
step in . 286
step over . 286
stop . 284
toggle breakpoint . 285
write file to PLC . 292
write values . 286
write/force dialog . 289

online change 209, 232, 283, 441
online change web-visualization 727
online functions . 278
online help . 293
online in security mode . 205
online log in . 279
online messages from controller 282
online mode . 279, 459

CFC . 351
Continuous Function Chart 351
declaration editor . 308
FBD . 322
LD . 330
SFC . 337

Online Mode
Boot Project . 3766

OPC configurator . 3048
open

object . 261
Open Device Type editor 6116
open instance . 321
open POU . 263
open project from PLC . 222
openfromplc . 457
operand . 151, 353
operator . 353
options

SVN . 6612, 6613
options for build . 209
options for colors . 206
options for directories . 207
options for editor . 203
options for load & save . 201

options for log . 208
options for macros . 220
options for project objects 216
options for source control 216
options for symbol configuration 214
options for the desktop . 205
options for user information 203
OR . 411
OR operator in AWL . 163
order : end . 347
order : one down in CFC 347
order : one up in CFC . 347
order : start . 347
order in CFC . 346
order of execution in CFC 346
order topologically . 346
Ordering data

07AC91-AD . 3944
07AC91-AD2 . 3962
07AI91-AD . 3981
07DC91-AD . 3997
07DC92-AD . 4013
AC522 . 4433
Central unit 07KT9x-AD 3927
DC501-CS31-AD . 4038
TB511 . 3795
TB521 . 3795
TB523 . 3795
TB541 . 3795

original order . 307
out-pin in CFC . 342
out-pin in Continuous Function Chart 342
output . 320
Output

Changing Status 3762, 3770
output in CFC . 341
output in FBD . 320
output parameters . 353
output reset . 320
output set . 320
output variable . 301
Outputs 24 V DC

DC501-CS31-AD . 4035
overlapping memory areas 249

Index

2022/01/20 3ADR010582, 3, en_US 6669

overlay icon . 6582
SVN . 6582

Overview . 3875
Overview of Blocks according to their Call Names
. 2085

Overview of the ACS drives base components . . 2209
Overview of the DCS Drives library components 2469

P
P-controller . 551
pack variables . 358
Panel Builder . 6628
parallel branch . 176
parallel branch in SFC 176, 332
parallel contact . 325
parallel contact (negated) 326
parallel contacts . 177
parameter assignment at program call 156
Parameterization

AC522 . 4421
I/O bus . 6059
IO bus . 6059

Parameterization of the onboard I/O for PM56x-xP
. 5854

parameters in task configuration 391
Parametrization

I/O bus . 6059
Parametrization of the onboard I/O for PM56x-xP
. 5854

password . 457, 459
gateway . 403

password for user group . 459
password per command file 459
password via command line 457
passwords . 211, 250
paste above in LD . 329
paste after in LD . 329
paste after in SFC . 333
paste below in LD . 329
paste parallel branch . 333
pasting . 274
pasting in FBD . 321
pasting in Function Block Diagram 321
PCO PIDCON . 3085
PCO_ALARM . 3115
PCO_ANA . 3118

PCO_ANAALM . 3120
PCO_ANALIM . 3129
PCO_ANASET . 3149
PCO_BIN . 3116
PCO_BINSET . 3150
PCO_MOT . 3134
PCO_MOTCON . 3063
PCO_VALV . 3153
PCO_VALVCON . 3098
PD . 551
persist.dat . 313
PERSISTENT . 302, 313
persistent global variables 360
persistent variables 302, 360
PI-controller . 553
PID . 553
placeholder . 731
placeholders for alarm messages 364
Plastic labels . 5210
Plastic markers . 5210
PLC system start-up 3709, 5413
PLC_PRG . 80, 132
PLC_REBOOT . 1556
PLC-browser . 376

cancel command . 379
commands . 376
function . 376
history . 379
history backward . 379
history forward . 379
ini-file . 376
macros . 378
print last command . 379
save history list . 379

plc-handler . 728
PLCSTATEINTERVAL . 723
Pluggable Label Mounting 5209
Pluggable Marker Holder 5209
PM . 3713, 3803

AC500 V2 (Standard) 3715
AC500-eCo V2 . 3713

PM55x . 3804
PM56x . 3804
PM57x . 3848
PM58x . 3848

Index

2022/01/203ADR010582, 3, en_US6670

PM59x . 3848
PM554 . 3804
PM556 . 3804
PM564 . 3804
PM566 . 3804
PM572 . 3848
PM573 . 3848
PM582 . 3848
PM583 . 3848
PM585 . 3848
PM590 . 3848
PM591 . 3848
PM592 . 3848
PM595 . 3863
PMP_ANTIJAM . 3630
PMP_CONFIGURATION 3560
PMP_DOL_SIMU . 3682
PMP_DRIVE_SIMU . 3685
PMP_ENERGY_CALC . 3637
PMP_FLOW_CALC_HQ 3642
PMP_FLOW_CALC_PQ 3647
PMP_FLOW_DISTRIBUTOR 3599
PMP_INTERFACE_DOL 3564
PMP_INTERFACE_VFD 3573
PMP_LEVEL_COMPARATOR 3584
PMP_LEVEL_DISTRIBUTOR 3590
PMP_MAINTENANCE . 3650
PMP_PID . 3617
PMP_PRESSURE_DISTRIBUTOR 3608

function block . 3697
PMP_PROTECTION_ANALOG 3654
PMP_PROTECTION_BINARY 3663
PMP_SEQUENCE_GEN 3624
PMP_SLEEP . 3668
PMP_SOFT_FILLING . 3675
PMP_TANK_SIMU . 3690
PNIO_CAN2A_REC . 1845
PNIO_CAN2A_REC_ID 1848
PNIO_CAN2A_SEND . 1851
PNIO_CAN2B_REC . 1854
PNIO_CAN2B_REC_ID 1857
PNIO_CAN2B_SEND . 1860
PNIO_CANOM_NMT . 1863
PNIO_CANOM_NODE_DIAG 1866, 1871
PNIO_CANOM_SDO_READ 1874

PNIO_CANOM_SDO_WRITE 1877
PNIO_CANOM_STATE 1881
PNIO_CANOM_SYS_DIAG 1885
PNIO_CNTL_START_COM 1896
PNIO_CNTL_STOP_COM 1899
PNIO_COM_REC . 1889
PNIO_COM_SEND . 1893
PNIO_DEV_ALARM . 1794
PNIO_DEV_DIAG . 1800
PNIO_DEV_INFO . 1803
PNIO_DEV_INFO_EXT 1807
PNIO_DEV_SPECIFIER 1811
PNIO_IM0 . 1813
PNIO_READ . 1818
PNIO_READ_EXT . 1822
PNIO_STATE . 1826
PNIO_SYS_DIAG . 1829
PNIO_WRITE . 1832
PNIO_WRITE_EXT . 1835
Point - to - Point movement 2684
pointer . 441

check functions . 447
pointer variables in web-visualization 731
port . 403
POU . 151, 3748
POU (program oorganization unit) 145
POU (program organization unit) 151, 199
POUs with EN inputs in LD 327
Power supply

TB511 . 3789
TB521 . 3789
TB523 . 3789
TB541 . 3789

pragma . 309
link . 310
nonpersistent . 313

pragma instructions . 310
pragmas for library declaration parts 312
Preconditions

ACS drives base library 2204
DCS drives library . 2467
use of the ACS / DCS drives communication
via Modbus TCP library 2359

Preconditions for the use of the ACS / DCS drives
communication . 2288

Index

2022/01/20 3ADR010582, 3, en_US 6671

Preconditions for the Use of the HA-CS31 Library
. 2020

Preconditions for the use of the Solar_NREL
library . 3262
prepared value . 402
Preparing the AC500 CPU 3741
pressure control mode . 3545
pressure-control mode . 3545
previous error . 278
Principles of coordinated motion 2679
print . 228
PRINT . 731
print margings . 294
print range . 205
printersetup . 459
Procedure for Modifying Hardware and Application
Program . 2013
Process control object (PCO) library 3039
Processor modules 3713, 3803
PROFIBUS DP communication module

Short description . 3928
Technical data . 3928

PROFIBUS DP coupler
Short description . 3928
Technical data . 3928

PROFIBUS DP library . 1750
PROFIBUS DP slave . 4075
profile . 5763
PROFINET implementation 5553
PROFINET IO library . 1794
PROFINET status . 1839
PROFINET_Ext2 library 1895
program . 156
program call . 156
program organization unit 151
Program organization units with EN inputs in LD . 327
Programming . 1996

AND operator . 3748
Assign . 3748
Box . 3748
Compiling . 3748
Negation . 3748
Network . 3748

programming cable 121, 3742
Programming cable 5143, 5186

Programming in C code 6242
Programming Languages

CFC . 3748
Continuous Function Chart 3748
FBD . 3748
Function Block Diagram 3748
IL . 3748
Instruction List . 3748
Ladder Diagram . 3748
LD . 3748
Sequential Function Chart 3748
SFC . 3748
ST . 3748
Structured Text . 3748

Programming Organization Unit 3748
project 61, 145, 151, 242, 247, 263, 5757

add action . 263
builld . 231
check . 248
clean all . 232
compare 146, 240, 241, 242, 5765
comparison . 147, 5766
convert object . 260
copy object . 260
data base link . 250, 265
delete object . 258
document . 238
export . 239
global replace . 248
global search . 247
import . 240
load download information 232
merge . 246
migrate V2 project to V3 project . . . 67, 3785, 6330
open object . 261
options . 200
project info . 246
rebuild all . 232
rename object . 259
show call tree . 264
show cross reference 264
translate into another langauge 233
update . 67, 3785, 6330
user group passwords 250
view instance . 263

Index

2022/01/203ADR010582, 3, en_US6672

project code . 291
project data base . 217, 220

automatic data base functions 217
options for compile files 220
options for project objects 217
options for shared projects 217

project directory . 207
project encryption . 224
project global replace . 248
project global search . 247
project ID . 604
project info . 201, 246
project object menu . 261

access rights . 262
add . 258
convert . 260
copy . 260
delete . 258
open . 261
properties . 261
rename . 259

project settings
SVN . 6613

project source contorol . 216
project translate into another language

show project translated 238
toggle translation . 238

project version 1.5 . 224
project version 2.0 . 224
project version 2.1 . 224
project version history 255, 270
properties in CFC . 343
protection of a library . 224
protection of a project 211, 224, 250
Protocols

Modbus RTU 5264, 5358
Modbus TCP/IP . 5488
MQTT . 6178
SMTP . 6181
SNTP . 6183
UDP . 6187

proxy-server . 722
PS_DigitalPLS . 857
Pt100/Pt1000 input

07AI91-AD . 3978

PTP . 2684
pulse width modulation 5708, 6001
PUMP_ANTIJAM . 3426
PUMP_AUTOCHANGE 3422
PUMP_BOOST_CTRL . 3404
Pump_DOL_SIMU . 3457
PUMP_DRIVE_SIMU . 3460
PUMP_ENERGY_CALC 3450
PUMP_FLOW_CALC . 3430
PUMP_INTERFACE . 3387
PUMP_LEVEL_CTRL . 3414
PUMP_PID . 3410
PUMP_PROTECTION . 3442
PUMP_RETAIN_DATA . 3391
PUMP_SLEEP . 3435
PUMP_STATION_CFG 3384
PUMP_STATION_TYPE 3393
PUMP_TANK_SIMU . 3464
Pumping library . 3380
Pumping library 2 . 3537
PWM . 5708, 6001
Python . 6624

Q
qualifier . 172
query . 459

R
R operator in AWL . 163
R_TRIG . 540
R_TRIG in LD . 328
RCOM library . 1903
RCOM_CLOCK . 1904
RCOM_COLDST . 1906
RCOM_DIAL . 1909
RCOM_HANGUP . 1911
RCOM_INIT . 1913
RCOM_NORMAL . 1917
RCOM_POLL . 1919
RCOM_READ . 1921
RCOM_READ_SLV . 1924
RCOM_REC . 1927
RCOM_TRANSMIT . 1929
RCOM_WARMST . 1932
read access . 459

Index

2022/01/20 3ADR010582, 3, en_US 6673

read recipe . 402
REAL . 443
REAL constants . 437
REAL_TO conversions . 426
Real-Time Clock . 5418
Real-time clock adapter 5113, 5284
Real-time clock library . 1934
Realization with centralized PLC based Motion
Control . 2599
realtime clock . 5418
Realtime clock adapter 5113, 5284
Realtime clock library . 1934
rebuild all . 232
recipe . 397

read . 402
working with . 397
write . 401

recipe manager . 395
recipe value . 395
redo . 273
refresh status . 257, 272
Register Cards

POUs . 3748
Resources . 3762

Register OPC server as system service 3053
release force . 288
reload for web-visualization 727
remanent variables and reinitialization 302
remind of boot project on exit 201
rename object . 259
rename watch list . 401
REPEAT . 166, 170
REPEAT loop . 170
replace . 248, 275, 459
REPLACE . 537
replace constants . 209
replace with symbol after entering address 314
replacement device

07AI91-AD . 3962
Replacement device

07AC91-AD2 . 3945
07DC91-AD . 3981
07DC92-AD . 3997
07KT9x-AD . 3891

Replacement devices
CS31 bus system data 3882

Replacement unit
DC501-CS31-AD . 4014

repository . 6579
browse SVN repository 6585
SVN . 6579

Requirements . 1984
reset . 284, 320

SVN . 6602
reset (original) . 284
reset coil . 326
reset output in LD . 329
reset(cold) . 284
resources . 161, 199

global variables . 357
library manager . 371
log . 374
variable configuration 359, 361

retain . 153
RETAIN . 302
retain variable . 302
RETAIN_EXPORT . 1608
RETAIN_IMPORT . 1610
RETAIN_RESTORE . 1611
RETAIN_SAVE . 1613
return . 319
RETURN . 166, 168
return in CFC . 341
return in LD . 328
RETURN instruction . 168
revision

copy to branch/tag . 6610
select in SVN . 6614

RI file . 232, 283, 291
ri-file . 232, 283, 291
RIGHT . 534
rising edge . 540
rising edge detection . 328
RobotStudio . 5763
ROL . 414
ROR . 415
rotation . 414, 415
rounded rectangle . 638
RS . 539

Index

2022/01/203ADR010582, 3, en_US6674

RS-485 isolator for COM1 5156
RTC . 546, 5418
RTC adapter . 5113, 5284
RTC library . 1934
RTC_ADJUST . 1937
RTC_GET_TIME . 1939
RTC_SET_ADJUST_INTERVAL 1941
RTC_SET_TIME . 1943
RTC_SYNC_DISPLAY . 1945
run . 283, 457, 459

S
S operator in AWL . 163
S500 hardware

short description . 3734
S500-eCo hardware

short description . 3738
S500-eCo I/O modules . 3721
Safety notice . 13, 3701, 5217

ANSI Z535 13, 3701, 5217
sampling trace . 379
save as template . 259
save before compilation . 231
save control data . 3287
save ENI credentials . 201
save/mail archive . 225
SAVEPROJECT . 731
saving alarms . 369
saving with project . 205
screen divider . 199
Scripts

Python . 6624
SD memory card 6339, 6342
SD_READ . 1558
SD_WRITE . 1563
sdcard . 6339
sdcard.ini . 6339
search . 293
search library . 373
security mode . 205
Security notice 13, 3701, 5217
SEMA . 539
sensitivity for task watchdog 391
Sequence generator . 3540
sequential function chart 151, 154, 171

Sequential Function Chart
status scan . 174
time scan . 174

sequential function chart (SFC) 171
sequential function chart editor 330
Sequential Function Chart flags 174
sequential function chart in online mode 337
Serial interface

TB511 . 3790, 3792
TB521 . 3790, 3792
TB523 . 3790
TB541 . 3790

Serial interface COM1
terminal bases . 5343

Serial interface COM2
PM55x . 5254
PM56x . 5254
terminal bases . 5345

serial RS-485 adapter 5125, 5296
Serial RS-485 adapter 5120, 5291
Serial RS-485 isolated adapter 5131, 5305
Series90 AC500 library 1946
set . 320
set coil . 178, 326
set lamguagefile . 459
set output in LD . 329
set variable comment after entering symbol 314
set/reset coils . 178
set/reset in CFC . 342
setreadonly . 459
settings

alarm configuration . 371
settings for visualization . 459
SFC . 151, 154, 171

add entry-action . 332
add exit-action . 332
add label to parallel branch 333
alteranative branch (left) 331
alteranative branch (right) 331
associate action . 336
delete jump label . 333
delete step and transition 331
execution of steps . 337
IEC step . 336
jump . 332

Index

2022/01/20 3ADR010582, 3, en_US 6675

marking blocks . 330
online mode . 337
options . 336
parallel branch (left) . 332
parallel branch (right) 332
paste after . 333
paste parallel branch . 333
status scan . 174
step attributes . 334, 336
step transition (after) . 331
step transition (before) 331
time overview . 335
time scan . 174
tooltip for step attributes 336
transition-jump . 332
zoom action . 333

SFC editor . 330
SFC flags . 174
SFC library . 172
SFCActionType . 174
SFCCurrentStep . 174
SFCEnableLimit . 174
SFCError . 174
SFCErrorAnalyzation . 174
SFCErrorPOU . 174
SFCErrorStep . 174
SFCInit . 174
SFCPause . 174
SFCQuitError . 174
SFCReset . 174
SFCStepType . 174
SFCTip . 174
SFCTipMode . 174
SFCTrans . 174
shift . 412
SHL . 412
short description

AC500 hardware . 3734
AC500-eCo hardware 3738
S500 hardware . 3734
S500-eCo hardware 3738

Short description
ARCNET communication module 3928
ARCNET coupler . 3928
Central unit 07KT98 3892

Ethernet communication module 3929
Ethernet coupler . 3929
PROFIBUS DP coupler 3928

shortcut mode . 305
show . 457
show address of symbol . 314
show call stack . 290
show cross references . 295
show differences . 253, 268
show print area margins . 205
show project translated . 238
show variable comments per rung in printout 314
show version history 254, 269
SHR . 413
Signal . 1144
simulation 184, 279, 291, 459

PLC_Visu . 721
target . 721
visu . 721
visudownload . 721

Simulation Mode . 3762
single cycle . 182, 286
single step . 182, 286
singleton event . 391
SINT . 443
SINT constants . 436
SLOT_CONFIG_READ 1568
SLOT_CONFIG_WRITE 1571
SLOT_INFO . 1617
SLOT_PROD_ENTRY_READ 1574
SM560-S . 3741, 5393
SM560-S-FD-1 . 3741, 5393
SM560-S-FD-4 . 3741, 5393
SmartMedia Card . 3915
SMTP . 6181
SNTP . 6183
SOCKS-proxy . 722
Software . 1992
Solar library . 3168
SOLAR_AC500 library . 3169
SOLAR_BACKTRACKING 3183
SOLAR_ENCODER_CD522 3194
SOLAR_ENCODER_CD522_SSI_GRAY 3201
SOLAR_ENCODER_DC541 3207
SOLAR_ENCODER_IO 3186

Index

2022/01/203ADR010582, 3, en_US6676

SOLAR_EW_AXIS_PRIM 3174
SOLAR_EW_AXIS_SEC 3180
SOLAR_HYD_CTRL . 3222
SOLAR_MODE_CALIBRATION 3245
SOLAR_MODE_HOMING 3236
SOLAR_MODE_MANUAL 3233
SOLAR_MODE_POSITION 3231
SOLAR_MODE_TRACKING 3257
SOLAR_NOAA . 3169
SOLAR_NORMALIZE_ANALOG 3213
SOLAR_NREL . 3263
Solar_NREL library . 3262
SOLAR_NS_AXIS_PRIM 3178
SOLAR_NS_AXIS_SEC 3176
SOLAR_POSITION_CTRL 3216
sort by address . 307
sort by name . 307
sort by type . 307
sorting in the table editor 307
source code download . 291
source control . 216
source download . 212
sourcecode download . 291
sourcecodedownload . 459
SQRT . 430
square root . 430
SR . 538
ST . 165, 357
ST editor . 357
ST operand . 166
ST operator . 166
ST operator in AWL . 163
standard commands . 376
standard function . 372
Standard function blocks 2922
standard library . 372
standard POUs . 151
standard.lib . 372
start parameters . 721

simulation . 721
visucompactload . 721

STARTVISU . 723
State LEDs

AC522 . 4428
state offline . 459

state online . 459
statistics . 246
status bar . 200, 205
status check for web-visualization 727
status scan for Sequential Function Chart steps . . 174
status scan for SFC steps 174
step and transition in SFC 331
step attributes . 334, 336
step in . 286
step init . 172
step name . 331
step over . 286
step status . 174
step time . 174
step transition (after) . 331
step transition (before) . 331
stop . 284, 459
STRING . 444
STRING constants . 437
STRING_TO conversions 428
STRUCT . 449
structure . 313
structured text . 165, 357
structured text (ST) . 165
structures . 151
Structures and enumerations 1729
Structures Group CANopen 963
SUB . 408
SUB operator in AWL . 163
SUBD . 1964
subrange types . 450
Supply of devices . 3917
Supply voltage

Central unit 07KT98 3898
SUPPORTTOOLTIPSINALARMTABLE 723
suppress elements if no text replacement has
taken place . 459
suppress monitoring of complex types 203
SVN . 6578

_VERSION_INFO . 6618
checkout . 6589
commands . 6583
info . 6598
overlay icon . 6582
project settings . 6613

Index

2022/01/20 3ADR010582, 3, en_US 6677

repository . 6579
repository browser . 6585
version control . 6579
version Info . 6618

symbol
overlay . 6582

symbol configuration . 214
symbol file . 214, 310
symbolic interface . 214
Synchronization of a PLC task 5966
syntax coloring . 296, 305
SysGetProjectID . 604
SysIECTasks.lib . 586
SysInitLibrary . 588
SysLibCallback.lib . 561
SysLibDir.lib . 568
SysLibDirect.lib . 570
SysLibDPV1Hilscher.lib . 572
SysLibEvent.lib . 571
SysLibFile.lib . 573
SysLibFileAsync.lib . 578
SysLibFileStream.lib . 582
SysLibGetAddress.lib . 585
SysLibInitLibrary.lib . 588
SysLibInt.lib . 589
SysLibMem.lib . 590
SysLibPciCards.lib . 593
SysLibPLCConfig.lib . 594
SysLibPlcCtrl.lib . 599
SysLibPorts.lib . 602
SysLibProjectInfo . 604
SysLibProjectInfo.lib . 604
SysLibRtc.lib . 605
SysLibSem.lib . 606
SysLibSockets.lib . 609
SysLibSocketsAsync.lib . 625
SysLibStr.lib . 626
SysLibSymbols.lib . 633
SysLibTask.lib . 628
SysLibTime.lib . 634
SysShmRead . 608
SysShmWrite . 609
system call . 459
System data . 3876

Creepage distances and clearances 3877

Earthing . 3879
Electromagnetic compatibility 3878
Grounding . 3879
Mechanical data . 3879
Operating and environmental conditions 3876
Power Supply Units . 3877
Test voltages . 3877

System data AC31 adapters 3876
system events in the task configuration 394
system flag . 438
System Structure . 2014
System technology . 1642

T
TA515-CASE . 67
TA521 . 5175, 5375
TA523 . 5209
TA524 . 5179, 5383
TA525 . 5210
TA526 . 5180, 5212, 5378
TA535 . 5212
TA541 . 5180, 5379

Battery . 5180, 5379
TA543

PM595 . 5184, 5384
TA561 . 5113, 5284
TA562 5120, 5125, 5291, 5296
TA563 . 5204, 5302
TA564 . 5204, 5302
TA565 . 5204, 5302
TA566 . 5205, 5304
TA569 . 5131, 5305
TA569-RS-ISO . 5131, 5305
TA570 . 5136, 5309
TA571 . 5137

Input simulator . 5137
TA5350-AD 5103, 5164, 5273, 5364
TA5450-CASE . 67
tab-width . 203
table editor . 307
tablekeyboardusage_codesys on/off 459
tablekeyboardusage_web on/off 459
TAN . 433
tangent . 433
target . 387

Index

2022/01/203ADR010582, 3, en_US6678

Target change . 5782, 5844
target id . 459
target ID . 734
target settings . 387

dialog . 387
target system via command line 457
target-visualization . 261
targetfile . 457
targetfilenosaveas . 457
task attributes . 391
task configuration

append task . 391
callstack . 395
insert program call . 393
insert task . 391
set debug task . 395
system events . 394

Task Configuration . 1999
task enabling . 395
task priority . 391
TASK_INFO . 1620
TB . 3712
TB51x-TB54x . 3786
TB511 . 3786

Arcnet interface . 3792
Ethernet interface . 3792
Neutral FieldBusPlug interface 3793
Ordering data . 3795
Power supply . 3789
Serial interface . 3790
Technical data . 3794

TB521 . 3786
Arcnet interface . 3792
Ethernet interface . 3792
Neutral FieldBusPlug interface 3793
Ordering data . 3795
Power supply . 3789
Serial interface . 3790
Technical data . 3794

TB523 . 3786
Ethernet interface . 3792
Neutral FieldBusPlug interface 3793
Ordering data . 3795
Power supply . 3789
Serial interface . 3790

Technical data . 3794
TB541 . 3786

Ethernet interface . 3792
Neutral FieldBusPlug interface 3793
Ordering data . 3795
Power supply . 3789
Serial interface . 3790
Technical data . 3794

TB5600
Technical data . 3794

TB5610
Technical data . 3794

TB5620
Technical data . 3794

TB5640
Technical data . 3794

TB5660
Technical data . 3794

Technical data 3941, 3958, 3976, 3992, 4007
07AC91-AD . 3941
07AC91-AD2 . 3958
AC522 . 4430
ARCNET communication module 3927
Central unit 07KT9x-AD 3916
DC501-CS31-AD . 4029
Ethernet communication module 3929
PROFIBUS DP communication module 3928
PROFIBUS DP coupler 3928
TB511 . 3794
TB521 . 3794
TB523 . 3794
TB541 . 3794
TB5600 . 3794
TB5610 . 3794
TB5620 . 3794
TB5640 . 3794
TB5660 . 3794

TECT_DATA_FLASH . 3338
TECT_GROUP . 3316
TECT_HMI_MUX . 3341
TECT_LOG_FILE . 3329
TECT_NOISE_FILTER . 3326
TECT_PWM8 . 3327
TECT_RECIPE . 3335
TECT_SYSTEM . 3321

Index

2022/01/20 3ADR010582, 3, en_US 6679

TECT_TEMP_CONTROL 3312
TECT_TEMP_SIMU . 3323
Temperature control library 3268
template . 222
templates for objects . 259
Terminal Base . 3786
Terminal bases . 3712
Terminal blocks . 5204, 5302
Terminal unit for PROFINET communication inter-
face modules . 4112
Terminal Units . 3718, 4095
terminal units for communication interface
modules . 4099
Terminal units for communication interface
modules . 4109
Terminal units for CS31 communication interface
modules . 4121
Terminal units for I/O modules 4103, 4114
testing a program 94, 119, 136
text editor . 352, 354

breakpoint . 354
calling POUs . 353
calling program organization units 353
insert function . 353
insert mode . 352
insert operand . 353
line number . 355
line number field . 354
overwrite mode . 352

TF501 . 3796
TF501-CMS . 3796
TF521 . 3796
TF521-CMS . 3796
THEN . 168
third party PROFIsafe devices 5765
TIME . 444
TIME constants . 435
time management in SFC 335
time scan of steps . 174
TIME_OF_DAY . 444
TIME_OF_DAY constants 436
TIME_TO conversions . 426
TIME-fucntion . 442
timer . 544
timer in LD . 328
TK501 . 5186

TK502 . 5188
TK503 . 5190
TK504 . 5143
TK506 . 5156
TO . 169
TO_BOOL conversions . 424
TOD . 444
TOD_TO conversions . 426
TOF . 545
toggle breakpoint . 285
toggle translation . 238
TON . 545
TON in LD . 328
tool bar . 205
tooltip . 257, 322, 330

SFC . 337
tooltip for step attributes . 334
TOOLTIPFONT . 723
TP . 544
TRACE . 731
training case . 67
transformation . 550
Transformation function blocks 2997
transition . 172, 334
transition condition . 172, 333
transition name . 331
transition-jump . 332
translate into another langauge 233
translate project (into another language) 237
translation file . 233

creation . 233
editing . 236

translation of alarm messages 364
transmit on change . 358
transmit on event . 358
transparent bitmaps . 731
triggervariable . 369
TRUNC . 429
TU . 3718, 4095
TU507 . 4095
TU508 . 4095
TU509 . 4099
TU510 . 4099
TU515 . 4103
TU516 . 4103

Index

2022/01/203ADR010582, 3, en_US6680

TU517 . 4109
TU518 . 4109
TU520 . 4112
TU531 . 4114
TU532 . 4114
TU541 . 4103
TU542 . 4103
TU551 . 4121
TU552 . 4121
TU582-S . 3741, 5393
turn-off delay . 545
turn-on delay . 545
turn-on delay timer . 2071
type . 304, 448, 449, 450
type conversions . 422
typed literal . 302

U
UDINT . 443
UDINT constants . 436
UDP . 6187
UDP settings for network variables 358
UINT . 443
UINT constants . 436
undo . 272
undo check out . 253, 268
unlimited license . 734
UNTIL . 170
unused variables . 248
update . 5763

SVN project . 6603
UPDATETIME . 723
upgrade 67, 3785, 5763, 6330
upload directory . 459
upload files . 207
URL for connecting web-visualization 723
use as target-visualization 261
use as web-visualization 261
USECURRENTVISU . 723
USEFIXSOCKETCONNECTION 723
user group passwords . 250
user groups . 249
user information . 203
user interface display via command line 457

user interface language
Automation Builder . 3783
CODESYS . 3784

user level . 459
user password . 459
user-defined libaries . 372
userlevel . 457
USEURLCONNECTION . 723
USINT . 443
USINT constants . 436

V
V1State . 573
V2

diagnosis . 6365
diagnosis system . 6365

value
force and write in watch- and recipe manager 402

VAR . 301
VAR PERSISTENT . 302
VAR PERSISTENT RETAIN 302
VAR RETAIN . 302
VAR RETAIN PERSISTENT 302
VAR_CONFIG . 359, 361
VAR_CONSTANT . 302, 360
VAR_EXTERNAL . 303
VAR_GLOBAL . 359
VAR_IN_OUT . 301
VAR_INPUT . 301
VAR_INPUT constan in CFC 343
VAR_OUTPUT . 301
VAR_PERSISTENT . 360
VAR_RETAIN . 360
variable . 295

add to watch list . 400
insert in editor . 295

variable configuration . 361
insert instance paths . 361

variable declaration . 310
variable name . 303
variables

hide library declaration parts 312
variables declaration . 303
Vendor ID . 734

Index

2022/01/20 3ADR010582, 3, en_US 6681

version
Info, SVN . 6618

VGL3P . 1966
VGLEH . 1967
viasualization files . 721
view in FBD . 321
view instance . 263
Visu . 2072
visu download via command line 457
Visu_CPU_Diag . 1182
Visu_CPU_Load . 1182
Visu_CS31_Diag . 1182
Visu_FBP_Diag . 1182
visual settings . 459
visual webvisuactivation on/off 459
visualization . 162
Visualization

DC541 . 1154
PMP_PRESSURE_DISTRIBUTOR_VISU_PH
. 3697

visualization files 207, 722, 727
visualization object

properties . 261
visualization settings . 459
visualization without master layout 261
Visualizations . 2072

W
wai time for communication 205
Wall mounting accessory 5180, 5212, 5378
warning . 478
watch list . 395, 397, 459

add variables from editor 400
creating . 397
insert address range . 400
insert new . 399
insert variable . 399, 400
load . 401
new . 400
rename . 401
save . 401

watch variables 308, 322, 397
add from editor to watch list 400
append . 399
delete . 400

insert . 399
watch- and recipe manager 395

force and write values 402
insert address range . 400
insert new watch list . 399
load watch list . 401
read recipe . 402
rename watch list . 401
save watch list . 401
write recipe . 401

watchdog for task . 391
Water library . 3380
WAV file library . 2554
WAV_FILE_APPEND . 2564
WAV_FILE_APPEND_LABEL 2566
WAV_FILE_CREATE . 2561
WAV_FILE_INFO . 2554
WAV_FILE_READ . 2557
web server . 6325
web-browser . 722
web-visualiazation

auto-reload . 727
status check . 727

web-visualization 261, 721, 731
calling via internet . 730
forced load . 723
language . 731
preconditions . 722
preparing . 727

web-visualization on/off . 459
webserver 722, 728, 731, 6325

configuration . 728
start . 728

webserver service . 728
webserver_conf.xml . 728
WebVisu.htm file . 723
webvisuactivation on/off . 459
What is a AC500 CS31 High Availability System?
. 1983

When to Use AC500 High Availability CS31
System? . 1983
WHILE . 170
WHILE loop . 166, 170
width of visualization screen 723

Index

2022/01/203ADR010582, 3, en_US6682

window . 292
arrange symbols . 292
cascade . 292
close all . 293
library manager . 371
log . 374
messages . 293
tile horizontal . 292
tile vertical . 292

with arguments . 156
WORD . 443
WORD constants . 436
work space . 199, 402
workspace . 199, 402
write file to PLC . 292
write protection 211, 224, 250
write protection password 211
write recipe . 401
write values . 286, 402
write/force dialog . 289
WRITEACCESSLOCK . 723

X
XE . 145
XML-encoding . 205
XML-export . 205
XOR operator in AWL . 163

Z
zip-files for web-visualization 723
zoom action in SFC . 333
zoom in graphic editors 295, 314
zoom to POU . 351
zoom transition . 333

Index

2022/01/20 3ADR010582, 3, en_US 6683

3A
D

R
01

05
82

, 3
, e

n_
U

S

—
© Copyright 2021-2022 ABB.

—
ABB AG
Eppelheimer Str. 82
69123 Heidelberg, Germany
Telephone: +49 (0)6221 701 1444
E-mail: plc.support@de.abb.com
abb.com/plc
abb.com/automationbuilder
abb.com/contacts

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden.

	 Table of contents
	1 PLC Automation with V2 CPUs
	1.1 About this document
	1.1.1 Documentation structure
	1.1.2 Your tasks - documentation from the user's point of view
	1.1.3 Older revisions of this document
	1.1.4 Use the "magic button" to display your current position in the table of contents

	1.2 Getting started
	1.2.1 Safety notice
	1.2.2 Cyber security
	1.2.2.1 Defense in depth
	1.2.2.2 Secure operation
	1.2.2.3 Hardening
	1.2.2.4 Open Ports and Services

	1.2.3 Automation Builder update notification
	1.2.4 Managing your licenses
	1.2.4.1 Identifying the installed license
	1.2.4.2 Selecting the license used on Automation Builder startup
	1.2.4.3 Checking licenses with CodeMeter control center
	1.2.4.4 Setting dedicated network servers in search list
	1.2.4.5 Restarting license check with a dongle bound license
	1.2.4.6 Removing trial license to remove expiring message
	1.2.4.7 Network licenses
	1.2.4.7.1 Setting up a network license
	Configuring a network license server
	Configuring the client side

	1.2.4.7.2 View network server licenses
	1.2.4.7.3 View network server license usage
	1.2.4.7.4 Controlling network server license usage

	1.2.4.8 License borrowing manager
	1.2.4.8.1 Borrowing a network license
	1.2.4.8.2 Returning a network license

	1.2.4.9 Transfering an Automation Builder license
	1.2.4.9.1 General
	1.2.4.9.2 Getting activation code
	1.2.4.9.3 Returning an Automation Builder license
	Online license transfer
	Offline license transfer

	1.2.4.10 Generating license information file for support
	1.2.4.10.1 Log files

	1.2.5 Set-up communication parameters in Windows
	1.2.6 Further information
	1.2.7 Create log files for support
	1.2.8 Menues, views, windows
	1.2.8.1 Start page and menus
	1.2.8.2 'All Messages' window

	1.2.9 Device repository
	1.2.10 Creating and configuring projects
	1.2.11 Handling of AC500 projects
	1.2.12 Connection of devices
	1.2.12.1 Configuring devices
	1.2.12.2 Symbolic names for variables, inputs and outputs
	1.2.12.3 Update of AC500 devices
	1.2.12.4 Comparing objects

	1.2.13 Connection of serial interfaces
	1.2.13.1 Programming of applications

	1.2.14 I/O mapping
	1.2.15 Data transfer and CODESYS programming
	1.2.15.1 Creating configuration data
	1.2.15.2 Launching programming system CODESYS V2.3.9.x
	1.2.15.3 Source download/upload in Automation Builder

	1.2.16 AC500 PLC configuration
	1.2.17 Converting an AC500 V2 project to an AC500 V3 project
	1.2.18 Example projects
	1.2.18.1 Example projects for AC500 V2
	1.2.18.1.1 Hardware AC500 V2
	Configuration for example projects
	System assembly, construction and connection

	1.2.18.1.2 Example project for central I/O expansion
	Preconditions
	Create, set-up and save your AC500 V2 project
	Create a project
	Configure your CPU
	Save the project

	Configure the I/O module
	Add an I/O bus module
	DA501 variable mapping
	Handle the digital input variables
	Handle the digital output variables

	Programming and compiling
	Starting the IEC 61131 programm editor CODESYS
	Task configuration
	Main program PLC_PRG
	Boolean logic "NOT"
	Application example "driller"
	Implementation
	Create a new program POU in the project
	Assign the hardware DI signals to local variables
	Add assignments and a Boolean NOT to the DO signals
	Call the POU in the PLC_PRG

	Compile the project
	Save CODESYS project

	Set-up the communication gateway
	Log-in to CPU and download the program
	Test the program
	Start the program execution
	Test the function
	Stop the program execution

	Set-up visualization
	Starting the IEC 61131 programm editor CODESYS
	Insert visualization object
	Creating and configuring of visualization
	Add a screen title
	Further lines and labels
	Disable Grid and check Settings
	Lamp element for signal indication
	Compile the project
	Save CODESYS project
	Loading the project to the CPU
	Test the program

	Reset the CPU

	1.2.18.1.3 Example project for remote I/O expansion with PROFINET
	Preconditions
	Set-up PROFINET controller
	Add the CM579-PNIO to the device tree
	Set-up the general behavior
	Set-up the PROFINET IO controller

	Set-up PROFINET device
	Hardware preparation
	Add the CI502-PNIO to the device tree
	Configure the CI502-PNIO device
	Configure the CI502-PNIO PROFINET IO device
	Create CI502-PNIO I/O mapping to symbols

	Add remote I/O expansion to project
	Add a program POU to the project
	Create POU logic
	Call the POU in PLC_PRG
	Compile the project
	Save CODESYS project
	Loading the project to the CPU

	Test the program
	Start the program execution
	Test the function

	Reset the CPU

	1.2.18.2 Example projects for AC500-eCo V2
	1.2.18.2.1 Hardware AC500-eCo V2
	System assembly, construction and connection

	1.2.18.2.2 Example project
	Preconditions
	Create, set-up and save your AC500 V2 project
	Create a project
	Save the project

	Configure the onboard I/O channels
	Onboard I/O variable mapping
	Handle the digital input variables
	Handle the digital output variables

	Programming and compiling
	Starting the IEC 61131 programm editor CODESYS
	Change the programming language into FBD
	Task configuration
	Main program PLC_PRG
	Boolean logic AND
	Implementation
	Add Boolean "AND"
	Assign input and output variables to the AND operator
	Add another network
	Add assignments and variables
	Add Boolean NOT

	Compile the project
	Save CODESYS project

	Log-in to CPU and download the program
	Test the program
	Start the program execution
	Test the function
	Stop the program execution

	Reset the CPU

	1.3 Automation Builder installation manager
	1.3.1 Installing customer specific package
	1.3.2 Adding or removing installed software packages
	1.3.3 Automation Builder update notification
	1.3.4 Checking for updates
	1.3.5 Uninstalling Automation Builder

	1.4 Programming with CODESYS
	1.4.1 Development system
	1.4.1.1 Overview
	1.4.1.1.1 How is a project structured?
	1.4.1.1.2 How do I set up my project?
	1.4.1.1.3 How can I test my project?
	1.4.1.1.4 Comparing projects
	Creating a comparison view
	Opening the detailed compare view

	1.4.1.1.5 Debugging
	1.4.1.1.6 Additional online functions
	1.4.1.1.7 Additional features
	1.4.1.1.8 File types
	1.4.1.1.9 Project components
	Project
	POU (program organization unit)
	Function
	Function block
	Function block instances
	Calling a function block
	Program
	PLC_PRG
	Action
	Resources
	Libraries
	Data types
	Visualization

	1.4.1.1.10 Languages
	Supported languages
	Function Block Diagram (FBD)
	Instruction list (IL)
	Overview
	Modifiers and operators in IL

	Structured Text (ST)
	Overview
	Identifier
	Expressions
	Valuation of expressions
	Assignment operator
	Calling function blocks in ST
	RETURN instruction
	IF instruction
	CASE instruction
	FOR loop
	WHILE loop
	REPEAT loop
	EXIT instruction

	Sequential function chart (SFC)
	Overview
	Action
	Entry or exit action
	Transition / Transition condition
	Active step
	IEC step
	Implicit variables in SFC
	SFC flags
	Alternative branch
	Parallel branch
	Jump

	The continuous function chart (CFC)
	Ladder Diagram (LD)
	Overview
	Contact
	Coil
	Function blocks in the Ladder Diagram
	Set/Reset coils
	LD as FBD

	Reserved keywords

	1.4.1.1.11 Debugging, online functions
	Sampling trace
	Debugging
	Breakpoint
	Single step
	Single cycle
	Change values online
	Monitoring
	Simulation
	Log

	1.4.1.1.12 We write a little program
	Controlling a traffic signal unit
	Create POU
	What does TRAFFICSIGNAL do?
	What does WAIT do?
	What does SEQUENCE do?
	What does PLC_PRG do?
	TRAFFICSIGNAL simulation
	"TRAFFICSIGNAL" declaration
	"TRAFFICSIGNAL" body
	Connecting the standard.lib
	"WAIT" declaration
	"WAIT" body
	"SEQUENCE" first expansion level
	Create a SFC diagram
	Actions and transition conditions
	"SEQUENCE" second expansion level
	The result
	PLC_PRG
	TRAFFICSIGNAL simulation

	Visualizing a traffic signal unit
	Creating a new visualization
	Insert element in visualization
	The other traffic lights
	The TRAFFICSIGNAL case
	The second traffic signal
	The ON switch
	Font in the visualization

	1.4.1.2 The individual components
	1.4.1.2.1 The main window
	Menu bar
	Tool bar
	Object organizer
	Screen divider
	Workspace
	Message window
	Status bar
	Context menu

	1.4.1.2.2 Project options
	'Project' 'Options'
	Options for load & save
	Options for user information
	Options for editor
	Options for the desktop
	Options for colors
	Options for directories
	Options for log
	Options for build
	Passwords
	'Source download'
	Options for 'Symbol configuration'
	Options for 'Project source control'
	Options for project objects and shared objects regarding the project data
	Options for compile files regarding the project data base
	Options for 'Macros'

	1.4.1.2.3 Managing projects
	'File' 'New'
	'File' 'New from template'
	'File' 'Open'
	'File' 'Close'
	'File' 'Save'
	'File' 'Save as'
	'File' 'Save/Mail archive'
	'File' 'Print'
	'File' 'Printer setup'
	'File' 'Exit'
	'Project' 'Build'
	'Project' 'Rebuild all'
	'Project' 'Clean all'
	'Project' 'Load download information'
	'Project' 'Translate into another language'
	Create translation file
	Editing of the translation file
	Translate project (into another language)
	Show project translated
	'Toggle translation'
	'Project' 'Document'
	'Project' 'Export'
	'Project' 'Import'
	'Project' 'Compare'
	Execute comparison
	Representation of the comparison result
	'Extras' 'Next difference'
	'Extras' 'Previous difference'
	'Extras' 'Accept change'
	'Extras' 'Accept changed item'
	'Extras' 'Accept properties'
	'Extras' 'Accept access rights'
	'Project' 'Merge'
	'Project' 'Project info'
	'Project' 'Global search'
	'Project' 'Global replace'
	'Project' 'Check'
	Unused variables
	Overlapping memory areas
	Multiple write acces on output
	Concurrent access
	User groups
	'Project' 'Passwords for user groups'
	'Project' 'Project database'
	Overview
	Login
	Define
	Get latest version
	Check out
	Check in
	Undo check out
	Show differences
	Show version history
	Multiple define
	Get all latest versions
	Multiple check out
	Multiple check in
	Multiple undo check out
	Project version history
	Label version
	Add shared objects
	Refresh status

	1.4.1.2.4 Managing objects in a project
	Object
	Folder
	'New folder'
	'Expand nodes' 'Collapse nodes'
	'Project' 'Object' 'Delete'
	'Project' 'Object' ' Add'
	'Save as template'
	'Project' 'Object' 'Rename'
	'Project' 'Object' 'Convert'
	'Project' 'Object' 'Copy'
	'Project' 'Object' 'Open'
	'Project' 'Object properties'
	'Project' 'Object access rights'
	'Project' 'Add action'
	'Project' 'View instance'
	'Project' 'Show call tree'
	'Project' 'Show cross reference'
	'Project' 'Project database'
	Overview
	Login
	Define
	Get latest version
	Check out
	Check in
	Undo check out
	Show differences
	Show version history
	Multiple define
	Get all latest versions
	Multiple check out
	Multiple check in
	Multiple undo check out
	Project version history
	Label version
	Add shared objects
	Refresh status

	1.4.1.2.5 General editing functions
	Overview
	'Edit' 'Undo'
	'Edit' 'Redo'
	'Edit' 'Cut'
	'Edit' 'Copy'
	'Edit' 'Paste'
	'Edit' 'Delete'
	'Edit' 'Find'
	'Edit' 'Find next'
	'Edit' 'Replace'
	'Edit' 'Input assistant'
	Unstructured display
	Stuctured display
	'Edit' 'Autodeclare'
	'Edit' 'Next error'
	'Edit' 'Previous error'
	'Edit' 'Macros'

	1.4.1.2.6 General online functions
	Overview
	'Online' 'Login'
	If the system reports
	'Online' 'Logout'
	'Online' 'Download'
	'Online' 'Run'
	'Online' 'Stop'
	'Online' 'Reset'
	'Online' 'Reset (cold)'
	'Online' 'Reset (original)'
	'Online' 'Toggle breakpoint'
	'Online' 'Breakpoint dialog box'
	'Online' 'Step over'
	'Online' 'Step in'
	'Online' 'Single cycle'
	'Online' 'Write values'
	'Online' 'Force values'
	'Online' 'Release force'
	'Online' 'Write/Force' Dialog'
	'Online' 'Show call stack'
	'Online' 'Display flow control'
	'Online' 'Simulation'
	'Online' 'Communication parameters'
	'Online' 'Sourcecode download'
	'Online' 'Create boot project'
	'Online' 'Write file to PLC'
	'Online' 'Load file from PLC'

	1.4.1.2.7 Window setup
	'Window' 'Tile horizontal'
	'Window' 'Tile vertical'
	'Window' 'Cascade'
	'Window' 'Arrange symbols'
	'Window' 'Close all'
	'Window' 'Messages'

	1.4.1.2.8 Help
	'Help' 'Contents and search'
	Context sensitive help

	1.4.1.3 Editors
	1.4.1.3.1 Components of an editor
	1.4.1.3.2 Print margins
	1.4.1.3.3 Comment
	1.4.1.3.4 Zoom to a POU
	1.4.1.3.5 Open instance
	1.4.1.3.6 Intellisense function
	1.4.1.3.7 Show cross references
	1.4.1.3.8 Add variables to watchlist
	1.4.1.3.9 Declaration editor
	Overview
	Declaration part
	Recommendations on the naming of identifiers

	Input variable
	Output variable
	Input and output variables
	Local variables
	Remanent variables
	Constants, typed literals
	External variables
	Keywords
	Variables declaration
	AT Declaration
	'Insert' 'Declaration keywords'
	'Insert' 'Type'
	Syntax coloring
	Shortcut mode
	Autodeclaration
	Line numbers in the declaration editor
	'Insert' 'New declaration'
	Declarations as table
	Declaration editors in online mode

	1.4.1.3.10 Pragma instructions
	Pragmas, overview
	Pragma instructions for initialization, monitoring, creation of symbols, bitaccess, linking
	Pragmas for controlling the display of library declaration parts
	Pragma for nonpersistent data types

	1.4.1.3.11 The graphic editors
	Overview
	Zoom to a POU
	Network
	Label
	Comments, networks with linebreaks, 'Extras' 'Options'
	'Insert' 'Network (after)' or 'Insert' 'Network (before)'
	The Function Block Diagram Editor
	Overview
	Cursor positions in FBD
	How to set the cursor in FBD
	'Insert' 'Assign'in FBD
	'Insert' 'Jump' in FBD
	'Insert' 'Return' in FBD
	'Insert' 'Box' in FBD
	'Insert' 'Input'
	'Insert' 'Output'
	'Extras' 'Negation'
	'Extras' 'Set/Reset'
	'Extras' 'View'
	Open instance
	Cutting, copying, pasting, and deleting in FBD
	The Function Block Diagram in the online mode

	The ladder editor
	Overview
	Cursor positions in the LD editors
	Move elements or names in the LD-editor
	'Insert' 'Network (before)' in LD
	'Insert' 'Network (after)' in LD
	'Insert' 'Contact' in LD
	'Insert' 'Contact (negated)' in LD
	'Insert' 'Parallel contact' in LD
	'Insert' 'Parallel contact (negated)' in LD
	'Insert' 'Coil' in LD
	'Insert' 'Set' coil' in LD
	'Insert' 'Reset' coil' in LD
	'Insert' 'Function Block' in LD
	POUs with EN inputs
	'Insert' 'Box with EN in LD'
	'Insert' 'Insert at blocks in LD
	'Insert' 'Rising edge detection' in LD
	'Insert' 'Falling edge detection' in LD
	'Insert' 'Timer (TON)' in LD
	'Insert' 'Jump' in LD
	'Insert' 'Return' in LD
	'Extras' 'Paste after' in LD
	'Extras' 'Paste below'in LD
	'Extras' 'Paste above' in LD
	'Extras' 'Negate' in LD
	'Extras' 'Set/Reset' in LD
	The Ladder Diagram in the online mode

	The sequential function chart editor
	Overview
	Marking blocks in the SFC
	'Insert' 'Step Transition (before)'
	'Insert' 'Step Transition (after)'
	Delete step and transition
	'Insert' 'Alternative Branch (right)'
	'Insert' 'Alternative Branch (left)'
	'Insert' "Parallel Branch (right)"
	'Insert' 'Parallel Branch (left)'
	'Insert' 'Jump'
	'Insert' 'Transition-Jump'
	'Insert' 'Add Entry-Action'
	'Insert' 'Add Exit-Action'
	'Extras' 'Paste Parallel Branch (right)'
	'Extras' 'Add label to parallel branch'
	Delete a label
	'Extras' 'Paste after'
	'Extras' 'Zoom Action/Transition'
	'Extras' 'Clear Action/Transition'
	'Extras' 'Step Attributes'
	'Extras' 'Time Overview'
	'Extras' 'Options'
	'Extras' 'Associate Action'
	'Extras' 'Use IEC-Steps'
	Sequential function chart in online mode

	The continuous function chart editor (CFC)
	Overview
	Cursor positions in the CFC
	'Insert' 'Box' in the CFC
	'Insert' 'Input' in CFC
	'Insert' 'Output' in CFC
	'Insert' 'Jump' in CFC
	'Insert' 'Label' in CFC
	'Insert' 'Return' in CFC
	'Insert' 'Comment' in CFC
	'Insert' 'Input of box' in CFC
	Insert' 'In-Pin' in CFC, 'Insert' 'Out-Pin'
	'Extras' 'Negate' in CFC
	'Extras' 'Set/Reset' in CFC
	'Extras' 'EN/ENO' in CFC
	'Extras' 'Properties...' in CFC
	Moving/Copying elements in CFC
	Creating connections
	'Extras' 'Connection marker'
	Changing connections
	Deleting connections
	Insert inputs/outputs on the fly
	Order of execution
	'Extras' 'Order' 'Show Order'
	'Extras' 'Order' 'Order topologically'
	'Extras' 'Order' 'One up'
	'Extras' 'Order' 'One down'
	'Extras' 'Order' 'Start'
	'Extras' 'Order' 'End'
	'Extras' 'Order' 'Order everything according to data flow'
	'Extras' 'Create macro''
	'Extras' 'Edit Macro'
	'Extras' 'Expand macro'
	'Extras' 'Back one macro level', 'Extras' 'Back all macro level'
	Feedback paths in CFC
	Zoom to POU
	CFC in Online mode

	1.4.1.3.12 The text editors
	Overview
	'Insert''Operators'
	'Insert' 'Operand'
	'Insert' 'Function'
	'Insert' 'Function Block'
	Calling POUs with output parameters in text editors
	'Extras' 'Monitoring Options'
	Breakpoint positions
	Line number of the text editor
	The instruction list editor
	Overview
	IL in online mode

	The structured text editor

	1.4.1.4 The 'Resources' tab
	1.4.1.4.1 Global variables, variable configuration, document frame
	'Global Variables' folder
	Global variables
	Global variable lists
	Create a global variable list
	Several variables lists
	Editing global variable lists
	Editing remanent global variables lists
	Global constants

	Variable configuration
	Overview
	'Insert' 'All Instance Paths'

	Document frame
	Overview
	'Extras' 'Make Docuframe File'
	'Extras' 'Link Docu File'

	1.4.1.4.2 Alarm configuration
	Overview
	General information on alarms, terms
	Alarm classes
	Alarm groups
	Alarm saving
	Alarm configuration 'Extras' 'Settings'

	1.4.1.4.3 Library manager
	Overview
	Standard library
	User-defined libraries
	'Insert' 'Additional Library'

	1.4.1.4.4 Log
	Overview
	'Window' 'Log'
	Menu log

	1.4.1.4.5 PLC browser
	Overview
	General remarks concerning PLC browser operation
	Command entry in the PLC browser
	Use of macros during the command entry in PLC-browser
	Further PLC browser options

	1.4.1.4.6 Sampling trace
	Overview and configuration
	Overview
	'Extras' 'Trace Configuration'
	Selection of the variables to be displayed

	Generating a trace sampling
	'Extras' 'Start Trace'
	'Extras' 'Read Trace'
	'Extras' 'Auto Read'
	'Extras' 'Stop Trace'

	Looking at the trace sampling
	Display of the sampling trace
	'Extras' 'Cursor Mode'
	'Extras' 'Multi Channel'
	'Extras' 'Show grid'
	'Extras' 'Y Scaling'
	'Extras' 'Stretch'
	'Extras' 'Compress'

	'Extras' 'Save trace values'
	'Save Values'
	'Load Values'
	'Trace in ASCII-File'

	'Extras' 'External Trace Configurations'
	'Save to file'
	'Load from File'
	'Save to Target'
	'Load from Target'
	Set as project configuration

	1.4.1.4.7 Target settings
	Overview
	Dialog 'Target Settings'
	Target settings in category visualization

	1.4.1.4.8 Task configuration
	Overview
	'Insert' 'Insert Task' or 'Insert' 'Append Task'
	'Insert' 'Insert Program Call' or 'Insert' 'Append Program Call'
	System events
	'Extras' 'Set Debug Task'
	'Extras' 'Enable / disable task'
	'Extras' 'Callstack'

	1.4.1.4.9 Watch- and recipe manager
	Overview
	Function
	Editor

	Creating watch lists, recipes
	'Insert' 'New Watch List'
	'Insert' 'Insert watch variable'
	'Insert' 'Attach watch variable'
	'Delete watch variable'
	'Extras' 'Add to watch list'
	'Extras' 'Into new watch list'
	'Insert address range'
	'Extras' 'Rename Watch List'
	'Extras' 'Save Watch List'
	'Extras' 'Load Watch List'
	'Extras' 'Monitoring Active'
	'Extras' 'Write Recipe'
	'Extras' 'Read Recipe'
	Force and write values in the watch- and recipe manager

	1.4.1.4.10 Workspace

	1.4.1.5 Principle of a gateway system
	1.4.1.5.1 Overview
	1.4.1.5.2 Setting up the desired gateway server and channel
	1.4.1.5.3 Setting up a new channel for the local gateway server
	1.4.1.5.4 What the communications parameters dialog on the local PC shows
	1.4.1.5.5 Tips for editing the parameters in the communications parameters dialogue
	1.4.1.5.6 Quick check in the event of unsuccessful connection attempt to the gateway

	1.4.1.6 IEC operators and additional, norm-extending functions
	1.4.1.6.1 Overview
	1.4.1.6.2 Arithmetic operators
	ADD
	MUL
	SUB
	DIV
	MOD
	MOVE
	INDEXOF
	SIZEOF

	1.4.1.6.3 Bitstring operators
	AND
	OR
	XOR
	NOT

	1.4.1.6.4 Bit-Shift operators
	SHL
	SHR
	ROL
	ROR

	1.4.1.6.5 Selection operators
	Overview
	SEL
	MAX
	MIN
	LIMIT
	MUX

	1.4.1.6.6 Comparison operators
	GT
	LT
	LE
	GE
	EQ
	NE

	1.4.1.6.7 Address operators
	ADR
	ADRINST
	BITADR
	Content operator

	1.4.1.6.8 Calling operators
	CAL

	1.4.1.6.9 Type conversion
	Type conversion functions
	BOOL_TO conversions
	TO_BOOL conversions
	Conversion between integral number types
	REAL_TO-/ LREAL_TO conversions
	TIME_TO/TIME_OF_DAY conversions
	DATE_TO/DT_TO conversions
	STRING_TO conversions
	TRUNC

	1.4.1.6.10 Numeric operators
	ABS
	SQRT
	LN
	LOG
	EXP
	SIN
	COS
	TAN
	ASIN
	ACOS
	ATAN
	EXPT

	1.4.1.6.11 Initialization operator
	INI operator

	1.4.1.7 Operands
	1.4.1.7.1 Overview
	1.4.1.7.2 Constants
	BOOL constants
	TIME constants
	DATE constants
	TIME_OF_DAY constants
	DATE_AND_TIME constants
	Number constants
	REAL/LREAL constants
	STRING constants
	Typed literals

	1.4.1.7.3 Variables
	Overview
	System flags
	Accessing variables for arrays, structures and POUs
	Addressing bits in variables

	1.4.1.7.4 Addresses
	Addresses, note
	Address
	Memory location

	1.4.1.7.5 Functions

	1.4.1.8 Data types
	1.4.1.8.1 Standard data types
	Data types
	BOOL
	Integer data types
	REAL / LREAL
	STRING
	Time data types

	1.4.1.8.2 Defined data types
	ARRAY
	Function CheckBounds
	Pointer
	Enumeration
	Structures
	References
	Subrange types

	1.4.1.8.3 Overview operators and library elements

	1.4.1.9 Utilities
	1.4.1.9.1 Command line-/Command file
	Command line commands
	Command file (cmdfile) commands

	1.4.1.9.2 Use of keyboard
	Overview
	Key combinations

	1.4.1.9.3 Reserved keywords
	1.4.1.9.4 File types

	1.4.1.10 Compiler errors and warnings
	1.4.1.10.1 Remarks on compiler errors and warnings
	1.4.1.10.2 Warnings
	1100
	1101
	1102
	1103
	1200
	1300
	1301
	1302
	1400
	1401
	1410
	1411
	1412
	1413
	1414
	1415
	1500
	1501
	1502
	1503
	1504
	1505
	1506
	1507
	1509
	1510
	1511
	1550
	1600
	1700
	1750
	1751
	1800
	1801
	1802
	1803
	1804
	1807
	1808
	1809
	1850
	1851
	1852
	1853
	1900
	1901
	1902
	1903
	1904
	1970
	1980
	1990
	2500
	4710
	4711
	4714
	4715
	4716

	1.4.1.10.3 Errors
	3100
	3101
	3110
	3111
	3112
	3113
	3114
	3115
	3116
	3117
	3120
	3121
	3122
	3124
	3130
	3150
	3160
	3161
	3162
	3163
	3200
	3201
	3202
	3203
	3204
	3205
	3206
	3207
	3208
	3209
	3210
	3211
	3212
	3250
	3251
	3252
	3253
	3254
	3255
	3260
	3400
	3401
	3402
	3403
	3404
	3405
	3406
	3407
	3408
	3409
	3410
	3411
	3412
	3413
	3414
	3415
	3450
	3451
	3452
	3453
	3454
	3455
	3456
	3457
	3458
	3459
	3460
	3461
	3462
	3463
	3464
	3465
	3466
	3468
	3469
	3470
	3500
	3501
	3502
	3503
	3504
	3505
	3506
	3507
	3550
	3551
	3552
	3553
	3554
	3555
	3556
	3557
	3558
	3559
	3560
	3561
	3562
	3563
	3564
	3565
	3566
	3567
	3568
	3569
	3570
	3571
	3572
	3573
	3574
	3575
	3600
	3601
	3610
	3611
	3612
	3613
	3614
	3615
	3616
	3617
	3618
	3619
	3620
	3621
	3622
	3623
	3624
	3700
	3701
	3702
	3703
	3704
	3705
	3706
	3720
	3721
	3722
	3726
	3727
	3728
	3729
	3740
	3741
	3742
	3743
	3744
	3745
	3746
	3747
	3748
	3749
	3750
	3751
	3752
	3760
	3761
	3780
	3781
	3782
	3783
	3784
	3800
	3801
	3802
	3803
	3804
	3820
	3821
	3840
	3841
	3850
	3900
	3901
	3902
	3903
	3904
	3905
	3906
	3907
	3908
	4000
	4001
	4010
	4011
	4012
	4013
	4014
	4015
	4016
	4017
	4020
	4021
	4022
	4023
	4024
	4025
	4026
	4027
	4028
	4029
	4030
	4031
	4032
	4033
	4034
	4035
	4040
	4041
	4042
	4043
	4050
	4051
	4052
	4053
	4054
	4060
	4061
	4062
	4063
	4064
	4070
	4071
	4072
	4100
	4110
	4111
	4112
	4113
	4114
	4120
	4121
	4122
	4200
	4201
	4202
	4203
	4204
	4205
	4206
	4207
	4208
	4209
	4210
	4211
	4212
	4213
	4250
	4251
	4252
	4253
	4254
	4255
	4256
	4257
	4258
	4259
	4260
	4261
	4262
	4263
	4264
	4265
	4266
	4267
	4268
	4269
	4270
	4271
	4272
	4273
	4274
	4300
	4301
	4302
	4303
	4320
	4321
	4330
	4331
	4332
	4333
	4334
	4335
	4336
	4337
	4338
	4339
	4340
	4341
	4342
	4343
	4344
	4345
	4346
	4347
	4348
	4349
	4350
	4351
	4352
	4353
	4354
	4355
	4356
	4357
	4358
	4359
	4360
	4361
	4362
	4363
	4364
	4365
	4366
	4367
	4368
	4369
	4370
	4371
	4372
	4373
	4374
	4375
	4376
	4377
	4400
	4401
	4402
	4403
	4404
	4405
	4406
	4407
	4408
	4409
	4410
	4411
	4413
	4414
	4415
	4416
	4417
	4418
	4419
	4420
	4421
	4422
	4423
	4424
	4425
	4426
	4427
	4428
	4429
	4430
	4431
	4432
	4434
	4435
	4436
	4437
	4438
	4500
	4501
	4520
	4521
	4522
	4523
	4550
	4551
	4552
	4553
	4554
	4555
	4556
	4557
	4558
	4560
	4561
	4562
	4563
	4564
	4565
	4566
	4600
	4601
	4602
	4604
	4605
	4620
	4621
	4622
	4623
	4650
	4651
	4652
	4656
	4670
	4671
	4685
	4686
	4700
	4701
	4702
	4703
	4704
	4705
	4706
	4707
	4708
	4709
	4712
	4900
	4901
	5100

	1.4.2 Libraries
	1.4.2.1 Standard.library
	1.4.2.1.1 String functions
	LEN
	LEFT
	RIGHT
	MID
	CONCAT
	INSERT
	DELETE
	REPLACE
	FIND

	1.4.2.1.2 Bistable function blocks
	SR
	RS
	SEMA

	1.4.2.1.3 Trigger
	R_TRIG
	F_TRIG

	1.4.2.1.4 Counter
	CTU
	CTD
	CTUD

	1.4.2.1.5 Timer
	TP
	TON
	TOF
	RTC

	1.4.2.2 UTIL.library
	1.4.2.2.1 Overview
	1.4.2.2.2 BCD conversion
	BCD conversion
	BCD_TO_INT
	INT_TO_BCD_

	1.4.2.2.3 Bit-/Byte functions
	EXTRACT
	PACK
	PUTBIT
	UNPACK

	1.4.2.2.4 Mathematic auxiliary functions
	DERIVATIVE
	INTEGRAL
	LIN_TRAFO
	STATISTICS_INT
	STATISTICS_REAL
	VARIANCE

	1.4.2.2.5 Controllers
	PD
	PID
	PID_FIXCYCLE

	1.4.2.2.6 Signal generators
	BLINK
	FREQ_MEASURE
	GEN

	1.4.2.2.7 Function manipulators
	CHARCURVE
	RAMP_INT
	RAMP_REAL

	1.4.2.2.8 Analog value processing
	HYSTERESIS
	LIMITALARM

	1.4.2.3 AnalyzationNew.library
	1.4.2.3.1 Analysis of expression

	1.4.2.4 Protocol- and system libraries
	1.4.2.4.1 The library SysLibCallback.lib
	1.4.2.4.2 The library SysLibCom.lib
	Overview
	SysComOpen
	SysComSetSettings
	SysComSetSettingsEx
	SysComClose
	SysComWrite
	SysComRead
	SysComGetVersion2300

	1.4.2.4.3 The library SysLibDir.lib
	Overview
	SysDirCreate
	SysDirOpen
	SysDirRead
	SysDirRemove
	SysDirRename
	Structure DIRECTORY_INFO
	Structure DIRFILETIME

	1.4.2.4.4 The library SysLibDirect.lib
	1.4.2.4.5 The library SysLibEvent.lib
	Overview
	SysEventCreate
	SysEventDelete
	SysEventSet
	SysEventWait

	1.4.2.4.6 The library SysLibDPV1Hilscher.lib
	Overview
	Enumeration V1State

	1.4.2.4.7 The library SysLibFile.lib
	Overview
	SysFileOpen
	SysFileWrite
	SysFileRead
	SysFileClose
	SysFileDelete
	SysFileCopy
	SysFileEOF
	SysFileGetPos
	SysFileGetSize
	SysFileGetTime
	SysFileRename
	SysFileSetPos

	1.4.2.4.8 The library SysLibFileAsync.lib
	Overview
	SysFileOpenAsync
	SysFileCloseAsync
	SysFileWriteAsync
	SysFileReadAsync
	SysFileDeleteAsync
	SysFileGetPosAsync
	SysFileSetPosAsync
	SysFileEOFAsync
	SysFileGetSizeAsync
	SysFileGetTimeAsync
	SysFileCopyAsync
	SysFileRenameAsync
	SysFileCloseAllOpenAsync

	1.4.2.4.9 The library SysLibFileStream.lib
	1.4.2.4.10 The library SysLibGetAddress.lib
	Overview
	SysLibGetSize
	Enumeration ADDRESS_SEGMENTS

	1.4.2.4.11 The library SysLibIECTasks.lib
	Overview
	SysIECTaskGetConfig
	SysIECTaskGetInfo
	SysIECGetFctPointer
	SysIECTaskResetEvent

	1.4.2.4.12 The library SysLibInit.lib
	Overview
	SysInitLibrary

	1.4.2.4.13 The library SysLibInt.lib
	Overview
	SysInstallHandler
	SysRemoveHandler

	1.4.2.4.14 The library SysLibMem.lib
	Overview
	SysMemAlloc
	SysMemFree
	SysMemCmp
	SysMemCpy
	SysMemMove
	SysMemSet
	SysMemSwap

	1.4.2.4.15 The library SysLibPciCards.lib
	Overview
	Function SysPciGetCardInfo
	Structure PCI_INFO

	1.4.2.4.16 The library SysLibPlcConfig.lib
	Overview
	CfgCCGetError
	CfgCCGetHeader
	CfgCCGetRootModule
	CfgCCGetRootModuleByModuleId
	CfgCCGetRootModuleByNodeId
	Structure CCLoadError
	Structure CCHeader
	Structure CCModule
	Structure CCChannel
	Structure CCParam

	1.4.2.4.17 The library SysLibPlcCtrl.lib
	Overview
	SysStartPlcProgram
	SysResetPlcProgram
	SysStopPlcProgram
	SysShutdownPlc
	SysEnableScheduling
	SysGetPlcLoad
	SysSaveRetains
	SysRestoreRetains
	SysWdgEnable

	1.4.2.4.18 The library SysLibPorts.lib
	Overview
	SysPortIn
	SysPortInW
	SysPortInD
	SysPortOut
	SysPortOutW
	SysPortOutD

	1.4.2.4.19 The library SysLibProjectInfo.lib
	Overview
	Function SysGetProjectInfo
	Structure PROJECT_INFO
	Function SysGetProjectID

	1.4.2.4.20 The library SysLibRtc.lib
	The library SysLibRtc.lib
	SysRtcCheckBattery
	SysRtcGetHourMode
	SysRtcGetTime
	SysRtcSetTime

	1.4.2.4.21 The library SysLibSem.lib
	Overview
	SysSemCreate
	SysSemDelete
	SysSemEnter
	SysSemLeave
	SysSemTry

	1.4.2.4.22 The Library SysLibShm.lib
	Overview
	SysShmOpen
	SysShmClose
	SysShmRead
	SysShmWrite

	1.4.2.4.23 The library SysLibSockets.lib
	Overview
	Constraints for AC500 V2

	SysSockAccept
	SysSockBind
	SysSockClose
	SysSockConnect
	SysSockCreate
	SysSockGetHostByName
	SysSockGetHostName
	SysSockGetOption
	SysSockGetLastErrorSync
	SysSockGetLastError
	SysSockHtons
	SysSockInetAddr
	SysSockInetNtoa
	SysSockIoctl
	SysSockListen
	SysSockNtohl
	SysSockNtohs
	SysSockSelect
	SysSockSetIPAddress
	SysSockSetOption
	SysSockShutdown
	SysSockHtonl
	TCP specific functions
	SysSockRecv
	SysSockSend

	UDP specific functions
	SysSockRecvFrom
	SysSockSendTo

	1.4.2.4.24 The library SysLibSocketsAsync.lib
	1.4.2.4.25 The library SysLibStr.lib
	Overview
	SysStrCmp
	SysStrCmpI
	SysStrCmpN
	SysStrCmpNI
	SysStrCpy
	SysStrLen

	1.4.2.4.26 The library SysLibTasks.lib
	Overview
	SysTaskCreate
	SysTaskDestroy
	SysTaskGetInfo
	SysTaskGetPriority
	SysTaskSetPriority
	SysTaskSuspend
	SysTaskResume
	SysTaskSleep
	SysTaskEnd
	SysTaskGetCurrent

	1.4.2.4.27 The library SysLibSymbols.lib
	Overview
	Function SysLibGetSymbolAddress

	1.4.2.4.28 The library SysLibTime.lib
	Overview
	CurTime
	CurTimeEx
	Structure SystemTimeDate
	Structure SysTime64

	1.4.3 Visualization
	1.4.3.1 Overview
	1.4.3.2 Create a new visualization
	1.4.3.3 Inserting visualization elements
	1.4.3.3.1 'Insert' 'Rectangle'
	1.4.3.3.2 'Insert' 'Rounded Rectangle'
	1.4.3.3.3 'Insert' 'Ellipse'
	1.4.3.3.4 'Insert' 'Polygon'
	1.4.3.3.5 'Insert' 'Polyline'
	1.4.3.3.6 'Insert' 'Curve'
	1.4.3.3.7 'Insert' 'Pie'
	1.4.3.3.8 'Insert' 'Bitmap'
	1.4.3.3.9 'Insert' 'Visualization'
	1.4.3.3.10 'Insert' 'Button'
	1.4.3.3.11 'Insert' 'WMF file'
	1.4.3.3.12 'Insert' 'Table'
	1.4.3.3.13 'Insert' 'ActiveX-Element'
	1.4.3.3.14 'Insert' 'Scrollbar'
	1.4.3.3.15 'Insert' 'Meter'
	1.4.3.3.16 'Insert' 'Bar Display'
	1.4.3.3.17 'Insert' 'Histogram'
	1.4.3.3.18 'Insert' 'Alarm table'
	1.4.3.3.19 'Insert' 'Trend'

	1.4.3.4 Positioning visualization elements
	1.4.3.4.1 Selecting visualization elements
	1.4.3.4.2 Changing the selection and insert mode
	1.4.3.4.3 'Extras' 'Select'
	1.4.3.4.4 'Extras' 'Select All'
	1.4.3.4.5 Copying visual elements
	1.4.3.4.6 Modifying visualization elements
	1.4.3.4.7 Dragging visualization elements
	1.4.3.4.8 Grouping elements
	1.4.3.4.9 'Extras' 'Send to Front'
	1.4.3.4.10 'Extras' 'Send to Back'
	1.4.3.4.11 'Extras' 'Align'
	1.4.3.4.12 'Extras' 'Element list'
	1.4.3.4.13 Status bar in the visualization

	1.4.3.5 Configuring visualization elements
	1.4.3.5.1 Overview
	1.4.3.5.2 Placeholder
	1.4.3.5.3 'Extras' 'List of Placeholders'
	1.4.3.5.4 'Extras' 'Configure'
	1.4.3.5.5 Angle
	1.4.3.5.6 Shape
	1.4.3.5.7 Text
	1.4.3.5.8 Textvariables
	1.4.3.5.9 Line width
	1.4.3.5.10 Colors
	1.4.3.5.11 Color variables
	1.4.3.5.12 Motion absolute
	1.4.3.5.13 Motion relative
	1.4.3.5.14 Variables
	1.4.3.5.15 Input
	1.4.3.5.16 Text for ToolTip
	1.4.3.5.17 Security
	1.4.3.5.18 Programmability
	1.4.3.5.19 Bitmap
	1.4.3.5.20 Table
	1.4.3.5.21 ActiveX element
	1.4.3.5.22 Scrollbar
	1.4.3.5.23 Meter
	1.4.3.5.24 Bar display
	1.4.3.5.25 Histogram
	1.4.3.5.26 Alarm table
	1.4.3.5.27 Trend
	1.4.3.5.28 Visualization
	1.4.3.5.29 Group
	1.4.3.5.30 Special input possibilities for operating versions

	1.4.3.6 Configuring visualization objects
	1.4.3.6.1 'Extras' 'Settings'
	1.4.3.6.2 'Extras' 'Select Background Bitmap'
	1.4.3.6.3 'Extras' 'Clear Background Bitmap'
	1.4.3.6.4 'Extras' 'Keyboard usage'
	1.4.3.6.5 Master layout
	1.4.3.6.6 Use as web visualization

	1.4.3.7 Images in visualization
	1.4.3.7.1 'Extras' 'Bitmap list'

	1.4.3.8 Language switching
	1.4.3.8.1 Overview
	1.4.3.8.2 Static language switching
	1.4.3.8.3 Dynamic language switching
	1.4.3.8.4 Configuration of dynamic language switching
	1.4.3.8.5 XML file for dynamic texts
	1.4.3.8.6 Calling up language-dependent online help via a visualization element

	1.4.3.9 Visualization in online mode
	1.4.3.9.1 Overview
	1.4.3.9.2 Operation over the keyboard
	1.4.3.9.3 'File' 'Print'
	1.4.3.9.4 Access protection for multi-client operations

	1.4.3.10 Visualizations in libraries
	1.4.3.11 System variables
	1.4.3.12 Possible key combinations for the particular visualization variants

	1.4.4 HMI
	1.4.4.1 Overview
	1.4.4.2 Installation, start and operation

	1.4.5 Web visualization
	1.4.5.1 Overview
	1.4.5.2 Preconditions
	1.4.5.3 Editing the WebVisu.htm file
	1.4.5.4 Status check, auto-reload, file error_ini.xml
	1.4.5.5 Preparing a web visualization
	1.4.5.6 Configuration and start of the web server
	1.4.5.7 Calling a web visualization via internet
	1.4.5.8 Restrictions and special features

	1.4.6 License manager
	1.4.6.1 Overview
	1.4.6.2 Creating a licensed library

	1.5 Libraries and solutions
	1.5.1 Information on libraries
	1.5.2 Reference to CODESYS (V2)
	1.5.3 Error messages of the AC500 V2 function block libraries
	1.5.3.1 0000hex...0FFFhex - telegram error
	1.5.3.2 1000hex...1FFFhex - device error
	1.5.3.3 2000hex...2FFFhex - interface error
	1.5.3.4 3000hex...3FFFhex - protocol error
	1.5.3.5 4000hex...4FFFhex - block input error
	1.5.3.6 5000hex...5FFFhex - request error
	1.5.3.7 6000hex...6FFFhex - communication module errors
	1.5.3.8 7000hex...7FFFhex - product libraries

	1.5.4 Standard function block libraries AC500
	1.5.4.1 ARCNET library
	1.5.4.1.1 Function blocks
	ARC_INFO
	Input description
	Output description
	Function call in ST

	ARC_MAP
	Input description
	Output description
	Function call in ST

	ARC_OWN_NODE
	Input description
	Output description
	Function call in ST

	ARC_REC
	Input description
	Output description
	Function call in ST

	ARC_SEND
	Input description
	Output description
	Function call in ST

	ARC_STATE
	Input description
	Output description
	Function call in ST

	ARC_STO
	Input description
	Output description
	Function call in ST

	1.5.4.2 Extended ARCNET library
	1.5.4.2.1 ARC_7F_REC_SWAP
	Input description
	Output description

	1.5.4.2.2 ARC_7F_SEND_SWAP
	Input description
	Output description

	1.5.4.3 ASCII communication library
	1.5.4.3.1 Function blocks
	COM_REC
	Input description
	Output description
	Function call in ST

	COM_SEND
	Input description
	Output description
	Function call in ST

	1.5.4.4 CAA_File library
	1.5.4.4.1 Characteristics
	1.5.4.4.2 Function blocks
	Error messages
	FILE_ArchiveAddFile
	Input description
	Output description

	FILE_ArchiveClose
	Input description
	Output description

	FILE_ArchiveList
	Input description
	Output description

	FILE_ArchiveOpen
	Input description
	Output description

	FILE_ArchiveUnpack
	Input description
	Output description

	FILE_ArchiveUnpackFile
	Input description
	Output description

	FILE_Close
	Input description
	Output description

	FILE_Copy
	Input description
	Output description

	FILE_Delete
	Input description
	Output description

	FILE_DirClose
	Input description
	Output description

	FILE_DirCreate
	Input description
	Output description

	FILE_DirList
	Input description
	Output description

	FILE_DirOpen
	Input description
	Output description

	FILE_DirRemove
	Input description
	Output description

	FILE_Rename
	Input description
	Output description

	FILE_DiskFormat
	Input description
	Output description

	FILE_DiskStatus
	Input description
	Output description

	FILE_EOF
	Input description
	Output description

	FILE_Flush
	Input description
	Output description

	FILE_GetPos
	Input description
	Output description

	FILE_GetSize
	Input description
	Output description

	FILE_GetTime
	Input description
	Output description

	FILE_Move
	Input description
	Output description

	FILE_Open
	Input description
	Output description

	FILE_Read
	Input description
	Output description

	FILE_DirRename
	Input description
	Output description

	FILE_SetPos
	Input description
	Output description

	FILE_Write
	Input description
	Output description

	1.5.4.4.3 Data types

	1.5.4.5 Camswitch library
	1.5.4.5.1 Function blocks
	MC_CamSwitch_DC
	Input description
	Ouput description
	Function call in ST

	PS_DigitalPLS
	Input description
	Output description
	Function call in ST

	1.5.4.5.2 Data types
	CSDC_REF_TYPE
	CSDC_IN_TYPE
	Function call in ST

	CSDC_OUT_TYPE
	DIGPLS_REF_TYPE
	Function call in ST

	1.5.4.6 Extended camswitch library
	1.5.4.6.1 Architecture
	1.5.4.6.2 Controller
	1.5.4.6.3 Visualization
	1.5.4.6.4 How to create cscd
	1.5.4.6.5 How to configure a cam
	1.5.4.6.6 Hysteresis
	1.5.4.6.7 Function blocks
	CS_calculateVelocity
	Input description
	Output description

	MCX_CamSwitchSimple_c
	Input description
	Output description

	MCX_BinaryReference_DC
	Input description
	Output description

	MCX_BinaryShift_DC
	Input description
	Output description

	MCX_CamLogic_DC
	Input description
	Output description

	MCX_CamShift_DC
	Input description
	Output description

	MCX_CamSwitchComfort_DC
	Input description
	Output description

	MCX_CamSwitchMulti_DC
	Input description
	Output description

	MCX_CamSwitchMultiTimed_DC
	Input description
	Output description

	MCX_CamSwitchSimple_DC
	Input description
	Output description

	MCX_CamSwitchTimed_DC
	Input description
	Output description

	MCX_PulseSwitch_DC
	Input description
	Output description

	1.5.4.6.8 Visualization

	1.5.4.7 CANopen library
	1.5.4.7.1 Function blocks
	CAN2A_INFO
	Input description
	Output description
	Function call in ST

	CAN2A_REC
	Input description
	Output description
	Function call in ST

	CAN2A_SEND
	Input description
	Output description
	Function call in ST

	CAN2B_INFO
	Input description
	Output description
	Function call in ST

	CAN2B_REC
	Input description
	Output description
	Function call in ST

	CAN2B_SEND
	Input description
	Output description
	Function call in ST

	CANOM_NMT
	Input description
	Output description
	Function call in ST

	CANOM_NODE_DIAG
	Input description
	Output description
	Function call in ST

	CANOM_NODE_DIAG_EXT
	Input description
	Output description
	Function call in ST

	CANOM_RES_ERR
	Input description
	Output description
	Function call in ST

	CANOM_SDO_READ
	Input description
	Output description
	Function call in ST

	CANOM_SDO_WRITE
	Input description
	Output description
	Function call in ST

	CANOM_SET_NODE_MODE
	Input description
	Output description
	Function call in ST

	CANOM_STATE
	Input description
	Output description
	Function call in ST

	CANOM_SYS_DIAG
	Input description
	Output description
	Function call in ST

	CANOM_SYNC
	Input description
	Output description
	Function call in ST

	1.5.4.7.2 Structures group CAN
	CAN2A_MESSAGE_TYPE
	CAN2B_MESSAGE_TYPE

	1.5.4.7.3 Structures Group CANopen
	CANOM_COM_ERR_TYPE
	CANOM_EMCY_TYPE
	CANOM_NODESTATUS_1_TYPE
	CANOM_STATE_BITS_TYPE
	CANOM_NODE_FLAGS_TYPE

	1.5.4.8 CD522 library
	1.5.4.8.1 Function blocks
	CD522_32BIT_ENCODER
	Input description
	Output description
	Function call in ST

	CD522_32BIT_CNT
	Input description
	Output description
	Function call in ST

	CD522_16BIT_CNT
	Input description
	Output description
	Function call in ST

	CD522_16BIT_2CNT
	Input description
	Output description
	Function call in ST

	CD522_SSI_CNT
	Input description
	Output description
	Function call in ST

	CD522_PWM_OUT
	Input description
	Output description
	Function call in ST

	CD522_PULSE_OUT
	Input description
	Output description
	Function call in ST

	CD522_FREQ_OUT
	Input description
	Output description
	Function call in ST

	CD522_FREQ_SCAN
	Input description
	Output description
	Function call in ST

	CD522_READ_INPUT
	Input description
	Output description
	Function call in ST

	CD522_WRITE_OUTPUT
	Input description
	Output description
	Function call in ST

	1.5.4.9 Counter library
	1.5.4.9.1 Function blocks
	CNT_DC551
	Input description
	Output description
	Function call in ST

	CNT_IO
	Input description
	Output description
	Function call in ST

	CNT_IO_EXT
	Input description
	Output description
	Function call in ST

	CNT_CS31_EXT
	Input description
	Output description
	Function call in ST

	1.5.4.9.2 Visualization

	1.5.4.10 CS31 library
	1.5.4.10.1 Function blocks
	CS31CO
	Input description
	Output description
	Function call in ST

	CS31CO_EXT
	Input description
	Output description
	Function call in ST

	CS31QU
	Function call in ST

	CS31QU_EXT
	Input description
	Output description
	Function call in ST

	CS31_READ_VER
	Input description
	Output description
	Function call in ST

	1.5.4.11 DC541 library
	1.5.4.11.1 DC541
	Function blocks
	DC541_32BIT_CNT
	Input description
	Output description
	Function call in ST

	DC541_FREQ
	Input description
	Output description
	Function call in ST

	DC541_FREQ_FAST
	Input description
	Output description
	Function call in ST

	DC541_FREQ_OUT
	Input description
	Output description
	Function call in ST

	DC541_FWD_CNT
	Input description
	Output description
	Function call in ST

	DC541_GET_CFG
	Input description
	Output description
	Function call in ST

	DC541_INT_IN
	Input description
	Output description
	Function call in ST

	DC541_IO
	Input description
	Output description
	Function call in ST

	DC541_LIMIT
	Input description
	Output description
	Function call in ST

	DC541_PWM
	Input description
	Output description
	Function call in ST

	DC541_STATE
	Input description
	Output description
	Function call in ST

	Visualizations

	1.5.4.11.2 DC541 dampener library
	Function blocks
	DC541_DAMPENER
	Input description
	Output description

	1.5.4.11.3 DC541 PWM library
	Function blocks
	DC541_PWM_FAST
	Input description
	Output description

	1.5.4.12 Diagnosis library
	1.5.4.12.1 Function blocks
	CPU_DIAG
	Input description
	Output description
	Function call in ST

	CPU_LOAD
	Input description
	Output description
	Function call in ST

	CS31_DIAG
	Input description
	Output description
	Function call in ST

	CS31_DIAG_EXT
	Input description
	Output description
	Function call in ST

	FBP_DIAG
	Input description
	Output description
	Function call in ST

	1.5.4.12.2 Visualizations
	Integrated visualization of function block FBP_DIAG
	Integrated visualization of function block CS31_DIAG_EXT
	Integrated visualization of function block CS31_DIAG
	Integrated visualization of function block CPU_LOAD
	Integrated visualization of function block CPU_DIAG

	1.5.4.12.3 Structures
	1.5.4.12.4 Global variables lists

	1.5.4.13 Ethernet library
	1.5.4.13.1 Function blocks
	ETH_DNS_RESOLVE
	Input description
	Output description
	Function call in ST

	ETH_ICMP_PING
	Input description
	Output description
	Function call in ST

	ETH_MOD_INFO
	Input description
	Output description
	Function call in ST

	ETH_MOD_MAST
	Input description
	Output description
	Function call in ST

	ETH_OWN_IP
	Input description
	Output description
	Function call in ST

	ETH_OWN_IP_INFO
	Input description
	Output description
	Function call in ST

	ETH_OWN_IP_SET
	Input description
	Output description
	Function call in ST

	ETH_SMTP_EMAIL_SEND
	Input description
	Output description

	ETH_UDP_INFO
	Input description
	Output description
	Function call in ST

	ETH_UDP_REC
	Input description
	Output description
	Function call in ST

	ETH_UDP_SEND
	Input description
	Output description
	Function call in ST

	ETH_UDP_STO
	Input description
	Output description
	Function call in ST

	ETH_UDP_STD_INFO
	Input description
	Output description
	Function call in ST

	ETH_UDP_STD_REC
	Input description
	Output description
	Function call in ST

	ETH_UDP_STD_SEND
	Input description
	Output description
	Function call in ST

	ETHx_DNS_RESOLVE
	Input description
	Output description
	Function call in ST

	ETHx_ICMP_PING
	Input description
	Output description
	Function call in ST

	ETHx_MOD_INFO
	Input description
	Output description
	Function call in ST

	ETHx_MOD_MAST
	Input description
	Output description
	Function call in ST

	ETHx_OWN_IP
	Input description
	Output description
	Function call in ST

	ETHx_OWN_IP_INFO
	Input description
	Output description
	Function call in ST

	ETHx_OWN_IP_SET
	Input description
	Output description
	Function call in ST

	ETHx_SMTP_EMAIL_SEND
	Input description
	Output description
	Function call in ST

	ETHx_UDP_INFO
	Input description
	Output description
	Function call in ST

	ETHx_UDP_REC
	Input description
	Output description
	Function call in ST

	ETHx_UDP_SEND
	Input description
	Output description
	Function call in ST

	ETHx_UDP_STD_INFO
	Input description
	Output description
	Function call in ST

	ETHx_UDP_STD_REC
	Input description
	Output description
	Function call in ST

	ETHx_UDP_STD_SEND
	Input description
	Output description
	Function call in ST

	ETHx_UDP_STO
	Input description
	Output description
	Function call in ST

	IP_ADR_DWORD_TO_STRING
	Input description
	Output description
	Function call in ST

	IP_ADR_STRING_TO_DWORD
	Input description
	Output description
	Function call in ST

	1.5.4.13.2 Structures
	ETH_EMAIL_DATA_TYPE
	ETH_EMAIL_FILE_REF_TYPE
	ETH_MOD_FCT22_TYPE
	ETH_MOD_FCT23_TYPE

	1.5.4.14 EtherCAT library
	1.5.4.14.1 Function blocks
	ECAT_BUS_DIAG
	Input description
	Output description
	Function call in ST

	ECAT_COE_READ
	Input description
	Output description
	Function call in ST

	ECAT_COE_WRITE
	Input description
	Output description
	Function call in ST

	ECAT_GET_DCLK_DEVI
	Input description
	Output description
	Function call in ST

	ECAT_SLV_DIAG
	Input description
	Output description
	Function call in ST

	ECAT_STATE
	Input description
	Output description
	Function call in ST

	ECAT_SYNC
	Input description
	Output description
	Function call in ST

	1.5.4.15 Extended EtherCAT library
	1.5.4.15.1 Function blocks
	ECAT_SLV_SET_STATE
	Input description
	Output description

	ECAT_SLV_GET_STATE
	Input description
	Output description

	ECAT_BUS_SET_STATE
	Input description
	Output description

	ECAT_START_COM
	Input description
	Output description

	ECAT_STOP_COM
	Input description
	Output description

	ECAT_SOE_READ
	Input description
	Output description

	ECAT_SOE_WRITE
	Input description
	Output description

	1.5.4.15.2 Global variables

	1.5.4.16 External System library
	1.5.4.16.1 Function blocks
	BATT
	Input description
	Output description
	Function call in ST

	CLOCK
	Input description
	Output description
	Function call in ST

	CLOCK_DT
	Input description
	Output description
	Function call in ST

	1.5.4.17 FlexConf library
	1.5.4.17.1 Function blocks
	FLEXCONF_ID_READ
	Input description
	Output description
	Function call in ST

	FLEXCONF_ID_WRITE
	Input description
	Output description
	Function call in ST

	1.5.4.18 IEC60870 library
	1.5.4.18.1 Information
	Data flow control
	Data integrity of the IEC60870-5 protocol
	Data transmission function blocks
	Send blocks
	Receive blocks

	1.5.4.18.2 Function blocks
	IEC60870_GET_ADDRESS
	Input description
	Output description
	Function call in ST

	IEC60870_REC_C_DC
	Input description
	Output description
	Function call in ST

	IEC60870_REC_C_SC
	Input description
	Output description
	Function call in ST

	IEC60870_REC_C_SE
	Input description
	Output description
	Function call in ST

	IEC60870_REC_M_DP
	Input description
	Output description
	Function call in ST

	IEC60870_REC_M_IT
	Input description
	Output description
	Function call in ST

	IEC60870_REC_M_ME
	Input description
	Output description
	Function call in ST

	IEC60870_REC_M_ME_1
	Input description
	Output description
	Function call in ST

	IEC60870_REC_M_SP
	Input description
	Output description
	Function call in ST

	IEC60870_REC_P_ME
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_CI_NA_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_CS_NA_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_DC
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_IC_NA_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_RP_NA_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_SC
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_SE
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_DP
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_DP_ET
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_EI_NA_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_IT
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_IT_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_IT_1_ET
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_IT_16
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_IT_16_ET
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_ME_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_ME_1_ET
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_ME_16
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_ME_16_ET
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_SP
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_SP_1_ET
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_SP_16
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_M_SP_16_ET
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_P_ME
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_DISABLE
	Input description
	Output description
	Function call in ST

	IEC60870_DISABLE
	Input description
	Output description

	IEC60870_STATE
	Input description
	Output description
	Function call in ST

	IEC60870_BACKGROUND_SCAN
	Input description
	Output description
	Function call in ST

	IEC60870_REC_C_TS_NA_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_RD_NA_1
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_TS_NA_1_ACT
	Input description
	Output description
	Function call in ST

	IEC60870_SEND_C_TS_NA_1_ACTCON
	Input description
	Output description
	Function call in ST

	1.5.4.19 Internal system library
	1.5.4.19.1 Structure of the file USRDATXX.DAT on the memory card
	1.5.4.19.2 Function blocks
	BOOTPRG_HASH_INFO
	Input description
	Output description
	Function call in ST

	BOOTPROJECT_HASH_INFO
	Input description
	Output description
	Function call in ST

	CPU_CONFIG_READ
	Input Description
	Output Description
	Function Call in ST

	CPU_CONFIG_WRITE
	Input description
	Output description
	Function call in ST

	CPU_PROD_ENTRY_READ
	Input description
	Output description
	Function call in ST

	DIAG_ACK
	Input description
	Output description
	Function call in ST

	DIAG_ACK_ALL
	Input description
	Output description
	Function call in ST

	DIAG_CI5XX_DECODE
	Input description
	Output description

	DIAG_EVENT
	Input description
	Output description
	Function call in ST

	DIAG_GET
	Input description
	Output description
	Function call in ST

	DIAG_INFO
	Input description
	Output description
	Function call in ST

	DIAG_INFO_NACK
	Input description
	Output description
	Function call in ST

	DIAG_RESET
	Input description
	Output description
	Function call in ST

	DPRAM_CM5XX_REC
	Input description
	Output description
	Function call in ST

	DPRAM_CM5XX_SEND
	Input description
	Output description
	Function call in ST

	FLASH_DEL
	Input description
	Output description
	Function call in ST

	FLASH_READ
	Input description
	Output description
	Function call in ST

	FLASH_WRITE
	Input description
	Output description
	Function call in ST

	FPU_EXCEPTION_INFO
	Input description
	Output description
	Function call in ST

	IO_PROD_ENTRY_READ
	Input description
	Output description

	PLC_REBOOT
	Input description
	Output description
	Function call in ST

	SD_READ
	Input description
	Output description
	Function call in ST

	SD_WRITE
	Input description
	Output description
	Function call in ST

	SLOT_CONFIG_READ
	Input description
	Output description
	Function call in ST

	SLOT_CONFIG_WRITE
	Input description
	Output description
	Function call in ST

	SLOT_PROD_ENTRY_READ
	Input description
	Output description
	Function call in ST

	1.5.4.19.3 Programs
	COM_SET_PROT
	Input description
	Output description
	Function call in ST

	CPU_INFO
	Input description
	Output description
	Function call in ST

	INPUT_REFRESH
	Input description
	Output description

	IO_DIAG
	Input description
	Output description
	Function call in ST

	IO_INFO
	Input description
	Output description
	Function call in ST

	IO_MODULE_DIAG
	Input description
	Output description
	Function call in ST

	IO_DRIVER_VERSION
	Input description
	Output description
	Function call in ST

	PERSISTENT_CLEAR
	Input description
	Output description
	Function call in ST

	PERSISTENT_EXPORT
	Input description
	Output description
	Function call in ST

	PERSISTENT_IMPORT
	Input description
	Output description
	Function call in ST

	PERSISTENT_RESTORE
	Input description
	Output description
	Function call in ST

	PERSISTENT_SAVE
	Input description
	Output description
	Function call in ST

	OUTPUT_REFRESH
	Input description
	Output description

	PM_INFO
	Input description
	Output description

	RETAIN_CLEAR
	Input description
	Output description
	Function call in ST

	RETAIN_EXPORT
	Input description
	Output description
	Function call in ST

	RETAIN_IMPORT
	Input description
	Output description
	Function call in ST

	RETAIN_RESTORE
	Input description
	Output description
	Function call in ST

	RETAIN_SAVE
	Input description
	Output description
	Function call in ST

	RTS_INFO
	Input description
	Output description
	Function call in ST

	SLOT_INFO
	Input description
	Output description
	Function call in ST

	TASK_INFO read number of completed task cycles
	Input description
	Output description
	Function call in ST

	1.5.4.19.4 Functions
	DPRAM_CM5XX_GET_STATE
	Input description

	DPRAM_CM5XX_SET_STATE
	Input description

	SYS_TIME
	Input description
	Output description
	Function call in ST

	1.5.4.20 Extended internal system library
	1.5.4.20.1 Function blocks
	CPU_OWN_ADR
	Input description
	Output description
	Function call in ST

	DPRAM_IO_COPY
	Input description
	Output description
	Function call in ST

	DPRAM_KP_GET_ADDR
	Input description
	Output description
	Function call in ST

	DPRAM_PM5XX_REC
	Input description
	Output description
	Function call in ST

	DPRAM_PM5XX_SEND
	Input description
	Output description
	Function call in ST

	LED_SET
	Input description
	Output description
	Function call in ST

	1.5.4.21 JSON library
	1.5.4.21.1 System technology
	Configuration in Automation Builder
	Task configuration in CODESYS
	Limitations
	Functions
	Standard

	1.5.4.21.2 Function block description
	JSON object functions
	JSONCREATEOBJECT
	Input description
	Output description

	JSONADDARRAY
	Input Description
	Output Description

	JSONADDBOOL
	Input description
	Output description

	JSONADDINT
	Input description
	Output description

	JSONADDOBJECT
	Input description
	Output description

	JSONADDREAL
	Input description
	Output description

	JSONADDSTRING
	Input description
	Output description

	JSONREMOVEENTRY
	Input description
	Output description

	JSONSERIALIZEOBJECT
	Input description
	Output description

	JSONFREEOBJECT
	Input description
	Output description

	JSONPARSEOBJECTFROMSTRING
	Input description
	Output description

	JSONGETARRAY
	Input description
	Output description

	JSONGETBOOL
	Input description
	Output description

	JSONGETINT
	Input description
	Output description

	JSONGETOBJECT
	Input description
	Output description

	JSONGETREAL
	Input description
	Output description

	JSONGETSTRING
	Input description
	Output description

	JSON array functions
	JSONCREATEARRAY
	Input description
	Output description

	JSONARRAYADDARRAY
	Input description
	Output description

	JSONARRAYADDBOOL
	Input description
	Output description

	JSONARRAYADDINT
	Input description
	Output description

	JSONARRAYADDOBJECT
	Input description
	Output description

	JSONARRAYADDREAL
	Input description
	Output description

	JSONARRAYADDSTRING
	Input description
	Output description

	JSONARRAYREMOVEENTRY
	Input description
	Output description

	JSONSERIALIZEARRAY
	Input description
	Output description

	JSONFREEARRAY
	Input description
	Output description

	JSONPARSEARRAYFROMSTRING
	Input description
	Output description

	JSONARRAYGETARRAY
	Input description
	Output description

	JSONARRAYGETBOOL
	Input description
	Output description

	JSONARRAYGETINT
	Input description
	Output description

	JSONARRAYGETOBJECT
	Input description
	Output description

	JSONARRAYGETREAL
	Input description
	Output description

	JSONARRAYGETSTRING
	Input description
	Output description

	Structures and enumerations
	JSON_ERROR_ID
	JSON_OBJ_REF
	JSON_ARR_REF

	Global variables
	JSON_CONSTANTS

	Hardware
	Examples

	1.5.4.22 Modbus library
	1.5.4.22.1 Function blocks
	COM_MOD_MAST
	Input description
	Output description
	Function call in ST

	1.5.4.22.2 Structures
	COM_MOD_FCT22_TYPE
	COM_MOD_FCT23_TYPE

	1.5.4.22.3 Programs
	MODBUS_TO_STRING
	Input description
	Output description

	STRING_TO_MODBUS
	Input description
	Output description

	1.5.4.23 Extended Modbus library
	1.5.4.23.1 Function blocks
	COM_MOD_SLV_SET_ADDR
	Input description
	Output description

	1.5.4.24 MQTT client library
	1.5.4.24.1 Function blocks
	MqttConnectWithCertBuffer
	Input description
	Output description

	MqttConnectWithCertFile
	Input description
	Output description

	MqttDisconnect
	Input description
	Output description

	MqttGetReceivedPacket
	Input description
	Output description

	MqttPing
	Input description
	Output description

	MqttPublish
	Input description
	Output description

	MqttSubscribe
	Input description
	Output description

	MqttUnsubscribe
	Input description
	Output description

	1.5.4.24.2 Structures and enumerations
	1.5.4.24.3 Global variables

	1.5.4.25 Onboard IO library
	1.5.4.25.1 Function blocks
	ONB_IO_CNT
	Input description
	Output description
	Function call in ST

	ONB_IO_INT_IN
	Input description
	Output description
	Function call in ST

	ONB_IO_PWM_FREQ
	Input description
	Output description
	Function call in ST

	ONB_IO_PWM_TIME
	Input description
	Output description
	Function call in ST

	1.5.4.26 PROFIBUS DP library
	1.5.4.26.1 Function blocks
	DPM_CTRL
	Input description
	Output description
	Function call in ST
	Selection of the called slaves
	Possible combinations of global control commands

	DPM_READ_INPUT
	Input description
	Output description
	Function call in ST

	DPM_READ_OUTPUT
	Input description
	Output description
	Function call in ST

	DPM_SET_PRM
	Input description
	Output description
	Function call in ST

	DPM_SLV_DIAG
	Input description
	Output description
	Function call in ST
	Structure of DP slave diagnosis data
	Stationstatus_1
	Stationstatus_2
	Stationstatus_3
	Master_Add
	Ident_Number
	Ext_Diag_Data

	Example for extended diagnosis data
	Example program for evaluating extended diagnosis data

	DPM_STAT
	Input description
	Output description
	Function call in ST
	STATE_BITS DPM_STATE_BITS_TYPE
	COM_ERR DPM_COM_ERR_TYPE

	DPM_SYS_DIAG
	Input description
	Output description
	Function call in ST

	DPV1_MSAC1_READ
	Input description
	Output description
	Function call in ST

	DPV1_MSAC1_WRITE
	Input description
	Output description
	Function call in ST

	1.5.4.26.2 Data types

	1.5.4.27 PROFINET IO library
	1.5.4.27.1 Function blocks
	PNIO_DEV_ALARM
	Input description
	Output description
	Function call in ST

	PNIO_DEV_DIAG
	Input description
	Output description
	Function call in ST

	PNIO_DEV_INFO
	Input description
	Output description
	Function call in ST

	PNIO_DEV_INFO_EXT
	Input Description
	Output Description
	Function call in ST

	PNIO_DEV_SPECIFIER
	Input description
	Output description
	Function call in ST

	PNIO_IM0
	Input description
	Output description
	Function call in ST

	PNIO_READ
	Input description
	Output description
	Function call in ST

	PNIO_READ_EXT
	Input description
	Output description
	Function call in ST

	PNIO_STATE
	Input description
	Output description
	Function call in ST

	PNIO_SYS_DIAG
	Input description
	Output description
	Function call in ST

	PNIO_WRITE
	Input description
	Output description
	Function call in ST

	PNIO_WRITE_EXT
	Input description
	Output description
	Function call in ST

	PROFINET status*

	1.5.4.28 Extended PROFINET IO library
	1.5.4.28.1 Function blocks
	Error messages of the CI506-PNIO CANopen master
	PNIO_CAN2A_REC
	Input description
	Output description
	Function call in ST

	PNIO_CAN2A_REC_ID
	Input description
	Output description
	Function call in ST

	PNIO_CAN2A_SEND
	Input description
	Output description
	Function call in ST

	PNIO_CAN2B_REC
	Input description
	Output description
	Function call in ST

	PNIO_CAN2B_REC_ID
	Input description
	Output description
	Function call in ST

	PNIO_CAN2B_SEND
	Input description
	Output description
	Function call in ST

	PNIO_CANOM_NMT
	Input description
	Output description
	Function call in ST

	PNIO_CANOM_NODE_DIAG
	Input description
	Output description
	Function call in ST

	PNIO_CANOM_READ_DEV_ERR
	Input description
	Output description
	Function call in ST

	PNIO_CANOM_SDO_READ
	Input description
	Output description
	Function call in ST

	PNIO_CANOM_SDO_WRITE
	Input description
	Output description
	Function call in ST

	PNIO_CANOM_STATE
	Input description
	Output description
	Function call in ST

	PNIO_CANOM_SYS_DIAG
	Input description
	Output description
	Function call in ST

	PNIO_COM_REC
	Input description
	Output description
	PNIO_COM_MESSAGE_TYPE
	PNIO_COM_MESSAGE_HEADER_TYPE
	Function call in ST

	PNIO_COM_SEND
	Input description
	Output description
	Function call in ST

	1.5.4.29 Profinet_Ext2 library
	1.5.4.29.1 Function blocks
	PNIO_CNTL_START_COM
	Input description
	Output description

	PNIO_CNTL_STOP_COM
	Input description
	Output description

	1.5.4.30 RCOM/RCOM+ library
	1.5.4.30.1 Function blocks
	RCOM_CLOCK
	Input description
	Output description
	Function call in ST

	RCOM_COLDST
	Input description
	Output description
	Function call in ST

	RCOM_DIAL
	Input description
	Output description
	Function call in ST

	RCOM_HANGUP
	Input description
	Output description
	Function call in ST

	RCOM_INIT
	Input description
	Output description
	Function call in ST

	RCOM_NORMAL
	Input description
	Output description
	Function call in ST

	RCOM_POLL
	Input description
	Output description
	Function call in ST

	RCOM_READ
	Input description
	Output description
	Function call in ST

	RCOM_READ_SLV
	Input description
	Output description
	Function call in ST

	RCOM_REC
	Input description
	Output description
	Function call in ST

	RCOM_TRANSMIT
	Input description
	Output description
	Function call in ST

	RCOM_WARMST
	Input description
	Output description
	Function call in ST

	1.5.4.31 RTC library
	1.5.4.31.1 Function blocks
	MEINBERG_SYNC
	Input description
	Output description
	Function call in ST

	RTC_ADJUST
	Input description
	Output description
	Function call in ST

	RTC_GET_TIME
	Input description
	Output description
	Function call in ST

	RTC_SET_ADJUST_INTERVAL
	Input description
	Output description
	Function call in ST

	RTC_SET_TIME
	Input description
	Output description
	Function call in ST

	RTC_SYNC_DISPLAY
	Input description
	Output description
	Function call in ST

	1.5.4.32 Series90 AC500 library
	1.5.4.32.1 Function blocks
	ADDD
	Input and output description
	Function call in ST

	DIVD
	Input and output Description
	Remainder handling
	Division by »zero«
	Invalid result value
	Function call in ST

	DWW
	Input and output description
	Function call in ST

	HLG
	Input description
	Output description
	Function call in ST

	INTK
	Transfer function
	Input description
	Output description
	Function call in ST

	LZB
	Input description
	Output description
	Function call in ST

	MAZ
	Input and output description
	Function call in ST

	MULD
	Input and output description
	Function call in ST

	SUBD
	Input and output description
	Function call in ST

	VGL3P
	Input and output description
	Function call in ST

	VGLEH
	Input and output description
	Number range
	Function call in ST

	1.5.4.32.2 Functions
	ADDW
	Input and output description
	Function call in ST

	BEG
	Input and output description
	Function call in ST

	BEGD
	Input and output description
	Function call in ST

	MUL2ND
	Input and output description
	Sign of the value at input E1
	Shift to the left (Multiplication)
	Shift to the right (Division)
	Examples
	Function call in ST

	MULDI
	Input and output description
	Function call in ST

	MULW
	Input and output description
	Function call in ST

	NEGD
	Input and output description
	Function call in ST

	NEGW
	Input and output description
	Function call in ST

	SUBW
	Input and output description
	Function call in ST

	1.5.4.33 Glossary

	1.5.5 AC500 HA High Availability System
	1.5.5.1 AC500 HA-CS31 based on serial communication
	1.5.5.1.1 Introduction
	1.5.5.1.2 AC500 High Availability CS31 system technology
	Introduction
	What is the AC500 High Availability CS31 system?
	When to use AC500 High Availability CS31 system?

	Requirements
	Hardware
	Recommended connections for a HA-CS31 system
	DigiVis 500 with two Ethernet ports
	HMI CP6xx with two Ethernet ports
	DigiVis 500 with standard Ethernet switch
	HMI CP6xx with one/two Ethernet ports

	Recommended use of Ethernet connections

	Software

	Guidelines for usage
	Introduction
	Hardware configuration in Automation Builder
	Single CS31 bus on CPU COM port
	CS31 bus extension with CM574-RS module

	Programming
	Single CS31 bus on CPU COM port
	CS31 bus extension with CM574-RS module

	Task configuration
	Single CS31 bus on CPU COM port
	CS31 bus extension with CM574-RS module

	Program download
	Single CS31 bus on CPU COM port
	CS31 bus extension with CM574-RS module

	Operation
	Single CS31 bus on CPU COM port
	CS31 bus extension with CM574-RS communication module
	Example of a utility function block - Switch over
	Fault on primary and secondary PLC

	Functionality
	Use case and reaction time
	Procedure for modifying hardware and application program

	System structure
	Single CS31 bus on CPU COM port
	CS31 bus extension with CM574-RS module
	Details of control and state byte
	HA-CS31 limitations

	1.5.5.1.3 AC500 High Availability CS31 library
	Components of HA-CS31 library
	HA-CS31 library - Overview diagram
	Function blocks
	Function
	Visualizations
	Structures
	Global variables

	Prerequisites for the use of HA-CS31 library
	Introduction
	Hardware configuration
	Program
	Task configuration

	Control and diagnosis - Function blocks and functions
	HA_CS31_CALLBACK_STOP - HA CPU STOP event function
	Input description
	Output description
	Function call in ST

	HA_CS31_CONTROL - HA control FB
	Input description
	Output description
	Function block call in ST

	HA_CS31_DATA_SYNC - HA data synchronization FB
	Functionality
	Input description
	Output description
	Function block call in ST

	HA_CS31_DIAG - Reading HA diagnosis
	Input description
	Output description
	Function block call in ST

	HA_CS31_DIAG_EXTD - HA Extended Diagnosis FB
	Input description
	Output description
	Function block call in ST

	HA_CS31_DIAG_EXTD_VIA_CM574 - HA extended diagnosis FB
	Input description
	Output description
	Function block call in ST

	HA_CS31_DIAG_ON_CM574 - HA diagnosis FB on CM574-RS
	Input description
	Output description
	Function block call in ST

	HA_CS31_DIAG_VIA_CM574 - HA diagnosis FB for CM574-RS
	Input description
	Output description
	Function block call in ST

	Utility function blocks
	HA_CS31_CTD - HA count down counter
	Input description
	Output description
	Function block call in ST

	HA_CS31_CTU - HA count up counter
	Input description
	Output description
	Function block call in ST

	HA_CS31_CTUD - HA up/down counter
	Input description
	Output description
	Function call in ST

	HA_CS31_INTEGRAL - HA integral function block
	Input description
	Output description
	Function block call in ST

	HA_CS31_PID - HA PID controller
	Input description
	Output description
	Function block call in ST

	HA_CS31_PID_DV500 - HA PID controller for DigiVis
	Input description
	Output description
	Function block call in ST

	HA_CS31_PID_FIXCYCLE - HA PID controller with fix cycle
	Input description
	Output description
	Function block call in ST

	HA_CS31_PID_FIXCYCLE_DV500 - HA PID controller for DigiVis
	Input description
	Output description
	Function block call in ST

	HA_CS31_RAMP_INT - HA ramp with integer
	Input description
	Output description
	Function block call in ST

	HA_CS31_RAMP_REAL - HA Ramp with Real
	Input description
	Output description
	Function block call in ST

	HA_CS31_TOF - HA Turn-Off delay timer
	Input description
	Output description
	Function block call in ST

	HA_CS31_TON - HA turn-on delay timer
	Input description
	Output description
	Function block call in ST

	Visualizations
	HA_CS31_OVERVIEW_VISU - Visualization
	HA_CS31_CONTROL_VISU_PH - Visualization
	HA_CS31_DATA_SYNC_VISU_PH - Visualization
	HA_CS31_DIAG_EXTD_VIA_CM574_VISU_PH - Visualization
	HA_CS31_DIAG_EXTD_VISU_PH - Visualization
	HA_CS31_DIAG_VIA_CM574_VISU_PH - Visualization
	HA_CS31_DIAG_VISU_PH - Visualization

	Structures
	Global variables
	Appendix
	Table: Call names of HA function blocks
	Table: HA library versions and runtime system details

	Glossary

	1.5.5.2 AC500 HA-Modbus TCP
	1.5.5.2.1 Safety instructions and preconditions to use HA-Modbus TCP library
	1.5.5.2.2 HA-Modbus TCP - System technology
	The AC500 High Availability system
	Hardware, requirements and options overview
	CPU choice, system size and performance indications
	Hardware connections
	Hardware Example

	Functionality
	Failures and use cases
	Use case descriptions

	How to get and install the AC500 High Availability system package
	System structure
	Programming
	Task configuration recommendations for HA system
	Field I/O network topologies
	Simple ring topology (smaller systems)
	Standard network topology (large systems)
	Parallel network topology (using PRP)
	HA Modbus system without communication interface modules in the network

	Getting started
	Quick start list and guidelines
	Configuration without communication interface modules to establish redundancy
	Configuration with communication interface modules and redundancy

	HA-Modbus TCP Limits
	Diagnosis
	Diagnosis in HA-Modbus TCP library
	Diagnosis in CI52x library

	Library overview

	1.5.5.2.3 HA-Modbus TCP V2 library function block description
	Scope and structure of this document
	HA-Modbus TCP library
	Function
	HA_MOD_CALLBACK_STOP
	Input description
	Output description

	Function blocks
	HA_MOD_DATA_SYNC
	Input description
	Output description

	HA_MOD_CONTROL
	Input description
	Output description

	HA_MOD_DIAG
	Input description
	Output description

	HA_MOD_AIO
	Input description
	Output description

	HA_MOD_CTD
	Input description
	Output description

	HA_MOD_CTU
	Input description
	Output description

	HA_MOD_CTUD
	Input description
	Output description

	HA_MOD_DERIVATIVE
	Input description
	Output description

	HA_MOD_DIO
	Input description
	Output description

	HA_MOD_INTEGRAL
	Input description
	Output description

	HA_MOD_PID
	Input description
	Output description

	HA_MOD_PID_FIXCYCLE
	Input description
	Output description

	HA_MOD_RAMP_INT
	Input description
	Output description

	HA_MOD_RAMP_REAL
	Input description
	Output description

	HA_MOD_TOF
	Input description
	Output description

	HA_MOD_TON
	Input description
	Output description

	Visualization
	HA_OVERVIEW_VISU
	HA_MOD_DATA_SYNC_VISU_PH
	HA_MOD_CONTROL_VISU_PH

	Global variables
	HA_GLOBAL - errors/constants
	HA_GLOBAL_VARIABLES

	CI52x library
	Function blocks
	CI_MOD_CI52x
	Input description
	Output description

	CI_MOD_DIAG
	Input description
	Output description

	Visualization
	CI_MOD_CI52x_VISU_PH
	IO visualization

	Global variable list (GVL)
	CI52x_GLOBAL_CONSTANT
	CI52x_GLOBAL_VARIABLES

	1.5.5.3 Examples

	1.5.6 ACS / DCS drives libraries
	1.5.6.1 System technology
	1.5.6.1.1 Application selection
	1.5.6.1.2 Connection selection
	1.5.6.1.3 PROFIBUS
	1.5.6.1.4 PROFINET
	1.5.6.1.5 CANopen
	1.5.6.1.6 EtherCAT
	1.5.6.1.7 Modbus TCP
	ACS355 with Modbus TCP
	ACS550 or ACH550 with Modbus TCP
	ACS580 with Modbus TCP
	ACS800 with Modbus TCP
	ACS850, ACQ810 or ACSM1 with Modbus TCP
	ACS880 with Modbus TCP
	DCS800 or DCS550 with Modbus TCP

	1.5.6.1.8 Modbus RTU
	ACS310, ACS350, ACS355, ACS550 or ACH550 with Modbus RTU
	ACS800 with Modbus RTU
	ACS850, ACQ810 with Modbus RTU
	ACS880 or ACSM1 or ACS580 with Modbus RTU
	DCS800 with Modbus RTU

	1.5.6.2 ACS drives base library
	1.5.6.2.1 Preconditions for the use of the ACS drives base library
	1.5.6.2.2 Special characteristics of the ACS drives base library
	1.5.6.2.3 Overview of the ACS drives base components according to their call names
	1.5.6.2.4 Function blocks
	ACS_MOD_READ_N_PRM
	Input description
	Output description

	ACS_MOD_WRITE_N_PRM
	Input description
	Output description

	ACS_MOD_PRM_NUM_32BIT
	Input description
	Output description

	ACS3XX_DRIVES_CTRL_BASIC
	Input description
	Output description

	ACS_DRIVES_CTRL_ENG
	Input description
	Output description

	ACS_DRIVES_CTRL_STANDARD
	Input description
	Output description

	ACS_DRIVES_CTRL_STANDARD_GEN
	Input description
	Output description

	ACS_REF_SCALING
	Input description
	Output description

	1.5.6.2.5 Enumerations
	ACS_DRIVE_ENUM enumerations to select the type of drive used
	ACS_PB_PN_PRM_TYPE_ENUM

	1.5.6.2.6 Structures
	ACS_DRIVE_CONFIG_TYPE structure including configurations parameters of the ACS3XX drive
	ACS_DRIVE_DATA_TYPE structure to exchange data between function blocks for 1 Drive
	ACS_MOD_TOKEN_TYPE structure to exchange the internal Modbus token for Modbus RTU communication with more than 1 Drive
	ACS_PB_PN_PRM_DPV1_DATA_TYPE

	1.5.6.2.7 Global variables
	dwAcsVisuBackgroundColor and dwAcsVisuTitleColor global variables to set the background and title colors for the visualization elements

	1.5.6.2.8 Visualizations
	ACS_MOD_READ_N_PRM_VISU_PH faceplate for the function block ACS_MOD_READ_N_PRM
	Parameters
	Access R/W
	Access R
	Colors

	ACS_MOD_WRITE_N_PRM_VISU_PH faceplate for the function block ACS_MOD_WRITE_N_PRM
	Parameters
	Access R/W
	Access R
	Colors

	ACS3XX_DRIVES_CTRL_BASIC_VISU_PH faceplate of function block ACS3XX_DRIVES_CTRL_BASIC
	Parameters
	Access R/W
	Access R
	Colors

	ACS_DRIVES_CTRL_ENG_VISU_PH faceplate of function block ACS_DRIVES_CTRL_ENG
	Parameters
	Access R/W
	Access R
	Colors

	ACS_DRIVES_CTRL_STANDARD_VISU_PH faceplate of function block ACS_DRIVES_CTRL_STANDARD
	Parameters
	Access R/W
	Access R
	Colors

	ACS_DRIVES_CTRL_STANDARD_GEN_VISU_PH faceplate for the function block
	Parameters
	Access R/W
	Access R
	Colors

	ACS_REF_SCALING_VISU_PH faceplate for the function block ACS_REF_SCALING
	Parameters
	Access R/W
	Access R
	Colors

	ACS_SW_VISU_PH visualization for the ABB drives profile status word
	Parameters
	Access R
	Colors

	ACS_CW_VISU_PH visualization for the ABB drives profile control word
	Parameters
	Access R
	Colors

	1.5.6.3 ACS / DCS Drives communication via Modbus RTU library
	1.5.6.3.1 Preconditions for the use of the ACS / DCS drives communication via Modbus RTU library
	1.5.6.3.2 Special characteristics of the ACS / DCS drives communication via Modbus RTU library
	1.5.6.3.3 Components of the ACS / DCS drives communication via Modbus RTU library
	1.5.6.3.4 Overview of the ACS / DCS drives communication via Modbus RTU function blocks according to their call names
	1.5.6.3.5 Function blocks
	ACS3XX_COM_MOD_RTU communication for ACS3XXwrite one bit/ACX550 drives via Modbus RTU
	Input description
	Output description

	ACS_COM_MOD_RTU communication for ACS / DCS drives via Modbus RTU
	Input description
	Output description

	ACS_COM_MOD_RTU_ENHANCED communication for ACS drives via Modbus RTU using ABB drives profile enhanced
	Input descriptions
	Output descriptions
	Function call in ST

	ACS_COM_MOD_RTU_GEN communication for generic devices via Modbus RTU
	Input description
	Output description

	ACS_COM_MOD_RTU_GEN_READ_N_PRM read N parameters from a generic Modbus RTU device
	Input description
	Output description

	ACS_COM_MOD_RTU_GEN_WRITE_N_PRM write N parameters to a generic Modbus RTU device
	Input description
	Output description

	1.5.6.3.6 Structures
	ACS_GEN_DEV_DATA_TYPE structure to exchange data between function blocks for 1 generic device

	1.5.6.3.7 Visualizations
	ACS3XX_COM_MOD_RTU_VISU_PH faceplate for the function block ACS3XX_COM_MOD_RTU
	Parameters
	Access R/W
	Access R
	Colors

	ACS_COM_MOD_RTU_VISU_PH faceplate for the function block ACS_COM_MOD_RTU
	Parameters
	Access R/W
	Access R
	Colors

	ACS_COM_MOD_RTU_ENHANCED_VISU_PH faceplate for the function block ACS_COM_MOD_RTU_ENHANCED
	Parameters
	ACCESS R/W
	ACCESS R

	ACS_COM_MOD_RTU_GEN_VISU_PH faceplate for the function block ACS_COM_MOD_RTU_GEN
	Parameters
	Access R/W
	Access R
	Colors

	ACS_COM_MOD_RTU_GEN_READ_N_PRM_VISU_PH faceplate for the function block ACS_COM_MOD_RTU_GEN_READ_N_PRM
	Parameters
	Access R/W
	Access R
	Colors

	ACS_COM_MOD_RTU_GEN_WRITE_N_PRM_VISU_PH faceplate for the function block ACS_COM_MOD_RTU_GEN_WRITE_N_PRM
	Parameters
	Access R/W
	Access R
	Colors

	1.5.6.4 ACS / DCS drives communication via Modbus TCP library
	1.5.6.4.1 Preconditions for the use of the ACS / DCS drives communication via Modbus TCP library
	1.5.6.4.2 Components of the ACS / DCS drives communication via Modbus TCP library
	1.5.6.4.3 Function blocks
	ACS_COM_MOD_TCP communication for ACS / DCS drives via Modbus TCP
	Input description
	Output description

	ACS_COM_MOD_TCP_ENHANCED communication for ACS / DCS drives via Modbus TCP
	Input description
	Output description

	1.5.6.4.4 Visualization
	ACS_COM_MOD_TCP_VISU_PH faceplate for the function block ACS_COM_MOD_TCP
	Parameters
	Access R/W
	Access R
	Colors

	ACS_COM_MOD_TCP_ENHANCED_VISU_PH faceplate for the function block ACS_COM_MOD_TCP_ENHANCED
	Parameters
	Access R/W
	Access R
	Colors

	1.5.6.5 ACS / DCS drives communication via Modbus TCP ext library
	1.5.6.5.1 Preconditions for the use of the ACS / DCS drives communication via Modbus TCP ext library
	1.5.6.5.2 Components of the ACS / DCS drives communication via Modbus TCP ext library
	1.5.6.5.3 Function blocks
	ACS_COM_MOD_TCPx communication for ACS / DCS drives via Modbus TCP
	Input description
	Output description

	ACS_COM_MOD_TCPx_ENHANCED communication for ACS / DCS drives via Modbus TCP
	Input description
	Output description

	1.5.6.5.4 Visualization
	ACS_COM_MOD_TCPx_VISU_PH faceplate for the function block ACS_COM_MOD_TCPx
	Parameters
	Access R/W
	Access R
	Colors

	ACS_COM_MOD_TCPx_ENHANCED_VISU_PH faceplate for the function block ACS_COM_MOD_TCPx_ENHANCED
	Parameters
	Access R/W
	Access R
	Colors

	1.5.6.6 ACS / DCS Drives communication via PROFIBUS
	1.5.6.6.1 Preconditions for the use of the ACS / DCS drives communication via PROFIBUS library
	1.5.6.6.2 Components of the ACS / DCS drives communication via PROFIBUS library
	1.5.6.6.3 Function blocks
	ACS_COM_PB communication block via PROFIBUS
	Input description
	Output description

	ACS_COM_PB_PZD communication block for direct access to PZD4..12
	Input description
	Output description

	ACS_PB_READ_PRM_DPV0 read parameters from ABB drives via PROFIBUS DPV0
	Input description
	Output description

	ACS_PB_WRITE_PRM_DPV0
	Input description
	Output description

	ACS_PB_N_READ_PRM_DPV1 read parameters from ABB drives via PROFIBUS DPV1
	Input description
	Output description

	ACS_PB_N_WRITE_PRM_DPV1 write parameters from ABB drives via PROFIBUS DPV1
	Input description
	Output description

	1.5.6.6.4 Visualization
	ACS_COM_PB_VISU_PH visualization to run the ACS_COM_PB function block.
	Parameters
	Access R/W
	Access R
	Colors

	ACS_COM_PB_PZD_VISU_PH visualization to run the ACS_COM_PB_PZD function block.
	Parameters
	Access R/W
	Access R
	Colors

	ACS_PB_READ_PRM_DPV0_VISU_PH visualization to run the ACS_PB_READ_PRM_DPV0 function block.
	Parameters
	Access R/W
	Access R
	Colors

	ACS_PB_WRITE_PRM_DPV0_VISU_PH visualization to run the ACS_PB_WRITE_PRM_DPV0 function block.
	Parameters
	Access R/W
	Access R
	Colors

	ACS_PB_READ_N_PRM_DPV1_VISU_PH visualization to run the ACS_PB_READ_N_PRM_DPV1 function block.
	Parameters
	Access R/W
	Access R
	Colors

	ACS_PB_WRITE_N_PRM_DPV1_VISU_PH visualization to run the ACS_PB_WRITE_N_PRM_DPV1 function block.
	Parameters
	Access R/W
	Access R
	Colors

	1.5.6.7 ACS / DCS Drives read / write parameter via PROFINET library
	1.5.6.7.1 Preconditions for the use of the ACS / DCS drives read / write parameter via PROFINET library
	1.5.6.7.2 Components of PROFINET read / write library
	1.5.6.7.3 Overview of the ACS / DCS drives read / write parameter via PROFINET function blocks
	1.5.6.7.4 Function blocks
	ACS_PN_READ_N_PRM_DPV1 read parameters from ABB drives via PROFINET DPV1
	Input description
	Output description

	ACS_PN_WRITE_N_PRM_DPV1 write parameters from ABB drives via PROFINET DPV1
	Input description
	Output description

	1.5.6.7.5 Visualization
	ACS_PN_READ_N_PRM_DPV1_VISU_PH faceplate of ACS_PN_READ_N_PRM_DPV1 function block.
	Parameters
	Access R/W
	Access R
	Colors

	ACS_PN_WRITE_N_PRM_DPV1_VISU_PH visualization to run the ACS_PN_WRITE_N_PRM_DPV1 function block.
	Parameters
	Access R/W
	Access R
	Colors

	1.5.6.8 DCS drives library
	1.5.6.8.1 Preconditions for the use of the DCS drives library
	1.5.6.8.2 Components of the DCS drives library
	1.5.6.8.3 Overview of the DCS Drives library components according to their call names
	1.5.6.8.4 Function blocks
	DCS_DRIVES_CTRL Control of DCS Drives with ABB-Drives profile using a communication block
	Input description
	Output description

	DCS_DRIVES_CTRL_GEN control of DCS drives with ABB-Drives profile via generic fieldbus
	Input description
	Output description

	1.5.6.8.5 Enumerations
	DCS_DRIVE_ENUM enumerations to be used at the input DRIVE_TYPE of ACS_COM_xxx function blocks

	1.5.6.8.6 Visualization
	DCS_DRIVES_CTRL_VISU_PH faceplate of function block DCS_DRIVES_CTRL
	Parameters
	Access R/W
	Access R
	Colors

	DCS_DRIVES_CTRL_GEN_VISU_PH faceplate of function block DCS_DRIVES_CTRL_GEN
	Parameters
	Access R/W
	Access R
	Colors

	1.5.6.9 Examples

	1.5.7 BACnet B-ASC library
	1.5.7.1 System technology
	1.5.7.2 Function blocks
	1.5.7.2.1 BASC_SERVER
	Input description
	Output description

	1.5.7.2.2 BASC_DEVICE
	Input description
	Output description

	1.5.7.2.3 BASC_ANALOG_IN
	Input description
	Output description

	1.5.7.2.4 BASC_ANALOG_OUT
	Input description
	Output description

	1.5.7.2.5 BASC_ANALOG_VAL
	Input description
	Output description

	1.5.7.2.6 BASC_BINARY_IN
	Input description
	Output description

	1.5.7.2.7 BASC_BINARY_OUT
	Input description
	Output description

	1.5.7.2.8 BASC_BINARY_VAL
	Input description
	Output description

	1.5.7.3 Structures and enumerations
	1.5.7.4 Hardware
	1.5.7.5 Examples

	1.5.8 FM502-CMS library
	1.5.8.1 System technology
	1.5.8.1.1 CMS-IO library
	1.5.8.1.2 WAV File library
	1.5.8.1.3 WAV file format
	1.5.8.1.4 Limitations

	1.5.8.2 CMS-IO library for modul handling
	1.5.8.2.1 Function blocks
	CMS_IO_16BIT_2CNT
	Input description
	Output description

	CMS_IO_16BIT_CNT
	Input description
	Output description

	CMS_IO_32BIT_CNT 32-bit counter
	Input description
	Output description

	CMS_IO_32BIT_ENCODER
	Input description
	Output description

	CMS_IO_FREQ_SCAN
	Input description
	Output description

	CMS_IO_SSI_ENC
	Input description
	Output description

	CMS_IO_MEASMNT_CTRL
	Input description
	Output description

	CMS_IO_CFG_READ
	Input description
	Output description

	CMS_IO_CFG_WRITE
	Input description
	Output description

	1.5.8.3 WAV file library for data handling
	1.5.8.3.1 Function blocks
	WAV_FILE_INFO
	Input description
	Output description
	Function call in ST

	WAV_FILE_READ
	Input description
	Output description
	Function call in ST

	WAV_FILE_CREATE
	Input description
	Output description
	Function call in ST

	WAV_FILE_APPEND
	Input description
	Output description
	Function call in ST

	WAV_FILE_APPEND_LABEL
	Input description
	Output description
	Function call in ST

	zWAV_FILE_BYTES_TO_STRING

	1.5.8.3.2 Structures
	1.5.8.3.3 Variables
	1.5.8.3.4 Visualization

	1.5.8.4 Examples

	1.5.9 Motion control library
	1.5.9.1 Preconditions for the use of the libraries
	1.5.9.2 Overview
	1.5.9.2.1 Motion Control with PS552-MC
	1.5.9.2.2 PLC-based motion control
	1.5.9.2.3 Drive-Based Motion Control
	1.5.9.2.4 Overview of PLCopen function blocks
	1.5.9.2.5 Overview of libraries
	1.5.9.2.6 Overview of data types
	1.5.9.2.7 Naming of function blocks and data structures

	1.5.9.3 PLCopen
	1.5.9.3.1 Programming guidelines
	Axis data type Axis_Ref

	1.5.9.3.2 The single axis state diagram
	1.5.9.3.3 Visualizations
	1.5.9.3.4 Error codes
	1.5.9.3.5 Error handling
	1.5.9.3.6 PLCopen parameter
	1.5.9.3.7 Limits
	1.5.9.3.8 General restrictions
	1.5.9.3.9 Behavior of the function block inputs and outputs
	General rules
	Why is the command input edge sensitive?
	The input ContinuousUpdate

	1.5.9.3.10 Unit of length
	1.5.9.3.11 Aborting versus buffered modes
	1.5.9.3.12 PLCopen examples

	1.5.9.4 PLC-based motion control
	1.5.9.4.1 Central Motion Control Architecture
	Kernel function block

	1.5.9.4.2 Basic functionalities
	How to connect a drive
	How to enable and disable a drive
	How to use the axis simulation
	How to perform a homing
	How to Use a CAM curve
	How to use an external axis
	How to use an encoder/drive with <> 32-bit position overrun
	How to do position correction “on the fly”
	How to limit the movement

	1.5.9.4.3 Axis parameters
	Supervision
	Position control loop
	PLC cycle time
	Roll-Over axis
	Scaling of the unit of length
	Scaling of the speed reference output
	Access and modify parameters

	1.5.9.4.4 Programming guidelines
	1.5.9.4.5 Visualization
	1.5.9.4.6 ABB specific data structures
	PositionPositionProfile
	PositionTimeProfile
	Interpolation types for profiles

	1.5.9.4.7 Appendix
	1.5.9.4.8 Function blocks for central motion control implementation
	CMC_MOTION_KERNEL_REAL
	Input description
	Output description

	CMC_MOTION_KERNEL_INT
	Input description
	Output description

	CMC_AXIS_CONTROL_PARAMETER_REAL
	Input description

	CMC_AXIS_CONTROL_PARAMETER_INT
	Input description

	CMC_AXIS_SIMU_REAL
	CMC_AXIS_SIMU_INT
	CMC_SInterpolation
	Input description
	Output description

	CMC_SIPosiLoop
	Input description
	Output description

	CMC_GET_UNITS_FROM_INC

	1.5.9.4.9 PLCopen coordinated motion
	Principles of coordinated motion
	Coordinate system and kinematic transformation
	Kinematic transformation

	How do commands behave in dynamic coordinate systems?
	Movements
	Blending and buffering of movements
	General information
	AC500 realization

	Realization in AC500
	Overview
	General rules
	Create a group
	State transitions
	General restrictions
	Usage of function blocks
	Coordinate transformations
	Structure of TRANSFORMATION_1_1
	Input description
	Output description

	Change of configurations

	PCS (Product Coordinate System)
	How to switch the coordinate system
	How to teach the conversion matrix

	Dynamic coordinate transformation
	ABB specific data structures
	Data structures to be used for MCS-PCS transformation
	Data structures to be used for moving the group on a path
	MC_PATH_REF
	MC_PATH_POINT
	MC_PATH_DATA_REF

	Example for using the path data
	Interpolation modes available for MC_MovePath

	Model
	Group state diagram
	Relationship single axis and group state diagrams
	Input execution mode

	General rules
	Axes grouping
	Axes group synchronized motion
	Synchronization
	Synchronization of single axis to an axes group
	Synchronization of an axes group to a single axis

	Tracking

	1.5.9.5 Drive-Based motion control
	1.5.9.5.1 Drive-based motion architecture
	1.5.9.5.2 Realization with ACSM1 on PROFIBUS DP network
	General restrictions
	Preconditions
	ACSM1_ACCESS_dc driver unit in decentralized motion control
	Input description
	Output description

	Adjustment of parameters for drive
	Start and stop the drive
	Units for position, velocity, acceleration and deceleration
	Gear functions
	MC_VISU_ACSM1_msw, MC_VISU_ACSM1_mcw

	1.5.9.5.3 Realization with ACS35x on PROFIBUS-DP network
	General restrictions
	Preconditions
	ACS350_ACCESS_dc
	Input description
	Output description

	Units for position, velocity, acceleration and deceleration
	Adjustment of parameters for drive
	MC_VISU_ACS350_mcw, MC_VISU_ACS350_msw

	1.5.9.5.4 Realization with FM562
	PTO_FM562_ACCESS adapts specific PLCopen blocks to FM562
	Input description
	Output description

	Quick start documentation for FM562

	1.5.9.6 PLCopen function blocks (Single and multi axis)
	1.5.9.6.1 Single-Axis function blocks
	MC_MoveAbsolute
	Input description
	Output description

	MC_MoveRelative
	Input description
	Output description

	MC_MoveAdditive
	Input description
	Output description

	MC_MoveSuperImposed
	Input description
	Output description

	MC_HaltSuperimposed
	Input description
	Output description

	MC_MoveVelocity
	Input description
	Output description

	MC_MoveContinuousAbsolute
	Input description
	Output description

	MC_MoveContinuousRelative
	Input description
	Output description

	MC_Stop
	Input description
	Output description

	MC_Halt
	Input description
	Output description

	MC_PositionProfile
	Input description
	Output description

	MC_VelocityProfile
	Input description
	Output description

	MC_AccelerationProfile
	Input description
	Output description

	1.5.9.6.2 Multi-Axis function blocks
	MC_CamIn
	Input description
	Output description

	MC_CamOut
	Input description
	Output description

	MC_GearIn
	Input description
	Output description

	MC_GearInPos
	Input description
	Output description

	MC_GearOut
	Input description
	Output description

	MC_PhasingAbsolute
	Input description
	Output description

	MC_PhasingRelative
	Input description
	Output description

	MC_CombineAxes
	Input description
	Output description

	1.5.9.6.3 Administrative function blocks
	MC_CamTableSelect
	Input description
	Output description

	MC_Power
	Input description
	Output description

	MC_ReadStatus
	Input description
	Output description

	MC_ReadAxisError
	Input description
	Output description

	MC_Reset
	Input description
	Output description

	MC_ReadParameter
	Input description
	Output description

	MC_ReadBoolParameter
	Input description
	Output description

	MC_WriteParameter
	Input description
	Output description

	MC_WriteBoolParameter
	Input description
	Output description

	MC_ReadActualPosition
	Input description
	Output description

	MC_ReadActualVelocity
	Input description
	Output description

	MC_SetOverride
	Input description
	Output description

	MC_SetPosition
	Input description
	Output description

	1.5.9.6.4 Homing function blocks
	MC_StepAbsSwitch
	Input description
	Output description

	MC_StepDirect
	Input description
	Output description

	MC_StepLimitSwitch
	Input description
	Output description

	MC_StepRefPulse
	Input description
	Output description

	MC_Home
	Input description
	Output description

	1.5.9.6.5 ABB specific function blocks
	MCA_CAM_EXTRA
	Input Description

	MCA_Parameter
	Input Description

	MCA_Power
	Input Description
	Output Description

	MCA_MoveVelocityContinuous
	Input Description
	Output Description

	MCA_MoveByExternalReference
	Input Description
	Output Description

	MCA_Home
	Input Description
	Output Description

	MCA_DriveBasedHome
	Input Description
	Output Description

	MCA_Indexing
	Input Description
	Output Description
	MCA_POS_REF

	MCA_JogAxis
	Input Description
	Output Description

	MCA_WriteParameterList
	Input Description
	Output Description

	MCA_ReadParameterList
	Input Description
	Output Description
	MCA_PARAMETER_STRUCT

	MCA_SetPositionContinuous
	Input Description
	Output Description

	MCA_MoveRelativeOpti
	Input Description
	Output Description

	MCA_GearInDirect
	Input Description
	Output Description

	MCA_CamInDirect
	Input Description
	Output Description

	MCA_SetOperatingMode
	Input Description
	Output Description

	MCA_PhasingByMaster
	Input description
	Output description

	1.5.9.7 PLCopen function blocks (Coordinated motion control)
	1.5.9.7.1 Standard function blocks
	MC_GroupEnable
	Input description
	Output description

	MC_GroupDisable
	Input description
	Output description

	MC_GroupReadActualPosition
	Input description
	Output description

	MC_GroupReadActualVelocity
	Input description
	Output description

	MC_GroupStop
	Timing diagram
	Input description
	Output description

	MC_GroupHalt
	Input description
	Output description

	MC_GroupInterrupt
	Input description
	Output description

	MC_GroupContinue
	Input description
	Output description

	MC_GroupReadStatus
	Input description
	Output description

	MC_MoveLinearAbsolute
	Input description
	Output description

	MC_MoveLinearRelative
	Input description
	Output description

	MC_MoveCircularAbsolute
	Input description
	Output description

	MC_MoveCircularRelative
	Input description
	Output description

	MC_MoveDirectAbsolute
	Input description
	Output description

	MC_MoveDirectRelative
	Input description
	Output description

	MC_PathSelect
	Input description
	Output description

	MC_MovePath
	Input description
	Output description

	MC_SyncGroupToAxis
	Input description
	Output description

	MC_SyncAxisToGroup
	Input description
	Output description

	COMC_GROUP_CARTESIAN
	Input description
	Output description

	COMC_TeachCartesianTransformation
	Input description

	1.5.9.7.2 Transformation function blocks
	MC_SetCartesianTransform MCS to PCS
	Input description
	Output description

	MC_SetCoordinateTransform MCS to PCS
	Input description
	Output description

	MC_ReadCartesianTransform MCS to PCS
	Input description
	Output description

	MC_ReadCoordinateTransform MCS to PCS
	Input description
	Output description

	1.5.9.7.3 ABB specific function blocks
	MCA_MoveHelixRelative
	Input description
	Output description
	Auxpoint1 and Auxpoint2
	Examples for different input parameters with start at position 0/0/0

	MCA_PathEvent
	Input description
	Output description

	MCA_SetCoordinateTransformation
	Input description
	Output description

	MCA_SetDynamicFollower
	Input description
	Output description

	MCA_MovePathPos
	Input description
	Output description

	MCA_SyncInfeedToPath
	Input description
	Output description

	MCA_SyncCamToPath
	Input description
	Output description

	MCA_CreateBuffer
	Input description
	Output description

	MCA_MoveBuffered

	1.5.9.8 Glossary
	1.5.9.9 Examples

	1.5.10 Process control object (PCO) library
	1.5.10.1 PCO library - System technology
	1.5.10.1.1 Introduction
	1.5.10.1.2 Installation
	Install Automation Builder on AC500 engineering node
	Install AC500 PCO Library on AC500 engineering node
	Install AC500 connect on 800xA node
	Install AC500 OPC server on 800xA node

	1.5.10.1.3 Prerequesites
	800xA license
	AC500 license

	1.5.10.1.4 Configuration
	Configure AC500 OPC server
	AC500 engineering node
	Configure symbol file in Automation Builder
	Create and download symbol file

	800xA engineering node
	Configure OPC server
	Read OPC data with matrikon test client (optional)
	Register OPC server as system service

	Troubleshooting

	Create PLC generic control network object
	Configure PLC connect services
	Create AC500 controller and GCN configuration

	1.5.10.1.5 Engineering workflow
	Create function blocks in AC500 V2
	Function blocks of PCO library
	Create instances using bulk data manager

	1.5.10.1.6 Capacity and Performance
	AC500 function block performance
	Small configuration
	Medium configuration
	Memory usage per function block

	800xA performance

	1.5.10.2 PCO library - function block description (V2)
	1.5.10.2.1 Scope and structure of this document
	1.5.10.2.2 Process control object (PCO) library
	Function blocks
	Controllers
	PCO_MOTCON
	Input description
	Output description
	Input/output description

	PCO PIDCON
	Input description
	Output description
	Input/output description

	PCO_VALVCON
	Input description
	Output description
	Input/output description

	Indications
	PCO_ALARM
	Input description
	Input/output description

	PCO_BIN
	Input description
	Input/output description

	Measurements
	PCO_ANA
	Input description
	Input/output description

	PCO_ANAALM
	Input description
	Output description
	Input/output description

	PCO_ANALIM
	Input description
	Output description
	Input/output description

	Motor
	PCO_MOT
	Input description
	Output description
	Input/output description

	Setpoints
	PCO_ANASET
	Input description
	Output description
	Input/output description

	PCO_BINSET
	Input description
	Output description
	Input/output description

	Valve
	PCO_VALV
	Input description
	Output description
	Input/output description

	1.5.11 Solar library
	1.5.11.1 Preconditions for the use of the Solar_AC500 library
	1.5.11.2 SOLAR_AC500 library
	1.5.11.2.1 TRACK folder
	SOLAR_NOAA
	Input description
	Output description
	Function call in IL
	Function call in ST

	1.5.11.2.2 AXIS folder
	SOLAR_EW_AXIS_PRIM
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_NS_AXIS_SEC
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_NS_AXIS_PRIM
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_EW_AXIS_SEC
	Input description
	Output description
	Function call in IL
	Function call in ST

	1.5.11.2.3 BACKTRACK folder
	SOLAR_BACKTRACKING
	Input description
	Output description
	Function call in IL
	Function call in ST

	1.5.11.2.4 POSITION folder
	SOLAR_ENCODER_IO
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_ENCODER_CD522
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_ENCODER_CD522_SSI_GRAY
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_ENCODER_DC541
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_NORMALIZE_ANALOG
	Input description
	Function call in IL
	Function call in ST

	1.5.11.2.5 ACTUATOR folder
	Preconditions for the use of the ACTUATOR folder
	SOLAR_POSITION_CTRL
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_HYD_CTRL
	Input description
	Output description
	Function call in IL
	Function call in ST

	1.5.11.2.6 MODE folder
	SOLAR_MODE_POSITION
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_MODE_MANUAL
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_MODE_HOMING
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_MODE_CALIBRATION
	Input description
	Output description
	Function call in IL
	Function call in ST

	SOLAR_MODE_TRACKING
	Input description
	Output description
	Function call in IL
	Function call in ST

	1.5.11.3 Solar_NREL library
	1.5.11.3.1 Preconditions for the use of the Solar_NREL library
	1.5.11.3.2 Special characteristics of the Solar_NREL library
	1.5.11.3.3 SOLAR_NREL
	Input description
	Output description
	Function call in IL
	Function call in ST

	1.5.11.4 Examples

	1.5.12 Temperature control library
	1.5.12.1 System technology
	1.5.12.1.1 Introduction
	1.5.12.1.2 Requirements
	1.5.12.1.3 Control principle
	State machine
	Automatic PID control
	PID controller principle
	Set point selection

	Auto tuning
	Function principle
	Auto tuning for heating and cooling
	Only heating
	Heating and cooling

	Alarm handling
	Faults
	Temperature limits

	1.5.12.1.4 Zone management
	Overview
	One zone
	Multiple zones
	One group
	Multiple groups within a system

	1.5.12.1.5 How to realize in a program
	Interface for sensors and actuators
	Use a real zone
	Use zone simulation function block

	Consider zone management
	Zone level programming
	Group level programming
	System level programming

	Data and settings
	Data structure
	Initial zone data settings

	1.5.12.1.6 How to start control process
	Do AutoTune
	Prepare the settings
	Start AutoTune
	AutoTune done
	Restart AutoTune

	Do PID Process
	Do manual control
	Observe the status
	Process status
	Function block status

	1.5.12.1.7 How to save control data
	Save AutoTune and PID parameters into flash
	Save set values as recipe file
	Function principle
	Work with recipe

	1.5.12.1.8 How to do data logging
	Function principle
	Logging data into a CSV file
	Live data logging in the visualization
	Work with log file

	1.5.12.1.9 Current monitoring
	Individual current sensor monitoring
	Common current sensor monitoring

	1.5.12.1.10 Explanation of zone data structure
	Overview
	Set values / parameters
	Process set values / parameters
	Machine set values / parameters

	1.5.12.2 Function blocks
	1.5.12.2.1 TECT_TEMP_CONTROL
	Input description
	Output description

	1.5.12.2.2 TECT_GROUP
	Input description
	Output description

	1.5.12.2.3 TECT_SYSTEM
	Input description
	Output description

	1.5.12.2.4 TECT_TEMP_SIMU
	Input description
	Output description

	1.5.12.2.5 TECT_NOISE_FILTER
	Input description
	Output description

	1.5.12.2.6 TECT_PWM8
	Input description
	Output description

	1.5.12.2.7 TECT_LOG_FILE
	Input description
	Output description

	1.5.12.2.8 TECT_RECIPE
	Input description
	Output description

	1.5.12.2.9 TECT_DATA_FLASH
	Input description
	Output description

	1.5.12.2.10 TECT_HMI_MUX
	Input description
	Output description

	1.5.12.3 Structures and enumerator
	1.5.12.3.1 TECT_TEMPZONE_DATA_TYPE
	TECT_INTERNAL_STATUS_TYPE
	TECT_MACHINE_SET_TYPE
	TECT_MACHINE_STATUS_TYPE
	TECT_PROCESS_SET_TYPE
	TECT_PROCESS_STATUS_TYPE

	1.5.12.3.2 TECT_LOGFILE_DATA_TYPE
	1.5.12.3.3 TECT_LOGINFO_TYPE
	1.5.12.3.4 TECT_GROUP_DATA_TYPE
	1.5.12.3.5 TECT_SYSTEM_DATA_TYPE
	1.5.12.3.6 TECT_ZONE_INFO_TYPE
	1.5.12.3.7 TECT_CONTROLSTATEMACHINE_ENUM
	1.5.12.3.8 TECT_ERRORCODE_ENUM
	1.5.12.3.9 TECT_FILE_ENUM
	1.5.12.3.10 TECT_OPERATION_ENUM
	1.5.12.3.11 TECT_OUTPUTSTATUS_ENUM

	1.5.12.4 Visualization
	1.5.12.4.1 Visualization
	TECT_ZONE_DATA_PH
	TECT_LOG_ENTRY_PH
	TECT_SYSTEM_GROUP_PH
	TECT_TEMP_CONTROL_VISU_PH
	TECT_GROUP_VISU_PH
	TECT_SYSTEM_VISU_PH
	TECT_TEMP_SIMU_VISU_PH
	TECT_NOISE_FILTER_VISU_PH
	TECT_PWM8_VISU_PH
	TECT_LOG_FILE_VISU_PH
	TECT_RECIPE_VISU_PH
	TECT_DATA_FLASH_VISU_PH
	TECT_HMI_MUX_VISU_PH

	1.5.12.5 Examples

	1.5.13 Water library
	1.5.13.1 Pumping library
	1.5.13.1.1 Overview
	Function blocks
	Preconditions for the use of the pumping library

	1.5.13.1.2 PUMP_STATION_CFG
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.3 PUMP_INTERFACE
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.4 PUMP_RETAIN_DATA
	Input description
	Output description

	1.5.13.1.5 STRUCTURE (PUMP_STATION_TYPE)
	PUMP_STATION_TYPE
	zPUMP_STATION_DATA_TYPE Station Configuration Data
	zPUMP_STATION_DATA_TYPE Station Actual Status
	zPUMP_DATA_TYPE
	zPUMP_CONFIGURATION_TYPE
	zPUMP_ACTUATOR_STATUS_TYPE
	zPUMP_CTRL_STATUS_TYPE
	Structure Mapping

	1.5.13.1.6 PUMP_BOOST_CTRL Boost Control
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.7 PUMP_PID
	Input description
	Output description

	1.5.13.1.8 PUMP_LEVEL_CTRL Level Control
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.9 PUMP_AUTOCHANGE
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.10 PUMP_ANTIJAM
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.11 PUMP_FLOW_CALC
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.12 PUMP_SLEEP
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.13 PUMP_PROTECTION
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.14 PUMP_ENERGY_CALC
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.15 Pump_DOL_SIMU
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.16 PUMP_DRIVE_SIMU
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.17 PUMP_TANK_SIMU
	Input description
	Output description
	4000hex...4FFFhex - Block input error

	1.5.13.1.18 Visualizations
	PUMP_STATION_CFG_VISU_PH
	PUMP_INTERFACE_VISU_PH
	PUMP_BOOST_CTRL_VISU_PH
	PUMP_PID_VISU_PH
	PUMP_LEVEL_CTRL_VISU_PH
	PUMP_ AUTOCHANGE _VISU_PH
	PUMP_ ANTIJAM _VISU_PH
	PUMP_ FLOW_CALC_VISU_PH
	PUMP_ SLEEP _VISU_PH
	PUMP_PROTECTION_VISU_PH
	PUMP_ ENERGY_CALC_VISU_PH
	PUMP_DOL_SIMU _VISU_PH
	PUMP_DRIVE_SIMU _VISU_PH
	PUMP_TANK_SIMU _VISU_PH

	1.5.13.1.19 Global variables
	1.5.13.1.20 Glossary
	1.5.13.1.21 Examples

	1.5.13.2 Datalogging library
	1.5.13.2.1 Overview
	Operating modes
	Technical details
	File names
	Preconditions
	CSV file formats

	1.5.13.2.2 LOG_HANDLING
	Input description
	Output description

	1.5.13.2.3 LOG_IEC60870_INPUT
	Input description
	Output description

	1.5.13.2.4 LOG_IEC60870_OUTPUT
	Input description
	Output description

	1.5.13.2.5 LOG_GENERIC_INPUT
	Input Description
	Output Description

	1.5.13.2.6 LOG_GENERIC_OUTPUT
	Input description
	Output description

	1.5.13.2.7 Examples

	1.5.14 Pumping library 2
	1.5.14.1 System technology
	1.5.14.1.1 Components of pumping library
	Overview
	Compatibility
	Required sensors

	1.5.14.1.2 Control philosophy of pumping library
	Stage 1: Comparator
	Stage 2: Sequence generator
	Stage 3: Distributor
	Stage 4: DRIVE or DOL system

	1.5.14.1.3 Application functions
	Pressure control function block
	Pressure control process flow diagram
	Using pressure control
	Pump combinations for pressure control
	Control philosophy of pressure control mode

	Flow control function block
	Flow control process flow diagram
	Using flow control
	Pump combinations for flow control
	Control philosophy of flow control mode
	Flow control with distributor

	Level control – Emptying or filling
	Level control process flow diagram
	Using level control
	Pump combinations for level control
	Control philosophy of level control mode

	1.5.14.2 Function block description
	1.5.14.2.1 PMP_CONFIGURATION
	Input description
	Output description
	Error codes

	1.5.14.2.2 PMP_INTERFACE_DOL
	Input description
	Output description
	Error codes

	1.5.14.2.3 PMP_INTERFACE_VFD
	Input description
	Output description
	Error codes

	1.5.14.2.4 PMP_LEVEL_COMPARATOR
	Input description
	Output description
	Error codes

	1.5.14.2.5 PMP_LEVEL_DISTRIBUTOR
	Input description
	Output description
	Error codes

	1.5.14.2.6 PMP_FLOW_DISTRIBUTOR
	Input description
	Output description
	Error codes

	1.5.14.2.7 PMP_PRESSURE_DISTRIBUTOR
	Input description
	Output description
	Error codes

	1.5.14.2.8 PMP_PID
	Input description
	Output description
	Error codes

	1.5.14.2.9 PMP_SEQUENCE_GEN
	Input description
	Output description
	Error codes

	1.5.14.2.10 PMP_ANTIJAM
	Antijam overview
	Input description
	Output description
	Error codes

	1.5.14.2.11 PMP_ENERGY_CALC
	Input description
	Output description
	Error codes

	1.5.14.2.12 PMP_FLOW_CALC_HQ
	Input description
	Output description
	Error codes

	1.5.14.2.13 PMP_FLOW_CALC_PQ
	Input description
	Output description
	Error codes

	1.5.14.2.14 PMP_MAINTENANCE
	Input description
	Output description
	Error codes

	1.5.14.2.15 PMP_PROTECTION_ANALOG
	Pump protection configuration example
	Input description
	Output description
	Error codes

	1.5.14.2.16 PMP_PROTECTION_BINARY
	Pump protection configuration example
	Input description
	Output description
	Error codes

	1.5.14.2.17 PMP_SLEEP
	Input description
	Output description
	Error codes

	1.5.14.2.18 PMP_SOFT_FILLING
	Input description
	Output description
	Error codes

	1.5.14.2.19 PMP_DOL_SIMU
	Input description
	Output description
	Error codes

	1.5.14.2.20 PMP_DRIVE_SIMU
	Input description
	Output description
	Error codes

	1.5.14.2.21 PMP_TANK_SIMU
	Input description
	Output description
	Error codes

	1.5.14.3 Structures
	1.5.14.4 Visualization

	1.6 PLC integration (hardware)
	1.6.1 PLC introduction
	1.6.1.1 Safety instructions
	1.6.1.1.1 Safety notice

	1.6.1.2 Cyber security
	1.6.1.2.1 Defense in depth
	1.6.1.2.2 Secure operation
	1.6.1.2.3 Hardening
	1.6.1.2.4 Open Ports and Services

	1.6.1.3 License and third party information
	1.6.1.4 Regulations
	1.6.1.5 Definitions: PLC system start-up
	1.6.1.6 Definitions: RCOM
	1.6.1.7 Device lists
	1.6.1.7.1 Device list: Terminal bases
	1.6.1.7.2 Device list: Processor modules (CPUs)
	Processor modules for AC500-eCo
	Processor modules for AC500 (Standard)

	1.6.1.7.3 Device list: Communication modules
	1.6.1.7.4 Device list: Terminal units
	1.6.1.7.5 Device list: S500-eCo I/O modules
	1.6.1.7.6 Device list: S500 I/O modules
	1.6.1.7.7 Device list: Function modules
	1.6.1.7.8 Device list: Communication interface modules
	1.6.1.7.9 Device list: Accessories

	1.6.1.8 PLC system description
	1.6.1.8.1 AC500 product family
	1.6.1.8.2 AC500/S500 system structure
	1.6.1.8.3 AC500-eCo/S500-eCo system structure
	1.6.1.8.4 AC500/S500: Short description hardware
	1.6.1.8.5 AC500-eCo/S500-eCo: Short description hardware
	1.6.1.8.6 Short description software
	1.6.1.8.7 Control panels (HMI)

	1.6.1.9 AC500-S
	1.6.1.10 AC500-eCo starter kit
	1.6.1.10.1 Preparing the AC500 CPU
	Connecting the input simulator
	Connection of the AC500 CPU
	Connecting the programming cable
	Set-up communication parameters in Windows

	1.6.1.10.2 Step-by-Step introduction to Automation Builder
	Configurating the hardware
	Programming your project
	Testing your project without connecting the hardware
	Running your program on the AC500-eCo CPU
	Program visualization
	Changing the user interface language

	1.6.1.11 Converting an AC500 V2 project to an AC500 V3 project

	1.6.2 Device specifications
	1.6.2.1 Status LEDs, display and control elements
	1.6.2.2 Terminal bases (AC500 standard)
	1.6.2.2.1 TB51x-TB54x
	Short description
	Connections
	I/O Bus
	Power supply
	Serial interfaces COM1/COM2
	ARCNET interface
	Ethernet interface
	Neutral FieldBusPlug interface

	Technical data
	Ordering data

	1.6.2.2.2 TF501-CMS and TF521-CMS - Function module terminal bases
	Short description
	Connections
	Serial interface COM1
	Ethernet interface

	Technical data
	Ordering data

	1.6.2.3 Processor modules
	1.6.2.3.1 AC500-eCo
	PM55x-xP and PM56x-xP
	Short description
	Assortment
	Connections
	Power supply
	Onboard I/Os
	Diagnosis
	State LEDs and operating elements
	Technical data
	Ordering data

	Onboard I/Os in processor module PM55x
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital transistor outputs (PM55x-T(P) only)
	Connection of the digital relay outputs (PM55x-R(P) only)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	Displays
	Technical data
	Technical data of the digital inputs
	Technical data of the fast counter
	Technical data of the digital transistor outputs
	Technical data of the digital relay outputs
	Technical data of the PWM outputs

	Onboard I/Os in processor module PM56x
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital transistor outputs (PM56x-T(P) only)
	Connection of the digital relay outputs (PM56x-R(P) only)
	Connection of the analog inputs
	Connection of the analog output

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	Displays
	Measuring ranges
	Output ranges
	Technical data
	Technical data of the digital inputs
	Technical data of the fast counter
	Technical data of the digital transistor outputs
	Technical data of the digital relay outputs
	Technical data of the PWM outputs
	Technical data of the analog inputs
	Technical data of the analog output

	1.6.2.3.2 AC500 (standard)
	PM57x (-y), PM58x (-y) and PM59x (-y)
	Short description
	Assortment
	Connections
	Storage elements
	LEDs, display and function keys on the front panel
	Technical data
	Ordering data

	PM595-4ETH
	Short description
	Assortment
	Connections
	I/O bus
	Power supply
	Serial interface COM1
	Serial interface COM2
	Network interfaces Ethernet (ETHx)

	Storage elements
	Operating elements on the front panel
	Technical data
	Ordering data

	1.6.2.3.3 AC31 adapters
	Introduction
	Overview of AC31 adapters (replacement devices)
	System data and CS31 bus system data
	System data of the AC31 adapters
	Operating and environmental conditions
	Creepage distances and clearances
	Test voltages for type test
	Power supply units
	Electromagnetic compatibility
	Mechanical data
	Grounding

	CS31 bus system data
	Wiring
	Bus topology
	Grounding
	Bus cycle time and data security
	Configuration
	Diagnosis

	Replacement devices: CPU
	Replacement device 07KT9x-AD
	Introduction
	Central unit 07KT98
	Short description
	Functionality

	Device configuration
	Connections
	Application example for connecting the inputs and outputs
	Connection of the supply voltage
	Connection for CS31 bus
	Connection of digital inputs
	Connection of the digital outputs
	Connection of the digital inputs/outputs
	Connection of the 8 configurable analog inputs
	Connection of the 4 configurable analog outputs
	Battery and battery replacement
	Serial interface COM1
	Serial interface COM2
	Network interface

	SmartMedia Card 07 MC 90
	High-speed counter
	Technical data 07KT9x-AD
	General data
	Supply of devices
	Lithium battery
	Digital inputs
	Digital outputs
	Digital inputs/outputs
	Analog inputs
	Analog outputs
	Connection of the serial interfaces COM2
	Connection to the CS31 bus
	LED display
	High-speed hardware counter
	Mechanical data
	Ordering data

	ARCNET communication module
	Technical data
	ARCNET short description
	ARCNET system

	PROFIBUS DP communication module
	Technical data
	PROFIBUS short description
	The PROFIBUS system

	Ethernet communication module
	Technical data
	Ethernet short description
	Ethernet system

	Replacement devices: I/O modules
	Replacement device 07AC91-AD
	Introduction
	Device configuration
	LED display
	Connections
	Configuration
	Measuring ranges of the analog channels
	Addressing
	Behavior during normal operation
	Diagnosis and display
	Technical data
	Technical data of the complete device
	Technical data of the binary input
	Technical data of the analog outputs
	Connection to the CS31 bus
	Mechanical data
	Mounting information
	Ordering data

	Replacement device 07AC91-AD2
	Introduction
	Device configuration
	LED display
	Connections
	Configuration
	Measuring ranges of the analog channels
	Addressing
	Behavior during normal operation
	Diagnosis and display
	Technical data
	Technical data of the complete device
	Technical data of the binary input
	Technical data of the analog inputs
	Technical data of the analog outputs
	Connection to the CS31 bus
	Mechanical data
	Mounting information
	Ordering data

	Replacement device 07AI91-AD
	Introduction
	Device configuration
	LED display
	Connections
	Configuration
	Measuring ranges of the input channels
	Addressing
	Behavior during normal operation
	Diagnosis and display
	Technical data
	Technical data of the complete device
	Technical data of the analog inputs
	Analog voltage input
	Current input 0 … 20 mA / 4 … 20 mA
	Pt100/Pt1000 input
	Unused input channels
	Connection of other temperature-dependent resistors
	Input with thermocouples
	Connection to the CS31 bus
	Mechanical data
	Mounting information
	Ordering data

	Replacement device 07DC91-AD
	Device configuration
	LED display
	Connections
	Addressing
	I/O configuration
	Behavior during normal operation
	Diagnosis and displays
	Technical data
	Technical Data of the complete device
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable inputs/outputs
	Connection to the CS31 bus
	Mechanical data
	Assembly / Disassembly
	Ordering data

	Replacement device 07DC92-AD
	Device configuration
	LED display
	Connections
	Addressing
	I/O configuration
	Behavior during normal operation
	Diagnosis and Displays
	Technical data
	Technical data of the complete device
	Changes to the process voltage connections

	Technical details of the I/O channels as binary inputs
	Technical details of the I/O channels as digital outputs
	Connection to the CS31 bus
	Mechanical data
	Assembly / Disassembly
	Ordering data

	Replacement unit DC501-CS31-AD
	Introduction
	Device configuration
	LED display
	Connections
	Addressing
	Behavior during normal operation
	Diagnosis and display
	Technical data
	Technical data of the complete device
	Connection to the CS31 bus
	Expansion interface
	Interface extension box
	Inputs 24 V DC
	Outputs 24 V DC
	Mechanical data
	Mounting information
	Ordering data

	1.6.2.4 Communication modules (AC500 standard)
	1.6.2.4.1 Overview
	Compatibility of communication modules and communication interface modules
	Technical data (Overview)

	1.6.2.4.2 Compatibility of communication modules and communication interface modules
	1.6.2.4.3 RCOM / RCOM+
	CM574-RCOM for RCOM/RCOM+
	Purpose
	Connections
	Serial interfaces
	Bus cable for RS-485
	Cable lengths
	Bus termination (RS-485 only)

	State LEDs
	Technical data
	Ordering data

	1.6.2.4.4 Serial
	CM574-RS with 2 serial interfaces
	Purpose
	Connections
	Serial interfaces
	Bus cable for RS-485
	Cable lengths
	Bus termination (RS-485 only)

	State LEDs
	Technical data
	Ordering data

	1.6.2.4.5 CANopen
	CM588-CN - CANopen slave
	Purpose
	Connections
	Field bus interface

	State LEDs
	Technical data
	Ordering data

	CM598-CN - CANopen master
	Purpose
	Connections
	Field bus interface

	State LEDs
	Technical data
	Ordering data

	1.6.2.4.6 EtherCAT
	CM579-ETHCAT - EtherCAT master
	Intended purpose
	Connections
	Field bus interfaces

	State LEDs
	Technical data
	Ordering data

	1.6.2.4.7 Ethernet
	CM597-ETH - Communication module Ethernet
	Purpose
	Connections
	Field bus interfaces

	State LEDs
	Technical data
	Ordering data

	1.6.2.4.8 PROFIBUS
	CM582-DP - PROFIBUS DP slave
	Purpose
	Connections
	Field bus interface

	State LEDs
	Technical data
	Ordering data

	CM592-DP - PROFIBUS DP master
	Purpose
	Connections
	Field bus interface

	State LEDs
	Technical data
	Ordering data

	PROFIBUS connection details

	1.6.2.4.9 PROFINET
	CM579-PNIO - PROFINET IO RT controller
	Intended purpose
	Functionality
	Connections
	Field bus interfaces

	State LEDs
	Technical data
	Ordering data

	CM589-PNIO(-4) - PROFINET IO RT with 4 devices
	Functionality
	Connections
	Field bus interfaces

	Addressing
	State LEDs
	Technical data
	Ordering data

	1.6.2.5 Terminal units (AC500 standard)
	1.6.2.5.1 TU507-ETH and TU508-ETH for Ethernet communication interface modules
	Technical data
	Ordering data

	1.6.2.5.2 TU509 and TU510 for communication interface modules
	Technical data
	Ordering data

	1.6.2.5.3 TU515, TU516, TU541 and TU542 for I/O modules
	Technical data
	Ordering data

	1.6.2.5.4 TU517 and TU518 for communication interface modules
	Technical data
	Ordering data

	1.6.2.5.5 TU520-ETH for PROFINET communication interface modules
	Technical data
	Ordering data

	1.6.2.5.6 TU531 and TU532 for I/O modules
	Technical data
	Ordering data

	1.6.2.5.7 TU551-CS31 and TU552-CS31 for CS31 communication interface modules
	Technical data
	Ordering data

	1.6.2.6 I/O modules
	1.6.2.6.1 Digital I/O modules
	S500-eCo
	DC561 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O Configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Ordering data

	DC562 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Ordering data

	DI561 - Digital input module
	Intended purpose
	Functionality
	Connections
	I/O Configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs

	Ordering data

	DI562 - Digital input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs

	Ordering data

	DI571 - Digital input module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs

	Ordering data

	DI572 - Digital input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs

	Ordering data

	DO561 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO562 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO571 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO572 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO573 - Digital output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DX561 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the digital outputs

	Ordering data

	DX571 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the digital outputs

	Ordering data

	S500
	DC522 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O Configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	DC523 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	DC532 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	DC541-CM - Digital input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration and parameterization
	State LEDs
	Technical data
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counters

	Ordering data

	DI524 - Digital input module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the fast counter

	Ordering data

	DO524 - Digital output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DO526 - Digital output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital outputs

	Ordering data

	DX522 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the relay outputs
	Technical data of the fast counter

	Ordering data

	DX531 - Digital input/output module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the relay outputs

	Ordering data

	Fast counter

	1.6.2.6.2 Analog I/O modules
	S500-eCo
	AI561 - Analog input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)

	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Technical data of the analog inputs

	Ordering data

	AI562 - Analog input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Resistance temperature detectors
	Resistances

	Technical data
	Technical data of the analog inputs

	Ordering data

	AI563 - Analog input module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)

	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Technical data of the analog inputs
	Accuracy of thermocouple ranges at 25 °C (with cold junction compensation)

	Ordering data

	AO561 - Analog output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Output channel (2x)

	Diagnosis
	State LEDs
	Output ranges
	Technical data
	Technical data of the analog outputs

	Ordering data

	AX561 - Analog input/output module
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)
	Output channel (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Output ranges
	Technical data
	Technical data of the analog inputs
	Technical data of the analog outputs

	Ordering data

	S500
	AC522 - Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering data

	AI523 - Analog input module
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs

	Ordering data

	AI531 - Analog input module
	Intended purpose
	Functionality
	Connections
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply and series-connection of an additional input
	Connection of passive-type analog sensors (Current)
	Connection of passive-type analog sensors (Current) and series-connection of an additional analog sensor
	Connection of digital signal sources at analog inputs
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of resistance thermometers in 4-wire configuration
	Connection of resistors in 2-wire configuration
	Connection of a resistance measuring bridge with internal supply
	Connection of a resistance measuring bridge with external supply
	Connection of thermocouples
	Internal compensation
	External compensation with temperature input
	External compensation with compensation box
	External compensation with flanking channel

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Voltage input ranges
	Bipolar voltage input range, measuring bridge
	Unipolar voltage input range, measuring bridge, digital input

	Current input ranges
	Resistance thermometer input ranges
	Resistor input range
	Thermocouple input ranges
	Temperature-internal reference point ranges

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs

	Ordering data

	AO523 - Analog output module
	Intended purpose
	Functionality
	Connections
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Output ranges
	Output ranges voltage and current

	Technical data
	Technical data of the analog outputs

	Ordering data

	AX521 - Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering Data

	AX522 - Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital Inputs
	Technical data of the analog outputs

	Ordering data

	1.6.2.6.3 Digital/Analog I/O modules
	S500
	DA501 - Digital/Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the configurable digital inputs/outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	I/O configuration
	Parameterization
	Group parameters for the digital part
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs
	Internal data exchange

	Ordering data

	DA502 - Digital/Analog input/output module
	Intended purpose
	Functionality
	Connections
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	I/O configuration
	Parameterization
	Group parameters for the digital part
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering data

	1.6.2.7 Function modules
	1.6.2.7.1 S500-eCo
	FM562 for pulse train output
	Intended purpose
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Module parameters
	Input channels for axis 1
	Output channel for axis 1
	Slot parameters for axis 1
	Input channels for axis 2
	Output channel for axis 2
	Slot parameters for axis 2

	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the pulse outputs

	Ordering data

	1.6.2.7.2 S500
	CD522 - Encoder, counter and PWM module
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Ordering data

	FM502-CMS - Analog measurements
	Connections
	Internal data exchange
	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Ordering data

	1.6.2.8 Communication interface modules (S500)
	1.6.2.8.1 Compatibility of communication modules and communication interface modules
	1.6.2.8.2 CANopen
	Comparison CI581 and CI582
	CI581-CN
	Intended purpose
	Functionality
	Connections
	Possibilities of connection
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Ordering data

	CI582-CN
	Intended purpose
	Functionality
	Connections
	Possibilities of connection
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the fast counter

	Ordering data

	1.6.2.8.3 CS31
	CI590-CS31-HA
	Intended purpose
	Functionality
	Connections
	CS31 bus connections
	Internal data exchange
	Addressing
	CI590-CS31-HA limitations
	I/O configuration
	Parametrization
	Diagnosis
	Structure of CI590-CS31-HA diagnosis block
	Diagnosis table CI590-CS31-HA

	State LEDs
	Technical data
	Technical data of the module
	Configurable digital inputs/outputs
	Digital inputs/outputs if used as inputs
	Digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	CI592-CS31 - Digital and analog inputs and outputs
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the configurable digital inputs/outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	CS31 bus connections
	Internal data exchange
	I/O configuration
	Addressing
	Parameterization
	Parameters of the module - if used with fast counter
	Parameters of the module - if used without fast counter
	Group parameters for the digital part
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input range resistor
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering data

	DC551-CS31 - Digital inputs and outputs
	Intended purpose
	Functionality
	Connections
	CS31 bus connections
	Internal data exchange
	Addressing
	DC551-CS31 limitations
	Digital I/O
	Analog I/O
	Case of DC551-CS31 with fast counter
	Small overview of the addressing possibilities

	I/O configuration
	Parameterization
	Structure of the diagnosis block of the DC551-CS31
	Diagnosis
	Status LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as outputs
	Technical data of the digital inputs/outputs if used as inputs

	Technical data of the fast counter

	Ordering data

	1.6.2.8.4 EtherCAT
	CI511-ETHCAT
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Module parameter
	Group parameters of the cam switch
	Channel parameters for the cam switch (max. 32x)
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Ordering data

	CI512-ETHCAT
	Intended purpose
	Functionality
	Connections
	Assignment of the Ethernet ports
	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Module parameter
	Group parameters of the cam switch
	Channel parameters for the cam switch (max. 32x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Ordering data

	1.6.2.8.5 Modbus
	CI521-MODTCP
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis and state LEDs
	Structure of the diagnosis block
	State LEDs

	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Ordering data

	CI522-MODTCP
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	1.6.2.8.6 PROFIBUS
	CI541-DP
	Intended purpose
	Functionality
	Connections
	Possibilities of connection
	Connection on terminal units TU509 or TU510
	Bus termination
	Mounting on terminal units TU517 or TU518
	Technical data bus cable
	Cable length

	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel configuration
	Channel monitoring

	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Ordering data

	CI542-DP
	Intended purpose
	Functionality
	Connections
	Possibilities of connection
	Bus termination
	Technical data bus cable
	Cable length

	Connection of the digital inputs
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering Data

	1.6.2.8.7 PROFINET
	Comparison of the CI5xx-PNIO modules
	PROFINET IO devices CI50x-PNIO
	Characteristics of CI50x-PNIO
	Input/Output characteristics of CI501-PNIO
	Input/Output characteristics of CI502-PNIO
	Technical data of the serial interfaces of CI504-PNIO
	Technical data of the serial interfaces of CI506-PNIO
	Technical data of the CANopen interfaces (CI506-PNIO)

	CI501-PNIO
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis and state LEDs
	Structure of the diagnosis block via PNIO_DEV_ALARM function block
	State LEDs

	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Ordering data

	CI502-PNIO
	Intended purpose
	Functionality
	Connections
	Connection of the Digital inputs
	Connection of the Digital outputs
	Connection of the configurable digital inputs/outputs
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Ordering data

	CI504-PNIO
	Intended purpose
	Functionality
	Connections
	Assignment of the Ethernet ports
	Addressing
	Parameterization
	Parameters of the module
	Parameters of the 3 serial channels
	General precautions
	Precautions for RS-485/RS-422

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the serial interfaces

	Ordering data

	CI506-PNIO
	Intended purpose
	Functionality
	Connections
	Assignment of the Ethernet ports
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Parameters of the 2 serial channels
	General precautions
	Precautions for RS-485/RS-422

	Parameters of the CANopen master
	CAN2A / CAN2B parameters
	Buffer parameters (to be configured for each used buffer)

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the serial interfaces
	Technical data of the CANopen interface

	Ordering data

	1.6.2.9 Accessories
	1.6.2.9.1 AC500-eCo
	CR2032 - Battery for real-time clock
	MC502 - Memory card
	MC503 - Memory card adapter
	MC5102 - Micro memory card with micro memory card adapter
	MC5141 - Memory card
	TA561-RTC - Real-time clock adapter
	TA562-RS - Serial RS-485 adapter
	TA562-RS-RTC - Serial RS-485 adapter with real-time clock
	TA569-RS-ISO - Serial RS-485 isolated adapter
	TA570 - Spare part set
	TA571-SIM - Input simulator
	TK504 - COM2 USB programming cable
	TK506 - RS-485 isolator for COM1
	Intended purpose
	Dimensions
	Connections
	Technical data
	Ordering data

	1.6.2.9.2 AC500 (standard)
	MC502 - Memory card
	MC5102 - Micro memory card with micro memory card adapter
	MC5141 - Memory card
	TA521 - Battery
	TA524 - Dummy communication module
	TA526 - Wall mounting accessory
	TA541 - Battery
	TA543 - Screw mounting accessory
	TK501 - Programming cable
	TK502 - Programming cable
	TK503 - COM1 USB programming cable

	1.6.2.9.3 S500-eCo
	TA563-TA565 - Terminal blocks
	TA566 - Wall mounting accessory

	1.6.2.9.4 S500
	CP-E - Economic range
	CP-C.1 - High performance range
	TA523 - Pluggable label mounting
	TA525 - Plastic labels
	TA526 - Wall mounting accessory
	TA535 - Protective caps for XC devices

	1.6.3 System assembly, construction and connection
	1.6.3.1 Introduction
	1.6.3.2 Regulations
	1.6.3.3 Safety instructions
	1.6.3.3.1 Safety notice

	1.6.3.4 Overall information (valid for complete AC500 product family)
	1.6.3.4.1 Serial I/O bus
	1.6.3.4.2 Mechanical encoding
	1.6.3.4.3 Earthing concept (Block diagrams)
	1.6.3.4.4 EMC-conforming assembly and construction
	General principles
	Cable routing
	Cable shields
	Switchgear cabinet
	Reference potential
	Equipotential bonding

	1.6.3.4.5 Power consumption of an entire station
	Calculation of the total current consumption
	Dimensioning of the fuses

	1.6.3.4.6 Decommissioning
	1.6.3.4.7 Recycling

	1.6.3.5 AC500-eCo
	1.6.3.5.1 System data AC500-eCo
	Environmental conditions
	Creepage distances and clearances
	Insulation test voltages, routine test
	Power supply units
	Electromagnetic compatibility
	Mechanical data
	Approvals and certifications

	1.6.3.5.2 Mechanical dimensions
	Switchgear cabinet assembly
	Mechanical dimensions AC500-eCo
	Mechanical dimensions S500-eCo

	1.6.3.5.3 Mounting and demounting
	Mounting and demounting of the AC500-eCo CPUs
	Mounting and demounting of S500-eCo I/O modules
	Mounting/Demounting the accessories

	1.6.3.5.4 Connection and wiring
	Power supply
	Serial interface COM1
	Serial interface COM2
	COM2 as master of RS-485 communication system
	COM2 as slave of RS-485 communication system

	CS31 bus
	Ethernet
	Ethernet interface
	Wiring
	Cable types

	Modbus RTU connection details

	1.6.3.5.5 Handling of accessories
	CR2032 - Battery for real-time clock
	MC502 - Memory card
	MC503 - Memory card adapter
	MC5102 - Micro memory card with micro memory card adapter
	MC5141 - Memory card
	TA561-RTC - Real-time clock adapter
	TA562-RS - Serial RS-485 adapter
	TA562-RS-RTC - Serial RS-485 adapter with real-time clock
	TA563-TA565 - Terminal blocks
	TA566 - Wall mounting accessory
	TA569-RS-ISO - Serial RS-485 isolated adapter
	TA570 - Spare part set
	CP-E - Economic range
	CP-C.1 - High performance range

	1.6.3.6 AC500 (Standard)
	1.6.3.6.1 System data AC500
	Environmental conditions
	Creepage distances and clearances
	Insulation test voltages, routine test
	Power supply units
	Electromagnetic compatibility
	Mechanical data
	Approvals and certifications

	1.6.3.6.2 Mechanical dimensions
	Switchgear cabinet assembly
	Mechanical dimensions AC500
	Mechanical dimensions S500

	1.6.3.6.3 Mounting and demounting
	Mounting/Demounting terminal bases and function module terminal bases
	Mounting/Demounting the terminal unit
	Mounting/Demounting the processor module PM595
	Mounting processor modules PM57x, PM58x, PM59x and PM56xx
	Mounting/Demounting the I/O modules
	Mounting/Demounting the communication modules
	Mounting/Demounting the accessories

	1.6.3.6.4 Connection and wiring
	Power supply
	Power supply for processor modules

	Terminals for power supply and the COM1 interface
	Terminals at the terminal unit
	Connection of wires at the spring terminals
	Terminals for CANopen/DeviceNet communication modules
	Serial interface COM1 of the terminal bases
	Serial interface COM2 of the terminal bases
	CS31 bus
	Connection of the processor module to the CS31 bus
	Wiring
	Bus topology
	Grounding

	CANopen field bus
	Ethernet connection details
	Ethernet interface
	Wiring
	Cable types

	PROFIBUS connection details
	Modbus RTU connection details

	1.6.3.6.5 Handling of accessories
	MC502 - Memory card
	MC5102 - Micro memory card with micro memory card adapter
	MC5141 - Memory card
	TA521 - Battery
	TA526 - Wall mounting accessory
	TA541 - Battery
	TA524 - Dummy communication module
	TA543 - Screw mounting accessory
	CP-E - Economic range
	CP-C.1 - High performance range

	1.6.3.7 AC500-XC
	1.6.3.7.1 System data AC500-XC
	Environmental conditions
	Mechanical data
	Environmental tests

	1.6.3.8 AC500-S

	1.6.4 System technology for AC500 V2 products
	1.6.4.1 System technology of CPU and overall system
	1.6.4.1.1 Inputs, outputs and flags for AC500 V2 products
	Interfaces for inputs and outputs
	Address scheme for inputs and outputs
	Example for addressing in BOOL / BYTE / WORD / DWORD

	Addressing of inputs and outputs
	Processing of inputs and outputs in the multitasking system
	Addressable flag area (%M area)
	Absolute addresses of operands
	Addressable PERSISTENT area (%R area)
	System start-up / Program processing
	Data backup and initialization
	Initialization of variables, overview
	Declaration of buffered variables and constants

	1.6.4.1.2 System processing
	System start-up / Program processing
	Definitions: PLC system start-up
	Start of the user program
	Processing times
	Task configuration

	Setting standard configuration

	1.6.4.1.3 User Management
	1.6.4.1.4 Real-time clock and battery
	Real-time clock
	AC500 battery

	1.6.4.1.5 LEDs, display and function keys on the front panel
	Overview
	Startup procedure of the PLC
	Description of LEDs
	Description of the function keys
	Overview
	Start and stop PLC
	Configuration
	Reading out values
	Reading out values

	Reading out diagnosis messages on the CPU

	1.6.4.1.6 Onboard technologies
	Ethernet
	Ethernet protocols and ports for AC500 V2 products
	Overview of protocols, sockets and ports
	Numbers and usage of Ethernet sockets
	Maximum numbers of sockets per protocol
	Handling of Ethernet protocols in AC500 CPUs firmware as of V2.4.0
	Onboard Ethernet handling in CPU firmware
	SNTP client and server
	SNTP client
	SNTP server

	ARCNET
	ARCNET bus topology

	1.6.4.1.7 Hot swap
	Preconditions for using hot swap
	Compatibility of hot swap
	Hot swap behavior

	1.6.4.1.8 Communication with Modbus RTU
	Protocol description
	Technical data
	Modbus addresses for AC500 CPUs
	Modbus address table
	Peculiarities for accessing Modbus addresses
	Areas protected from read/write access by Modbus client
	Comparison between AC500 and AC31/S90 Modbus addresses

	Local data of the Modbus client
	Modbus telegrams
	FCT 1 or 2: Read n bits
	Example

	FCT 3 or 4: Read n words
	Example

	FCT 3 or 4: Read n double words
	Example

	FCT 5: Write 1 bit
	Example

	FCT 6: Write 1 word
	Example

	FCT 7: Fast reading the status byte of the CPU
	Example

	FCT 15: Write n bits
	Example

	FCT 16: Write n words
	Example

	FCT 16: Write n double words
	Example

	FCT 22: Mask write register
	Example

	FCT 23: Read/Write n words
	Example

	Exception response by server
	Example

	Function block COM_MOD_MAST

	1.6.4.1.9 Communication with Modbus TCP/IP
	Protocol description
	Technical data
	Modbus addresses for AC500 CPUs
	Modbus address table
	Peculiarities for accessing Modbus addresses
	Areas protected from read/write access by Modbus client
	Comparison between AC500 and AC31/S90 Modbus addresses

	Local data of the Modbus client
	Modbus telegrams
	Exception response by server
	General telegram description
	Example

	Function blocks ETH_MOD_MAST and ETHx_MOD_MAST

	1.6.4.1.10 Fast counters
	Fast counters in AC500 devices
	Fast counter in AC500-eCo (Onboard I/O in PM55x and PM56x)

	1.6.4.1.11 Special function blocks and programs
	Function block COM_SET_PROT
	Sending/Receiving data with SysLibCom protocol

	1.6.4.2 System technology of the AC500 communication modules
	1.6.4.2.1 Ethernet communication modules
	Ethernet
	Frame formats
	Bus access methods
	Half duplex and full duplex
	Auto negotiation
	Ethernet and TCP/IP

	Supported protocols
	Sockets
	Restrictions

	Designing and planning a network
	Introduction
	Concepts for structuring a network
	Network components
	Terminal devices
	Repeaters and hubs
	10 Mbit/s hubs
	100 Mbit/s hubs
	10/100 Mbit/s dual-speed hubs

	Bridges, switches and switching hubs
	Media converters
	Routers
	Gateways

	Programming access via Ethernet
	Modbus on TCP/IP
	Fast data communication via UDP/IP

	1.6.4.2.2 PROFIBUS DP communication modules
	Introduction
	PROFIBUS overview
	PROFIBUS DP-V0 <---> PROFIBUS DP-V1
	Features

	Designing and planning a network
	Single master system
	Multi master system

	PROFIBUS implementation
	System start-up behavior

	Diagnosis
	Error diagnosis
	Function blocks

	1.6.4.2.3 PROFINET communication modules
	PROFINET overview
	PROFINET designations
	PROFINET nomenclature
	Transfer mechanism of PROFINET
	Prioritization of the data exchange with VLAN

	General station description file
	PROFINET conformance classes

	PROFINET modules
	Communication modules and communication interface modules
	Device model of AC500 PROFINET IO devices
	Allocation of the device name

	Designing and planning a network
	Topologies
	Star
	Tree
	Bus (also called line)

	Parallel operation of different PROFINET IO systems in one network

	System performance
	Bus communication
	SendClockFactor
	ReductionRatio

	Help on projecting
	Configuration examples and their delivery time
	Example 1 (typical)
	Example 2 (with 7 I/O modules)

	Delivery time of CI501-PNIO and CI502-PNIO

	PROFINET implementation
	System start-up behavior

	Diagnosis
	PROFINET function block library
	Identification and maintenance functions
	Online diagnosis
	Diagnosis views
	Protocol stack diagnosis view
	Firmware info view
	Ethernet statistics view

	1.6.4.2.4 EtherCAT communication module
	EtherCAT overview
	Features
	Transfer mechanism EtherCAT
	Addressing modes
	Device addressing
	Logical addressing

	Distributed clock
	CANopen over EtherCAT (CoE)
	Device description file (DDF)

	Device names and allocation of addresses
	Designing and planning a network
	System performance
	Distributed control cams with EtherCAT
	EtherCAT implementation
	System start-up behavior
	EtherCAT sync

	Diagnosis

	1.6.4.2.5 CANopen communication modules
	CANopen overview
	Features
	Communication mechanisms
	Network management
	Node guarding and heartbeat
	Object directory
	Identifiers
	PDO mapping
	EDS files

	Master-Slave-Arrangement
	Designing and planning a network
	CANopen implementation
	System start-up behavior
	Synchronization of an application task with the I/O update
	Special SDOs for CI581-CN / CI582-CN
	Block wise single parameterization (Object 2700hex to 270Ahex)
	Parameter indexes of CI581-CN
	Parameter indexes of CI582-CN

	Block wise read of single parameterization (Object 2710hex to 271Ahex)
	Eeprom download (Object 3100hex)
	Factory test mode (Object 5010hex)

	CI581-CN / CI582-CN in DS401 mode
	Activation of DS401 mode in CI581-CN / CI582-CN
	PDO mapping in DS401 mode
	RxPDO mapping in DS401 mode
	TxPDO mapping in DS401 mode
	Parameterization of CI581-CN / CI582-CN in DS401 mode
	Block wise single parameterization (Object 2700hex to 270Ahex)
	Single parameterization without fragmented SDOs (Object 2720hex to Object 272Ahex)

	Limitations for CI581-CN / CI582-CN in DS401 mode
	DA501
	CD522

	Triggering of event tasks with CAN-IDs
	Diagnosis
	Error messages
	Function blocks

	1.6.4.2.6 Serial communication module
	CM574-RS - Serial communication module for AC500
	Overview
	User program size and operands of the CM574-RS
	Connection and transmission media

	Protocols of the serial interfaces of the CM574-RS
	Protocol 'COMx - Online access'
	Protocol 'COMx - ASCII'
	Protocol 'COMx - Modbus'
	Protocol 'COMx - SysLibCom'
	Protocol 'COMx - Multi'
	Protocol 'COM1 - CS31 Bus'
	Planning example for CM574-RS/CS31 bus
	Cyclic data exchange CM574-RS/CS31 bus <-> AC500 CPU
	Transfer of the inputs
	Transfer of the outputs

	Acyclic data exchange CM574/AC500 CPU
	Function blocks for acyclic data exchange CM574-RS/AC500 CPU
	Programming example for acyclic data exchange
	Part 1: Reception of data
	 Part 2: Processing of data
	Part 3: Transmission of data

	Special functions of the CM574-RS
	Programming access to the CM574-RS
	Programming via the serial interface of the CM574-RS
	Programming the CM574-RS via the AC500 CPU (Routing)
	Programming via CPU with serial driver "ABB RS232 Route AC"
	Programming via CPU with Ethernet Driver "ABB Tcp/Ip Level2 AC"
	Programming via CPU with ARCNET Driver "ABB ARCNET AC"

	1.6.4.2.7 RCOM/RCOM+ communication module
	CM574-RCOM - RCOM/RCOM+ communication module
	Overview
	Features
	RCOM/RCOM+ protocol
	RCOM networks
	Job types
	Data transmission
	Planning
	Error codes
	Operator terminal

	Planning examples
	Example 1: Direct connection
	Master-Slave-Arrangement
	Implementation of the user program

	Example 2: Dial-Up connection
	Master-Slave-Arrangement
	Implementation of the User program

	1.6.4.3 System technology of the communication interface modules
	1.6.4.3.1 Modbus communication interface module
	Overview
	Modbus TCP registers
	Register layout for CI52x-MODTCP
	Information data section (Acyclic data)
	Module specific information registers
	Common device information registers

	I/O / Process data and diagnosis section (Cyclic data)
	Module state
	Diagnosis data
	I/O data

	Parameter data (Acyclic data)
	Short description of the CI521-MODTCP parameters
	Short description of the CI522-MODTCP parameters
	Parameters of connected expansion modules

	Special functionality

	Behavior
	IP address assignment
	Using the address switches
	Using the IP configuration tool

	Parameterization
	Cyclic I/O data exchange
	Diagnosis behavior
	Single parameterization

	Commissioning example
	Hot swap
	Preconditions for using hot swap
	Compatibility of hot swap
	Hot swap behavior
	System behavior
	Mandatory rules for hot swapping

	1.6.4.3.2 PROFIBUS communication interface module
	Hot swap
	Preconditions for using hot swap
	Compatibility of hot swap
	Hot swap behavior
	System behavior
	Mandatory rules for hot swapping

	1.6.4.3.3 PROFINET communication interface module
	Hot swap
	Preconditions for using hot swap
	Compatibility of hot swap
	Hot swap behavior
	System behavior
	Mandatory rules for hot swapping

	1.6.4.4 System technology of the AC500 function modules
	1.6.4.4.1 DC541-CM interrupt and counter module
	Cycle time modification
	Usage as interrupt I/O module
	Creating an interrupt task for the interrupt inputs
	Structure of the interrupt program
	--Configuration example: DC541-CM used as interrupt I/O device

	Usage as counter module
	32-Bit up/down counter of module DC541-CM
	32-Bit forward counter of module DC541-CM
	Configuration example: 32-Bit forward counter

	Usage for pulse width modulation
	Automation Builder configuration
	Calling the function blocks
	Configuration example: Pulse width modulation (PWM)

	Usage for time and frequency measurement
	Automation Builder configuration
	Calling the function blocks
	Configuration example: Frequency output

	Usage for frequency output
	Automation Builder configuration
	Calling the function blocks

	Application examples

	1.6.4.4.2 CD522 encoder and PWM module
	Functionality of the CD522 module
	Operating modes
	CD522 used as encoder device
	Incremental encoder
	Absolute SSI encoder

	CD522 used as counter device
	32-Bit bidirectional counter
	16-Bit bidirectional counter
	Two 16-bit bidirectional counter

	CD522 used as PWM output device
	CD522 used as pulse output device
	CD522 used as frequency output device
	CD522 used as time frequency meter

	1.6.4.4.3 FM502-CMS function module
	Condition monitoring
	FM502-CMS function module
	Configuration of FM502-CMS
	Parameterization
	Parameter set

	Process image (I/O data)

	FM502-CMS analog measurement
	Configuration for analog measurements
	Measurement files
	Programming

	FM502-CMS used as counter device
	32-bit bidirectional counter
	16-bit bidirectional counter
	Two 16 bit up/down counters

	FM502-CMS used as encoder device
	Incremental encoder
	Absolute SSI encoder

	FM502-CMS used as time frequency meter
	FM502-CMS used with synchronized counter/encoder files
	Configuration
	Measurement files

	1.6.4.4.4 FM562 module
	Functionality of the FM562 Module
	Basic features of the PTO module FM562
	The function blocks used with FM562
	Special features
	Parameter configuration

	1.6.4.5 System technology for AC31 adapter I/O modules
	1.6.4.5.1 KP9x devices
	Interrupt handler for KP9x devices

	1.6.5 Configuration in Automation Builder for AC500 V2 products
	1.6.5.1 General settings
	1.6.5.1.1 Project handling
	Creating a new project
	Opening an existing project
	Exporting and importing a project
	Upgrading/ updating a project to a new Automation Builder version or profile
	I/O mapping export and import
	Comparing projects
	Creating a comparison view
	Opening the detailed compare view

	Project archive
	Creation of an archive
	Extraction of an archive

	1.6.5.1.2 User and access rights management
	User and access rights
	User management
	Access right management

	User management commands
	Project Settings - Users and groups
	Users dialog
	Groups dialog
	Settings dialog

	1.6.5.1.3 Flexible AC500 configuration
	Software configuration
	Standard configuration
	Advanced configuration

	Activating another hardware variant (Configuration file)

	1.6.5.1.4 I/O mapping list
	Configuring I/O mapping list
	Editing I/O mapping list
	Toolbar

	1.6.5.1.5 Setting standard configuration
	1.6.5.1.6 Later change-over of a target system
	Changing the processor module type
	Target change from a V2 processor module to another V2 processor module
	Target change to PM595

	Target change from a V2 processor module to a V3 processor module

	Customer libraries

	1.6.5.1.7 Firmware identification and update
	General information
	Version information
	Updating the firmware of AC500 devices from the memory card
	Update from memory card during system start
	Update from memory card with PLC browser commands (Online mode)
	Update via FTP

	Update PM595 firmware
	Firmware update of the CPU
	Firmware update of internal communication module for PROFINET
	Firmware update internal communication module of PM595 for EtherCAT

	Update CI52x-Modbus firmware
	Installation of the IP configuration tool
	Firmware update procedure
	Troubleshooting
	Erroneous firmware update
	Signature check failed
	Indeterminate device firmware version

	1.6.5.1.8 MultiOnlineChange tool
	Introduction
	Preconditions
	Usage of the MultiOnlineChange tool
	Overview
	Step-by-step guide

	Performing a multi download
	Verifying the download/online change success
	Editing the master PLC
	MultiOnlineChange
	Online access
	Limitations in V2.x
	Modify wait time of MultiDownload/Online change

	1.6.5.1.9 Embedding of AC500 V2 libraries
	1.6.5.1.10 Migration of third party devices
	1.6.5.1.11 Advanced IO device handling
	Generating DUT
	Mapping to existing DUT
	Releasing DUT mapping
	Using DUT variables in CODESYS application
	Support for CI level node
	Configuration check

	1.6.5.2 PLC devices and components
	1.6.5.2.1 Device repository
	1.6.5.2.2 PLC start-up
	Connection of devices
	Configuring devices
	Symbolic names for variables, inputs and outputs
	Update of AC500 devices
	Comparing objects

	IP settings
	Configuration of the IP settings with the LED display
	Configuration of the IP settings with the IP configuration tool
	Stand-alone installation
	Using the tool functions
	Network scan
	Changing the IP address
	Firmware update
	Blink functionality

	Trouble-shooting for IP configuration tool
	Trouble-shooting for firmware update

	Configuration of communication via Ethernet (TCP/IP)
	Enter a known PLC IP address
	Enter PLC IP address by scanning devices
	Enter PLC IP address by [Advanced Settings...]
	Ethernet driver "TCP/IP"
	Ethernet driver "ABB TCP/IP Level 2 AC"
	Ethernet ARCNET routing

	1.6.5.2.3 Processor modules
	Configure a processor module in the device tree
	Processor modules with onboard interfaces: PM5xy-ETH, PM5xy-2ETH, PM5xy-ARC
	Parameters of the processor module
	Remark 1: Setting the parameters auto run and MOD using the display/keypad
	Remark 2: Error LED
	Remark 3: Behavior of outputs in stop
	Remark 4: Warmstart
	Remark 5: Reaction on floating point exceptions
	Remark 6: Start PERSISTENT %Rsegment.x and end PERSISTENT %Rsegment.x

	Changing the processor module type
	Target change from a V2 processor module to another V2 processor module
	Target change to PM595

	Target change from a V2 processor module to a V3 processor module

	PM5xy-ETH onboard Ethernet
	Parameters of PM5x1-ARCNET (onboard ARCNET)
	Remark 1: Setting behavior of the ARCNET node ID
	Remark 2: Tranmission rate of the ARCNET communication module
	Remark 3: Check of DIN identifier on receipt

	PM595-4ETH fieldbus communication
	Configuration in Automation Builder
	Update firmware for fieldbusses on ETH3/4
	Update Automation Builder 1.1 projects to Automation Builder 1.2

	AC500-eCo onboard I/Os
	Parameterization of the onboard I/Os for PM55x-xP
	Parameterization of the onboard I/O for PM56x-xP
	Mapping of the I/O channels
	Fast counters in the onboard I/Os
	Configuration of interrupt inputs
	Creating an interrupt task
	Structure of the interrupt program

	Configuration of PWM outputs
	Operating the PWM output with user program

	1.6.5.2.4 Onboard Ethernet configuration
	PM5xy-ETH - Onboard Ethernet
	Parameterization of PM5xy-ETH
	Configuration of the IP settings
	Configuration of the IP settings with the IP configuration tool
	Stand-alone installation
	Using the tool functions
	Network scan
	Changing the IP address
	Firmware update
	Blink functionality

	Trouble-shooting for IP configuration tool
	Trouble-shooting for firmware update

	CM5xy-ETH - External Ethernet communication module
	Ethernet protocols

	1.6.5.2.5 Onboard ARCNET configuration
	Parameters of PM5x1-ARCNET (onboard ARCNET)
	Remark 1: Setting behavior of the ARCNET node ID
	Remark 2: Tranmission rate of the ARCNET communication module
	Remark 3: Check of DIN identifier on receipt

	1.6.5.2.6 Communication modules
	Communication modules (CM5xx)
	PROFIBUS
	CM592-DP- PROFIBUS DP master communication module
	Parameterization of the CM582-DP/CM592-DP communication module
	Configuration of a PROFIBUS DP master
	Configuration of 3rd party PROFIBUS DP slaves
	Configuration of the PROFIBUS DP slaves connected via FBP
	I/O configuration check

	Changing the target of a device

	CM582-DP PROFIBUS DP slave communication module
	Configuration of PROFIBUS DP slave
	Configuration of I/O data objects
	Mapping of the I/Os

	CM574-RS - Programmable serial communication module
	Configuration of the CM574-RS in the AC500 CPU project
	Using cyclic data exchange
	Using COM protocols
	Shared Modbus Modus

	Configuration of CM574-RS
	Parameterization
	Configuration of the cyclic data exchange between CM574-RS and the processor module
	Configuration of the serial interfaces of the CM574-RS

	-Remote control of COM ports of the CM574-RS communication module
	Shared ports in the CM574-RS Project
	CS31 bus I/O configuration and access
	Alias parameter

	CM574-RCOM - RCOM/RCOM+ Communication module
	Module parameters
	Configuration of the operator terminal
	Configuration of the RCOM protocol interface
	Dial-up configuration

	CM597-ETH
	Parameterization of the external communication module CM597-ETH
	Configuration of the external communication module CM597-ETH (IP data)
	Configuration of the external communication module CM597-ETH (Extended settings)

	CANopen
	CM598-CN - CANopen master communication module
	CM598-CN - CANopen manager communication module
	Parameterization of CM598-CN
	Configuration of the CAN protocols
	Configuration of CANopen manager
	Configuration of the CANopen remote devices
	Configuring the expert PDO settings

	PDO mapping editor
	Overview
	PDO configuration
	COB-ID
	Transmission type
	Number of syncs
	Inhibit time
	Event timer
	RTR

	Configuring the service data object
	Configuring the CAN slave boot up
	Checking the I/O configuration

	CM588-CN - CANopen slave communication module
	Configuration steps
	Parameterization of the CM588-CN communication module interface
	Parameterization of the CANopen slave protocol stack
	Configuration of I/O data objects
	Mapping of the I/Os

	PROFINET
	CM579-PNIO - PROFINET communication module
	Parameterization
	Configuration of the PROFINET IO controller
	Configuration of ABB PROFINET IO devices
	PROFINET IO device
	PROFINET IO timing
	PNIO configuration
	CI504-PNIO/CI506-PNIO

	Configuration of 3rd party PROFINET IO devices
	PNIO parameters
	PNIO configuration

	Configuration of PROFINET shared device functionality
	Name assignment of a PROFINET IO device
	Mapping of the PROFINET IO devices

	CM589-PNIO / CM589-PNIO-4 - PROFINET IO device communication module
	CM589-PNIO / CM589-PNIO-4 - PROFINET IO device communication module

	CM579-ETHCAT - EtherCAT master communication module
	AC500 CM579-ETHCAT - Communication module EtherCAT master
	Parameterization of the CM579-ETHCAT communication module interface
	Configuration of the EtherCAT master
	Configuration of the EtherCAT slaves
	Export process data
	Startup parameters

	Mapping of the EtherCAT slave I/Os
	EtherCAT Master configuration of DA501
	EtherCAT Sync - Synchronization of a PLC task with the IO image
	Configuration
	Configuration of the bus cycle time
	Configuration of the master synchronization mode
	Configuration of PLC task and synchronization mode

	1.6.5.2.7 Communication interface modules
	Configuration of communication interface modules
	CI504-PNIO/CI506-PNIO
	Device tree
	Outputs of serial (or Raw CAN) interface
	Inputs of serial (or Raw CAN) interface

	CI521-MODTCP/CI522-MODTCP
	Unbundled CI52x-MODTCP configuration

	1.6.5.2.8 Function modules
	DC541-CM interrupt and counter module
	General Automation Builder configuration
	Usage as interrupt I/O device
	Cycle time modification
	Creating an interrupt task for the interrupt inputs
	Structure of the interrupt program
	--Configuration example: DC541-CM used as interrupt I/O device

	Usage as counting device
	32-Bit up/down counter of module DC541-CM
	32-Bit forward counter of module DC541-CM
	Configuration example: 32-Bit forward counter

	Usage as X4 counting device
	Automation Builder configuration

	Usage for pulse width modulation
	Automation Builder configuration
	Calling the function blocks
	Configuration example: Pulse width modulation (PWM)

	Usage for time and frequency measurement
	Automation Builder configuration
	Calling the function blocks
	Configuration example: Frequency output

	Usage for frequency output
	Automation Builder configuration
	Calling the function blocks

	CD522 encoder and PWM module
	Functionality of the CD522 module
	Operating modes
	CD522 configuration
	CD522 on I/O bus
	CD522 on CS31-bus
	Parameterization
	Operands
	Operating modes
	Operands for counting function
	Control bytes (0 and 1) functions
	Status bytes (0 and 1) functions

	Operands for PWM/pulse function
	Control bytes (0 and 1) functions

	CD522 used as encoder device
	Incremental encoder
	Absolute SSI encoder

	CD522 used as counter device
	32-Bit bidirectional counter
	16-Bit bidirectional counter
	Two 16-bit bidirectional counter

	CD522 used as PWM output device
	CD522 used as pulse output device
	CD522 used as frequency output device
	CD522 used as time frequency meter

	FM502-CMS Function module
	Condition monitoring
	FM502-CMS function module
	Configuration of FM502-CMS
	Parameterization
	Parameter set

	Process image (I/O data)

	FM502-CMS analog measurement
	Configuration for analog measurements
	Measurement files
	Programming

	FM502-CMS used as counter device
	32-bit bidirectional counter
	16-bit bidirectional counter
	Two 16 bit up/down counters

	FM502-CMS used as encoder device
	Incremental encoder
	Absolute SSI encoder

	FM502-CMS used as time frequency meter
	FM502-CMS used with synchronized counter/encoder files
	Configuration
	Measurement files

	FM562 module
	Special features
	Inserting FM562 on I/O bus
	Configuring the Library Manager

	1.6.5.2.9 I/O bus and I/O modules
	Hot swap configuration
	Parameter configuration

	Parameterization of the I/O bus
	Parameter 'Ignore module'
	Insertion of S500 I/O devices
	Configuring the input and output modules and channels
	Symbolic names for variables, inputs and outputs
	I/O mapping list
	Configuring I/O mapping list
	Editing I/O mapping list
	Toolbar

	Fast counter
	Configuration for S500 I/O modules
	Operands
	Operating modes

	Configuration for onboard I/Os
	Counting modes

	Control of the fast counter

	1.6.5.2.10 CS31 fieldbus
	Configuration of CS31 bus master
	Configuration of the slave modules
	DC551-CS31 and S500 I/O devices as slave modules
	S500/S500-eCo modules as slave modules

	Checking the CS31 modules
	Connecting the DC551 and S500 I/O devices to the CS31 bus
	Configuration of other module

	1.6.5.2.11 Serial interfaces COM1 and COM2
	Setting up the protocol of a serial interface
	Setting COMx - Online access
	Setting COMx - ASCII
	Enable login
	Usage of modems
	Telegram ending identifier
	Checksum

	Setting COMx - Modbus
	Setting COMx - CS31
	Setting COMx - SysLibCom
	Telegram ending identifier

	Setting COMx - Multi

	1.6.5.2.12 AC500 FBP slave interface
	1.6.5.2.13 Gateway configuration
	Gateway settings on windows server 2012

	1.6.5.2.14 Open Device Type editor
	Device information
	Groups and parameters
	Custom parameter types
	Exporting/Importing a device description file
	Installing a device description file to the device repository
	Configuring a device description file in modbus RTU
	Configuring a device description file in modbus TCP/IP
	Task configuration

	1.6.5.3 Protocols and special servers
	1.6.5.3.1 General configuration of protocols and special servers
	1.6.5.3.2 IEC60870-5-104 (Telecontrol)
	Configuration of IEC 60870-5-104 (Telecontrol)
	General information IEC60870
	Introduction
	Data flow control
	Data integrity
	Data transmission
	Send blocks
	Send via request pin
	Change-driven send of data
	Cyclic send
	Receive blocks

	Configuration < Automation Builder 1.1/CBP 2.4
	Configuration up to and including CBP 2.3
	Control station and substations < Automation Builder 1.1
	Control station and substation preferences
	Tab link layer
	Tab application layer
	General
	General inquiry
	Counter interrogation

	Tab navigation
	Tab control station configuration

	Global address
	Description of the columns

	Data points
	Data point configuration
	Mapping to IEC 60870-5-104 type identification

	Data point modules
	Timestamp
	Group
	Type

	Validity check of configuration (< Automation Builder 1.1/CBP 2.4)
	Creating configuration data in Automation Builder
	Connection
	Commands

	Using control and substations in CODESYS
	Description of the initialization values of the station

	Using data points in CODESYS
	Description of the initialization values of the station

	Configuration >= Automation Builder 1.1/CBP 2.4
	Configuration changes >= Automation Builder 1.1/CBP 2.4
	Control station and substation configuration
	Tab link layer
	Network settings
	Tab application layer
	Settings
	General inquiry
	Counter interrogation

	Tab information objects
	Format of common addr and info obj addr

	Import options of information objects
	IEC60870-5-104 Multiple connections
	Structures of connections
	Minimal structure
	Minimal redundancy structure
	Network redundancy
	Network redundancy with 2 separate networks
	Network redundancy with 1 network and 2 Ethernet ports in substation
	Network redundancy with 1 network and 1 Ethernet port in substation
	Network redundancy with 2 Ethernet ports in substation

	Full control station redundancy
	Multiple control stations on the same network
	Multiple control stations on different networks
	Double connection
	Faulty configuration

	Export a CSV file

	Import/Export functionality
	Validity check of configuration

	IEC60870 compatibility list

	1.6.5.3.3 Modbus protocol
	Modbus on TCP/IP protocol
	Configuration of Modbus TCP/IP server settings
	Configuration of Modbus server settings
	Up to CBP 2.4
	As of CBP 2.4

	Configuration of Modbus TCP/IP configuration

	Modbus on RTU protocol

	1.6.5.3.4 MQTT client protocol
	System technology
	Examples

	1.6.5.3.5 SMTP protocol
	Introduction of the SMTP protocol
	Configuration of the SMTP protocol (>= CBP 2.4)

	1.6.5.3.6 SNTP protocol
	Introduction of the SNTP protocol
	Configuration of the SNTP protocol
	SNTP client configuration
	SNTP server configuration

	1.6.5.3.7 UDP protocol
	Contents of the UDP protocol configuration
	Using UDP (No AC31 header)
	Up to CBP 2.4
	As of CBP 2.4

	Using UDP data exchange

	1.6.5.3.8 FTP server
	Preconditions for the use of the FTP server
	Configuration of FTP server (< CBP 2.4)
	Configuration of FTP server (>= CBP 2.4)
	Connection to a PLC running a FTP server

	1.6.5.3.9 Web server
	Configuration

	1.6.5.4 Data transfer and programming
	1.6.5.4.1 Data transfer and CODESYS programming
	Creating configuration data
	Launching programming system CODESYS V2.3.9.x
	Source download/upload in Automation Builder

	1.6.5.4.2 Programming and testing
	Programming interfaces to the AC500 used by control builder plus / Automation Builder
	Programming via the serial interfaces
	Serial driver "Serial (RS-232)"
	Serial driver "ABB RS232 Route AC"

	Programming via ARCNET
	Installation of ARCNET cards
	Overview of Supported ARCNET cards
	Installation of ARCNET cards under Win2000 / XP

	ARCNET driver "ABB ARCNET AC"

	Configuration of communication via Ethernet (TCP/IP)
	Enter a known PLC IP address
	Enter PLC IP address by scanning devices
	Enter PLC IP address by [Advanced Settings...]
	Ethernet driver "TCP/IP"
	Ethernet driver "ABB TCP/IP Level 2 AC"
	Ethernet ARCNET routing

	1.6.5.4.3 AC500-specific PLC browser commands
	1.6.5.4.4 Watch- and recipe manager
	General information
	Function
	Watch- and recipe manager extensions
	Adding variables to watch window from language editors
	Function Block Diagram (FBD)
	Ladder Diagram (LD)
	Continous function chart (CFC)
	Instruction list (IL)
	Sequential function chart (SFC)

	Adding an address range to the watch window
	Filtering within input assistant
	Defining display format for each watch variable separately

	1.6.5.4.5 Cross-reference list in watch- and recipe manager
	General information
	Open “Cross Reference List” from watch window
	Open “Cross Reference List” from language editors
	Cross references in visualizations
	Cross references for arrays, structures and addresses

	1.6.5.4.6 Reference to libraries
	1.6.5.4.7 Programming in C code
	Preface
	Overview
	How to Create a C/C++ Application
	Creating a “Hello World” Application
	Interface between C/C++ and IEC Code
	POU Type Function
	POU type function block
	POU Structure with VAR_IN_OUT
	Function block instance data
	Data Type

	Advanced Topics
	Debugging C/C++ Code
	Debugging with Local POU Variables
	Write User-defined Content to File
	Send User-defined Content via Ethernet

	Firmware Application Programming Interface (FWAPI)
	Additional Source Code Files in C/C++ Application
	Migration of Existing Applications
	Binary Deployment of C/C++ Application
	Export/Import of C/C++ Code
	Export/Import of C/C++ Application
	Export/Import of Data Type
	Export/Import of POU Interface

	Project Backup Mechanism

	Known Issues and Frequently Asked Questions
	Appendix
	IEC vs. C/C++ Operators
	IEC vs. C/C++ Types
	C 99 vs. ANSI C
	C++ 98 vs. C++ 03

	1.6.5.5 Server installation
	1.6.5.5.1 OPC server for AC500 V2 products
	Introduction
	Architecture of the CODESYS OPC server
	Essential documents
	Work flow
	Consideration and preparation
	Commission OPC server
	Adjustment to target OPC client

	Hints
	When using OPC server V2 or V3
	Default folder and contents
	Windows 7, Windows Server 2008/2016 (64-bit)
	Windows 7 (32-bit), Windows Server 2008/2016 (32-bit)
	Windows Server 2008/2016 (32-bit)

	Installation of OPC server
	Installing with Automation Builder
	Manual registration and unregistration
	Register OPC server V3 as a system service

	OPC clients for tests

	CODESYS settings
	Symbol file
	AC500 (V1 and V2)
	Configure a symbol file
	Create and download a symbol file

	Configure OPC server
	Configure OPC server V2 (for AC500 V1 and V2)
	Configure OPC Server V3
	Check OPC function with AC500
	Check OPC server V2
	Check OPC server V3
	Check processes with windows task manager

	Configure AlarmEvents
	Check AlarmEvents

	Configure user account for OPC server
	OPC server V3 on Windows Server 2003/ 2008/ 2012/ 2016

	Potential issues
	Gateway communication not possible
	Windows Server 2012/ 2016

	Symbol file from AC500 not loaded
	Session isolation
	Behavior OPC server V3 via interface IOPCAsyncIO

	Examples
	Test OPC function without AC500
	AC500 project
	Configure OPC server V2
	Check OPC server with MatrikonOPCExplorer
	Check processes with windows task manager
	Summary

	Create an OPC client with Microsoft Excel
	OPC server V3 with S+
	Win7 64 bit OPC server V3 symbol file local

	Appendix
	Transmission rate - Comparison with OPC server V2 to V3
	Performance - Comparison with OPC server V3 and TCPIP drivers

	1.6.5.5.2 Web server
	Use of the web server for the AC500
	Configuration
	Alarm configuration

	1.6.5.6 Converting an AC500 V2 project to an AC500 V3 project

	1.6.6 Storage devices for AC500 V2 products
	1.6.6.1 Introduction of AC500 storage devices for AC500 Products
	1.6.6.1.1 Overview
	1.6.6.1.2 Functionalities
	1.6.6.1.3 Memory sizes
	1.6.6.1.4 Storage device details
	RAM disk
	User disk
	SRAM disk
	Memory card
	Flash
	Flash disk

	1.6.6.2 Memory card in AC500 V2
	1.6.6.2.1 Memory card functions for AC500 V2 products
	1.6.6.2.2 Firmware and/or application update with memory card
	Memory card file structure for AC500 V2 products
	Command file SDCARD.INI for AC500 V2 Products
	Description of LEDs
	Initializing an memory card
	Using the AC500 PLC for AC500 V2 Products

	1.6.6.2.3 Content of the memory card for firmware/application update
	1.6.6.2.4 Storing/Loading the Firmware to the memory card for AC500 V2 products
	1.6.6.2.5 Storing/Loading the user program to/from the memory card for AC500 V2 products
	Storing the user program to the memory card
	Loading the user program from the memory card to the AC500 PLC

	1.6.6.2.6 Storing/Reading user data for AC500 V2 products
	Structure of data files stored on the memory card
	Function blocks for storing/reading user data to/from the memory card
	Deleting a data file stored on the memory card
	Storing user data to the memory card
	Data file without sectors
	Data file with sectors

	Loading user data from the memory Card for AC500 V2 products
	Data file without sectors
	Data file with sectors

	1.6.6.2.7 Storing force values onto memory card

	1.6.6.3 Data storage in flash memory for AC500 V2 products
	1.6.6.4 Flash disk for AC500 V2 products

	1.7 Diagnosis and debugging for AC500 V2 products
	1.7.1 The diagnosis system
	1.7.1.1 Access to diagnosis data
	1.7.1.2 Diagnosis in CPU display
	1.7.1.2.1 Device state
	1.7.1.2.2 Diagnosis descriptions

	1.7.1.3 Diagnosis in Automation Builder
	1.7.1.3.1 Diagnosis history

	1.7.1.4 Diagnosis in IEC application
	1.7.1.5 Structure of error numbers
	1.7.1.5.1 State (come, gone, acknowledged)
	1.7.1.5.2 Error severity
	1.7.1.5.3 Error identifiers

	1.7.1.6 Diagnosis history file

	1.7.2 Online diagnosis in Automation Builder
	1.7.2.1 Short description and overview
	1.7.2.2 Entering/leaving the online mode
	1.7.2.3 Project tree in online mode
	1.7.2.4 Error messages, warnings and notes (dialogs)
	1.7.2.5 CPU diagnosis views
	1.7.2.5.1 CPU diagnostics (error log)
	1.7.2.5.2 Statistics
	1.7.2.5.3 Version information
	1.7.2.5.4 PLC browser
	1.7.2.5.5 AC500-specific PLC browser commands

	1.7.2.6 Live values in views with I/O components
	1.7.2.7 Communication module and fieldbus diagnosis
	1.7.2.7.1 Fieldbus commissioning
	Master/controller modules
	PROFINET scan and comparison view

	Slave/device communication modules

	1.7.2.7.2 Onboard Ethernet statistic
	1.7.2.7.3 CM592-DP PROFIBUS DP communication module statistic views
	Extended status block view
	Common status block view
	Firmware identification view
	Station diagnosis view

	1.7.2.7.4 CM592-DP PROFIBUS DP slave view
	1.7.2.7.5 CM579-PNIO PROFINET IO controller views
	IO controller views
	IO controller list of slaves view
	IO controller firmware and task info view
	IO controller common status block view
	IO controller firmware identification view

	1.7.2.7.6 CM579-PNIO PROFINET IO device views
	ModuleDiffBlock error

	1.7.2.7.7 CM598-CN CANopen communication module statistic views
	Extended status block view
	Common status block view
	Firmware identification view
	Station diagnosis view

	1.7.2.7.8 CI506-PNIO communication interface CANopen master view
	Master view
	Station view
	Global state field view

	1.7.2.7.9 CI506-PNIO communication interface CANopen slave view
	1.7.2.7.10 CI52x Modbus diagnosis

	1.7.3 Diagnosis messages
	1.7.3.1 Possible error combinations
	1.7.3.2 CPU diagnosis
	1.7.3.3 S500 I/O modules diagnosis
	1.7.3.4 Communication modules diagnosis
	1.7.3.4.1 Errors of the communication module's operating system
	1.7.3.4.2 Ethernet communication module errors
	1.7.3.4.3 CM579-ETHCAT
	1.7.3.4.4 CM589-PNIO(-4) errors
	1.7.3.4.5 CM598-CN errors
	1.7.3.4.6 AC500-S: errors from safety CPU and safety I/O modules

	1.7.3.5 Error messages of the AC500 V2 function block libraries
	1.7.3.5.1 0000hex...0FFFhex - telegram error
	1.7.3.5.2 1000hex...1FFFhex - device error
	1.7.3.5.3 2000hex...2FFFhex - interface error
	1.7.3.5.4 3000hex...3FFFhex - protocol error
	1.7.3.5.5 4000hex...4FFFhex - block input error
	1.7.3.5.6 5000hex...5FFFhex - request error
	1.7.3.5.7 6000hex...6FFFhex - communication module errors
	1.7.3.5.8 7000hex...7FFFhex - product libraries

	1.8 Engineering interfaces and tools
	1.8.1 Export and import interfaces
	1.8.1.1 Exporting and importing ECAD data (PBF)
	1.8.1.1.1 Requirements on EPLAN electric P8
	1.8.1.1.2 Importing PLC data from the ECAD tool
	1.8.1.1.3 Importing third party devices
	1.8.1.1.4 Exporting PLC data to ECAD tool
	1.8.1.1.5 Exporting third party devices
	1.8.1.1.6 Importing ECAD PLC data to existing AB project
	1.8.1.1.7 Arrange or map devices imported to the device pool
	1.8.1.1.8 Limitations

	1.8.1.2 Exporting and importing I/O mapping (CSV)
	1.8.1.2.1 Exporting IO mapping data to CSV
	1.8.1.2.2 Importing I/O mapping data from CSV

	1.8.1.3 Exporting and importing device list (CSV)
	1.8.1.3.1 Exporting device list to CSV
	1.8.1.3.2 Creating CSV device list
	1.8.1.3.3 Importing a device list from CSV
	1.8.1.3.4 Renaming devices

	1.8.2 Virtual commissioning technology
	1.8.2.1 Virtual mode
	1.8.2.2 Virtual system testing
	1.8.2.3 Simulation
	1.8.2.4 Protocol switch
	1.8.2.5 Virtual AC500 V2 extensions
	1.8.2.5.1 Introduction
	1.8.2.5.2 General
	1.8.2.5.3 UDP/IP function blocks
	Function block in- and outputs
	Configuration
	Syntax
	Examples

	1.8.2.5.4 CAA_File function blocks
	1.8.2.5.5 Clock function blocks
	1.8.2.5.6 Ethernet function blocks
	1.8.2.5.7 Error numbers

	1.8.3 System model
	1.8.3.1 Creating a system model
	1.8.3.1.1 Model block class editor
	1.8.3.1.2 Model block instance editor

	1.8.3.2 Generating system model
	1.8.3.3 Example

	1.8.4 Drive composer pro integration
	1.8.5 Professional Version Control
	1.8.5.1 Getting Started
	1.8.5.2 Version control
	1.8.5.3 Using an SVN Repository
	1.8.5.4 Using Working Copies
	1.8.5.5 Reference, User Interface
	1.8.5.5.1 Overlay Icons
	1.8.5.5.2 Commands
	Command 'SVN Repository Browser'
	Command 'Edit SVN working copy'
	Command 'Import project to SVN'
	Command 'Checkout'
	Command 'Commit', Command 'Commit Project'
	Command 'Compare'
	Command 'Compare with HEAD revision'
	Command 'Compare with revision'
	Command 'Compare to remote project...'
	Command 'Include externals to project', Command 'Include externals'
	Command 'Ignore on commit'
	Command 'SVN Info'
	Command 'Show properties'
	Command 'Get lock'
	Command 'Steal locks'
	Command 'Release lock'
	Command 'Release locks recursively'
	Command 'Show log', Command 'Show project log'
	Command 'Revert', Command 'Revert project'
	Command 'Revert to revision', Command 'Revert project to revision'
	Command 'Update', Command 'Update project'
	Command 'Update to revision'
	Command 'Update only this'
	Command 'Disconnect project from SVN'
	Command 'Switch'
	Command 'Un-Ignore on commit'
	Command 'SVN Cleanup'
	Command 'Clear authentication data'
	Command 'Merge changes'
	Command 'Connect to existing project'
	Command 'Resolve conflict'
	Command 'Work in offline mode'
	Command 'Copy (Branch/Tag)'
	Command 'Pending Changes'

	1.8.5.5.3 Dialogs
	Dialog 'Options' - 'SVN Settings'
	Dialog 'Project Settings' - 'SVN Settings'
	Dialog 'Select revision'
	Dialog 'Subversion Authentication'
	Dialog 'Automatic locking failed'

	1.8.5.5.4 Objects
	Object 'SVN_VERSION_INFO'

	1.8.6 Subversion
	1.8.6.1 Project Version Control with Subversion
	1.8.6.1.1 Preconditions
	1.8.6.1.2 Working with Project Version Control
	1.8.6.1.3 Recommendations on Working with Project Version Control
	1.8.6.1.4 Known Issues and Troubleshooting

	1.8.6.2 SVN Support Examples
	1.8.6.2.1 Importing Automation Builder Project to SVN Repository
	1.8.6.2.2 Logging in User2
	1.8.6.2.3 Examples

	1.8.7 Python
	1.8.7.1 Python script support
	1.8.7.2 Working with script objects
	1.8.7.3 Python script editor

	1.9 Human machine interface
	1.9.1 Panel Builder interface
	1.9.1.1 Adding desired AC500 PLC to the project
	1.9.1.2 Creating a Panel Builder project
	1.9.1.3 Configuring Panel Builder

	1.9.2 SCADA Integration
	1.9.2.1 Creating Workspace and Project
	1.9.2.2 Loading existing Workspace and Project
	1.9.2.3 Checking the Gateway Settings in a Zenon Project
	1.9.2.4 Generating a Symbol File
	1.9.2.5 Updating Standard Data Types
	1.9.2.6 Creating Data Types
	1.9.2.7 Importing Data Types in zenon Editor

	1.10 Contact ABB

	2 Index

